• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
10.11606/D.100.2017.tde-17112017-121645
Document
Auteur
Nom complet
Rafael Siqueira Torres
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2017
Directeur
Jury
Marques, Fátima de Lourdes dos Santos Nunes (Président)
Ferreira, Deller James
Machado-Lima, Ariane
Nakamura, Ricardo
Titre en portugais
Segmentação semiautomática de conjuntos completos de imagens do ventrículo esquerdo
Mots-clés en portugais
Imagens de RMN
Segmentação de imagens cardíacas
Segmentação por frames
Segmentação semiautomática
Resumé en portugais
A área médica tem se beneficiado das ferramentas construídas pela Computação e, ao mesmo tempo, tem impulsionado o desenvolvimento de novas técnicas em diversas especialidades da Computação. Dentre estas técnicas a segmentação tem como objetivo separar em uma imagem objetos de interesse, podendo chamar a atenção do profissional de saúde para áreas de relevância ao diagnóstico. Além disso, os resultados da segmentação podem ser utilizados para a reconstrução de modelos tridimensionais, que podem ter características extraídas que auxiliem o médico em tomadas de decisão. No entanto, a segmentação de imagens médicas ainda é um desafio, por ser extremamente dependente da aplicação e das estruturas de interesse presentes na imagem. Esta dissertação apresenta uma técnica de segmentação semiautomática do endocárdio do ventrículo esquerdo em conjuntos de imagens cardíacas de Ressonância Magnética Nuclear. A principal contribuição é a segmentação considerando todas as imagens provenientes de um exame, por meio da propagação dos resultados obtidos em imagens anteriormente processadas. Os resultados da segmentação são avaliados usando-se métricas objetivas como overlap, entre outras, comparando com imagens fornecidas por especialistas na área de Cardiologia
Titre en anglais
Semiautomatic segmentation of left ventricle in full sets of cardiac images
Mots-clés en anglais
Cardiac image segmentation
Frame segmentation semi-automatic segmentation.
MR Images
Resumé en anglais
The medical field has been benefited from the tools built by Computing and has promote the development of new techniques in diverse Computer specialties. Among these techniques, the segmentation aims to divide an image into interest objects, leading the attention of the specialist to areas that are relevant in diagnosys. In addition, segmentation results can be used for the reconstruction of three-dimensional models, which may have extracted features that assist the physician in decision making. However, the segmentation of medical images is still a challenge because it is extremely dependent on the application and structures of interest present in the image. This dissertation presents a semiautomatic segmentation technique of the left ventricular endocardium in sets of cardiac images of Nuclear Magnetic Resonance. The main contribution is the segmentation considering all the images coming from an examination, through the propagation of the results obtained in previously processed images. Segmentation results are evaluated using objective metrics such as overlap, among others, compared to images provided by specialists in the Cardiology field
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2017-11-28
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2022. Tous droits réservés.