• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
10.11606/D.100.2013.tde-26022014-161739
Document
Auteur
Nom complet
Ricardo Wandre Dias Pedro
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2013
Directeur
Jury
Lima, Ariane Machado (Président)
Biscaro, Helton Hideraldo
Jose Neto, Joao
Titre en portugais
Inferência de gramáticas estocásticas para reconhecimento de padrões de imagens utilizando quadtrees
Mots-clés en portugais
Gramáticas estocásticas
Imagem
Inferência gramatical
Linguística
Modelos de composição
Modelos hierárquicos
Modelos reconfiguráveis
Quadtrees
Sintático
Resumé en portugais
Na última década métodos sintáticos vêm sendo bastante empregados para reconhecimento de padrões em imagens. Uma revisão sistemática sobre o assunto indicou que há trabalhos sobre a utilização de gramáticas para reconhecimento de objetos específicos em imagens, reconhecimento de texturas, construção de objetos, segmentação de imagens, mudança de escala de imagens e reconhecimento de layouts de páginas e documentos. Foi percebido que apenas alguns dos trabalhos analisados apresentavam métodos de inferência gramatical. Percebida essa lacuna, este trabalho teve como objetivo avaliar a utilização de gramáticas estocásticas inferidas a partir de amostras de treinamento que continham as estruturas de quadtrees das imagens no problema de classificação de imagens. Para atingir tal objetivo foram utilizados e adaptados dois algoritmos de inferência gramatical e um algoritmo de estimação de probabilidades responsável por transformar as gramáticas livres de contexto inferidas em gramáticas livres de contexto estocásticas. Os resultados obtidos mostram que as técnicas propostas podem ser utilizadas na classificação de figuras geométricas. Entretanto, embora o desempenho com quadtrees não tenha sido excelente, ficou claro que o uso de gramáticas pode ser uma abordagem interessante para a classificação de imagens.
Titre en anglais
Inference of stochastic grammars for pattern recognition in images using quadtrees
Mots-clés en anglais
Grammatical inference
Hie- rarchical models
Image
Linguistic
Models of composition
Quadtrees
Reconfigurable models
Stochastic grammars
Syntactic
Resumé en anglais
In the last decade syntactic methods have been widely used for pattern recognition in images. A systematic review on this subject indicated that there are works about the usage of grammars for recognizing specific objects in images, recognition of textures, construction of objects, image segmentation, image scaling, and recognition of layouts in documents. It was noticed that only some of the analyzed studies showed methods of grammatical inference. Perceived this gap, this study aimed to evaluate the usage of stochastic grammars inferred from training samples containing structures of quadtrees of images in image classification problem. To achieve this goal it was used and adapted two algorithms for grammatical inference and one algorithm of probability estimation responsible for transforming the inferred context-free grammars in stochastic context-free grammars. The results show that the proposed techniques can be used in the classification of geometric figures. However, although the performance with quadtrees has not been excellent, it was clear that the use of grammars can be an interesting approach for image classification.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2015-06-11
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
Centro de Informática de São Carlos
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2021. Tous droits réservés.