• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
https://doi.org/10.11606/D.100.2020.tde-06022020-120251
Documento
Autor
Nombre completo
José Eleandro Custódio
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2020
Director
Tribunal
Paraboni, Ivandre (Presidente)
Fernandez Tuesta, Esteban
Rezende, Solange Oliveira
Título en portugués
Atribuição autoral de textos digitais
Palabras clave en portugués
Part-of-speech. POS
Word embedding
Aprendizado de máquina
Atribuição autoral
Distorções textuais
Identificação autoral
PLN
Processamento de língua natural
Resumen en portugués
A atribuição autoral de textos digitais (AA) visa identificar quem é o autor de um determinado texto a partir de um conjunto de autores possíveis. Sua aplicação pode ajudar na solução de casos de escândalos de corrupção, na identificação de abusos na utilização da internet, na detecção de notícias falsas, na detecção de pseudônimos e outros. Esse trabalho apresenta um estudo que usou n-gramas de caracteres, de palavras, de anotações linguísticas (POS), modelos de representação distribuída (embeddings). Foram aplicados métodos de aprendizado de máquina e proposto um método para combinar diversos modelos. Os resultados foram avaliados nos domínios literatura, letras de músicas e mensagens de microblogs
Título en inglés
Authorship Attribution of digital texts
Palabras clave en inglés
Author identification
Authorship attribuition
Embedding
Machine learning
Natural language processing
NLP
Part-of-speech. POS
Text distortion
Resumen en inglés
Authorship attribution (AA) of digital text is a computational task which aims to identify who is the author of a text given a set of candidate authors. Its application may help to solve corruption scandals, identification of abuses on internet usage, fake news detection or pseudonyms detection. Computational methods for AA includes multivariate statistics and machine learning. This work presents a study that used n-grams of characters, words, linguistic annotations (POS) and word embeddings models. Machine learning methods were applied and it was proposed a method to combine several models. Results were evaluated in literature, song lyrics and microblogging domains
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2020-03-24
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2020. Todos los derechos reservados.