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RESUMO 

EWBANK, A. C. Identificação e caracterização de genes de resistências a 
antimicrobianos no microbioma de aves marinhas da costa brasileira. 180 p. Tese 
(Doutorado em Ciências) – Faculdade de Medicina Veterinária e Zootecnia, Universidade de 
São Paulo, São Paulo, 2021. 

A resistência a antimicrobianos é quintessencial em Saúde Única. Resistência microbiana 

resulta da plasticidade das bactérias e interações entre microorganismos, hospedeiros e 

ambiente, influenciada pela pressão antropogênica. O consequente remodelamento dos 

microbiomas existentes, associado à sua capacidade de disseminação, conferem aos genes de 

resistências a antimicrobianos (GRAs) o papel de poluentes ambientais que, assim como 

bactérias resistentes a antimicrobianos (BRA), são indicadores ambientais de antropização. 

Aves marinhas são excelentes sentinelas da saúde do ecossistema marinho. Neste estudo 

foram utilizadas técnicas genotípicas (ex.: PCR a tempo real [rtPCR] gelificado e 

sequenciamento completo [WGS]) e fenotípicas (cultura bacteriana e antibiograma) para 

avaliar a presença e diversidade dos GRAs e BRA de prioridade em saúde pública 

(Escherichia coli produtora de beta-lactamase de espectro estendido [ESBL-EC] e AmpC 

[AmpC-EC]) no microbioma de aves marinhas de vida livre de ambientes costeiros e 

insulares pristinos do BrasilGRAs mediados por plasmídeos foram detectados e quantificados 

por rtPCR em enemas de (1) 25 aves marinhas (gaivotão [Larus dominicanus, n = 14] e 

pinguim-de-Magalhães [Spheniscus magellanicus, n = 11]) à admissão a centro de 

reabilitação no sul do Brasil, e (2) 308 indivíduos: 104 do Arquipélago de Fernando de 

Noronha (FNA), Pernambuco (atobá-mascarado [Sula dactylatra, n = 48], atobá-marrom 

[Sula leucogaster, n = 31] e fragata-comum [Fregata magnificens, n = 25]), e 204 do Atol das 

Rocas (ROA),  Rio Grande do Norte (atobá-mascarado  [n = 33], atobá-marrom [n = 33], 

fragata-comum [n = 35], atobá-de-pé-vermelho [Sula sula, n = 33], trinta-réis-das-rocas 

[Onychoprion fuscatus, n = 36], e viuvinha-marrom [Anous stolidus, n = 34]) para 

comparação entre um ambiente intensamente antropizado (FNA) versus um bioma pristino 

(ROA), no nordeste brasileiro. Ademais, foram utilizadas técnicas fenotípicas e de WGS pra 

pesquisar ESBL-/AmpC-EC (i) nos mesmos 204 indivíduos de ROA, e (2) em 20 fragatas-

comuns de um local inabitado (Arquipélago de Alcatrazes) inserido na antropizada costa 

sudeste brasileira. Nossos objetivos foram utilizar aves marinhas como bioindicadores de 

antropização para acessar a ocorrência e disseminação de GRAs e ESBL-/AmpC-EC na costa 

brasileira, sua epidemiologia e persistência frente à Saúde Única. Nossos resultados 

mostraram ampla ocorrência e diversidade nos diferentes cenários, especialmente no 



 

antropizado (FNA), que apresentou resusltados consistentes com pressão antropogência: 

maior significância estatística na prevalência de GRAs conferindo resistencia a sulfonamidas 

e quinolonas em comparação a ROA, e maior prevalência de sulII. Acreditamos que essa seja 

a primeira detecção de mecA em aves marinhas nas Américas, e a primeira de mcr-1 em aves 

marinhas de vida livre no Brasil e migratórias não-sinantrópicas no mundo. Este estudo 

descreve o primeiro relato do clone pandêmico e de importância em saúde pública ST131 

carreando blaCTX-M-8, e constitui o primeiro registro de ST648 carreando blaCTX-M-2 e blaCMY-2, 

ST117 carreando blaSHV-12 e do novo ST11350 (complexo clonal ST349) carreando blaCTX-M-

55 e fosA3 em aves selvagens. Mostramos aqui o papel-chave das características biológicas e 

ecológicas espécie-específicas (ex.: migração, forrageamento) e a relevância da antropização 

no estudo de resistências a antimicrobianos. Finalmente, enfatizamos o papel das aves 

marinhas como sentinelas de antropização e seu envolvimento na cadeia de resistências 

antimicrobianas em Saúde Única. 

 
Palavras-chave: Antropização. Antibiótico. Escherichia coli resistente a cefalosporinas de 

espectro estendido. Aves marinhas migratórias. Animais Selvagens.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

ABSTRACT 

EWBANK, A. C. Identification and characterization of antimicrobial resistant genes in 
the microbiome of seabirds of the Brazilian coast. 180 p. Tese (Doutorado em Ciências) – 
Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, 2021. 

Antimicrobial resistance is a quintessential One Health issue. Microbial resistance results 

from bacteria genetic plasticity and interactions among microbials, hosts and the environment, 

enhanced by anthropogenic pressure. The consequent remodeling of the existing 

microbiomes, associated with their dissemination capacity, confer antimicrobial resistance 

genes (ARGs) the role of environmental pollutants and, alongside antimicrobial resistant 

bacteria (ARB), indicators of environmental anthropization. Seabirds are excellent sentinels 

of the marine ecosystem health. We used genotypic (i.e., gelled real-time PCR [rtPCR] and 

whole genome sequencing [WGS]) and phenotypic techniques (bacterial culture and 

antimicrobial sensitivity tests) to evaluate the presence and diversity of ARGs and ARB of 

critical priority (extended-spectrum beta-lactamase [ESBL]-producing Escherichia coli 

[ESBL-EC] and AmpC-producing E.coli [AmpC-EC]) in the microbiome of wild seabirds 

inhabiting coastal and insular environments in Brazil. Gelled rtPCR reactions detected and 

quantified selected plasmid-mediated ARGs in enemas of (1) 25 seabirds (kelp gull [Larus 

dominicanus, n = 14] and Magellanic penguin [Spheniscus magellanicus, n = 11]) upon 

admission to a rehabilitation center in southern Brazil, and (2) 308 individuals: 104 from the 

Fernando de Noronha Archipelago (FNA), Pernambuco (masked boobies [Sula dactylatra, n 

= 48], brown boobies [Sula leucogaster, n = 31] and magnificent frigatebirds [Fregata 

magnificens, n = 25]), and 204 from Rocas Atoll (ROA),  Rio Grande do Norte (masked 

boobies [n = 33], brown boobies [n = 33], magnificent frigatebirds [n = 35], red-footed 

boobies [Sula sula, n = 33], sooty terns [Onychoprion fuscatus, n = 36], and brown noddies 

[Anous stolidus, n = 34]) to compare the highly anthropized (FNA) versus the pristine biome 

(ROA), northeastern Brazil. Additionally, we used phenotypic techniques and WGS to survey 

ESBL-/AmpC-EC in cloacal swabs of (1) the same 204 ROA individuals, and (2) 20 

magnificent frigatebirds from an uninhabited site (Alcatrazes Archipelago, São Paulo) Brazil), 

inserted in the anthropized southeastern Brazilian coast. Our goals were to use seabirds as 

environmental bioindicators of anthropization to assess the occurrence and dissemination of 

ARGs and ESBL-/AmpC-EC in the Brazilian coast, and their epidemiology and persistence 

through a One Health approach. Our findings showed their wide occurrence and diversity 

throughout the evaluated scenarios, especially in the anthropized (FNA), which presented 

results consistent with anthropogenic pressure: statistically significant higher prevalence of 



 

sulfonamide- and quinolone-encoding ARGs in comparison with ROA, and higher sulII gene 

prevalence. To our knowledge, this is the first detection of mecA in seabirds in the Americas, 

and of mcr-1 gene in wild free-ranging seabirds in Brazil and in free-ranging migratory non-

synanthropic seabirds worldwide. This is the first description of the pandemic and public 

health relevant ST131-O25b harboring blaCTX-M-8, and the first report of ST648 harboring 

blaCTX-M-2 and blaCMY-2, ST117 harboring blaSHV-12, and of a novel ST11350 (ST349 clonal 

complex) harboring blaCTX-M-55 and fosA3 in wild birds.  We showed the key role of species-

specific biological and ecological characteristics (e.g., migration, foraging strategies) and the 

relevance of anthropization in the study of antimicrobial resistance. Finally, we highlight the 

role of seabirds as anthropization sentinels and their involvement in the One Health chain of 

antimicrobial resistance.  
 
Keywords: Anthropization. Antibiotic. Extended-spectrum cephalosporin-

resistant Escherichia coli. Migratory seabird. Wildlife.  
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1. LITERATURE REVIEW 
 

1.1 A BRIEF HISTORY ON ANTIBIOTICS: FROM ANCIENT TIMES TO THE 
CURRENT ISSUE OF ANTIMICROBIAL RESISTANCE 
 

 Contrary to our common anthropocentric belief that antibiotics have entered our lives 

by our own doing and desire at the dawn of the modern “antibiotic era”, studies show that 

antimicrobials have accompanied us from a very early start. Many ancient cultures in Ancient 

Serbia, China and Greece, used molds, soil, and plants to treat bacterial infections, believing 

that they would influence the spirits or the gods responsible for inflicting illnesses and 

suffering (DURAND et al., 2019). Traces of tetracycline were detected in human skeletal 

remains from ancient Sudanese Nubia dating back to 350–550 CE (BASSETT et al., 1980; 

NELSON et al., 2010) and the late Roman period sampled from the Dakhleh Oasis, Egypt. 

The postulated intake of tetracycline in the diet of these populations is believed to have had a 

protective effect, based on the low rate of infectious diseases documented in the Sudanese 

Nubian population and the lack of signs of bone infection in the samples from the Dakhleh 

Oasis (ARMELAGOS, 1969; COOK et al., 1989).  

 The beginning of the modern “antibiotic era” is usually associated with the names of 

Paul Ehrlich (1854-1915) and Alexander Fleming (1881-1955). Ehrlich elaborated a theory of 

a “magic bullet” that would be capable to selectively target solely the disease-causing 

microbes and not the host. His research was focused on finding a therapeutic drug to a then 

endemic and almost incurable sexually transmitted disease, caused by the spirochete 

Treponema pallidium, known as syphilis. Finally, he found an organoarsenic derivative, 

commercially named Salvarsan, that along with the more soluble and less toxic Neosalvarsan, 

was the most frequently prescribed drug in Europe, until 1940s, when it was replaced by 

penicillin (MAHONEY et al., 1943).  

 Penicillin is probably the most well known “character” in the long history of humanity 

and antimicrobial interactions. Although Alexander Fleming is generally known as the 

discoverer of penicillin, in 1928, it was Ernest Duchesne (1874–1912), a French medical 

student, who in 1896, originally discovered the antimicrobial properties of Penicillium. He 

observed that Arab stable boys kept their saddles in a dark and damp room to encourage mold 

growth on its surface, which they said helped heal saddle sores. Duchesne then prepared a 

suspension from the mold and injected it into diseased guinea pigs along with a lethal dose of 

virulent typhoid bacilli and observed that all animals remained healthy. Unfortunately, at the 
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time of his discovery, his work was ignored because of his young age and unknown status 

(POUILLARD, 2002).  

 Alexander Fleming then “rediscovered” the penicillin, and this time such discovery 

was not ignored; instead, it triggered a revolution and consolidated the “modern era of 

antibiotics” (PIDDOCK, 2012; SENGUPTA et al., 2013), first prescribed to treat serious 

infections in the 1940s (CENTER FOR DISEASE CONTROL AND PREVENTION, 2013). 

The discovery of antibiotics was a turning point in human history (DAVIES; DAVIES, 2010). 

Over the first several following decades (referred to as the “golden age” of antibiotic use) 

they revolutionized medicine in many ways and quickly became extremely important corner 

stones of modern healthcare, eased patients’ suffering and saved countless lives (DAVIES; 

DAVIES, 2010; CANTAS et al., 2013). The first half of the 20th century unrolled on the 

success of the natural antibiotic penicillin and the synthetic antimicrobial sulfonamides 

(CANTAS et al., 2013).  

 Unfortunately, the concern about over-use and misuse caught up fast with this 

healthcare marvelous.  Such finding was not a surprise to Sir Alexander Fleming, who during 

his 1945 Nobel Prize acceptance speech voiced his worries that the time might come when 

penicillin “can be bought by anyone in the shops” and that the inevitable exposure of 

microbes to non-lethal doses of the drug would “make them resistant” (WORLD HEALTH 

ORGANIZATION, 2014). His concern proved soon to be true after penicillin started being 

sold without medical prescription, with the first report of penicillin-resistant bacterial strains 

soon after, in 1946 (BARBER; ROZWADOWSKA-DOWZENKOAND, 1948). Since then, 

the “cat and mouse” game of antimicrobials and resistance has never stopped.  

 Currently, we are faced with an even more worrying fact; the emergence of new 

bacterial strains that are simultaneously resistant to several antimicrobials (called multidrug-

resistant bacteria [“MDR”]), that may eventually become resistant to all available 

antimicrobials (pandrug-resistance [“PDR”]), leading us back to a “pre-antibiotic era”, when 

procedures currently considered routine represented potential health challenges (e.g., 

surgeries, cesarean sections) (WORLD HEALTH ORGANIZATION, 2020; EUROPEAN 

CENTER FOR DISEASE PREVENTION AND CONTROL, 2020). 

 Over 75 years after Flemming’s Nobel Prize speech, we are still threatened by 

antimicrobial resistance, an issue that is continuously becoming more and more complex in a 

global scale (POUILLARD, 2002; LEVY; MARSHALL, 2004; ALANIS, 2005; PALLETT; 

HAND, 2010). The difference between now and then, are the social, economic and political 
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contexts in which we find ourselves facing this issue, associated with a globalized society and 

trade. 

 

1.2 BRIEF DEFINITION OF ANTIMICROBIAL RESISTANCE 
 

 Antimicrobial drugs are medicines that are active against a spectrum of infections, 

caused by viruses (antivirals), bacteria (antibiotics), fungi (antifungals) and parasites 

(including antimalarials) (WORLD HEALTH ORGANIZATION, 2014). Antimicrobial 

resistance refers to an antimicrobial drug that is no longer (as) effective against the organism 

it is targeting, either if it is an antiviral, antibacterial, antiparasitic or antifungal drug, thus 

resulting in difficult, costly, or even impossible therapy (SMITH; COAST 2012; WORLD 

HEALTH ORGANIZATION, 2014).  

 For the purposes of this study we will focus and discuss bacterial antimicrobial 

resistance. There are two types of drugs against bacteria: antibiotics and antimicrobials. 

Antibiotics are microorganism-produced molecular substances capable of, at low 

concentrations, inhibit or kill other microorganisms. On the other hand, antimicrobial is any 

substance – either natural, semisynthetic or synthetic in origin – that inhibits the growth of or 

kills microorganisms, causing little to no damage to the host. In summary: all antibiotics are 

antimicrobials, but not all antimicrobials are antibiotics (WORLD HEALTH 

ORGANIZATION, 2015). 

 

1.3 ANTIMICROBIAL RESISTANCE: A COMPLEX AND MULTIFACETED ONE 
HEALTH ISSUE 
 

 Antimicrobial resistance (AMR) is a quintessential One Health issue, one of the most 

serious global clinical and public health threats of the 21st century, posing economic, social 

and political burden and implications, and greatly impacting the human-animal-environment 

interface (WORLD HEALTH ORGANIZATION, 2000; 2014; DA COSTA et al., 2013; 

SMITH et al., 2014; JOBBINS; ALEXANDER, 2015; LIU et al., 2016; QUEENAN et al., 

2016).  

 It is hard to imagine an issue that epitomizes the principles of One Health more than 

AMR does (ROBINSON et al., 2016). In a straightforward description, the One Health 

approach is defined as “the collaborative effort of multiple disciplines – working locally, 

nationally, and globally – to attain optimal health for people, animals and our environment” 

(AMERICAN VETERINARY MEDICAL ASSOCIATION, 2008). AMR has clear links to 
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each of these three pillars, and most importantly, relies heavily on historical, cultural, socio-

economical and political factors aside from “health” per se.  

 There are four main genetic reactors in which antimicrobial resistance evolves: (1) 

human and animal microbiota; (2) places in which susceptible individuals are crowded and 

exposed to bacterial exchange (e.g., hospitals, farms, rehabilitation centers); (3) biological 

residues originated in the secondary reactor (e.g., wastewater, lagoons); and (4) the soil and 

the surface or ground water environments (BAQUERO et al., 2008). Antimicrobial resistance 

“circulates” within the One Health chain through direct contact, food supply (e.g., meat, fish, 

eggs and dairy products), or environmental pathways (DA COSTA et al., 2013).  

 

1.4 ANTIMICROBIAL RESISTANCE: A NATURAL PHENOMENON  
 

 The development of bacterial resistance results from a naturally occurring 

phenomenon that predates the existence of humans (HALL; BARLOW 2004; D’COSTA et 

al., 2006; BHULLAR et al., 2012) and is ubiquitous in the environment (e.g., air [SAPKOTA 

et al., 2006; LI et al., 2018], water [POIREL et al., 2005], soil [ALLEN et al., 2009; 

FORSBERG et al., 2012], and glaciers [USHIDA et al., 2010; SEGAWA et al., 2013]). Such 

phenomenon is promoted by bacteria genetic plasticity and interactions among microbial 

agents, host organisms and the environment (DA COSTA et al., 2013; FINLEY et al., 2013). 

 The study of antimicrobial resistance must have a broader approach, aside just from 

clinical microbiology, focusing on evolutionary and ecological contexts (AMINOV; 

MACKIE, 2007; AMINOV, 2009; 2010), because of two important factors: (1) the extensive 

diversity of ARGs in the environmental microbiota, accumulated throughout billions of years 

of evolution and (2) the absence of barriers among the ecological compartments in the 

microbial world and the possibility of horizontal gene transfer (HGT) mediated by mobile 

genetic elements (MGE) within them (AMINOV, 2011). 

 MGEs allow bacteria to rapidly adapt to new antimicrobials, as well as transfer ARGs, 

especially when exposed to subdoses (ALLEN; STANTON, 2014). Among them, plasmid-

related antimicrobial resistance genes have increased epidemiological relevance - both 

medical and practical – by encompassing most antibiotics currently in clinical use (especially 

the commonly used cephalosporins, fluoroquinolones and aminoglycosides) (BENNETT, 

2008), and for being capable of HGT between bacterial communities (RAMÍREZ-

CASTILLO et al., 2014). Moreover, plasmids may carry one or more antibiotic resistance, 

metabolic and virulence genes (BENNETT, 2008).  
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 HGT drives the evolution of bacteria (HARRISON; BROCKHURST, 2012).  The 

uptake of genes or operons from the ‘mobile gene pool’ promotes rapid adaptation to novel 

environments without the need of relying in rare beneficial mutations arising spontaneously 

within a population (JAIN et al., 2003). Thus, HGT confers new phenotypic traits (or suites of 

traits) that allow access to novel ecological niches, posing as evolutionary and ecological 

innovations (OCHMAN, et al., 2000; WIEDENBECK; COHAN, 2011). Transfer of 

antimicrobial resistance genes (ARGs) plays an important role in the development of MDR in 

bacteria (FORSBERG et al., 2012) and is demonstrated through the rapid global spread of 

antimicrobial resistance throughout bacterial populations (BENNETT, 2008). HGT is 

mediated by three different mechanisms: transformation, transduction and conjugation 

(HARRISON; BROCKHURST, 2012; VON WINTERSDORFF et al., 2016). Natural 

transformation is a process by which cells take up naked DNA from the environment. In 

transduction, DNA is transferred between cells via a phage vector (bacteriophages), which are 

also important mechanisms for the horizontal transfer of virulence genes between bacteria, 

and facilitate transfer of MGE (HARRISON; BROCKHURST, 2012). Conjugation is the 

transfer of DNA, often mediated by conjugative plasmids, through direct cell-to-cell contact 

(HARRISON; BROCKHURST 2012). HGT can occur between taxonomically distinct 

bacterial lineages, and even between kingdoms (HEINEMANN; SPRAGUE, 1989), aside 

from being considered an important driver of bacterial speciation (OCHMAN, et al., 2000; 

WIEDENBECK; COHAN, 2011).  

 Plasmids are platforms of assemble and reassortment of gene arrays not involved in 

basic cell growth and multiplication; instead, they contain genes that may be useful 

periodically to enable the cell to exploit some particular environmental challenge (e.g. 

antibiotic resistance, heavy metal resistance, virulence determinants) (BENNETT, 2008). 

Plasmid genomes are modular in structure (NORMAN et al., 2009), and can be subdivided 

into a core “backbone” of genes encoding functions (replication, segregation and 

conjugation), and “accessory” genes encoding traits beneficial to the bacterial host. 

Replication is the defining function of a plasmid. The replication region generally consists of 

an origin of replication and proteins that recruit the host’s own DNA replication machinery 

(i.e. polymerase molecules, tRNAs and ribosomes) to carry out replication. Genes regulating 

plasmid replication are also common and ensure a stable number of plasmid copies in the 

host. Segregation systems act to minimize the loss of the plasmid during cell division. 

Conjugation genes allow the plasmid to transmit horizontally through cell-to-cell transfer, 

either through “mate pair formation” (e.g., pilus) or by moving and establishing one strand of 



28 

the plasmid DNA into the recipient cell (“mobilizable” plasmids) (NORMAN et al., 2009; 

HARRISON; BROCKHURST, 2012). 

 

1.5 ANTIMICROBIAL RESISTANCE AND ANTHROPOGENIC ACTIVITIES: WHY, 
HOW AND WHERE 
 

 Despite having ancient origins, the “resistome” - the genetic elements that encode the 

bioactive molecules synthesized by environmental bacteria to either cooperate with or 

antagonize other members of the community (GAZE et al., 2013), have been severely 

impacted by anthropogenic activities, which are considered one of the primary leading forces 

towards antimicrobial resistance (WRIGHT, 2007; WORLD HEALTH ORGANIZATION, 

2012). The use, misuse and overuse of antimicrobials in human and veterinary medicine, 

aquaculture and agriculture (CHENG et al., 2013; YANG et al., 2013; BENGTSSON; 

GREKO, 2014), in addition to waste disposal and spillover of antimicrobials and their 

metabolites (e.g., pharmaceutical manufacturing waste [GRAHAM et al., 2011; GUO et al., 

2018], and domestic and agricultural waste releases into the environment [WEST et al., 2011; 

CUMMINGS et al., 2011]), have altered bacterial ecosystem dynamics, leading to a 

significantly increased selective pressure (WRIGHT, 2007; WORLD HEALTH 

ORGANIZATION, 2014).  

 Worryingly, such scenario unravels in a time of stunted discovery and research on new 

antimicrobials. From the late 1960s through the early 1980s, the pharmaceutical industry 

introduced many new antibiotics to solve the resistance problem (SPELLBERG; GILBERT, 

2014), but this rate of discovery has fallen dramatically (O’Neill, 2016). Between 1968 and 

2000, no new antimicrobial classes were discovered (they originated from breakthroughs of 

previous decades) and although two were discovered in 2000 and 2003, it is important to 

highlight that these drugs targeted only Gram-positive bacteria; there is still no new class 

candidates for Gram-negative bacteria (EUROPEAN CENTRE FOR DISEASE 

PREVENTION AND CONTROL AND EUROPEAN MEDICAL AGENCY, 2009; SMITH; 

COAST 2012; O’NEILL, 2016). This scientific hurdle is exacerbated by the complex 

regulatory requirements involved and the decline in investment by the pharmaceutical 

industry and public funders, with the former opting to benefit from drugs more easily 

manufactured and with higher commercial return, such as chemotherapic drugs (VENTOLA, 

2015; O’NEILL, 2016). In spite of that, due to the worldwide increasing importance of 

infections caused by multidrug resistant Gram-negative bacteria, especially to carbapenems, 
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new antimicrobial combinations such as meropenem-varbobactam and ceftazidime-avibactan 

have recently broadened therapeutic options in nosocomial infections (HAYDEN et al., 

2020). 

 Nowadays, the AMR problem is also a One World issue (ROBINSON et al., 2016). 

