• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
https://doi.org/10.11606/D.100.2020.tde-24012020-202805
Documento
Autor
Nome completo
Rafael Felipe Sandroni Dias
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2019
Orientador
Banca examinadora
Paraboni, Ivandre (Presidente)
Caseli, Helena de Medeiros
Lauretto, Marcelo de Souza
Peres, Sarajane Marques
Título em português
Caracterização autoral a partir de textos utilizando redes neurais artificiais
Palavras-chave em português
Caracterização autoral
Redes Neurais Artificiais
Word Embeddings
Resumo em português
A caracterização autoral (CA) é uma tarefa computacional de reconhecimento de características de autores de textos com base em seus padrões linguísticos. O uso de modelos computacionais de CA permite inferir características sociais a partir do texto, mesmo que os autores não escolham conscientemente colocar indicadores dessas características no texto. A tarefa de CA pode ser importante para diversas aplicações práticas, tais como análise forense e marketing. Abordagens tradicionais de CA muitas vezes utilizam conhecimento linguístico, que exige conhecimento prévio e demanda esforço manual para extração de características. Recentemente, o uso de redes neurais artificiais têm demonstrado resultado satisfatório em problemas de processamento de linguagem natural (PLN), entretanto, para caracterização autoral, apresenta um nível variado de sucesso. Este trabalho tem o objetivo de organizar, definir e explorar diversas tarefas de caracterização autoral a partir de córpus textuais, abrangendo três idiomas (i.e., português, inglês e espanhol) e quatro domínios textuais (i.e., redes sociais, questionários, SMS e blogs). Foram propostos seis modelos baseados em redes neurais e Word Embeddings, comparando-se com sistemas de baseline utilizando regressão logística e TF-IDF. Os resultados dos modelos de Long Short Term Memory (LSTM) with self-attention e Convolutional Neural Network (CNN) sugerem que tais técnicas apresentam desempenho superior ao baseline quando córpus grandes são utilizados. Os modelos de LSTM with self-attention baseados em representação de Word Embeddings e Char apresentam desempenho superior ao estado da arte da competição PAN-CLEF 2013
Título em inglês
Author Profiling from texts using artificial neural networks
Palavras-chave em inglês
Artificial Neural Networks
Author Profiling
Word Embeddings
Resumo em inglês
Author Profiling (AP) is a computational task of recognizing the characteristics of text authors based on their linguistic patterns. The use of computer computational models allows us to infer social characteristics from the text, even if the authors do not consciously choose to place indicators of these characteristics in the text. The AP task can be important for many practical applications, such as forensic analysis and marketing. Traditional AP approaches often use language knowledge, which requires prior knowledge and requires manual effort to extract features. Recently, the use of artificial neural networks has shown satisfactory results in natural language processing (NLP) problems, however, for author profiling, presents a varied level of success. This paper aims to organize, define and explore various authorial characterization tasks from the textual corpus considered, covering three languages (i.e, Portuguese, English and Spanish) and four textual domains (i.e., social networks, questionnaires, SMS and blogs) . Six models based on neural networks and Word Embeddings were proposed, compared with baseline systems using logistic regression and TF-IDF. The results suggest that the Long Short Term Memory with self-attention and Convolutional Neural Network models outperform baseline system in larger volume corpus. The LSTM with self-attention model based on Word Embeddings and Char text representation outperform the state-of-the-art PAN-CLEF 2013 competition
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2020-02-12
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2022. Todos os direitos reservados.