• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
Document
Auteur
Nom complet
Taciana Kisaki Oliveira Shimizu
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2018
Directeur
Jury
Louzada Neto, Francisco (Président)
Dias, Teresa Cristina Martins
Silva, Paulo Henrique Ferreira da
Suzuki, Adriano Kamimura
Vieira, Afrânio Márcio Corrêa
Titre en anglais
Penalized regression models for compositional data
Mots-clés en anglais
Compositional data
Isometric log-ratio coordinates
Regression model
Variable selection
Resumé en anglais
Compositional data consist of known vectors such as compositions whose components are positive and defined in the interval (0,1) representing proportions or fractions of a whole, where the sum of these components must be equal to one. Compositional data is present in different areas, such as in geology, ecology, economy, medicine, among many others. Thus, there is great interest in new modeling approaches for compositional data, mainly when there is an influence of covariates in this type of data. In this context, the main objective of this thesis is to address the new approach of regression models applied in compositional data. The main idea consists of developing a marked method by penalized regression, in particular the Lasso (least absolute shrinkage and selection operator), elastic net and Spike-and-Slab Lasso (SSL) for the estimation of parameters of the models. In particular, we envision developing this modeling for compositional data, when the number of explanatory variables exceeds the number of observations in the presence of large databases, and when there are constraints on the dependent variables and covariates.
Titre en portugais
Métodos de regressão penalizados para dados composicionais
Mots-clés en portugais
Coordenadas log-razão isométricas
Dados composicionais
Modelo de regressão
Seleção de variáveis
Resumé en portugais
Dados composicionais consistem em vetores conhecidos como composições cujos componentes são positivos e definidos no intervalo (0,1) representando proporções ou frações de um todo, sendo que a soma desses componentes totalizam um. Tais dados estão presentes em diferentes áreas, como na geologia, ecologia, economia, medicina entre outras. Desta forma, há um grande interesse em ampliar os conhecimentos acerca da modelagem de dados composicionais, principalmente quando há a influência de covariáveis nesse tipo de dado. Nesse contexto, a presente tese tem por objetivo propor uma nova abordagem de modelos de regressão aplicada em dados composicionais. A ideia central consiste no desenvolvimento de um método balizado por regressão penalizada, em particular Lasso, do inglês least absolute shrinkage and selection operator, elastic net e Spike-e-Slab Lasso (SSL) para a estimação dos parâmetros do modelo. Em particular, visionamos o desenvolvimento dessa modelagem para dados composicionais, com o número de variáveis explicativas excedendo o número de observações e na presença de grandes bases de dados, e além disso, quando há restrição na variável resposta e nas covariáveis.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2019-08-07
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2022. Tous droits réservés.