The globalization of the food system, with increasing movement of livestock and agricultural 

produce, combined with increasing human travel, facilitates the rapid spread and mixing of 

emerging genes confering AMR (ROBINSON et al., 2016). Good examples are the 

emergence of a plasmid-mediated resistance gene to colistin (mcr-1), a last-resort antibiotic, 

identified in people and pigs in China that rapidly spread to other continents (LIU et al., 2016, 

MCGANN et al., 2016), and the spread of the New Delhi metallobeta-lactamase 1 (NDM-1), 

a transmissible genetic element encoding resistance genes against most known betalactam 

antibiotics, that emerged in New Delhi, India, in 2008 (MOELLERING, 2010). These are just 

two recent examples that clearly demonstrate that AMR is a global problem, thus requiring 

global solutions, that will not necessarily be the same in every country (ROBINSON et al., 

2016).  

 

1.6. ANTIMICROBIAL RESISTANCE ACROSS THE THREE ONE HEALTH PILLARS: 
AN INTRICATE CHAIN 
 

1.6.1 HEALTH, SOCIAL AND ECONOMICAL BURDENS TO SOCIETY  
 

 The emergence and transmission of resistance threatens to compromise and undermine 

many of the current medical advances (CARS et al., 2008). Treatment failure due to AMR 

increases the costs of care associated with: complementary exams (e.g., laboratory tests) and 

additional or alternative treatments, often much more expensive and with additional side-

effects, lengthier stays in hospitals, delayed antimicrobial treatment (until the correct drug is 

administered), prolonged illness, disability, and even death. Additionally, treatments for 

antimicrobial-resistant organisms may lead to longer time off work, reduced quality of life 

and productivity losses, increased family burden, increase in private insurance coverage and 

patient out-of-pocket expenses, among others (SMITH; COAST, 2012). AMR may also create 

burden through secondary effects on healthcare systems and/or society, when they 

compromise the ability to prevent or cure infections that may result from such treatments 

(e.g., surgery, radiotherapy and chemotherapy) (SMITH; COAST, 2012; NAYLOR et al., 

2018). 
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1.6.2 HEALTH, SOCIAL AND ECONOMICAL BURDENS TO VETERINARY 
MEDICINE  
 

 The antimicrobials used in veterinary medicine were introduced in the mid-1940s, 

right after they became available for treating human diseases (GUSTAFSON; BOWEN, 1997; 

MCEWEN, 2006). Although some of them are exclusively designed for veterinary use, the 

majority belongs to the same antimicrobial classes as those used in humans, largely 

comprising identical or very similar molecules (SWANN, 1969; HEUER et al., 2009).  

 The administration of antimicrobials to livestock is not limited to therapy; it also 

includes growth promotion, prophylaxis, and metaphylaxis (ANTHONY et al., 2001; 

ANDERSON et al., 2003; CASEWELL et al., 2003; CABELLO, 2006). In order to increase 

and accelerate the production process, antimicrobials are routinely added to animal feed to get 

them faster to slaughter weight using less feed, as well as to offset the infection risks of 

raising animals in modern, intensive systems often under inadequate conditions (crowding, 

stress, poor hygiene and nutrition) (WALLINGA et al., 2015). Stress lowers the immune 

system function of these animals; thus antimicrobials end up being especially useful in 

intensive confinements (HARDY, 2002). This widespread use of antimicrobials in animal 

production (livestock and aquaculture), especially at sub-therapeutic doses and during long 

exposure periods, contributes to the emergence of antimicrobial-resistant bacteria (ARB) and 

has significant public health implications. ARB of animal origin can be transmitted to humans 

by direct contact (SMITH et al., 2013), and through food products (GESER et al., 2012) and 

the environment (GRAHAM et al., 2009) (VAN BOECKEL et al., 2015; ROBINSON et al., 

2016). This situation also provides ideal conditions for the amplification of ARGs that may 

have arisen in humans or the environment (ROBINSON et al., 2016). 

 On the other hand, from a microbiological perspective, increased and improved 

biosecurity measures in livestock production, such as poultry, as well as decreased or zero use 

of antimicrobial drugs do not necessarily mean that resistance will be controlled. Instead, 

resistant pathogenic and commensal bacteria can persist and spread within and between 

premises due to complex and varied reasons, including: bacterial adaptations to improve 

fitness costs related to survival and replication of resistance genes and associated proteins, 

horizontal transmission of genetic resistance factors between bacteria, transfer of bacteria (by 

moving animals, workers, and equipment), ineffective cleaning and disinfection strategies, 

and co-selection of resistance to especific drugs upon use of other antimicrobials, heavy 

metals, or biocides (DAVIES; WALES, 2019).  
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 Furthermore, in the last decades, companion animals have increased in numbers and 

acquired a new social role in modern society, leading to an increased attention to their welfare 

and closer contact between humans and their pets. Such changes have contributed to the 

transmission and sharing of ARGs and ARB, including MDR, between humans and 

companion animals, constituting another potential risk to public health (WEESE; 

DUIJKEREN 2010; WIELER et al., 2011; EWERS et al., 2014; POMBA et al., 2017).  

 

1.6.3 THE ROLE OF THE ENVIRONMENT: A STILL POORLY UNDERSTOOD 
PLAYER WITH (LIKELY) LIMITLESS POTENTIAL 
 

 The environment constitutes a vast and still poorly understood reservoir of antibiotic 

resistance genes (ALLEN et al., 2010; MONIER et al., 2011).  Environmental bacteria are 

quantitatively the most prevalent organisms, thus serving as sources for AMR genes that can 

become incorporated, over time, into pathogens of people and animals (ROBINSON et al., 

2016). For instance, the gene encoding for CTX-M enzyme, a rapidly growing family of 

extended-spectrum beta-lactamase (ESBLs) with significant clinical impact, are currently 

considered the most prevalent beta-lactamases found in Escherichia coli isolates worldwide 

and often located in clinical pathogens, is very similar with chromosomally encoded beta-

lactamases from the typically environmental bacteria Kluyvera spp. (BONNET, 2004; 

CANTÓN; COQUE, 2006; D’ANDREA et al., 2013; HUMENIUK et al., 2002; POIREL et 

al., 2002; RODRÍGUEZ et al., 2004; ZHAO et al., 2013; ZHANG et al., 2014). Additionally, 

genes encoding quinolone resistance may be present in environmental bacteria. The origin of 

the qnrA gene, able to confer low level quinolone resistance, was identified in the 

chromosome of Shewanella algae, a Gram-negative species widely distributed in marine and 

freshwater environments (POIREL et al., 2005). Furthermore, studies suggest that qnrS likely 

has origins in chromosomal genes from Vibrio splendidus (CATTOIR et al. 2007), while the 

chromosome of Citrobacter is the potential source of plasmid-mediated qnrB (POIREL et al., 

2005; JACOBY et al. 2011).  

 Not only most antibiotics are produced by environmental microorganisms 

(NEWMAN; CRAGG, 2016), they may also be enriched by human-related activities and 

persist in soil and aquatic environments (ALLEN et al. 2010; ZHANG et al., 2015). 

Consequently, the environment turns into a reactor where bacteria from different origins, 

antimicrobials, disinfectants, and heavy metals are mixed, contributing to the evolution and 

dissemination of AMR (BAQUERO et al., 2008). Additionally, physical forces (e.g., wind 
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and watershed) are important drivers of the spread of ARGs (ALLEN et al., 2010; 

KELLOGG; GRIFFIN, 2006). Soil and water microbiome play complex and critical roles in 

ecosystem functions such as the recycling of carbon and nutrients. Disrupting these vital 

processes by creating an imbalance may threaten planetary health (WHITMEE et al., 2015), 

potentially pushing ecosystems beyond critical environmental thresholds (SCHEFFER et al., 

2009). Thus, understanding the ecology of ARGs and natural microbial communities in 

various environmental compartments, the pressures and circumstances that lead to their 

evolution and dissemination, including their reservoirs, mechanisms, diversity, prevalence, 

ecological significance, and transfer from unmanaged ecosystems to the human milieu is of 

utter relevance in the advancement of therapies against antimicrobial-resistant pathogens 

(AMINOV; MACKIE, 2007; ALLEN et al., 2009; ALLEN et al., 2010; MONIER et al., 

2011).  

 

1.6.3.1 THE AQUATIC ENVIRONMENT 
 

 Water environments are an important factor in the dispersal and evolution of AMR by 

acting as a media where bacteria from the human-animal-environment interface and their 

genes, genetic platforms, and genetic vectors interact, many a times, under the influence of 

antimicrobials, disinfectants, and heavy metals released therein (BAQUERO et al., 2008).  

 Antimicrobial resistance contaminants can be directly released by human (e.g., treated 

and untreated sewage, hospital, clinical, industrial waste, fecal contamination of surface 

waters) and veterinary sources (e.g., aquaculture and animal farm, discharges, and agricultural 

runoff) to the primary reception system (e.g., via wastewater treatment plants [WWTPs]) 

(SZCZEPANOWSKI et al., 2004; SCHLÜTER et al., 2007; MARTI et al., 2014; SINGH et 

al., 2019). Wastewater Treatment Plants (WWTPs) effluents are the main route through which 

antibiotics are released into the environments, therefore, promoting ARGs dissemination in 

this media (MARTI et al., 2014; GAO et al., 2018). Common technologies applied in 

WWTPs such as biological treatment provide an ideal environment for horizontal gene 

transfer due to the high bacterial densities, and high oxygen and nutrient concentrations they 

promote, allowing bacteria to be in continuous direct contact with antibiotics and resistant 

bacteria (RIZZO et al., 2013; MARTI et al., 2014). Over 90 different ARGs have been 

detected in WWTP influents, including 12 types of widely used antibiotics (GAO et al., 

2018). Among them, sul and tet genes have been reported to be more abundant than other 

ARGs in studies focusing on different types of WWTPs (XU et al., 2015; CHEN; ZHANG, 
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2013a; GAO et al., 2018).  

 Furthermore, antibiotic resistance contaminants can leach to groundwater or be carried 

by runoff and erosion to the secondary reception system (groundwater and surface water) 

(TENNSTEDT et al., 2005; CHEN et al., 2007; AUERBACH et al., 2007), and finally 

converge to the tertiary reception system (estuaries and nearby coastal and ocean systems) 

under the influence of hydrological dynamics. The effects of anthropogenic activities 

gradually weaken, whereas the effect of environmental changes (pollutants and the physical 

and chemical factors) increases from river to ocean systems. Moreover, a mixture of other 

pollutants (e.g., disinfectants and heavy metals), their metabolites, resistant bacteria, and 

physical and chemical factors (e.g., pH, salinity) contribute to the evolution and dissemination 

of antibiotic resistance in the aquatic environment (BAQUERO et al., 2008; 

LAXMINARAYAN; CHAUDHURY, 2016; GAO et al., 2018). Consequently, aquatic 

compartments such as water and sediment may have a significant role in driving ARG 

transfer, ecology, and evolution (TAYLOR et al., 2011). 

 

1.7 WILDLIFE: THE INTERSECTION OF THE ONE HEALTH PILLARS 
 

 Wildlife exists across multiple trophic levels, therefore capable of accumulating and 

dispersing resistance determinants within ecosystems (HASSELL et al., 2009). Although not 

naturally exposed to antimicrobial therapy in the wild (CARROLL et al., 2015), the 

increasing pressure from expanding human populations and reduced availability of natural 

habitats due to changes in land-use, force wildlife species to seek alternative sources of food 

and shelter (HASSELL et al., 2009; ARNOLD et al., 2016). Consequently, wildlife gets 

closer to humans, agricultural facilities (e.g., manure and slurry), and associated contaminated 

environments (e.g., refuse dumps, landfills, abattoir viscera ponds, sewage treatment plants) 

(CARROLL et al., 2015), ultimately increasing the potential for antimicrobial resistance 

transfer between these compartments (DOLEJSKA et al., 2007; ALLEN et al., 2010; 

HASSELL et al., 2009; 2017; AHLSTROM et al., 2018). This process of landscape 

transformation by human impact – know as “anthropization” (SAMOILENKO et al., 2018), 

has been suggested as a driving factor in the epidemiology of ARGs and ARB in wildlife 

(ATTERBY et al., 2017; AHLSTROM et al. 2018; NIETO-CLAUDIN et al., 2019; 

SACRISTÁN et al., 2020).  
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 Additionally, once directed to rehabilitation centers, the presence of ARGs and ARB 

in their microbiome may interfere, and sometimes, even hamper successful therapy. As seen 

in nosocomial settings, rehabilitation centers may be highly contaminated by antimicrobials 

and their metabolites, as well as by ARGs and ARB, and exert intense selective pressure over 

the local resistome (BLYTON et al. 2015; HAENNI et al. 2020). Thus, rehabilitation centers 

are a very important and informative setting for the study of resistance within the One Health 

interface by being potential hot spots for the acquisition, interaction, and development of 

resistance, facilitating their exchange among wildlife, humans (e.g., staff) and the 

environment, both while in-care and upon release (HAENNI et al. 2020). Further studies are 

necessary to clarify if and how ARGs and ARB can be transmitted from wildlife to humans or 

domestic animals, which is the main concern of clinicians and policymakers (ARNOLD et al., 

2016). 

 

1.7.1 SEABIRDS: SENTINELS OF THE MARINE ECOSYSTEM 
 

 Seabirds present unique physiological and morphological adaptations that allow them 

to feel equally at home on land, in the air, and in the water, and be able to rapidly switch from 

one to the other. The definition of seabird may vary, but the bird groups traditionally 

considered as seabirds are: Sphenisciformes (penguins), Procellariiformes (albatrosses and 

petrels), Pelecaniformes (cormorants, boobies and pelicans), and Charadriiformes (gulls, 

terns, skuas, skimmers, and auks). While all species among the Sphenisciformes and 

Procellariiforme are seabirds, among the Pelecaniformes, various species of cormorant, 

anhinga, and pelican can be strict seabirds, or freshwater birds, or are able to thrive in both 

environments. Charadriiformes comprises five groups considered to be primarily seabirds; 

while auks and skuas are strict seabirds, different species of gulls, terns, and skimmers are 

associated with the sea, freshwater, or estuaries (BROOKE, 2000). 

 Seabirds are long-lived, wide-ranging, and upper trophic level marine predators 

present in all marine ecosystems and oceans of the world, from coastline to pelagic and open 

seas (ORO; MARTÍNEZ-ABRAÍN, 2009). This avian group faces many threats, including 

entanglement in fishing gear, overfishing of food sources, climate change, pollution, hunting, 

trapping, disturbance, direct exploitation, development, energy production, and introduced 

species (predators [i.e., rats and cats] introduced to breeding islands that were historically free 

of land-based predators) (CROXALL et al., 2012; CRAWFORD et al., 2017; DIAS et al., 

2019).  
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 By acting as predators, scavengers and cross-ecosystem nutrient ancillaries, seabirds 

play important roles in the processes, function and resilience of island and marine ecosystems 

(PALECZNY et al., 2015). Essentially, seabirds respond rapidly to environmental changes, 

and due to their behavior and population dynamics, are excellent sentinels of the marine 

ecosystem health, capable of reflecting natural and anthropogenic changes to the environment 

(RABINOWITZ et al., 2010), including ARGs and ARB (GUENTHER et al., 2012; 

HERNANDEZ et al., 2013; BONNEDAHL et al., 2015; STEDT et al., 2015; ATTERBY et 

al., 2016; ATTERBY et al., 2017; AHLSTROM et al., 2018). Several studies have used 

microbiologic culture-dependent methods to evaluate the prevalence of ARGs in free-ranging 

seabirds in Europe (gulls [DOLEJSKA et al., 2007; POETA et al., 2008; LITERAK et al., 

2010; RADHOUANI et al., 2009, 2011; ANTILLES et al., 2015; MERKEVICIENE et al., 

2017]), the Americas (gulls [MARTINY et al., 2011; BÁEZ et al., 2014; BONNEDAHL et 

al., 2014; 2015; HASAN et al., 2014; ANTILLES et al., 2015; CARROLL et al., 2015; 

ATTERBY et al., 2016; LIAKOPOULOS et al., 2016; RUZAUSKAS; VASKEVICIUTE et 

al., 2016; TORO et al., 2016] and penguins [PRICHULA et al., 2016]), Asia (gulls [HASAN 

et al., 2014), Eurasia (gulls [HERNANDEZ et al., 2010]), Oceania (gulls [MUKERJI et al., 

2019]), and Antarctica (penguins [RAHMAN et al., 2015]). 

 

1.7.2 ARGS AND ARB AS INDICATORS OF ANTHROPOGENIC ACTIVITY 
 

 ARGs are environmental pollutants that not only behave like typical chemical 

pollutants (e.g., leaching to groundwater or being carried by runoff or erosion), but that can 

also be vertically transmitted via proliferation dynamics or passed among bacteria via 

horizontal transfer (PRUDEN et al., 2006; GAO et al., 2018). Moreover, ARGs are 

considered “easy to get, hard to lose” pollutants that may be detected in antibiotic-free 

environments and even in the absence of selective pressure (MARTI et al., 2014). Similarly, 

ARB have been used as markers of anthropization (GUENTHER et al., 2012; HERNANDEZ 

et al., 2013; BONNEDAHL et al., 2015; STEDT et al., 2015; AHLSTROM et al., 2018), 

including in remote locations (SJÖLUND et al., 2008; HERNANDEZ et al., 2010; 

ARDILES-VILLEGAS et al., 2011; ATTERBY et al., 2016; HERNANDÉZ; GONZÁLEZ-

ACUÑA 2016; GUENTHER et al., 2017).  

 In this study, we will focus in one particular interesting and broadly studied 

representative: Escherichia coli. Member of the Enterobacterales family, E. coli are Gram-

negative, non-sporulating facultative anaerobe that inhabits the intestines and faeces of warm-
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blooded animals and reptiles (BERG 1996; GORDON; COWLING 2003). E. coli can be 

easily disseminated into different ecosystems through water, soil, food, and other media 

(SKURNIK et al., 2006; RADHOUANI et al., 2009); therefore, its presence is largely used as 

an indicator of environmental contamination  and anthropogenic activity (BONNEDAHL et 

al., 2009; TENAILLON et al., 2010; PESAPANE et al., 2013).  

 Extended Spectrum Beta-Lactamase (ESBL) or plasmid-mediated AmpC beta-

lactamase producing E. coli are resistant to a very important antimicrobial class: betalactams 

(i.e., penicillins, cephalosporins, carbapenems and monobactams). Betalactams are the most 

commonly used class of antimicrobials, especially in the therapy of common infections (e.g., 

pneumonia and urinary tract infections), but also in severe and life threatening infections 

(e.g., bacteremia and sepsis), and pre-surgical prophylactic treatment (BROLUND et al., 

2014; BROLUND; SANDEGREN, 2016).  ESBL enzymes are capable of hydrolyzing third 

and forth generation cephalosporins, as well as monobactams, and are inhibited by clavulanic 

acid and tazobactam. Genes encoding ESBLs belong most commonly to the TEM, SHV and 

CTX-M families, especially to the latter, which is rapidly emerging worldwide (EWERS et 

al., 2012). AmpC beta-lactamases, on the hand, hydrolyze third (but not fourth) generation 

cephalosporins and cephamycins, and are not inhibited by clavulanic acid. The most relevant 

families of genes encoding AmpC beta-lactamases are CMY, ACC, DHA and FOX - the most 

prevalent being CMY (especially represented by the blaCMY-2 gene)

 

(JACOBY, 2009). ESBL- 

and AmpC-producing E. coli are a rapidly emerging public health issue (WORLD HEALTH 

ORGANIZATION, 2014), described in several epidemiological settings within the human-

animal-environmental interface (MESA et al., 2006; EWERS et al., 2012; EGERVÄRN et al., 

2017; MUGHINI-GRAS et al., 2019; DE CARVALHO et al., 2020). Genes for beta-

lactamase enzymes can be encoded within an organism’s chromosome or transmitted on 

plasmids (LISTER, 2000; JACOBY; MUNOZ-PRICE 2005). In the later case, these genes 

often encode for diverse resistance mechanisms, allowing them to express resistance to 

multiple and unrelated antimicrobials (MEDEIROS, 1997). 

 

1.8 HOW TO APPROACH AND UNDERSTAND AMR IN BRAZIL 
 

 Antimicrobial usage is an important driver for increasing AMR levels; however, the 

spread of resistant bacteria and/or the genes encoding resistance are probably much more 

relevant in AMR dissemination and prevalence (COLLIGNON et al., 2018). Thus, in order to 

understand a country’s scenario and eventually elaborate mitigation measures, one must take 
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both factors into consideration. Comprehensive and detailed guidelines setting solid concepts 

and goals to tackle AMR are currently available (O’NEILL, 2016; WORLD HEALTH 

ORGANIZATION, 2015; 2017); however, each country has its particular characteristics – 

from cultural values to political engagement and enforcement. This myriad of characteristics 

ultimately makes up for the biggest challenge when it comes to acting on the issue of AMR: 

what works for a particular country may not work for another one. Therefore, it is crucial to 

consider a country’s social, economic and political characteristics. Considering this line of 

thought, what is the Brazilian scenario? 

 Brazil is a country of continental proportions and estimated population of over 212 

million people, the sixth largest in the world (INSTITUTO BRASILEIRO DE GEOGRAFIA 

E ESTATÍSTICA, 2021). It is largely known for its social inequality, which resulted from 

historical factors regarding its economic, political, and sociological development (GRIESSE, 

2007). According to the World Bank parameters, despite being classified as an upper middle-

income country, Brazil has 25.3% (53.38 million people) of its population living below the 

poverty line and 6.5% (13.7 million people) below the extreme poverty line (INSTITUTO 

BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA, 2019). The country’s Human 

Development Index (HDI) - potential human development in a national average of 

achievements in three basic dimensions: health, education and income – is 0.765, the 84th rank 

among the 189 evaluated countries. Conversely, its Inequality-Adjusted Human Development 

Index (IHDI) - interpreted as the level of human development when inequality is accounted 

for, is 0.570, a significant overall loss of 25.5% (UNITED NATIONS HUMAN 

DEVELOPMENT REPORT, 2020). Additionally, to further analize the issue of national 

inequality, one may also consider the Gini index (that ranges from 0 [perfect equality] to 1 

[maximum inequality, situation in which one single individual receives all the income of an 

economy]), one of the best known inequality indicators, broadly used for comparisons 

between countries and their ranking. According to the World Bank, Brazil remains one of the 

most unequal countries in the world regarding citizen income; in 2019, the Gini index related 

to house income per capita was 0,543 (ranking in 156th place), an increase in comparison with 

2012 (0,540), when it first started being measured, and 2015 (0,524), the lowest value in the 

series (World Bank, 2020; World Development Indicators: Distribution of income or 

consumption, in: http://wdi.worldbank.org/table/1.3; INSTITUTO BRASILEIRO DE 

GEOGRAFIA E ESTATÍSTICA, 2020). 

 Poverty and public spending on healthcare are able to affect health outcomes; 

therefore, they should be considered when discussing AMR and elaborating efficient 
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mitigating measures (COLLIGNON et al., 2018). First, it is crucial to understand the 

dynamics between poverty (“the pronounced deprivation of well-being”) and public health. 

Poverty can refer to income (i.e., low individual or household income) and non-income 

parameters (e.g., limited education, unemployment or precarious employment, inadequate 

housing conditions). It is strongly linked with access to basic sanitation (clean water supply, 

sewage collection, and garbage removal systems). In 2019, 90,6% of the general brazilian 

population lived in housing with direct or indirect garbage removal services, 84,7% with 

clean water supply, and 65,8% with sewage collection and removal by a collection or pluvial 

system) (INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA, 2020). Moreover, 

poverty greatly increases the risk of contracting infectious diseases. Poor waste and sanitation, 

poor water quality, housing overcrowding and inadequate nutrition are all linked to 

inadequate practices to prevent infection and risk of not recovering from infectious diseases, 

which may be further aggravated by the lack of access to healthcare (ALIVIDZA et al., 2018; 

COLLIGNON et al., 2018).  

 The Brazilian public healthcare system (Sistema Único de Saúde – SUS / Universal 

Health System), was established in the 1988 Brazilian Federal Constitution, based on the 

principles of universalization, equity and integralization, with the goal of providing free 

healthcare access to all Brazilian citizens (CONSTITUIÇÃO DA REPÚBLICA 

FEDERATIVA DO BRASIL, 1988). The SUS incorporates a network of teaching and 

research institutions (e.g., universities, public health institutes), which interact with state and 

municipal secretariats, the Ministry of Health, agencies and foundations, creating a healthcare 

training network. Hence SUS’s legacy regarding advances in the health surveillance system, 

sanitary control, pharmaceutical assistance, transplants, SAMU, smoking control, and 

HIV/AIDS (PAIM, 2018). 

