• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
10.11606/D.100.2015.tde-13082015-150757
Documento
Autor
Nombre completo
Caio Ramos Casimiro
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2015
Director
Tribunal
Paraboni, Ivandré (Presidente)
Aluisio, Sandra Maria
Carvalho, Ariadne Maria Brito Rizzoni
Digiampietri, Luciano Antonio
Título en portugués
Aspectos temporais na recomendação de conteúdo em microblogs
Palabras clave en portugués
Aspectos temporais
Microblogs
Recomendação de conteúdo
Twitter
Resumen en portugués
Este documento apresenta um estudo que avalia o uso de informação temporal na tarefa de recomendação de tweets no twitter. Foram explorados dois aspectos temporais: a vida útil de tópico de informação e a sua versão personalizada para cada usuário. A aplicação destes aspectos temporais foi avaliada utilizando-se três sistemas de recomendação implementados. Também avaliamos dois modelos de tópicos utilizados para representar tweets: o modelo bag of words e um modelo de tópicos latentes extraídos por LDA (Latent Dirichlet Allocation). Além disso, avaliamos o uso de máquinas de vetor de suporte para estimar o perfil de interesses de usuário, comparando esta abordagem com uma outra mais simples. Os experimentos foram executados utilizando-se um conjunto de dados com 414 milhões de tweets publicados por 321 mil usuários. Os resultados apresentados demonstram que o uso de vida útil de tópico na tarefa de recomendação melhora a qualidade das recomendações, e o uso da versão personalizada desta informação melhorou ainda mais a qualidade destas
Título en inglés
Temporal aspects on content recommendation in microblogs
Palabras clave en inglés
Content recommendation
Microblogs
Temporal aspects
Twitter
Resumen en inglés
This document presents a study that evaluates the use of temporal information in the task of recommending tweets on Twitter. Two temporal aspects have been analysed: the lifespan of information topic and its personalized version for each user. The application of such temporal aspects has been evaluated using three recommendation systems implemented in this work. We also evaluated two topic models considered to describe tweets: a bag of words model and a model of latent topics extracted using LDA (Latent Dirichlet Allocation). Furthermore, we evaluated the use of SVM (Support Vector Machines) to estimate the user profile, comparing this approach with a simpler one. The experiments have been executed using a dataset with 414 millions of tweets published by 321 thousands of users. The results show that the use of topic lifespan information increases the quality of recommendation, and the personalized version of this information increases the quality even more
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
dissertacao.pdf (645.56 Kbytes)
Fecha de Publicación
2015-09-09
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
Centro de Informática de São Carlos
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2021. Todos los derechos reservados.