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RESUMO

OTTO, M. P. Métodos de kernel escaláveis e interpretáveis baseados em ran-
dom Fourier features. 2023. 79 p. Dissertação (Mestrado em Estatística – Programa
Interinstitucional de Pós-Graduação em Estatística) – Instituto de Ciências Matemáticas
e de Computação, Universidade de São Paulo, São Carlos – SP, 2023.

Métodos de kernel são uma classe de modelos de aprendizado de máquina baseados em
kernels positivo semidefinidos, que servem como medidas de similaridade entre covariáveis.
Exemplos de métodos de kernel incluem a regressão ridge com kernels, as máquinas de
vetor de suporte e os splines suavizadores. Apesar do seu amplo uso, os métodos de kernel
possuem duas desvantagens significativas. Em primeiro lugar, ao operar sobre todos os
pares de observações, eles demandam grande quantidade de memória e computação, o
que impossibilita sua aplicação em grandes conjuntos de dados. Este problema pode ser
resolvido através de aproximações da matriz do kernel via random Fourier features ou
precondicionadores. Em segundo lugar, a maioria dos kernels tratam todas as covariáveis
disponíveis como igualmente relevantes, desconsiderando seu impacto na predição. Isso
resulta em um descréscimo na interpretabilidade, uma vez que a influência de covariáveis
irrelevantes não é mitigada. Neste trabalho, nós estendemos a teoria de random Fourier
features para os kernels com Determinação Automática de Relevância e propomos um novo
método de kernel que integra a otimização dos parâmetros do kernel ao treinamento. Os
parâmetros do kernel reduzem o efeito das covariáveis irrelevantes e podem ser utilizados
para seleção de variáveis pós-processamento. O método proposto é avaliado em diversos
conjuntos de dados e comparado a algoritmos convencionais de aprendizado de máquina.

Palavras-chave: Métodos de kernel; importância de covariáveis; aprendizado de má-
quina; otimização.





ABSTRACT

OTTO, M. P. Scalable and interpretable kernel methods based on random Fou-
rier features. 2023. 79 p. Dissertação (Mestrado em Estatística – Programa Interins-
titucional de Pós-Graduação em Estatística) – Instituto de Ciências Matemáticas e de
Computação, Universidade de São Paulo, São Carlos – SP, 2023.

Kernel methods are a class of statistical machine learning models based on positive
semidefinite kernels, which serve as a measure of similarity between data features. Ex-
amples of kernel methods include kernel ridge regression, support vector machines, and
smoothing splines. Despite their widespread use, kernel methods face two main chal-
lenges. Firstly, due to operating on all pairs of observations, they require a large amount
of memory and calculation, making them unsuitable for use with large datasets. This
issue can be solved by approximating the kernel function via random Fourier features or
preconditioners. Secondly, most used kernels consider all features to be equally relevant,
without considering their actual impact on the prediction. This results in decreased in-
terpretability, as the influence of irrelevant features is not mitigated. In this work, we
extend the random Fourier features framework to Automatic Relevance Determination
(ARD) kernels and proposes a new kernel method that integrates the optimization of
kernel parameters during training. The kernel parameters reduce the effect of irrelevant
features and might be used for post-processing variable selection. The proposed method
is evaluated on several datasets and compared to conventional algorithms in machine
learning.

Keywords: Kernel methods; feature importance; machine learning; optimization.





LIST OF SYMBOLS

[n] — The set {1, . . . , n}, for n ∈ N.

arg minx∈C f(x) — The set {x ∈ C : f(x) = minz∈C f(z)}.

R+ — The set {x ∈ R : x ≥ 0}.

◦ — The element-wise multiplication, x ◦ y = (x1y1, . . . , xpyp) for x, y ∈ Rp.

1p — The vector (1, . . . , 1) ∈ Rp.

Ip — The p× p identity matrix.
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CHAPTER

1
INTRODUCTION

Statistical learning methods based on kernel functions have been successfully used
in many fields, ranging from feature selection (JORDAN; LIU; RUAN, 2021; HE; WANG;
LV, 2018) and causal inference (ZHANG et al., 2021) to privacy (BALOG; TOLSTIKHIN;
SCHöLKOPF, 2018) and hypothesis testing (LIU et al., 2021; SHEKHAR; KIM; RAM-
DAS, 2022; JITKRITTUM; KANAGAWA; SCHöLKOPF, 2020; SCETBON; MEUNIER;
ROMANO, 2022). Given their nonparametric nature and many theoretical guarantees,
these methods allow for principled modelling of complex relationships in real-world data.
In particular, accomplished regression and classification methods such as Kernel Ridge
Regression and Support Vector Machines (CORTES; VAPNIK; SAITTA, 1995) are based
on kernels.

Unfortunately, because kernel methods operate on all pairs of observations, they
possess stringent memory and time requirements, which hinders their applicability. Fortu-
nately, approximate solvers were recently developed for scaling up kernel methods, based
on random Fourier features (RAHIMI; RECHT, 2008a; CURTó et al., 2017; LE; SARLOS;
SMOLA, 2014) or preconditioners, such as the Nyström method (RUDI; CARRATINO;
ROSASCO, 2017). However, these scalable approaches are based on approximations of
isotropic kernels, which weigh all features equally in the kernel, and cannot remove the
influence of features that are irrelevant to the predictive task at hand. This translates into
an interpretability shortage and leads to poor predictive performance in problems with
many irrelevant variables (LAFFERTY; WASSERMAN, 2008; BERTIN; LECUÉ, 2008).

Indeed, a common approach for improving kernel methods’ interpretability is to
assign a distinct weight to each feature in the kernel parametrization. This process gen-
erates the so-called Automatic Relevance Determination (ARD) kernels (RASMUSSEN;
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WILLIAMS, 2006), such as the ARD gaussian kernel

kλ(x, x′) = exp

−1
2

p∑
j=1

λ2
j(xj − x′

j)2

 ,

where xi is the i-th component of the feature vector x and λi is the relevance of the
i-th feature. In practice, it is expected that if the relevance vector λ is estimated using
available data, then λi would be automatically set to zero for irrelevant features.

In this work, we propose RFFNet, a new approach for fitting kernel methods that
is scalable and interpretable. On the one hand, our method relies on kernel approxima-
tions with random Fourier features, which significantly reduces the number of parameters
to be estimated and decreases the computational cost of training kernel methods. On the
other hand, contrary to standard random Fourier features applications, our framework
effectively employs ARD kernels. We show that ARD kernels correspond to spectral den-
sities that have the kernel relevances as “scale” parameters. Through this, we show that
it is possible to decouple λ from the RFF map that approximates evaluations of an ARD
kernel and, therefore easily estimate λ with data.

1.1 Summary of contributions
The main contributions of this work are:

• proposing a new scalable kernel method for classification and regression tasks;

• proposing random Fourier features for ARD kernels tailored for identifying relevant
features and measuring feature importance;

• implementing a block stochastic gradient descent method that shows good empirical
performance in solving the objective function introduced by our approach;

• proposing an adaptation of our approach suited for measuring feature importance
in neural networks;

• implementing our method in a modular and efficient manner with the PyTorch
framework (PASZKE et al., 2019).

1.2 Relation to prior work
One of the simplest approaches to improve kernel methods in the presence of

irrelevant features is to assign a weight, or relevance, to each feature in the definition of the
kernel function. However, tuning such parameters is difficult (KEERTHI; SINDHWANI;
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CHAPELLE, 2006). For instance, cross-validation cannot be used to choose these values,
as this would require a grid over a possibly high-dimensional feature space.

Other approaches, such as Guyon et al. (2002) and Louw and Steel (2006), perform
recursive backward elimination of features. Although effective in low dimensions, this
tends to be slow in problems with many features.

An alternative approach that is more related to our method is to develop a loss
function that includes the relevances as part of the objective function. This is done by
Allen (2013), which proposes an iterative feature extraction method. Unfortunately, this
procedure does not scale with the sample size because of memory and computational pro-
cessing requirements. An alternative approach, Sparse Random Fourier Features (SRFF),
is developed by Gregorová et al. (2018), which uses random Fourier features as the basis
for feature selection with ARD kernels. However, their solution is specific to the regression
setting (with mean squared error loss) and keeps the number of random features fixed,
which hinders SRFF predictive performance. Additionally, SRFF is based on a two-step
exact minimization procedure, minimizing first with respect to the parameters of the ker-
nel expansion, then with respect to the relevances. It is known that this procedure can
cause indefinite cycling, preventing convergence (POWELL, 1973).

Recently, Jordan, Liu and Ruan (2021) described a new sparsity-inducing mech-
anism for kernel methods. Although the mechanism is based on optimizing a vector of
weights that enters the objective as a data scaling, similar to ARD kernels, the solution is
specific to Kernel Ridge Regression and Metric Learning and does not employ any kernel
matrix approximation.

1.3 Organization
Chapter 2 reviews the supervised learning setting, gives a primer on optimization

and presents the basics of kernel methods. Chapter 3 describes our approach for improving
kernel methods’ scalability and interpretability. Chapter 4 presents how the method was
evaluated and validates some aspects of our approach. Chapter 5 compares our approach
to established baselines in simulation and real data experiments. Chapter 6 concludes the
dissertation, giving directions for future work.
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CHAPTER

2
BACKGROUND

This chapter reviews basic definitions, facts, and notation from the supervised
learning framework, optimization, and the theory of kernel methods. In particular, we
emphasize the origin of the scalability and interpretability bottlenecks for usual kernel
methods.

2.1 Supervised learning

We follow the standard formalization of statistical machine learning (ML) tasks as
in Shalev-Shwartz and Ben-David (2014). Let X ⊆ Rp be the input space and Y be the
output space. For instance, Y ⊆ R in regression, and Y = {0, 1} in binary classification.
Let (X, Y ) be a random vector defined on X ×Y with joint probability distribution PX,Y .
We call X the vector of features and Y the response.

Given a finite training sample (xi, yi)i∈[n] of independent and identically distributed
realizations of (X, Y ) ∼ PX,Y , the goal of supervised learning is to train or estimate a
function f : X → Y that approximates the relationship between the input X and the
output Y . Conventionally, we restrict this function to a certain function space H, whose
elements are mappings between X and Y . For instance, H may be taken as the space of
linear maps, two-layer neural networks, or decision stumps (MOHRI; ROSTAMIZADEH;
TALWALKAR, 2018).

To measure how well functions in H approximate the relationship between X and
Y , one introduces the notion of a loss function. A function ℓ : Y×Y → R∪{+∞} is a loss
function if ℓ(y, y) = 0 for all y ∈ Y and ℓ(y, y′) ≥ 0 for all y, y′ ∈ Y . For example, the most
common loss function for regression problems is the squared error loss ℓ(y, y′) = (y− y′)2.

By specifying a loss function, the goal of supervised learning can be recast as an
optimization problem in H. Specifically, the objective is to find a function f ∗ ∈ H that
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minimizes the loss ℓ(f(X), Y ) in expectation,

f ∗ ∈ arg min
f∈H

EX,Y [ℓ(f(X), Y )] . (2.1)

In practice, however, computing this expectation is unfeasible since we do not have
access to the joint probability PX,Y . Instead, one must resort to the empirical expectation
over the training sample (xi, yi)i∈[n]. In this case, one finds f ∗ such that

f ∗ ∈ arg min
f∈H

n∑
i=1

ℓ(f(xi), yi). (2.2)

This procedure is the defining rule for the Empirical Risk Minimization (ERM)
paradigm in statistical machine learning. Nevertheless, although the ERM rule suffices for
learning many families of learning problems (SHALEV-SHWARTZ; BEN-DAVID, 2014),
it can lead to unstable estimates f ∗ and completely disregards the complexity of the
function class H. For instance, if H is a rich function space (such as the space of deep
neural networks), the ERM rule may lead to severe over-fitting.

