• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
https://doi.org/10.11606/D.100.2020.tde-04112020-152132
Document
Auteur
Nom complet
Caio Deutsch
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2020
Directeur
Jury
Paraboni, Ivandré (Président)
Carvalho, Ariadne Maria Brito Rizzoni
Pérez-Alcazár, José de Jesus
Titre en portugais
Atribuição autoral com uso de classificadores de perfis
Mots-clés en portugais
Aprendizado de máquinas
Atribuição autoral
Caracterização autoral
Distorções textuais
Processamento de língua natural
Resumé en portugais
A atribuição autoral (AA) busca identificar um autor de texto a partir de um conjunto de autores conhecidos. Autores deixam rastros em seus textos e é possível identificar características sociolinguísticas baseadas no estilos de escrita refletidos no texto destes autores. A atribuição autoral está cada vez mais demonstrando importância para diversas atividades sociais, em especial para a análise forense. Os trabalhos envolvendo AA demonstram resultados modestos e motivam a exploração de diferentes técnicas para melhorar a acurácia dos modelos atuais. A partir desses pontos, o presente trabalho apresenta uma proposta de pesquisa em nível de mestrado no campo de processamento de língua natural (PLN), com ênfase em AA, com o objetivo geral de melhorar o desempenho de classificadores de atribuição autoral utilizando técnicas de caracterização autoral (CA)
Titre en anglais
Author attribution using profile classifiers
Mots-clés en anglais
Author attribution
Author characterization
Machine learning
Natural language processing
Textual distortions
Resumé en anglais
Author attribution (AA) seeks to identify a text author from a set of known authors. Authors leave traces in their texts and it is possible to identify sociolinguistic characteristics based on the writing styles reflected in the text of these authors. Author attribution is increasingly showing importance for various social activities, especially forensic analysis. Studies involving AA show modest results and motivate the exploration of different techniques to improve the accuracy of current models. From these perspective, this project presents a master's level research proposal in the field of natural language processing (NLP), with an emphasis in AA, with the general objective of improving the performance of AA classifiers using author profiling techniques
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2021-07-06
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2022. Tous droits réservés.