 In spite of the 150 million Brazilian citizens that depend on SUS for healthcare and 

the Brazilian Constitution proclaim that health is a right of all and the duty of the state, the 

Brazilian executive, legislative and judicial sectors have not ensured the basic conditions for 

the economic and scientific-technological sustainability of SUS (INSTITUTO BRASILEIRO 

DE GEOGRAFIA E ESTATÍSTICA, 2020; PAIM, 2018). Unfortunately, as a result, SUS has 

been largely neglected, suffering from structurally deteriorated medical centers and lack of 

resources (e.g., understaffed, with limited and outdated materials and equipment) (PAIM, 

2018). Additionally, self-medication and over-the-counter acquisition is a serious issue in 

Brazil, with deep cultural roots, aggravated by misinformation and limited to no access to 

public healthcare, associated with inadequate antimicrobial selection and dosing, and with 
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shorter treatment courses. Additionally, non-prescription use has been speculated to play an 

important role - potentially as important as over-use, in selecting and maintaining high levels 

of community antimicrobial resistance (MORGAN et al., 2011; ROSSI 2011; SANTA-ANA-

TELLEZ et al., 2013). 

 In terms of economy, Brazil relies heavily on agriculture and livestock activities; 

corresponding to 18.5% and 8.1%, respectively, of the 2020 total GDP (gross domestic 

product) of 26.6% (CENTRO DE ESTUDOS AVANÇADOS EM ECONOMIA APLICADA/ 

ESCOLA SUPERIOR DE AGRICULTURA "LUIZ DE QUEIROZ”/ UNIVERSIDADE DE 

SÃO PAULO - CEPEA/ESALQ/USP; In: https://www.cepea.esalq.usp.br/br/pib-do-

agronegocio-brasileiro.aspx). Both activities are known to employ wide amounts of 

antimicrobials to increase productivity (CAPITA; ALONSO-CALLEJA, 2013). According to 

the only official data source available in Brazil - the National Union of Animal Health 

Products Industries (Sindicato Nacional da Indústria de Produtos para Saúde Animal - 

SINDAN), antimicrobials were the third most sold drugs in 2017, accounting for 15.2% 

(approximately BRL 0.8 billion) of the profits that the industry of animal health products 

(both animal production and small animals) earned that year (BRL 5.3 billion). Moreover, the 

recent globally rising demand for animal protein for human consumption, has forced countries 

such as Brazil to adopt livestock production systems that rely heavily on antimicrobial 

consumption (VAN BOECKEL et al., 2015). In the same study, Brazil was estimated to 

consume approximatelly 9% (around 5,683 tonnes) of the total global consumption of 

antimicrobials in food animal production (estimated at 63,151; ±1,560) in 2010. In spite of its 

relevance to the AMR issue, Brazil lacks public transparency regarding the annual volume of 

antimicrobials used in livestock and agriculture, as well as its use purpose (therapeutic, 

prophylactic or zootechnical feed additives to enhance animal development) (CARDOSO et 

al., 2019). 

 In an attempt to address the issue of AMR, the Brazilian Ministry of Health, the 

Ministry of Agriculture and the Health Regulatory Agency (Agência Nacional de Vigilância 

Sanitária - ANVISA), among other governmental institutions, have issued regulations in the 

effort of further understanding, monitoring and controlling AMR in Brazil. Among them, 

there are two that must be mentioned: Resolution Nr. 20 and the National Action Plan for 

Prevention and Control of Antimicrobial Resistance (PAN-BR). Resolution Nr. 20, issued by 

ANVISA in 2011, listed 119 types of antimicrobials that must only be sold upon a duplicated 

prescription by a physician - in an attempt to control inappropriate over-the-counter purchase 

in the country (ANVISA, 2011). PAN-BR is a five-year plan (2018-2022) with a One Health 
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approach, elaborated in accordance with World Health Organization, the Food and 

Agriculture Organization of the United Nations (FAO) and World Organization for Animal 

Health (OIE) guidelines, with the goals of: (1) promoting public awareness and expanding 

related scientific data; (2) decreasing the incidence of infectious diseases (e.g., sanitation and 

access to potable water); (3) promoting conscious antimicrobial use in human and animal 

medicine; and (4) promoting sustainable use of antimicrobials and the research/development 

of new drugs and diagnostic methods (MINISTÉRIO DA SAÚDE, 2018).  

 
1.9 GENERAL OBJECTIVE 
 

 The general objective of the present work was to investigate the presence and diversity 

of ARGs and ARB, respectively, in the microbiome and microbiota of wild seabirds from the 

Brazilian coast, in order to assess the impacts of anthropization on the marine environment 

and the complex epidemiological chain of antimicrobial resistance through a One Health 

approach.  

 

1.10 SPECIFIC OBJECTIVES 
 

 • To investigate the microbiome of wild seabird species through highly sensitive real 

time polymerase chain reaction (rtPCR) methods in order to detect and quantify selected 

plasmid-mediated ARGs encoding resistance to eight different antimicrobial classes 

(tetracyclines [tet(A), tet(B), tet(Y), tet(K), tet(M), tet(Q), tet(S), tet(W)], aminoglycosides 

[aadA and str], sulfonamides [sulI and sulII], phenicols [catI and catII], macrolides [erm(B) 

and erm(F)], quinolones [qnrB and qnrS], betalactams [blaTEM, blaCTX-M and mecA], and 

polymyxins [mcr-1]) in different scenarios: (1) upon admission into a rehabilitation center 

(Associação R3 Animal, Santa Catarina state, southern Brazil), and (2) to compare an 

anthropized environment (Fernando de Noronha Archipelago, Pernambuco) and a pristine 

biotope (Rocas Atoll, Rio Grande do Norte state), in northern Brazil. 

 

 • To use microbiological techniques and whole genome sequencing (WGS) to identify 

and characterize ESBL-producing E. coli bacterial lineages, serotypes, resistome, plasmidome 

and virulome present in the microbiota of wild seabird species in uninhabited islands in 

northern (Rocas Atoll, Rio Grande do Norte state) and southeastern Brazil (Alcatrazes 

Archipelago, São Paulo state). 
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ABSTRACT 

 Antimicrobial resistance genes (ARGs) are environmental pollutants and 

anthropization indicators. We evaluated human interference in the marine ecosystem through 

the ocurrence and quantification (real-time PCRs) of 21 plasmid-mediated ARGs in enema 

samples of 25 wild seabirds, upon admission into rehabilitation: kelp gull (Larus 

dominicanus, n = 14) and Magellanic penguin (Spheniscus magellanicus, n = 11). Overall, 

higher resistance values were observed in kelp gulls (nonmigratory coastal synanthropic) in 

comparison with Magellanic penguins (migratory pelagic non-synanthropic). There were 

significant differences between species (respectively, kelp gull and Magellanic penguin): 

ARGs occurrence (blaTEM [p = .032]; tetM [p = .015]; tetA [p = .003]; and sulII [p = .007]), 

mean number of ARGs per sample (p = .031), ARGs mean load percentage (aadA [p = .045], 

tetA [p = .031], tetM [p = .016], blaTEM [p = .032], sulII [p = .008]), percentage of genes 

conferring resistance to an antimicrobial class (betalactams [p = .036] and sulfonamides [p = 

.033]), mean number of genes conferring resistance to one or more antimicrobial classes (p = 

.024]), percentage of multiresistant microbiomes (p = .032), and clustering (p = .006). These 

differences are likely due to these species’ contrasting biology and ecology - key factors in 

the epidemiology of ARGs in seabirds. Additionally, this is the first report of mecA in 

seabirds in the Americas. Further studies are necessary to clarify the occurrence and diversity 

of ARGs in seabirds, and their role as potential sources of infection and dispersal within the 

One Health chain of ARGs.  

 

Keywords: anthropization; marine pollution; antibiotic resistance; wildlife; gull; penguin; 

One Health. 
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2.1 INTRODUCTION  
 

  Antimicrobial resistance is an issue of serious public health concern with global 

economic, social and political implications affecting human and animal populations, as well 

as the environment (DA COSTA et al., 2013; JOBBINS; ALEXANDER, 2015; SMITH et al., 

2014). This worldwide phenomenon is compromising our ability to treat infectious diseases, 

and undermining or preventing advances in health and medicine (WORLD HEALTH 

ORGANIZATION WEBSITE, 2019). Microbial resistance is the result of natural bacteria 

genetic plasticity and interactions between microbial agents, host organisms and the 

environment (DA COSTA et al., 2013; HIDASI et al., 2013), enhanced by the selective 

pressure exerted by antimicrobial usage and over-prescription in human and veterinary 

medicine treatments, animal and fish production (i.e., zootechnical feed additives to enhance 

animal development, and prophylaxis), agriculture and food technologies (DA COSTA et al., 

2013; HIDASI et al., 2013; ROCA et al., 2015). The consequent remodeling of the existing 

microbiomes (group of all the genomic elements of a specific microbiota), associated with 

their dissemination capacity, confer antimicrobial resistance genes (ARGs) the role of 

environmental pollutants (BLASER; FALKOW, 2009; D’ARGENIO; SALVATORE, 2015) 

and indicators of environmental anthropization (JOBBINS; ALEXANDER, 2015; 

RADHOUANI et al., 2011; SACRISTÁN et al., 2020). 

 Seabirds are long-lived, wide-ranging, and upper trophic level marine predators 

present in all marine ecosystems and oceans of the world, from coastline to pelagic and open 

seas (ORO; MARTÍNEZ-ABRAÍN, 2004). By acting as predators, scavengers and cross-

ecosystem nutrient ancillaries, seabirds play important roles in the processes, function and 

resilience of island and marine ecosystems (PALECZNY et al., 2015). Essentially, seabirds 

respond rapidly to environmental changes, and due to their behavior and population 

dynamics, are excellent sentinels of the marine ecosystem health, reflecting natural and 

anthropogenic changes to the environment (RABINOWITZ et al., 2010), including pollution 

by ARGs (ATTERBY et al., 2016; 2017; EWBANK et al., 2020). In seabirds, most ARGs 

studies have focused on synanthropic species, due to their proximity to anthropized areas and 

feeding habits, and relied on classic microbiological techniques (bacterial culture and 

sensitivity testing) (RADHOUANI et al., 2011; AHLSTROM et al., 2018; MUKERJI et al., 

2019). Nevertheless, recent studies have shown that biological and ecological factors (e.g., 

migration and feeding niche) are also relevant to the issue of ARGs in wild birds 

(DOLEJSKA et al., 2019; MARCELINO et al., 2019; EWBANK et al., 2020). Additionally, 
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most bacteria are not cultivable (HAMADY; KNIGHT, 2009; MONIER et al., 2011), and 

culture methods do not favor mobile genetic elements (e.g., plasmids), which encode most 

ARGs (NIETO-CLAUDIN et al., 2019; CAO et al., 2020). Thus, in order to promote a more 

comprehensive approach, we employed highly sensitive real time polymerase chain reaction 

(rtPCR) methods (SACRISTÁN et al., 2020; CEVIDANES et al., 2020) to detect and 

quantify 21 selected plasmid-mediated ARGs in the gastrointestinal microbiome of two wild 

seabirds species (kelp gulls [Larus dominicanus] and Magellanic penguins [Spheniscus 

magellanicus]) upon admission to a rehabilitation center. The goals of this study were to (i) 

assess the presence and load of ARGs in these individuals and (ii) evaluate our findings in 

light of selected biological and ecological parameters (i.e., dispersal [migratory and non-

migratory], feeding niche [coastal and pelagic], and interaction with human-impacted areas 

[synanthropic and non-synanthropic]). We hypothesized that due to their non-migratory 

coastal synanthropic behavior (BIRDLIFE INTERNATIONAL, 2020), kelp gull would 

present higher occurrence and load of ARGs than the migratory pelagic non-synanthropic 

Magellanic penguin (RUOPPOLO et al., 2012; BOERSMA et al., 2013).  

 

2.2 MATERIALS AND METHODS 
 

2.2.1 Sample collection 
 

 Fresh fecal samples were immediately obtained by enema (EWBANK et al., 2020) in 

25 physically restrained birds (14 kelp gulls and 11 Magellanic penguins) upon admission at 

the wildlife rehabilitation center (Associação R3 Animal, Florianópolis, Santa Catarina state, 

southern Brazil). All birds included in the study came directly from their rescue sites (beach), 

and did not receive previous veterinary care prior to their arrival at the center. Total DNA 

extraction was carried out by a pressure filtration technique (QuickGene DNA tissue kit S, 

Fujifilm, Tokyo, Japan), according with the manufacturer’s instructions. The 16S rRNA gene 

was amplified by real time PCR (rtPCR) in ten-fold dilutions of each extracted sample (PEAK 

et al., 2007; JIANG et al., 2013, Supplementary materials) to verify adequate concentration of 

bacterial DNA. A sample was considered validated when its ten-fold dilution showed a cycle 

threshold (Ct) less than 25 (ESPERÓN et al., 2018). To normalize the study, ct was obtained 

based on the fluorescence variation value ((∆F/∆C) = 0.02) (NIETO-CLAUDIN et al., 2019). 

Once validated, samples were analyzed by rtPCR for 21 selected ARGs encoding resistance to 
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eight antimicrobial classes: tetracyclines (tet(A), tet(B), tet(Y), tet(K), tet(M), tet(Q), tet(S) 

and tet(W) [JIANG et al., 2013], aminoglycosides (aadA [DEVARAJAN et al., 2016] and str 

[WANG et al., 2014]), sulfonamides (sulI, sulII), chloramphenicols (catI and catII [Jiang et 

al., 2013]), macrolides (erm(B), erm(F) [Chen et al., 2007]), quinolones (qnrB [CUMMINGS 

et al., 2011] and qnrS [MARTI; BALCÁZAR, 2013]); betalactams (blaTEM [DEVARAJAN et 

al., 2016] and mecA [TSURU et al., 2015]), and polymyxins (mcr-1 [NIETO-CLAUDIN et 

al., 2019]) (Supplementary materials). The estimation of the percentage of bacteria harboring 

ARGs (mean load percentage of each ARG), was based on the formula % gene X = 10[2 + 0.33 

(ct16S – ct gene X)], with ct as the cycle threshold (16S rRNA regarding bacterial determination and 

X for each evaluated gene), and 0.33 as the mean slope for all the evaluated genes. Results 

were expressed in log10 scale of the hypothetical percentage of bacteria presenting each gene, 

ranging from -8 (sample considered negative) to +2 (when 100% of the bacteria in the sample 

presented the ARG) (NIETO-CLAUDIN et al., 2019). The same thermal cycle was used for 

all rtPCR reactions (6’ 95°C, 40x (10” 95°C, 30” 60°C)), with alignment and extension in the 

same step, at constant 60ºC. A melting curve step was performed at the end of the rtPCR 

reaction (NIETO-CLAUDIN et al., 2019). As per SACRISTÁN et al., 2014, we applied the 

term “multiresistant microbiome” when a fecal sample presented at least three ARGs 

encoding resistance to different classes of antimicrobials (ESPERÓN et al., 2018; NIETO-

CLAUDIN et al., 2019; SACRISTÁN et al., 2020). All samples used in this study were 

collected as part of the Santos Basin Beach Monitoring Project (Projeto de monitoramento de 

Praias da Bacia de Santos - PMP-BS), licensed by the Brazilian Institute of the Environment 

and Renewable Natural Resources (IBAMA) of the Brazilian Ministry of Environment (ABIO 

Nº 640/2015), and in full compliance with the Biodiversity Information and Authorization 

System (SISBIO 59150-4). All procedures were performed according to the Ethical 

Committee in Animal Research of the School of Veterinary Medicine and Animal Sciences, 

University of São Paulo (process number 1753110716).  

 

2.2.2 Statistical analysis 
 

 The k-means clustering method was used to investigate the resistance patterns 

(GENESIS software v. 1.7.7, Graz University of Technology, Graz, Austria), by assigning 

each sample to one cluster. Two clusters were selected, corresponding to low (value = 0) and 

high (value = 1) levels of ARGs. The Mann-Whitney U non-parametric test was used to 

establish the differences between species regarding: ARGs occurrence, mean number of 
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ARGs per sample, mean load percentage of each ARG, the mean number of genes conferring 

resistance to one or more antimicrobial classes in each sample, percentage of multiresistant 

microbiomes, resistance patterns, and k-means clustering. All statistical analyses were 

performed in R software (R Development Core Team 3.0.1., 2013), with a significance level 

of p < 0.05.  

 

2.3 RESULTS 
 

 All the tested samples validated for the 16S rRNA gene. All animals, with the 

exception of one individual (96 %, 24/25), were positive to at least one ARG (Table 1). ARGs 

results and clusters (Figure 1), according with the species, are described below.  

 

2.3.1 Kelp gull  
 

 The blaTEM gene presented the highest occurrence (79%, 11/14), followed by qnrB 

(64%, 9/14), tet(Q) (57%, 8/14), sulII (50%, 7/14), tet(B), tet(M) and aadA (43%, 6/14), 

tet(A), erm(B) and erm(F) (36%, 5/14), tet(W) and qnrS (29%, 4/29), str (21%, 3/21), tet(S), 

sulI, catI, catII and mecA (14%, 2/14), and tet(K) (7%, 1/14). The tet(Y) and mcr-1 genes 

were not detected in this group. The mean number of ARGs per sample was 6.4 (with min=1 

and max=15). The blaTEM gene presented the highest mean load percentage (-2.2) 

(considering ≥ -3 as the median value, with -8 [min] and +2 [max]). 

 When clustered by antimicrobial class, kelp gulls were positive to one or more genes 

encoding resistance to tetracycline, fluorquinolone and betalactams (79%, 11/14), 

sulfonamides and macrolides (50%, 7/14), aminoglycosides (43%, 6/14), and phenicols (21%, 

3/14). No gulls presented ARGs encoding polymyxin resistance (mcr-1). The mean number of 

genes conferring resistance to one or more antimicrobial classes presented in each gull sample 

was four. Additionally, 71% (10/14) of the gulls presented multiresistant microbiomes (Table 

1), of these, five presented two similar patterns: a tetracycline, sulfonamide, fluorquinolone, 

betalactam, aminoglycoside, phenicol and macrolide combination (30%; 3/10), and a 

tetracycline, sulfonamide, fluorquinolone and betalactam combination (20%; 2/10). 
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2.3.2 Magellanic penguin 
  

 The tet(Q) gene presented the highest occurrence (55%, 6/11), followed by qnrB 

(45%, 5/11), blaTEM and tet(W) (36%, 4/11), erm(F) (27%, 3/11), tet(B), tet(Y) and erm(B) 

(18%, 2/11), sulI and aadA (9%, 1/11). Genes tet(A), tet(K), tet(M), tet(S), sulII, str, catI, 

catII, qnrS, mecA and mcr-1 were not detected. The mean number of ARGs per sample was 

2.7 (with a maximum of 8 genes per individual). Only one penguin did not present any of the 

tested ARGs. None of the genes presented mean load percentage ≥ -3.  

 When clustered by antimicrobial class, individuals were positive to one or more genes 

encoding resistance to tetracyclines (73%, 8/11), fluorquinolones (45%, 5/11), macrolides and 

betalactams (36%, 4/11), and sulfonamides and aminoglycosides (9%, 1/11). None of the 

individuals presented ARGs encoding chloramphenicol or polimyxin resistance. The mean 

number of genes conferring resistance to one or more antimicrobial classes presented in each 

sample was 2.1. Mutiresistant microbiomes were found in 27% (3/11) of the penguins (Table 

1). Although no common patterns were observed, genes conferring resistance to tetracycline 

and macrolides were present in the microbiomes of the three multiresistant animals. 
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Table 1. Microbiome patterns, number of detected genes per sample and detected genes according with the animal ID and species (kelp gull Larus dominicanus and 
Magellanic penguin Spheniscus magellanicus). 

 

ID Species Drug class pattern 
Number of 

detected 
ARGs 

Detected ARGs 

I11 kelp gull TET, SUL, AMINO, PHEN, MACR, 
FLUOR, BLACT‡ 15 tet(A), tet(B), tet(K), tet(M), tet(Q), tet(S) , tet(W), 

sulII, str, aadA, catI, erm(B), qnrS, qnrB, blaTEM 

I16 kelp gull TET, AMINO, MACR, FLUOR, 
BLACT‡ 9 tet(A), tet(M), tet(Q), tet(W), aadA, erm(B), qnrB, 

blaTEM, mecA 
I23 kelp gull TET, FLUOR 3 tet(M), tet(Q), qnrB 
I25 kelp gull TET, AMINO, MACR‡ 3 tet(Q), aadA, erm(F) 
I56 kelp gull TET, SUL, FLUOR, BLACT‡ 6 tet(A), tet(B), sulII, qnrS, qnrB, blaTEM 
I31 kelp gull TET 1 tet(Q) 
I39 kelp gull FLUOR, BLACT 2 qnrS, blaTEM 
I40 kelp gull TET, SUL, FLUOR, BLACT‡ 5 tet(Q), tet(W), sulII, qnrB, blaTEM 

I41 kelp gull TET, SUL, MACR, FLUOR, BLACT‡ 8 tet(B), tet(M), tet(Q),  sulII, erm(B), erm(F), qnrB, 
blaTEM 

I45 kelp gull TET, SUL, AMINO, PHEN, MACR, 
FLUOR, BLACT‡ 15 

tet(A), tet(B), tet(M), tet(Q), tet(S), tet(W), sulI, 
sulII, str, aadA, catII, erm(B), erm(F), qnrS, 
blaTEM 

I48 kelp gull TET, SUL, AMINO, FLUOR, BLACT‡ 5 tet(B), sulII, aadA, qnrB, blaTEM 

I51 kelp gull TET, SUL, AMINO, PHEN, MACR, 
FLUOR, BLACT‡ 13 tet(A), tet(B), tet(M), sulI, sulII, str, aadA, catI , 

catII,erm(B), erm(F), qnrB, blaTEM 
I53 kelp gull BLACT 1 blaTEM 
I55 kelp gull MACR, FLUOR, BLACT‡ 4 erm(F), qnrB, blaTEM, mecA 

I12 Magellanic penguin 
 TET, SUL, MACR‡ 5 tet(B), tet(Q), tet(W), sulI, erm(F) 

I13 Magellanic penguin TET, AMINO, MACR, FLUOR, 
BLACT‡ 8 tet(B), tet(Q), tet(W), aadA, erm(B), erm(F), qnrB, 

blaTEM 
I15 Magellanic penguin TET, MACR, FLUOR‡ 4 tet(Q), tet(W), erm(F), qnrB 
I19 Magellanic penguin TET, FLUOR 2 tet(Q), qnrB 
I22 Magellanic penguin - 0 - 
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ID Species Drug class pattern 
Number of 

detected 
ARGs 

Detected ARGs 

I26 Magellanic penguin TET, FLUOR 2 tet(Y), qnrB 
I27 Magellanic penguin TET, BLACT 3 tet(Q), tet(W), blaTEM 
I28 Magellanic penguin BLACT 1 blaTEM 
I29 Magellanic penguin TET, MACR 2 tet(Q), erm(B) 
I36 Magellanic penguin TET, BLACT 2 tet(Y), blaTEM 
I44 Magellanic penguin FLUOR 1 qnrB 
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Figure 1. Resistance patterns of kelp gull (Larus dominicanus) and Magellanic penguin (Spheniscus magellanicus) samples obtained by k-means clustering of each 
antimicrobial resistance gene (ARG). Cluster 1 shows samples with high relative load percentage and Cluster 0 shows samples with low relative load percentage. Relative 
load percentage is expressed in a color scale (white for negative [-8] and dark red for the maximum value [+2]). The species are indicated on the right side (kelp gull [orange 
dots] and Magellanic penguin [blue dots]). 
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2.2.3 Qualitative analysis 
 

 There were significant differences between species (respectively, kelp gull and 

Magellanic penguin) in regards to: ARG occurrence (blaTEM [79% and 36%. p = .032]; tet(M) 

[43% and 0%. p = .015]; tet(A) [36% and 0%. p = .003]; and sulII [50% and 0%. p = .007]), 

mean number of ARGs per sample (6.4 and 2.7. p = .031), ARG mean load percentage (aadA 

[-5.4 and -7.7.  p = .045], tet(A) [-5.8 and -8. p = .031]; tet(M) [-5.8 and -8. p = .016]; blaTEM 

[-2.2 and -5.8. p = .032]; sulII [-4.8 and -8. p = .008]), percentage of genes potentially 

conferring resistance to an antimicrobial class (betalactams [79% and 36%. p = .036] and 

sulfonamides [50% and 9%. p = .033]), mean number of genes conferring resistance to one or 

more antimicrobial classes (4 and 2.1. p = .024]), percentage of multiresistant microbiomes 

(71% and 27%. p = .032]), and clustering (0.6 and 0.1. p = .006]). Statistically significant 

differences are summarized in Table 2. 