The Regularized Loss Minimization (RLM) paradigm is adopted to cope with the
pointed drawbacks of ERM. RLM is a modification of the Structural Risk Minimiza-
tion (SRM) paradigm (MOHRI; ROSTAMIZADEH; TALWALKAR, 2018) and seeks to
control the complexity of functions in H by introducing a regularization function that
penalizes complex hypotheses in H. The loss and the regularization function are then
jointly minimized on the training sample, generating an optimal estimate f ∗ as

f ∗ ∈ arg min
f∈H

[
n∑

i=1
ℓ(f(xi), yi) + µR(f)

]
, (2.3)

where R : H → R+ is the regularization function and µ > 0 controls the regularization
strength. Choosing an appropriate µ is central to guarantee that f ∗ generalizes to unseen
realizations of (X, Y ), and it is usually accomplished via cross-validation, although other
approaches exist (BERTRAND et al., 2021; PEDREGOSA, 2016). In turn, the choice of
regularization function R is commonly tied to the structure of H (WAINWRIGHT, 2019).
For instance, if X ⊆ Rp and H is the space of linear functions

H = {x→ β⊺x + b : β ∈ Rp, b ∈ R},

then natural choices of regularization are R(f) = ∥β∥2
2 or R(f) = ∥β∥1, widely known as

ℓ2 and ℓ1 regularizations, respectively. In section 2.3, we will see a natural regularization
function for kernel methods.

2.2 Optimization
Training supervised learning models requires solving an optimization problem in

the function space H. In fact, statistics and machine learning are intimately connected
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to optimization. For instance, obtaining M-estimators (GEER, 2000) or maximum a pos-
teriori estimates requires solving maximization problems, and there are many relations
between sampling and optimization, some of them just recently established (CHEWI et
al., 2022; CHEN et al., 2022).

In this section, we briefly cover theoretical and algorithmic aspects of optimization
in both the convex and non-convex settings. Even if the main optimization problem tackled
in this work is non-convex, convex optimization is considered a source of solution heuristics,
convex relaxations for non-convex problems (via convex surrogate losses, for instance), and
bounds for global optimization (BOYD; VANDERBERGHE, 2004), which justifies this
review.

Convex analysis

We begin with the basic definition of convex sets, the building blocks of convex
analysis. Intuitively, a set is convex if every point in the set can be connected to every
other by a straight path entirely lying in the set.

Definition 1 (Convex set). A subset C of Rn is convex if (1 − λ)x + λy ∈ C for all
x, y ∈ C and 0 < λ < 1.

Trivially, Rn, ∅, and any singleton {x} for x ∈ Rn are convex sets. We give some
other examples next.

Example 1. In each of the following cases, C is a convex subset of Rn.

1. C = B(x, ε), with B(x, ε) = {y ∈ Rn : d(x, y) < ε} an open ball centered at x ∈ Rn

with radius ε > 0.

2. C a half-space, say C = {x ∈ Rn : ⟨x, b⟩ ≤ α, b ∈ Rn, b ̸= 0, α ≥ 0}.

3. C = ⋂
i∈I Ci, where (Ci)i∈I is a family of convex sets.

Convex sets have many interesting geometrical properties, such as the separating
hyperplane theorem (ROCKAFELLAR, 1970) and the supporting hyperplane theorem
(BOYD; VANDERBERGHE, 2004). These properties make the study of these objects a
very enticing subject on its own. Nevertheless, we will not delve into these results and
point the interested reader to the aforementioned references. Our focus will be on convex
functions, which lie at the heart of modern optimization.

Definition 2 (Convex function). Let f : S → R∪{±∞} be a function defined on S ⊂ Rn.
Then f is convex if its epigraph, epi f = {(x, µ) : x ∈ S, µ ∈ R, f(x) ≤ µ}, is a convex
subset of Rn+1.
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Alternatively, these functions can be characterized by the following proposition,
which usually appears in the literature as the definition of convex functions.

Proposition 1 (Convex function). Let f be a function from a convex set C to [−∞, +∞].
Then f is convex if and only if

f ((1− λ)x + λy) ≤ (1− λ)f(x) + λf(y),

for all x, y ∈ C and 0 < λ < 1.

Proof. See Bauschke and Combettes (2017).

In practice, Proposition 1 can hardly help asserting if a given function is convex.
The following second-order condition is the primary tool used to do so.

Theorem 1. Let C be a convex set and f : C → (−∞, +∞] be a convex function.
Assume that f is twice differentiable in C. Then f is convex if and only if its Hessian is
positive semidefinite,

∇2f(x) ⪰ 0

for all x ∈ C.

Proof. See, for instance, Rockafellar (1970).

With this criterion, we can prove that the following functions are all convex on R.

Example 2 (Convex functions defined on R).

1. f(x) = eαx, α ∈ R,

2. f(x) = xp if x ≥ 0, f(x) = +∞ if x < 0, for 1 ≤ p < +∞.

3. f(x) = (α2 − x2)− 1
2 if |x| < α, f(x) = +∞ if |x| ≥ α, where α > 0.

4. f(x) = − log x if x > 0, f(x) = +∞ if x ≥ 0.

These functions and functional operations that preserve convexity can be used
to construct convex optimization objectives or suggest convex relaxations for non-convex
objectives.

In optimization, one is interested in a particular class of convex functions denomi-
nated proper. These functions are not constantly equal to +∞, which makes them liable
to minimization.

Definition 3 (Proper convex function). Let f : C → (−∞, +∞] be a convex function. f

is called proper if f(x) < +∞ for some x ∈ C.



2.2. Optimization 27

With this property, we can show the following proposition. This result underlines
the fundamental importance of convexity in minimization problems.

Proposition 2. Let f : C → (−∞, +∞] be a proper convex function. Then every local
minimizer of f is a global minimizer.

Proof. Take x ∈ C and ε > 0 such that f(x) = min f(B(x; ε)), with B(x, ε) an open
ball centered at x with radius ε. Let y ∈ C \ B(x, ε) and set α = 1 − ε/∥x − y∥ and
z = αx + (1− α)y. Then α ∈ (0, 1) and z ∈ B(x, ε). Thus, from the fact that x is a local
minimizer and the convexity of f , we deduce that

f(x) ≤ f(z) ≤ f (αx + (1− α)y) ≤ αf(x) + (1− α)f(y),

which implies that f(x) ≤ f(y). Thus, since y is arbitrary, we conclude that every local
minimizer of f is a global minimizer.

For other results concerning the existence and uniqueness of minimizers of convex
functions, see Bauschke and Combettes (2017).

2.2.1 A primer on convex optimization

We now summarize some algorithmic aspects of convex optimization. The empha-
sis will be on descent methods, a family of optimization procedures that includes the
widespread gradient descent methods. In fact, gradient descent methods are the opti-
mization workhorse of modern machine learning, with applications ranging from general-
ized linear models (BERTRAND et al., 2022) and kernel learning (CARRATINO; RUDI;
ROSASCO, 2018), to neural networks (KINGMA; BA, 2014) and deep reinforcement
learning (SCHULMAN et al., 2017).

As a general setting, consider the unconstrained and smooth optimization problem

minimize
x∈Rn

f(x), (2.4)

where f : Rn → (−∞, +∞] is a convex and differentiable objective function with dom(f) =
Rn. We assume that there exists an optimal point x∗ = arg minx∈Rn f(x) and that f is
L-smooth, that is, f has L-Lipschitz continuous gradients.

Descent methods

A very natural approach to problem (2.4) is to find a sequence of iterates x(k) of
the form

x(k+1) = x(k) + t(k)∆x(k), k = 1, 2, . . . , (2.5)
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where t(k) > 0 is the step-size and ∆x(k) is the search direction at the k-th iteration, such
that

f(x(k+1)) < f(x(k)).

Methods of this type are called descent methods.

From the convexity of f (IZMAILOV; SOLODOV, 2018), it can be shown that

∇f(x(k))⊺∆x(k) < 0,

so ∆x(k) must make an acute angle with the negative gradient.

Gradient descent

When the search direction at the k-th iteration ∆x(k) is taken as the negative
gradient, ∆x(k) = −∇f(x(k)), the iteration scheme in (2.5) reduces to

x(k+1) = x(k) − t(k)∇f(x(k)), k = 1, 2, . . . , (2.6)

which is the defining rule of the gradient descent method. The iterations in (2.6) proceed
until a stopping criterion is met. The stopping criterion is sometimes chosen to check
whether the iterations result in a sufficiently small gradient, ∥∇f(xk)∥ ≤ ε, with ε > 0,
indicating that the method is close to a stationary point.

In the setting where the objective function f is L-smooth and convex, the iterations
Equation 2.6 have a convergence guarantee as long as the step size is not too big.

Theorem 2. Gradient descent with fixed step size t ≤ 1/L satisfies

f
(
x(k)

)
− f(x∗) ≤ ∥x

(0) − x∗∥2
2

2tk
. (2.7)

Proof. See section A.1.

Theorem 2 shows that gradient descent has a convergence rate of O(1/k). This
implies that to get a bound like f(x(k)) − f(x∗) ≤ ε, one needs O(1/ε) iterations, which
is called sub-linear convergence.

In the case f is not convex, it is not possible to derive a bound like (2.7), as the
problem of finding the minima of non-convex functions is much more complex. Neverthe-
less, it is possible to bound the norm of the gradients for non-convex optimization with
gradient descent, as shown below.

Theorem 3. Gradient descent with fixed step size t ≤ 1/L satisfies

min
0≤i≤k

∥∇f(x(i))∥2
2 ≤

2
t(k + 1)

[
f(x(0))− f(x∗)

]
.
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Proof. See section A.2.

Notice that, in this context, gradient descent has a slower rate of convergence,
needing O(1/

√
ε) iterations to find a point x such that with ∥∇f(x)∥2 ≤ ε.

Proximal gradient descent

In many situations, as will be the case for RFFNet, the objective f can be split
into differentiable and possibly non-differentiable components. Suppose that

f(x) = g(x) + h(x), (2.8)

with g convex, differentiable, with dom(g) = Rn, and h convex, not necessarily differen-
tiable. In this case, the gradient descent updates for the objective must be modified to
account for the nonsmoothness of h (PARIKH; BOYD, 2013).

The defining rule for the proximal gradient descent method is

x(k+1) = proxh,t

(
x(k) − t(k)∇g

(
x(k)

))
, k = 1, 2, . . . , (2.9)

where proxh,t is the proximal operator of h.

Definition 4 (Proximal operator). The proximal operator proxh,t : Rn → Rn of h, with
t > 0, is defined as

proxh,t(x) = arg min
z

( 1
2t
∥z − x∥2

2 + h(z)
)

.

These operators can be computed in closed form for numerous functions that figure
in optimization problems.

Example 3 (Examples of the proximal operator). Suppose λ > 0.

1. Let h(x) = λ∥x∥2
2, then

proxλ∥·∥2
2,t(x) = tx

t + 2λ
,

which is a shrinkage of the vector x.

2. Let h(x) = λ∥x∥1, then
proxλ∥·∥1,t(x) = Sλt(x),

where Sλt(x) is the soft-thresholding operator, with components

[Sλ(x)]i =


xi − λ, xi > λ,

xi + λ, xi < −λ,

0, xi ∈ [−λ, λ].
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3. Let C be a convex set and h(x) = ιC(x),

ιC(x) =

0, x ∈ C,

+∞, x ̸∈ C,

then
proxιC ,t(x) = arg min

z∈C
∥z − x∥2

2 = PC(x),

where PC(x) is the projection of x into the convex set C.

