

DESPACHO ATIVO COM RESTRIÇÃO NA TRANSMISSÃO VIA MÉTODO DE BARREIRA LOGARÍTMICA

Autor: Leandro Sereno Pereira

Orientador: Prof. Dr. Geraldo Roberto Martins da Costa

UNIVERSIDADE DE SÃO PAULO

ESCOLA DE ENGENHARIA DE SÃO CARLOS

UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS

DESPACHO ATIVO COM RESTRIÇÃO NA TRANSMISSÃO VIA MÉTODO DE BARREIRA LOGARÍTMICA

Leandro Sereno Pereira

Serviço de Pós-Gradução EESC/USP

EXEMPLAR REVISAD(

Data de entrada no Serviço:....

ASS.....

DEDALUS - Acervo - EESC

31100037161

Orientador: Geraldo R.M. da Costa

São Carlos

2002

EESC-U

Class.	TESE-EES	
Cutt	4336	
Tombo	T01703	3
Sysno.	1296238	_

Ficha catalográfica preparada pela Seção de Tratamento da Informação do Serviço de Biblioteca – EESC/USP

P436d	Pereira, Leandro Sereno Despacho ativo com restrição na transmissão via método de barreira logarítmica / Leandro Sereno Pereira São Carlos, 2002.
	Dissertação (Mestrado) Escola de Engenharia de São Carlos-Universidade de São Paulo, 2002. Área: Engenharia Elétrica. Orientador: Prof. Dr. Geraldo R.M. da Costa.
	1. Sistemas elétricos de potência. 2. Programação não linear. 3. Método primal-dual barreira logarítmica. 4. Condições de KKT. 5. Fluxo de potência ótimo. I. Título.

Data de entrada no Serviço....

FOLHA DE JULGAMENTO

Candidato: Engenheiro LEANDRO SERENO PEREIRA

Dissertação defendida e julgada em 16-12-2002 perante a Comissão Julgadora:

PROVADU

Prof. Assoc. CERALDO ROBERTO MARTINS DA COSTA (Orientador) (Escola de Engenharia de São Carlos/USP)

More Luis R. Terin

Pfof. Dr. JOSÉ LUIZ REZENDE PEREIRA (Universidade Federal de Iniz de Fora/UFJF)

ROVA

APROVADO

Prof. Dr. ADRANO ALBER DE FRANÇA MENDES CARNEIRO (Escola de Engenharia de São Carlos/USP)

P/ Prof. Assoc. MURILO ARAUJO ROMERO Coordenador do Programa de Pós-Graduação em Engenharia Elétrica

Profa. Assoc. MARIA DO CARMO CALIDURI Presidente da Comissão de Pós-Graduação

A minha esposa Marisa B. F. Pereira pelo amor, incentivo e compreensão de todos os dias.

.5

.)

ii

"Transformar o medo em respeito, o respeito em confiança. Descobrir como é bom chegar quando se tem paciência. E para se chegar aonde quer que seja, não é preciso dominar a força mas a razão. É preciso antes de mais nada, querer." Amir Klink

X

. .

AGRADECIMENTOS

Ao Professor e amigo Dr. Geraldo Roberto Martins da Costa pelo permanente incentivo, confiança e exemplar orientação durante a elaboração desse trabalho.

Aos eternos amigos do LOSEP: Alessandra, Biagi, Cristiano, Edmarcio, Edméa, Luiz Cláudio, Sandra, Thales e Vanusa pelo apoio e colaboração na elaboração deste trabalho.

A todos os colegas, professores e funcionários do Departamento de Engenharia Elétrica da EESC/USP pela colaboração.

A todos os meus familiares e amigos, que de uma forma ou de outra fazem parte de mais esta conquista.

Em especial agradeço a minha mãe Lúcia Helena e ao meu pai Geraldo, pelo incentivo e confiança durante o desenvolvimento deste trabalho.

À Fundação de Amparo à Pesquisa do Estado de São Paulo – **FAPESP**, pela bolsa de estudos, equipamentos e materiais concedidos.

SUMÁRIO

LISTA DE FIGURAS	viii
LISTA DE TABELAS	X
LISTA DE ABREVIATURAS E SIGLAS	xi
RESUMO	xiii
ABSTRACT	xiv

1 INTRODUÇÃO

1.1) Motivação	3
1.2) Objetivo	4
1.3) Organização do Trabalho	4

2 ESTADO DA ARTE DO FLUXO DE POTÊNCIA ÓTIMO

2.1) Introdução	6
2.2) Histórico	8

3 O MÉTODO DOS PONTOS INTERIORES

3.1) Introdução	13
3.2) O Problema de Programação Não Linear	15
3.3) O Problema de Programação Linear Seqüencial	16
3.4) Método Primal-Dual de Pontos Interiores para Programação Não Linear	18
3.4.1) Problema Transformado e Condições de Otimalidade	19
3.4.2) Calculando a Direção de Newton	24
3.4.3) Atualização das Variáveis	26

3.4.4) Redução do Parâmetro de Barreira	27
3.4.5) Teste de Convergência	28
3.5) Métodos de Pontos Interiores Primal-Dual de Ordem-Superior	29
3.5.1) Método Preditor-Corretor de Mehrotra	30
3.5.2) O Método de Newton Composto	33

4 DESPACHO ATIVO CA COM RESTRIÇÃO DE FLUXO ATIVO NA TRANSMISSÃO

4.1) Introdução	36
4.2) O Problema de Fluxo de Potência Ótimo	37
4.3) O Método Primal-Dual Barreira Logarítmica	39
4.3.1) O Método de Newton	42
4.3.2) Cálculo do Tamanho do Passo	43
4.3.3) Atualização das Variáveis	44
4.3.4) O Parâmetro de Barreira	44
4.3.5) Valores Iniciais das Variáveis	45
4.3.6) Algoritmo	46
4.4) Implementação Computacional	47

5 RESULTADOS NUMÉRICOS

5.1) Introdução	52
5.2) Sistema 3 Barras	53
5.2.1) Estado Inicial do Sistema	55
5.3) Sistema 8 Barras	61
5.3.1) Sistema 8 Barras sem Restrição nas Linhas de Transmissão	62
5.3.2) Sistema 8 Barras com Restrição nas Linhas de Transmissão	66
5.4) Sistema 14 Barras	70
5.5) Sistema 30 Barras	73
5.6) Sistema 118 Barras	76

6	CONCLUSÕES	30
---	------------	----

REFERÊNCIAS BIBLIOGRÁFICAS	82
ANEXO A - BANCO DE DADOS	86
ANEXO B - ESTADO FINAL DOS SISTEMAS	94

×.

LISTA DE FIGURAS

з

3

Figura 3.1 - Ilustração dos métodos dos pontos interiores e do Simplex14
Figura 4.1 - Fluxograma do programa de FPO48
Figura 5.1 - Sistema elétrico de 3 barras
Figura 5.2 - Convergência das tensões para o sistema 3 barras
Figura 5.3 - Convergência do fluxo de ativos nas linhas e perdas totais do
sistema 3 barras59
Figura 5.4 - Convergência das potências ativas para o sistema 3 barras60
Figura 5.5 – Sistema Elenorte – 8 barras
Figura 5.6 - Convergência das tensões para o sistema 8 barras sem restrição nas
linhas de transmissão63
Figura 5.7 – Convergência do ΔP_{max} e do ΔQ_{max} para o sistema 8 barras sem
restrição nas linhas de transmissão64
Figura 5.8 - Convergência para potência ativa da barra de geração (barra 6)
para o sistema 8 barras sem restrição nas linhas de transmissão65
Figura 5.9 - Convergência para potência reativa da barra de geração (barra 6)
para o sistema 8 barras sem restrição nas linhas de transmissão65
Figura 5.10 - Convergência para as perdas totais e fluxo na linha 6-5 para o
sistema 8 barras sem restrição nas linhas de transmissão66
Figura 5.11 - Convergência das tensões para o sistema 8 barras com restrição
nas linhas de transmissão67
Figura 5.12 - Convergência do ΔP_{max} e do ΔQ_{max} para o sistema 8 barras com
restrição nas linhas de transmissão67
Figura 5.13 - Convergência para potência ativa da barra de geração (barra 6)
para o sistema 8 barras com restrição nas linhas de transmissão68

viii

Figura 5.14 - Convergência para potência reativa da barra de geração (barra 6)
para o sistema 8 barras com restrição nas linhas de transmissão69
Figura 5.15 - Convergência para as perdas totais e fluxo na linha 6-5 para o
sistema 8 barras com restrição nas linhas de transmissão69
Figura 5.16 - Sistema 14 barras70
Figura 5.17 - Convergência do fluxo na linha 1-2 para o sistema 14 barras72
Figura 5.18 - Convergência do fluxo na linha 12-13 para o sistema 14 barras72
Figura 5.19 - Convergência para as perdas totais do sistema 14 barras73
Figura 5.20 - Sistema 30 barras74
Figura 5.21 - Convergência do fluxo na linha 4-12 para o sistema 30 barras
Figura 5.22 - Convergência para as perdas totais do sistema 30 barras
Figura 5.23 - Sistema 118 barras
Figura 5.24 – Convergência do fluxo na linha 24-72 para o sistema 118 barras 78
Figura 5.25 - Convergência para as perdas totais do sistema 118 barras

3

LISTA DE TABELAS

*

Tabela 5.1 - Estado inicial do sistema 3 barras
Tabela 5.2 - Limites para as tensões, reativos e ativos do sistema 3 barras
Tabela 5.3 – Limites para o fluxo de ativo nas linhas do sistema 3 barras
Tabela 5.4 - Valores iniciais para os parâmetros de barreira e seus fatores de
atualização do sistema 3 barras57
Tabela 5.5 - Convergência para o sistema 3 barras, tensão e ângulo das barras57
Tabela 5.6 - Convergência para o sistema 3 barras, fluxo ativo nas linhas e
perdas totais
Tabela 5.7 - Convergência para o sistema 3 barras, potências (ΔP 's, ΔQ 's e
geração)59
Tabela 5.8 - Convergência para o sistema 3 barras, multiplicadores de
Lagrange60
Tabela 5.9 - Convergência para o sistema 3 barras, variáveis de folga/excesso60
Tabela 5.10 - Valores iniciais para os parâmetros de barreira e seus fatores de
atualização para o sistema 8 barras62
Tabela 5.11- Convergência para o sistema 8 barras sem restrição nas linhas de
transmissão, tensão nas barras63
Tabela 5.12 - Valores iniciais para os parâmetros de barreira e seus fatores de
atualização para o sistema 14 barras71
Tabela 5.13 - Valores iniciais para os parâmetros de barreira e seus fatores de
atualização para o sistema 30 barras75
Tabela 5.14 - Valores iniciais para os parâmetros de barreira e seus fatores de
atualização para o sistema 118 barras78

LISTA DE ABREVIATURAS E SIGLAS

BC – Barra de Carga

BG - Barra de Geração

BS – Barra Slack

CA – Corrente Alternada

CR - barra de Controle de Reativo

DA – Despacho Ativo

DE – Despacho E

EESC - Escola de Engenharia Elétrica de São Carlos

FP - Fluxo de Potência

FPO – Fluxo de Potência Ótimo

KKT - Karush-Kuhn-Turcker

LOSEP - Laboratório de Otimização em Sistemas Elétricos de Potência

MBL - Método da Barreira Logarítmica

MFBL - Método da Função Barreira Logarítmica

MNC - Método de Newton Composto

MPD – Método Primal-Dual

MPDBL - Método Primal-Dual Barreira Logarítmica

MPI - Método dos Pontos Interiores

MPIQM – Método dos Pontos Interiores Quadráticos Melhorado

MS – Método Simplex

MVA - Mega Volts Ampere

MVAr - Mega Volt Ampere Reativo

MW - Mega Watts

NB - Número de Barras do sistema elétrico

NBC - Número de Barras de Carga

NBCCR - Número de Barras de Carga e de Controle de Reativos

NBCR - Número de Barras de Controle de Reativo

NBG - Número de Barras de Geração

NBGCR - Número de Barras de Geração e de Controle Reativo

NL - Número de Linhas de transmissão

NLL - Número de Linhas com Limite de fluxo ativo

NT - Número de Transformadores

PI - Pontos Interiores

PL – Programação Linear

PLS – Programação Linear Seqüencial

PNL - Programação Não Linear

PQ - Programação Quadrática

PQS - Programação Quadrática Seqüencial

p.u. - por unidade

SEP - Sistema Elétrico de Potência

USP – Universidade de São Paulo

RESUMO

PEREIRA, L. S. (2002). Despacho Ativo com Restrição na Transmissão Via Método de Barreira Logarítmica. São Carlos, 2002. 121p. Dissertação (Mestrado) – Escola de Engenharia de São Carlos, Universidade de São Paulo.

Este trabalho apresenta uma abordagem do Método da Função Barreira Logarítmica (MFBL) para a resolução do problema de Fluxo de Potência Ótimo (FPO). A pesquisa fundamenta-se metodologicamente na função barreira logarítmica e nas condições de primeira ordem de Karush-Kuhn-Tucker (KKT). Para a solução do sistema de equações resultantes das condições de estacionaridade, da função Lagrangiana, utiliza-se o método de Newton. Na implementação computacional utiliza-se técnicas de esparsidade. Através dos resultados numéricos dos testes realizados em 5 sistemas (3, 8, 14, 30 e 118 barras) evidencia-se o potencial desta metodologia na solução do problema de FPO.

Palavras-chaves: Sistemas Elétricos de Potência, Programação Não Linear, Método Primal-Dual Barreira Logarítmica, Condições de KKT, Fluxo de Potência Ótimo.

xiii

ABSTRACT

PEREIRA, L. S. (2002). ACTIVE DESPACH WITH TRANSMISSION RESTRICTION USING LOGARITHMIC BARRIER METHOD. São Carlos, 2002. 121p. Dissertação (mestrado) - Escola de Engenharia de São Carlos, Universidade de São Paulo.

This work describes an approach on Logarithmic Barrier Function Method to solving the Optimal Power Flow (OPF) problem. Search was based on the logarithmic barrier function and first order conditions of Karush-Kuhn-Tucker (KKT). To solve the equation system, obtained from the stationary conditions of the Lagrangian function, is used the Newton method. Implementation is performed using sparsity techniques. The numerical results, carried out in five systems (3, 8, 14, 30 and 118 bus), demonstrate the reliability of this approach in the solution OPF problem.

Keywords: Power Systems, Nonlinear Programming, Primal-Dual Logarithmic Barrier Method, KKT Conditions, Optimal Power Flow.

CAPÍTULO 1

INTRODUÇÃO

O cálculo de fluxo de carga, ou Fluxo de Potência (FP) em uma rede de energia elétrica, consiste na determinação das grandezas que representam o comportamento da rede em regime permanente. A representação da rede é feita através de um conjunto de equações algébricas que correspondem às leis de Kirchhoff. A resolução deste sistema fornece o estado da rede (tensão fasorial de cada barra e os *taps* dos transformadores). Uma vez conhecido o estado da rede, pode-se calcular outras grandezas que sejam de interesse no sistema, tais como: fluxos ativos e reativos nas linhas de transmissão e nos transformadores, perdas de potência ativa no sistema, geração de potência reativa nas barra de controle de reativo, geração de potência ativa e reativa nas barras de geração, entre outras. Devido as grandes proporções apresentadas pelas redes de energia elétrica, o cálculo do FP é realizado normalmente utilizando-se métodos computacionais desenvolvidos especialmente para a resolução do sistema de equações algébricas que constituem o modelo estático da rede.

Ao analisar um Sistema Elétrico de Potência (SEP) real, observa-se que o mesmo possui limitações tanto de caráter qualitativo da operação, quanto de caráter físico dos equipamentos. Assim sendo, não é raro que a solução encontrada pelo FP venha a ser uma solução que não atenda a tais limitações. Deparando-se com este tipo de problema, a solução é um ajuste nos equipamentos, isto é, nas variáveis de controle (tensão nas barras de geração, potência ativa nas barras de geração e *tap*), e

em seguida o sistema de equações é resolvido novamente. Por exemplo, se a solução encontrada apresentar uma tensão inaceitável em um determinado barramento, uma compensação *shunt* ou um *tap* pode ser ajustado para resolver o problema.

Nos centros de operação existe a figura do operador de sistemas, que com sua experiência, auxilia nos ajustes necessários para fazer com que o sistema opere dentro das suas limitações. Entretanto, o que se encontra na prática são SEP de grande porte e que possuem um enorme número de variáveis de controle a serem ajustadas, o que torna o uso do FP um exaustivo processo de tentativa e erro.

A elaboração do Fluxo de Potência Ótimo (FPO) consiste exatamente na automatização da solução do SEP através de uma ferramenta que seja capaz de resolver as equações do FP, ajustando simultaneamente, de maneira ótima, todas as variáveis de controle do sistema para satisfazer algum critério preestabelecido do problema.

Atualmente o FPO vem sendo utilizado nas empresas de energia elétrica principalmente em aplicações *off-line*, tais como: desenvolvimento de casos base, alocação de reativos, despacho econômico, entre outros. O grande desafio do FPO é tornar-se tão acessível quanto o FP convencional. Os modelos de FPO implementados até o momento normalmente necessitam de ajuste de parâmetros que não são triviais, e/ou esbarram no problema de tempo de processamento das máquinas.

Como em qualquer setor da economia moderna, o setor elétrico vem passando por reestruturações que resultam na busca diária de eficiência e satisfação ao cliente. Objetivos estes que dentre outros tópicos, somente serão alcançados através de uma política correta de incentivo às inovações e aperfeiçoamentos nas ferramentas computacionais como, por exemplo, no programa de fluxo de potência ótimo. Com o uso do FPO caminha-se na direção do processo de automação do sistema. Neste processo uma tomada de decisão ótima e segura é obtida automaticamente, cabendo ao operador uma breve análise e implementação. A experiência do operador, ainda que importante e necessária, passa a ocupar um plano secundário na tomada de decisões.

1.1) MOTIVAÇÃO

A grande motivação para o desenvolvimento desta pesquisa está relacionada ao seu potencial de contribuir para um melhor desempenho do sistema de transmissão de energia elétrica, e um melhor perfil de tensão.

A título de exemplo pode-se analisar o caso do sistema elétrico brasileiro, cujo grande parte do parque gerador encontra-se longe dos grandes centros consumidores, e que tem como conseqüência a necessidade de um amplo e complexo sistema de transmissão de energia elétrica. A potência instalada no Brasil é de aproximadamente 75.000 MVA^{*} com uma demanda média em torno de 42.000 MW^{**}. Os números obtidos na prática indicam que as perdas de potência ativa na transmissão são da ordem de 6%, ou seja, 2.520 MW. Uma redução de 10% das perdas representa uma economia de 252 MW, montante este que equivale à construção de uma usina que despenderia investimentos na ordem de R\$ 250.000.000,00. Pode-se fazer uma análise desta economia em termos de custo de geração. O preço médio do MWh no Brasil em 2002 é R\$ 72,35^{*}.

^{*} Fonte: Planejamento Anual da Operação energética ano 2002, ONS (www.ons.org.br)

^{**} Fonte: Energia Elétrica: Previsão de Carga dos Sistemas Interligados - Período 2002/2006 ONS / Eletrobrás (www.eletrobras.gov.br)

Vale a pena reforçar que esta economia pode ser obtida atuando-se exclusivamente sobre as variáveis de controle do sistema, ou seja, sem qualquer investimento adicional.

1.2) OBJETIVO

Este trabalho tem como objetivo desenvolver uma abordagem para a resolução do despacho ótimo de potência ativa CA (Corrente Alternada) com restrição na transmissão. Esta abordagem utiliza o Método da Função Barreira Logarítmica (MFBL) e as condições de estacionaridade de Karush-Kuhn-Tucker (KKT). O sistema de equações não lineares resultantes das condições de estacionaridade é resolvido pelo método de Newton. Como resultado tem-se a geração por usina dentro de limites pré-estabelecidos, sem que haja violação do limite térmico nas linhas de transmissão, satisfazendo a demanda e minimizando as perdas de potência ativa na transmissão.

O MFBL foi escolhido por apresentar rápida convergência, fornecendo uma solução que satisfaça as restrições do problema.

1.3) ORGANIZAÇÃO DO TRABALHO

Neste capítulo apresentou-se uma introdução ao FPO, a motivação para o desenvolvimento do trabalho, definiu-se o objetivo do mesmo, bem como sua organização.

No capítulo 2, tem-se o estado da arte do FPO, onde são apresentadas algumas propostas desenvolvidas para a solução do problema do FPO nas últimas décadas. No capítulo 3, mostra-se um estudo dos métodos dos pontos interiores para resolver problemas de programação não linear, detalhando-se todos os passos para sua solução.

No capítulo 4, expõe-se a formulação proposta para o problema de FPO com restrição na linha de transmissão via método da função barreira logarítmica.

No capítulo 5, tem-se os resultados obtidos com a aplicação da metodologia proposta. Cinco sistemas elétricos (3, 8, 14, 30 e 118 barras) foram utilizados para comprovar a eficiência do método.

No capítulo 6, apresenta-se as conclusões obtidas dos resultados da aplicação do método e as perspectivas de continuidade deste trabalho.

CAPÍTULO 2

ESTADO DA ARTE DO FLUXO DE POTÊNCIA ÓTIMO

2.1) INTRODUÇÃO

O problema de Fluxo de Potência Ótimo (FPO) foi definido no início da década de 60, e sua formulação inicial foi proposta por CARPENTIER (1962). Carpentier elaborou o problema de FPO baseando-se no problema de Despacho Econômico (DE), que define o quanto cada gerador deve produzir de potência ativa para atender a demanda exigida pelo sistema. O FPO tem como características ser um problema de otimização não linear, não convexo e de grande porte, cuja evolução segue de perto os avanços das técnicas de otimização. O objetivo do problema de FPO é determinar o ponto de operação ótimo de um Sistema Elétrico de Potência (SEP), otimizando uma função objetivo e satisfazendo as restrições de operação.

