• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
https://doi.org/10.11606/D.104.2020.tde-06082020-095824
Documento
Autor
Nombre completo
Thiago Ramos Biondo
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 2020
Director
Tribunal
Suzuki, Adriano Kamimura (Presidente)
Saraiva, Erlandson Ferreira
Silva, Paulo Henrique Ferreira da
Título en portugués
Modelos de Sobrevivência Bivariados Baseados na Cópula PVF
Palabras clave en portugués
Análise de sobrevivência
Cópula PVF
Funções cópulas
Inferência bayesiana
Simulação
Resumen en portugués
Uma alternativa desenvolvida para estudar associações entre os tempos de sobrevivência multivariados é o uso dos modelos baseados em funções cópulas. Neste trabalho, utilizamos o modelo de sobrevivência derivado da cópula PVF, baseada na distribuição Power Variance Function, para modelar a dependência de dados bivariados na presença de covariáveis e observações censuradas. Para fins inferenciais, realizamos uma abordagem Bayesiana usando métodos Monte Carlo em Cadeias de Markov (MCMC). Algumas discussões sobre os critérios de seleção de modelos são apresentadas. Com o objetivo de detectar observações influentes utilizamos o método Bayesiano de análise de influência de deleção de casos baseado na divergência ψ. Por fim, ilustramos a aplicabilidade dos modelos propostos a conjuntos de dados simulados e reais.
Título en inglés
Bivariate Survival Models Based on PVF Copula
Palabras clave en inglés
Bayesian inference
Copula functions
PVF copula
Simulation
Survival analysis
Resumen en inglés
An alternative developed to study associations among multivariate survival times is the use of models based on copula functions. In this work, we use the survival model derived from the PVF copula, based on the Power Variance Function distribution, to model the dependence of bivariate data in the presence of covariates and censored observations. For inferential purposes, we perform a Bayesian approach using Monte Carlo Markov Chain (MCMC) methods. Some discussions about model selection criteria are presented. In order to detect influential observations, we used the Bayesian method of deletion influence analysis of cases based on divergence ψ. Finally, we show the applicability of the proposed models to simulated and real datasets
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2020-08-06
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2020. Todos los derechos reservados.