 
Table 2. Statistically significant differences between kelp gull (Larus dominicanus) and Magellanic penguin 
(Spheniscus magellanicus): ARG occurrence, mean number of ARGs per sample, mean load percentage of each 
ARG, the mean number of antimicrobial classes presented in each sample, percentage of multiresistant 
microbiomes, and resistance patterns. Mann-Whitney U non-parametric test). Numbers in parenthesis indicate 
the 95% confidence interval (CI). 
 

Parameter p value 
kelp gull 
(n = 14) 
95% CI 

Magellanic penguin 
(n = 11) 
95% CI 

Occurrence of tet(A) 0.03 36% (7, 64%) 0% 
Occurrence of tet(M) 0.015 43% (13, 73%) 0% 
Occurrence of sulII 0.007 50% (20, 80%) 0% 
Occurrence of blaTEM 0.036 79% (54, 103%) 36% (2, 70%) 
Mean load percentage of tet(A) 0.031 -5.8 (-7.6, -4.1) -8.0 
Mean load percentage of tet(M) 0.016 -5.8 (-7.4, -4.3) -8.0 
Mean load percentage of sulII 0.008 -4.8 (-6.8, -2.9) -8.0 
Mean load percentage of aadA 0.045 -5.4 (-7.2, -3.6) -7.7 (-8.4, -7.0) 
Mean load percentage of blaTEM 0.009 -2.2 (-4.1, -0.2) -5.8 (-7.9, -3.7) 
Percentage of resistance to 
sulfonamides 0.033 50% (20, 80%) 9% (-11, 29%) 

Percentage of resistance to 
betalactams 0.036 79% (54, 103%) 36% (2, 70%) 

Mean number of genes 0.031 6.4 (3.6, 9.2) 2.7 (1.2, 4.2) 
Mean number of classes† 0.024 4.0 (2.8, 5.2) 2.1 (1.2, 3.0) 
Percentage of multiresistant 
microbiomes 0.032 71% (44, 98%) 27% (-4, 59%) 

Clustering (0=low; 1=high) 0.006 0.6 (0.4, 0.9) 0.1 (-0.1, 0.3) 
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2.4 DISCUSSION 
 

 In accordance with our hypothesis, kelp gulls presented higher occurrence and load of 

ARGs than Magellanic penguins, findings that may potentially be influenced by the 

contrasting behaviors of these two seabird species in regard to feeding niches, interaction with 

human-impacted areas and dispersal. The kelp gull is the most widespread and abundant gull 

species in the Southern Hemisphere (BURGER; GOCHFELD, 1996; JIGUET et al., 2012; 

YORIO et al., 2016). Like other gull species, kelp gulls are extremely opportunistic and 

generalist feeders, very adapted to exploiting a wide variety of human-impacted and highly 

populated areas, and food subsidies (e.g., fishing discards and refuse disposals) (LUDYNIA et 

al., 2005; SILVA-COSTA; BUGONI, 2013; YORIO et al., 2016). Such behaviors have been 

associated with the presence of ARGs in kelp gulls in Argentina (LIAKOPOULOS et al., 

2016), as well as in other gull species worldwide (BONNEDAHL et al., 2009; 2015; 

AHLSTROM et al., 2018). Conversely, the Magellanic penguin is a migratory upper trophic 

level predator and the most abundant penguin in temperate areas, widely distributed along the 

southern coast of South America (BIRDLIFE INTERNATIONAL, 2020). Magellanic 

penguins remain in their colonies during breeding and molting periods, adopting a pelagic 

behavior while migrating along the continental shelf off the coast of northern Argentina, 

Uruguay, and southern Brazil (RUOPPOLO et al., 2012; BOERSMA et al., 2013). Although 

scarce, studies on the presence of ARGs in penguins have associated ARGs occurrence with 

anthropization in remote locations (RAHMAN et al., 2015; MARCELINO et al., 2019). 

 The mecA gene was detected in 14% (2/14) of kelp gulls, but not in penguins. This 

gene was reported in other wild bird groups in Brazil (passerines [MATIAS et al., 2018]) and 

Europe (corvids [LONCARIC et al., 2013; RUIZ-RIPA et al., 2019], storks [GÓMEZ et al., 

2016], and vultures [RUIZ-RIPA et al., 2019]). Nevertheless, to the best of our knowledge, 

this is the first report of mecA in seabirds in the Americas, only previously reported in 

European herring gulls (Larus argentatus) in Lithuania through metagenomics 

(MERKEVICIENE et al., 2017). The mecA gene is widely disseminated among 

Staphylococcus aureus and other staphylococcal species (ITO et al., 2012), encoding 

resistance to methicillin and cross-resistance to other β-lactam antimicrobials (ITO et al., 

2012; LAURENT et al., 2012; FIGUEIREDO; FERREIRA, 2014).  Methicillin-resistant 

staphylococci are disseminated worldwide, frequently causing health care- and community-

associated infections (TAUBES, 2008; ITO et al., 2012), being considered the leading cause 

of nosocomial infection in Latin America (GUZMÁN-BLANCO et al., 2009), where it was 
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also reported in animals, food products and the environment (PATERSON et al., 2012; WAN; 

CHOU 2014; PAPADOPOULOS et al., 2019). 

 The blaTEM gene was detected in kelp gulls and Magellanic penguins, being the most 

prevalent gene in the former species (79%; 11/14). BlaTEM also presented the highest mean 

load percentage in this study (-2.2, in kelp gull), indicating an increased dissemination 

potential in comparison with the other ARGs detected here. Furthermore, the blaTEM gene 

presented significant differences in kelp gull in comparison with Magellanic penguin in 

regards to occurrence (79% and 36%. p = .032) and mean load percentage (-2.2 and -5.8. p = 

.032). This gene has been previously described in seabirds in Brazil (EWBANK et al., 2020), 

the United States (BONNEDAHL et al., 2014; ATTERBY et al., 2016), and Europe 

(DOLEJSKA et al., 2007; POETA et al., 2008; RADHOUANI et al., 2009; LITERAK et al., 

2010; MERKEVICIENE et al., 2017). The TEM betalactamases confer resistance to 

cephalosporins and penicillins (MROCZKOWSKA; BARLOW, 2008), one of the oldest and 

most widely used antimicrobial classes in humans and veterinary medicine (GUENTHER et 

al., 2011; SHARLAND et al., 2018), partialy explaining their dissemination in the tested 

seabirds. Recently, a similar study in Brazil, that evaluated the microbiome of six species of 

wild seabirds (overall, 304 individuals), found that the blaTEM occurrence and percentage 

loads ranged from 0% to 25% and -8 to -0.6, respectively, and that the blaTEM prevalence was 

significantly higher in migratory in comparison with non-migratory species (EWBANK et al., 

2020). Interestingly, despite the considerable differences regarding species and sampling size, 

herein we found higher blaTEM occurrence and mean load percentages in kelp gull and 

Magellanic penguin, and higher blaTEM occurrence in the non-migratory synanthropic species 

(kelp gull). Epidemiologically, our findings are very concerning, because while the migratory 

species evaluated by EWBANK et al., 2020 were using a pristine habitat (Rocas Atoll), kelp 

gull and Magellanic penguin are using anthropized environments. Kelp gull, especially, are 

using heavily anthropized areas, which likely influence not only the acquisition and potential 

transmission of ARGs, but also their development and maintenance, once these individuals 

are continuously more exposed to ARGs sources (e.g., landfills, wastewater), and 

consequently, to reinfection. 

 The genes encoding tetracycline resistance (tet) were the most prevalent in this study 

(79%; 11/14 in kelp gull and 73%; 8/11 in Magellanic penguin): tet(A), tet(M) and tet(W) in 

kelp gull, and tet(Q) in Magellanic penguin. Additionally, tet(Q) was the most prevalent gene 

in the penguin group (55%, 6/11). Interestingly, EWBANK et al., 2020 found that 

tetracycline-encoding genes were also the most prevalent antimicrobial class (ranging from 
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64.5% to 87.9%), significantly greater than the rest of the other ARGs classes  (EWBANK et 

al., 2020). Moreover, we observed significant differences between kelp gull and Magellanic 

penguin in terms of tet(M) and tet(A) occurrence (43% and 0%. p = .015, and 36% and 0%. p 

= .003, respectively), and mean load percentage (-5.8 and -8. p = .016, and -5.8 and -8. p = 

.031, respectively). The high tet occurrence found herein was not surprising, once it had been 

previously detected in other seabirds in Brazil (EWBANK et al., 2021), and its extensive use 

in human and veterinary medicine, and in agriculture (CHOPRA; ROBERTS, 2001; 

DAGHRIR; DROGNI, 2013). Tet genes have been reported in gulls in the Americas 

(MARTINY et al., 2011; TORO et al., 2016; EWBANK et al., 2020) and Europe 

(DOLEJSKA et al., 2007; POETA et al., 2008; RADHOUANI et al., 2009; LITERAK et al., 

2010; RADHOUANI et al., 2011; ANTILLES et al., 2015; MERKEVICIENE et al., 2017), 

and in wild penguins in Antarctica (RAHMAN et al., 2008; RAHMAN et al., 2015) and 

Brazil (PRICHULA et al., 2016).  

 Genes sulI and sulII were detected in kelp gull (sulII: 50% [7/14]) and in a Magellanic 

penguin (sulI: 9% [1/11]). SulI and sulII encode resistance to sulfonamides and have been 

previously reported in wild seabirds in Brazil (EWBANK et al., 2020), with the former also 

reported in gulls in Europe (DOLEJSKA et al., 2007; POETA et al., 2008; RADHOUANI et 

al., 2009; ANTILLES et al., 2015). SulII presented significant differences in kelp gulls in 

comparison with Magellanic penguin regarding its occurrence (50% and 0%. p = .007) and 

mean load percentage (-4.8 and -8. p = .008). Additionally, resistance to sulfonamides was 

significantly different in kelp gull in comparison with Magellanic penguin (50% and 9%. p = 

.033). Interestingly, the prevalences of sulfonamide and sulII gene were statistically 

significant higher in seabirds from a anthropized in comparison with a pristine environment 

(EWBANK et al., 2020). Sulfonamides are among the oldest synthesized antimicrobials, used 

in several medical therapies (PARASCA et al., 2013). This antimicrobial class is known to 

persist in the environment (LAMSHÖFT et al., 2007), and to resist biodegradation in 

wastewater-treatment processes and in media with elevated microbial activity, such as 

byproduct sludge (GARCÍA-GALÁN et al., 2008; KÜMMERER, 2008). Thus, the fact that 

such antimicrobial class presented more significant findings in the synanthropic coastal 

species (kelp gull), likely indicates higher ARGs pollution of coastal environments due to 

anthropogenic impact and environmental contamination (e.g., WWTP effluents and 

wastewater discharge) (SACRISTÁN et al., 2020; EWBANK et al., 2020).  

 Finally, we also observed significant differences in the aadA mean load percentage 

between kelp gull and Magellanic penguin (respectively, -5.4 and -7.7.  p = .045). The aadA 
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gene encodes resistance to two aminoglycosides: streptomycin and spectinomycin (CLARK et 

al., 1999). Aminoglycosides are used against several aerobic Gram-negative bacilli, many 

staphylococci, some streptococci, and mycobacteria. Of note, streptomycin is used in 

multidrug treatments against multidrug-resistant M. tuberculosis infections (MAGNET; 

BLANCHARD, 2005). AadA has been previously reported in gull species (DOLEJSKA et al., 

2007; RADHOUANI et al., 2009; ANTILLES et al., 2015), and in little penguins (Eudyptula 

minor) (LUNDBÄCK et al., 2020). 

 Our findings, especially the detection of the public health relevant mecA and blaTEM 

genes, are very concerning. The present study evaluated samples collected upon the 

individuals’ admission into a rehabilitation center. Thus, the ARGs detected here were 

acquired in the wild, most likely in the environment (either in anthropized (e.g., landfills, 

sewage) or natural (e.g., aquatic, continental shelf) epidemiological settings), but potentially 

from other sources as well, such as infected food items (BRAHMI et al., 2015) and through 

intra and/or interspecific interactions (e.g., kleptoparasitism). Wildlife is not naturally 

exposed to antimicrobials in the wild, but once under antimicrobial therapy in rehabilitation 

centers, the presence of ARGs in their microbiome may interfere, and even prevent, 

successful therapy. Similarly to nosocomial settings, due to the intense use of antimicrobials, 

rehabilitation centers may be highly contaminated by these drugs and their metabolites, as 

well as by ARGs, and exert intense selective pressure over the local resistome (BLYTON et 

al., 2015; HAENNI et al., 2020). As a consequence, rehabilitation centers may be hot spots 

for ARGs acquisition, interaction, and development, facilitating resistance exchanges among 

wildlife, humans (e.g., staff) and the environment, both while in-care and upon release 

(HAENNI et al., 2020). Thus, rehabilitation centers are very important and informative 

settings for the study of ARGs within the One Health interface. 

 Magellanic penguins are a migratory species. Bird migrations may cover great 

distances, through natural bio-barriers such as oceans, thus considered as holders of a 

potential central epidemiological role in the dissemination of ARGs, even to remote locations 

(BONNEDAHL et al., 2009; SMITH et al., 2014; EWBANK et al., 2020). Because migratory 

birds are capable of acquiring ARGs from humans, domestic animals and the environment 

(BONNEDAHL et al., 2009, 2010, 2015; HERNANDEZ et al., 2010, 2013; STEDT et al., 

2015; ATTERBY et al., 2017; GUENTHER et al., 2017; AHLSTROM et al., 2018; 

MARCELINO et al., 2019), this group has been largely suggested as reservoirs and dispersers 

of antimicrobial resistance (GUENTHER et al., 2012; BONNEDAHL et al., 2015; STEDT et 

al., 2015). Despite a recent experimental study in captive ring-billed gulls (Larus 
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delawarensis) in which the individuals were able to shed and contaminate the artificial 

environment and infect con-specifics in a controlled setting (FRANKLIN et al., 2020), further 

studies under natural conditions are necessary to confirm such hypothesis. Herein, migration 

may have not been a key factor from an epidemiological perspective of ARGs dispersal 

affecting humans, because despite our significant findings in Magellanic penguin (e.g., 

detection of ARGs in 10 out of the 11 individuals and of a gene of great public health 

importance (blaTEM)), this is a highly pelagic species that spends a great part of its life cycle 

in the oceans (BOERSMA et al., 2013), sustaining limited direct contact with humans. By 

contrast, kelp gull are not migratory, only capable of small geographical dislocations 

(BirdLife International, 2020). Such species presents synanthropic behavior and adaptability 

to highly anthropized areas, in closer contact with humans and food-producing animals, 

consequently playing a more relevant role than Magellanic penguin in the epidemiological 

chain of ARGs within the human-animal-environmental interface. These findings show that 

all geographical dislocations – from great migrations to small geographical movements, must 

be considered in the study of ARGs dispersal and epidemiology. 

 Herein, we showed that the biological and ecological parameters evaluated in this 

study (i.e., dispersal [migratory and non-migratory], feeding niche [coastal and pelagic], and 

interaction with human-impacted areas [synanthropic and non-synanthropic]) are key factors 

in the complex epidemiology of ARGs in wild seabirds. Additionally, we reported the first 

detection of the mecA gene in seabirds in the Americas. Our findings greatly contribute to the 

current knowledge on ARGs in wild birds both nationally and worldwide, emphasize the 

importance of ARGs studies in wildlife rehabilitation settings, and reinforce the utility of 

culture-free highly sensitive molecular diagnostics to assess ARGs in the microbiome of wild 

birds. Nevertheless, it is important to consider the limitations of our study: (1) our techniques 

characterize the resistance genotype, not the phenotype, (2) microbiomes were evaluated at 

the exact point in time of each sample collection, and host-bacteria could eventually lose 

ARGs-containing plasmids prior to transmission and/or dispersal, and (3) our small sampling 

size. Admission and pre-release sampling and analysis would allow future assessment of 

rehabilitation centers as epidemiological settings. Further studies on ARGs in the microbiome 

of a greater number of seabirds, considering biological and ecological parameters, and the 

species’ natural history (e.g., feeding strategy, habitat, territory), are necessary to broaden our 

understanding regarding the occurrence and diversity of ARGs in seabirds, and their role as 

potential sources of infection and dispersal within the One Health chain of ARGs acquisition, 

interaction and dissemination.  
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ABSTRACT 

 Antimicrobial resistance is among the most serious public health threats of the 21st 

century, with great impact in terms of One Health. Among antimicrobial resistant bacteria 

(ARB), extended-spectrum ß-lactamase (ESBL)-producing Escherichia coli (ESBL-EC) 

represent major challenges to human healthcare. Wild birds have been commonly used as 

environmental bioindicators of ESBL-EC. Remote locations represent a unique opportunity to 

evaluate the occurrence, dissemination and epidemiology of ARB in the environment. Herein 

we surveyed ESBL-EC in 204 cloacal swabs from six nonsynanthropic seabird species at the 

pristine Rocas Atoll, Brazil. We identified ESBL-EC isolates in 2.4% (5/204) of the tested 

seabirds, all in magnificent frigatebirds (Fregata magnificens). We isolated strains of O25b-

ST131-fimH22 harborring blaCTX-M-8 (3 clones), ST117 harboring blaSHV-12, and a novel 

ST11350 (clonal complex 349) harboring genes blaCTX-M-55 and fosA3. All the isolates 

presented Extraintestinal pathogenic E. coli (ExPEC) virulence profiles. We suggest that 

magnificent frigatebirds may act as “flying bridges”, transporting ESBL-EC and ARGs from 

an anthropogenically-impacted environment to a pristine and remote location. The 

characteristics of our isolates warrant zoonotic concern and, despite the apparent good health 

of all the evaluated birds, be a potential risk to the avian population using the atoll. To our 

knowledge, this is the first description of: (1) the pandemic and public health relevant ST131-

O25b harboring blaCTX-M-8 worldwide; (2) ST131-fimH22 in wild birds; and (3); fosA3 in 

wildlife. Our findings expand the current epidemiological knowledge regarding host and 

geographical distribution of ESBL-EC and ARGs in wild birds, and emphasize the 

disseminating characteristics and adaptability of ST131 and ST117 strains within the human-

animal-interface. Herein we confirm the importance of considering biological and ecological 

species-specific factors in the study of ARB and ARGs in wildlife and that nonsynanthropic 

wild birds may have a role in the epidemiology of antimicrobial resistance.  
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4.1 INTRODUCTION 

 Antimicrobial resistance (AMR) is among the most serious global clinical and public 

health threats of the 21st century, with great impact on the One Health interface (WORLD 

HEALTH ORGANIZATION, 2014; LIU et al., 2016; QUEENAN et al., 2016). The 

development of bacterial resistance results from bacterial genetic plasticity and interactions 

among microbial agents, host organisms and the environment (DA COSTA et al., 2013; 

FINLEY et al., 2013), and predates the existence of humans (D’COSTA et al., 2011; 

BHULLAR et al., 2012). Nevertheless, in recent decades, the wide use of antimicrobials in 

human healthcare and veterinary medicine, agriculture and food production systems (DA 

COSTA et al., 2013; HIDASI et al., 2013; ROCA et al., 2015), in addition to waste disposal 

and spillover of antimicrobials and their metabolites into the environment (GRAHAM et al., 

2011; WEST et al., 2011; GUO et al., 2018), have altered bacterial ecosystem dynamics, 

leading to a significantly increased selective pressure (WRIGHT 2007; WORLD HEALTH 

ORGANIZATION, 2014). Human, animal and environmental bacteria share great portions of 

their resistome (FORSBERG et al. 2012; FINLEY et al. 2013; BENGTSSON-PALME et al., 

2015). Anthropogenic pressure over the environment, through habitat fragmentation and 

pollution (e.g., landfills, wastewater treatment plants) intensifies the contact among bacterial 

communities of wildlife, domestic animals and humans, increasing the opportunities for 

transmission of antimicrobial resistant genes (ARGs) and antimicrobial resistant bacteria 

(ARB) (AHLSTROM et al., 2018; MARCELINO et al., 2019; SACRISTÁN et al., 2020). 

The resulting AMR challenge and even preclude treatment of common infections caused by 

resistant pathogens, and undermine and/or prevent advances in human and veterinary health 

and medicine, resulting in increased mortality, and social and economic burdens 

(BENGTSSON; GREKO 2014; WORLD HEALTH ORGANIZATION, 2014).  

 Escherichia coli (family Enterobacterales) are Gram-negative, non-sporulating 

facultative anaerobes that inhabit the intestines and faeces of warm-blooded animals and 

reptiles (BERG 1996; GORDON; COWLING 2003). E. coli can be easily disseminated into 

different ecosystems through water, soil, food, and other media (SKURNIK et al., 2006; 

RADHOUANI et al., 2009); therefore, its presence is largely used as an indicator of 

environmental contamination (BONNEDAHL et al., 2009; PESAPANE et al., 2013) and 
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anthropogenic activity (TENAILLON et al., 2010). Extended-spectrum ß-lactamase (ESBL)-

producing Enterobacterales, especially E. coli (ESBL-EC), are a relevant public health issue 

and represent major human health care challenges (EUROPEAN CENTRE FOR DISEASE 

PREVENTION AND CONTROL, 2011a,b; STEDT et al., 2015), being extensively used as 

key indicators in tracing the evolution of multidrug-resistant bacteria (MDR) in wildlife and 

the environment (GUENTHER et al., 2011). Although widely reported in nosocomial and 

community-acquired infections (RUSSO; JOHNSON 2003; NICOLAS-CHANOINE et al., 

2014), livestock, animal-derived food products, and companion animals worldwide (GESER 

et al., 2012; EWERS et al., 2012), the occurrence, prevalence and epidemiology of ESBL-EC 

in wildlife and the environment is still poorly understood, especially in remote areas (ALLEN 

et al., 2009; HERNANDEZ et al., 2010; GUENTHER et al., 2017). 

 Due to their relative abundance and varied geographic range, wild birds have been 

commonly used as bioindicators of the environmental presence and dissemination of ESBL-

EC (GUENTHER et al., 2012; HERNANDEZ et al., 2013; BONNEDAHL et al., 2015; 

STEDT et al., 2015; AHLSTROM et al., 2018), including in remote locations (SJÖLUND et 

al., 2008; HERNANDEZ et al., 2010; ARDILES-VILLEGAS et al., 2011; ATTERBY et al., 

2016; HERNANDÉZ; GONZÁLEZ-ACUÑA 2016; GUENTHER et al., 2017). Nevertheless, 

as seen in other wildlife studies (COLE et al., 2005; FURNESS et al., 2017; KOZAK et al., 

2009), investigations regarding wild birds have mostly evaluated synanthropic species and 

those inhabiting anthropized or agricultural areas (BONNEDAHL et al., 2009; 2014; 2015; 

STEDT et al., 2015; ATTERBY et al., 2016; AHLSTROM et al., 2018; 2019). 

 Pristine and remote habitats are under limited anthropogenic influence and direct 

antimicrobial exposure (e.g., sewage and wastewater discharge), thus representing a unique 

opportunity to evaluate the occurrence and dissemination of ARB and ARGs, their 

epidemiology and persistence in the environment. Considering the zoonotic potential and 

abundance of E. coli in different epidemiological settings, this study aimed on evaluating the 

prevalence and characteristics of ESBL-EC in cloacal swabs of 204 wild seabirds from six 

nonsynanthropic wild seabird species of a pristine atoll off the northeastern coast of Brazil, 

and discussing the potential environmental and public health consequences arising thereof. 

We used microbiological techniques and whole genome sequencing (WGS) to further identify 

and characterize the bacterial lineages, serotypes, resistome, plasmidome and virulome of the 

ESBL-EC present in the evaluated microbiomes. 
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4.2 MATERIALS AND METHODS 
 

4.2.1 Study area 

 

 The Rocas Atoll – ROA (03º51’S 33º48’W) - the only atoll of the Southern Atlantic 

Ocean, is located at 267 km from Rio Grande do Norte state, northeastern Brazil (Fig. 1). It is 

part of the Rocas Atoll Biological Reserve (ReBio), under the jurisdiction of the Chico 

Mendes Institute for Biodiversity Conservation (ICMBio) - Brazilian Ministry of the 

Environment (FISCHER et al., 2007; JALES et al., 2015). Access to ROA is only permitted 

for research purposes, limited to a maximum of four researchers and one ICMBio analyst per 

expedition, which usually varies between 30 to 45 days (at a maximum yearly visiting rate of 

approximately 60 visitors). Food, potable water, equipment and other necessities are brought 

in from the continent with each new expedition group. Additionally, after every expedition, 

all generated organic waste is transported to the continent, where it is discarted. ROA is 

classified as a World Heritage Site by UNESCO (WORLD HERITAGE CENTER, 2001) and 

is one of the most important seabird breeding sites in Brazil (ANTAS, 1991), also used by 

migratory and vagrant seabird species.  