O FPO pode ser representado matematicamente através de um problema genérico de otimização com restrições de igualdade e desigualdade como:

min f(x)
s.a.:
$$g(x) = 0$$

 $\underline{h} \le h(x) \le \overline{h}$
 $\underline{x} \le x \le \overline{x}$
(2.1)

onde:

- x = (V,θ,t) ∈ ℜⁿ é um vetor de variáveis de decisão, incluindo as variáveis de controle e as variáveis dependentes não funcional.
- f ∈ ℜⁿ → ℜ é uma função escalar que representa o objetivo de otimização na operação do sistema de potência.
- g ∈ ℜⁿ → ℜ^m é uma função vetor com as equações convencionais do fluxo de potência, onde m < n.
- h ∈ 𝔅ⁿ → 𝔅^p é um vetor de variáveis funcionais, com limites inferiores <u>h</u> e limites superiores <u>h</u>, correspondendo aos limites de operação do sistema.
- $\underline{x}, \overline{x}$ são os limites das variáveis de estado e controle do sistema.

A função f(x) pode ser o custo de geração, as perdas de transmissão do sistema, entre outras.

As restrições de igualdade g(x) são as equações do fluxo de potência obtidas quando impõe-se o princípio da conservação de potência em cada barra da rede.

As restrições de desigualdade h(x) representam as restrições funcionais como: as potências ativa e reativa nas barras de geração, a potência reativa nas barras de controle de reativo e os fluxos ativos e reativos nas linhas de transmissão e transformadores.

Dentre as variáveis dependentes existentes tem-se:

- tensão em todas as barras de carga do sistema;
- ângulo em todas as barras do sistema menos a referência;
- potência reativa nas barras com controle de reativo e referência;
- potência ativa na barra de referência.

Dentre as variáveis de controle existentes tem-se:

- tensão nas barras de controle de reativos do sistema;
- tap dos transformadores;

- potência ativa gerada nas barras de geração.

A seguir será apresentado um histórico de algumas técnicas de otimização propostas nas últimas décadas para a solução do problema representado na eq. (2.1).

2.2) HISTÓRICO

As primeiras propostas para resolver o problema de FPO, utilizavam metodologias de gradiente, conhecidas como métodos de primeira ordem. Um dos trabalhos pioneiros na área foi apresentado por DOMMEL & TINNEY (1968), que propunha o uso do método do gradiente reduzido, trabalho este que se tornou um clássico e pode ser considerado a base para o estudo do FPO. O método de Dommel & Tinney procura uma solução ótima através de um algoritmo de passo descendente. É um método no qual após mudanças nas variáveis de controle (V e t), as equações do fluxo de potência são resolvidas pelo método de Newton. As restrições funcionais de desigualdades são tratadas por parâmetros de penalidade, e multiplicadores de Lagrange são usados para associar as equações do fluxo de potência à função objetivo na construção da função Lagrangiana. A técnica de projeção do gradiente é utilizada para as variáveis de controle que atingem um de seus limites. Para a atualização das variáveis de controle utiliza-se um passo, determinado por uma busca unidimensional. O método tem uma eficiência de primeira ordem para a minimização da função objetivo. Uma das difículdades do método é a determinação do tamanho do passo do gradiente pois, caso seja este um valor grande, pode causar oscilações em torno do ponto ótimo ou o processo pode não convergir. E se o passo for pequeno, pode levar a um número excessivo de iteração. Existem ainda limitações na determinação do tamanho do passo nas variáveis de controle. Isto pode comprometer o processo de convergência.

SASSON (1969) apresentou uma extensão do método de Dommel & Tinney com o objetivo de melhorar a convergência do método de Newton. Este novo método minimiza o custo do combustível e as perdas nas linhas de transmissão através da implementação de uma técnica de programação não linear que emprega os algoritmos de Powell e Fletcher-Powell. Esta técnica verifica a convergência em cada estágio do processo de otimização. Embora o método funcione muito bem para sistemas pequenos, apresentou problemas de convergência com o aumento do tamanho do sistema e técnicas de decomposição devem ser usadas. Além disso, é limitado por ser incapaz de lidar com mais que duas restrições por nó.

SASSON et al. (1973) aplicaram o método das penalidades no problema de FPO. Esta técnica tem o objetivo de tornar o problema restrito em irrestrito, penalizando todas as restrições de desigualdade que são violadas e as de igualdade que ainda estão longe do zero. É uma técnica quadrática onde as variáveis são todas atualizadas simultaneamente, usando a matriz Hessiana da função objetivo penalizada. A cada iteração do método os valores das penalidades são aumentados, e a matriz Hessiana da função penalidade é calculada. O processo é repetido até que todas as restrições sejam satisfeitas. Técnicas de esparsidade são aplicadas à matriz Hessiana. Para valores altos dos fatores de penalidades a matriz Hessiana pode se tornar mal condicionada, comprometendo a convergência do processo de otimização. Este foi o primeiro trabalho a utilizar a matriz Hessiana na resolução do FPO.

SUN et al. (1984) apresentaram uma nova abordagem do problema de FPO utilizando Newton e o desacoplamento do problema original em dois subproblemas (P-θ e Q-V) combinado com as condições de otimalidade de Karush-Kuhn-Tucker (KKT). Para a utilização do método de Newton faz-se necessário a montagem da função Lagrangiana que transforma o problema restrito em um problema irrestrito. A função Lagrangiana é dada pela combinação da função objetivo, das restrições de igualdade e desigualdade. As restrições de igualdade são incorporadas a função objetivo através dos multiplicadores de Lagrange. Já as restrições de desigualdade podem ser divididas em dois grupos: as restrições penalizadas, que são adicionadas a função objetivo através dos parâmetros de penalidade, e as restrições ativas que são incorporadas ao grupo de restrições de igualdade dado pelas equações do FP. O método do conjunto ativo foi utilizado para identificar as restrições ativas na solução. A cada iteração a função Lagrangiana é aproximada por uma quadrática. O ponto ótimo do problema ocorre quando as condições de otimalidade de KKT estão satisfeitas e as equações do fluxo de carga convencional estão dentro de determinada tolerância. O método apresenta convergência de segunda ordem e tem como desafio, no desenvolvimento do algoritmo, a identificação do conjunto de restrições de desigualdade ativas na solução.

MONTICELLI & LIU (1992) apresentaram uma nova abordagem do método de Newton onde eles combinaram o método dos multiplicadores de Lagrange para as restrições de igualdade e o método da função penalidade para representar as restrições de desigualdades ativas. A principal diferença do método proposto por Monticelli& Liu e por Sun et al., está na utilização de um movimento adaptativo de penalidade que assegura que a matriz Hessiana seja definida positiva ao longo da solução do problema sem afetar o processo de convergência.

Embora os Métodos dos Pontos Interiores (MPI) tenham surgido em meados da década de 80, sua aplicação em problemas de otimização em sistemas elétricos de potência só veio a ocorrer apenas alguns anos mais tarde. CLEMENTS et al. (1991) desenvolveram uma das primeiras pesquisas de pontos interiores aplicados para sistemas elétricos de potência. Clements propôs uma técnica de pontos interiores para programação não linear para solucionar o problema de estimação de estado em sistemas elétricos de potência. No mesmo ano, PONNAMBALAM et al. apresentaram um novo desenvolvimento para o algoritmo dual afim (uma variação do MPI de Kamarkar) implementado para resolver o problema de planejamento de geração hidráulica. VARGAS et al. (1992) apresentaram um MPI para resolver o problema de despacho econômico. Nos anos seguintes foram apresentados vários trabalhos utilizando MPI. A primeira contribuição significativa foi de GRANVILLE (1994), ao propor o Método Primal-Dual Barreira Logarítmica (MPDBL) para resolver o problema de despacho ótimo de reativos, caso particular do FPO, em que os controles de ativos estão fixos. O método utiliza multiplicadores de Lagrange para as restrições de igualdades, desmembra as desigualdades em duas inequações e acrescenta variáveis de folga, estritamente positivas, para que estas restrições se tornem igualdades. Estas variáveis de folga são incorporadas à função objetivo

através da função barreira logarítmica e parâmetro de barreira, que tende a zero durante o processo de otimização. Este algoritmo apresenta muita sensibilidade quanto à escolha do parâmetro de barreira, podendo até mesmo divergir em alguns casos. A solução é encontrada quando todas as restrições do problema original estão sendo satisfeitas, dentro de uma tolerância especificada.

WU et al. (1994) apresentam o MPDBL para resolução de problemas de FPO com a novidade da utilização do esquema preditor-corretor. O esquema preditorcorretor mostrou-se computacionalmente mais eficaz do que o Método Primal-Dual (MPD) puro em termos de velocidade e número de iterações.

YAN & QUINTANA (1996) em vez de aplicarem o algoritmo de pontos interiores diretamente ao problema não linear de FPO, propõem a utilização da técnica de programação linear sucessiva para resolver o problema. A técnica apresenta duas vantagens importantes. A primeira é a não necessidade de se calcular a matriz com derivadas de segunda ordem (matriz Hessiana) a cada iteração, o que é computacionalmente pesado. A segunda vantagem é que o processo de otimização pode ser controlado para terminar num estágio anterior baseado na precisão escolhida pelo usuário, o que não é possível em problemas não lineares devido a incerteza do seu comportamento para problemas não convexos. Resultados computacionais para grandes sistemas mostraram que o algoritmo é rápido e robusto, sendo apropriado para aplicações em tempo real.

YAN & QUINTANA (1997) apresentaram um algoritmo para a solução de FPO em que utilizou o método preditor-corretor de pontos interiores junto com a técnica de programação linear sucessiva. O novo algoritmo também apresenta novas técnicas para lidar com a escolha do parâmetro de barreira, o ponto inicial e o critério de convergência. Os resultados mostraram uma grande dependência da eficiência do algoritmo com a escolha exata dos parâmetros de barreira e do ponto inicial. Uma característica importante é a não dependência do número de iterações finais com o tamanho do problema. TORRES & QUINTANA (1998), seguindo a sua linha de pesquisas relacionadas à aplicação do esquema preditor-corretor, propõem um algoritmo de pontos interiores para resolução de problemas de FPO que utiliza as tensões do sistema na forma retangular ao invés da forma polar. A grande vantagem está no fato de que alguns problemas de FPO quando formulados na forma retangular apresentam funções objetivo e restrições quadráticas. As funções quadráticas são desejáveis principalmente por apresentarem características como: Hessiana constante, a expansão de Taylor terminar no termo de segunda ordem sem erro de truncamento e o cálculo do termo de ordem superior é mais fácil (utilizado no esquema preditor-corretor).

MOMOH & ZHU (1999) apresentaram o Método dos Pontos Interiores Quadráticos Melhorado (MPIQM) aplicado à solução do FPO trabalhando com variedades de funções objetivo incluindo o problema de despacho ótimo, planejamento de reativos e minimização das perdas. É realizado um procedimento de eliminação para se obter uma redução no problema de FPO, onde a função objetivo é uma função quadrática sujeita a restrições lineares. As características do MPIQM são a possibilidade de um ponto de partida geral, ou seja, a não necessidade de um ponto inicial bom, como é requerido nos demais métodos de pontos interiores, e a rápida convergência.

COSTA et al. (2000) apresentaram uma comparação entre três abordagens de otimização para resolver o problema de FPO: conjunto ativo e penalidade, primaldual e primal-dual barreira logarítmica. As três abordagens são baseadas no método de Newton. O desempenho dos métodos foi comparado considerando: as perdas ativas na transmissão, geração de potência reativa, o número total de iterações para convergência e o tempo de processamento. Os resultados obtidos mostram que cada método tem vantagens e desvantagens e os autores recomendam uma mistura deles, explorando as qualidades de cada um.

CAPÍTULO 3

O MÉTODO DOS PONTOS INTERIORES

3.1) INTRODUÇÃO

O primeiro método de pontos interiores conhecido é atribuído a FRISCH (1955), denominado Método da Barreira Logarítmica (MBL) e que foi mais tarde (década 1960) extensivamente estudado por Fiacco e Mccormick para solucionar problemas de inequações não lineares restritas. No entanto, o maior feito no campo da pesquisa de pontos interiores veio ocorrer apenas em 1984 quando KARMARKAR (1984) apresentou um novo MPI para Programação Linear (PL) alcançando a resposta final até 50 vezes mais rápido que o Método Simplex (MS) de Dantzig.

O algoritmo de Karmarkar é significativamente diferente do MS. A resolução de um problema de PL através do MS inicia em um extremo ao longo da fronteira da região factível, saltando para um ponto extremo vizinho melhor ao longo da fronteira, e finalmente parando no ponto extremo ótimo. Já o algoritmo de Karmarkar raramente visita pontos extremos antes de encontrar a solução ótima x*. Este método tem por objetivo caminhar pelo interior da região factível, até encontrar o ponto ótimo, daí o algoritmo de Karmarkar também ser conhecido como o método dos pontos interiores.

Se por um lado a abordagem de Pontos Interiores (PI) requer maior tempo computacional encontrando uma direção de busca, por outro, o fato de se alcançar uma melhor direção de busca resulta em um número inferior de iterações. A Figura 3.1 ilustra a diferença entre as técnicas de otimização citadas.

Figura 3.1 - Ilustração dos métodos de pontos interiores e do Simplex

Entretanto, o algoritmo de Karmarkar em sua versão original é complexo e, posteriormente, foram apresentados algoritmos derivados daquele, com abordagens bem mais simples.

Uma variante do método projetivo de Karmarkar é o Método de Escala-Afim, que utiliza uma transformação afim em detrimento à transformação projetiva. O método de Escala-Afim possui duas variantes: o Escala-Afim Primal, para solucionar problemas lineares na forma padrão, e o Escala-Afim Dual, para solucionar problemas lineares na forma de desigualdades. Como outras variantes podem ser citados os métodos primais de centro, primais-duais ou *Path-Following*, entre outros como mencionado em MATUMOTO (1996).

O esforço computacional de cada iteração de um algoritmo de PI é dominado pela solução do sistema linear altamente esparso. Por esse motivo, o desempenho de qualquer código de PI é altamente dependente de uma boa álgebra linear. Neste capítulo é realizada uma descrição dos MPI aplicados à resolução dos problemas de Programação Não Linear (PNL), e é organizado da seguinte forma: inicialmente descreve-se o problema de PNL, esboça-se o método da programação linear seqüencial, mostra-se em detalhes o desenvolvimento de um MPI primal-dual e finalmente apresenta uma breve abordagem dos MPI primal-dual de ordem-superior.

3.2) O PROBLEMA DE PROGRAMAÇÃO NÃO LINEAR

Um problema de PNL pode ser representado matematicamente como um problema geral de otimização:

min
$$f(x)$$

sa $g(x) = 0$
 $\underline{h} \le h(x) \le \overline{h}$
 $\underline{x} \le x \le \overline{x}$
(3.1)

onde em um problema típico de FPO:

- x ∈ ℜⁿ → ℜ é um vetor de variáveis de decisão, incluindo as variáveis de controle e as variáveis dependentes não funcionais.
- f ∈ ℜⁿ → ℜ é uma função escalar que representa o objetivo de otimização na operação do sistema de potência.
- g ∈ ℜⁿ → ℜ^m é uma função vetor com as equações convencionais do fluxo de potência.
- h∈ ℜⁿ → ℜ^p é um vetor de variáveis funcionais, com limites inferiores <u>h</u> e limites superiores <u>h</u>, correspondendo aos limites de operação do sistema.

Daqui em diante assume-se que $f(x),g_i(x) e h_i(x)$ possuem derivadas contínuas de segunda ordem.

Qualquer ponto \hat{x} que satisfaça todas as restrições em (3.1) é dito factível. O conjunto de todos os pontos factíveis define a região factível, e um ponto factível x^* que atende as condições de mínimo é chamado de ótimo local. Todo problema de PNL na forma de (3.1) é não convexo, porque restrições com equações não lineares e/ou funções limitadas não lineares na forma $\underline{h} \leq h(x) \leq \overline{h}$ não podem formar uma região convexa. Por exemplo, se $h(x) \leq \overline{h}$ é convexa então $-h(x) \leq \underline{h}$ é côncava, e vice versa.

O problema não linear (3.1) pode ser resolvido pelos MPI primal-dual de duas maneiras, (i) aplicando os métodos diretamente ao problema não linear, ou (ii) aplicando os métodos na seqüência de aproximações (locais), como nas aproximações da Programação Linear Seqüencial (PLS) e da Programação Quadrática Seqüencial (PQS). Na sessão seguinte descreve-se as idéias básicas que estão por trás da aproximação PLS.

3.3) O PROBLEMA DE PROGRAMAÇÃO LINEAR SEQÜENCIAL

Na aproximação PLS, o problema de PNL apresentado em (3.1) é resolvido por meio da linearização sucessiva da função objetivo não linear e das funções de restrição ao redor do ponto de operação $\{x^k\}$ que são definidos pelas soluções das restrições de igualdade. A aproximação PLS envolve a solução seqüencial do problema linear

$$\begin{array}{l} \min \ f(x^{k}) + \nabla_{x} f(x^{k})^{t} \Delta x \\ \text{sa} \ g(x^{k}) + J_{g}(x^{k}) \Delta x = 0 \\ \underline{h} \leq h(x^{k}) + J_{h}(x^{k}) \Delta x \leq \overline{h} \\ \underline{x} \leq x^{k} + \Delta x < \overline{x} \end{array}$$
(3.2)

onde

- $\nabla_{\mathbf{x}} \mathbf{f} : \mathfrak{R}^n \to \mathfrak{R}^n$ é o gradiente de f(x) (um vetor coluna);
- $J_g: \mathfrak{R}^n \to \mathfrak{R}^{mxn}$ é a Jacobiana de g(x);
- $J_h: \mathfrak{R}^n \to \mathfrak{R}^{pxn}$ é a Jacobiana de h(x).

A aproximação sucessiva do problema de PNL mostrado em (3.1) pelo problema de PL representado em (3.2), supera as restrições do modelo linearizado possuir resultados satisfatórios apenas em uma pequena faixa na vizinhança da base requerida. Como motivação adicional tem-se que os problemas lineares podem ser facilmente resolvidos usando o MS ou um MPI. Os passos básicos de uma aproximação PLS são:

- Passo 1: Obter uma solução inicial para as restrições de igualdade e iniciar k como k = 0;
- Passo 2: Obter o subproblema de PL (3.2) utilizando a solução anterior para linearizar (3.1).
- Passo 3: Solucionar o subproblema de PL (3.2) para Δx e obter um novo ponto: $x^{k+1} = x^k + \Delta x$. Atualizar k, k = k + 1.
- Passo 4: Obter a solução das restrições de igualdade para x^k, verificar se as variáveis canalizadas estão dentro dos respectivos limites. Se sim, ir para o passo 5. Caso Contrário, voltar para o passo 2.
- Passo 5: Verificar se é possível a redução do valor da função objetivo. Caso afirmativo, voltar ao passo 2. Caso contrário, parar com x^k como uma solução aproximada de (3.1).

Um problema de PNL resolvido pela abordagem PLS só tem garantia de convergência se o problema for convexo.

3.4) MÉTODO PRIMAL-DUAL DE PONTOS INTERIORES PARA PROGRAMAÇÃO NÃO LINEAR

Os métodos dos pontos interiores foram primeiramente estudados por FRISCH (1955). Mais tarde, sua abordagem sobre a função barreira logarítmica foi extensivamente estudada na solução de problemas genéricos de restrições de desigualdade na forma expressa em (3.3) por FIACCO & MCCORMICK (1968).

$$\begin{array}{l} \min \quad f(\mathbf{x}) \\ \mathrm{sa:} \quad h(\mathbf{x}) \ge 0 \end{array} \tag{3.3}$$

É assumido que pelo menos um ponto x^0 exista onde $h(x^0) > 0$, isto é, a região $\Omega := \{x \in \Re^n \mid h(x) \ge 0\}$ não é vazia.

A abordagem de Fiacco & Mccormick para resolver (3.3) consiste de uma função barreira logarítmica ponderada para incorporar as restrições de desigualdade na função objetivo. Transformando assim um problema com restrições de desigualdade (3.3) em uma seqüência de problemas irrestritos da forma:

min
$$\left\{ f_{\mu}(x,\mu^{k}) = f(x) - \mu^{k} \sum_{i=1}^{m} \ln(h_{i}(x)) \right\}$$
 (3.4)

onde:

 $\mu^k > 0$ é o parâmetro de barreira.

O parâmetro de barreira monotonicamente decresce até zero com o avanço das iterações. Sob certas condições e μ^k suficientemente pequeno, conduzindo μ^k para zero, a seqüência {x(μ^k)} de minimização de (3.4) forma um caminho de convergência continuamente diferenciável para x^{*}, chamado de "trajetória de barreira", onde x^{*}é um minimizador de (3.3). Diversas dificuldades foram observadas com o uso do método de barreira logarítmica clássico para solução de (3.3). Inicialmente o maior problema foi a necessidade de se determinar um ponto inicial factível, que pode ser tão difícil quanto resolver o problema propriamente dito. O segundo maior problema foi as severas dificuldades numéricas, com as técnicas numéricas disponíveis na época, ainda que o problema (3.3) fosse bem condicionado. Os multiplicadores de Lagrange estimados para as restrições ativas ($h_i(x) = 0$) são obtidos através das razões de duas quantidades tendendo a zero, o que é instável. Além disso, à medida que se aproxima da solução, a matriz Hessiana de $f_{\mu}(x,\mu^k)$ começa a ficar mal condicionada, e, no limite ($\mu^k \rightarrow 0$), é singular. Outras grandes dificuldades são a necessidade de um cuidadoso algoritmo de busca linear, a escolha do valor inicial μ^0 e da subseqüente maneira de se reduzir μ^k a cada iteração.

