• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
Document
Author
Full name
Glauber Márcio Silveira Pereira
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2019
Supervisor
Committee
Diniz, Carlos Alberto Ribeiro (President)
Andrade Filho, Marinho Gomes de
Kolev, Nikolai Valtchev
Silva, Paulo Henrique Ferreira da
Viola, Márcio Luis Lanfredi
Title in Portuguese
Modelos COM-Poisson com correlação
Keywords in Portuguese
Distribuição COM-Poisson
Distribuição Poisson generalizada parcialmente correlacionada
Distribuições com correlação
Modelos de regressão
Abstract in Portuguese
Nesta tese são propostas duas distribuições discretas: COM-Poisson correlacionada (CPC) e COM-Poisson generalizada parcialmente correlacionada (CPGPC). Também foram propostos modelos de regressão para a distribuição Poisson generalizada parcialmente correlacionada (PGPC) (proposto por Luceño (1995)). Calculamos a função massa de probabilidade (fmp) para todas as distribuições com duas parametrizações. As distribuições foram construídas usando a mesma expansão feita por (Luceño, 1995) na construção da distribuição Poisson generalizada parcialmente correlacionada. A distribuição CPC(l;f;r) é a mesma expansão da distribuição COM-Poisson zero inflacionada ZICMP(m;f;r). Para a distribuição CPGPC(l;f;r;L;K) foi determinada a função característica, função geradora de probabilidade, momentos e a estimação pelo método de máxima verossimilhança para as duas parametrizações. Fizemos a fmp, quantil e gerador de números aleatórios das distribuições citadas no programa R.
Title in English
Models COM-Poisson with correlation
Keywords in English
COM-Poisson distribution
Correlated distributions
Generalized partially correlated models
Regression models
Abstract in English
In this thesis two discrete distributions are proposed: Correlated COM-Poisson (CPC) and Generalized partially correlated COM-Poisson (CPGPC). We have also proposed regression models for the Generalized partially correlated Poisson distribution (PGPC) (proposed by Luceño (1995)). We calculated the probability mass function for all distributions with two parametrizations. The distributions were constructed using the same expansion made by Luceño (1995) in the construction of the correlated generalized Poisson distribution. The CPC(l;f;r) Correlated COM-Poisson distribution is the same expansion of the zero-inflated COM-Poisson distribution ZICMP(m;f;r). For the CPGPC(l;f;r;L;K) Generalized partially correlated COM-Poisson distribution, the characteristic function, probability-generating function, moments, and the maximum likelihood estimation for the two parametrizations were determined. We performed the probability mass function, quantile and random number generator of the distributions quoted in program R.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2019-08-02
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2021. All rights reserved.