If we assume that g is L-smooth and we fix a constant step size t(k) ≤ 1/L,
then proximal gradient descent has a convergence rate of O(1/k), matching the rate of
gradient descent. Nevertheless, because PGD involves computing the proximal operator,
it has greater computational complexity.

Stochastic gradient descent

Nowadays, stochastic algorithms for gradient descent are dominant in the optimiza-
tion for machine learning scene. These algorithms reduce the number of iterations needed
to approximate a stationary point and have reduced memory requirements (KINGMA;
BA, 2014).

Let
f(x) = 1

n

n∑
i=1

fi(x)

be an average of function and consider the minimization problem of f

min
x

1
n

n∑
i=1

fi(x).

From the linearity of gradients,

∇
(

n∑
i=1

fi(x)
)

=
n∑

i=1
∇fi(x),

the gradient descent iterates of (2.6) read

x(k) = x(k−1) − t(k) 1
n

n∑
i=1
∇fi(x), k = 1, 2, . . . (2.10)

The central idea of stochastic gradient descent (SGD) is to replace the full gradient
average in (2.10) by a realization of an unbiased estimator of this quantity. In mini-batch
stochastic gradient descent, for instance, at each iteration, we sample a uniformly random
subset Bk ⊂ [n], with |Bk| = b ≪ n, where b is called batch-size, and estimate the full
gradient as 1

b

∑
i∈Bk

∇fi(x)

 , (2.11)
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which has the property that

E

1
b

∑
i∈Bk

∇fi(x)

 = ∇f(x),

so that (2.11) is, in fact, an unbiased estimator of the full gradient.

If we combine the gradient descent iterations with the gradient estimation proce-
dure, we get the full stochastic gradient algorithm:

1. Fix an initial point x(0), t(0).

2. For k = 1, 2, . . . , repeat:

a) Get Bk with |Bk| = b uniformly from [n];

b) Update tk according to the step size policy;

c) x(k) = x(k−1) − tk
1
b

∑
i∈Bk
∇fi

(
x(k−1)

)
d) Check if the stopping criterion is met.

Observe that SGD integrates two separate components: a gradient estimation
method and the gradient descent algorithm. Meantime, the gradient estimation is decou-
pled from the descent algorithm and can be employed for other optimization procedures
relying on the computation of gradients, the proximal gradient method of (2.9) alike (NI-
TANDA, 2014). In fact, our proposed optimization algorithm, as described in Chapter 3,
uses the proximal gradient descent method with stochastic gradients.

2.3 Kernel methods
Among the plethora of machine learning models, kernel-based methods are ex-

tensively used for their ability to model nonlinear dependencies between the input and
output spaces (HOFMANN; SCHÖLKOPF; SMOLA, 2008). Besides that, kernel methods
elicit “natural” functions spaces, known as Reproducing Kernel Hilbert Spaces (RKHS),
with interesting computational and statistical properties that make these methods well-
grounded.

In this section, we propose a progressive construction of kernel methods, building
upon feature maps1 and kernelization (SCHÖLKOPF; SMOLA, 2002). We then describe
the formal characterization of an RKHS and elucidate the aforementioned properties of
this space. Throughout this section, we try to emphasize the origin of the scalability and
interpretability limitations of kernel methods and how they can be addressed.
1 Also known as basis transformations (HASTIE; TIBSHIRANI; FRIEDMAN, 2009).
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Feature maps

Machine learning and statistics have been very well-developed for linear models.
Still, real-world data analysis problems usually require nonlinear methods to detect the ex-
istent associations between input and output spaces. Yet, representing functions between
X and Y as linear models is convenient and, sometimes, a necessary approximation.

The core idea of feature maps is to augment the vector of features X with ad-
ditional variables, which are transformations of X, that hopefully capture the nonlinear
associations present in data. This process generates a transformed input space X ′, where
we then apply linear models.

Let us define ϕi : Rp → R the ith feature map of X, i ∈ [s]. For instance, ϕ1(X) =
X1, ϕ1(X) = X1X2X3 or ϕ1(X) = log X1 are valid candidates. Additionally, define ϕ :
Rd → Rs as

ϕ(X) = (ϕ1(X), . . . , ϕp(X)) ,

the vector feature map or concatenation of feature maps.

In the spirit of section 2.1, we then define the function space

F = {f : f(x) = β⊺ϕ(x), β ∈ Rp} (2.12)

of linear models in the extended features ϕ1(X), . . . , ϕp(X). For instance, if ϕi(X) = Xi

for all i = 1, . . . , d, we recover the space of linear models in the original input space X .

Often, the choice of feature maps aims to improve the flexibility of the functions
in F , increasing its capacity to approximate mappings between X and Y . However, to
account for the possibility of over-fitting, we also need to constrain the growth of the ca-
pacity of F via regularization. In this space, a convenient choice of regularization function
is R(f) = ∥β∥2

2, an ℓ2 regularization on the coefficients.

Regularized loss minimization with feature maps

Now, consider the optimization problem of (2.3) within the space F defined in
(2.12) and a with R(f) = ∥β∥2

2. We restrict our attention to the squared error loss
ℓ(f(xi), yi) = (yi − f(xi))2. In this setting, the problem (2.3) reads

f ∗ ∈ arg min
f∈F

[
n∑

i=1
(yi − f(xi))2 + µR(f)

]
, (2.13)

which can be rewritten, in terms of the coefficients, as

β∗ ∈ arg min
β∈Rp

[
n∑

i=1
(yi − β⊺ϕ(xi))2 + µ∥β∥2

2

]
, (2.14)
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with µ > 0. Defining the design matrix Φ of the augmented features as

Φ =


ϕ1(x1) · · · ϕp(x1)

... . . . ...
ϕ1(xn) · · · ϕp(xn)

 ,

the problem (2.14) can be restated as

β∗ ∈ arg min
β∈Rp

[
∥y −Φβ∥2

2 + µ∥β∥2
2

]
, (2.15)

where y = (y1, . . . , yn)⊺ is the vector of responses in the training sample.

The solution β∗ to (2.15) is the well-known ridge estimator,

β∗ = (Φ⊺Φ + λIp)−1Φ⊺y, (2.16)

where Ip is the p×p identity matrix. The ridge estimator of (2.16) is in a so-called primal
form. By using the matrix identity (MOHRI; ROSTAMIZADEH; TALWALKAR, 2018,
Lemma 11.12)

(Φ⊺Φ + λIp)−1Φ⊺ = Φ⊺(ΦΦ⊺ + λIn)−1,

we can rewrite (2.16) in its dual-form2,

β∗ = Φ⊺(ΦΦ⊺ + λIn)−1y, (2.17)

which is associated with the optimal function

f ∗(·) = β⊺∗ϕ(·) = y⊺(ΦΦ⊺ + λIn)−1Φ⊺ϕ(·). (2.18)

Notice that the terms of the matrix ΦΦ⊺ have the form

(ΦΦ⊺)ij =
p∑

k=1
ΦikΦjk = ϕ(xi)⊺ϕ(xj),

and, similarly,
Φ⊺ϕ(·) = (ϕ(x1)⊺ϕ(·), . . . , ϕ(xn)⊺ϕ(·))⊺.

That is, the vector feature map enters the solution of the estimate in (2.18) only through
inner products, having no standalone role.

Remarkably, for carefully chosen feature maps, these inner products have a closed-
form representation that is much simpler to compute than the feature maps themselves,
often involving computations only with the original features. This property is widely
known in the machine learning community as the “kernel trick”. We give an example of
this phenomenon in the next example.
2 This nomenclature arises from duality theory in optimization (BOYD; VANDERBERGHE,

2004).
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Example 4. Let ϕ : Rd → Rp, with p = d +
(

d
2

)
, be a vector feature map defined as

ϕ(x) =

 x2
i , i = 1, . . . , d√

2xixj, i < j

 .

Then
ϕ(x)⊺ϕ(y) = (x⊺y)2,

that is, the inner product of the basis functions can be computed from the original features
x, y ∈ Rd without explicitly performing the computations related to the feature maps.

Kernelization
Many machine learning algorithms have optimization problems or closed-form so-

lutions for the optimal estimates that can be written solely in terms of the inner products
of feature maps. As we discussed, however, the feature maps enter the solution with a
secondary role: the central object is the expression, often easier to compute, that emerges
from their inner product.

In kernel methods, guided by the previous observation, one proceeds reversely.
Instead of building feature maps and augmenting feature spaces, one defines an expression
for the inner product specified only in terms of the original features. This expression must
satisfy some prerequisites, which specify a positive semidefinite kernel function.

Definition 5 (Positive semidefinite kernel function). A function k : X × X → R is
a positive semidefinite (PSD) kernel if k is symmetric and for all n ≥ 1 and elements
{xi : i ∈ [n]} ⊂ X , the n×n matrix with elements Kij = k(xi, xj) is positive semidefinite.

Observe that, as expected, inner products of vector feature maps are a particular
case of positive semidefinite kernels.

Proposition 3. Let ϕ : X → ℓ2(N) be a vector feature map. Then the function k :
X × X → R defined as

k(x, y) = ϕ(x)⊺ϕ(y) (2.19)

is a positive semidefinite kernel.

Proof. First, k is symmetric, as k(x, y) = ϕ(x)⊺ϕ(y) = ϕ(y)⊺ϕ(x) = k(y, x). Now, let
{xi : i ∈ [n]} ⊂ X and α ∈ Rn. Then,

α⊺Kα =
n∑

i,j=1
αiαjk(xi, xj) =

n∑
i,j=1

αiαjϕ(xi)⊺ϕ(xj) =
n∑

i,j=1
αiϕ(xi)⊺αjϕ(xj)

=
∥∥∥∥∥

n∑
i=1

αiϕ(xi)
∥∥∥∥∥

2

2
≥ 0.

Since {xi : i ∈ [n]} and α ∈ Rn are arbitrary, we conclude that k is a PSD kernel.
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In effect, the correspondence between PSD kernels and vector feature maps is a
very rigorous result in the theory of kernel methods. Mercer’s Theorem (MERCER, 1909)
guarantees that every PSD kernel implicitly defines a (possibly infinite) vector feature
map such that this kernel is of the form stated in (2.19).

This property lets us interpret kernels as representations of the inner product of
vector feature maps in the original input space. In this sense, every algorithm which can
be written solely in terms of inner products of the features can be “kernelized”, that is,
have the inner products substituted by an appropriate kernel.

Construction of kernel methods
We construct the function space associated with kernel methods in the spirit of

section 2.1. Although abstract, this construction is general and allows us to define these
methods precisely. We base our approach on Wainwright (2019), albeit the original theory
was developed by Aronszajn (1950).

Let k : X × X → R be a PSD kernel. Consider the space H′ defined as

H′ =
{

n∑
i=1

αik(xi, ·) : α ∈ Rn, (xi)i∈[n] ⊂ X
}

, (2.20)

which is the linear span of the kernel function partially evaluated in points of the input
space X .

H′ is a vector space with the usual notions of sum and scalar multiplication of
functions. Let f, g ∈ H′, then f(·) = ∑n

i=1 αik(xi, ·) and g(·) = ∑m
j=1 α′

jk(x′
j, ·). We endow

H′ with the inner product

⟨f, g⟩H′ =
n∑

i=1

m∑
j=1

αiα
′
jk(xi, x′

j), (2.21)

which can be proven independent of the choice of representation for f and g.

