• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.104.2023.tde-05032024-081113
Document
Author
Full name
Fabiano Rodrigues Coelho
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2023
Supervisor
Committee
Novelli, Cibele Maria Russo (President)
Lobos, Cristian Marcelo Villegas
Pereira, Gustavo Henrique de Araujo
Pinto Junior, Jony Arrais
Prates, Marcos Oliveira
 
Title in Portuguese
Diagnóstico e seleção de modelos com resposta binária e função de ligação assimétrica
Keywords in Portuguese
Dados desbalanceados
Função de ligação assimétrica
Modelos binários mistos e estimação bayesiana
Abstract in Portuguese
Para variáveis resposta binárias, as funções de ligação probito e logito são amplamente utilizadas. No entanto, quando os dados são desbalanceados, as abordagens tradicionais podem não ser adequadas. Neste trabalho é considerado a função de ligação skew-probito como uma possível alternativa para modelos com resposta binária. Os parâmetros são estimados por meio de uma abordagem bayesiana utilizando Monte Carlo Hamiltoniano, e a análise de resíduos é desenvolvida. Além disso, uma extensão para o caso de modelos mistos é apresentada, com a estimação dos parâmetros sendo realizada por meio de integração numérica. Como aplicação prática, analisamos dois conjuntos de dados. Em ambas as aplicações, é possível verificar, por meio de critérios de seleção de modelos, que o modelo skew-probito é mais eficiente do que as abordagens tradicionais. Computacionalmente, para o modelo com efeitos fixos, utilizamos a linguagem Stan adaptada ao software R. No caso misto, consideramos a metodologia INLA. Propostas para trabalhos futuros também são discutidas.
 
Title in English
Diagnostic and models selection with binary response and asymmetric link function
Keywords in English
Asymmetric link Function
mixed binary models and bayesian estimation
Unbalanced data
Abstract in English
For binary response variables, probit and logit link functions are widely used. However, when the data is imbalanced, traditional approaches may not be suitable. In this thesis, we consider the skew-probit link function as a potential alternative for models with binary response. The parameters are estimated through a Bayesian approach using Hamiltonian Monte Carlo, and residual analysis is developed. Additionally, an extension for the case of mixed models is presented, with parameter estimation performed through numerical integration. As a practical application, we analyze two datasets. In both applications, it is possible to observe, through model selection criteria, that the skew-probit regression model is more efficient than traditional approaches. Computationally, for the fixed-effects model, we use the Stan language adapted to the R software. In the mixed case, the INLA methodology is considered. Proposals for future research are also discussed.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2024-03-05
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors.
CeTI-SC/STI
© 2001-2024. Digital Library of Theses and Dissertations of USP.