 
Figure 1. Geographical location of Rocas Atoll (Rio Grande do Norte state – RN [yellow dot]) and Fernando de 
Noronha Archipelago (Pernambuco state – PE [red dot]), northeastern Brazilian coast. Brazil (green), South 
America (upper left). Scale: 500 km. 
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4.2.2 Sampling and bacterial identification  
 

 We sampled a total of 204 seabirds, comprising six species, as part of a surveillance 

study: sooty terns (Onychoprion fuscatus, n = 36), magnificent frigatebirds (Fregata 

magnificens, n = 35), brown noddies (Anous stolidus, n = 34), masked boobies (Sula 

dactylatra, n = 33), brown boobies (Sula leucogaster, n = 33), and red-footed boobies (Sula 

sula, n = 33). All samples were collected between December 2018 and January 2019. All 

birds were captured with a butterfly net and manually restrained, being immediately released 

after sampling. Banding numbers were recorded when present. Cloacal swabs were 

maintained in Amies transport medium with charcoal, at room temperature, until processed. 

In order to detect ESBL-EC, cloacal samples were streaked onto ceftriaxone (CRO)-

supplemented MacConkey agar plates (CRO: 2 mg/L), and incubated overnight at 35 ± 2 °C. 

Bacterial isolates were identified by MALDI-TOF MS (Matrix Assisted Laser Desorption 

Ionization Time Of Flight Mass Spectrometry, Bruker Daltonik, Leipzig, Germany). Clonal 

relatedness among samples of interest was identified by ERIC-PCR (Enterobacterial 

Repetitive Intergenic Consensus - PCR) (DA SILVEIRA et al., 2002). 

 All samples were collected in full compliance and approved by the Biodiversity 

Information and Authorization System (SISBIO 59150-4), Brazilian Ministry of 

Environment. All procedures were performed in accordance with the Ethical Committee in 

Animal Research of the School of Veterinary Medicine and Animal Sciences, University of 

São Paulo (Process Process number 1753110716). 

 

4.2.3 Antimicrobial susceptibility testing  

 

 Antimicrobial susceptibility was tested by the disc diffusion method using human and 

veterinary antibiotics (CLSI, 2018, 2019), including amoxicillin/clavulanate, ampicillin, 

aztreonam, ceftriaxone, cefotaxime, ceftiofur, ceftazidime, cefepime, cefoxitin, cephalexin, 

cephalotin, imipenem, meropenem, ertapenem, nalidixic acid, ciprofloxacin, gentamicin, 

amikacin, chloramphenicol, fosfomycin, trimethoprim-sulfamethoxazole, and tetracycline. 

ESBL production was screened using the double-disc synergy test (DDST) (JARLIER et al., 

1988).  
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4.2.4 Whole genome sequence analysis 

 

 Genomic DNA was extracted from the selected ESBL-EC strains using a PureLinkTM 

Quick Gel Extraction Kit (Life Technologies, Carlsbad, CA, USA), followed by the 

preparation of a genomic paired-end library (75 x 2 bp) using the Nextera DNA Flex library 

Preparation Kit (Illumina Inc., San Diego, CA), according to the manufacturer’s instructions. 

The whole genome was sequenced on the NextSeq platform (Illumina). De novo genome 

assembly and contig annotation were carried out using CLC Genomics Workbench 12.0.3. 

The MLST 2.0, PlasmidFinder 2.1, ResFinder 4.1, VirulenceFinder 2.0 and SerotypeFinder 

2.0 databases available from the Centre for Genomic Epidemiology 

(http://genomicepidemiology.org/) were used to identify, respectively, the multilocus 

sequence type (MLST), plasmid replicons, resistome, virulome and serotype. ESBL genes 

were screened by polymerase chain reaction (PCR) in the ESBL-EC isolate not selected for 

WGS (DROPA, et al., 2016). 

 Minimum spanning trees based on the wgMLST scheme and MSTree V2 tool from 

Enterobase (http://enterobase.warwick.ac.uk/species/index/ecoli) including the E. coli isolates 

found in this study and international collections of 198 and 138 E. coli strains belonging to, 

respectively, ST131 and ST117, were ellaborated. The phylogenetic trees were generated with 

iTOL v.6 (https://itol.embl.de), and their interactive versions are available at:  

https://itol.embl.de/tree/1911977148169031617850324 (ST131) and                          

https://itol.embl.de/tree/177102823915901619127015 (ST117). 

 
4.3 RESULTS 
 
4.3.1 Bacterial isolation, antimicrobial resistance profile and clonal relatedness 

 

 Overall, ESBL-EC were identified in 2.4% (5/204) of the evaluated individuals (one 

isolate per individual: FM17, FM18, FM21, FM25 and FM32), and only in magnificent 

frigatebirds (14.3%, 5/35 of the individuals). Among the five isolates, antimicrobial resistance 

against broad-spectrum β-lactams, tetracycline, sulphonamide, trimethoprim, and fosfomycin 

were detected (Table 1). ERIC-PCR identified that FM17, FM21 and FM32 strains were 

clonally related. Isolates FM18, FM21, FM25, and FM32 were selected for WGS analysis. 

Isolate FM17 was not sequenced because it showed identical antimicrobial resistance profile 

and was clonally related to FM32 strain. 
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Table 1. Phenotypical characteristics of the ESBL-producing Escherichia coli isolates identified in this 
study 

 
Species Bacterial strain Antimicrobial resistance profile a 

Escherichia coli FM17 
Amp1, Cfe1, Cfl1, Cpm1, Ctf 1, Ctx1, 

Cro1, Tet1 

Escherichia coli FM18 
Amp1, Atm1, Caz1, Cfe1, Cfo2, Cfl1, 

Cpm1, Ctx1, Cro1, Ctf1, Sut1, Tet1 

Escherichia coli FM21 
Amc2, Amp1, Cfe1, Cfl1, Cpm1, Ctx1, 

Cro1, Ctf 1, Tet1 

Escherichia coli FM 25 
Amp1, Atm1, Caz2, Cfe1, Cfl1, Cfo2, 

Cpm1, Ctx1, Cro1, Ctf1, Fos1 

Magnificent frigatebird 

(Fregata magnificens) 

Escherichia coli FM 32 
Amp1, Cfe1, Cfl1, Cpm1, Ctf 1, Ctx1, 

Cro1, Tet1 

aAmc: amoxicilin/clavulanate, Amp: ampicillin, Atm: aztreonam, Caz: ceftazidime, Cfe: cephalexin, Cfl: 
Cephalotin; Cfo: Cefoxitin, Cpm: cefepime, Ctf: ceftiofur, Ctx: cefotaxime; Cro: Ceftriaxona; Fos: fosfomycin, 
Tet: tetracycline; Sut, trimethoprim-sulfamethoxazole 
1Resistant, 2 Intermediate. 

 

 4.3.2 WGS analysis, antibiotic resistome, serotype prediction and MLST 

 

 WGS showed that FM21 and FM32 isolates harbored genes blaCTX-M-8 and tet(B) in 

their resistome. Isolate FM17 was positive for blaCTX-M-8 gene by conventional PCR. FM18 

harbored genes blaSHV-12, tet(A), sulI, sulII, while FM25 carried genes blaCTX-M-55, blaTEM, and  

fosA3. Multilocus sequence typing (MLST) analysis revealed that FM21 and FM32 

corresponded to ST131 clones (serotype O25:H4), FM18 was identified as ST117 (serotype 

H51:O18), and FM25 belonged to a novel ST11350 clone (clonal complex ST349), serotype 

O166:H15 (Tables 2 and 3).  

 

4.3.3 Virulome and plasmidome  

 

 Several virulence genes (VGs) of concern, characteristic of ExPEC, were identified in 

this study: cvaC (microcin C), fimH (type I fimbriae), fyuA (siderophore receptor), hlyF 

(hemolysin F), ibeABC (invasin of brain endothelial cells), ireA (siderophore receptor), iroN 

(enterobactin siderophore receptor protein), iss (increased serum survival), kpsE (capsule 

polysaccharide export inner-membrane protein), kpsMII (polysialic acid transport protein), 
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mchF (ABC transporter protein), neuC (polysialic acid capsule biosynthesis protein), ompT 

(outer membrane protein), pic (serine protease autotransporters of Enterobacteriaceae 

(SPATE)), tratT (serum resistance associated), tsh (temperature-sensitive hemagglutinin), usp 

(uropathogen-specific protein), and vat (vacuolating autotransporter toxin). The IncF plasmid 

incompatibility (Inc) group was the most frequently identified in this study, followed by IncI, 

IncN and IncQ1. All findings, according with isolates, are shown in Table 3.  

 

4.3.4 Phylogenetic analysis 

 

 Phylogenetically, samples FM21 and FM32 (ST131) clustered with isolates from 

humans (isolated in Argentina, Canada and Spain), poultry (isolated in the United States and 

Europe [Denmark, Germany, Norway, Spain and Sweden]), animal-derived food products (in 

the US) and wildlife (wild turkey [Meleagris gallopavo]) (Fig. 2). FM18 (ST117) clustered 

with samples isolated from human (in Denmark), food (ground turkey in the US), livestock 

(pig in Ireland, Spain, and Hungary), companion animal (dog in the US), and wildlife 

(European herring gull [Larus argentatus] in the US and mew gull [Larus canus] in the 

United Kingdom, and grey-headed flying fox [Pteropus poliocephalus] in Australia) (Fig. 3).
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Table 2. Resistome, plasmidome, virulome and MLST analysis of ESBL-producing Escherichia coli colonizing magnificent frigatebirds (Fregata magnificens) in Rocas Atoll, 
northeastern Brazil 
 

Isolate MLST a Serotype Antimicrobial 
resistance genes b 

Plasmid Inc. 
groups Virulome d 

FM18 ST117 O51:H18 blaSHV-12
1

 IncFIB chuA 
   tet(A) 2 IncFIC(FII) fimH97 
   sulI 3   IncQ1 gad 
   sulII 3  hra 
   aadA2b*  lpfA 
   aadA1*  ompT 
   aph(6)-Id*  pic 
   aph(3”)-Ib*  sitA 
   catA1*  terC, traT 
   dfrA1*  vat 
   Inu(F)*   
   mdf(A)*   
   mph(B)*   

FM21 ST131 O25:H4 blaCTX-M-8 
1 Incl1-I bcpABC 

   tet(B) 2 IncFIB chuASTUWXY, cia, cvaC 

   mdf(A)* IncFII eaeH, ecpABCDER, ehaB, 
espC, etsC 

     figC, fimABCDEFGHI, 
fimH22, fyuA 

     hlyE/clyA, hlyF, hra 

     ibeABC,ireA, iroBCDEN, 
irp1, 2, iss 

     KpsE, kpsMII_K1 
     mchF 
     neuC 
     ompT 
     sitABCD 
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Isolate MLST a Serotype Antimicrobial 
resistance genes b 

Plasmid Inc. 
groups Virulome d 

     terC, tia, traT, tsh 
     upaG/ehaG, usp 
     ybtAEPQSTUX, yfcV 

FM25A Novel ST11350  
(clonal complex ST349) O166:H15 blaCTX-M-55 

1 IncFIB aatA 

   blaTEM 
1,‡ IncFII cah, chuASTUW 

   fofA3 4 IncN 
eaeh, ehaB, eilA, espL1, 4, 
espR1, espX1,2,4,5,6, 
espY1,3,4,5 

   mdf(A)*  fimH93 
     galE 
     hcpBC, hlyE/clyA, hlyF 
     ibeBC, iss 
     kpsE, kpsMII_K5 
     ompT 
     sitABCD 
     terC, traT 

FM32 ST131 O25:H4 blaCTX-M-8 
1 IncFIB chuASTUWXY, cia, cvaC 

   tet(B) 2 IncFII eaeH, ecpABCDE, ehaB, 
espC, etsC 

   mdf(A)* IncI1-I figC, fimABCDEFGHI, 
fimH22,  fyuA 

     hcpABC, hlyE/clyA, hlyF, hra 

     ibeABC, ireA, iroBCDEN, 
irp1,2, iss 

     kpsE, kpsMII_K1 
     mchF 
     neuC 
     ompT 
     pilQRSV 
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Isolate MLST a Serotype Antimicrobial 
resistance genes b 

Plasmid Inc. 
groups Virulome d 

     sitA 
     terC, tia, traT, tsh 
     upaG/ehaG, usp 
     ybtAEPQSTUX 

 
 a 

MLST, Multilocus sequence typing. Novel ST (adk 34, fumC 36, gyrB 39, icd 87, mdh 67, purA 16, recA 215).  
b 
Genes conferring resistance to antimicrobials: 1, cephalosporins; 2, tetracyclines; 3, fosfomycin; 4, sulfonamides. 

c Virulence factor genes: aatA (autotransporter adhesin AIDA-I type); bcpABC (bacterioferritin comigratory protein); cah (calcium-binding antigen 43 
homologue); chuASTUWXY(outer membrane hemin receptor), cia (colicin ia); cvaC (microcin C); eaeH (putative attaching and effacing protein 
homolog); ecpABCDE (E. coli common pillus); ehaB EHEC autotransporter B; eilA (Salmonella HilA homolog); etsC (putative type I secretion outer 
membrane protein); espC (E. coli secreted protein C); espL1, R1, X1 , X4, X6, Y1, Y2, Y4 (type III system‐secreted proteins); figC (lateral flagellae); 
fimABCDEFGHI (type I fimbriae); fyuA (siderophore receptor); galE (UDP-glucose 4-epimerase); hcpABC (hemolysin co-regulated protein); hlyE/clyA 
(hemolysin/cytolysin E); hlyF (hemolysin F); hra (heat-resistant agglutinin); ibeABC (invasin of brain endothelial cells); ireA (siderophore receptor); 
iroBCDEN(enterobactin siderophore receptor protein); irp1,2 (high molecular weight protein 2 non-ribosomal peptide synthetase); iss (increased serum 
survival); lpfA (long polar fimbriae); kpsE (capsule polysaccharide export inner-membrane protein); kpsMII (polysialic acid transport protein); mchF 
(ABC transporter protein MchF); neuC (polysialic acid capsule biosynthesis protein); ompT (outer membrane protease (protein protease 7)); pic (serine 
protease autotransporters of Enterobacteriaceae (SPATE));  pilQRSV (type IV pili); sitABCD (Iron transport protein); terC (tellurium ion resistance 
protein); tia (adhesins); traT (outer membrane protein complement resistance); tsh (temperature-sensitive hemagglutinin); usp (uropathogenic specific 
protein); upaG/ehaG (UpaG adhesin, trimeric AT); vat (vacuolating autotransporter toxin); ybtAEPQSTUX (siderophore yersiniabactin); yfcV (fimbrial 
protein). 
‡ Unfortunately, the obtained sequences were not long enough to accurately deferentiate among genes blaTEM-1B, blaTEM-141, blaTEM-206 and blaTEM-214. 

* Unactive genes found in the whole genome sequencing (WGS).
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4.3.5 Banding recovery 

 

 Banding information was recovered from seven individuals, including one of the five in which ESBL-EC was isolated (FM18; Table 3) 

(personal communication, CEMAVE/ICMBio, 2020)1. 

 
Table 3. Banding information available for the individuals evaluated in this study, according with band number, individual ID#, species, banding site (ROA = Rocas Atoll; 
FNA = Fernando de Noronha Archipelago), coordinates (latitude and longitude), year of banding, age (AD = Adult; JUV = Juvenile), and sex (M = Male; U = Undetermined) 
 

Coordinates Band 
Number Individual ID# Species Banding 

Site Latitude Longitude 
Year of 
Banding Age Sex 

J-85514 OF3 sooty tern ROA 
 03º 51’ 50.00” S 033º 48’ 48.00” W Jun 2017 AD U 

J-85552 OF15 sooty tern ROA 
 03º 51’ 50.00” S 033º 48’ 48.00” W Jun 2017 AD U 

J-85508 VM6 brown noddy ROA 
 03º 51’ 50.00” S 033º 48’ 48.00” W Jun 2017 AD U 

J-85507 VM11 brown noddy ROA 
 03º 51’ 50.00” S 033º 48’ 48.00” W Jun 2017 AD U 

L-144014 VM15 brown noddy ROA 
 03º 51’ 50.00” S 033º 48’ 48.00” W Jun 2017 AD U 

U-56034 FM18 magnificent 
frigatebird FNA 03º 50’ 30.00” S 032º 25’ 06.00” W Nov 2016 JUV U 

U-63169 FM33 magnificent 
frigatebird 

ROA 
 03º 51’ 50.00” S 033º 48’ 48.00” W Jul 2017 AD M 

                                                
1 Information provided by Centro Nacional de Pesquisas Para Conservação das Aves Silvestres (CEMAVE) – Instituto Chico Mendes de Conservação da Biodiversidade 
(ICMBio), on July 21st 2020. 
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4.4 DISCUSSION 

 

 Overall, five ESBL-EC (prevalence of 2.45%; 5/204) were isolated in magnificent 

frigatebirds: three clones of the globally disseminated O25b-ST131 harboring blaCTX-M-8, a 

ST117 clone harboring blaSHV-12, and a novel ST11350 (ST349 clonal complex) harboring 

blaCTX-M-55 and fosA3.  

 The emerging pandemic ST131 clone is a public health threat implicated in multidrug-

resistant extraintestinal infections worldwide (EWERS et al., 2010; LAVIGNE et al., 2012; 

TAUSOVA et al., 2012; BLANCO et al., 2013; DAHBI et al., 2014; NICOLAS-CHANOINE 

et al., 2014), frequently described in community- and hospital-acquired urinary tract 

infections and bacteremia (RUSSO; JOHNSON 2003; NICOLAS-CHANOINE et al., 2014), 

companion animals, food products, and the environment (EWERS et al., 2010; DOLEJSKA et 

al., 2011; HU et al., 2013; KAWAMURA et al., 2014). The globally disseminated O25b:H4-

B2-ST131 clonal group is of particular concern, combining resistance and multiple virulence 

factors (BLANCO et al., 2013). ST131 is the most commonly identified clone in wild animals 

(WANG et al., 2017). In wild birds, especifically, this clone has been described in South 

America (HERNÁNDEZ et al., 2010; SAVIOLLI et al., 2016), Europe (TAUSOVA et al., 

2012; JAMBOROVA et al., 2015; 2017), Eurasia (HERNANDÉZ et al., 2010), Asia 

(HASAN et al., 2014; 2015), and Oceania (MUKERJI et al., 2019). To the 

authors’knowledge, despite its numerous reports, this is the first description of a 25b-ST131 

clone harboring blaCTX-M-8. Interestingly, CTX-M-8 is considered one of the most prevalent 

CTX-M enzymes in Brazil, where it was first described in 2000 (BONNET et al., 2000; 

Rocha et al., 2016). Since then, CTX-M-8 has been extensively identified in the country, in 

several epidemiological settings within the human-animal-environmental interface 

(MINARINI et al., 2009; PEIRANO et al., 2011; FERREIRA et al., 2014; 2016; CASELLA 

et al., 2015; MELO et al., 2018; SILVA et al., 2018; DROPA et al., 2016; SACRAMENTO et 

al., 2018). Nevertheless, this is the first detection of blaCTX-M-8 in wild birds in Brazil, 

previously described in owls (Magellanic horned owl (Bubo magellanicus) and rufous-legged 

owl (Strix rufipes)) in Chile (FUENTES-CASTILLO et al., 2019), and rooks (Corvus 

frugilegus) (JAMBOROVA et al. 2015) and yellow-legged gulls (Larus michaellis) in Europe 

(STEDT et al., 2015). 

 The novel ST11350 (ST349 clonal complex) harbored genes blaCTX-M-55, fosA3, and 

blaTEM. CTX-M-55 is mostly restricted to Asia, where it is the second most common ESBL 

enzyme described in Enterobacterales (LUPO et al., 2018; JONES et al., 2008; XIA et al., 
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2014), and has recently emerged as a dominant genotype in Chinese hospitals (ZHANG et al., 

2014). As expected, blaCTX-M-55 has been described in E. coli isolates from several wild bird 

species in Asia (GUENTHER et al., 2012; HASAN et al., 2015), but also in Europe 

(JAMBOROVA et al., 2015; STEDT et al., 2015), the Americas (BONNEDAHL et al., 2015; 

AHLSTROM et al., 2019; DE CARVALHO et al., 2020), and Oceania (MUKERJI et al., 

2019). Similarly, fosA3 - the most disseminated among fosfomycin-modifying enzymes (fos), 

is also endemic and widespread in Asia (REHMAN et al., 2017; YANG et al., 2017, 

ZURFHLU et al., 2019). Fosfomycin resistance is particularly concerning because due to its 

broad spectrum and limited use in recent decades, fosfomycin has become a great therapeutic 

choice against multidrug-resistant bacteria, especially ESBL- and carbapenemase-producing 

Enterobacteriaceae  (POPOVIC et al., 2010; RAZ, 2012; SASTRY; DOI, 2017; ZURFHLU et 

al., 2019). For instance, fosfomycin is broadly used in the treatment of uncomplicated urinary 

infections worldwide (MICHALOPOULOS; LIVADITIS; GOUGOUTAS, 2011; RAZ, 2012; 

DIJKMANS et al., 2017; Zurfhlu et al., 2019), including in Brazil, where it is also largely 

used as therapy for multidrug-resistant nosocomial infections (PERDIGÃO-NETO et al., 

2014).  In contrast, although not approved for use in veterinary medicine in the majority of 

countries (e.g., China and Europe) (WANG et al., 2017), fosfomycin is widely used in 

Argentina, Brazil, and Central America, especially for the treatment of infectious diseases in 

broilers and pigs (PÉREZ et al., 2014). The fosA3 gene is commonly associated with blaCTX-M 

(as seen here) and rmtB genes, especially in enterobacteria isolated from animals of southern 

Asia, but also in humans (YANG et al., 2017). Interestingly, associations of blaCTX-M-55 and 

fosA3 genes have been reported in Brazil: in poultry (Cunha et al., 2017) and in an 

assimptomatic person (FERNANDES et al., 2018).  Nevertheless, to the authors’knowledge, 

this is the first description of fosA3 and of its association with the blaCTX-M-55  in wild birds 

worldwide. In regard to blaTEM , the obtained sequence was unfortunatelly not long enough to 

accurately defferentiate among genes blaTEM-1B, blaTEM-141, blaTEM-206 and blaTEM-214.  

 The ST117 clone is an emerging pathogen (Masella et al., 2021), described in 

community and hospital-acquired infections, companion animals, and livestock - where it is 

of special concern in poultry (Maluta et al., 2014; Masella et al., 2021; Cunha et al., 2017). In 

wild birds, ST117 has been reported in Europe (corvids [JAMBOROVA et al., 2015] and 

raptors [GUENTHER et al., 2012]) and in the Americas (corvids [JAMBOROVA et al., 2017] 

and gulls [LIAKOPOULOS et al., 2016]). Of note, among several other resistance genes, our 

isolate harbored blaSHV-12, a gene extensively described in numerous epidemiological settings 

worlwide (DOLEJSKA et al., 2011; ALVES et al., 2014; OJER-USOZ et al., 2017; 
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MAMANI et al., 2019), and in several wild bird groups (COSTA et al., 2006; LITERAK et 

al., 2010; JAMBOROVA et al., 2015; ALCALÁ et al., 2016), including seabirds (gulls 

[DOLEJSKA et al., 2009; HERNANDEZ et al., 2013]). 