Notice that, from (2.21),

⟨f, k(x, ·)⟩H′ =
n∑

i=1
αik(xi, x) = f(x),

which is known as the reproducing property, since k(x, ·) acts as the reproducer of the
evaluation functional Lx(f) = f(x). Since all functions in H′ are linear combinations of
the kernel function, this property means that inner products in H′ are reduced to kernel
evaluations.

The inner product space (H′, ⟨·, ·⟩H′) is not a Hilbert space: it remains to extend
H′ to a complete inner product space with the given reproducing kernel. By properly
defining the limits of functions in H′, one can complete H′ in such a manner that the
resulting space H ⊃ H′ have k as a reproducing kernel. Additionally, the space H is the
unique Hilbert space with k as reproducing kernel (WAINWRIGHT, 2019).
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Regularized loss minimization in RKHS: the scalability problem

In section 2.3, we mentioned that RKHS has interesting computational and statis-
tical properties. The first of these properties is the kernel trick, which exempts us from
explicitly calculating high-dimensional feature maps using PSD kernels that act only in
the original features.

The second property is that solutions for the Regularized Loss Minimization (RLM)
procedure with H as an RKHS admits a simple representation in H. In what follows, we
state this property, known as the Representer’s Theorem, and discuss its consequences for
the scalability of kernel methods.

Theorem 4 (Representer’s theorem). Let X be the input space, ℓ : Y ×Y → R∪ {+∞}
an arbitrary loss function, and H the unique RKHS associated to the PSD kernel k :
X × X → R. Then

f ∗ ∈ arg min
f∈H

n∑
i=1

ℓ(f(xi), yi) + µ||f ||2H, µ > 0, (2.22)

admits a representation of the form

f ∗(·) =
n∑

i=1
αik(xi, ·), αi ∈ R. (2.23)

Proof. See, for instance, Wainwright (2019) or Schölkopf and Smola (2002).

Notice that, despite involving an infinite-dimensional optimization in H, the solu-
tion to the RLM procedure is reduced to a n-dimensional optimization problem, which
can be tackled numerically.

In fact, since f ∗ ∈ H′, then

∥f ∗∥2
H = ⟨f ∗, f ∗⟩H′ =

n∑
i=1

n∑
j=1

αik(xi, xj)αj = α⊺Kα,

which prompts us to rewrite (2.22) as the problem

α∗ ∈ arg min
α∈Rn

n∑
i=1

ℓ(f ∗(xi), yi) + µα⊺Kα.

We explore this result in the following two examples.

Example 5 (Minimal norm interpolation). Let the loss function be

ℓ(f(xi), yi) =

0, f(xi) = yi,

+∞, otherwise.
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With this choice, (2.22) can be written as a constrained optimization problem

f ∗ ∈ arg min
f∈H

∥f∥2
H such that f(xi) = yi for i ∈ [n].

Let K be the kernel matrix of the kernel evaluated on the predictors of the training sample
{xi : i ∈ [n]}, that is Kij = k(xi, xj). In this case, if {yi : i ∈ [n]} ∈ range(K) and K is
invertible, then the optimal solution is

f ∗(x) = y⊺K−1k′,

with k′ = (k(x1, x), . . . , k(xn, x))⊺.

Example 6 (Kernel Ridge Regression (KRR)). Let the loss function be

ℓ(f(xi), yi) = (yi − f(xi))2 ,

then the optimal solution is

f ∗(x) = y⊺(K + λI)−1k′.

Observe that the optimal function f ∗, for both Example 5 and Example 6, depends
on the inversion of the kernel matrix, an operation with space complexity of O(n2) and
time complexity of O(n3), where n is the training sample size. Thus, the inversion becomes
prohibitive for large datasets: this is the origin of the kernel methods’ scalability problem.

Interpretability with ARD kernels
In this section, we try to build intuition on the aspect of functions in H′, which

contains the solution of the regularized minimization problem in RKHS, as discussed in
section 2.3. We introduce some examples of ARD kernels and show that these kernels
can control a feature’s influence on the values assumed by functions belonging to the
associated RKHS H′. We postpone a formal definition of ARD kernels to Chapter 3.

Let λ = (λ1, . . . , λp) be a vector of relevances. Core examples of ARD kernels are:

• Gaussian kernel:
kλ(x, y) = exp

[
−1

2

p∑
i=1

λ2
i (xi − yi)2

]
, (2.24)

• Laplacian kernel:

kλ(x, y) = exp
[
−

p∑
i=1

λi|xi − yi|
]

, (2.25)

• Cauchy kernel:

kλ(x, y) =
p∏

i=1

2
1 + λ2

i (xi − yi)2 . (2.26)



38 Chapter 2. Background

Notice that by fixing λk = 0, we make the k-th feature of the vector x irrelevant to
the determination of the value of the kernel. If we consider that functions in H′ are linear
combinations of the kernel, we are ultimately making f ∈ H′ irrelevant to that feature.
For instance, if X ⊂ R and we set λ = 0, then any f ∈ H′ will be a constant function,
indicating that this single feature in X is not relevant to determine the predicted value.
In this sense, ARD kernels allow us to control which features of X should be considered
active for the prediction functions we wish to build.

In the case X ⊂ R, we visually explore this fact in Figure 1 for the aforementioned
ARD kernels. For visualization, we constructed a function f ∈ H′ as

f(·) =
20∑

i=1
αikλ(xi, ·),

where αi ∼ Uniform(−1, 1) and xi = i/20.

As mentioned, when the relevance parameter λ is set to λ = 0, the functions in
the H′ associated with the Gaussian, Cauchy, and Laplacian kernels, become constant,
showing no dependence on the only available feature. However, as λ increases, we observe
that the functions become dependent on the feature and exhibit greater nonlinearity
(mainly close to the training points).

5
0
5

f(x
)

Gaussian Cauchy Laplacian

5
0
5

f(x
)

0.0 0.5 1.0
x

5
0
5

f(x
)
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x
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Figure 1 – Visual exploration of functions in the space H′ elicited by one-dimensional ARD
kernels. When λ = 0, the functions in H′ exhibit no dependence on x. However, when
λ increases, f becomes dependent on the feature and exhibits greater nonlinearity,
changing in smaller length scales.

In that regard, adjusting the relevances of ARD kernels may eliminate the effect
of non-informative features, increasing the kernel methods’ interpretability. Even more, if
we allow these relevances to be fitted in a data-dependent manner, then it may be possible
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that the relevances will be different from zero only for the features that allow for accurate
prediction of the responses. This last observation guides our approach in Chapter 3.

2.4 Random Fourier features
In section 2.3, we explicitly showed that kernel methods have a scalability limita-

tion. This was related to kernel methods relying on storage and inversion of the kernel
matrix, which is prohibitive for large datasets.

In this context, many approaches for scalable kernel methods emerged (RAHIMI;
RECHT, 2008a; LE; SARLOS; SMOLA, 2014; CURTó et al., 2017). We delve into the
Random Fourier Features (RFF) framework due to Rahimi and Recht (2008a). Roughly
speaking, the idea of random Fourier features is to construct a vector feature map z :
X → Rs whose inner products approximate a PSD kernel of interest.

Let k : X × X → R be a PSD kernel. We seek to construct a vector feature map
z : X → Rs, with s≪ n, such that

k(x, y) ≈ z(x)⊺z(y).

In this situation, the optimal solution of regularized loss minimization problem in RKHS
(2.23) could be written as

f ∗(·) =
n∑

i=1
αik(xi, ·) ≈

n∑
i=1

αi z(xi)⊺z(·)

=
(

n∑
i=1

αiz(xi)
)⊺

︸ ︷︷ ︸
β

z(·)

=
s∑

j=1
βjzj(·), (2.27)

where β ∈ Rs. That is, the optimal solution involves only finding the s components of
β rather than the n components of α. Consequently, the scalability problem is settled if
s≪ n.

The construction of RFF is based on Bochner’s theorem.

Theorem 5 (Bochner’s). Let k : X × X → R be a bounded and continuous PSD kernel.
Additionally, suppose that k is shift-invariant; that is, there exists h such that k(x, y) =
h(x− y). Then k(x, y) is the Fourier transform of a bounded positive measure.

Proof. See Rudin (2017).

The measure in Theorem 5 is called the spectral measure of the kernel. It is usually
assumed that this measure admits a density function p(·). In this case, from Theorem 5,
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the kernel can be written as

k(x, y) = h(x− y) =
∫

W
eiω⊺(x−y)p(ω)dω

= Eω

[
ϕ(x)ϕ(y)∗

]
,

(2.28)

where ϕ : X → C is a complex feature map defined as ϕ(x) = eiω⊺x and W is the support
of the density p.

In the following theorem, we show how to construct the vector feature map that
approximates PSD kernels that satisfy the conditions of Theorem 5.

Theorem 6 (Random Fourier features). Let k : X × X → R be a bounded, continuous
and shift-invariant kernel. Assume that the spectral measure of the kernel admits a density
function p(·). Let ω1, . . . , ωs ∼ p(ω) and b1, . . . , bs ∼ Uniform(0, 2π). Define the feature
map zi : X → R as

zi(x) =
√

2 cos(ω⊺
i x + bi) (2.29)

and the vector feature map z : X → Rs as

z(x) = 1√
s


z1(x)

...
zs(x)

 . (2.30)

Then
z(x)⊺z(y) a.s.−−−−→

s−→∞
k(x, y). (2.31)

Proof. First, from the fact that the kernel is real-valued, that is, Im k = 0, we get

k(x, y) = Eω

[
ϕ(x)ϕ(y)∗

]
= Eω

[
cos (ω⊺(x− y))

]
.

Now, observe that

Eω,b [zi(x)zi(y)] = Eω,b [2 cos(ω⊺
i x + bi) cos(ω⊺

i y + bi)]

= Eω [cos (ω⊺
i (x− y))] + Eω,b [cos (ω⊺

i (x + y) + 2bi)] .

We can rewrite the second expectation on the right-hand side as

Eω,b [cos (ω⊺
i (x + y) + 2bi)] = Eω {Eb [cos (ω⊺

i (x + y) + 2bi)|ω]}

and compute the inner expectation

Eb [cos (ω⊺
i (x + y) + 2bi)|ω] = 1

2π

∫ 2π

0
cos (ω⊺

i (x + y) + 2a) da

= 1
4π

sin (ω⊺
i (x + y) + 2a)

∣∣∣∣∣
2π

0

= 0.
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Thus, we get
Eω [zi(x)zi(y)] = Eω [cos (ω⊺

i (x− y))] = k(x, y).

Finally, let ω1, . . . , ωs ∼ p(ω) and b1, . . . , bs ∼ Uniform(0, 2π). The random variable k̄

defined as
k̄(x, y) = z(x)⊺z(y) = 1

s

s∑
i=1

zi(x)zi(y)

is an unbiased estimator of k(x, y). From the strong law of large numbers, we conclude
that

⟨z(x), z(y)⟩ a.s.−−−−→
s−→∞

k(x, y),

as wanted.

Examples of kernels and the corresponding densities of their spectral measures are
given in Table 1.

Table 1 – Usual shift-invariant PSD kernels and the densities of their corresponding spectral
measures.

k(x, y) p(ω)

Gaussian exp
[
−1

2∥x− y∥2
2

]
(2π)− p

2 exp
[
−∥ω∥2

2
2

]
Laplacian exp [−∥x− y∥1]

∏p
i=1

1
π(1+ω2

i )

Cauchy ∏p
i=1

2
1+(xi−yi)2 exp [−∥ω∥1]

The asymptotic nature of Theorem 6 cannot guide us in choosing the dimension s

of the random features to guarantee a good approximation of the kernel. In the original ar-
ticle (RAHIMI; RECHT, 2008a), and in follow-up papers (SUTHERLAND; SCHNEIDER,
2015), it is shown, using a uniform approximation bound, that the number of features s

must scale linearly with the number of training samples; that is s ∈ Ω(n). This is a very
pessimistic bound, as it tells that the regime s ≪ n, where RFF can solve the scalabil-
ity problem of kernel methods, is unfeasible. However, empirical evidence suggested that
these bounds conflicted with the practical success of RFF in many situations.