Embora os métodos de PI tenham sido desenvolvidos para solucionar problemas de PNL genéricos, um grande número de pesquisas nos métodos de PI para PNL vem recentemente sendo motivadas principalmente pelo grande desempenho dos métodos de PI para PL e Programação Quadrática (PQ). Estas áreas de pesquisa desfrutam de um assombroso progresso nos últimos 10 anos. Descrevese a seguir o desenvolvimento matemático do método de PI primal-dual apropriado para resolver o problema de PNL (3.1). O método de pontos interiores para resolver o problema de PL (3.2) pode ser derivado de maneira similar.

3.4.1) PROBLEMA TRANSFORMADO E CONDIÇÕES DE OTIMALIDADE

Por motivo de apresentação, assume-se que as variáveis limitadas $\underline{x} \le x \le \overline{x}$ em (3.1) são incluídas em $\underline{h} \le h(x) \le \overline{h}$. O método de pontos interiores, aqui descrito, inicialmente transforma todas as restrições de desigualdade de (3.1) em igualdades adicionando vetores de folga / excesso não negativos, como segue:
min f(x)
s.a.:
$$g(x) = 0$$

 $-s - z + \overline{h} - \underline{h} = 0$ (3.5)
 $-h(x) - z + \overline{h} = 0$
 $s \ge 0, z \ge 0$

As condições de não negatividade $(s, z) \ge 0$ são tratadas sendo incorporadas nos termos de barreira logarítmica:

$$\min f(x) - \mu^k \sum_{i=1}^p (\ln s_i + \ln z_i)$$

$$s.a.: g(x) = 0$$

$$- s - z + \overline{h} - \underline{h} = 0$$

$$- h(x) - z + \overline{h} = 0$$

$$(3.6)$$

Os termos logarítmicos asseguram as condições das variáveis de folga serem estritamente positivas, as quais são tratadas implicitamente. Para resolver as restrições de igualdade do problema (3.6), usa-se o método de Newton-Lagrange. Associado com o problema (3.6) temos a função Lagrangeana $L_{\mu}(y)$ dada por:

$$L_{\mu}(\mathbf{y}) \coloneqq \mathbf{f}(\mathbf{x}) - \mu^{k} \sum_{i=1}^{p} (\ln s_{i} + \ln z_{i}) - \lambda^{t} \mathbf{g}(\mathbf{x}) - \pi^{t} (-\mathbf{s} - \mathbf{z} + \overline{\mathbf{h}} - \underline{\mathbf{h}}) - \mathbf{v}^{t} (-\mathbf{h}(\mathbf{x}) - \mathbf{z} + \overline{\mathbf{h}})$$

$$(3.7)$$

onde:

 $\lambda \in \Re^m, \pi \in \Re^p e v \in \Re^p$ são vetores dos multiplicadores de Lagrange, chamados de variáveis duais, e y := (s, z, \pi, v, x, λ).

Um mínimo local de (3.6) é expresso em termos de um ponto satisfatório de $L_{\mu}(y)$, e que precisa satisfazer as condições de otimalidade de Karush-Kuhn-Tucker:

12222-12122

12122

$$\nabla_{y} L_{\mu}(y) = \begin{pmatrix} \pi - \mu^{k} S^{-1} e \\ \hat{v} - \mu^{k} Z^{-1} e \\ s + z - \overline{h} + \underline{h} \\ h(x) + z - \overline{h} \end{pmatrix} = 0$$
(3.8)
$$\nabla_{x} f(x) - J_{g}(x)^{t} \lambda + J_{h}(x)^{t} v \\ -g(x) \end{pmatrix}$$

onde:

$$\begin{split} \mathbf{S} &\coloneqq \mathrm{diag}(\mathbf{s}_1, \mathbf{s}_2, \dots, \mathbf{s}_p), \ \mathbf{Z} \coloneqq \mathrm{diag}(\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_p) \ \mathbf{e} \coloneqq (1, 1, \dots 1)^{\mathrm{T}} \\ \hat{\mathbf{v}} &\coloneqq \mathbf{v} + \pi \,. \end{split}$$

Multiplicando o primeiro termo de (3.8) por S e o segundo por Z, tem-se:

$$\nabla_{\mathbf{y}} \mathbf{L}_{\mu}(\mathbf{y}) = \begin{pmatrix} \mathbf{S}\pi - \mu^{\mathbf{k}} \mathbf{e} \\ \mathbf{Z}\hat{\mathbf{v}} - \mu^{\mathbf{k}} \mathbf{e} \\ \mathbf{s} + \mathbf{z} - \mathbf{h} + \mathbf{h} \\ \mathbf{h}(\mathbf{x}) + \mathbf{z} - \mathbf{h} \\ \mathbf{h}(\mathbf{x}) + \mathbf{z} - \mathbf{h} \\ \nabla_{\mathbf{x}} \mathbf{f}(\mathbf{x}) - \mathbf{J}_{\mathbf{g}}(\mathbf{x})^{\mathsf{T}} \boldsymbol{\lambda} + \mathbf{J}_{\mathbf{h}}(\mathbf{x})^{\mathsf{T}} \mathbf{v} \\ - \mathbf{g}(\mathbf{x}) \end{pmatrix} = \mathbf{0} .$$
(3.9)

O sistema de KKT em (3.9) pode ser interpretado como se segue. O terceiro, o quarto e o sexto termo de (3.9), junto com $(s,z) \ge 0$, asseguram a factibilidade primal; o quinto termo junto com $(\pi, \hat{v}) > 0$, asseguram a factibilidade dual, enquanto que o primeiro e o segundo termo são as condições de complementaridade μ , perturbações ($\mu^{k} \ne 0$) das condições de complementaridade padrão. Um ponto inicial estritamente factível não é necessário no método primaldual, entretanto as condições $(s, z) \ge 0$ e $(\pi, \hat{v}) > 0$ precisam ser satisfeitas a cada ponto, de forma a definir os termos de barreira. O algoritmo de PI inicia-se de um ponto y⁰ que satisfaça $(s, z) \ge 0$ e $(\pi, \hat{v}) > 0$; de maneira a preservar esta condição, as iterações subseqüentes do PI seguem a trajetória no espaço do produto da complementaridade $(s_i \pi_i)$. A factibilidade é atendida durante o processo de iteração, e a otimalidade é alcançada.

Nas iterações do algoritmo de PI primal-dual invariavelmente aplica-se um passo do método de Newton nas equações não lineares para resolver o sistema de KKT em (3.9), encontra-se o tamanho do passo na direção de Newton, atualizam-se as variáveis e reduz-se μ^k . O algoritmo termina quando as infactibilidades primal e dual junto com o *gap* da complementaridade sejam menores do que as tolerâncias pré-determinadas. Antes de descrever detalhadamente cada um destes passos, dar-se-á uma explicação do papel exercido pelo parâmetro de barreira μ .

Sejam as condições de otimalidade de KKT para o problema de PNL (3.5):

$$\nabla_{\mathbf{y}} \mathbf{L}_{\mu}(\mathbf{y}) = \begin{pmatrix} \mathbf{S}\pi \\ \mathbf{Z}\hat{\mathbf{v}} \\ \mathbf{s} + \mathbf{z} - \mathbf{\overline{h}} + \mathbf{\underline{h}} \\ \mathbf{h}(\mathbf{x}) + \mathbf{z} - \mathbf{\overline{h}} \\ \nabla_{\mathbf{x}} \mathbf{f}(\mathbf{x}) - \mathbf{J}_{\mathbf{g}}(\mathbf{x})^{\mathsf{T}} \boldsymbol{\lambda} + \mathbf{J}_{\mathbf{h}}(\mathbf{x})^{\mathsf{T}} \mathbf{v} \\ - \mathbf{g}(\mathbf{x}) \end{pmatrix} = 0$$
(3.10)

com $(s, z) \ge 0$ e $(\pi, \hat{v}) > 0$. Uma nova estimativa para o ponto y^k pode ser calculada usando um passo do método de Newton para encontrar os zeros da função não linear aplicada em (3.10). As iterações têm a forma geral:

$$y^{k+1} = y^{k} - \alpha^{k} \nabla_{y}^{2} L(y^{k})^{-1} \nabla_{y} L(y^{k})$$
(3.11)

onde $\alpha^k \in (0,1]$ é um fator de amortecimento utilizado não apenas para melhora na convergência mas também para manter as variáveis não negativas estritamente positivas em lugar de apenas não negativas. A explicação de ZHANG (1996) para esta necessidade é descrita a seguir.

Considere quaisquer das condições de complementaridade em (3.10), seja $s_i \pi_i = 0$. A equação de Newton para $s_i \pi_i = 0$ num dado ponto (s_i^k, π_i^k) , é:

$$\mathbf{s}_{i}^{k} \Delta \pi_{i} + \pi_{i}^{k} \Delta \mathbf{s}_{i} = -\mathbf{s}_{i}^{k} \pi_{i}^{k} \tag{3.12}$$

Se uma das variáveis, seja π_i^k , é zero, então a equação de Newton torna-se $s_i^k \Delta \pi_i = 0$, conduzindo para zero o atualizador $\Delta \pi_i = 0$. Conseqüentemente, π_i^k irá permanecer em zero todo o tempo, uma vez que ele inicia em zero, o que é fatal, porque o algoritmo nunca poderá restaurar as variáveis iniciadas em zero através dos "erros". Além disso, mesmo que se mantenha as variáveis não negativas estritamente positivas, permanece as dificuldades em restaurá-las quando estas possuírem valor muito próximo de zero.

Observe que as condições de complementaridade perturbadas em (3.9) reduzem as chances de tais erros, nos estágios iniciais, direcionarem todos os pares de complementaridade para zero no mesmo passo, seja $s_i^k \pi_i^k = \mu^k \rightarrow 0$, para todo i, e $k \rightarrow \infty$. Se as iterações genéricas de (3.9) forem expressas em termos de $\nabla_y L(y^k)$, similar a (3.11), tem se:

$$y^{k+1} = y^{k} - \alpha^{k} \nabla_{y}^{2} L(y^{k})^{-1} \left[\nabla_{y} L(y^{k}) - \mu^{k} u \right]$$
(3.13)

onde:

 $u = (e,0) \operatorname{com} e \in \Re^{2p} e \ 0 \in \Re^{q-2p}$.

A direção de busca em (3.13) tem duas componentes: (i) a direção de Newton "pura", $\nabla_y^2 L(y^k)^{-1} \nabla_y L(y^k)$, também chamada de direção escala-afim, e (ii) a direção central, $\nabla_y^2 L(y^k)^{-1} \mu^k u$. A componente que não aparece em (3.11) conduz as variáveis não negativas para longe da fronteira.

Um resumo do algoritmo do método primal-dual de PI é mostrado a seguir:

Passo 1:(Inicialização)

Fazer k = 0, definir μ^0 e escolher um ponto inicial y^0 que satisfaça as condições de positividade estrita,

Passo 2:(Cálculo da Direção de Newton)

Formular o sistema de Newton para o ponto atual e encontrar a direção de Newton.

Passo 3:(Atualização das Variáveis)

Encontrar o tamanho do passo da direção de Newton e atualizar as variáveis primal e dual.

Passo 4:(Teste de Convergência)

Se o novo ponto satisfizer o critério de convergência, parar. Caso contrário, atualizar k=k+1, atualizar o parâmetro de barreira μ^k , e voltar ao passo 2.

3.4.2) CALCULANDO A DIREÇÃO DE NEWTON

Embora o sistema de KKT (3.9) seja não linear, sua solução é usualmente aproximada por uma iteração simples do método de Newton (a direção de Newton é apenas uma maneira de seguir o caminho do minimizador parametrizado por μ^k). Como aplica-se o método de Newton para resolver (3.9), obtém-se o seguinte sistema indefinido:

П	0	S	0	0	0	Δs		r _s	
0	Ŷ	Ζ	Ζ	0	0	Δz		rz	
Ι	Ι	0	0	0	0	Δπ		r _π	(2.14)
0	I	0	0	J _h	0	Δv	=	r	(3.14)
0	0	0	J_{h}^{T}	${\nabla_x}^2 L_\mu$	$-J_g^T$	Δx		r _x	
0	0	0	0	$-J_g$	0	Δλ		r_{λ}	

onde:

$$\Pi \coloneqq \operatorname{diag}(\pi_{1}, \pi_{2}, \dots, \pi_{p}), \hat{\gamma}(\hat{v}_{1}, \hat{v}_{2}, \dots, \hat{v}_{p})$$

$$r_{s} \coloneqq -S\pi + \mu^{k} e$$

$$r_{z} \coloneqq -Z\hat{v} + \mu^{k} e$$

$$r_{\pi} \coloneqq -s - z + \overline{h} - \underline{h}$$

$$r_{v} \coloneqq -h(x) - z + \overline{h}$$

$$r_{x} \coloneqq -\nabla_{x} f(x) + J_{g}(x)^{T} \lambda - J_{h}(x)^{T} v$$

$$r_{\lambda} \coloneqq g(x)$$
(3.15)

O cálculo de $\nabla_x^2 L_{\mu}$, envolve uma combinação da Hessiana da função objetivo $\nabla_x^2 f(x)$ e as Hessianas das restrições $\nabla_x^2 g_j(x) e \nabla_x^2 h_j(x)$, como $\nabla_x^2 L_{\mu}(y) = \nabla_x^2 f(x) - \sum_{j=1}^m \lambda_j \nabla_x^2 g_j(x) + \sum_{j=1}^p v_j \nabla_x^2 h_j(x).$

Deixa-se de lado o índice k para simplificar a apresentação. A direção de Newton pode ser obtida resolvendo-se (3.14) diretamente, ou pelo sistema reduzido:

$$\begin{bmatrix} J_{d} & -J_{g}^{T} \\ -J_{g} & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta \lambda \end{bmatrix} = \begin{bmatrix} r_{x} \\ r_{\lambda} \end{bmatrix}$$
(3.16)

Para primeiro $\Delta x e \Delta \lambda$, e então calcula-se:

$$\begin{split} \Delta z &= -J_{h}(x)\Delta x\\ \Delta s &= -\Delta z\\ \Delta \pi &= -\mu^{k}S^{-2}\Delta s\\ \Delta v &= -\mu^{k}Z^{-2}\Delta z - \Delta \pi \end{split} \tag{3.17}$$

onde:

$$J_{d} = \nabla_{x}^{2} L_{\mu}(y) + \mu^{k} J_{h}(x)^{T} (S^{-2} + Z^{-2}) J_{h}(x)$$

Em TORRES & QUINTANA (1998) tem-se uma explicação do desenvolvimento do sistema reduzido acima apresentado.

3.4.3) ATUALIZAÇÃO DAS VARIÁVEIS

As novas variáveis primal e dual são atualizadas por:

$$\begin{aligned} \mathbf{x}^{k+1} &= \mathbf{x}^{k} + \alpha_{p}^{k} \Delta \mathbf{x} \quad \lambda^{k+1} = \lambda^{k} + \alpha_{D}^{k} \Delta \lambda \\ \mathbf{s}^{k+1} &= \mathbf{s}^{k} + \alpha_{p}^{k} \Delta \mathbf{s} \quad \pi^{k+1} = \pi^{k} + \alpha_{D}^{k} \Delta \pi \\ \mathbf{z}^{k+1} &= \mathbf{z}^{k} + \alpha_{p}^{k} \Delta \mathbf{z} \quad \mathbf{v}^{k+1} = \mathbf{v}^{k} + \alpha_{D}^{k} \Delta \mathbf{v} \end{aligned}$$
(3.18)

onde os escalares $\alpha_P^k \in (0,1]$ e $\alpha_D^k \in (0,1]$ são os parâmetros de tamanho dos passos primais e duais respectivamente. O máximo tamanho de passo que pode ser tomado na direção de Newton é determinado por:

$$\begin{split} \alpha_{P}^{k} &= \gamma * \min\left\{1, \min_{i}\left\{\frac{-s_{i}^{k}}{\Delta s_{i}} \mid \Delta s_{i} < 0, \frac{-z_{i}^{k}}{\Delta z_{i}} \mid \Delta z_{i} < 0\right\}\right\}, \\ \alpha_{D}^{k} &= \gamma * \min\left\{1, \min_{i}\left\{\frac{-\pi_{i}^{k}}{\Delta \pi_{i}} \mid \Delta \pi_{i} < 0, \frac{-\hat{v}_{i}^{k}}{\Delta \hat{v}_{i}} \mid \Delta \hat{v}_{i} < 0\right\}\right\} \end{split}$$
(3.19)

O escalar $\gamma \in (0,1)$ é um fator de segurança para assegurar que o próximo ponto irá satisfazer as condições de positividade estrita, um valor típico é $\gamma = 0.99995$.

A eq. (3.19) apresenta o cálculo para o tamanho dos passos primal e dual de forma separada, o que é uma vantagem para o método primal-dual de PI para resolver problemas de PL, e tem provado ser altamente eficiente na prática, reduzindo o número de iterações de convergência entre 10% e 20% em problemas típicos. Em geral, nos problemas de PNL a interdependência entra as variáveis do primal e do dual presentes nas condições de factibilidade dual não permite a separação do tamanho do passo do primal e do dual. Neste caso, um tamanho do passo comum aos dois pode ser encontrado por:

$$\alpha_P^k = \alpha_D^k \leftarrow \min\left\{\alpha_P^k, \alpha_D^k\right\}$$
(3.20)

3.4.4) REDUÇÃO DO PARÂMETRO DE BARREIRA

Embora as propriedades de dualidade da programação convexa não possam ser totalmente estendidas para problemas genéricos de PNL, pergunta-se naturalmente se o sucesso obtido no esquema de redução de μ^k em PL ou em PQ convexa pode ser estendido para problemas de PNL. O resíduo das condições de complementaridade, chamado de *gap* da complementaridade, é calculado no ponto y^k por:

$$\rho^{k} = (s^{k})^{t} \pi^{k} + (z^{k})^{t} \hat{v}^{k}$$
(3.21)

A sequência $\{\rho^k\} \to 0$ faz com que $\{x^k\} \to x^*$. Desta maneira, a relação entre ρ^k e μ^k que está implícita em (3.9) sugere que μ^k pode ser reduzido baseado no decrescimento do *gap* da complementaridade, como por exemplo:

$$\mu^{k+1} = \sigma^k \frac{\rho^k}{2p} \tag{3.22}$$

onde:

p: é um parâmetro definido pelo usuário.

Onde σ^k é esperado, mais não necessariamente realizado, decrescer com o gap da complementaridade. O parâmetro $\sigma^k \in (0,1)$ é chamado de parâmetro central. Se $\sigma^k = 1$, o sistema de KKT (3.9), define a direção central, o passo direciona para um ponto na trajetória de barreira. No outro extremo, $\sigma^k = 0$ nos dá o passo de Newton puro, conhecido como direção escala–afim. Para caminharmos entre os dois limites de redução de μ^k e melhorar centralmente, σ^k pode ser escolhido como $\sigma^k = \max\{0.99\sigma^{k-1}, 0.1\}$ com $\sigma^0 = 0.2$.

3.4.5) TESTE DE CONVERGÊNCIA

As iterações do PI são consideradas terminadas quando:

$$\begin{split} v_1^k &\leq \xi_1 & \mu^k \leq \xi_\mu \\ v_2^k &\leq \xi_1 & \left\| \Delta x \right\|_{\infty} \leq \xi_2 \\ v_3^k &\leq \xi_2 & 0 u \\ v_4^k &\leq \xi_2 & u_4^k \leq \xi_2 \end{split}$$

É satisfeito, onde:

$$\begin{aligned} v_{1} &= \max\{\max\{\underline{h} - h(x)\}, \max\{h(x) - \overline{h}\} \| g(x) \|_{\infty} \}, \\ v_{2} &= \frac{\| \nabla_{x} f(x) - J_{g}(x)^{T} \lambda + J_{h}(x)^{T} v \|_{\infty}}{1 + \| x \|_{2} + \| \lambda \|_{2} + \| v \|_{2}}, \\ v_{3} &= \frac{\rho}{1 + \| x \|_{2}}, \\ v_{4} &= \frac{\left| f(x^{k}) - f(x^{k-1}) \right|}{1 + \left| f(x^{k}) \right|} \end{aligned}$$
(3.23)

Se os critérios $v_1^k \leq \xi_1$, $v_2^k \leq \xi_1$ e $v_3^k \leq \xi_2$ são satisfeitos, então a factibilidade primal, factibilidade dual escalar e as condições de complementaridade são satisfeitas, o que significa que a iteração k é um ponto de KKT de precisão ξ_1 . Quando problemas numéricos impedem verificar estas condições, o algoritmo para assim que a factibilidade das restrições de igualdade é alcançada e as mudanças no valor da função objetivo e das variáveis são desprezíveis. Valores típicos para as tolerâncias são $\xi_1 = 10^{-4}, \xi_2 = 10^{-2} \xi_1$, e $\xi_{\mu} = 10^{-12}$.