 All the isolates described in this study presented a variety of virulence genes of 

concern characteristic of Extraintestinal pathogenic E. coli (ExPEC) (Table 2) (MELLATA et 

al., 2013; SAROWSKA et al., 2019). ExPEC are capable of causing a variety of diseases in 

humans and animals, with consequent economic and social health burdens worldwide (RILEY 

2004; KEMMETT et al., 2014). ExPEC are subdivided into avian pathogenic (APEC), 

neonatal meningitis (NMEC), sepsis-associated (SEPEC) and uropathogenic E. coli (UPEC) 

pathotypes that share many features, including virulence-associated genes and serotypes 

(KAPER et al., 2004; MELLATA et al., 2013; SAROWSKA et al., 2019). Strains ST131 

(FM21 and FM32) and the novel ST11350 (FM25), presented highly virulent genes found in 

APEC, and to a lesser extent, in UPEC and NMEC E. coli (MELLATA et al., 2013; 

SAROWSKA et al., 2019). The ST131 isolated here presented virulent profiles very similar to 

previously described ST131-fimH22 (REID et al., 2019; DÍAZ-JIMÉNEZ et al., 2020; 

SAIDENBERG et al., 2020; LOPES et al., 2021). This potential foodborne uropathogen (LIU 

et al., 2018; REID et al., 2019; SAIDENBERG et al., 2020) sustains zoonotic transmission 

and although mainly described in livestock (GARCÍA-MENIÑO et al., 2018; SAIDENBERG 

et al., 2020) and associated meat products (DÍAZ-JIMÉNEZ et al., 2020), has recently been 

suggested as a pathogen capable of transmission through the human-animal-environmental 

interface, due to recent reports in wildlife (pinnipeds in Antartica) (MORA et al., 2018) and 

soil (Brazil) (LOPES et al., 2021). Our findings emphasize such potential and, to the authors’ 

knowledge, are the first description of the ST131-fimH22 sublineage in wild birds worldwide. 

Finally, although our ST117 isolate presented a serotype (O51) different from those 

commonly considered potentially pathogenic to humans and poultry (O1, O2, O18, O25b, 

O78, O111) (MORA et al., 2012; MOULIN-SCHOULEUR et al., 2007), its virulence 

genotype is commonly shared between APEC and UPEC strains (i.e., pic, vat, lpfA, traT) 

(MALUTA et al., 2014; FERNANDES et al., 2018; SAROWSKA et al., 2019). APEC and 

ExPEC strains causing infections in humans can be closely phylogenetically related (e.g., 

ST131, ST117), with the former being suggested as a reservoir of virulence genes to ExPEC, 

and therefore, a potential health risk to humans (RODRIGUEZ-SIEK et al., 2005; 

BÉLANGER et al., 2011; MANGES 2016). In birds, APEC may cause multiple systemic 

infections refered to as colibacillosis, that in poultry, leads to significant economic losses 

worldwide (MELLATA et al., 2013; KEMMETT et al., 2014; SAIDENBERG; KNÖBL 
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2005). Thus, in spite of the apparently good health condition of the magnificent frigatebirds 

individuals carrying these isolates, our findings warrant concerns in terms of zoonotic risk, 

and to a lesser extent, potential health challenges to the local avian population using the Atoll. 

 Phylogenetically, ST131 and ST117 clustered with isolates from a variety of 

epidemiological settings and geographic locations, in accordance with their pandemic profiles 

(REF). Of note, ST117 (FM18) grouped closer with strains from migratory and opportunistic 

(e.g., scavenging in human subsidies) gull species in Europe and the United States (mew and 

European herring gulls, respectively) (BIRDLIFE INTERNATIONAL, 2020), previously 

reported to carry ARGs and ARB (WALLENSTEN et al., 2011; STEDT et al., 2015; 

ATTERBY et al, 2016; 2017). In terms of geographical distribution, both species overlap in 

northern Europe; mew gulls are distributed throughout most of the Northern Hemisphere 

(North America, Asia and Northern Europe) and European herring gulls also occur in 

southwestern Europe (BIRDLIFE INTERNATIONAL, 2020). Nevertheless, none of the 

seabird species evaluated herein share their territories with these gull species (REF). 
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Figure 2. Phylogeny of CTX-M-8-producing E. coli isolate (FM21 and FM32) from magnificent frigatebirds (Fregata magnificens), in comparison with an international E. 
coli collection, regarding country and source of isolation (colored circles). Isolates clustering with our samples are seen in the blue clade. Tree scale: 1000 
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Figure 3. Phylogeny of CTX-M-8-producing E. coli isolate (FM18) from magnificent frigatebirds (Fregata magnificens), in comparison with an international E. coli 
collection, regarding country and source of isolation (colored circles). Isolates clustering with our samples are seen in the red clade. Tree scale: 1000 
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 All our ESBL-EC isolates were detected in magnificent frigatebirds (order 

Pelicaniformes, family Fregatidae). This seabird species is highly colonial, nonmigratory and 

nonsynathropic, and sustains vast foraging territories (WEIMERSKIRCH et al., 2001; 2003; 

BIRDLIFE INTERNATIONAL, 2020), feeding in surface prey but also relying on 

kleptoparasitism and fishing interaction (NELSON, 1976; CORRE; JOUVENTIN, 1997; 

ZALUSKI et al., 2019). This species does not breed in ROA, using the atoll only for 

overnight roosting (ANTAS, 1991). The magnificent frigatebirds sampled in this study most 

likely came from the large year-round breeding colony of Sela Gineta Island, in Fernando de 

Noronha Archipelago (FNA) (03º45’S to 03º57’S and 32º19’W to 32º41’W), located at 360 

km off the Brazilian coast and 148 km from ROA. Such suggestion is reinforced by the 

banding information recovered from two specimens, including FM18, which carried a ST117 

isolate harboring blaSHV-12 (Table 3). Due to its geological formation, Sela Gineta has never 

been inhabited or opened to tourist visitation; however, it is less than one kilometer from 

Fernando de Noronha Island, the only human settlement in the archipelago. This island 

houses the 3101 permanent FNA residents (INSTITUTO BRASILEIRO DE GEOGRAFIA E 

ESTATÍSTICA, 2021) and all tourists, estimated at 100,000 visitors in the study year alone 

(personal communication, Parque Nacional Marinho, ICMBio, 2020).  

 International travel has been shown to contribute to the worldwide dissemination of 

ESBL-EC (BENGTSSON-PALME et al., 2015; ARCILLA et al., 2017). Additionally, some 

of the ESBL-EC strains described herein (i.e., ST131 and ST117), have been previously 

reported in the mainland (CAMPOS et al., 2018; FERNANDES et al., 2018). Thus, we 

believe that national and international tourism may have played a role in the acquisition of 

these strains. The disproportionate and intense tourism causes serious infrastructural and basic 

sanitation problems to FNA, such as direct release of untreated sewage, and deficient 

wastewater treatment and release of wastewater into the sea (ANDRADE et al., 2007; DA 

COSTA CRISTIANO et al., 2020). Once in the aquatic environment, ARGs and ARB may 

disseminate further, eventually to humans (ZHANG et al, 2009) and domestic and wild 

animals (TAUSOVA et al., 2012; BRAHMI et al., 2015), including wild birds (DOLEJSKA 

et al., 2009; ATTERBY et al., 2016; 2017; MARCELINO et al., 2019) and their prey (fish 

and seafood) (BRAHMI et al., 2015; SELLERA et al., 2018). We hypothesize that the 

magnificent frigatebirds carrying ESBL-EC likely acquired these isolates in FNA, as a 

consequence of one or more of the following factors: the high year-round influx of tourists, 

inadequate wastewater management system of the archipelago and influx of raw sewage and 

wastewater treatment plant effluents into the aquatic environment, and ingestion of 
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contaminated food items (fish and seafood). Thus, magnificent frigatebirds could have acted 

as a “flying bridge”, transporting these isolates from an intensely anthropized environment 

(FNA) to a pristine one (ROA), as previously suggested in other wild bird species using 

isolated biomes (SJÖLUND et al., 2008; HERNÁNDEZ et al., 2010; 2016). Such hypothesis 

is especially concerning considering the combined use of FNA and ROA by several seabird 

species, as shown in our banding records (Table 3) and previous literature (ANTAS, 1991).  

 Alternatively, the research base and the presence of researchers in ROA, albeit strictly 

controlled to minimize potential environmental impact (e.g., minimal number of researchers 

per expedition, short-term expeditions, transport of organic waste back to the continent), 

could have served as potential sources for the ESBL-EC strains identified in this study, as 

previously suggested in other remote locations (HERNÁNDEZ et al., 2016; MARCELINO et 

al., 2019). Nevertheless, in that case, one would expect to also find ESBL-EC isolates in 

resident species (masked and brown boobies), which breed and spend most of their life cycles 

in the atoll (SCHULZ-NETO, 1998). A recent direct molecular detection study in the 

microbiome of the same ROA individuals evaluated herein and seabird species from FNA 

(i.e., masked and brown boobies, and magnificent frigatebirds), found that masked and brown 

boobies presented significant lower prevalence of ARGs encoding resistance to beta-lactams 

(blaTEM and blaCTX), and statistically significant lower blaTEM prevalence (EWBANK et al., 

2020). Interestingly though, blaTEM prevalence was statistically significant higher in sooty 

terns and brown noddies (EWBANK et al., 2020). ROA is an intensely populated seabird 

breeding site (ANTAS, 1991; SCHULZ-NETO, 2004) - the main one for brown noddies in 

Brazil, and home of the largest sooty tern population in the Southern Atlantic (DEL HOYO et 

al., 1996; HIGGINS; DAVIES, 1996; FISCHER et al., 2007). Based on our banding records 

(Table 3), individuals of both species do return to ROA and, most importantly, are highly 

migratory and hypothetical transporters of AMR with far greater potential than non-migratory 

species such as magnificent frigatebirds (BONNEDAHL et al., 2009; ATTERBY et al., 2017; 

AHLSTROM et al., 2018; EWBANK et al., 2020), possibly serving as local sources of ARB. 

Finally, the direct intra and interspecies contact (i.e., colonial behavior and kleptoparasitism) 

and broad foraging territories sustained by magnificent frigatebirds could have potentially 

favored the spread of the isolates found in this study. This hypothesis is especially supported 

by the isolation of the O25b-ST131 clones, which possibly originated from a common source 

and were circulating within the magnificent frigatebird colony. Of note, this species sustains 

mixed colonies in FNA and ROA with other seabirds analyzed here: red-footed and brown 

boobies (MANCINI et al., 2016). Particularly in the atoll, such interspecific contact is 
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especially close, due to kleptoparasitism, and competion over and sharing of the very limited 

number of perching sites for overnight roosting (A. C. Ewbank, personal observation; Fig. 4). 

Nevertheless, ESBL-EC were found solely in magnificent frigatebirds and not in these 

contacting species. The cause(s) behind all the above-mentioned factors remain(s) to be 

determined and warrant further studies, but may be related to differences in host taxonomy, 

age, diet and feeding ecology, variety of foraging sites, gut morphology, gastrointestinal 

environment (which affect the structure of E. coli populations), microbiota and microbiome 

(ESCOBAR-PARAMO et al., 2006; NELSON et al., 2008; GODOY-VITORINO et al., 2010; 

FUIRST et al., 2018; MARCELINO et al., 2019). Additionally, one must also consider 

species-specific differences in exposure to potential sources and differences in strains with 

varying capabilities to persist in the source environments and in each species gut (NELSON et 

al., 2008). 

 
Figure 4. Area intensilly cohabitated by frigatebird (Fregata magnificens), red-footed-booby (Sula sula) and 
brown booby (Sula leucogaster) 
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 Although able to acquire ARGs and ARB of human, food-producing animals and 

environmental origin (BONNEDAHL et al., 2009; 2010; 2015; HERNANDEZ et al., 2010; 

2013; STEDT et al., 2015; ATTERBY et al., 2017; GUENTHER et al., 2017; AHLSTROM et 

al., 2018; MARCELINO et al., 2019), the role of wild birds as natural dispersers has not yet 

been confirmed (GUENTHER et al., 2012; BONNEDAHL et al., 2015; STEDT et al., 2015). 

Despite previous suggestions (BONNEDAHL et al., 2009; SIMÕES et al., 2010; ATTERBY 

et al., 2016; ZENDRI et al., 2019), there is no current scientific evidence that wild bird 

populations act as reservoirs of infection (HAYDON et al., 2002; VIANA et al., 2014), able 

to permanently maintain ARGs and ARB in their microbiota and transmit them to a target 

population (e.g., humans, animals) in real world conditions. Nevertheless, a migratory seabird 

species (ring-billed gulls [Larus delawarensis]) experimentally inoculated with an E. coli 

strain harboring plasmid-mediated mcr-1 gene was able to shed these strains in feces for days, 

contaminate the environment and infect con-specifics in an artificially controlled environment 

(FRANKLIN et al., 2020). Thus, the potential influence of migratory movements in the 

dissemination of ARB and ARGs should be further investigated. In spite of that, wild birds 

have a relevant epidemiological role in the One Health chain of ARGs and ARB, acting as 

bioindicators at the human-wildlife-environment interface (BONNEDAHL et al., 2009; 

ATTERBY et al., 2017; AHLSTROM et al., 2018; EWBANK et al., 2020). Finally, the 

complex ESBL-EC transmission dynamics in natural environments is believed to be driven by 

plasmid transfer in commensal and pathogenic strains, and by the clonal spread of certain 

lineages in local areas (i.e., O25b-ST131) (MOHSIN et al., 2017).  

 Finally, despite the considerable number of birds evaluated in this study, the low 

ESBL-EC prevalence was not surprising, considering the low anthropogenic influence over 

the atoll (e.g., geographical isolation and characteristics of local research expeditions). In 

spite of that, such ESBL-EC prevalence is still higher than those described in previous studies 

in wild birds at remote places, which ranged from no ESBL-EC isolates to 0.14% 

(HERNANDÉZ et al., 2010; ATTERBY et al., 2016; HERNANDÉZ et al., 2016; 

GUENTHER et al., 2017; RAMEY et al., 2018). Regardless, the presence of critically 

important isolates and genes (conferring resistance to cephalosporins) (TACCONELLI et al., 

2018), in such a pristine environment is not only concerning from a One Health perspective, 

but also in face of the disruptive potential of AMR introduction into bacterial communities of 

fragile ecosystems (ALLEN et al., 2010; LO GIUDICE et al., 2019).  

 To the authors’ knowledge, our study describes the first detection of: (1) the pandemic 

and public health relevant ST131-O25b harboring blaCTX-M-8 worldwide; (2) ST131-fimH22 in 
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wild birds; and (3); fosA3 in wildlife. Our findings expand the current epidemiological 

knowledge regarding host and geographical distribution of ESBL-EC and ARGs in wild birds, 

and although it was not possible to identify the exact epidemiological route(s) of our strains, 

emphasize the disseminating characteristics and adaptability of ST131 and ST117 strains 

within the human-animal-interface, highlighting the complex and interconnected One Health 

nature of antimicrobial resistance. Herein we confirm the importance of considering 

biological and ecological species-specific factors in the study of ARB and ARGs in wildlife 

and that nonsynanthropic wild birds may have a role in the epidemiology of antimicrobial 

resistance (DOLEJSKA; LITERAK, 2009; AHLSTROM et al., 2018; EWBANK et al., 

2020). We suggest that magnificent frigatebirds may act as “flying bridges”, transporting 

ESBL-EC and ARGs from an anthropogenically-impacted environment to a pristine and 

remote location. We suggest that inter and intraspecific interactions may serve as infection 

routes and have increased epidemiological relevance in key seabird breeding insular 

territories with limited space availability sustaining high population densities, such as ROA. 

Additionally, the atoll is also used by highly migratory species (e.g., brown noddies and sooty 

terns), which could hipothetically participate in the potencial dissemination of resistance. 

Most of all, the characteristics of our isolates warrant zoonotic concern and, despite the 

apparent good health of all the evaluated birds, be a potential risk to the avian population 

using the atoll. Continuous spatial and temporal studies on the prevalence and characteristics 

of ARB and ARGs in the pristine and remote Rocas Atoll are necessary to further assess 

potential sources of infection. In order to confirm our hypothesis about the origin of the 

ESBL-EC isolates, further studies are required to survey their presence in the seabird species 

concomitantly using FNA and ROA, and potential local antimicrobial resistance sources (e.g., 

wastewater effluents and sewage) in the archipelago. All future studies would greatly benefit 

from longitudinal sample collection to assess the abundance, colonization and shedding of 

ARB throughout a span of time, and of devices such as satellite trackers, assessing the 

potential transport of resistance from anthropized to pristine biomes by wild birds, effectively 

investigating if wild birds could act as reservoirs and disseminators of ARGs and ARB. 
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5 HIGHLY VIRULENT ESCHERICHIA COLI ST648 HARBORING CMY-2 AND 

CTX-M-2 ß-LACTAMASES IN MAGNIFICENT FRIGATEBIRD (FREGATA 

MAGNIFICENS) OF AN UNINHABITED INSULAR ENVIRONMENT, 

SOUTHEASTERN BRAZIL 

 

Ana Carolina Ewbank, Danny Fuentes-Castillo, Carlos Sacristán, Fernanda Esposito, Bruna 

Fuga Araújo, Silvia Neri Godoy, Roberta  Ramblas Zamana, Marco Aurélio Gattamorta, José 

Luiz Catão-Dias, Nilton Lincopan 

 

ABSTRACT 

 Antimicrobial resistance result from a naturally occurring ancient phenomenon 

increasingly pressured by anthropogenic activities. Escherichia coli (family Enterobacterales) 

has been used as markers of environmental contamination and anthropogenic activity. 

Seabirds may behave as bioindicators of the environmental presence and dissemination of 

extended-spectrum-beta-lactamase (ESBL)-AmpC-producing E. coli (ESBL/AmpC-EC) in 

remote locations. We surveyed cloacal swabs of 20 wild magnificent frigatebird (Fregata 

magnificens) in the uninhabited Alcatrazes Archipelago, located in the highly anthropized 

southeastern Brazilian coast. We found an ESBL/AmpC-EC prevalence of 5% (1/20). The 

isolate belonged to a highly virulent MDR ST648 (serotype O153:H9) pandemic clone 

harboring antimicrobial resistance genes blaCTX-M-2, blaCMY-2, qnrB, tet(A), tet(B), sulI, sulII 

and aac(3)-Via. Additionally, the isolate carried virulence genes (VGs) characteristic of avian 

pathogenic E. coli (APEC) (hlyF, iroN, iss, iutA, and ompT) and other extraintestinal E. coli 

(ExPEC) pathotypes (e.g., kpsMII [K1 capsule virulence factor], ibeABC [invasion brain 

endothelium gene], sitABCD [iron transport protein], and iroBCDEN [enterobactin 

siderophore receptor protein]). To the authors’ knowledge, this is the first report of ST648 

clone and ESBL/AmpC-EC in wild birds inhabiting insular environments. We suggest that 

this potentially zoonotic and avian pathogenic isolate was likely acquired through indirect 

contamination by human sources released into the marine environment (e.g., sewage), 

ingestion of contaminated seafood, or direct intra and/or interspecies contact. Our findings 

highlight the public health importance of wildlife studies on pathogenic bacteria, and the role 

of wild birds as anthropization sentinels in insular environments and their involvement in the 

One Health chain of antimicrobial resistance, even in uninhabited sites. 
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5.1 INTRODUCTION 

 

 Antimicrobial resistance result from a naturally occurring ancient phenomenon that 

have been severely affected by anthropogenic activities such as use, misuse and overuse of 

antimicrobials in human and veterinary medicine, aquaculture and agriculture, and release of 

pharmaceutical manufacturing, domestic and agricultural waste into the environment 

(WRIGHT, 2007; WEST et al., 2010; CUMMINGS et al., 2011; GRAHAM et al., 2011; 

YANG et al., 2013; BENGTSSON; GREKO, 2014). Escherichia coli (family 

Enterobacterales) is broadly suggested and used as a marker of environmental contamination 

and anthropogenic activity (BONNEDAHL et al., 2009; TENAILLON et al., 2010; 

PESAPANE et al., 2013). Extended-spectrum-ß-lactamase (ESBL)-producing E. coli (ESBL-

EC) and AmpC-producing E. coli (AmpC-EC) are a rapidly emerging public health issue 

(WORLD HEALTH ORGANIZATION, 2014), described in several epidemiological settings 

within the human-animal-environmental interface; from nosocomial to community-acquired 

infections (EWERS et al., 2012; EGERVÄRN et al., 2017; MUGHINI-GRAS et al., 2019). 

Consequently, antimicrobial resistance lead to great healthcare, social and economical 

burdens worldwide (BENGTSSON; GREKO, 2014; MICHAEL et al., 2014), thus considered 

a quintessential One Health issue (LIU et al., 2016).  

 Seabirds have been used as bioindicators of the ESBL/AmpC-EC environmental 

presence and dissemination in remote locations (HERNANDEZ et al., 2010; ARDILES-

VILLEGAS et al., 2011; ATTERBY et al., 2016; HERNANDÉZ; GONZÁLEZ-ACUÑA 

2016; RAMEY et al., 2018) due to their potential as sentinels of natural and anthropogenic-

related changes to the marine ecosystem health (RABINOWITZ et al., 2010). Given that 

antimicrobial resistance genes are considered environmental pollutants and markers of 

environmental anthropization (PRUDEN et al., 2006; JOBBINS; ALEXANDER, 2015), most 

ESBL/AmpC-EC seabird studies have focused in synanthropic species inhabiting anthropized 

environments (e.g., urban areas and dumpsites) (BONNEDAHL et al., 2009; 2014; 

ATTERBY et al., 2016; AHLSTROM et al., 2018; 2019). Yet, insular biomes not inhabited 

by humans represent an informative setting in the study of the One Health chain of 

antimicrobial resistance by providing valuable insight into the occurrence, diversity, and 

dissemination of antimicrobial resistance genes (ARGs) and antimicrobial resistant bacteria 
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(ARB), such as ESBL/AmpC-EC, the indirect anthropogenic effects over the environment 

(e.g., marine pollution), and potential influence of biological and ecological characteristics of 

their local avian fauna (e.g., migration, use of coastal areas) (HERNANDEZ ET AL., 2010; 

EWBANK ET AL., 2020) 

 This study surveyed the occurrence, phenotypic and genotypic characteristics of 

ESBL/AmpC-EC in cloacal swabs of 20 wild magnificent frigatebird (Fregata magnificens; 

family Fregatidae) from an uninhabited archipelago in southeastern Brazil. We used 

microbiological techniques and whole genome sequencing (WGS) to further identify and 

characterize the bacterial lineages, serotypes, resistome, plasmidome and virulome. 

 

5.2 MATERIALS AND METHODS 

 

5.2.1 Study area 

 

 The Alcatrazes Island is the principal, among the five islands and four islates forming 

the Alcatrazes Archipelago (24° 05' 44.69" S 45° 41' 52.92" W), located at 36 km off the 

coast of São Sebastião district, in São Paulo state, southeastern Brazil (ROCHA; BONNET 

2009; ICMBio 2017). Human occupation and tourist visitation to the archipelago have been 

historically restricted. In 1979, the Brazilian Navy started using the northeastern face of 

Alcatrazes Island as target practice. Later on, in 1987, the Tupinambás Ecological Station 

(Esec Tupinambás) was created, partially including the archipelago, and restricting visitation 

even more. In 2013, the Brazilian Navy moved its training grounds to a smaller island of 

Alcatrazes. Finally, in 2016, the archipelago and adjacent marine area (approximatelly 700 

km2) were declared a conservation area - the Alcatrazes Archipelago Wildlife Refuge 

(Refúgio de Vida Silvestre do Arquipélago de Alcatrazes - Refúgio de Alcatrazes), focused 

specifically on the conservation of its local wildlife and flora, administered by the Chico 

Mendes Institute for Biodiversity Conservation (ICMBio), Brazilian Ministry of Environment 

(ICMBio, 2017).  

 

5.2.2 Sampling and bacterial identification  

 

 Overall, 20 magnificent frigatebirds were sampled in the main island (Alcatrazes 

Island), in January 2020. All birds were captured with the aid of a butterfly net, manually 

restrained and immediately released after sample collection. The cloacal swabs were 
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maintained in Amies transport medium containing charcoal and maintained at room 

temperature until processed. Aiming on ESBL- and AmpC-EC detection, cloacal samples 

were streaked onto ceftriaxone (CRO)-supplemented MacConkey agar plates (CRO: 2 mg/L) 

and incubated overnight at 35 ± 2 °C. Bacterial isolates were identified by MALDI-TOF MS 

(Matrix Assisted Laser Desorption Ionization Time Of Flight Mass Spectrometry, Bruker 

Daltonik, Leipzig, Germany). All samples were collected in full compliance with the 

Biodiversity Information and Authorization System (SISBIO 59150-4), Brazilian Ministry of 

Environment. All procedures were performed in accordance with the Ethical Committee in 

Animal Research of the School of Veterinary Medicine and Animal Sciences, University of 

São Paulo (Process number 1753110716).   

 

5.2.3 Antimicrobial susceptibility testing  

 

 Antimicrobial susceptibility was evaluated by the disc diffusion method using the 

following human and veterinary antimicrobials (CLSI, 2018, 2019): amoxicillin/clavulanate, 

ceftriaxone, cefotaxime, ceftiofur, ceftazidime, cefepime, cefoxitin, imipenem, meropenem, 

ertapenem, enrofloxacin, ciprofloxacin, gentamycin, amikacin, chloramphenicol, 

trimethoprim-sulfamethoxazole, and tetracycline. The double-disc synergy test (DDST) was 

used to screen for ESBL (JARLIER et al., 1988).  