The first point to derive sensible bounds for learning with RFF is to realize that
bounding the kernel matrix approximation is not central. Instead, one should study gen-
eralization bounds for learning with functions like (2.27). First attempts to derive such
bounds (RAHIMI; RECHT, 2008b; BACH, 2015) still required a pessimistic number of
features. But lately, (RUDI; CARRATINO; ROSASCO, 2017; LI et al., 2021) proposed
refined analyses that greatly improved the number of random features needed to produce
such bounds. For instance, in a worst-case scenario (concerning the spectrum of the ker-
nel function and choice of the regularization strength), Li et al. (2021) showed that if
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s ≥
√

n log n (which is much smaller than n), then learning with random features can at-
tain the minimax rate of O(1/

√
n), matching the rate of learning with the original kernel

function (CAPONNETTO; VITO, 2007).
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CHAPTER

3
RFFNET

In this chapter, we describe RFFNet, our approach for scalable and interpretable
kernel methods, leveraging ARD kernels and the framework of random Fourier features
described in section 2.3 and section 2.4, respectively. We formally define ARD kernels and
show how to assemble a random Fourier feature map that is independent of the feature
relevances. We introduce the objective function for RFFNet and propose an optimization
procedure to minimize it. We conclude by giving directions for extensions of RFFNet.

3.1 Random Fourier features for ARD kernels
ARD kernels are frequently used for kernel-based learning methods, such as Gaus-

sian Processes (RASMUSSEN; WILLIAMS, 2006; DANCE; PAIGE, 2021), and support-
vector machines (KEERTHI; SINDHWANI; CHAPELLE, 2006). These kernels are con-
structed by associating a weight or relevance to each feature in a shift-invariant kernel.
Generally, ARD kernels have the form

kλ(x, y) = h[λ ◦ (x− y)], (3.1)

where the vector λ ∈ Rp is the vector of weights or relevances, which controls a feature’s
influence on the kernel’s value, h is a continuous function, and ◦ is the element-wise
multiplication. The absolute value of the i-th entry in λ is used to measure the importance
of the i-th feature for the predictive task.

The following propositions are the fundamental results required to construct ran-
dom Fourier features for ARD kernels. First, we show that the spectral measure of an ARD
kernel kλ can be written in terms of the spectral measure of k1p , where 1p = (1, . . . , 1) ∈
Rp; that is, when all features are considered equally relevant.

Proposition 4. Let kλ : Rp × Rp → R be a bounded, continuous, and shift-invariant
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kernel of the form (3.1). Then, the density pλ of the spectral measure of kλ satisfies

pλ(ω) = 1
|λ1 · · ·λp|

p
(

ω ◦ 1
λ

)
,

with p(·) the density of the spectral measure of the kernel with λ = 1p. Additionally,
p(ω) = p(−ω) for all ω ∈ Rp.

Proof. See section A.3.

Proposition 4 also reveals that pλ depends on λ in a very particular manner: the
relevances appear as a vector scale parameter for the density p associated with the equally
weighted version of the kernel. In this sense, if ω ∼ p(·), then λ ◦ ω ∼ pλ(·). That is, if we
want to sample from pλ, we can first sample from p and then scale the sample by λ1.

Proposition 5 uses this last observation to show that the RFF map that approxi-
mates an ARD kernel does not depend on λ. In fact, we can construct the RFF associated
with the ARD kernel with λ = 1p and obtain an approximation for the ARD kernel with
arbitrary λ by merely introducing a data scaling by λ.

Proposition 5. Let kλ : X ×X → R be a bounded, continuous, and shift-invariant kernel
of the form (3.1). Let z : Rp → Rs, s ≥ 1, be the RFF for k1p . Then,

k̄λ(x, y) = z(λ ◦ x)⊺z(λ ◦ y), (3.2)

is an unbiased estimator of kλ(x, y).

Proof. By Proposition 4, if we sample ω ∼ p(·), then λ ◦ ω ∼ pλ(·). Now, by Bochner’s
theorem, with ω′ ∼ pλ(·),

kλ(x, y) = Eω′ [cos ω′⊺(x− y)]

= Eω[cos(λ ◦ ω)⊺(x− y)]

= Eω[cos ω⊺ (λ ◦ (x− y))],

where ω ∼ p(·). Now, from Theorem 6, if z : Rp → Rs is the RFF for k1p , then

Eω[cos ω⊺ (λ ◦ (x− y))] = Eω[z(λ ◦ x)⊺z(λ ◦ y)],

or equivalently,
kλ(x, y) = Eω[z(λ ◦ x)⊺z(λ ◦ y)],

which shows that
k̄λ(x, y) = z(λ ◦ x)⊺z(λ ◦ y)

is an unbiased estimator of kλ(x, y).
1 In the same sense that, if we want to sample X ∼ Normal(0, σ2), we first sample Z ∼

Normal(0, 1), then multiply the realization of Z by σ.
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In RFFNet, we make the assumption that

p(ω) =
p∏

i=1
fi(ωi), (3.3)

where fi are symmetric densities, i.e. fi(ωi) = fi(−ωi) for all ωi ∈ R. In this case, Propo-
sition 4 implies that

pλ(ω) =
p∏

i=1

1
|λi|

fi

(
ωi

λi

)
,

which indicates that each relevance parameter enters as a real scale parameter of the
spectral measure of the kernel kλ. Crucially, since pλ(ω) is symmetric by exchanging any
λi with −λi, i = 1, . . . , p, the positive or negative versions of λi encode the same relevance
information of the i-th feature.

This assumption has a direct consequence on the optimization procedure. Because
each λi may assume both positive and negative values, we don’t need to introduce any
constraints on λ during optimization. This is a distinctive aspect of our approach: current
methods for feature selection or feature importance in kernel methods (BROUARD et al.,
2022; JORDAN; LIU; RUAN, 2021; RUAN; LIU; JORDAN, 2021; GREGOROVÁ et al.,
2018) consider that relevance variables must be strictly positive and constrain its values
during optimization, which increase the computational cost.

We clarify these results in the following example.

Example 7 (Gaussian kernel). Let kλ : X × X → R be the ARD gaussian kernel

kλ(x, y) = exp
[
−

p∑
i=1

λ2
i

2
(xi − yi)2

]
.

Then,
k1p(x, y) = exp

[
−1

2
∥x− y∥2

2

]
,

which is the isotropic gaussian kernel shown in Table 1. According to Table 1, the spectral
measure of k1p is

p(ω) = (2π)− p
2 exp

[
−∥ω∥

2
2

2

]
=

p∏
i=1

(2π)− 1
2 exp

[
−ω2

i

2

]
,

which is a product of standard normal densities, with the same form of (3.3). Evidently,
ω ∼ Normal(0, Ip). Hence Proposition 4 implies that the spectral density of kλ is

pλ(ω) =
p∏

i=1
(2πλ2

i )− 1
2 exp

[
− ω2

i

2λ2
i

]
.

Now, Proposition 5 tells that, if we want to approximate kλ via RFF, we first
sample ω1, . . . , ωs ∼ Normal(0, Ip) and b1, . . . , bs ∼ Uniform(0, 2π) and define the RFF
map z : Rp → Rs with zi(x) =

√
2 cos(ω⊺

i x + bi). Then z(λ ◦ x)⊺z(λ ◦ y) approximates
kλ(x, y).
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Although the example is based on the ARD Gaussian kernel, since the spectral
measures associated with the unweighted Laplace and Cauchy kernel also factor as (3.3)
(see Table 1), the above results also holds for the ARD Laplace and ARD Cauchy kernel.

3.2 Approximate kernel machines
Let k : X × X → R be a PSD kernel and z : X → Rs be the random Fourier

features that approximate k. Since z is a feature map, we can define the approximate
kernel kz : X × X → R as

kz(x, y) = z(x)⊺z(y) (3.4)

which is a valid PSD kernel, according to Proposition 3. This kernel is uniquely associated
with an RKHS, which we denote as Hz. An approximate kernel machine is a solution for
the regularized loss minimization in this RKHS,

f ∗ ∈ arg min
f∈Hz

n∑
i=1

ℓ(f(xi), yi) + µ||f ||2Hz
, µ > 0,

which admits, from Theorem 4, a representation of the form

f ∗(·) =
n∑

i=1
αikz(xi, ·) =

s∑
j=1

βjzj(·). (3.5)

Solving for the coefficients of f ∗ we get

β∗ ∈ arg min
β∈Rn

n∑
i=1

ℓ(f ∗(xi), yi) + µβ⊺Kβ, µ > 0, (3.6)

where
Kij = z(xi)⊺z(xj).

Notice that finding the coefficients β∗ involves the computation of the approximate
kernel matrix K, which appears in the regularization term and could potentially increase
the computational cost of finding the estimates. Fortunately, we can regularize the solution
avoiding kernel matrix computations. This reformulation was first proposed in Li et al.
(2021), where the authors derived an upper bound for the regularization function of the
optimization problem associated with the approximate kernel. The resulting regularization
is equivalent to a ℓ2 penalty on the space of random Fourier features, a result already
present in Rahimi and Recht (2008a), although not discussed in detail.

Proposition 6. Assume that the reproducing kernel Hilbert space Hz with kernel Kz

admits a decomposition as in (3.4). Define H′
z = {∑s

i=1 αizi(·) : α ∈ Rs}. Then, for all
f ∈ H′

z it holds that ∥f∥2
H′

z
≤ s∥α∥2

2.

Proof. See Li et al. (2021).
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With this result, instead of tackling the problem (3.6), we may find a solution to
a surrogate version

β∗ ∈ arg min
β∈Rn

n∑
i=1

ℓ(β⊺z(xi), yi) + µ∥β∥2
2, µ > 0, (3.7)

which does not include the kernel matrix in the regularization term.

3.3 Overview of RFFNet
In section 3.1 and section 3.2, we saw that it is possible to:

1. Use random Fourier features that efficiently approximate ARD kernels, as in eq. (3.2);

2. Regularize the solution directly in the space of random features, as in eq. (3.7),
without explicitly computing the approximate kernel matrix.

Based on these two aspects, we can now describe how RFFNet works. Given
{(xi, yi)}n

i=1 a training sample, RFFNet solves

minimize
β,λ

1
n

n∑
i=1

ℓ (yi, β⊺z(λ ◦ xi)) + µ∥β∥2
2, (3.8)

where z : Rp → Rs is the random Fourier features map corresponding to an ARD kernel
with λ = 1p, ℓ : Y × Y → R+ ∪ {+∞} is a loss function and µ > 0 is the regularization
strength.

RFFNet addresses the problems of scalability and interpretability, by

• Scalability: using a random Fourier features map z : Rp → Rs in the s≪ n setting,
where n is the training sample size;

• Interpretability: coupling the feature map z with the data scaling λ, which approx-
imates an ARD kernel of interest and reduces the influence of irrelevant covariates.

3.4 Optimization algorithm
The objective function of RFFNet on eq. (3.8) is not convex due to the relevance

vector λ inside the RFF map. Consequently, it is not liable to usual convex optimization
procedures. Notwithstanding, depending on the loss functions, the objective has Lipschitz
continuous gradients with respect to each block of coordinates. This is the case, for in-
stance, for the squared error loss. For this reason, we used a block stochastic gradient
descent algorithm (BOLTE et al., 2014; POCK; SABACH, 2016; XU; YIN, 2014). For
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each block of coordinates, instead of a simple gradient descent iterate, we used the Adam
optimizer (KINGMA; BA, 2014), which has moment estimation.