3.5) MÉTODOS DE PONTOS INTERIORES PRIMAL-DUAL DE ORDEM-SUPERIOR

A avaliação das direções de Newton é usualmente a tarefa computacional mais dispendiosa de uma iteração do algoritmo primal-dual. No cálculo de Δy , a fatoração direta da matriz coeficiente em (3.14) é muito mais dispendiosa que a solução pelo método *forward and backward* seguido por fatoração. Portanto, é razoável pensar que é possível melhorar o desempenho do algoritmo de PI. Se existir uma redução no número de matrizes de fatoração para um mínimo necessário, tem-se uma melhora no custo computacional de cada iteração.

A redução no número de iterações pode ser obtida pela incorporação de uma informação de ordem-superior em (3.14) com o objetivo de melhorar a ordem de precisão da qual a direção de Newton aproxima as equações de KKT. Esta é a idéia central por trás dos métodos de ordem-superior, como o método preditor-corretor introduzido por KOJIMA et. al. (1989) e desenvolvido por MEHROTRA (1992).

O que torna o método de MEHROTRA eficiente em termos computacionais, é a obtenção de uma direção de busca mais bem sucedida através da solução de dois sistemas de equações lineares em cada iteração. A solução dos dois sistemas lineares, conhecidos como passos preditor e corretor, envolve uma única matriz coeficiente com dois diferentes lados direito. Portanto, uma única matriz de fatoração é requerida. Conseqüentemente existe apenas um pequeno trabalho adicional para calcular o passo corretor, visto que aproveita-se a matriz de fatoração do passo preditor.

No método preditor-corretor, em vez de se aplicar o método de Newton em (3.9), com o intuito de gerar os termos de correção para a estimativa atual, o novo ponto $y^{k+1} = y^k + \Delta y$ é substituído diretamente em (3.9), para obter a seguinte aproximação:

$$\nabla_{y}^{2} L_{\mu}(y) \Delta y = \begin{bmatrix} -S\pi \\ -Z\hat{v} \\ r_{\pi} \\ r_{v} \\ r_{x} \\ r_{\lambda} \end{bmatrix} + \begin{bmatrix} \mu^{k} e \\ \mu^{k} e \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} -\Delta S \Delta \pi \\ -\Delta Z \Delta \hat{v} \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.24)

onde:

 $\nabla_{y}^{2}L_{\mu}(y)$ é a matriz coeficiente em (3.14) $\Delta S := \text{diag}(\Delta s_{1},...,\Delta s_{P})$ $\Delta Z := \text{diag}(\Delta z_{1},...,\Delta z_{P})$

A maior diferença entre o sistema de Newton em (3.24) e o apresentado em (3.14) é que o lado direito de (3.24) não pode ser determinado antecipadamente devido aos termos *delta* não lineares. Note que a direção de busca Δy obtida de (3.24) consiste de três componentes de direção,

$$\Delta y = \Delta y_{af} + \Delta y_{ce} + \Delta y_{co}$$
(3.25)

onde cada direção é definida por um vetor no lado direito de (3.24). As três direções podem ser interpretadas como:

- Δy_{af} é uma direção-afim, a direção de Newton pura que é obtida quando ajusta-se μ^k = 0 em (3.14). A direção escala-afim é representada pelo primeiro vetor no lado direito de (3.24) e é responsável pela "otimização", isto é, pela redução da infactibilidade dual e primal e do *gap* de complementaridade.
- Δy_{ce} é a direção central, cujo tamanho é controlado pela escolha adaptativa do parâmetro de barreira μ^k. A direção central, representada pelo segundo vetor no lado direito de (3.24), mantém o ponto atual afastado da borda da região factível e idealmente próximo da trajetória de barreira. O objetivo é melhorar as chances de um grande passo ser realizado na próxima iteração.
- Δy_{co} é a direção corretora que tenta compensar alguma não linearidade na direção escala-afím. Δy_{co} é definida pelo último vetor do lado direito de (3.24).

Os primeiros dois componentes, $\Delta y_{af} \in \Delta y_{ce}$, combinam para compor a direção padrão calculada em (3.14). No algoritmo de MEHROTRA, a direção Δy_{af} é calculada separadamente e anteriormente a direção Δy_{ce} . Esta organização no cálculo possibilita escolher μ^{k+1} adaptativamente em vez de antecipadamente e aproximar os termos *delta* de segunda ordem, como descrito abaixo.

O passo Preditor

Para determinar um passo que satisfaça (3.24) de forma aproximada, inicia-se deixando de lado os termos μ e *delta* no lado direito de (3.24), e resolve-se para a direção escala-afim como em (3.26)

$$\nabla_{y}^{2} L_{\mu}(y) \begin{bmatrix} \Delta s^{af} \\ \Delta z^{af} \\ \Delta \pi^{af} \\ \Delta v^{af} \\ \Delta x^{af} \\ \Delta \lambda^{af} \end{bmatrix} = \begin{bmatrix} -S\pi \\ -Z\hat{v} \\ r_{\pi} \\ r_{\nu} \\ r_{\chi} \\ r_{\chi} \end{bmatrix}$$
(3.26)

A direção Δy_{af} é então usada de duas maneiras diferentes: (i) para aproximar os termos de *delta* no lado direito de (3.24), e (ii) para dinamicamente estimar o parâmetro de barreira μ .

Para estimar μ , primeiro considera-se a regra padrão dada em (3.20) utilizada na determinação do tamanho do passo e que poderia realmente ser tomada se a direção afim Δy_{af} fosse usada. Segundo, uma estimativa do *gap* da complementaridade é calculada.

$$\rho_{af}^{k} = (s^{k} + \alpha_{P}^{af} \Delta s_{af})^{T} (\pi^{k} + \alpha_{D}^{af} \Delta \pi_{af}) + (z^{k} + \alpha_{P}^{af} \Delta z_{af})^{T} (\hat{v}^{k} + \alpha_{D}^{af} \Delta \hat{v}_{af})$$
(3.27)

Finalmente, uma estimativa de μ^k_{af} para μ^{k+1} pode ser obtido por:

$$\mu_{af}^{k} = \min\left\{ \left(\frac{\rho_{af}^{k}}{\rho^{k}} \right)^{2}, 0.2 \right\} \frac{\rho_{af}^{k}}{2p}$$
(3.28)

onde:

p: é um parâmetro definido pelo usuátio.

Este procedimento escolhe o μ_{af}^k para ser pequeno quando a direção afim produz um grande decréscimo na complementaridade ($\rho_{af}^k \langle \langle \langle \rho^k \rangle$) e caso contrário escolhe o μ_{af}^k para ser grande.

O Passo Corretor

Em vez de se calcular a combinação direção corretora e central, $\Delta y_{ce} + \Delta y_{co}$, e em seguida adicioná-las a Δy_{af} , calcula-se a direção de Newton Δy completa

$$\nabla_{y}^{2} L_{\mu}(y) \begin{bmatrix} \Delta s \\ \Delta z \\ \Delta \pi \\ \Delta v \\ \Delta x \\ \Delta \lambda \end{bmatrix} = \begin{bmatrix} -S\pi + \mu_{af}^{k} e - \Delta S_{af} \Delta \pi_{af} \\ -Z\hat{v} + \mu_{af}^{k} e - \Delta Z_{af} \Delta \hat{v}_{af} \\ r_{\pi} \\ r_{\pi} \\ r_{\chi} \\ r_{\chi} \\ r_{\chi} \end{bmatrix}$$
(3.29)

O esforço adicional do método preditor-corretor está na solução do sistema linear extra para computar a direção afim e no teste de razão extra para calcular μ_{af}^{k} , uma vez que os passos preditor e corretor são baseados na mesma matriz de fatoração. O que usualmente ocasiona ganhos em número de iterações e de tempo.

3.5.2) O MÉTODO DE NEWTON COMPOSTO

O método preditor-corretor de Mehrotra executa apenas um passo corretor para obter a direção de busca a cada iteração. Já o Método de Newton Composto (MNC) que é descrecrito nesta secção executa um ou mais passos corretores a cada iteração com a pretensão de executar menos iterações que o método preditorcorretor. Dessa maneira o MNC objetiva a exploração das derivadas e mais fatorações em uma seqüência de soluções de sistemas como (3.29) com diferentes lados direitos. Considere que se deseje encontrar a solução de um sistema de equações não lineares (como as equações de KKT) dado por:

$$F(x) = 0$$
 (3.30)

onde:

 $F: \mathfrak{R}^n \to \mathfrak{R}^n$ é um vetor de funções continuamente diferenciáveis.

Um método de Newton amortecido é utilizado para resolver as equações lineares a cada iteração:

$$J_{F}(x^{k})\Delta x = -F(x^{k})$$
(3.31)

para a direção Δx , então move-se para o novo ponto.

$$\mathbf{x}^{k+1} = \mathbf{x}^k + \alpha^k \Delta \mathbf{x} \tag{3.32}$$

onde:

 $J_F: \mathfrak{R}^n \rightarrow \mathfrak{R}^{nxn}$ é a matriz Jacobiana de F(x)

 $\alpha^k \in (0,1]$ é parâmetro de tamanho do passo que faz deste um método de Newton amortecido.

Uma vez que o cálculo e a fatoração da matriz Jacobiana de $J_F(x^k)$ demanda um grande esforço computacional dentro de uma iteração, seria vantajoso usar a mesma derivada e matriz de fatoração em diversas soluções. Esta é a idéia por trás do método de Newton composto. Na k-ésima iteração, o nível de amortecimento M do método de Newton composto primeiro resolve o sistema:

$$J_{F}(x^{k})\Delta x^{0} = -F(x^{k})$$

$$(3.33)$$

para a direção Δx^0 . Então para $l_k = 1, ..., M$ resolve o sistema

$$J_{F}(x^{k})\Delta x^{l_{K}} = -F(x^{k} + \sum_{j=0}^{l_{K}-l}\Delta x^{j})$$
(3.34)

para a direção $\Delta x^{l_{\kappa}}$. Finalmente, tem-se o passo

$$x^{k+1} = x^{k} + \alpha^{k} \sum_{j=0}^{M} \Delta x^{j}$$
(3.35)

Note que a Matriz Jacobiana $J_F(x^k)$ é empregada M+1 vezes para se obter iterativamente a direção de busca antes do passo ser de fato tomado em (3.35).

O procedimento acima pode facilmente ser incorporado na solução das equações perturbadas de KKT em (3.9). Assume-se que a direção preditora Δy_{af} e a estimativa do parâmetro de barreira μ_{af}^{k} venham sendo calculadas como no passo preditor da técnica de Mehrotra. Então seja $\Delta y^{0} = \Delta y_{af}$ e para $l_{k} = 1,...,M$, resolve-se o sistema:

$$\nabla_{y}^{2} L(y^{k}) \Delta y^{l_{\kappa}} = -\nabla_{y} L(y^{k} + \sum_{j=0}^{l_{\kappa}-l} \Delta y^{j}) + \mu_{af}^{k} u$$
(3.36)

para a direção $\Delta y^{l_{\kappa}}$, onde u = (e,0), com $e \in \Re^{2p}$ e $0 \in \Re^{q-2p}$. Finalmente, definise $\Delta y = \sum_{j=0}^{M} \Delta y^{j}$ e move para um novo ponto através do cálculo do tamanho do passo e da atualização das variáveis precisamente como no método primal-dual e no método de MEHROTRA. Note que tem-se que considerar o mesmo valor do parâmetro de barreira, μ_{af}^{k} em todos os passos corretores. Alternativamente o parâmetro de barreira pode ser reinicializado a cada passo corretor.

No próximo capítulo expor-se-á a resolução do problema de fluxo de potência ótimo usando o método primal-dual função barreira de logarítmica e Newton.

CAPÍTULO 4

DESPACHO ATIVO CA COM RESTRIÇÃO DE FLUXO ATIVO NA TRANSMISSÃO

4.1) INTRODUÇÃO

O problema de Despacho Ativo (DA) é um caso particular do problema de Fluxo de Potência Ótimo (FPO). Normalmente a função objetivo de um problema de DA está relacionada ao custo de geração do sistema ou às perdas de potência ativa existentes nas linhas de transmissão. A implementação de uma proposta de FPO com a função objetivo representando o custo de geração do sistema, torna-se de pouca aplicação para o modelo vigente no sistema elétrico brasileiro, visto que cerca de 90% da nossa energia gerada é proveniente de usinas hidroelétricas. Já a opção em que se tem a função objetivo representando as perdas de potência ativa nas linhas de transmissão, está bem mais próximo da realidade do sistema elétrico brasileiro. A justificativa está no fato de que grande parte do nosso parque gerador encontra-se afastado dos principais centros consumidores, o que acarreta a necessidade de um amplo sistema de transmissão de energia elétrica, e conseqüentemente um maior nível de perdas de potência ativa. As perdas estão relacionadas com as características de projeto e construção da linha, representadas no banco de dados do sistema pela sua impedância equivalente.

Alguns autores questionam o uso da função objetivo como representação das perdas do sistema em um problema de DA, dando o problema como redundante, já

que é intuitivo um maior nível de geração pelas fontes geradoras localizadas próximo das cargas. No entanto, freqüentemente verifica-se o problema das restrições físicas impostas pelas linhas de transmissão, e que se vierem a ser consideradas, modificam e viabilizam o estudo do problema de despacho ativo com a função objetivo igual às perdas do sistema.

O presente trabalho vem justamente tratar o problema do despacho de ativos tendo como função objetivo as perdas do sistema e levando em consideração os limites físicos impostos pelas linhas ao fluxos de ativos. Como ferramenta para desenvolvimento do método proposto utiliza-se o método de pontos interiores da função barreira logarítmica e o método de Newton. Na seqüência deste capítulo descreve-se a formulação do problema.

4.2) O PROBLEMA DE FLUXO DE POTÊNCIA ÓTIMO

O FPO pode ser representado matematicamente através de um problema geral de otimização com restrições de igualdade e desigualdade como:

$$\min f(\mathbf{x})$$

s.a.:g(x) = 0
$$\underline{\mathbf{h}} \le \mathbf{h}(\mathbf{x}) \le \overline{\mathbf{h}}$$

$$\underline{\mathbf{x}} \le \mathbf{x} \le \overline{\mathbf{x}}$$
(4.1)

onde :

 $x = (V, \theta, t) \in \Re^n$: vetor das variáveis de estado; f(x): função objetivo que representa o desempenho do sistema (função escalar); $g(x) = 0 \in \Re^m$: vetor das equações do fluxo de potência onde m < n; $h(x) = 0 \in \Re^p$: vetor das inequações funcionais do fluxo de potência; <u>h</u> e h : limites inferiores e superiores das restrições h(x), respectivamente; <u>x</u> e x : limites inferiores e superiores das variáveis x, respectivamente. O vetor das variáveis de estado x representa a magnitude de tensão (V), ângulos (θ) e *tap* dos transformadores (t). A função objetivo, f(x), representa as perdas de potência ativa na transmissão. As restrições de igualdade g(x) são as equações do fluxo de potência obtidas quando se impõe o princípio da conservação de potência em cada barra da rede. As restrições de desigualdade h(x) representam as restrições funcionais como: a potência reativa nas barras de controle de reativos, potência ativa e reativa nas barras de geração e os fluxos ativos nas linhas de transmissão.

Ao rescrever (4.1) utilizando as equações do fluxo de potência como apresentado por MONTICELLI (1983), a função objetivo e suas demais restrições como utilizado neste trabalho, tem-se o seguinte problema de FPO:

$$\begin{split} &\min \sum_{i=1}^{NL} \mathsf{g}_i \Big[\mathbf{V}_k^2 + \mathbf{V}_m^2 - 2 * \mathbf{V}_k \mathbf{V}_m \cos \theta_{km} \Big] \\ &\text{s.a.:} \ \mathbf{P}_k^G - \mathbf{P}_k^C - \mathbf{V}_k \sum_{m \in K} \mathbf{V}_m \big(\mathbf{G}_{km} \cos \theta_{km} + \mathbf{B}_{km} \sin \theta_{km} \big) = \mathbf{0} \quad k = 1, \dots, \text{NBCCR} \\ & \mathbf{Q}_k^G - \mathbf{Q}_k^C - \mathbf{V}_k \sum_{m \in K} \mathbf{V}_m \big(\mathbf{G}_{km} \sin \theta_{km} + \mathbf{B}_{km} \cos \theta_{km} \big) = \mathbf{0} \quad k = 1, \dots, \text{NBC} \\ & \underline{\mathbf{Q}}_k \leq \mathbf{V}_k \sum_{m \in K} \mathbf{V}_m \big(\mathbf{G}_{km} \sin \theta_{km} - \mathbf{B}_{km} \cos \theta_{km} \big) \leq \overline{\mathbf{Q}}_k \quad k = 1, \dots, \text{NBGCR} \quad (4.2) \\ & \underline{\mathbf{P}}_k \leq \mathbf{V}_k \sum_{m \in K} \mathbf{V}_m \big(\mathbf{G}_{km} \sin \theta_{km} - \mathbf{B}_{km} \cos \theta_{km} \big) \leq \overline{\mathbf{P}}_k \quad k = 1, \dots, \text{NBGCR} \quad (4.2) \\ & \frac{\mathbf{P}_k \leq \mathbf{V}_k \sum_{m \in K} \mathbf{V}_m \big(\mathbf{G}_{km} \sin \theta_{km} - \mathbf{B}_{km} \cos \theta_{km} \big) \leq \overline{\mathbf{P}}_k \quad k = 1, \dots, \text{NBG} \\ & \left| \mathbf{V}_k^2 \cdot \mathbf{G}_{km} - \mathbf{V}_k \cdot \mathbf{V}_m \big(\mathbf{G}_{km} \sin \theta_{km} + \mathbf{B}_{km} \cos \theta_{km} \big) \right| \leq \overline{\mathbf{F}}_{km} \quad z = 1, \dots, \text{NLL} \\ & \underline{t}_i \leq t \leq \overline{t}_i \quad i = 1, \dots, \text{NB} \\ & \underline{V}_b \leq \mathbf{V}_b \leq \overline{\mathbf{V}}_b \quad b = 1, \dots, \text{NB} \end{split}$$

onde:

 P_k^G - potência ativa gerada na barra k;

 P_k^{C} - potência ativa consumida na barra k;

 Q_k^G - potência reativa gerada na barra k;

Q_k^C - potência reativa consumida na barra k;

V_k - tensão na barra k;

V_m - tensão na barra m;

 $Y_{km} = G_{km} + jB_{km}$ - admitância da linha entre as barras k e m;

K - conjunto de todas as barras vizinhas à barra k, incluindo ela mesma;

gi - condutância da linha i conectada entre a barra k e m;

NL - número de linhas de transmissão;

NB - número de barras do sistema elétrico;

NT - número de transformadores;

NBC - número de barras de carga;

NBG – número de barras de geração;

NBCR - número de barras de controle de reativo;

NBCCR - número de barras de carga e de controle de reativo;

NBGCR - número de barras de geração e de controle de reativo;

NLL – número de linhas de transmissão com limite de fluxo ativo.

Como apresentado no capítulo 2, existem muitas técnicas de otimização para solução do problema (4.2). A técnica de solução utilizando pontos interiores tem sido vista como uma alternativa eficiente para solução de problemas de otimização de sistemas de potência. Entre os métodos de otimização que utilizam pontos interiores, o Método Primal-Dual Barreira Logarítmica (MPDBL) tem sido amplamente aplicado para solução de (4.2). Destacam-se nesta área os trabalhos de GRANVILLE (1994), NEJDAWI et al. (2000) e TORRES & QUINTANA (2001). A seguir será apresentado o MPDBL.

4.3) O MÉTODO PRIMAL-DUAL BARREIRA LOGARÍTMICA

Neste item será apresentado o MPDBL conforme a teoria apresentada no capítulo 3 e GRANVILLE (1994). Para facilitar a notação será utilizado o problema de FPO como apresentado em (4.1). Para a resolução do problema apresentado em (4.1) aplicando-se o MPDBL, faz-se necessário que as restrições de desigualdades se tornem igualdades. Portanto, o problema (4.1) modificado pode ser apresentado como:

$$\min f(x)$$

s.a.:g(x) = 0

$$h(x) + s_1 = \overline{h}$$

$$h(x) - s_2 = \underline{h}$$

$$x + s_3 = \overline{x}$$

$$x - s_4 = \underline{x}$$

$$s_1, s_2, s_3, s_4 \ge 0$$

(4.3)

Observe que as restrições de desigualdade transformam-se em igualdades, acrescentando-se variáveis de folga e excesso s_1, s_2, s_3, s_4 estritamente positivas.

Estas variáveis de folga e excesso são incorporadas à função objetivo através da função barreira-logarítmica de FRISCH (1955) definida em (4.4). Desta forma, o problema descrito em (4.3) passa a ser rescrito como em (4.5):

$$f(x) = -\sum_{i=1}^{n} \ln x_i, \quad x \in \mathbb{R}^n, x > 0$$
(4.4)

$$\min \left\{ f(x) - \mu \sum_{i=1}^{NI} \ln(s_{1i}) - \mu \sum_{i=1}^{NI} \ln(s_{2i}) - \mu \sum_{i=1}^{N2} \ln(s_{3i}) - \mu \sum_{i=1}^{N2} \ln(s_{4i}) \right\}$$

s.a.: $g(x) = 0$
 $h(x) + s_1 = \overline{h}$
 $h(x) - s_2 = \underline{h}$
 $x + s_3 = \overline{x}$
 $x - s_4 = x$ (4.5)

onde N1=NBGCR+NBG+NLL N2=NB+NT μ é o parâmetro de barreira, o qual tende a zero durante o processo de otimização, isto é, $\mu_0 > \mu_1 > \ldots > \mu_{\infty} = 0$.