 

5.2.4 Whole genome sequence analysis 

 

 The genomic DNA of a single ESBL/AmpC-EC strain was extracted using a 

PureLinkTM Quick Gel Extraction Kit (Life Technologies, Carlsbad, CA, USA) and a 

genomic paired-end library (75 x 2 bp), prepared using a Nextera XT DNA Library 

Preparation Kit (Illumina Inc., Cambridge, UK), according to the manufacturer’s instructions. 

The whole genome was sequenced on the NextSeq platform (Illumina). De novo genome 

assembly and contig annotation was performed with CLC Genomics Workbench 12.0.3. The 

MLST 2.0, PlasmidFinder 2.0, ResFinder 4.1, VirulenceFinder 2.0 and SerotypeFinder 2.0 

databases available at the Centre for Genomic Epidemiology 

(http://genomicepidemiology.org/) were used to identify, respectively, the multilocus 

sequence type (MLST), plasmid replicons, resistome, virulome and serotype. 

 A minimum spanning tree based on the wgMLST scheme and MSTree V2 tool from 

Enterobase (http://enterobase.warwick.ac.uk/species/index/ecoli) was constructed including 
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the E. coli isolate found in this study and an international collection of 107 E. coli strains 

belonging to ST648. The phylogenetic tree was generated using iTOL v.6 

(https://itol.embl.de). An interactive version of the tree can be found at 

https://itol.embl.de/tree/1791137681100671617229508.  

 

5.3 RESULTS 

 

 Overall, we found an ESBL/AmpC-EC prevalence of 5% (1/20) in the evaluated 

individuals. Phenotypically, the isolate presented a multidrug resistance (MDR) profile, being 

resistant to amoxicillin/clavulanic acid, ceftiofur, cefoxitin, cefepime, aztreonam, 

trimethoprim-sulfametoxazol, gentamicin, and tetracycline. Genotypically, the isolate 

harboured genes blaCTX-M-2, blaCMY-2, qnrB, tet(A), tet(B), sulI, sulII and aac(3)-VIa in its 

resistome. Multilocus sequence typing (MLST) analysis revealed that the isolate 

corresponded to ST648 (serotype O153:H9). The resistome, plasmidome and virulome are 

listed in Table 1. 

 Upon phylogenetic analysis, our isolate clustered with strains recovered from human 

(Australia), livestock (Spain and United States), poultry (United States), and gull (Larus 

argentatus; United States) (Figure 1). 
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Table 1. Resistome, plasmidome, virulome and MLST analysis an ESBL-producing Escherichia coli ST648 (O153:H9) clone colonizing a 
magnificent frigatebird (Fregata magnificens) in Alcatrazes Archipelago, southeastern Brazil. 
 

Antimicrobial resistancea Plasmid Inc. groups Virulomeb 

blaCXT-M-2 
1 Col aec15, 19, 22, 23, 24, 25, 26, 27/clpV, 28, 29, 30, 31, 32 

blaCMY-2 
1 IncFIB cba, cfaBC, chuASTUWXY, cia, cma, cvaC 

aa(3)-VIa 2 IncFIB eaeH, ecpABCDE, ehaB, eilA, elfACDG, espL1, R1, X1 , X4, X6, Y1, Y2, Y4, etsC 

catI 3 IncFII fimACDEFGHI 

qnrB 4  gad, glf 

sulI 5  hlyF 

sulII 5  ibeBC, ireA, iroBCDEN, iss, iucABCD, iutA 

tet(A) 6  kpsE, kpsMII 

tet(B) 6  lpfA 
  mchF 
  ompT 
  papCDH, pilUW 

  sitABC 

  terC, tia, traT, tsh 

  vat 

  yfcV 
a 
Genes conferring resistance to: 1, cephalosporins; 2, aminoglycosides; 3, phenicols; 4, quinolones; 5, sulfonamides; 6, tetracyclines.  

b Virulence factor genes: aec (auxin efflux carrier); cba (colicin ia); cfaBC (cyclopropane-fatty-acyl-phospholipid synthase); chuASTUWXY (outer membrane hemin 
receptor), cia (colicin ia); cma (ColM activity); cvaC (microcin C); eaeH (putative attaching and effacing protein homolog); ecpABCDE (E. coli common pillus); eilA 
(Salmonella HilA homolog); elfACDG (E. coli laminin-binding fimbriae); espL1, R1, X1 , X4, X6, Y1, Y2, Y4 (ype III system‐secreted proteins); etsC (putative type I 
secretion outer membrane protein); fimACDEFGHI (Type I fimbriae); gad (glutamate decarboxylase); glf (UDP-galactopyranose mutase); hlyF (hemolysin F); ibeBC 
(invasion brain endothelium), ireA (siderophore receptor); iroBCDEN (enterobactin siderophore receptor protein); iss (increased serum survival); iucABCD (aerobactin 
production); iutA(aerobactin siderophore receptor gene); kpsE (capsule polysaccharide export inner-membrane protein), kpsMII (polysialic acid transport protein; Group 2 
capsule); lpfA (long polar fimbriae); mchF (ABC transporter protein MchF); ompT (outer membrane protease (protein protease 7); papCDH (P fimbriae); pilUW (Type I 
fimbriae); sitABC (iron transport protein); terC (tellurium ion resistance protein); tia (adhesin); traT (outer membrane protein complement resistance); tsh (temperature-
sensitive hemagglutinin); sitABC (iron transport protein); vat (vacuolating autotransporter toxin); yfcV (major subunit of a putative chaperone-usher fimbria). 
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Figure 1. Phylogeny of CTX-M-2 and CMY-2-producing ST648 E. coli isolate of a magnificent frigatebird (Fregata magnificens) in comparison 
with an international E. coli collection, regarding source of origin (colored circles), origin of the isolate (country), and year of isolation. Tree 
scales: 1000. 
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5.4 DISCUSSION 
 

 In this study, we found an overall prevalence of 5% (1/20) ESBL/AmpC-EC isolates 

in magnificent frigatebirds of Alcatrazes Archipelago, southeastern coast of Brazil: a MDR 

highly virulent avian pathogenic E. coli (APEC) isolate of the pandemic lineage ST648 

(serotype O153:H9) harboring blaCTX-M-2 and blaCMY-2.  To the authors’ knowledge, this is the 

first report of the ST648 clone and Amp-EC in wild birds inhabiting insular environments.  

Escherichia coli ST648 is a predominantly MDR highly virulent emerging clone and 

one of the most commonly reported international sequence types (STs) in the human–animal–

environment interface worldwide, suggesting great host adaptation (HU et al., 2013; 

MÜLLER et al., 2016; FERNANDES et al., 2018; PAULSHUS et al., 2019; DE 

CARVALHO et al., 2020). Similarly, ST648 has been detected in wild birds from almost all 

continents: Europe (passerines and waterfowl [GUENTHER et al., 2010], birds of prey and 

cranes [GUENTHER et al., 2012], and corvids [SCHAUFLER et al., 2019]), the Americas 

(gulls [POIREL et al., 2012; BÁEZ et al., 2014), Asia (gulls [HASAN et al., 2012] and 

waterfowl [YANG et al., 2016]), and Oceania (gulls and penguins [MUKERJI et al., 2019]). 

To this date, in Brazil, this clone had been described solely in wild birds of prey (BATALHA 

DE JESUS et al., 2018; DE CARVALHO et al., 2020). 

 The CTX-M-2 and CMY-2 enzymes are, respectively, the most prevalent CTX-M 

ESBL-encoding family in South America and AmpC beta-lactamase worldwide (JACOBY 

2009; ROCHA et al., 2016; WANG et al., 2017), broadly reported in all epidemiological 

settings, including in Brazil (PIETSCH et al., 2018; ROCHA et al., 2016, MELO et al., 2018; 

FERNANDES et al., 2020b; CUNHA et al., 2017; CONTE et al., 2017; DE CARVALHO et 

al., 2020). In wild birds, the blaCTX-M-2 and blaCMY-2 genes have been described in Europe 

(gulls [STEDT et al., 2015; ALCALÁ et al., 2016], corvids [LONCARIC et al., 2013; 

JAMBOROVA et al., 2017], and in an Eurasian magpie [ATHANASAKOPOULOU et al., 

2021]), and in the Americas (gulls [POIREL et al., 2012; ATTERBY et al., 2016; BÁEZ et 

al., 2015; LIAKOPOULOS et al., 2016; AHLSTROM et al., 2018] and bald eagles 

[AHLSTROM et al., 2018]). In Brazil, blaCTX-M-2 has been detected in wild birds of prey 

(BATALHA DE JESUS et al., 2018; DE CARVALHO et al., 2020) and parrots (BATALHA 

DE JESUS et al., 2018), and in bumblefoot lesions of a wild Magellanic penguin (Spheniscus 

magellanicus) undergoing rehabilitation (SELLERA et al., 2017); while blaCMY-2 has been 

described only in raptors (BATALHA DE JESUS et al., 2018). 
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 Our isolate presented several virulence genes of concern, characteristic of 

Extraintestinal pathogenic E. coli (ExPEC); an emerging pathogen responsible for increasing 

socio-economic burdens, with pandemic strains reportedly causing community and 

healthcare-associated outbreaks, also affecting livestock (especially poultry), companion 

animals and wildlife worldwide (RILEY 2004; EWERS et al., 2010; GUENTHER et al., 

2010; KEMMET et al., 2014; MASELLA et al., 2020). The ExPEC pathotype is subdivided 

into avian pathogenic E. coli (APEC), neonatal meningitis E. coli (NMEC), sepsis-associated 

E. coli (SEPEC), and uropathogenic E. coli (UPEC) (MELLATA et al., 2013; SAROWSKA 

et al., 2019). We identified plasmid-borne virulence factors typical of highly pathogenic 

APEC isolates: cvaC (colicin V), fimC (fimbriae type I), hlyF (hemolysin F), ibeABC 

(invasion brain endothelium gene), iroN (salmochelin), iss (increased serum survival), iucC 

(aerobactin production) iutA (ferric aerobactin receptor), ompT (outer membrane protein), 

sitA (iron transport protein), tsh (temperature-sensitive hemagglutinin) and traT (transfer 

protein) (EWERS et al., 2007; 2009; SAROWSKA et al., 2019). APEC strains cause multiple 

systemic and localized infections in birds, generally referred to as avian colibacillosis, leading 

to high mortality and decreased production, consequently imposing severe economic losses to 

the poultry industry worldwide (SAIDENBERG; KNÖBL 2005; KEMMET et al., 2014; 

MARKLAND et al., 2015). Worryingly, we also found virulence genes characteristic of the 

other ExPEC: chuA (outer membrane hemin receptor), kpsMII (polysialic acid transport 

protein), sitABCD (iron transport protein), iroBCDEN (enterobactin siderophore receptor 

protein), traT, vat (vacuolating autotransporter toxin), papC (outer membrane usher protein), 

and yfcV (major subunit of a putative chaperone-usher fimbria) (KIM 2002; GRIMWOOD et 

al., 2000; SAROWSKA et al., 2019). Of note, some of the virulence factors found in our 

isolate were previously reported in magificent frigatebirds from Alcatrazes Archipelago: 

cvaC, fimH, hlyF, ibeA, iroN, iss, iutA, ompT, papC, and traT (SAVIOLLI et al., 2016). 

Although APEC and ExPEC strains are phylogenetically close, sharing some of the same 

virulence genes, APEC may carry others not common in ExPEC isolates, such as those 

present in the colicin V (ColV) plasmid (RODRIGUEZ-SIEK et al., 2005; BÉLANGER et al., 

2011; MELATTA et al., 2013; MANGES 2016). These characteristics suggest that APEC 

strains are potentially zoonotic, and could be a reservoir and source of virulence genes for 

ExPEC strains (EWERS et al., 2007; JOHNSON et al., 2008; BÉLANGER et al., 2011). 

APEC infections in humans could take place through consumption of undercooked food from 

animal origin (especially retail poultry products), and direct contact with birds and their feces 

(DZVA; STEVENS 2008; OJENIYI 1989).  
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 Anthropization has been suggested as a driving factor in the epidemiology of ARGs in 

wildlife (ATTERBY et al., 2017; AHLSTROM et al., 2018; SACRISTÁN et al., 2020; 

EWBANK et al., 2020).  Although occasionally visited or exploited for commercial guano 

harvesting until the mid-20th century (GIBRAN et al. 2012), to this date, there are no reports 

of human occupation or settlements in the archipelago (Alcatrazes Archipelago Wildlife 

Refuge, Chico Mendes Institute for Biodiversity Conservation, personnal communication). 

Nevertheless, Alcatrazes is located in the highly anthropized southeastern Brazilian coast, 

subjected to intense tourism activities, fishing, oil exploitation, harbouring a commercial port 

and the largest oil and derivatives terminal in Latin America (Terminal Marítimo Almirante 

Barroso - TEBAR). The aquatic environment is very relevant in the epidemiology of ARGs 

(ZHANG et al., 2009; MARTI; BALCAZAR et al., 2014), by promoting the interaction 

among antimicrobials, their metabolites and residues, other pollutants (e.g., disinfectants, 

metals), and resistant bacteria from distinct settings (human [e.g., wastewater, sewage], 

animal [e.g., aquaculture, manure], and environmental [e.g., manure-amended soil]) 

(BAQUERO et al., 2008). Recent studies assessing antimicrobial resistance pollution in the 

marine ecosystem of the southeastern Brazilian coast showed that the local resistome is under 

severe anthropogenic pressure (FERNANDES et al., 2017; SELLERA et al., 2018; 

FERNANDES et al., 2020a; FERNANDES et al., 2020b; Ewbank et al., 2021).  

 Despite the hypothetical zoonotic and pathogenic potential of our isolate (Ewers et al., 

2014; Maluta et al., 2014; Sarowska et al., 2019), one must also carefully consider the low 

prevalence of ESBL-/AmpC-EC found in this study (5%; 1/20), and species-specific 

biological and ecological factors - key in the discussion of antimicrobial resistance in wild 

birds (DOLEJSKA et al., 2019; EWBANK et al., 2020). The Alcatrazes Archipelago is the 

largest insular bird breeding site of the southeastern Brazilian coast and the biggest breeding 

colony of magnificent frigatebirds in the southern Atlantic (Alcatrazes Island) (MUSCAT et 

al., 2014, ICMBio 2017). Magnificent frigatebirds are nonsynanthropic, nonmigratory, highly 

colonial seabird species that prefer insular over coastal environment and known for their 

particular feeding techniques (e.g., kleptoparasitism and fisheries interaction) (BIRDLIFE 

INTERNATIONAL, 2020; SAVIOLLI et al., 2016). Such characteristics infer that the studied 

individuals most likely sustain very limited to no direct contact with humans, and that due to 

their philopatric (site fidelity) behavior are continuously interacting with other birds 

(especially with brown boobies (Sula leucogaster) and black vultures (Coragyps atratus), 

(A.C. Ewbank, personal observation), thus actively exchanging body fluids, a possible route 

of infection by ESBL-EC, as seen in other avian pathogens (DE THOISY et al., 2009; 



 

128 

NIEMEYER et al., 2017). Furthermore, all the magnificent frigatebirds of Alcatrazes 

evaluated in this study and by Saviolli et al. (2016) were apparently healthy, showing no sign 

of disease. We suggest that our isolate was likely acquired through indirect infection by 

human sources released into the local marine environment (e.g., sewage) (FERNANDES et 

al., 2017; FERNANDES et al., 2018; FERNANDES et al., 2020a; FERNANDES et al., 

2020b), ingestion of contaminated seafood (BRAHMI et al., 2015; SELLERA et al., 2018a; 

SELLERA et al., 2018b), or direct intra and/or interspecies contact.  

 Previous studies have suggested wild birds as reservoirs and disseminators of ARGs 

and ARB to insular biomes (SJÖLUND et a., 2008; HERNANDEZ et al., 2010; ARDILES-

VILLEGAS et al., 2011; RAMEY et al., 2018; EWBANK et al., 2020). In spite of 

experimental studies assessing the shedding, contamination and potential transmission of 

ARGs and ARB by wild birds (SANDEGREN et al., 2018; FRANKLIN et al., 2020), their 

potential role as dispersers under real-world conditions has not yet been confirmed 

(GUENTHER et al., 2012; BONNEDAHL et al., 2015; STEDT et al., 2015). Our findings 

demonstrate that even in the absence of regular human presence, insular resistomes are 

indirectly pressured by anthropogenic activities, suggesting that contamination of the marine 

ecosystem should also be considered in the study of antimicrobial resistance in these biomes. 

 Herein we report a highly virulent potentially zoonotic and avian pathogenic strain of 

the emerging pandemic ST648 E.coli clone harboring genes blaCTX-M-2 and blaCMY-2 in a wild 

magnificent frigatebird from an insular biome (Alcatrazes Archipelago, southeastern coast of 

Brazil). Our findings highlight the public health importance of studies on antimicrobial 

resistance and pathogenic bacteria in wildlife, and the role of wild birds as anthropization 

sentinels of insular environments and their involvement in the One Health chain of 

antimicrobial resistance, even in uninhabited sites. Future studies evaluating the occurrence 

and diversity of ESBL/AmpC-EC in magnificent frigatebirds on the Alcatrazes Archipelago 

should rely on continuous temporal sampling to assess a larger number of specimens, evaluate 

interacting species (i.e., brown boobies and black vultures), and environmental samples (i.e., 

sea water and soil), including local marine life (i.e., fish), in order to monitor these 

populations through a One Health approach and further elucidate the epidemiology of 

ESBL/AmpC-EC in this insular environment. 
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6 FINAL COMMENTS 

 

 In this study, we combined molecular (real time PCR and whole genome sequencing - 

WSG) and classic microbiological techniques (bacterial culture and antibiotic susceptibility 

testing) to analyze the microbiome and microbiota of seabirds in Brazil in, respectively, 

enema and cloacal swab samples. By sampling enemas and clocal swabs from each individual 

instead of collecting droppings (i.e., fecal pools), we were able to avoid “environmental 

contamination” and evaluate each bird, ultimately providing more reliable data. Despite their 

different approaches and resulting information, these techniques are complementary, and 

should be employed according with the goals of each study. The direct real time PCR (rtPCR) 

detection and quantification provides genotypic characterization, and relies on the fact that 

most bacteria are not cultivable and that culture methods do not favor mobile genetic elements 

(e.g., plasmids), which encode most antimicrobial resistance genes (ARGs). Because this 

method does not rely on bacterial culture, it allowed us to directly assess the whole 

microbiome, ultimately enabling a broader epidemiological assessment and discussion. 

Moreover, it yielded quantitative data, and consequently, more substantial comparisons. On 

the other hand, the combination of classical microbiology and whole genome sequencing 

(WGS) generated a different data set, identifying the phenotype and genotype of antimicrobial 

resistant bacteria, and providing information (e.g., multilocus sequence typing [MLST], 

plasmid replicons, resistome, virulome, serotype) that could be compared with previous 

isolates deposited in electronic international data sets. Once combined, the above-mentioned 

studies ultimately provided solid ground information for future clinical and epidemiological 

studies on the issue of AMR in wild birds, not only in Brazil, but also worldwide. 

 In the first chapter, we used rtPCR to identify and quantify selected ARGs in the 

microbiome of kelp seagulls (Larus dominicanus) and Magellanic penguins (Spheniscus 

magellanicus) upon their admission to a rehabilitation center in Florianópolis, Southern 

Brazil. In general, seagulls are highly synanthropic and non-migratory, while Magellanic 

penguins are strictly migratory pelagic seabird species. In this scenario, we assessed the 

ARGs that would be introduced into the rehabilitation setting, which potentially and  

indirectly, could informe us on their presence in their environment of origin. We observed 

significant differences between species, higher in kelp gull in comparison to Magellanic 

penguin, likely due to these species’ contrasting biology and ecology, key in studies of AMR 

in wildlife (i.e., dispersal [migratory and non-migratory], feeding niche [coastal and pelagic], 

and interaction with human-impacted areas [synanthropic and non-synanthropic]). 
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Furthermore, to our knowledge, this study is the first to report the mecA gene in seabirds in 

the Americas. We discussed the importance of ARGs in wild individuals, which are usually 

not directly exposed to antimicrobials in the wild. However, when ARGs are present in this 

particular epidemiological setting (i.e., rehabilitation center), if active and promoting 

antimicrobial resistance may compromise and even prevent treatment. Moreover, we also 

discussed the biosafety, antimicrobial discard and decontamination policies of rehabilitation 

centers, where both patients and staff may be exposed to these ARGs. Finally, we emphasized 

the importance of performing complete physical examinations and diagnostic testing (e.g., 

complete blood count an hemogram) to evaluate the need of antimicrobial prescription, that 

when deemed necessary, should be conducted responsibly (i.e., appropriate drug of choice, 

dosage and term), to prevent local contamination and circulation within the other 

epidemiological settings (e.g., staff), and ultimately, the (re)introduction of ARGs into the 

environment upon these individuals’ release. 

 In the following chapters – 2, 3 and 4, we assessed different epidemiological settings: 

sebirds using the shore (both beach and marine), and seabird colonies in insular ecosystems. 

Island populations, communities, and ecosystems maintain the fundamental processes, 

properties, and interactions of ecological continental systems, but often in a more restricted 

scenario. For seabirds, especially pelagic and/or migratory species, oceanic islands are 

excellent areas for breeding, and gaining weight and energy during their geographical 

movements. The reproductive season, in particular, is characterized by a high-energy demand. 

Islands usually have restricted surface areas and/or appropriate nesting sites, forcing birds to 

congregate and compete for space and resources, increasing their stress and influencing their 

immune system. Thus, islands are often challenging environments, and from an 

epidemiological perspective, may behave like “melting pots”, where ARGs and ARB from 

various locations and hosts conjoin, promoting countless combinations and exchange.  

 In the second chapter, we assessed the microbiome of wild seabirds using the 

previously described direct molecular methods to evaluate the presence of selected ARGs in 

birds of two different biotopes: a highly touristic and anthropized archipelago (Fernando de 

Noronha Archipelago, FNA, Pernambuco: (masked boobies [Sula dactylatra], brown boobies 

[Sula leucogaster] and magnificent frigatebirds [Fregata magnificens]) and a pristine atoll 

(Rocas Atoll, ROA, Rio Grande do Norte: (masked boobies, brown boobies, magnificent 

frigatebirds, red-footed boobies, sooty terns [Onychoprion fuscatus], and brown noddies 

[Anous stolidus]) with minimal historical human presence and activity, both in the 

northeastern Brazilian coast. To the best of our knowledge, this study was the largest to report 
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the mcr-1 gene in free-ranging wild birds worldwide. Our results showed that ARGs 

prevalence and load were higher in seabirds inhabiting the anthropized in comparison with the 

pristine environment. The results obtained in the anthropized biotope were consistent with 

anthropogenic pressure: significantly higher prevalence of sulfonamide- and quinolone-

encoding ARGs, and sulII as the most prevalent gene. Additionally, we observed significantly 

higher mcr-1 and blaTEM prevalences, and mcr-1 percentage load in migratory when compared 

to resident seabird species. Epidemiologically, the first finding highlights the important 

epidemiological role of migratory species, while the second suggests this group has a higher 

potential of mcr-1 dissemination into the human-wildlife-environment interface.  

  The third and fourth chapters described the use of classical microbiological techniques 

and WGS to identify and characterize bacteria with One Health relevance present in the 

microbiota of wild seabirds inhabiting and/or using a pristine atoll and a little 

anthropogenically-impacted archipelago inserted in the most anthropized area in the country, 

respectively, in the northern and southeastern Brazilian coasts. To the authors’ knowledge, 

these are, respectively, the first detection of the pandemic and public health relevant ST131 

and ST648 strains in seabirds of Brazilian insular biomes, also novel in magnificent 

frigatebirds [Fregata magnificens]) . In the third chapter we hypothesize that frigatebirds may 

have acted as “flying bridges”, transporting ARB and ARGs from an anthropogenically-

impacted environment (FNA) to the study site (ROA). Additionally, the identification of three 

ST131 clones indicated its circulation within the evaluated population. In the fourth chapter 

we described the highly virulent multidrug resistant (MDR) pandemic ST648 carrying 

virulence genes related to avian pathogenic E. coli (APEC). Although all evaluated birds were 

apparently healthy, these findings are very relevant from a One Health perspective. In both 

cases we hypothesize that the isolates were likely acquired through one or more of the 

following routes: indirect contamination by human sources released into the marine 

environment (e.g., sewage), ingestion of seafood contaminated with these bacteria, and direct 

intra and/or interspecies interaction.   