Let H(β, λ) be the objective function of (3.8) without the regularization term,

H(β, λ) = 1
n

n∑
i=1

ℓ (yi, β⊺z(λ ◦ xi)) + µ∥β∥2
2.

In Algorithm 1, we show a detailed description of the RFFNet algorithm to minimize H.
We remark, however, that we replaced the Adam gradient iterates with simple gradient
descent for clarity and conciseness.

Algorithm 1 – RFFNet training
procedure Fit(input: X ∈ Rn×p, y ∈ Rn, validation fraction ρ, learning rate η, reg-
ularization µ, patience K, max epochs T, initialization (β(0), λ(0)), density of spectral
measure of unweighted kernel p(ω), number of random features s)

Split data into training and validation samples (the last containing a fraction ρ of
all data samples).

Generate random Fourier features map z : Rp → Rs sampling s times from p(ω)
and Uniform(0, 2π).

for t ∈ {1, . . . , T − 1} do
β(t+1) ← proxµ∥·∥2

2,α

(
β(t) − η∇βH(β(t), λ(t))

)
λ(t+1) ← λ(t) − η∇λH(β(t+1), λ(t))
Apply early stopping policy (with patience K) based on the validation sample.

end for
Retrieve the model M that best performed on the validation sample.
return M

end procedure

3.5 Extensions
RFFNet can be seen as optimizing the parameters of a two-layer neural network,

as depicted in Figure 2, where the connection between the RFF map and the output is
done by a linear function. By replacing the link between the RFF map and the output
with general neural network architectures, we expect to increase the method’s predictive
performance and, most importantly, generate a feature importance metric for neural net-
works based on the relevances of the ARD kernel. In the same spirit, RFFNet can be
used as a layer for any neural network, and thus can be used in a huge variety of tasks,
including unsupervised learning problems.
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Figure 2 – RFFNet, with the gaussian ARD kernel, as a two-layer neural network. This inter-
pretation is central to foresee extensions of RFFNet beyond kernel methods.
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CHAPTER

4
EMPIRICAL EVALUATION

Recently, there has been a broad discussion on how to improve the empirical as-
sessment of new machine learning (ML) methods (SCULLEY et al., 2018; HENDERSON
et al., 2017). It is argued that the incredible practical success of machine learning has
not been accompanied by the adoption of rigorous standards for the evaluation of ML
methods. The implicit consensus in the field is that new methods should always defeat
previous “competitors” in established benchmark datasets or tasks. Sculley et al. (2018),
and references therein, gives many examples of situations where this culture may have led
to delays, missed improvements, and false claims of outperformance.

Recent machine learning methods rely on complex models, non-convex optimiza-
tion procedures, and training heuristics (early stopping and learning rate decay, for in-
stance), which are not well understood theoretically. In this sense, the quest for successful
methods should not be pursued at the expense of carefully gauging their strengths and
limitations.

RFFNet, trying to improve the expressivity of kernel methods, is a complex model
and solves a non-convex optimization problem during estimation. For this reason, we follow
some recently suggested guidelines on empirical evaluation (SCULLEY et al., 2018).

First, we describe the computational setting where RFFNet was evaluated and
give some implementation details of the library. Next, we provide a description of the
baseline algorithms which were compared to RFFNet and how hyperparameters were
tuned during validation. Then, through a simple ablation study, we verify the impact
of choosing different optimizers for minimizing RFFNet’s objective function. Finally, we
depict the optimization trajectories of RFFNet in the loss landscape by using UMAP
(MCINNES; HEALY; MELVILLE, 2018), a recent dimension reduction technique.
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4.1 Computing infrastructure

All studies described in this chapter were run with an Intel Core i7-9750H CPU
with 2.60 GHz, 12 cores, and 15.6 GB of RAM. Experiments described in Chapter 5 were
run with an Intel Core i7-8700 CPU with 3.20GHz, six cores, 12 threads, and 54 GB of
RAM to evaluate all algorithms on the same hardware.

4.2 Implementation details

RFFNet is implemented as a torch model with a user interface adherent to the
API of scikit-learn. Adherence to the scikit-learn API makes the method easily ap-
plicable and consistent with other tools available in the scikit-learn environment, such
as hyperparameter searches. The tools developed for this work, including the RFFNet
model itself, are accessible in a Python library designated pyselect, publicly available
at <https://github.com/mpotto/pyselect>. This library has few dependencies on consol-
idated libraries (Numpy, torch and scikit-learn). We stress that the library is still
at an early stage of development, and changes in the interface or the repository can be
made unexpectedly.

4.3 Baselines and tuning methodology

In this section, we describe the baseline algorithms that were compared to RFFNet
and explain the tuning methodology adopted for each one. These algorithms were chosen
either because they output a measure of feature importance, such as Sparse Random
Fourier Features (SRFF), by Gregorová et al. (2018), or by their extensive use as predictive
models for classification and regression problems, as is the case of XGBoost (CHEN;
GUESTRIN, 2016).

As a general rule, we used data splitting into three samples: training, validation,
and testing. The training sample was used to estimate the model, the validation sample
was used to select all the algorithms’ hyperparameters, and the test sample was used to
evaluate the best-performing method, according to the validation sample. All possible
combinations of the hyperparameters in the specified grids below were tested, except for
XGBoost and GAMs, for which we used a random sampler (with fixed seed) to select
values in predetermined grids. For regression problems, we used the mean squared error
as the criterion for selecting the hyperparameters, whereas for classification problems, we
used the AUC.

In what follows, we briefly describe the baselines and the adopted tuning method-
ologies:

https://github.com/mpotto/pyselect
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1. Bayesian regression with Automatic Relevance Determination kernels (BARD): we
used the implementation available in scikit-learn (PEDREGOSA, 2016). We
tuned the shape and rate parameters for the Gamma prior over the distribution of
the precision of the linear model coefficients. The shape parameter λ1 was varied in
{10−8, 10−7, 10−6, 10−5, 10−4} and the rate parameter λ2 in {10−8, 10−7, 10−6, 10−5,

10−4}. We used the precisions of the distribution of weights λ as a measure of feature
importance.

2. Sparse Random Fourier Features (SRFF): we used the original implementation of
Gregorová et al. (2018). The method’s internal tuning methodology for the regu-
larization hyperparameter was used. The RFF scaling γ of SRFF was used as a
measure of feature importance.

3. Kernel Ridge Regression (KRR): we used the implementation available in scikit-
learn (PEDREGOSA, 2016). We set the RBF kernel and tuned both the regular-
ization hyperparameter α and the kernel’s inverse length-scale γ. We varied α in
{10−5, 10−4, 10−3, 10−2, 10−1} and γ in {10−7, 10−6, 10−5, 10−4, 10−3, 10−2,

10−1}. KRR uses a single bandwidth for the kernel, therefore it does not output
a measure of feature importance.

4. Logistic Regression: we used the implementation available in scikit-learn (PE-
DREGOSA, 2016). An ℓ1 regularization on the coefficients was used and we tuned
the reciprocal of the regularization hyperparameter C, which was varied in {10−5, 10−4,

10−3, 10−2, 10−1, 1, 10, 100}. We did not consider any feature importance measures
based on this model.

5. XGBoost: we used the Python API of the original library implementation (CHEN;
GUESTRIN, 2016). We tuned the maximum depth of trees (integer sampled between
3 and 20), the step size shrinkage (float sampled between 0 and 1), the minimum
loss reduction required to partition further a leaf node (float sampled between 10−5

and 100) and the minimum child weight (integer sampled between 0 and 10). We
performed 50 validation trials. We considered the number of times a feature is used
to split the data across all trees as a measure of feature importance.

6. Generalized Additive Models (GAMs): we used the pyGAM library implementation
(SERVÉN; BRUMMITT, 2018) of linear GAMs, trained exclusively in regression
tasks. We used the default model of the library, which includes a univariate spline
for each feature; thus, in this case, no interactions were modelled.

For RFFNet, in turn, we tuned the learning rate and the regularization hyperpa-
rameter. The learning rate was varied in {10−5, 10−4, 10−3, 10−2} and the regularization
hyperparameter was taken from {10−7, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1}. For the number
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of random features, we considered s = ⌊n log n⌋. We adopted this as a rule of thumb for
all experiments, following the discussion in section 2.4. For RFFNet, we considered the
absolute value of the relevance parameter λ as a measure of feature importance.

Importantly, because the feature importances output by the aforementioned meth-
ods are in different numerical scales, we choose to scale them to the [0, 1] interval.

4.4 Ablation study of optimizers
Ablation studies aim to verify the impact of specific model components on their

overall performance. Initially introduced in biology to test how anatomy relates to the
functioning of living beings, this technique has lately caught attention in the machine
learning community (SCULLEY et al., 2018; MOREAU et al., 2022; BERTRAND et al.,
2021). In ML, an ablation study measures the impact of removing or replacing any model
components – optimizers, function spaces, hyperparameter tuning heuristics etc.

For instance, in statistics, a researcher might be interested in testing whether
adding an interaction term in a linear model can enhance the model’s predictive perfor-
mance compared to a simple baseline (a linear model with no interactions, for instance).
Subsequently, the researcher may ask if the additional complexity introduced in the model
by the interaction term, which can complicate estimation, balances well with the perfor-
mance improvement.

In this section, we performed a similar experiment to test RFFNet optimization
algorithm. In the previous chapter, we described the RFFNet optimization algorithm as a
stochastic gradient descent (SGD) method based on the Adam optimizer (KINGMA; BA,
2014), which updates two blocks of coordinates alternately. These alternating updates with
gradient descent (and proximal mappings associated with the regularization functions)
share a resemblance with the PALM algorithm (BOLTE et al., 2014). For this reason, we
designated our algorithm as PALM Adam. Here we test whether PALM Adam performs
better than a usual (or vanilla) stochastic gradient descent method with a single block of
coordinates.

To perform this test, we compared four algorithms: SGD or Adam, with two blocks
(PALM) or a single block of coordinates. We compared each algorithm on three simulated
datasets, described in Table 2. All datasets were generated with a fixed random seed and
have n = 5 × 104 training points. To measure the impact of each optimizer, we plot the
mean squared error (MSE) evaluated in the validation sample during model training. The
result of this study is shown in Figure 3. First, notice that optimizing with alternating
updates (PALM) and Adam finds low error solutions generally faster. Second, using solely
SGD or combining SGD with PALM did not converge to low MSE solutions in any of
the depicted cases. Both observations highlight the importance of combining Adam with



4.5. Visualizing optimization trajectories 55

10 2

100

M
SE

Jordan SE1

7 × 10 2

8 × 10 2

M
SE

Gregorova SE1

0 20 40 60 80 100
Training epoch

3 × 100

4 × 100

5 × 100

M
SE

Gregorova SE2

PALM Adam PALM SGD Adam SGD

Figure 3 – Ablation study of optimizers. Combining alternating updates (PALM) with Adam
performs better than other optimizers, converging faster and to low MSE error solu-
tions.

alternating updates, as proposed in Chapter 3.

Table 2 – Description of simulated datasets used in the ablation study. In the
Jordan SE1 dataset, features are sampled as X ∼ Normal(0, Σ),
with Σij = 0.6|i−j|. In the Gregorova SE1 and Gregorova SE2
datasets, features are sampled as X ∼ Normal(0, Ip). In all cases,
ε ∼ Normal(0, σ = 0.1).