Os termos logarítmicos asseguram as condições das variáveis de folga e excesso (tratadas implicitamente) serem estritamente positiva. Com o objetivo de tornar o problema restrito apresentado em (4.5) num problema modificado irrestrito, associa-se à função Lagrangeana como mostrado em (4.6). Observe que a função Lagrangeana é construída acrescentando-se todas as restrições de igualdade à função objetivo, através de multiplicadores de Lagrange.

$$L = f(x) - \mu \sum_{i=1}^{Nl} \ln(s_{1i}) - \mu \sum_{i=1}^{Nl} \ln(s_{2i}) - \mu \sum_{i=1}^{N2} \ln(s_{3i}) - \mu \sum_{i=1}^{N2} \ln(s_{4i}) - \lambda^{t} g(x)$$

$$-\pi_{1}(h(x) + s_{1} - \bar{h}) - \pi_{2}(h(x) - s_{2} - \underline{h}) - \pi_{3}(x + s_{3} - \bar{x}) - \pi_{4}(x - s_{4} - \underline{x})$$
(4.6)

onde:

 λ , π_1 , π_2 , π_3 e π_4 são vetores dos multiplicadores de Lagrange.

Aplicando as condições de otimalidade necessárias de primeira ordem em (4.6), obtém-se o seguinte sistema de equações:

$$\nabla_{x}L = \nabla_{x}f(x) - \nabla_{x}g(x)^{t} \lambda - \nabla_{x}h(x)^{t} \pi_{1} - \nabla_{x}h(x)^{t} \pi_{2} - \pi_{3} - \pi_{4} = 0$$
(4.7)

$$\nabla_{\lambda} \mathbf{L} = -\mathbf{g}(\mathbf{x}) = 0 \tag{4.8}$$

$$\nabla_{\pi} L = -(h(x) + s_1 - \overline{h}) = 0$$
 (4.9)

$$\nabla_{\pi_{\lambda}} L = -(h(x) - s_2 - \underline{h}) = 0 \tag{4.10}$$

$$\nabla_{\pi_{3}} L = -(x + s_{3} - \overline{x}) = 0$$
 (4.11)

$$\nabla_{\pi_4} \mathbf{L} = -(\mathbf{x} - \mathbf{s}_4 - \underline{\mathbf{x}}) = 0 \tag{4.12}$$

$$\nabla_{s_1} L = -\mu S_1^{-1} e - \pi_1 = 0 \tag{4.13}$$

$$\nabla_{s_2} L = -\mu S_2^{-1} e + \pi_2 = 0 \tag{4.14}$$

 $\nabla_{s_3} L = -\mu S_3^{-1} e - \pi_3 = 0 \tag{4.15}$

$$\nabla_{s_4} L = -\mu S_4^{-1} e + \pi_4 = 0 \tag{4.16}$$

onde:

 $\nabla f(x)$: é o gradiente de f(x);

 $e = (1, 1, ..., 1)^{t};$

 S_1 , S_2 , S_3 , S_4 são matrizes diagonais, cujos elementos são s_1 , s_2 , s_3 , s_4 respectivamente.

4.3.1) O MÉTODO DE NEWTON

O método de Newton é utilizado para resolver o sistema de equações (4.7) a (4.16). O método utiliza a expansão em série de Taylor até primeira ordem das equações do sistema. Desta forma geram-se as direções de busca (Δx , $\Delta \lambda$, $\Delta \pi_1$, $\Delta \pi_2$, $\Delta \pi_3$, $\Delta \pi_4$, Δs_1 , Δs_2 , Δs_3 , Δs_4), que serão utilizadas para a atualização das variáveis do sistema. Assim sendo, as equações de Newton para se obter as direções são as representadas como:

$$W(x,\lambda,\pi_1,\pi_2).\Delta x - \nabla_x g(x)^{t}.\Delta\lambda - \nabla_x h(x)^{t}.\Delta\pi_1 - \nabla_x h(x)^{t}.\Delta\pi_2$$

$$-\Delta\pi_3 - \Delta\pi_4 = -\nabla_x L$$
(4.17)

$$-\left(\nabla_{\mathbf{X}} g(\mathbf{x})\right) \Delta \mathbf{x} = -\nabla_{\mathbf{\lambda}} \mathbf{L} \tag{4.18}$$

$$-\left(\nabla_{\mathbf{X}}\mathbf{h}(\mathbf{x}).\Delta\mathbf{x}+\Delta\mathbf{s}_{1}\right)=-\nabla\pi_{1}\mathbf{L}$$
(4.19)

$$-\left(\nabla_{\mathbf{X}}\mathbf{h}(\mathbf{x}).\Delta\mathbf{x}-\Delta\mathbf{s}_{2}\right)=-\nabla\pi_{2}\mathbf{L}$$
(4.20)

$$-(\Delta x + \Delta s_3) = -\nabla \pi_3 L \tag{4.21}$$

$$-(\Delta x - \Delta s_4) = -\nabla \pi_4 L \tag{4.22}$$

$$\mu S_1^{-2} \Delta s_1 - \Delta \pi_1 = -\nabla s_1 L \tag{4.23}$$

$$\mu S_2^{-2} \Delta s_2 + \Delta \pi_2 = -\nabla s_2 L \tag{4.24}$$

 $\mu S_3^{-2} \Delta s_3 - \Delta \pi_3 = -\nabla s_3 L \tag{4.25}$

 $\mu S_4^{-2} \Delta s_4 + \Delta \pi_4 = -\nabla s_4 L \tag{4.26}$

$W(x,\lambda,\pi_1,\pi_2)$	$-J(x)^{t}$	$-\nabla_{\mathbf{x}}\mathbf{h}(\mathbf{x})^{\mathbf{t}}$	$-\nabla_{\mathbf{x}}\mathbf{h}(\mathbf{x})^{t}$	- I	- I	0	0	0	0	Δx	$\nabla_{\mathbf{x}} \mathbf{L}$	
- J(x)	0	0	0	0	0	0	0	0	0	Δλ	∇ _λ L	
$-\nabla_{\mathbf{x}}\mathbf{h}(\mathbf{x})$	0	0	0	0	0	- I	0	0	0	$\Delta \pi_1$	$\nabla_{\pi_1} L$	
$-\nabla_{\mathbf{x}}\mathbf{h}(\mathbf{x})$	0	0	0	0	0	0	I	0	0	$\Delta \pi_2$	$\nabla_{\pi_2}L$	
- I	0	0	0	0	0	0	0	- I	0	Δπ3	$\nabla_{\pi_3}L$	(1 27)
- I	0	0	0	0	0	0	0	0	1	$\Delta \pi_4$	$\nabla_{\pi_4}L$	(4.27)
0	0	- I	0	0	0	μS_1^{-2}	0	0	0	Δs _l	∇ _{s1} L	
0	0	0	I	0	0	0	μS_2^{-2}	0	0	∆s ₂	∇ _{s2} L	
0	0	0	0	- I	0	0	0	μS_3^{-2}	0	∆s ₃	$\nabla_{s_3}L$	
0	0	0	0	0	I	0	0	0	μS_4^{-2}	Δs ₄	∇ _{s₄} L	

Rescrevendo de (4.17) a (4.26) na forma matricial, tem-se:

onde:

$$W(x,\lambda,\pi_1,\pi_2) = \nabla^2 f(x) - \sum_{i=1}^{2xn} \lambda_i \nabla^2 g_i(x) - \sum_{i=1}^m \pi_{1i} \nabla^2 h(x) - \sum_{i=1}^m \pi_{2i} \nabla^2 h(x)$$

 $J(x) = \nabla_x g(x)$

I é a matriz identidade

4.3.2) CÁLCULO DO TAMANHO DO PASSO

Conhecendo as direções de busca, a próxima etapa é calcular os passos $\alpha_p \in \alpha_d$, os quais serão usados na atualização das variáveis primais e duais respectivamente. Estes passos são calculados de tal forma que, cada componente das variáveis de folga/excesso primais (s_i, i = 1,2,3,4) permaneçam estritamente positivos, e que os elementos do vetor (π_i , i = 1,2,3,4) permaneçam com os seus respectivos sinais, isto é, $\pi_1 < 0, \pi_2 > 0, \pi_3 < 0, \pi_4 > 0$, conforme (4.13), (4.14), (4.15), (4.16) respectivamente. Uma sugestão para o cálculo do passo máximo é a estratégia utilizada por GRANVILLE (1994) e QUINTANA et al.(1995), dada por:

$$\alpha_{p} = \sigma * \min\left\{\min_{\Delta s_{1} < 0} \frac{s_{1}}{|\Delta s_{1}|}, \min_{\Delta s_{2} < 0} \frac{s_{2}}{|\Delta s_{2}|}, \min_{\Delta s_{3} < 0} \frac{s_{3}}{|\Delta s_{3}|}, \min_{\Delta s_{4} < 0} \frac{s_{4}}{|\Delta s_{4}|}, 1.0\right\}$$
(4.28)

$$\alpha_{d} = \sigma * \min\left\{\min_{\Delta \pi_{1} > 0} \frac{-\pi_{1}}{|\Delta \pi_{1}|}, \min_{\Delta \pi_{2} < 0} \frac{\pi_{2}}{|\Delta \pi_{2}|}, \min_{\Delta \pi_{3} > 0} \frac{-\pi_{3}}{|\Delta \pi_{3}|}, \min_{\Delta \pi_{4} < 0} \frac{\pi_{4}}{|\Delta \pi_{4}|}, 1.0\right\}$$
(4.29)

onde:

 $\sigma = 0,9995$ é um valor determinado empiricamente e que, segundo WRIGHT (1995), é derivado da fórmula $1 - \frac{1}{9\sqrt{m}}$, onde m é o número de restrições do problema.

4.3.3) ATUALIZAÇÃO DAS VARIÁVEIS

Conhecendo as direções de busca e os passos primais e duais respectivamente, todas as variáveis do problema são atualizadas por:

$$\begin{aligned} \mathbf{x} &= \mathbf{x} + \alpha_{p} \Delta \mathbf{x} \\ \mathbf{s}_{1} &= \mathbf{s}_{1} + \alpha_{p} \Delta \mathbf{s}_{1} \\ \mathbf{s}_{2} &= \mathbf{s}_{2} + \alpha_{p} \Delta \mathbf{s}_{2} \\ \mathbf{s}_{3} &= \mathbf{s}_{3} + \alpha_{p} \Delta \mathbf{s}_{3} \\ \mathbf{s}_{4} &= \mathbf{s}_{4} + \alpha_{p} \Delta \mathbf{s}_{4} \end{aligned} \qquad \begin{aligned} \pi_{1} &= \pi_{1} + \alpha_{d} \Delta \pi_{1} \\ \pi_{2} &= \pi_{1} + \alpha_{d} \Delta \pi_{2} \\ \pi_{2} &= \pi_{2} + \alpha_{d} \Delta \pi_{2} \end{aligned} \qquad (4.30)$$

Após a atualização das variáveis, deve-se atualizar o parâmetro de barreira, o qual é o ponto crítico do algoritmo primal-dual barreira-logarítmica.

4.3.4) O PARÂMETRO DE BARREIRA

Uma etapa muito importante no algoritmo primal-dual barreira logarítmica é a escolha inicial do parâmetro de barreira. GRANVILLE (1994) verificou que o valor do multiplicador μ para cada ponto é proporcional ao *gap* de dualidade. Este *gap* é a diferença entre o valor da função objetivo do problema primal e do problema dual. A cada iteração, o valor de μ deverá ser calculado de tal forma que o seu valor atual seja sempre inferior ao anterior. Assim, o cálculo para a atualização de μ utilizando a eq. (4.31) corresponde ao *gap* de dualidade:

$$\mu = \frac{-(s_1\pi_1 + s_3\pi_3) + (s_2\pi_2 + s_4\pi_4)}{2 \text{ NB }\beta}$$
(4.31)

onde:

 $\beta > 1$ é especificado pelo usuário.

Como visto em (4.31) o parâmetro μ é reduzido a cada iteração empiricamente, pois o valor de β é determinado pelo usuário. Uma escolha não adequada deste parâmetro poderá comprometer a convergência do método. Uma outra opção para atualização de μ é reduzi-lo de um valor β ' especificado pelo usuário a cada iteração, isto é:

$$\mu^{(k+1)} = \frac{\mu^k}{\beta'}$$
(4.32)

Na implementação do algoritmo primal-dual barreira logarítmica realizada neste trabalho, utilizou-se a eq. (4.32) para atualização do parâmetro de barreira, devido à sua eficiência e fácil implementação.

4.3.5) VALORES INICIAIS DAS VARIÁVEIS

Com respeito aos valores iniciais das variáveis, a única exigência que deve ser observada é que as variáveis do sistema, ou seja, tensões, *taps*, injeções de reativo, geração de ativos / reativos e limite de fluxos na linhas de transmissão estejam dentro de seus limites prestabelecidos. As equações de balanço do fluxo de potência do sistema (4.1) e as inequações, que foram transformadas em equações através das variáveis de folga ou excesso, não precisam ser satisfeitas no início do processo iterativo. As variáveis de folga / excesso (s_i =1,2,3,4) podem ser calculadas inicialmente utilizando as equações (4.9), (4.10), (4.11), (4.12) respectivamente. Estas variáveis devem ser estritamente positivas, isto é esperado desde que as variáveis do sistema estejam dentro de seus limites. Porém, se existir algum componente deste vetor que seja nulo ou negativo, poderá assumir o valor 0.02, como propõe QUINTANA et al. (1995). Após ter calculado os valores iniciais dos vetores referentes às varáveis de folga ou excesso, os vetores dos multiplicadores de Lagrange (π_i , i =1, 2, 3, 4) podem ser calculados inicialmente utilizando as equações (4.13), (4.14), (4.15), (4.16) respectivamente. Os vetores dos multiplicadores de Lagrange para as restrições de igualdades (λ) são normalmente iniciados em zero. O valor inicial do parâmetro de barreira e o multiplicador β para atualização de μ são determinados pelo usuário, como mencionado anteriormente.

4.3.6) ALGORITMO

O problema de fluxo de potência ótimo mostrado em (4.1) pode ser resolvido iterativamente através do método de pontos interiores pelo algoritmo apresentado a seguir:

Passo 1: Iniciar

Dado o problema (4.1), construir a função Lagrangiana (4.6). Fazer k = 0. Escolher uma solução inicial para as variáveis do problema: x^0 , λ^0 , μ^0 , π^0 . Atribuir um valor para o erro ε .

Passo 2: Calcular o vetor gradiente.

Passo 3: Se todos os elementos do vetor gradiente forem menores que ε e as condições de KKT satisfeitas, então PARE, caso contrário:

Passo 4: Calcular a matriz Lagrangiana e resolver o sistema (4.27).

Passo 5: Calcular os passos por (4.28) e (4.29).

Passo 6: Atualizar as variáveis (4.30) e o parâmetro μ por (4.32).

Passo 7: Voltar ao passo 2.

O valor inicial de $x^0 = (V, \theta, t)$ deve pertencer à região factível do problema. A implementação computacional deste algoritmo e a técnica utilizada para solução do sistema (4.27), serão apresentadas no próximo item.

4.4) IMPLEMENTAÇÃO COMPUTACIONAL

A implementação computacional do MPDBL apresentado neste trabalho utilizou dupla precisão aritmética e foi desenvolvida em linguagem de programação FORTRAN (Versão: Compaq Visual Fortran 6.1), sendo utilizado um microcomputador Pentium III – 600 MHz, com 128 Mbytes de memória RAM. Os recursos acima descritos pertencem ao Laboratório de Otimização em Sistemas Elétricos de Potência (LOSEP), do Departamento de Engenharia Elétrica, da Escola de Engenharia de São Carlos – Universidade de São Paulo (EESC – USP).

Para uma melhor visualização e entendimento da estrutura do programa de FPO, segue o fluxograma mostrado na Figura 4.1.

Figura 4.1- Fluxograma do programa de FPO

A seguir tem-se uma breve descrição das sub-rotinas implementadas, que formam o programa de FPO:

Variáveis - faz a declaração das variáveis utilizadas no programa (variáveis globais).

Leitura de Dados – são responsáveis pela leitura dos dados das barras, das linhas de transmissão, dos limites do FPO (geração de ativos e reativos, tensão e fluxo ativo das linhas). Estas informações estão contidas em bancos de dados que fornecem os dados iniciais da rede elétrica (ANEXO A).

Entrada de Parâmetros – faz a leitura dos parâmetros de barreira μ , bem como os seus fatores de redução β . A entrada dos parâmetros é manual e deve ser fornecida pelo usuário para cada sistema a ser resolvido.

Iniciar Variáveis - são responsáveis pela inicialização das variáveis de folga e multiplicadores de Lagrange.

Topologia da Rede - fornece a topologia da rede, ou seja, descreve as ligações existentes entre as barras do sistema. É de fundamental importância para a criação do vetor gradiente e da matriz Lagrangiana.

Gradiente - constrói o vetor gradiente da função Lagrangiana.

Lagrangiana – são responsáveis pela construção da matriz Lagrangiana, construída em um formato vetorial.

MA57 – responsável pela solução do sistema linear de equações. Na chamada desta rotina é fornecido como informação a matriz Lagrangiana (no formato vetorial), o vetor gradiente, e as principais informações do sistema A.x = b (dimensão da matriz Lagrangiana, número de elementos não nulos, posição dos elementos na matriz e os respectivos valores).

Atualização das Variáveis - rotinas responsáveis pela atualização das variáveis do problema de fluxo de potência ótimo e do parâmetro de barreira.

Saída - gera o arquivo de saída que contém os resultados obtidos pelo programa (ANEXO B).

O critério de parada do programa de FPO é a satisfação das equações do fluxo de potência dentro de uma tolerância, e das condições de KKT minimizando a função objetivo.

Observa-se, no sistema (4.27), que a matriz Lagrangiana tem uma estrutura esparsa. Verifica-se que, em sistemas reais, o "grau de esparsidade" dessa matriz cresce conforme aumentam as dimensões da rede elétrica. Em virtude da sua esparsidade, o armazenamento dos valores da matriz Lagrangiana foi feito de forma compacta, isto é, somente os elementos diferentes de zero foram armazenados (com o auxílio do módulo Topologia). Aplica-se a técnica de esparsidade fornecida pela rotina MA57, desenvolvida por L.S Duff e J.K. Reid, do Rutherford Appleton Laboratory. Essa rotina determina a solução de sistemas lineares esparsos, utilizando uma variante da eliminação de Gauss para esses sistemas, conforme DUFF & REID (1983). Os principais parâmetros utilizados na sub-rotina MA57 são:

- N Ordem da matriz Lagrangiana;
- NE Número de elementos diferentes de zero da matriz Lagrangiana;
- VAL Vetor contendo os elementos diferentes de zero da matriz Lagrangiana;
- ROW Vetor contendo a posição da linha dos elementos diferentes de zero da matriz Lagrangiana;
- COL Vetor contendo a posição da coluna dos elementos diferentes de zero da matriz Lagrangiana;
- X vetor contendo os elementos do vetor gradiente. Após a solução do sistema linear o vetor x retorna da rotina MA57_SOLVE com os elementos do vetor direção de busca (Δ's) do sistema (4.27).

Considerando as características da matriz gerada na solução do FPO, simétrica de valor e de posição, não existe a necessidade de se trabalhar com todos os valores da matriz. Pode-se usar apenas a matriz triangular superior ou inferior. A rotina MA57 é ideal para a aplicação deste trabalho, pois necessita apenas dos valores da matriz triangular superior ou inferior para a solução do problema . Com isso economiza-se memória e tempo de processamento, uma vez que o número de elementos a ser armazenados é bem menor.

No próximo capítulo apresentar-se-á os resultados numéricos obtidos através da aplicação do método da primal-dual barreira logarítmica ao problema de FPO, discutindo seu desempenho.

CAPÍTULO 5

RESULTADOS NUMÉRICOS

5.1) INTRODUÇÃO

Neste capítulo são apresentados os resultados obtidos da aplicação do método primal-dual barreira logarítmica associado ao método de Newton para solução do problema de fluxo de potência ótimo. Para todos os testes efetuados, a função objetivo a ser minimizada representa as perdas de potência ativa na transmissão e as restrições de igualdade representam as equações do fluxo de potência. As restrições de desigualdades canalizadas incorporam as variáveis *tap* e tensão, as restrições funcionais de injeção de reativo das barras de controle de reativo, da geração de ativos/reativos nas barras de geração e os limites de fluxo ativo nas linhas de transmissão. Em todos os sistemas elétricos utilizados a potência base foi de 100 MVA.

Os sistemas elétricos de potência utilizados para verificar a eficiência da abordagem proposta foram os de 3, 8, 14, 30, e 118 barras. Neste capítulo são descritas apenas as principais características de topologia e restrições dos sistemas em teste, sendo que os bancos de dados contendo todas as informações referentes aos sistemas se encontram no ANEXO A.

5.2) SISTEMA 3 BARRAS

Este exemplo foi proposto por DOMMEL & TINNEY (1968) e tem como finalidade exemplificar a aplicação do método. O sistema 3 barras tem as seguintes características:

- 1 barra de referência (Slack BS) barra 1;
- 1 barra de geração (BG) barra 2;
- 1 barra de carga (BC) barra 3;
- 2 linhas de transmissão.

