• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
https://doi.org/10.11606/D.100.2020.tde-24012020-202805
Documento
Autor
Nombre completo
Rafael Felipe Sandroni Dias
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2019
Director
Tribunal
Paraboni, Ivandre (Presidente)
Caseli, Helena de Medeiros
Lauretto, Marcelo de Souza
Peres, Sarajane Marques
Título en portugués
Caracterização autoral a partir de textos utilizando redes neurais artificiais
Palabras clave en portugués
Caracterização autoral
Redes Neurais Artificiais
Word Embeddings
Resumen en portugués
A caracterização autoral (CA) é uma tarefa computacional de reconhecimento de características de autores de textos com base em seus padrões linguísticos. O uso de modelos computacionais de CA permite inferir características sociais a partir do texto, mesmo que os autores não escolham conscientemente colocar indicadores dessas características no texto. A tarefa de CA pode ser importante para diversas aplicações práticas, tais como análise forense e marketing. Abordagens tradicionais de CA muitas vezes utilizam conhecimento linguístico, que exige conhecimento prévio e demanda esforço manual para extração de características. Recentemente, o uso de redes neurais artificiais têm demonstrado resultado satisfatório em problemas de processamento de linguagem natural (PLN), entretanto, para caracterização autoral, apresenta um nível variado de sucesso. Este trabalho tem o objetivo de organizar, definir e explorar diversas tarefas de caracterização autoral a partir de córpus textuais, abrangendo três idiomas (i.e., português, inglês e espanhol) e quatro domínios textuais (i.e., redes sociais, questionários, SMS e blogs). Foram propostos seis modelos baseados em redes neurais e Word Embeddings, comparando-se com sistemas de baseline utilizando regressão logística e TF-IDF. Os resultados dos modelos de Long Short Term Memory (LSTM) with self-attention e Convolutional Neural Network (CNN) sugerem que tais técnicas apresentam desempenho superior ao baseline quando córpus grandes são utilizados. Os modelos de LSTM with self-attention baseados em representação de Word Embeddings e Char apresentam desempenho superior ao estado da arte da competição PAN-CLEF 2013
Título en inglés
Author Profiling from texts using artificial neural networks
Palabras clave en inglés
Artificial Neural Networks
Author Profiling
Word Embeddings
Resumen en inglés
Author Profiling (AP) is a computational task of recognizing the characteristics of text authors based on their linguistic patterns. The use of computer computational models allows us to infer social characteristics from the text, even if the authors do not consciously choose to place indicators of these characteristics in the text. The AP task can be important for many practical applications, such as forensic analysis and marketing. Traditional AP approaches often use language knowledge, which requires prior knowledge and requires manual effort to extract features. Recently, the use of artificial neural networks has shown satisfactory results in natural language processing (NLP) problems, however, for author profiling, presents a varied level of success. This paper aims to organize, define and explore various authorial characterization tasks from the textual corpus considered, covering three languages (i.e, Portuguese, English and Spanish) and four textual domains (i.e., social networks, questionnaires, SMS and blogs) . Six models based on neural networks and Word Embeddings were proposed, compared with baseline systems using logistic regression and TF-IDF. The results suggest that the Long Short Term Memory with self-attention and Convolutional Neural Network models outperform baseline system in larger volume corpus. The LSTM with self-attention model based on Word Embeddings and Char text representation outperform the state-of-the-art PAN-CLEF 2013 competition
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2020-02-12
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2022. Todos los derechos reservados.