Dataset Features (p) Response

Jordan SE1* 10 y = x1 + ε

Gregorova SE1** 18 y = sin[(x1 + x3)2] sin(x7 x8 x9) + ε

Gregorova SE2** 100 y = log[(x11 + x12 + x13 + x14 + x15)2] + ε

* Jordan, Liu and Ruan (2021).
** Gregorová et al. (2018).

4.5 Visualizing optimization trajectories
Training RFFNet requires minimizing a (highly) non-convex objective function,

which is a challenging task computationally. In practice, however, as shown in the sec-
tion 4.4, RFFNet’s optimization algorithm can lead to good solutions. In this section,
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guided by recent work (CSILLAG et al., 2022), we explore the loss landscape and opti-
mization trajectories of RFFNet trained in a simulated dataset. We exhibit a bad and a
good solution to the objective function minimization and display the feature importances
learned in each case.

First, we fixed the simulated dataset as Gregorova SE1, described in Table 2, which
has p = 18 features. We also set the number of random features (s) as s = ⌊

√
n log n⌋,

where n is the training sample size, guided by the discussion in section 2.4. Then, we
trained multiple RFFNet models with varying hyperparameters (approximately 700 dif-
ferent combinations). For each epoch during training, we represented the RFFNet model
as a vector in Rp+s, where the first p coordinates are the feature importances and the last s

coordinates are the weights of the RFF expansion. Each of these vectors is a portrait of the
model during training; if we observe how these vectors evolve during training, we get an
optimization trajectory. Concatenating all these vectors, we then used UMAP (MCINNES;
HEALY; MELVILLE, 2018) to reduce the dimensionality of each model from Rp+s to R2.
Importantly, as done in Csillag et al. (2022), we employed the densMAP (NARAYAN;
BERGER; CHO, 2020) option of UMAP to preserve local density information, which
guarantees that similar models and trajectories are plotted close to each other in R2.

To generate a complete two-dimensional loss landscape, we trained the models with
combinations of hyperparameters that lead to good performance or intentionally incur
non-convergence and bad solutions. By doing this, we can observe how good solutions to
RFFNet navigate in the loss landscape and if RFFNet can get stuck in stationary points
with high error.

First, we show in Figure 4 the optimization trajectory and the feature importance
pattern during a successful model training that concluded with low error. In general, note
that the loss landscape for the training sample has a smaller mean squared error (visually,
the surface has a darker blue tone). Also, observe that the loss landscape for training
RFFNet in this dataset has many regions of small error surrounded by higher error,
which can trap the optimization procedure in non-optimal stationary points. Specifically,
in Figure 4, we notice that the successful training resulted in a feature importance pattern
that matches the features 1, 3, 7, 8, and 9 that are active in the regression function of the
dataset.

Lastly, we show in Figure 5 the optimization trajectory and the feature importance
pattern for a trained model that concluded with high error. In this case, we see that the
relevance pattern does not correspond to the covariates that appear in the regression
function of the Gregorova SE1 dataset.
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Figure 4 – (a) Trajectories of a well-trained RFFNet model in the loss landscapes of the training
(top) and test (down) sample. Trajectories were ordered according to the x coordinate
and do not reflect the temporal evolution of the parameters in the landscape. (b)
Feature relevances scaled to [0, 1] for the final model in Figure 4a. Observe that the
greatest feature relevances match the features that appear in the regression function
of Gregorova SE1 (see Table 2).
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Figure 5 – (a) Trajectories of an ill-trained RFFNet model in the loss landscapes of the training
(top) and test (down) sample. Trajectories were ordered according to the x coordi-
nate and do not reflect the temporal evolution of the parameters in the landscape.
(b) Feature relevances scaled to [0, 1] for the final model in Figure 4a. In this case,
feature relevances do not match the features that appear in the regression function
of Gregorova SE1 (see Table 2).
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CHAPTER

5
EXPERIMENTS

In this chapter, we describe the numerical experiments performed on simulated and
real datasets to validate RFFNet. We used the ARD Gaussian kernel in all experiments.
A description of the data processing steps adopted for each dataset is available on Ap-
pendix B. For each experiment, we discuss the results and, whenever possible, interpret
them with domain knowledge.

Table 3 – Summary of the datasets used in simulations and real data experiments.

Dataset Train. size Val. size Test size Number of features (p)

Gregorova SE1 50 000 2 000 2 000 18
Gregorova SE2 50 000 2 000 2 000 100
Ailerons 11 000 1 000 1 000 40
Comp-Act 6 000 1 000 1 000 12
Amazon 218 502 72 835 72 834 5000
Higgs 6 600 000 2 200 000 2 200 000 28

5.1 Simulations
We use simulated datasets proposed in Gregorová et al. (2018) to test whether

RFFNet can correctly identify the relevant features in the regression function with good
predictive performance.

5.1.1 Greogorova SE1

This experiment is a regression problem with p = 18 features, of which only
5 are active in the regression function. The response is calculated as y = sin[(x1 +
x3)2] sin(x7 x8 x9) + ε with ε ∼ Normal(0, σ = 0.1). We performed two experiments. First,
to verify the influence of the sample size on the recovery of relevant features, we trained



60 Chapter 5. Experiments

our model with 103, 5× 103, 104 and 5× 104 instances. Figure 6 shows that increasing the
sample size enhances the identification of relevant features. Next, to compare with other
algorithms, we fix the training size as n = 5×104 instances and evaluate the performance
on a held-out test sample. As shown in Table 4, RFFNet outperformed all baseline algo-
rithms and exhibited low memory usage. Compared to the full Kernel Ridge Regression
(KRR) with fixed bandwidths, it trained faster, with less memory, and to a lower MSE
solution. Additionally, Figure 7 shows that RFFNet is the only method to output feature
relevances that matches the active features of the Gregorova SE1 dataset.

0

1
n = 103 n = 5 × 103

1 3 789
Feature index

0

1
n = 104

1 3 789
Feature index

n = 5 × 104

Figure 6 – Scaled relevances for the Gregorova SE1 simulation. Increasing the sample size en-
hances the identification of relevant features when training RFFNet. With sample
sizes greater than 104, RFFNet consistently gives small weights to the irrelevant fea-
tures.

5.1.2 Gregorova SE2

This experiment is a regression problem with p = 100 features of which only 5 are
active in the regression function. The response is calculated as y = log[(x11+x12+x13+x14+
x15)2]+ε with ε ∼ Normal(0, σ = 0.1). Again, we performed two experiments, one to verify
the effect of sample sizes in identifying relevant features and the other, with fixed sample
size, to compare with baseline algorithms. Table 4 shows that, in the fixed sample size
scenario, RFFNet outperformed all baseline algorithms with low memory usage. Similarly
to the previous experiment, Figure 8 depicts that increasing the sample size strengthens
RFFNet’s ability to identify the relevant features. Finally, Figure 9 shows that RFFNet
is the only method to output feature relevances that match the active features of the
Gregorova SE2 dataset.
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Figure 7 – Comparisom of scaled relevances for the Gregorova SE1 simulation. RFFNet is the
only method that outputs a measure of the feature relevances that matches the active
features in the Gregorova SE1 dataset.
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Figure 8 – Scaled relevances for the Gregorova SE2 simulation. Increasing the sample size en-
hances the identification of relevant features when training RFFNet. Again, with
sample sizes greater than 104, RFFNet consistently gives small weights to the irrele-
vant features.

5.2 Real datasets

5.2.1 Amazon Fine Food Reviews

This dataset consists of 568, 454 reviews of fine foods sold by Amazon, spanning
from October 1999 to October 2012 (MCAULEY; LESKOVEC, 2013). This is a classi-
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Figure 9 – Comparisom of scaled relevances for the Gregorova SE2 simulation. Again, RFFNet
is the only method that outputs a measure of the feature relevances that match the
active features in the Gregorova SE2 dataset.

Table 4 – Mean squared error in the test sample, peak RAM use, and elapsed time for training
RFFNet and baseline algorithms in the Gregorova SE1 and SE2 simulation datasets.
RFFNet outperformed all baselines in the simulation. Best performances are displayed
in boldface.

SE1 SE2
Metric MSE RAM Time MSE RAM Time

KRR 0.082(0.008) 38.6 GB 345 s 3.7(0.5) 38.9 GB 337 s
BARD 0.085 (0.008) 0.3 GB 0.04 s 5.3 (0.5) 0.5 GB 0.4 s
GAM 0.086(0.009) 1.7 GB 4.3 s 4.9(0.5) 9.9 GB 50.9 s
SRFF 0.083 (0.008) 0.9 GB 20.2 s 5.4 (0.5) 1.0 GB 91 s
RFFNet 0.070 (0.008) 0.6 GB 63 s 1.3 (0.2) 0.6 GB 71 s

fication task, and the objective is to predict whether a review is positive (has a score
between 4 and 5) or negative (has a score between 1 and 3). For this reason, we used the
cross-entropy as the loss function. Table 5 shows that RFFNet performed worse than base-
lines, although it used significantly less memory. Additionally, Figure 10 shows that the
ten features (stemmed words) with greater relevances (according to RFFNet) are indeed
associated with the quality of the product (e.g., “disappoint”, “terribl”), while those with
smaller relevances are not. The inferior performance may be attributed to the difficult
optimization problem solved by RFFNet.
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Figure 10 – Scaled relevances for the ten features with greatest (red) and lowest (blue) rele-
vances for the Amazon Fine Food Reviews dataset. The stemmed words with the
ten greatest relevances are indeed associated with product quality, showing that the
feature relevance given by RFFNet is meaningful.

5.2.2 Higgs

This dataset is part of a classification problem where the objective is to distinguish
between a signal process associated with the creation of Higgs bosons and a background
process that generates similar decay products but with distinctive features. In this exper-
iment, we used cross-entropy as the loss function. Table 5 shows that RFFNet performs
worse than baselines in all aspects. In 11, we compare the feature importances given by
RFFNet with the feature importances reported by XGBoost, scaling both to the interval
[0, 1]. Observe that both algorithms seems to provide similar relevances to the available
features, but RFFNet does not attain similar performance in the classification metrics.

Table 5 – Classification metrics in the test sample, peak RAM use, and elapsed time for training
RFFNet and baseline algorithms in the real-world classification datasets. RFFNet
exhibits on-par performance with the baselines but has the advantage of providing
feature importances. Best performances are displayed in boldface.

Amazon Higgs
Metrics Acc. F1 AUC RAM Time Acc. F1 AUC RAM Time

Logistic (ℓ1) 0.92 0.95 0.95 47.8 GB 281 s 0.64 0.69 0.68 9.6 GB 68.4 s
XGBoost 0.92 0.95 0.94 31.4 GB 1265 s 0.75 0.77 0.84 6.7 GB 1988 s
RFFNet 0.86 0.92 0.89 24.0 GB 578 s 0.71 0.73 0.79 18.5 GB 11214 s
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Figure 11 – Scaled relevances for RFFNet and XGBoost feature importances on the Higgs
dataset. Both methods give similar relevances to the available features.

5.2.3 Ailerons

This dataset consists of a collection of sensor measurements describing the status
of a jet aircraft. The goal is to predict the control action on the ailerons of the aircraft. The
mean squared error reported in 6 shows that RFFNet performance is inferior to the KRR
and BARD baselines. We did not plot the relevance pattern for this dataset because the
inferior performance, and possible non-convergence of the optimization procedure, may
induce misleading inferences about the relevant features.