Figura 5.1 - Sistema elétrico de 3 barras

O problema pode ser formulado como segue:

min
$$g_{23}(V_2^2 + V_3^2 - 2V_2V_3\cos\theta_{23}) + g_{31}(V_3^2 + V_1^2 - 2V_3V_1\cos\theta_{31})$$

s.a. $\Delta P_3 = -2 - V_3 \sum_{i=1}^3 V_i (G_{3i}\cos\theta_{3i} + B_{3i}\sin\theta_{3i}) = 0$
 $\Delta Q_3 = -1 - V_3 \sum_{i=1}^3 V_i (G_{3i}\sin\theta_{3i} - B_{3i}\cos\theta_{3i}) = 0$
 $1,2 \le V_2^2 \cdot G_{22} + V_2 \cdot V_3 \cdot [G_{23} \cdot \cos(\theta_{23}) + B_{23}\sin(\theta_{23})] \le 2,0$
 $FP_{23} = V_2^2 \cdot G_{23} - V_2 \cdot V_3 \cdot [G_{23} \cdot \cos(\theta_{23}) + B_{23}\sin(\theta_{23})] \le 1,4$
 $0,9 \le V_1, \le 1,1$
 $0,9 \le V_2 \le 1,1$
 $0,9 \le V_3 \le 1,1$
(5.1)

A resolução do problema pelo método primal-dual barreira logarítmica exige que as restrições de desigualdade se tornem igualdades através da adição de variáveis de folga e/ou excesso estritamente positivas que serão incorporadas à função objetivo através da função barreira logarítmica. Desta forma o problema (5.1) passa a ser rescrito como:

$$\begin{array}{ll} \min & g_{23}(V_2^2 + V_3^2 - 2V_2V_3\cos\theta_{23}) + g_{31}(V_3^2 + V_1^2 - 2V_3V_1\cos\theta_{31}) \\ \text{s.a.} & \Delta P_3 = -2 - V_3 \sum_{i=1}^3 V_i (G_{3i}\cos\theta_{3i} + B_{3i}\sin\theta_{3i}) = 0 \\ & \Delta Q_3 = -1 - V_3 \sum_{i=1}^3 V_i (G_{3i}\sin\theta_{3i} - B_{3i}\cos\theta_{3i}) = 0 \\ & \left\{ \begin{array}{l} V_2^2.G_{22} + V_2.V_3.[G_{23}.\cos(\theta_{23}) + B_{23}.\sin(\theta_{23})] \\ + s_{11} - 2,0 = 0 \\ V_2^2.G_{22} + V_2.V_3.[G_{23}.\cos(\theta_{23}) + B_{23}.\sin(\theta_{23})] \\ - s_{21} - 1,2 = 0 \end{array} \right\} \\ & \left\{ \begin{array}{l} V_2^2.G_{23} - V_2.V_3.[G_{23}.\cos(\theta_{23}) + B_{23}.\sin(\theta_{23})] \\ + s_{12} - 1,4 = 0 \end{array} \right\} \\ & \left\{ \begin{array}{l} V_1 - s_{41} - 0,9 = 0 \\ V_2 - s_{42} - 0,9 = 0 \\ V_3 + s_{33} - 1,1 = 0 \\ V_3 - s_{43} - 0,9 = 0 \end{array} \right\} \\ \end{array} \right\}$$

Ao problema restrito (5.2) associa-se a função Lagrangiana descrita em (5.3).

Definido o problema, a seguir apresenta-se o processo de convergência do sistema, destacando-se o valor de todas as variáveis do problema, do parâmetro de barreira, dos multiplicadores de Lagrange, dos valores das potências ativas e reativas nas barras, dos limites nas linhas de transmissão e da função objetivo.

$$\begin{split} L &= g_{23}(V_2^2 + V_3^2 - 2V_2V_3\cos\theta_{23}) + g_{31}(V_3^2 + V_1^2 - 2V_3V_1\cos\theta_{31}) \\ &-\mu.\ln(s_{11}) - \mu.\ln(s_{21}) - \mu.\ln(s_{12}) - \mu.\ln(s_{31}) - \mu.\ln(s_{41}) - \mu.\ln(s_{32}) \\ &-\mu.\ln(s_{42}) - \mu.\ln(s_{33}) - \mu.\ln(s_{43}) \\ &-\lambda_{P3} \left[-2 - V_3 \sum_{i=1}^3 V_i (G_{3i}\cos\theta_{3i} + B_{3i}\sin\theta_{3i}) \right] \\ &-\lambda_{Q3} \left[-1 - V_3 \sum_{i=1}^3 V_i (G_{3i}\sin\theta_{3i} - B_{3i}\cos\theta_{3i}) \right] \\ &-\pi_{11} \cdot \left\{ V_2^2 \cdot G_{22} + V_2 \cdot V_3 \cdot \left[G_{23} \cdot \cos\theta_{23} + B_{23} \cdot \sin\theta_{23} \right] \right\} + s_{11} - 2,0 \right\}$$
(5.3)
 $&-\pi_{21} \cdot \left\{ V_2^2 \cdot G_{22} + V_2 \cdot V_3 \cdot \left[G_{23} \cdot \cos\theta_{23} + B_{23} \cdot \sin\theta_{23} \right] \right\} - s_{21} - 1,2 \right\} \\ &-\pi_{12} \cdot \left\{ V_2^2 \cdot G_{23} - V_2 \cdot V_3 \cdot \left[G_{23} \cdot \cos\theta_{23} + B_{23} \cdot \sin\theta_{23} \right] \right\} + s_{12} - 1,4 \right\} \\ &-\pi_{31} \cdot \left\{ V_1 - s_{41} - 0,9 \right\} \\ &-\pi_{32} \cdot \left\{ V_2 - s_{42} - 0,9 \right\} \\ &-\pi_{41} \cdot \left\{ V_2 - s_{42} - 0,9 \right\} \\ &-\pi_{43} \cdot \left\{ V_3 - s_{43} - 0,9 \right\} \end{split}$

5.2.1) ESTADO INICIAL DO SISTEMA

O estado inicial do sistema, os limites impostos às barras do sistema e os limites de fluxo nas linhas são mostrados nas Tabelas 5.1, 5.2 e 5.3 respectivamente. Os valores dos multiplicadores de Lagrange relacionados às equações do fluxo de potência iniciam iguais a 1,0 ($\lambda_P = 1,0 \ e \ \lambda_Q = 1,0$). As variáveis de folga ou excesso (s_i) bem como os respectivos multiplicadores de Lagrange (π_i) são calculados de acordo com o apresentado no item 4.3.5.

Os valores iniciais adotados para o parâmetro de barreira da tensão (μ_V), da potência ativa gerada (μ_P), da potência reativa gerada (μ_Q), dos limites de fluxo ativo nas linhas (μ_{FP}) e seus respectivos fatores de atualização β 's são mostrados na Tabela 5.4. O processo de atualização dos valores dos μ 's segue o definido na eq. (4.32).
Ressalta-se aqui que, tanto os valores dos parâmetros de barreira μ 's quanto dos atualizadores β 's são valores empíricos e que variam de acordo com as restrições, tamanho e disposição do sistema em teste. Portanto, não são valores únicos e nem de fácil escolha. Os valores aqui apresentados são resultados de consultas a literaturas relacionadas ao tema, auxílio de colegas de trabalho e experiência acumulada durante as fases de implementação e testes do programa. A convergência do programa depende diretamente da escolha dos parâmetros de barreira e seus respectivos fatores de atualização. Uma escolha inadequada destes valores acarreta um número elevado de iterações necessárias para a convergência do programa ou até mesmo ocasionar a não convergência do programa.

Tabela 5.1 – Estado inicial do sistema 3 barras

Barra k	Tipo	V _k (p.u.)	Ang _k (°)	P_k^G (MW)	P_k^C (MW)	Q_k^G (MVAr)	Q_k^C (MVAr)
1	BS	1,00	0,00	0	0	0	0
2	BG	1,00	-2,00	170	0	0	0
3	BC	1,00	-5,00	0	200	0	100

Tabela 5.2 – Limites para as tensões, reativos e ativos do sistema 3 barras

Barra k	V _k ^{min} (p.u.)	${V_k}^{max}$ (p.u.)	$\mathbf{Q}_{\mathbf{k}}^{\mathrm{min}}$ (MVAr)	Q_k^{max} (MVAr)	P_k^{min} (MW)	P_k^{max} (MW)
1	0,9	1,1	-9999	9999	-	-
2	0,9	1,1	-9999	9999	120	200
3	0,9	1,1	-	-		

Tabela 5.3- Limites para o fluxo de ativo nas linhas do sistema 3 barras

Linha	FP ^{max} (MW)
1-3	-
2-3	140

μIn	icinis	Atualizadores		
μv	0,01	βv	1,2	
μ _P	0,01	β _P	1,2	
μο	0,01	βο	1,2	
μ _{FP}	0,01	β _{FP}	2	

Tabela 5.4 – Valores iniciais para os parâmetros de barreira e seus fatores de atualização do sistema 3 barras

O sistema convergiu em 6 iterações utilizando como critério de parada a satisfação das equações do fluxo de potência com precisão (ξ) de 10⁻⁴ p.u. Na solução do problema as restrições de igualdade, as restrições de desigualdade e as condições de KKT estão satisfeitas.

Na Tabela 5.5 mostra-se o número de iterações e o valor das variáveis tensão e ângulo de cada barra do sistema. Observa se na Figura 5.2 que as tensões permanecem dentro dos limites impostos ao problema.

Iterações	V1 (p.u.)	V ₂ (p.u.)	V3 (p.u.)	θ ₂ (°)	θ3(°)
0	1,0000	1,0000	1,0000	-2,0000	-5,0000
1	1,0932	1,1000	1,0714	-0,9266	-3,8708
2	1,0914	1,0999	1,0427	1,5533	-2,5707
3	1,0881	1,0999	1,0055	2,9767	-2,0163
4	1,0861	1,0998	0,9856	1,6246	-3,0553
5	1,0817	1,0995	0,9828	1,3822	-3,2461
6	1,0812	1,0991	0,9822	1,3690	-3,2594

Tabela 5.5 Convergência para o sistema 3 barras, tensão e ângulo das barras

Figura 5.2: Convergência das tensões para o sistema 3 barras

Com o objetivo de testar as atribuições do método aqui proposto, foi incorporado ao sistema original sugerido por Dommel & Tinney, uma restrição ao fluxo ativo na linha de transmissão que interliga a barra de geração (barra 2) a barra de carga (barra 3). Segue na Tabela 5.6 o processo de convergência dos fluxos ativos para as duas linhas existentes no sistema. Outro item apresentado na Tabela 5.7 são as perdas totais relacionadas as linhas de transmissão, ou seja, a função objetivo do problema .

Tabela 5.6 – Convergência para o sistema 3 barras, fluxo ativo nas linhas e perdas totais

Iterações	FP ₂₃ (MW)	FP ₁₃ (MW)	Perdas Totais (MW)
0	52,88	45,10	4,141
1	73,74	50,18	4,141
2	108,84	47,25	3,901
3	139,45	59,46	5,551
4	140,10	72,78	10,189
5	139,94	73,59	13,356
6	139,89	73,68	13,549

Figura 5.3 – Convergência do fluxo de ativos nas linhas e perdas totais do sistema 3 barras

A Tabela 5.7 apresenta o processo de convergência das potências em cada barra do sistema. Através da Figura 5.4 observa-se que os limites impostos à barra de geração (barra 2) não foram violados, e que seu valor da geração de potência ativa obedece a restrição de fluxo inerente a linha de transmissão que interliga a barra 2 (BG) a barra 3 (BC).

Tabela 5.7 – Convergência para o sistema 3 barras, potências $(\Delta P's, \Delta Q's e \text{ geração})$

Iterações	ΔP 3 (p.u.)	ΔQ 3 (p.u.)	P_1^G (MW)	Q ₁ ^G (MVAr)	$P_2^G(MW)$	Q2 ^G (MVAr)
0	1,06155	1,59070	0,00	0,00	52,88	-19,56
1	0,79989	1,16364	50,18	-18,33	73,74	8,80
2	0,49461	0,71896	47,25	6,74	108,84	32,91
3	0,15278	0,22029	55,46	29,87	139,45	69,49
4	0,00481	0,00563	72,78	32,49	140,10	93,77
5	0,00013	0,00000	73,59	30,29	139,94	96,98
6	0,00000	0,00000	73,68	30,21	139,89	97,10

Figura 5.4: Convergência das potências ativa para o sistema 3 barras

Na Tabela 5.8 e 5.9 são apresentados o valor final referente aos multiplicadores de Lagrange e as variáveis de folga/excesso respectivamente.

Tabela 5.8 - Convergência para o sistema 3 barras, multiplicadores de Lagrange

Barra	λp	λq	π11	π21	π_{12}	π31	π41	π32	π42	π33	π43
1	-	-	-	-	-	-0,117	0,069	-	м		-
2		-	-0,000	0,009	-	-	-	-0,149	0,062	-	-
3	0,676	0,690		-	-	-	-	-	4	-0,65	0,132
Linha 2-3	-	=			-0,019	-	-	-	-		

Tabela 5.9 - Convergência para o sistema 3 barras, variáveis de folga/excesso

Barra	\$11	\$21	S12	\$31	\$41	\$32	\$42	\$33	\$43
1	-	-	-	0,019	0,181	H	-		-
2	0,601	0,199	-			0,000	0,199	-	-
3	-	-	-	-	-	-		0,118	0,082
Linha 2-3			0,001	-	-			-	-

5.3) SISTEMA 8 BARRAS

Este exemplo é derivado do sistema 8 barras, também conhecido como ELENORTE. O sistema é representado na Figura 5.5, e a seguir descreve-se suas principais características:

- 1 barra de referência (*Slack* BS) barra 1;
- 1 barra de geração (BG) barra 6;
- 6 barras de carga (BC) barras 2, 3, 4, 5, 7 e 8;
- 9 linhas de transmissão^{*};
- 2 transformadores com o *tap* variável, $0,9 \le t \le 1,1$.

Figura 5.5 - Sistema Elenorte - 8 barras

Na Tabela 5.10 apresenta-se os valores iniciais adotados para o parâmetro de barreira da tensão (μ_V), da potência ativa gerada (μ_P), da potência reativa gerada

^{*} As linhas de transmissão com circuito duplo são representadas pelo seu modelo equivalente de circuito simples no banco de dados.

(μ_Q), dos limites de fluxo ativo nas linhas (μ_{FP}) e dos tap's (μ_i). Os respectivos fatores de atualização β's também são mostrados na Tabela 5.10. O processo de atualização dos valores de μ segue o definido na eq. (4.32). Reitera-se que os valores apresentados na Tabela 5.10 são resultados de inúmeros testes efetuados durante o desenvolvimento deste trabalho e influenciam diretamente no número de iterações necessárias para a convergência do programa. Os valores dos multiplicadores de Lagrange relacionados às equações do fluxo de potência iniciam iguais a 0,0 ($\lambda_{Pi} = 0,0$ e $\lambda_{Qi} = 0,0$). As variáveis de folga ou excesso (s_i) bem como os respectivos multiplicadores de Lagrange (π_i) são calculados de acordo com o apresentado no item 4.3.5.

Tabela 5.10 – Valores iniciais para os parâmetros de barreira e seus fatores de atualização para o sistema 8 barras

μI	niciais	Atualizadores		
μν	0,01	βv	1,1	
μ	0,01	β _P	1,1	
μο	0,01	βο	1,5	
μ _{FP}	0,0001	β _{FP}	5	
μt	0,1	βt	1,01	

Nos testes deste sistema apresenta-se os resultados para dois casos. O primeiro caso mostra os resultados para o sistema 8 barras sem o limite de fluxo ativo na linha de transmissão entre as barras 5 (BC) e 6 (BG). Já no segundo caso, impõe-se o limite de 3,0 p.u. na referida linha.

5.3.1) SISTEMA 8 BARRAS SEM RESTRIÇÃO NAS LINHAS DE TRANSMISSÃO

Para este caso o sistema convergiu em 13 iterações, satisfazendo as restrições de igualdade, as restrições de desigualdade e as condições de KKT com uma precisão (ξ) de 10⁻⁴ p.u.. A Tabela 5.11 apresenta o estado inicial e o resultado final para as tensões do sistema. Na Figura 5.6 pode-se observar o caminho de

convergência das tensões, verificando-se que as tensões em todas as barras permanecem dentro dos limites estipulados.

Barra	Condição Inicial (p.u.)	Resultado Final (p.u.)
1	1,0500	0,999
2	1,0070	1,013
3	0,9900	1,040
4	0,9900	1,046
5	0,9900	1,079
6	1,0000	1,076
7	1,0290	0,978
8	0,9800	1,025

Tabela 5.11 – Convergência para o sistema 8 barras sem restrição nas linhas de transmissão, tensão nas barras

Figura 5.6 – Convergência das tensões para o sistema 8 barras sem restrição nas linhas de transmissão

Na Figura 5.7 mostra-se a curva de convergência do máximo erro de potência ativa (ΔP_{max}) e reativa (ΔQ_{max}) do sistema.

Figura 5.7 – Convergência do ΔP_{max} e do ΔQ_{max} para o sistema 8 barras sem restrição nas linhas de transmissão

A barra de geração (barra 6) possui limites de geração, tanto de potência ativa quanto de potência reativa. As Figuras 5.8 e 5.9 mostram o processo de convergência da geração.

Analisando a Figura 5.9 observa-se que na iteração 2 a potência reativa gerada violou o limite inferior imposto à barra (-100 MVAr), o que leva a variável de folga para valores negativos. Neste caso o algoritmo atribui um valor positivo igual a 0,02. Verifica-se que este procedimento é eficaz pois consegue levar a restrição para a região factível.

Figura 5.8 – Convergência para potência ativa da barra de geração (barra 6) para o sistema 8 barras sem restrição nas linhas de transmissão

Figura 5.9 – Convergência para potência reativa da barra de geração (barra 6) para o sistema 8 barras sem restrição nas linhas de transmissão

A Figura 5.10 apresenta o processo de convergência para o fluxo ativo na linha 6-5 e as perdas totais do sistema.

Figura 5.10 – Convergência para as perdas totais e fluxo na linha 6-5 para o sistema 8 barras sem restrição nas linhas de transmissão

O valor final encontrado para as perdas totais do sistema foi de 38,42 MW. O mesmo sistema 8 barras foi simulado no programa ANAREDE (cálculo para fluxo de potência) e o resultado final apresentou uma perda total de 47,5 MW sem conseguir manter todas as variáveis dentro dos limites aceitáveis. Pode-se observar que a redução das perdas foi de 19,11%. O resultado final do processo de convergência encontra-se no ANEXO B.

5.3.2) SISTEMA 8 BARRAS COM RESTRIÇÃO NAS LINHAS DE TRANSMISSÃO

Para este caso o sistema convergiu em 12 iterações, satisfazendo as restrições de igualdade, as restrições de desigualdade e as condições de KKT com uma precisão (ξ) de 10⁻⁴ p.u.. Na Figura 5.11 pode-se observar o caminho de

convergência das tensões, verificando-se que as tensões em todas as barras permanecem dentro dos limites estipulados. Na Figura 5.12 mostra-se a curva de convergência do máximo erro de potência ativa (ΔP_{max}) e reativa (ΔQ_{max}) do sistema.

Figura 5.11 – Convergência das tensões para o sistema 8 barras com restrição nas linhas de transmissão

Figura 5.12 – Convergência do ΔP_{max} e do ΔQ_{max} para o sistema 8 barras com restrição nas linhas de transmissão

A barra de geração (barra 6) possui limites de geração, tanto de potência ativa quanto de potência reativa. As Figuras 5.13 e 5.14 mostram o processo de convergência da geração.

A Figura 5.13 mostra que apesar da barra de geração ter capacidade de gerar até 400 MW, a mesma tem que restringir a sua geração ao limite de 300 MW. Este limite é imposto pela restrição de fluxo ativo na linha que interliga a barra de geração ao resto do sistema.

Figura 5.13 – Convergência para potência ativa da barra de geração (barra 6) para o sistema 8 barras com restrição nas linhas de transmissão

A Figura 5.15 apresenta o processo de convergência para o fluxo ativo na linha 6-5 e as perdas totais do sistema.

Figura 5.14 – Convergência para potência reativa da barra de geração (barra 6) para o sistema 8 barras com restrição nas linhas de transmissão

Figura 5.15 – Convergência para as perdas totais e fluxo na linha 6-5 para o sistema 8 barras com restrição nas linhas de transmissão

O valor final encontrado para as perdas totais do sistema foi de 42,87 MW. O resultado final do processo de convergência encontra-se no ANEXO B.

5.4) SISTEMA 14 BARRAS

O sistema 14 barras, mostrado na Figura 5.16, possui as seguintes características:

- 1 barra de referência (Slack BS) barra 1;
- 1 barra de geração (BG) barra 2;
- 3 barras de controle de reativo (CR) barras 3, 6 e 8;
- 9 barras de carga (BC) barras 4, 5, 7, 9, 10, 11, 12, 13 e 14;
- 20 linhas de transmissão^{*};
- 3 transformadores com o tap variável.

Figura 5.16 - Sistema 14 barras

^{*} As linhas de transmissão com circuito duplo são representadas pelo seu modelo equivalente de circuito simples no banco de dados.

Na Tabela 5.12 apresenta-se os valores iniciais adotados para o parâmetro de barreira da tensão (μ_V), da potência ativa gerada (μ_P), da potência reativa gerada (μ_Q), dos limites de fluxo ativo nas linhas (μ_{FP}) e dos tap's (μ_t). Os respectivos fatores de atualização β 's também são mostrados na Tabela 5.12. O processo de atualização dos valores de μ segue o definido em (4.32). Os valores dos multiplicadores de Lagrange relacionados às equações do fluxo de potência iniciam iguais a 0,0 ($\lambda_{Pi} = 0,0$ e $\lambda_{Qi} = 0,0$). As variáveis de folga ou excesso (s_i) bem como os respectivos multiplicadores de Lagrange (π_i) são calculados de acordo com o apresentado no item 4.3.5.

