• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
https://doi.org/10.11606/D.100.2022.tde-14042022-203642
Documento
Autor
Nombre completo
Felipe Augusto de Almeida
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2022
Director
Tribunal
Lauretto, Marcelo de Souza (Presidente)
Alencar, Airlane Pereira
Liang, Zhao
Souza, Marcio Watanabe Alves de
Título en portugués
Uso de redes complexas para detecção de tendências em séries temporais: extensões e aplicações em séries temporais de índices financeiros
Palabras clave en portugués
Aprendizado computacional
Detecção de tendências
Redes complexas
Séries temporais
Resumen en portugués
A análise de séries temporais tem desempenhado papel importante em diversas áreas, como meteorologia, economia, medicina, engenharia de produção, entre outras. Essas áreas possuem em comum, além de sua importância crítica no mundo atual, uma complexidade inerente que torna necessária a utilização de ferramentas cada vez mais robustas. Uma área promissora atualmente para a análise e predição das séries temporais é o aprendizado de máquina, sendo que métodos de aprendizado baseados em redes complexas têm sido recentemente propostos. Neste trabalho, um método baseado em redes complexas para detecção de tendências em séries temporais foi avaliado e estendido. Como referência, essa abordagem foi comparada com o algoritmo Random forests, um dos mais conhecidos e difundidos métodos tradicionais de aprendizado de máquina. Nos experimentos realizados, as Random forests apresentaram desempenho superior ao das redes complexas, tanto em acurácia como em custo computacional. Não obstante, a abordagem baseada em redes complexas ainda é relativamente recente e tem potencial para desenvolvimentos futuros
Título en inglés
Use of complex networks to detect trends in time series: extensions and applications in time series of financial indexes
Palabras clave en inglés
Complex networks
Computational learning
Time series
Trend detection
Resumen en inglés
The analysis of time series has played an important role in several areas, such as meteorology, economics, medicine, production engineering, among others. These areas have in common, in addition to their critical importance in todays world, an inherent complexity that makes it necessary to use increasingly more robust tools. A promising area in time series analysis is machine learning, and learning methods based on complex networks have been recently proposed. In this work, we evaluate and extend a complex network-based method for detecting trends in financial time series. As a benchmark, this approach was compared with the Random forests algorithm, one of the most widespread traditional machine learning methods. In the experiments carried out, Random forests performed better than complex networks, both in terms of accuracy and computational cost. Nevertheless, the approach based on complex networks is still relatively recent and has potential for future developments
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2022-05-12
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2022. Todos los derechos reservados.