• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  Bookmark and Share
Master's Dissertation
Full name
Adilson Lopes Khouri
Knowledge Area
Date of Defense
São Paulo, 2016
Digiampietri, Luciano Antonio (President)
Oikawa, Márcio Katsumi
Paraboni, Ivandre
Title in Portuguese
Desenvolvimento de técnica para recomendar atividades em workflows científicos: uma abordagem baseada em ontologias
Keywords in Portuguese
Modelagem de classificadores e regressores
Sistemas de recomendação
Sistemas gerenciadores de workflows científicos
Abstract in Portuguese
O número de atividades disponibilizadas pelos sistemas gerenciadores de workflows científicos é grande, o que exige dos cientistas conhecerem muitas delas para aproveitar a capacidade de reutilização desses sistemas. Para minimizar este problema, a literatura apresenta algumas técnicas para recomendar atividades durante a construção de workflows científicos. Este projeto especificou e desenvolveu um sistema de recomendação de atividades híbrido, considerando informação sobre frequência, entrada e saídas das atividades, e anotações ontológicas para recomendar. Além disso, neste projeto é apresentada uma modelagem da recomendação de atividades como um problema de classificação e regressão, usando para isso cinco classificadores; cinco regressores; um classificador SVM composto, o qual usa o resultado dos outros classificadores e regressores para recomendar; e um ensemble de classificadores Rotation Forest. A técnica proposta foi comparada com as outras técnicas da literatura e com os classificadores e regressores, por meio da validação cruzada em 10 subconjuntos, apresentando como resultado uma recomendação mais precisa, com medida MRR ao menos 70% maior do que as obtidas pelas outras técnicas
Title in English
Development of a strategy to scientific workflow activities recommendation: An ontology-based approach
Keywords in English
Recommeder Systems
Recommendation systems
Scientific Workflows Management Systems
Abstract in English
The number of activities provided by scientific workflow management systems is large, which requires scientists to know many of them to take advantage of the reusability of these systems. To minimize this problem, the literature presents some techniques to recommend activities during the scientific workflow construction. This project specified and developed a hybrid activity recommendation system considering information on frequency, input and outputs of activities and ontological annotations. Additionally, this project presents a modeling of activities recommendation as a classification problem, tested using 5 classifiers; 5 regressors; a SVM classifier, which uses the results of other classifiers and regressors to recommend; and Rotation Forest , an ensemble of classifiers. The proposed technique was compared to other related techniques and to classifiers and regressors, using 10-fold-cross-validation, achieving a MRR at least 70% greater than those obtained by other techniques
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2021. All rights reserved.