5.2.4 Comp-Act

This dataset consists of a collection of computer systems activity measures. The
problem is a regression task, and the objective is to predict the portion of time the CPUs
run in user mode instead of system mode (which gives privileged access to hardware).
Table 6 shows that RFFNet performed better than the BARD and SRFF baselines. The
SRFF algorithm did not converge and produced a model with enormous MSE in the
held-out dataset. Similarly to the previous dataset, because RFFNet had an inferior per-
formance, we choose not to plot the relevance pattern.

5.3 Additional experiments
In this section, following the ideas presented in Chapter 3, we tested if using

RFFNet as a first layer for neural network architectures can improve the predictive per-
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Table 6 – Mean squared error in the test sample, peak RAM use, and elapsed time for training
RFFNet and baseline algorithms in the real-world regression datasets. Best perfor-
mances are displayed in boldface.

Ailerons Comp-Act
Metric MSE RAM Time MSE RAM Time

KRR 2.4 (0.3)× 10−8 2.3 GB 5.7 s 11(4) 0.9 GB 1.5 s
BARD 2.7 (0.3)× 10−8 0.3 GB 0.03 s 120 (50) 0.3 GB 0.02 s
SRFF 7(0.1)× 10−7 1.1 GB 1.2 s 12.9 (1) 0.5 GB 7.2 s
GAM 2.7 (0.4)× 10−8 1.5 GB 3.0 s 10.2(2) 0.5 GB 0.4 s
RFFNet 3.1 (0.3)× 10−8 0.4 GB 7.7 s 21(3) 0.3 GB 4.7 s

formance of our approach and deliver sensible feature importances. For the simulation
datasets, Gregorova SE1 and Gregorova SE2, we considered a four-layer fully-connected
neural network with 300, 20, 10, and 1 output units. As for the Comp-Act dataset, we
chose a fully-connected architecture with 500, 100, 50, 10, and 1 output units. In both
cases, the first layer is an RFFNet layer, the subsequent are dense layers with ReLU ac-
tivation functions, and the last layer has no activation. The neural network was trained
with no regularization other than early stopping with patience set to 10. We designated
this method as RFFNet+.

First, we trained the neural net in the simulation datasets Gregorova SE1 and
Gregorova SE2. Figure 12 shows that RFFNet+ promptly identifies the relevant features
for both datasets. Moreover, Table 7 demonstrate that the predictive performance of the
method was greatly increased with RFFNet+, attaining MSE errors significantly smaller
than base RFFNet (see Table 4), with no impact on RAM and running time.
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Figure 12 – RFFNet+ scaled relevances for the simulation datasets Gregorova SE1 (a) and Gre-
gorova SE2 (b). In both cases, the relevance pattern matches the active features of
each dataset.

Finally, we also trained RFFNet+ on the Comp-Act dataset. Table 8 shows that
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Table 7 – Mean squared error in the test sample, peak RAM use, and elapsed time for training
RFFNet+ in the simulation datasets.

SE1 SE2
Metric MSE RAM Time MSE RAM Time

RFFNet+ 0.057 (0.005) 0.4 GB 78.5 s 0.17 (0.02) 0.6 GB 50.2 s
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Figure 13 – RFFNet+ scaled relevances for the Comp-Act dataset. Observe that almost all fea-
tures were considered relevant to predict the target response.

RFFNet+ did perform better than any other baselines in Table 6, with significant less
memory use than kernel ridge regression. In Figure 13, we show the relevance pattern
output by RFFNet+ in this case. The reduction in the MSE error provided by RFFNet+
may indicate that the relevance pattern found by RFFNet+ is more reliable than that
of RFFNet. Figure 13 shows that almost all features of the problem are treated as im-
portant in the neural network. This, in turn, may indicate why simple RFFNet did not
perform well: the absence of sparseness in data could have caused difficulties in fitting the
relevances parameter.

Table 8 – Mean squared error in the test sample, peak RAM use, and elapsed time for training
RFFNet+ in the Comp-Act dataset.

Comp-Act
Metric MSE RAM Time
RFFNet+ 8.6 (0.9) 0.36 GB 33 s
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CHAPTER

6
CONCLUSIONS

In this work, we proposed and validated a new scalable and interpretable kernel
method, designated as RFFNet, for supervised learning problems. The method is based
on the framework of random Fourier features (RAHIMI; RECHT, 2008a) applied to Auto-
matic Relevance Determination (ARD) kernels (RASMUSSEN; WILLIAMS, 2006). These
kernels can be used to assemble kernel methods that are interpretable since the relevances
can be used to mitigate the impact of features that do not associate with the response.
Besides, the use of random Fourier features diminishes the computational cost of kernel
methods (especially their large memory requirements) by reducing the number of param-
eters to be estimated, thus making our approach scalable.

We validated RFFNet in a series of numerical experiments. RFFNet exhibited
good performance in simulation results but shows slightly inferior performance on real
datasets when compared to well-established predictive inference algorithms. We also ex-
ecuted experiments with a new version of RFFNet, designated as RFFNet+, tailored to
filter irrelevant features in arbitrary neural-network architectures. RFFNet+ displayed
significantly better performance when compared to RFFNet and all baseline algorithms.

We stress that there remain many interesting problems for future work. In the
theory realm, providing generalization bounds for RFFNet, testing the consistency of
post-processing the relevances as a feature selection procedure, and studying connection
with data-adaptive kernels in neural networks (DOU; LIANG, 2019) are some interesting
research directions. From the practical point of view, we would like to extend the use of
RFFNet to general neural network architectures, unsupervised problems, and non-tabular
data.
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APPENDIX

A
PROOFS

A.1 Proof of Theorem 2
Proof. Since f is L-smooth, for all x, y ∈ Rn it holds that

f(y) ≤ f(x) +∇f(x)⊺(y − x) + L

2
∥y − x∥2

2.

In particular, setting y = x− t∇f(x), we get

f(y) ≤ f(x)−
(

1− Lt

2

)
t∥∇f(x)∥2

2.

Using the first-order characterization of convexity and taking t ≤ 1/L, it follows that

f(y) ≤ f(x∗) +∇f(x)⊺(x− x∗)− t

2
∥∇f(x)∥2

2.

Now, from the definition of y,
∇f(x) = x− y

t
,

we get

f(y) ≤ f(x∗) + 1
t
(x− y)⊺(x− x∗)− 1

2t
∥y − x∥2

2

= f(x∗) + 1
2t

(
2(x− y)⊺(x− x∗)− ∥y − x∥2

2

)
= f(x∗) + 1

2t

(
2(y − x)⊺(x− x∗)− ∥y − x∗∥2

2 + ∥y − x∗∥2
2 − ∥y − x∥2

2

)
= f(x∗) + 1

2t

(
∥x− x∗∥2

2 − ∥y − x∗∥2
2

)
.

Rewrite the previous equation as

f(y)− f(x∗) ≤ 1
2t

(
∥x− x∗∥2

2 − ∥y − x∗∥2
2

)
.
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Considering y to be the gradient descent iterates of the form x(i) = x(i−1) −
t∇f(x(k)) and summing all indexes i ∈ [k],

k∑
i=1

[
f(x(i))− f(x∗)

]
= 1

2t

k∑
i=1

[
∥x(i−1) − x∗∥2

2 − ∥x(i) − x∗∥2
2

]
= 1

2t
∥x(0) − x∗∥2

2 − ∥x(k) − x∗∥2
2

≤ 1
2t
∥x(0) − x∗∥2

2.

Since f(x(k)) ≤ · · · ≤ f(x(1)), we have

k(f(x(k) − f(x∗)) ≤
k∑

i=1

[
f(x(i))− f(x∗)

]
≤ 1

2t
∥x(0) − x∗∥2

2,

which results in
f(x(k))− f(x∗) ≤ 1

2tk
∥x(0) − x∗∥2

2.

A.2 Proof of Theorem 3
Proof. Since f is L-smooth for all x, y ∈ Rn it holds that

f(y) ≤ f(x) +∇f(x)⊺(y − x) + L

2
∥y − x∥2

2.

In particular, setting y = x− t∇f(x), we get

f(y) ≤ f(x)−
(

1− Lt

2

)
t∥∇f(x)∥2

2.

In the setting t ≤ 1/L, we have

f(y) ≤ f(x)− t

2
∥∇f(x)∥2

2.

Considering the descent iterations of the form x(i+1) = x(i)− t∇f(x(i)), previous equation
reads

f(x(i+1)) ≤ f(x(i))− t

2
∥∇f(x(i))∥2

2.

Now, using that the minimum is always less than the average, we get

min
0≤i≤k

∥∇f(x(i))∥2
2 ≤

1
k + 1

k∑
i=0
∥f (i)∥2

2

≤ 2
t(k + 1)

k∑
i=0

[
f(x(i))− f(x(i+1))

]
= 2

t(k + 1)
[
f(x(0))− f(x(k+1))

]
≤ 2

t(k + 1)
[
f(x(0))− f(x∗)

]
.
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A.3 Proof of Proposition 4
Proof. Let us denote the p-dimensional vector of ones as 1p. The density of the spectral
measure of kλ is, by Bochner’s Theorem,

pλ(ω) = 1
2π

∫
e−iω⊺(x−y)kλ(x, y)dδ

= 1
2π

∫
e−iω⊺δh(λ ◦ δ)dδ,

where δ = x − y. Define the new variable b = λ ◦ δ = (λ1δ1, . . . , λpδp), then, by the
multivariate change of variables theorem, we get

pλ(ω) = 1
2π

∫
e−i(ω◦ 1

λ)⊺bh(b) 1
|λ1 · · ·λp|

db

= 1
|λ1 · · ·λp|

1
2π

∫
e−i(ω◦ 1

λ)⊺bh(b)db

= 1
|λ1 · · ·λp|

p
(

ω ◦ 1
λ

)
, (A.1)

with p(·) the spectral measure of the kernel with λ = 1p.

Additionally, since kλ(x, y) = kλ(y, x), we have that h(λ ◦ δ) = h(−λ ◦ δ) for all
δ ∈ Rp. In particular, for λ = 1p, we have h(δ) = h(−δ). Now, the density of the spectral
measure of kλ with λ = 1p reads

p(ω) = 1
2π

∫
e−iω⊺(x−y)k1p(x, y)dδ

= 1
2π

∫
e−iω⊺δh(δ)dδ

= 1
2π

∫
e−iω⊺δh(−δ)dδ.

Let δ′ = −δ, then

p(ω) = 1
2π

∫
e−i(−ω)⊺δ′

h(δ′)dδ′

= p(−ω).
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APPENDIX

B
DATA PROCESSING

B.1 SE1, SE2, Comp-Act, and Ailerons
We first split the datasets into training, validation, and testing parts. We then

normalized and centered the original features in the training sample. Next, we centered
and normalized the validation and testing samples using the sample mean and the sample
variance from the training set.

B.2 Amazon Fine Food Reviews
We first converted the review rating (ranging from 1 to 5) to a binary response,

setting y = 0 to reviews with ratings 1 and 2 and y = 1 to reviews with ratings 4 and 5. We
then dropped duplicate entries and created a matrix containing only user reviews. Next, we
applied the Snowball (Porter) stemmer from the library NLTK and removed punctuation,
HTML tags, marks, and stopwords. Subsequently, we used the term frequency-inverse
document frequency vectorization (TF-IDF), keeping the 5000 most frequent unigrams.
We then split the dataset into training, validation, and testing parts. Finally, we centered
and normalized the TF-IDF matrix of the training split. We centered and normalized
the TF-IDF matrix of validation and testing split using the sample mean and the sample
variance from the training set.

B.3 Higgs
We split the dataset into training, validation, and testing parts. Then, we centered

and normalized the features in training, validation, and testing splits as done for the
previous experiments.
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