 Our findings corroborate that seabirds are anthropization and environmental sentinels 

of AMR. Additionally, we showed that seabirds are involved in the One Health 

epidemiological chain of AMR – even in environments minimally exposed to human presence 

and related activities. Although not possible to identify specific epidemiological routes, we 

described the occurrence and diversity of ARGs and ARB throughout different 

epidemiological and geographical settings, highlighting the complex and interconnected One 

Health nature of antimicrobial resistance. Finally, our results emphasized that although 
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anthropization is important, other biological and ecological factors (e.g., dispersal, feeding 

zones, inter-/intra-species behavior) must always be considered in order to further understand 

the epidemiology of AMR.  

 In light of the above findings, one could argue that the increasingly close contact with 

wildlife represents a potential source of human infection by ARGs and ARBs. Yet, the 

available literature clearly shows that the other way around is much more significant; after all, 

humans are the ones producing, misusing, overusing, and inappropriately disposing 

antimicrobials (along with their metabolites) into the environment, creating the perfect media 

for new combinations and exchange among ARGs, ARB, their hosts and the environment. We 

live in a globalized and highly connected world, with millions of yearly national and 

international travelers, and thousands of tons of food products traded worldwide. 

Additionally, other pressing factors such as deforestation, pollution, climate change, and 

overpopulation – to name a few - are also changing the ways we interact with wildlife and the 

“environmental footprints” left by us (e.g., disposal of pollutants into the sea, soil and air). 

 To this day, it has been greatly discussed and suggested that wild birds may transport 

and spread AMR during geographical movements and/or close contact with humans and 

domestic animals. Studies have shown that, indeed, wild birds are capable of acquiring ARGs 

and ARB from humans and domestic animals. Nevertheless, few experimental reports have 

shown that they are capable of maintaining and shedding AMR, ultimately infecting other 

specimens and the environment. Furthermore, these same studies relied on a very limited 

number of specimens and have been reproduced in extremely controlled environments, and 

not in natural conditions, subjected to the dynamic balance of microbial communities and 

their hosts and environment. Regardless, this raises an important epidemiological question 

that we all must contextualize in a bigger picture: even if wild birds could acquire, maintain 

and shed AMR, from an epidemiological approach, how significant could their dispersal be in 

terms of One Health? As opinion makers, we scientists and researchers must continuously 

work together on further investigating the potential of AMR development and spread by wild 

birds, identifying hot spots, and monitoring congregation and resting areas (e.g., breeding 

grounds) throughout their migratory routes. All whilst avoiding the anthropocentric view that 

humans are victims of ARGs and ARB transmitted and carried by wildlife, which 

unnecessarily villainizes wild animals and, most importantly, prevent us from truly focusing 

and debating the real issues (e.g., infection routes). 

 Antimicrobial resistance is, unquestionably, one of the most urgent global health 

issues of our lifetime, with great social, economic and political determinants and 
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consequences. Understanding that antimicrobial resistance is a natural phenomenon intrinsic 

of bacteria life is the cornerstone of the matter; it entails it is an ever evolving process, and 

that as such, requires continuous surveillance and adaptations that might be able to mitigate, 

but not “definitely resolve” or “avoid” the problem. Most importantly, AMR must be 

recognized as a quintessential One Health issue and be analyzed and discussed as such. In 

order to move forward, further AMR studies in wildlife must also focus beyond the human-

related presence and activities, and more in the environment (especially in the marine 

ecosystem and fauna), on microbiome function and composition, and species-specific 

characteristics - all likely to play a very important role in the development and spread of 

AMR within the human-animal-environment interface. Such complex framework will provide 

valuable information regarding AMR development, maintenance and spread in wildlife, while 

indirectly assessing its dynamics of environmental presence and dispersal.  
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APPENDIX A - Supplementary materials published in Science of the Total Environment, 754, Ana Carolina Ewbank, Fernando Esperón, Carlos 

Sacristán, Irene Sacristán, Ricardo Krul, Eduardo Cavalcante de Macedo, Olga Calatayud, Irene Bueno, Ricardo de Francisco Strefezzi, José 

Luiz Catão-Dias, Seabirds as anthropization indicators in two different tropical biotopes: “A One Health approach to the issue of antimicrobial 

resistance genes pollution in oceanic islands, 142141, Copyright Elsevier (or appropriate Society name) (2021).”  

 

Supplementary table 1. Number of collected and validated samples in Fernando de Noronha Archipelago and  Rocas Atoll according with 
species, collection site, behavior (feeding zone [coastal or pelagic], and dispersal [migratory or non-migratory]) 

 
                            Fernando de Noronha Archipelago Rocas Atoll 

Species Collection site Number of samples Number of samples 

Behavior 

 
Fernando de 

Noronha 
Island 

Meio 
Island 

Rata 
Island 

Number of 
collected 
samples 

Number of 
validated 
samples 

Number of 
collected 
samples 

Number of 
validated 
samples 

Feeding Zone Dispersal 

Magnificent frigatebird 
(Fregata magnificens) 25 - - 25 23 35 32 Coastal Non-migratory 

Masked booby 
(Sula dactylatra) - 25 23 48 42 33 20 Pelagic Non-migratory 

Brown booby 
(Sula leucogaster) 12 19 - 31 25 33 24 Coastal Non-migratory 

Red-footed booby 
(Sula sula) - - - - - 33 31 Pelagic Non-migratory 

Sooty tern 
(Onychoprion fuscatus) - - - - - 36 32 Pelagic Migratory 

Brown noddy  
(Anous stolidus) - - - - - 34 28 Pelagic Migratory 

Total 37 44 23 104 90 204 167   
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Supplementary table 2. Prevalence of each class of antimicrobial resistance gene and prevalence of multiresistant profiles in the sampled birds. 
 
 

 
 

 Tetracyclines Sulfonamides Aminoglycosides Phenicols Macrolides Quinolones Betalactams Polymixins Multiresistance 
profile 

Number of samples (n) 257 257 257 257 257 257 257 257 257 
Mean 75.10 7.00 7.00 10.51 3.11 10.51 8.94 7.00 8.56 
Lower 95% confidence 
interval of mean 69.77 3.86 3.86 6.73 0.97 6.73 5.43 3.86 5.11 

Upper 95% confidence 
interval of mean 80.42 10.15 10.15 14.28 5.25 14.28 12.46 10.15 12.00 
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Supplementary table 3. Prevalence of antimicrobial resistance genes in the sampled birds. 
 

 tet(A) tet(B) tet(Y) tet(K) tet(M) tet(Q) tet(S) tet(W) sulI sulII str aadA catI catII erm(B) erm(F) qnrS qnrB blaTEM blaCTX-M mecA mcr-1 

Number of values 
(n) 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 

Mean 29.0 25.0 19.0 1.6 3.5 5.0 29.0 5.4 0.39 6.6 1.5 5.4 1.2 9.0 0.8 2.3 10.0 0.8 8.9 0.0 0.0 7.0 

Lower 95% 
confidence 

interval of mean 
23.22 19.58 13.88 0.03 1.23 2.36 23.59 2.65 -0.37 3.55 0.03 2.65 -0.15 5.75 -0.30 0.47 6.40 -0.30 5.43 0.0 0.0 3.86 

Upper 95% 
confidence 

interval of mean 
34.37 30.23 23.47 3.08 5.76 7.75 34.78 8.24 1.15 9.67 3.08 8.24 2.48 12.92 1.86 4.19 13.83 1.86 12.46 0.0 0.0 10.15 
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Supplementary table 4. Bird species sampled in FNA according with antimicrobial class, evaluated genes and number of validated samples 
(n). 
 

  Species (n) 

Antimicrobial class ARGs magnificent frigatebird 
(Fregata magnificens) (23) 

masked booby 
(Sula dactylatra) (42) 

brown booby 
(Sula leucogaster) (25) 

tet(A) 39%a / -5.6b 33%a / -6.1b 20%a / -6.8b 
 (-8, -0.3)c (-8, -0.9)c (-8, -1)c 

tet(B) 22%a / -6.8b 26%a / -6.5b 16%a / -7.1b 
 (-8, -1.5)c (-8, -1)c (-8, -0.9)c 

tet(Y) 17%a / -72 12%a / -7.3b 28%a / -6.3b 
 (-8, -0.6)c (-8, -0.8)c (-8, -0.6)c 

tet(K) 9%a / -7.5b 0%a / -8b 0%a / -8b 
 (-8, -2.5)c (-8, -8)c (-8, -8.0)c 

tet(M) 0%a / -8b 7%a / -7.6b 0%a / -8b 
 (-8, -8.0)c (-8, -0.8)c (-8, -8.0)c 

tet(Q) 4%a / -7.7b 5%a / -7.7b 4%a / -7.8b 
 (-8, -1.4)c (-8, -1.5)c (-8, -2.8)c 

tet(S) 17%a/ -7.1b 31%a / -6.4b 20%a / -6.9b 
 (-8, -1.9)c (-8, -1.1)c (-8, -2.1)c 

tet(W) 43%a/ -5.5b 2%a / -7.9b 4%a / -7.8b 

Tetracyclines 

 (-8, -1.1)c (-8, -1.8)c (-8, -1.8)c 
sulI 0%a / -8b 0%a / -8b 0%a / -8b 

 (-8, -8)c (-8, -8)c (-8, -8)c 
sulII 35%a / -5.8b 5%a / -7.7b 0%a / -8b 

Sulfonamides 

 (-8, -1.1)c (-8, -2.4)c (-8, -8)c 
str 0%a / -8b 0%a / -8b 0%a / -8b 

 (-8, -8)c (-8, -8)c (-8, -8)c 
aadA 4%a / -7.7b 12%a / -7.3b 8%a / -7.6b 

Aminoglycosides 

 (-8, -1.4)c (-8, -1.2)c (-8, -1.8)c 
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catI 0%a / -8b 0%a / -8b 0%a / -8b 
 (-8, -8)c (-8, -8)c (-8, -8)c 

catII 26%a / -6.6b 7%a / -7.6b 8%a / -7.6b 
Phenicols 

 (-8, -1.6)c (-8, -1.5)c (-8, -2)c 
ermB 4%a / -7.8b 0%a / -8b 0%a / -8b 

 (-8, -3.1)c (-8, -8)c (-8, -8)c 
ermF 0%a / -8b 2%a / -7.8b 8%a / -7.5b 

Macrolides 

 (-8, -8)c (-8, -1.1)c (-8, -1.9)c 
qnrS 13%a / -7.1b 24%a / -6.5b 4%a / -7.8b 

 (-8, -1.1)c (-8, -1.2)c (-8, -2.4)c 
qnrB 9%a / -7.4b 0%a / -8b 0%a / -8b 

Quinolones 

 (-8, -0.8)c (-8, -8)c (-8, -8)c 
blaTEM 9%a / -7.3b 5%a / -7.6b 0%a / -8b 

 (-8, -1.5)c (-8, -0.8)c (-8, -8)c 
blaCTX-M 0%a / -8b 0%a / -8b 0%a / -8b 

 (-8, -8)c (-8, -8)c (-8, -8)c 
mecA 0%a / -8b 0%a / -8b 0%a / -8b 

Betalactams 

 (-8, -8)c (-8, -8)c (-8, -8)c 
mcr-1 0%a / -8b 12%a / -7.2b 0%a / -8b 

Polymyxin 
 (-8, -8)c (-8, -0.2)c (-8, -8)c 

 
a % of individuals of species X positive to gene Y. 
b Percentage load, expressed in logarithmic scale, of each antimicrobial gene regarding gene 16SrRNA. 
c Range of minimum (-8) and maximum (+2) percentage load of genes detected in species X. 
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Supplemental table 5. Antimicrobial classes and multiresistant microbiomes found in FNA species. 
 

 
Antimicrobial class Species n Tetracyclines Sulfonamides Aminoglycosides Phenicols Macrolides Quinolones Betalactams Polymyxin 

Multiresistant 
microbiomes 

magnificent 
frigatebird 

(Fregata 
magnificens) 

23 82.6% 34.8% 4.3% 26.1% 4.3% 17.4% 8.7% 0% 13% 

masked booby 
(Sula dactylatra) 42 76.2% 4.8% 11.9% 7.1% 2.4% 23.8% 4.8% 11.9% 16.7% 

brown booby 
(Sula leucogaster) 25 68% 0% 8% 8% 8% 4% 0% 0% 0% 



 
 

175 

Supplemental table 6. Bird species sampled in ROA according with with antimicrobial class, evaluated genes and number of validated samples 
(n). 
 

  Species (n) 

Antimicrobial class ARGs 

magnificent 
frigatebird 

(Fregata 
magnificens) (32) 

masked booby 
(Sula dactylatra) 

(20) 

brown booby 
(Sula leucogaster) 

(24) 

red-footed booby 
(Sula sula) 

(31) 

sooty tern 
(Onychoprion 
fuscatus) (32) 

brown noddy 
(Anous stolidus) 

(28) 

tet(A) 34%a / -6.2b 20%a / -6.7b 21%a / -6.7b 29%a / -6.3b 33%a / -5.9b 21%a / -6.7b 
 (-8, -1.7)c (-8, -1)c (-8, -0.3)c (-8, -0.9)c (-8, -1)c (-8, -1.3)c 

tet(B) 38%a / -5.8b 30%a / -6.3b 25%a / -6.4b 26%a / -6.5b 18%a / -6.8b 21%a / -6.7b 
 (-8, -0.8)c (-8, -0.2)c (-8, -0.6)c (-8, -1.2)c (-8, -1.1)c (-8, -1.4)c 

tet(Y) 13%a / -7.3b 5%a / -7.7b 29%a / -6.4b 23%a / -6.8b 27%a / -6.5b 14%a / -7.2b 
 (-8, -0.9)c (-8, -1.8)c (-8, -1.3)c (-8, -1.4)c (-8, -1.7)c (-8, -1.6)c 

tet(K) 3%1 / -7.8b 0%a / -8b 0%a / -8b 0%a / -8b 3%a / -7.8b 0%a / -8b 
 (-8, -1.9)c (-8, -8)c (-8, -8)c (-8, -8)c (-8, -2.1)c (-8, -8)c 

tet(M) 3%a  / -7.8b 5%a / -7.8b 8%a / -7.5b 0%a / -8b 3%a / -7.9b 4%a / -7.8b 
 (-8, -2.3)c (-8, -3.8)c (-8, -1.8)c (-8, -8)c (-8, -5.9)c (-8, -2.1)c 

tet(Q) 13%a / -7.3b 0%a / -8b 0%a / -8b 3%a / -7.9b 6%a / -7.6b 7%a / -7.6b 
 (-8, -1.4)c (-8, -8)c (-8, -8)c (-8, -3.6)c (-8, -1.2)c (-8, -1.9)c 

tet(S) 28%a / -6.4b 35%a / -6.1b 17%a / -7b 19%a / -7b 52%a / -5.2b 36%a / -5.8b 
 (-8, -1.3)c (-8, -1)c (-8, -1.4)c (-8, -1.7)c (-8, -1.1)c (-8, -1.2)c 

tet(W) 6%a / -7.6b 0%a / -8b 0%a / -8b 0%a / -8b 0%a / -8b 0%a / -8b 

Tetracyclines 

 (-8, -1.4)c (-8, -8)c (-8, -8)c (-8, -8)c (-8, -8)c (-8, -8)c 
sulI 0%a / -8b 0%a / -8b 0%a / -8b 0%a / -8b 3%a / -7.8b 0%a / -8b 

 (-8, -8)c (-8, -8)c (-8, -8)c (-8, -8)c (-8, -1.8)c (-8, -8)c 
sulII 3%a / -7.8b 5%a / -7.7b 0%a / -8b 0%a / -8b 9%a / -7.4b 7%a / -7.6b 

Sulfonamides 

 (-8, -2.3)c (-8, -2.7)c (-8, -8)c (-8, -8)c (-8, -1.1)c (-8, -2.1)c 
str 0%a  / -8b 5%a / -7.7b 0%a / -8b 10%a / -7.4b 0%a / -8b 0%a / -8b 

 (-8, -8)c (-8, -2.2)c (-8, -8)c (-8, -0.9)c (-8, -8)c (-8, -8)c 
Aminoglycosides 

aadA 3%a / -7.9b 5%a / -7.9b 4%a / -7.7b 10%a / -7.4b 0%a / -8b 0%a / -8b 
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  (-8, -3.7)c (-8, -5.4)c (-8, -0.8)c (-8, -1.6)c (-8, -8)c (-8, -8)c 
catI 0%a  / -8b 0%a / -8b 0%a / -8b 3%a / -7.8b 0%a / -8b 7%a / -7.6b 

 (-8, -8)c (-8, -8)c (-8, -8)c (-8, -1.7)c (-8, -8)c (-8, -1.4)c 
catII 9%a  / -7.5b 5%a / -7.7b 4%a / -7.8b 6%a / -7.6b 6%a / -7.6b 14%a / -7.1b 

Phenicols 

 (-8, -2.4)c (-8, -2)c (-8, -2.2)c (-8, -1.6)c (-8, -1.9)c (-8, -1.8)c 
ermB 0%a / -8b 0%a / -8b 0%a / -8b 3%a / -7.8b 0%a / -8b 0%a / -8b 

 (-8, -8)c (-8, -8)c (-8, -8)c (-8, -1.5)c (-8, -8)c (-8, -8)c 
ermF 3%a / -7.8b 0%a / -8b 0%a / -8b 3%a / -7.8b 3%a / -7.8b 0%a / -8b 

Macrolides 

 (-8, -2)c (-8, -8)c (-8, -8)c (-8, -2)c (-8, -2.2)c (-8, -8)c 
qnrS 3%a / -7.8b 5%a / -7.7b 4%a / -7.7b 0%a / -8b 9%a / -7.5b 21%a / -6.6b 

 (-8, -1.4)c (-8, -2)c (-8, -0.9)c (-8, -8)c (-8, -1.9)c (-8, -1)c 
qnrB 0%a / -8b 0%a / -8b 0%a / -8b 0%a / -8b 0%a / -8b 0%a / -8b 

Quinolones 

 (-8, -8)c (-8, -8)c (-8, -8)c (-8, -8)c (-8, -8)c (-8, -8)c 
blaTEM 16%a / -6.7b 5%a / -7.7b 4%a / -7.6b 6%a / -7.4b 9%a / -7.4b 25%a / -5.9b 

 (-8, -0.8)c (-8, -2.1)c (-8, -1.7)c (-8, -1.6)c (-8, -0.6)c (-8, -1.3)c 
blaCTX-M 0%a / -8b 0%a / -8b 0%a / -8b 0%a / -8b 0%a / -8b 0%a / -8b 

 (-8, -8)c (-8, -8)c (-8, -8)c (-8, -8)c (-8, -8)c (-8, -8)c 
mecA 0%a / -8b 0%a / -8b 0%a / -8b 0%a / -8b 0%a / -8b 0%a / -8b 

Betalactams 

 (-8, -8)c (-8, -8)c (-8, -8)c (-8, -8)c (-8, -8)c (-8, -8)c 
mcr-1 0%a / -8b 15%a / -7b 0%a / -8b 3%a / -7.8b 9%a / -7.5b 21%a / -6.6b 

Polymyxin 
 (-8, -8)c (-8, 0.5)c (-8, -8)c (-8, -2)c (-8, -1.7)c (-8, -1.2)c 

 
a % of individuals of species X positive to gene Y. 
b Percentage load, expressed in logarithmic scale, of each antimicrobial gene regarding gene 16SrRNA. 
c Range of minimum (-8) and maximum (+2) percentage load of genes detected in species X. 
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Supplemental table 7. Antimicrobial classes and multiresistant microbiomes found in ROA species. 
 

 
Antimicrobial class Species n Tetracyclines Sulfonamides Aminoglycosides Phenicols Macrolides Quinolones Betalactams Polymyxin 

Multiresistant 
microbiomes 

magnificent 
frigatebird  

(Fregata 
magnificens) 

32 75% 3.1% 3.1% 9.4% 3.1% 3.1% 15.6% 0% 6.3% 

masked booby  
(Sula dactylatra) 20 70% 5% 10% 5% 0% 5% 5% 15% 5% 

brown booby  
(Sula leucogaster) 24 75% 0% 4.2% 4.2% 0% 4.2% 4.2% 0% 0% 

red-footed booby 
(Sula sula) 31 64.5% 0% 19.4% 9.7% 6.5% 0% 6.5% 3.2% 6.5% 

sooty tern 
(Onychoprion 

fuscatus) 
32 87.9% 12.1% 0% 6.1% 3% 9.1% 9.1% 9.1% 6.1% 

brown noddy  
(Anous stolidus) 28 71.4% 7.1% 0% 21.4% 0% 21.4% 25% 21.4% 17.9% 
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Supplementary table 8. Primers used for real time PCR detection of selected ARGs. 
 

Antimicrobial 
class Gene Sequence (5’-3’) Sense 

Amplicon 
size 
(bp) 

Reference 

tet(A) GCGCTNTATGCGTTGATGCA + 387 Jiang et al. 2013 
 ACAGCCCGTCAGGAAATT -   

tet(B) TACGTGAATTTATTGCTTCGG + 206 Jiang et al. 2013 
 ATACAGCATCCAAAGCGCAC -   

tet(Y) ATTTGTACCGGCAGAGCAAAC + 181 Jiang et al. 2013 
 GGCGCTGCCGCCATTATGC -   

tet(K) TCGATAGGAACAGCAGTA + 169 Jiang et al. 2013 
 CAGCAGATCCTACTCCTT -   

tet(M) ACAGAAAGCTTATTATATAAC + 171 Jiang et al. 2013 
 TGGCGTGTCTATGATGTTCAC -   

tet(Q) AGAATCTGCTGTTTGCCAGTG + 169 Jiang et al. 2013 
 CGGAGTGTCAATGATATTGCA -   

tet(S) GAAAGCTTACTATACAGTAGC + 169 Jiang et al. 2013 
 AGGAGTATCTACAATATTTAC -   

tet(W) GAGAGCCTGCTATATGCCAGC + 168 Jiang et al. 2013 

Tetracycline 

 GGGCGTATCCACAATGTTAAC -   
sulI CGCACCGGAAACATCGCTGCAC + 163 Jiang et al. 2013 

 TGAAGTTCCGCCGCAAGGCTCG -   
sulII TCCGGTGGAGGCCGGTATCTGG + 191 Jiang et al. 2013 Sulfonamides 

 CGGGAATGCCATCTGCCTTGAG -   
str AATGAGTTTTGGAGTGTCTCAACGTA + 147 Wang et al. 2014 

 AATCAAAACCCCTATTAAAGCCAAT -   
aadA GCAGCGCAATGACATTCTTG + 282 Devarajan et al., 2016 Aminoglycosides 

 ATCCTTCGGCGCGATTTTG -   
catI GGTGATATGGGATAGTGTT + 349 Jiang et al. 2013 

 CCATCACATACTGCATGATG -   
Phenicols 

catII GATTGACCTGAATACCTGGAA + 567 Jiang et al. 2013 
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  CCATCACATACTGCATGATG -   
erm(B) GATACCGTTTACGAAATTGG + 364 Chen et al., 2007 

 GAATCGAGACTTGAGTGTGC -   
erm(F) CGACACAGCTTTGGTTGAAC + 309 Chen et al., 2007 

Macrolides 

 GGACCTACCTCATAGACAAG -   
qnrB GGMATHGAAATTCGCCACTG + 263 Cummings et al., 2011 

 TTYGCBGYYCGCCAGTCGAA -   
qnrS GACGTGCTAACTTGCGTGAT + 118 Marti and Balcázar, 2013 

Quinolones 

 TGGCATTGTTGGAAACTTG -   
blaCTX-M TTTGCGAT GTGCAGTACCAGTAA + 591 Edelstein et al. 2004 

 CGATATCGTTGGTGGTGCCATA -   
blaTEM AAAGATGCTGAAGATCA + 425 Devarajan et al., 2016 

 TTTGGTATGGCTTCATTC -   
mecA CATTGATCGCAACGTTCAATTT + 99 Francois et al. 2003 

Betalactams 

 TGGTCTTTCTGCATTCCTGGA -   
mcr-1 TGATACGACCATGCTCCAAA + 218 Nieto-Claudin et al., 2019 Polymyxins 

 GCCACCACAGGCAGTAAAAT -   
 16S rRNA ATGGCTGTCGTCAGCT + 352 Jiang et al. 2013 
  ACGGGCGGTGTGTAC -   
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