Tabela 5.12 – Valores iniciais para os parâmetros de barreira e seus fatores de atualização para o sistema 14 barras

μ Iniciais		Atualizadores		
μv	0,01	βv	1,1	
μp	0,01	βρ	1,1	
μο	0,01	βο	1,5	
μ _{FP}	0,0001	β _{FP}	5	
μ _t	0,1	βι	1,01	

Nos ANEXOS A e B apresentam-se o banco de dados e o estado final do sistema 14 barras respectivamente. A Figura 5.17 mostra a curva da convergência do fluxo de ativos na linha que interliga as barras 1(BS) e 2 (BG). O limite imposto para testes nesta linha foi de 97 MW. Na Figura 5.18 tem-se o gráfico de convergência para o fluxo de ativos na linha entre as barras 12 (BC) e 13 (BC), cujo limite imposto para testes é de 1,3 MW.

Observe que o estado inicial do sistema faz com que os fluxos nas linhas iniciem com os seus valores fora da região factível, o que leva a variável de folga para valores negativos. Neste caso o algoritmo atribui um valor positivo igual a 0,02. Verifica-se que este procedimento é eficaz pois consegue levar a restrição para a região factível. O fato do valor inicial dos fluxos não estar dentro da região factível pode implicar na não convergência do problema.

Figura 5.17 - Convergência do fluxo na linha 1-2 para o sistema 14 barras

Figura 5.18 - Convergência do fluxo na linha 12-13 para o sistema 14 barras

Figura 5.19 – Convergência para as perdas totais do sistema 14 barras

Observa-se, através dos resultados apresentados acima, que a convergência para o sistema 14 barras ocorreu em 8 iterações. Todas as tensões, *taps*, limites de fluxo e geração permaneceram dentro de seus limites, e a solução final obedeceu a todas as restrições do sistema, satisfazendo KKT com uma precisão de 10⁻⁴ p.u. Partiu-se de uma solução inicial próxima da solução do fluxo de carga, isto é, apenas com as restrições de igualdade satisfeitas.

5.5) SISTEMA 30 BARRAS

O sistema 30 barras, mostrado na Figura 5.20, tem as seguintes características:

- 1 barra de referência (Slack BS) barra 1;
- 1 barra de geração (BG) barra 2;
- 4 barras de controle de reativo (CR) barras 5, 8, 11 e 13;
- 24 barras de carga (BC) demais barras;
- 41 linhas de transmissão^{*};
- 4 transformadores com o tap variável.

Figura 5.20 - Sistema 30 barras

Na Tabela 5.13 apresenta-se os valores iniciais adotados para o parâmetro de barreira da tensão (μ_V), da potência ativa gerada (μ_P), da potência reativa gerada (μ_Q), dos limites de fluxo ativo nas linhas (μ_{FP}) e dos tap's (μ_t). Os respectivos fatores de atualização β 's também são mostrados na Tabela 5.13. O processo de

^{*} As linhas de transmissão com circuito duplo são representadas pelo seu modelo equivalente de circuito simples no banco de dados.

atualização dos valores de μ segue o definido na eq. (4.32). Os valores dos multiplicadores de Lagrange relacionados às equações do fluxo de potência iniciam iguais a 0,0 ($\lambda_{Pi} = 0,0$ e $\lambda_{Qi} = 0,0$). As variáveis de folga ou excesso (s_i) bem como os respectivos multiplicadores de Lagrange (π_i) são calculados de acordo com o apresentado no item 4.3.5.

Tabela 5.13 – Valores iniciais para os parâmetros de barreira e seus fatores de atualização para o sistema 30 barras

μI	niciais	Atuali	zadores
μv	0,01	βv	1,1
μp	0,01	β _P	1,1
μο	0,01	βο	1,5
μ _{FP}	0,0001	β_{FP}	5
μ _t	0,1	βt	1,01

Nos ANEXOS A e B apresentam-se o banco de dados e o estado final do sistema 30 barras respectivamente. A Figura 5.21 mostra a curva da convergência do fluxo de ativos na linha que interliga as barras 4(BC) e 12 (BC). O limite imposto para testes nesta linha foi de 41 MW.

Figura 5.21 - Convergência do fluxo na linha 4-12 para o sistema 30 barras

Figura 5.22 - Convergência para as perdas totais do sistema 30 barras

A convergência para o sistema 30 barras ocorreu em 17 iterações. Todas as tensões, *taps*, limites de fluxo e geração permaneceram dentro de seus limites, e a solução final obedeceu a todas as restrições do sistema, satisfazendo KKT com uma precisão de 10⁻⁴ p.u.

5.6) SISTEMA 118 BARRAS

O sistema 118 barras, mostrado na Figura 5.23, tem as seguintes características:

- 1 barra de referência (Slack BS);
- 17 barras de geração (BG);
- 34 barras de controle de reativo (CR);
- 66 barras de carga (BC);
- 179 linhas de transmissão^{*};

^{*} As linhas de transmissão com circuito duplo são representadas pelo seu modelo equivalente de circuito simples no banco de dados.

• 9 transformadores com o tap variável.

Figura 5.23 - Sistema 118 barras

Na Tabela 5.14 apresenta-se os valores iniciais adotados para o parâmetro de barreira da tensão (μ_V), da potência ativa gerada (μ_P), da potência reativa gerada (μ_Q), dos limites de fluxo ativo nas linhas (μ_{FP}) e dos tap's (μ_t). Os respectivos fatores de atualização β 's também são mostrados na Tabela 5.14. O processo de atualização dos valores de μ segue o definido na eq. (4.32). Os valores dos multiplicadores de Lagrange relacionados às equações do fluxo de potência iniciam iguais a 0,0 ($\lambda_{Pi} = 0,0$ e $\lambda_{Qi} = 0,0$). As variáveis de folga ou excesso (s_i) bem como

os respectivos multiplicadores de Lagrange (π_i) são calculados de acordo com o apresentado no item 4.3.5.

Tabela 5.14 – Valores iniciais para os parâmetros de barreira e seus fatores de atualização para o sistema 118 barras

μI	niciais	Atuali	zadores
μv	0,01	βv	1,2
μρ	0,01	β _P	1,1
μο	0,01	βο	1,1
μ _{FP}	0,0001	β _{FP}	5
μt	0,1	βι	1,01

Nos ANEXOS A e B apresentam-se o banco de dados e o estado final do sistema 118 barras respectivamente. A Figura 5.24 mostra a curva da convergência do fluxo de ativos na linha que interliga as barras 24 (BC) e 72 (CR). O limite imposto para testes nesta linha foi de 8 MW.

Figura 5.24 – Convergência do fluxo na linha 24-72 para o sistema 118 barras

Figura 5.25 - Convergência para as perdas totais do sistema 118 barras

A convergência para o sistema 118 barras ocorreu em 26 iterações. Todas as tensões, *taps*, limites de fluxo e geração permaneceram dentro de seus limites, e a solução final obedeceu a todas as restrições do sistema, satisfazendo KKT com uma precisão de 10⁻⁴ p.u.

Nos exemplos apresentados, o método convergiu de modo efetivo e obteve o ótimo do problema em um número de iterações aceitável. Porém, uma das dificuldades desse método é a escolha e o ajuste do parâmetro de barreira, e o fato de ele ser extremamente sensível a tal ajuste. Contudo, salienta-se a obtenção, por meio dele, da solução ótima dos sistemas sem o desagradável ajuste das variáveis de estado e das potências geradas por um processo de tentativa e erro.

CAPÍTULO 6

CONCLUSÕES

Na metodologia desenvolvida neste trabalho, as restrições de igualdade representadas pelas equações do fluxo de potência são incorporadas à função Lagrangiana através dos multiplicadores de Lagrange. As restrições de desigualdades canalizadas que incorporam as variáveis *tap* e tensão, as restrições funcionais de injeção de reativo das barras de controle de reativo, da geração de ativos/reativos nas barras de geração e os limites de fluxo ativo nas linhas de transmissão, são transformadas em igualdades através da adição de variáveis de folga ou excesso. Estas variáveis de folga ou excesso estritamente positivas são acrescentadas à função objetivo através da função barreira logarítmica. O método proposto deve ser iniciado a partir de pontos factíveis, e na atualização das variáveis de folga e os sinais dos multiplicadores de Lagrange.

Inicialmente, apresentou-se um histórico com as propostas de resolução do problema de FPO nas últimas décadas. Foi realizado um estudo dos métodos dos pontos interiores para fornecer o suporte teórico no desenvolvimento da abordagem. As condições necessárias de primeira ordem foram aplicadas à função Lagrangiana resultando em um sistema não linear resolvido pelo método de Newton. Aplicou-se a técnica de esparsidade fornecida pela rotina MA57, que é especialmente elaborada para solução de sistemas em que a matriz Lagrangeana seja simétrica de posição e valor. A aplicação da rotina MA57 implica na economia de memória e tempo de

processamento, visto que faz necessário apenas o armazenamento da matriz triangular superior ou inferior.

O fluxo de potência ótimo é um problema de programação não linear, e os métodos utilizados para resolvê-lo exigem que o usuário forneça algum valor para um determinado parâmetro, e no método primal-dual barreira logarítmica implementado neste trabalho acontece o mesmo, o programa exige que o usuário forneça valores para os parâmetros μ 's e β 's. Verifícou-se que o algoritmo é muito sensível quanto à escolha destes parâmetros, podendo não satisfazer todas as restrições de operação do sistema ou até mesmo divergir para alguns valores.

A pesquisa desenvolvida leva-nos a uma seqüência de trabalhos futuros enunciados a seguir:

- Proposta de novas regras para o ajuste nos passos primais e duais utilizados;
- Estudos de regras especiais para a inicialização e correção do parâmetro de barreira;
- Realização de testes mais elaborados com sistemas elétricos maiores;
- Modelagem do problema com a inclusão de outras funções objetivos;
- Acrescentar o procedimento *predictor corrector* ao algoritmo implementado.

REFERÊNCIAS BIBLIOGRÁFICAS

- CARPENTIER, J.L. (1962). Contribution a L'etude du Dispatching Economique. Bull-Soc. Fr. Elec. Ser. B3, p. 431-447.
- CLEMENTS, K.A.; DAVIS, P.W.; FREY, K.D. (1991). An Interior Point Algorithm for Weighted Least Absolute value Power System State Estimation. *IEEE/PES Winter Meeting*.
- COSTA, G.R.M.; COSTA, C.E.U.; SOUZA, A.M. (2000). Comparative Studies of Optimization Methods for the Optimal Power Flow Problem. *Electric Power Systems Research*, v. 56, p. 249-254, December.
- DOMMEL, H.W.; TINNEY, W.F. (1968). Optimal Power Flow Solutions. *IEEE Trans. on PAS.*, v. 87, p. 1866-1876, October.
- DUFF, I.S.; REID, J.K. (1983). ACM Transaction on Mathematical Software 9, p. 302-325.
- FIACCO, A.V.; McCORMICK, G.P. (1968). Nonlinear Programming-Sequencial Unconstrained Optimization Techniques, John Wiley & Sons.
- FRISH, K.R. (1955). The logarithmic Potential Method of Convex Programming, Memorandum, University Institute of Economics, Oslo, Norway.
- GRANVILLE, S. (1994). Optimal Reactive Dispatch through Interior Point Method. *IEEE Transactions on Power Systems*, v. 9, nº 1, p. 136-146, February.

- KARMARKAR, N. (1984). A New Polynomial-Time Algorithm for Linear Programming. *Combinatorica* 4, v. 4, p. 373-395.
- KOJIMA, M.; MIZUNO, S.; YOSHISE, A. (1989). A primal-dual interior point method for linear programming. In Progress in Mathematical Programming, Interior Point and Related Methods, N. Megiddo, ed. Springen-Verlag, New York, p.29-47.
- MATUMOTO, L.T.(1996). Algoritmos de Pontos Interiores Para Programação Linear e uma Extensão para a Programação Linear Por Partes, Dissertação (Mestrado), 56p.
- MEHROTRA, S. (1992). On the implementation of a primal-dual interior point method. Journal on Optimization, vol.2, p.575-601.
- MOMOH, J.A.; ZHU, J.Z. (1999). Improved Interior Point for OPF Problems. *IEEE Transactions on Power Systems*, v. 14, n° 3, p. 1114-1120, August.
- MONTICELLI, A. (1983). Fluxo de Carga em Redes de Energia Elétrica. São Paulo, Edgard Blucher Ltda. Cap. 5, p. 75-100.
- MONTICELLI, A.; LIU, W.H.E. (1992). Adaptive Movement Penalty Method For The Newton Optimal Power Flow. *IEEE Transactions on Power Systems*, v. 7, nº 1, p. 334 - 341, February.
- NEJDAWI, I.M.; CLEMENTS, K.A.; DAVIS, P.W. (2000). An Efficient Interior Point Method for Sequential Quadratic Programming Based Optimal Power Flow. *IEEE Transactions on Power Systems*, v. 15, n° 4, p. 1179-1183, November.

- PONNAMBALAM, K.; QUINTANA, V.H.; VANNELLI, A. (1991). A Fast Algorithm for Power System optimization Problems Using an Interior Point Method.
- QUINTANA, V.H., GOMEZ, A., MARTINEZ, J.L. (1995). Nonlinear Optimal Power Flows by Logarithmic-Barrier Primal-Dual Algorithm. *IEEE NAPS Meeting*.
- SASSON, A.M. (1969). Combined Use of the Powell and Fletcher-Powell Nonlinear Programming Methods for Optimal Load Flow, *IEEE Trans. on PAS*, vol. 88, p. 1530-1537, October.
- SASSON, A.M.; VILORIA, F.; ABOYTES, F. (1973). Optimal Load Flow Solution Using the Hessian Matrix. *IEEE Trans. on PAS*, v. 92, nº 1, p. 31-41, January.
- SUN, D.I.; ASHELEY, B.; BREWER, B.; HUGHES, B.A.; TINNEY, W. F. (1984) Optimal Power Flow by Newton Approach. *IEEE Transactions on Power Apparatus and Systems*, v. 103, p. 2864-2875, October.
- TORRES, G.L.; QUINTANA, V.H. (1998). An Interior Point Method for Nonlinear Optimal Power Flow Using Voltage Rectangular Coordinates. *IEEE Transactions on Power Systems*, v. 13, nº 4, p. 1211-1218, November.
- TORRES, G.L.; QUINTANA, V.H. (2001). On a Nonlinear Multiple-Centrality-Corrections Interior-Point Method for Optimal Power Flow. *IEEE Transactions on Power Systems*, v. 16, nº 2, p. 222-228, May.
- VARGAS, L.S.; QUINTANA V.H.; VANNELLI, A. (1992). A Tutorial Description of an Interior Point Method and its Application to Security-Constrained Economic Dispatch. *IEEE/PES Winter Meeting*.

- WRIGHT, M. H. (1995). Why a pure primal Newton barrier step may be infeasible. SIAM Journal on Optimization, v. 5, nº 1, p. 1-12.
- WU, Y.; DEBS, A.S.; MARSTEN, R.E. (1994). A Direct Nonlinear Predictor-Corrector Primal-Dual Interior Point Algorithm for Optimal Power Flow. *IEEE Transactions on Power Systems*, v. 9, p. 876-883, May.
- YAN, X.; QUINTANA, V.H. (1996). An Inveasible Interior-Point Algorithm for Optimal Power Flow Problems. Eletric Power Systems Research, n°39, p. 39-46.
- YAN, X.; QUINTANA, V.H. (1997). An Efficient Predictor-Corrector Interior Point Algorithm for Security-Constrained Economic Dispatch. IEEE Transactions on Power Systems. v.12, nº 2, p.803-810, May.
- ZHANG, Y. (1996). Solving large-scale linear programs by interior-point methods under the MATLAB environment. Technical Report TR96-01, Department of Mathematics and Statistics, University of Maryland Baltimore County, Maryland, February.

ANEXO A

BANCO DE DADOS

SISTEMA 3 BARRAS

1	2	PRIM-5	1000 0.	0.0	0.0-9999	9999	0.0	0.0		1
2	1	SEG-5	1000 -2.	170	0.0-9999	9999	0.0	0.0		1
3	0	SEX-5	1000 -5.	0.0	0.0		200	100		2
9999										
2	3	3.4	4828.6206					140	1	
3	1	9.7	56012.195					900	0	
9999										
	0.90	1.10								
9999										
2	1.20	2.00								
9999										

SISTEMA 8 BARRAS

1	2	PRIM-500	1050	0	1250	75.7	-999	999				1
2	0	SEG-500	1007	-12	0.0	0.0			0.0	0.0	-300.	1
3	0	TERC-500	0.99	-23	0.0	0.0					-75.	1
4	0	QUA-500	0.99	-23	0.0	0.0			134	-32-	-140.	1
5	0	QUI-500	0.99	-32	0.0	0.0			1300	50.	-140.	2
6	1	SEX-500	1000	-31	240	25.	-100	100				2
7	0	PRIM-345	1029	-2	0.0	0.0			180	86		1
8	0	TERC-345	0.98	-27	0.0	0.0			290	48		1
9999												
1	2	0.08	501.4	5254	35400				2	000	0	
2	3	0.15	002.50	3001	92920				2	000	0	
2	4	0.16	002.64	1001	97420				2	000	0	
4	5	0.17	002.80	5002	14320				2	000	0	
3	5	0.19	003.2	7002	45970				2	000	0	
5	6	0.06	001.00	000	84500					300	1	
1	7	0.0	2.40	000		1.0000	0.9001	.100		320	0	
3	8	0.0	2.4	100	0	1.0000	0.9001	.100		300	0	
9999												
	0.90	1.10										
9999												
6	1.00	4.00										
9999												

SISTEMA 14 BARRAS

1	2	barral	1060 0.	0.0	0.0-	9999	9999	0.0	0.0	1
2	1	barra2	1045 -5.	40.	0.0	-40	50	14.5	8.49	1
3	-1	barra3	1010-13.	0.0	0.0	0	40	65.6	13.2	1
4	0	barra4	1019-10.	0.0	0.0			47.8	-3.9	1
5	0	barra5	1020-8.8	0.0	0.0			7.6	1.6	1
6	-1	barra6	1070-14.	0.0	0.0	-6	24	11.2	7.5	1
7	0	barra7	1062-13.	0.0	0.0			0.0	0.0	1
8	-1	barra8	1090-13.	0.0	0.0	-6	24	0.0	0.0	1
9	0	barra9	1056-15.	0.0	0.0			29.5	16.6	19 1
10	0	barra10	1051-15.	0.0	0.0			9.0	5.8	1
11	0	barra11	1057-15.	0.0	0.0			3.5	1.8	1
12	0	barra12	1055-15.	0.0	0.0			6.1	1.6	1
13	0	barra13	1050-15.	0.0	0.0			13.5	5.8	1
14	0	barra14	1036-16.	0.0	0.0			14.9	5.0	1
9999										
1		2 1	.938 5.917	5.28					97	1
1		5 5	.40322.304	4.92					900	0
2		3 4	.69919.797	4.38					55	0
2		4 5	.81117.632	3.74					54	0
2		5 5	.69517.388	3.40					900	0
3		4 6	.70117.103	3.46					900	0
4		5 1	.335 4.211	1.28					50	0
4		7	20.912	0	.9780	.9003	1.100		900	0
4		9	55.618	0	.9780	.900	1.100		900	0
5		6	25.202	0	.9780	.9003	1.100		900	0
6	1	.1 9	.49819.890						900	0
6	1	.2 12	.29125.581						900	0
6	1	.3 6	.61513.027						900	0
7		8 0	.00117.615						900	0
7		9	11.001						900	0
9	1	.0 3	.181 8.450						900	0
9	1	.4 12	.71127.038						900	0
10	1	.1 8	.20519.207						900	0
12	1	.3 22	.09219.988						1.3	1
13	1	.4 17	.09334.802						900	0
9999										
	0.9	1.10	D							
9999										
2	0.0	0.79	5							
9999										

SISTEMA 30 BARRAS

1	2	BARRA1 S	SLACK	1053	. 0		-9999	9999	Ο.	Ο.	
2	1	BARRA2 G	GERA.	1032	09	40.	-40.	50.	21.7	12.7	
3	0	BARRA3 C	ARG.	1018	14				2.4	1.2	
4	0	BARRA4 C	CARG.	1010	17				7.6	1.6	
5	-1	BARRA5 C	C.RE.	1010	25		-40.	40.	94.2	19.0	
6	0	BARRA6 C	CARG.	10043	20				.0	. 0	
7	0	BARRA7 C	CARG.	9983	23				22.8	10.9	
8	-1	BARRA8 C	C.RE.	10103	21		-10.	40.	30.0	30.0	
9	0	BARRA9 C	CARG.	10173	26				.0	.0	
10	0	BARRA10	CARG	10153	29				5.8	2.0	19.
11	-1	BARRA11	C.RE	10723	26		-6.	24.	.0	.0	
12	0	BARRA12	CARG	10193	27				11.2	7.5	
13	-1	BARRA13	C.RE	10573	27		-6.	24.	. 0	.0	
14	0	BARRA14	CARG	10053	29				6.2	1.6	
15	0	BARRA15	CARG	1001	29				8.2	2.5	
16	0	BARRA16	CARG	10103	29				3.5	1.8	
17	0	BARRA17	CARG	1008	29				9.0	5.8	
18	0	BARRA18	CARG	994	30				3.2	0.9	
19	0	BARRA19	CARG	992	31				9.5	3.4	
20	0	BARRA20	CARG	997	30				2.2	0.7	
21	0	BARRA21	CARG	1003	30				17.5	11.2	
22	0	BARRA22	CARG	1004	29				.0	.0	
23	0	BARRA23	CARG	994	30				3.2	1.6	
24	0	BARRA24	CARG	994	30				8.7	6.7	4.3
25	0	BARRA25	CARG	1001	29				.0	.0	

.

