• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
https://doi.org/10.11606/D.104.2022.tde-07062022-132235
Documento
Autor
Nome completo
Guilherme Michel Lima de Carvalho
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2022
Orientador
Banca examinadora
Rodrigues, Francisco Aparecido (Presidente)
Amancio, Diego Raphael
Ramos, Pedro Luiz
Título em português
Redes neurais para grafos e suas aplicações aos sistemas complexos
Palavras-chave em português
Aprendizado de máquina
Redes neurais para grafos
Sistemas complexos
Resumo em português
Sistemas complexos são compostos de diversos componentes que interagem entre si. Uma abordagem natural para estes tipos de sistemas é utilizando a abstração matemática de grafos. Em diversos contextos do mundo real é possível se utilizar técnicas de redes complexas para a modelagem desses sistemas. Nestes sistemas podem ocorrer processos dinâmicos como por exemplo a propagação de informação e a propagação de doenças. Neste trabalho consideramos a utilização de técnicas de redes neurais artificiais para dados estruturados como grafos com o objetivo de estudar a propagação de rumor em redes complexas e a detecção de estruturas de comunidades. Para o caso de propagação de rumor, foi proposto um modelo baseado em redes neurais para grafos com o objetivo de recuperar a origem de propagação em grafos artificiais com estruturas de comunidades e para a detecção de estruturas de comunidades foi avaliado o potencial do aprendizado de representações por redes neurais para grafos em comparação a algoritmos tradicionais da ciência de redes complexas.
Título em inglês
Graph neural networks and its applications to complex systems
Palavras-chave em inglês
Complex systems
Graph neural networks
Machine learning
Resumo em inglês
Complex systems are composed of several components that interact with each other. A natural approach for these types of systems is to use mathematical graph abstraction. In different contexts in the real world, it is possible to use complex network techniques to model these systems. In these systems, dynamic processes such as the spread of information and the spread of disease can occur. In this work we consider the use of artificial neural network techniques for graph-structured data in order to study the propagation of rumor in complex networks and the detection of community structures. For the proposed case of rumor, a model was developed based on graph neural networks for the porpuse of detected the source of the a rumour in graphs with community structure and for community dectection was evaluate the potential of graph neural networks in comparison to traditional methods of the network science.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2022-06-07
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2022. Todos os direitos reservados.