• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.100.2020.tde-19052020-101339
Document
Author
Full name
Vitor Cano
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2020
Supervisor
Committee
Nolasco, Marcelo Antunes (President)
Fernández Núñez, Eutimio Gustavo
Maiorano, Alfredo Eduardo
Ottoni, Cristiane Angelica
Souza, Theo Syrto Octavio de
Zaiat, Marcelo
Title in English
Energy generation in a novel microbial fuel cell: characterization and dynamics of microbial communities using organic matter and ammonia as electron donors
Keywords in English
Alternative sources of energy
Bioelectrochemical system
Bioenergy
Denitrification
Granular activated carbon
Sustainability
Abstract in English
The microbial fuel cell (MFC) is a novel technology that can generate clean energy from wastes. In this study, a novel double chamber MFC with low-cost electrodes was developed and assessed to convert organic matter into electricity under different temperatures (~25, 35 and 55 °C), external resistances (13 and 300 Ω) and electron acceptors (oxygen and nitrate) and also to assess the ability to generate electricity from ammonia oxidation. The MFC was evaluated in terms of microbial community structure (16S rRNA genes sequencing), energy generation, conversion and treatment efficiency. The results showed that temperature was a crucial factor controlling the performance with Geobacter as the most dominant electrogen genus (relative abundance of 20%) on the anode at 23°C and Tolumonas, Lactococcus and Peptococcaceae at 55° (combined relative abundance > 33%). The genus Comamonas was associated to greater cathode performance at 23 °C, but at 35 and 55 °C they were not found and the highest cathode charge resistances were observed. The use of lower external resistance of 13 Ω influenced the abundance and activity of electrogen bacteria on the anode, ultimately improving the coulombic efficiency up to 12%. With nitrate as electron acceptor, power density up to 17 W m-3 was achieved, while, with oxygen as electro acceptor in optimum operating condition (Rext = 300Ω , 23 °C, organic loading rate of 3.64 kg COD m-3 d-1) maximum power density of 48 W m-3 was achieved. In terms of treatment, high efficiency (COD removal > 90 %) was observed regardless of the applied conditions. It was also demonstrated that, in a novel bioelectrochemical process with ammonia as electron donor, the genus Nitrosomonas was associated with current generation, electrogen bacteria adapted to oxidize ammonia, but anammox bacteria presented electric current considerably lower. So, through an interdisciplinary approach, this study contributed to the development of a technology for clean and renewable energy generation combined with wastewater treatment aimed at inorganic and organic compounds
Title in Portuguese
Geração de energia em uma nova célula a combustível microbiana: caracterização e dinâmica de comunidades microbianas utilizando matéria orgânica e amônia como doadores de elétrons
Keywords in Portuguese
Bioenergia
Carvão ativado granular
Desnitrificação
Fontes alternativas de energia
Sistema bioeletroquímico
Sustentabilibidade
Abstract in Portuguese
A célula a combustível microbiana (CCM) é uma tecnologia inovdora para gerar energia limpa a partir de resíduos. Neste estudo, um novo modelo de CCM de câmara dupla e eletrodos de baixo custo foi desenvolvido e avaliado para converter matéria orgânica em eletricidade sob diferentes temperaturas (~ 25, 35 e 55 °C), resistências externas (13 e 300 Ω) e aceptores de elétrons (oxigênio e nitrato) e avaliado também na capacidade de gerar eletricidade a partir de amônia. A CCM foi avaliada em termos de estrutura da comunidade microbiana (sequenciamento do gene 16SRNA), geração de energia e eficiência de conversão e tratamento. Os resultados mostraram que a temperatura foi um fator crucial controlando o desempenho, com Geobacter como o gênero eletrogênico dominante (abundancia relativa de 20%) no ânodo a 23°C e Tolumonas, Lactococcus e Peptococcaceae a 55°C (abundância relativa combinada > 30%). O gênero Comamonas foi associado ao melhor desempenho do cátodo a 23°C, mas a 35 e 55 °C ele não foi encontrado e as maiores resistências de transferência carga catódica foram observadas. O uso de uma resistência externa mais baixa de 13 Ω influenciou na abundância e atividade de bactérias eletrogênicas no ânodo, cuminando no aumento da eficiêmcia coulombiana para até 12%. Com nitrato como acceptor de elétrons, obteve-se densidade de potência de até 17 W m-3, enquanto com oxigênio em condições ótimas de operação (Rext = 300 Ω, 23 °C, taxa de carregamento de 3,64 kg DQO m-3 d-1) obteve-se densidade de potência máxima de 48 W m-3. Em termos de tratamento, observou-se alta eficiência (remoção de DQO > 90 %), independentemente das condições aplicadas. Também foi demonstrado que, em um novo processo bioeletroquímico com amônia como doadora de elétrons, o gênero Nitrosomonas foi associado à geração de corrente, bactérias eletrogênicas adaptaram-se à oxidação de amônia, mas as bactérias anammox apresentaram corrente elétrica consideravelmente mais baixa. Portanto, por meio de uma abordagem interdisciplinar, este estudo contribuiu para o desenvolvimento de uma tecnologia para geração de energia limpa e renovável combinada com tratamento de águas residuárias direcionado a compostos orgânicos e inorgânicos
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Cano_Thesis.pdf (10.00 Mbytes)
Publishing Date
2021-04-09
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2024. All rights reserved.