26	0	BARRA26	CARG	98330		3.5	2.3	
27	0	BARRA27	CARG	101328		.0	.0	
28	0	BARRA28	CARG	99721		.0	.0	
29	0	BARRA29	CARG	99331		2.4	0.9	
30	0	BARRA30	CARG	98232		10.6	1.9	
9999								
1		2	1.9	2 5.75	2.64	9	000	0
1		3	4.5	2 18.52	2.04	9	000	0
2		4	5.7	0 17.37	1.84	9	000	0
3		4	1.3	2 3.79	0.42	9	000	0
2		5	4.7	2 19.83	2.09	9	000	0
2		6	5.8	1 17.63	1.87	9	000	0
4		6	1.1	9 4.14	0.45	9	000	0
5		7	4.6	0 11.60	1.02	9	000	0
6		7	2.6	7 8.20	0.85	9	000	0
6		8	1.2	4.20	0.45		28	0
6		9	. 0	20.80	1.0380.9501.05	9	000	0
6		10	. 0	55.60	0.9560.9501.05		16	1
9		11	.00	1 20.80		9	000	0
9		10	.00	1 11.00		9	000	0
4		12	. 0	25.60	1.0150.9501.05		40	0
12		13	. 0	14.00		9	000	0
12		14	12.3	1 25.59		9	000	0
12		15	6.6	2 13.04		9	000	0
12		16	9.4	5 19.87		9	000	0
14		15	22.1	0 19,97		9	000	0
16		17	8.2	4 19.23		9	000	0
15		18	10.7	0 21.85		9	000	0
18		19	6.3	9 12.92		9	000	0
19		20	3.4	0 6.80		9	000	0
10		20	9.3	6 20.90		9	000	0
10		17	3.2	4 8.45		9	000	0
10		21	3.4	8 7.49		9	000	0
10		22	7.2	7 14.99		9	000	0
21		22	1.1	6 2.36		9	000	0
15		23	10.0	0 20.20		9	000	0
22		24	11.5	0 17.90		9	000	0
23		24	13.2	0 27.00		9	000	0
24		25	18.8	5 32.92		9	000	0
25		26	25.4	4 38.00		9	000	0
25		27	10.9	3 20.87		9	000	0
28		27	0.0	39.60	.9580.9501.05	9	000	0
27		29	21.9	8 41.53		9	000	0
27		30	32.0	2 60.27		9	000	0
29		30	23.9	9 45.33		9	000	0
8		28	6.3	6 20.00	2.14	C	.01	0
6		28	1.6	9 5.99	0.65	1	8.8	0
9999								
		0.90	1.10					
9999								
2	(0.01 (0.7					
9999								

SISTEMA 118 BARRAS

12	2	BARRA12	1000	.0	859999	9999	.0	.0	
2	0	BARRA2	1000	.0			20.0	9.0	
3	0	BARRA3	1000	.0			39.0	10.0	
4	-1	BARRA4	1000	.0	-50.	50.	39.0	12.0	
5	0	BARRA5	1000	.0			.0	.0	40.
6	-1	BARRA6	1000	.0	-50.	50.	52.0	22.0	
7	0	BARRA7	1000	.0			19.0	2.0	
8	-1	BARRA8	1000	.0	-50.	50.	28.0	0.0	
9	0	BARRA9	1000	.0			.0	.0	
10	1	BARRA10	1000	450	-250.	250.	.0	.0	
11	0	BARRA11	1000	.0			70.0	23.0	
1	-1	BARRA1	1000	.0	-50.	50.	51.0	27.0	
13	0	BARRA13	1000	.0			34.0	16.0	
14	0	BARRA14	1000	. 0			14.0	1.0	
15	-1	BARRA15	1000	. 0	-50.	50.	90.0	30.0	

×.

	1.794						menus con Section (Sec
16	0	BARRA16	1000	.0			25.0 10.0
17	0	BARRA17	1000	. 0			11.0 3.0
18	-1	BARRA18	1000	.0	-50.	50.	60.0 34.0
19	-1	BARRA19	1000	. 0	-50.	115.	45.0 25.0
20	0	BARRA20	1000	0			18 0 3 0
21	0	DADDA21	1000				14 0 8 0
21	0	BARRAZI	1000	.0			14.0 8.0
22	0	BARRA22	1000	.0			10.0 5.0
23	0	BARRA23	1000	.0			7.0 3.0
24	0	BARRA24	1000	.0			13.0 .0
25	1	BARRA25	1000	220	-250.	250.	.0 .0
26	1	BARRA26	1000	314	-250.	250.	.0 .0
27	-1	BARRA27	1000	0	-50	50	71 0 13 0
20	0	DADDADO	1000		50.	50.	17.0 7.0
20	0	DADDAGO	1000	.0			17.0 7.0
29	0	BARRAZ9	1000	.0			24.0 4.0
30	0	BARRA30	1000	.0			0.0 0.0
31	1	BARRA31	1000	7	-50.	50.	43.0 27.0
32	-1	BARRA32	1000	.0	-50.	100.	59.0 23.0
33	0	BARRA33	1000	.0			23.0 9.0
34	0	BARRA34	1000	.0			59.0 26.013.99
35	0	BARRA35	1000	. 0			33.0 9.0
36	-1	BARRASE	1000	0	-50	50	31 0 17 0
27	-	DADDA27	1000	.0	50.	50.	0 0 25
31	0	BARRA3 /	1000	.0			.0 .0 25.
38	0	BARRA38	1000	.0			.0 .0
39	0	BARRA39	1000	.0			27.0 11.0
40	-1	BARRA40	1000	.0	-50.	150.	66.0 23.0
41	0	BARRA41	1000	.0			37.0 10.0
42	-1	BARRA42	1000	.0	-50.	50.	96.0 23.0
43	0	BARRA43	1000	. 0			18.0 7.0
11	0	BABBAAA	1000	0			16 0 8 0 10
11	0	DADDAAS	1000	.0			53 0 23 0 10
45	0	BARRA45	1000	.0	50		55.0 22.0 10.
46	1	BARRA46	1000	19	-50.	50.	28.0 10.0 10.
47	0	BARRA47	1000	.0			34.0 .0
48	0	BARRA48	1000	.0			20.0 11.015.04
49	1	BARRA49	1000	204	-250	250.	87.0 30.0
50	0	BARRA50	1000	.0			17.0 4.0
51	0	BARRA51	1000	.0			17.0 8.0
52	0	BARRA52	1000	. 0			18.0 5.0
53	õ	BARRA53	1000	0			23 0 11 0
EA	1	DADDAEA	1000		- 50	150	112 0 22 0
54	1	DADDAGG	1000	40	-50.	150.	113.0 32.0
55	-1	BARRASS	1000	.0	-50.	150.	83.0 22.0
56	-1	BARRA56	1000	.0	-50.	150.	84.0 18.0
57	0	BARRA57	1000	.0			12.0 3.0
58	0	BARRA58	1000	.0			12.0 3.0
59	1	BARRA59	1000	155	-50.	50.	277.0113.0
60	0	BARRA60	1000	.0			78.0 3.0
61	1	BARRA61	1000	160	-250	250.	.0 .0
62	-1	BARRA62	1000	0	-50	50	77 0 14 0
62	0	DADDA62	1000		50.	50.	0 0
03	0	DADDACA	1000	.0			.0 .0
64	0	BARRA64	1000	.0	050	050	.0 .0
65	1	BARRA65	1000	391	-250	250.	.0.0
66	1	BARRA66	1000	392	-250	250.	39.0 18.0
67	0	BARRA67	1000	.0			28.0 7.0
68	0	BARRA68	1000	.0			.0 .0
69	-1	BARRA69	1000	. 0	-250.	250.	-329. 0.
70	-1	BARRA70	1000	.0	-50.	50.	66.0 20.0
71	0	BARRA71	1000	0			.0 0
72	1	DADDA71	1000	.0	- 50	EO	12.0 0
12	-1	BARRA72	1000	.0	-50.	50.	12.0 .0
13	-1	BARRA73	1000	.0	-50.	50.	6.0 .0
74	-1	BARRA74	1000	.0	-50.	80.	68.0 27.0 12.
75	0	BARRA75	1000	.0			47.0 11.0
76	-1	BARRA76	1000	. 0	-50.	100.	68.0 36.0
77	-1	BARRA77	1000	.0	-50.	50.	61.0 28.0
78	0	BARRA78	1000	. 0			71.0 26.0
79	0	BARRA79	1000	. 0			39.0 32.0 20.
80	1	BARRASO	1000	477	-250	250	130. 26 0
81	0	BARPASI	1000	0	200.		0 0
01	0	DADDAGC	1000	. 0			54 0 07 0 00
82	0	BAKKA82	1000	.0			54.0 27.0 20.
83	0	BARRA83	1000	.0			20.0 10.0 10.
84	0	BARRA84	1000	.0			11.0 7.0
85	-1	BARRA85	1000	.0	-50.	80.	24.0 15.0
86	0	BARRA86	1000	. 0			21.0 10.0
87	1	BARRA87	1000	4	-250	250.	.0 .0
88	0	BARRASS	1000	. 0	in concert T		48.0 10.0
89	1	BAPPARO	1000	607	-250	250	0 0
00	-	Sinceroy	1000	507	250		

90	-1	BARRA90	10	000	.0	-50.	100.	163.0	42.0	
91	-1	BARRA91	10	000	.0	-50.	50.	10.0	.0	
92	-1	BADDAGO	10	000	0	-50	100	65 0	10 0	
52	- 1	DARRAJZ	-			50.	100.	10.0		
93	0	BARRA93	T	000	.0			12.0	1.0	
94	0	BARRA94	1(000	.0			30.0	16.0	
95	0	BARRA95	10	000	. 0			42.0	31.0	
00	õ	DADDAOC	1/	000	0			20 0	15 0	
96	0	BARRA96	T	000	.0			30.0	15.0	
97	0	BARRA97	10	000	.0			15.0	9.0	
98	0	BARRA98	10	000	.0			34.0	8.0	
00	- 1	DADDAGO	10	000	0	- 50	50	42 0	0	
33	-	DARRADD	1	000		050.	050.	27.0	10.0	
100	1	BARRAIOO	10	000	252	-250	250.	37.0	18.0	
101	0	BARRA101	10	000	. 0			22.0	15.0	
102	0	BARRA102	10	000	.0			5.0	3.0	
103	1	DADDA103	10	000	40	-250	250	23 0	16 0	
103	-	DARRAIUS	1		40	250	250.	20.0	20.0	
104	-1	BARRA104	10	000	.0	-50.	0.	38.0	25.0	
105	-1	BARRA105	10	000	. 0	-50.	20.	31.0	26.0	20.
106	0	BARRA106	10	000	.0			43.0	16.0	
107	-1	BADDA107	10	000	0	-50	60	50 0	12 0	6
107	-1	DARRAIO	1	000	.0	50.	00.	50.0	1 0	0.
108	0	BARRAIUS	10	000	.0			2.0	1.0	
109	0	BARRA109	10	000	.0			8.0	3.0	
110	-1	BARRA110	10	000	.0	-50.	0.	39.0	30.0	6.
111	1	DADDA111	10	000	26	-250	0	0	0	
111	1	DARRAITI	-	500	50	250.			10.0	
112	-1	BARRAIIZ	10	000	.0	-50.	50.	68.0	13.0	
113	-1	BARRA113	10	000	.0	-50.	0.	6.0	.0	
114	0	BARRA114	10	000	.0			8.0	3.0	
115	0	DADDA115	10	000	0			22 0	7 0	
115		DARRAITS	1	000	.0	50	•	22.0		
116	-1	BARRAI16	10	000	.0	-50.	0.	0.0	.0	
117	0	BARRA117	10	000	.0			20.0	8.0	
118	0	BARRA118	10	000	. 0			33.0	15.0	
0000	•	Dinnairra	100		10.00					
3333				0 00	0 5400	0000 000	0 000		0	
1		2	3.03	9.99	2.5400	.0000.000	0.000		0.	
1		3	1.29	4.24	1.0820	.0000.000	0.000		0.	
4		5	0.18	0.80	0.2100	.0000.000	0.000		0.	
3		5	2.41	10.80	2.8400	.0000.000	0.000		0.	
c		6	1 10	5 40	1 4260	0000 000	0 000		0	
5		g	1.15	0.40	1.4200		0.000		0.	
6		/	0.46	2.08	0.5500	.0000.000	0.000		0.	
8		9	0.24	3.05	116.200	.0000.000	0.000		0.	
8		5	0.00	2.67	0.0000	.9850.900	1.100		0.	
9		10	0.26	3.22	123.000	.0000.000	0.000		0.	
٨		11	2 09	6 88	1 7480	0000 000	0 000		0.	
-		11	2.02	6.00	1 7200		0.000		0	
5		11	2.03	0.02	1.7380	.0000.000	0.000		0.	
11		12	0.60	1.96	0.5020	.0000.000	0.000		0.	
2		12	1.87	6.16	1.5720	.0000.000	0.000		Ο.	
3		12	4.84	16.00	4.0600	.0000.000	0.000		0.	
7		12	0 86	3.40	0 8740	0000.000	0.000		0.	
11		10	2.00	7 21	1 0760	0000 000	0.000		0	
11		15	2.23	1.51	1.0700	.0000.000	0.000		0.	
12		14	2.15	7.07	1.8160	.0000.000	0.000		0.	
13		15	7.44	24.44	6.2680	.0000.000	0.000		Ο.	
14		15	5.95	19.50	5.0200	.0000.000	0.000		0.	
10		16	2 12	0 24	2 1400	0000 000	0 000		0	
12		10	1 20	4 27	2.1400	.0000.000	0.000		0.	
12		17	1.32	4.37	4.4400	.0000.000	0.000		0.	
16		17	4.54	18.01	4,6600	.0000.000	0.000		0.	
17		18	1.23	5.05	1.2980	.0000.000	0.000		Ο.	
18		19	1.12	4.93	1.1420	.0000.000	0.000		0.	
10		20	2 52	11 70	2 9800	0000 000	0 000		0	
19		20	2.52	11.70	2.0000	.0000.000	0.000		0.	
15		19	1.20	3.94	1.0100	.0000.000	0.000		0.	
20		21	1.83	8.49	2.1600	.0000.000	0.000		0.	
21		22	2.09	9.70	2,4600	.0000.000	0.000		0.	
22		23	3 42	15 90	4 0400	0000 000	0 000		0	
00		2.5	1 25	4 00	1 0000	0000.000	0.000		0	
23		24	1.35	4.92	4.9800	.0000.000	0.000		0.	
23		25	1.56	8.00	8.6400	.0000.000	0.000		0.	
26		25	0.00	3.82	0.0000	.9600.900	1.100		0.	
25		27	3.18	16.30	17.6400	.0000.000	0.000		Ο.	
27		28	1 91	8 55	2.1600	.0000 .000	0.000		0	
21		20	2 27	0.35	2 2000	0000 000	0 000		0	
28		29	2.31	9.43	2.3800		0.000		0.	
30		17	0.00	3.88	0.0000	.9600.900	1.100		0.	
8		30	0.43	5.04	51.4000	.0000.000	0.000		Ο.	
26		30	0.80	8.60	90.8000	.0000.000	0.000		0.	
17		31	4 74	15 63	3 9900	0000 000	0.000		0	
17		21	1 00	2 2 2 2	0.0200	0000 000	0 000		0	
29		31	1.08	3.31	0.8300	.0000.000	0.000		0.	
23		32	3.17	11.53	11.7300	.0000.000	0.000		0.	
31		32	2.98	9.85	2.5100	.0000.000	0.000		0.	
27		32	2.29	7.55	1,9260	.0000.000	0.000		0.	
15		22	3 00	12 44	3 1040	0000 000	0 000		0	
15		55	5.80	12.44	5.1940	.0000.000	0.000		v.	

19	34	7 52	24 70 6 3200 0000 0000 000	0.
25	26	0.22	1 02 0 2690 0000 0000 000	0
35	30	0.22	1.02 0.2880.0000.0000.000	0.
35	37	1.10	4.97 1.3180.0000.0000.000	0.
33	37	4.15	14.20 3.6600.0000.0000.000	0.
34	36	0.87	2.68 0.5680.0000.0000.000	0.
34	37	0.26	0.94 0.9840.0000.0000.000	0.
38	37	0.00	3.75 0.0000.9350.9001.100	0.
37	39	3.21	10.60 2.7000.0000.0000.000	0.
37	40	5.93	16.80 4.2000.0000.0000.000	0.
30	38	0 46	5 4042 2000 0000 0000 000	0
30	30	1 04	C 0F 1 FF20 0000 0000 000	0.
39	40	1.64	8.05 1.3520.0000.0000.000	0.
40	41	1.45	4.87 1.2220.0000.0000.000	0.
40	42	5.55	18.30 4.6600.0000.0000.000	0.
41	42	4.10	13.50 3.4400.0000.0000.000	Ο.
43	44	6.08	24.54 6.0680.0000.0000.000	Ο.
34	43	4.13	16.81 4.2260.0000.0000.000	Ο.
44	45	2.24	9.01 2.2400.0000.0000.000	0.
45	46	4.00	13.56 3.3200.0000.0000.000	0.
46	47	3 80	12 70 3 1600 0000 0000 000	0
10	40	6 01	18 00 4 7200 0000 0000 000	0.
40	40	0.01		0.
4/	49	1.91	6.25 1.6040.0000.0000.000	0.
42	49	3.57	16.1517.2000.0000.0000.000	0.
45	49	6.84	18.60 4.4400.0000.0000.000	0.
48	49	1.79	5.05 1.2580.0000.0000.000	0.
49	50	2.67	7.52 1.8740.0000.0000.000	0.
49	51	4.86	13.70 3.4200.0000.0000.000	0.
51	52	2.03	5.88 1.3960.0000.0000.000	0.
52	53	4.05	16.35 4.0580.0000.0000.000	0.
53	54	2 63	12 20 3 1000 0000 0000 000	0
10	54	4.00	14 7614 6800 0000 0000 000	0.
49	54	4.00	14.7614.6800.0000.0000.000	0.
54	55	1.69	7.07 2.0200.0000.0000.000	0.
54	56	0.28	0.95 0.7320.0000.0000.000	0.
55	56	0.49	1.51 0.3740.0000.0000.000	0.
56	57	3.43	9.66 2.4200.0000.0000.000	0.
50	57	4.74	13.40 3.3200.0000.0000.000	Ο.
56	58	3.43	9.66 2.4200.0000.0000.000	0.
51	58	2.55	7.19 1.7880.0000.0000.000	0.
54	59	5.03	22.93 5.9800.0000.0000.000	0.
56	59	4 06	12 2411 0800 0000 0000 000	0
50	50	4.00	21 E8 E 6460 0000 0000 000	0.
55	59	4.74	21.58 5.6460.0000.0000.000	0.
59	60	3.17	14.50 3.7600.0000.0000.000	0.
59	61	3.28	15.00 3.8800.0000.0000.000	0.
60	61	0.26	1.35 1.4560.0000.0000.000	0.
60	62	1.23	5.61 1.4680.0000.0000.000	0.
61	62	0.82	3.76 0.9800.0000.0000.000	0.
63	59	0.00	3.86 0.0000.9600.9001.100	0.
63	64	0.17	2.0021.6000.0000.0000.000	0.
64	61	0 00	2 68 0 0000 9850 9001 100	0.
20	65	0.00	9 86104 600 0000 0000 000	0
50	05	0.00	3.0220.0000.0000.0000.000	0.
64	65	0.27	3.0238.0000.0000.0000.000	0.
49	66	0.90	4.60 4.9600.0000.0000.000	0.
62	66	4.82	21.80 5.7800.0000.0000.000	0.
62	67	2.58	11.70 3.1000.0000.0000.000	0.
65	66	0.00	3.70 0.0000.9350.9001.100	0.
66	67	2.24	10.15 2.6820.0000.0000.000	Ο.
65	68	0.14	1.6063.8000.0000.0000.000	0.
47	69	8.44	27.78 7.0920.0000.0000.000	0.
49	69	9.85	32.40 8.2800.0000.0000.000	0.
68	69	0.00	3 70 0 0000 9350 9001 100	0
00	70	2.00	12 7012 2000 0000 0000 000	<u>.</u>
69	70	3.00	12.7012.2000.0000.0000.000	0.
24	70	0.22	41.1510.1980.0000.0000.000	0.
70	71	0.88	3.55 0.8780.0000.0000.000	0.
24	72	4.88	19.60 4.8800.0000.0000.000	8
71	72	4.46	18.00 4.4440.0000.0000.000	Ο.
71	73	0.87	4.54 1.1780.0000.0000.000	Ο.
70	74	4.01	13.23 3.3680.0000.0000.000	Ο.
70	75	4.28	14.10 3.6000.0000.0000.000	0.
69	75	4 05	12,2012,4000,0000,0000,000	0
74	75	1 22	4 06 1 0340 0000 0000 000	0
76	75	A A A	14 80 3 6800 0000 0000 000	0.
10	77	4.44	14.00 3.0000.0000.0000.000	0.
69	11	3.09	10.1010.3800.0000.0000.000	0.
75	77	6.01	19.99 4.9780.0000.0000.000	0.
77	78	0.38	1.24 1.2640.0000.0000.000	0.
78	79	0.55	2.44 0.6480.0000.0000.000	0.
65

0.01

4.00

77	80	1 09	3 32 7 0000 0000 0000 000	0
70	00	1.00	3.52 7.0000.0000.0000.000	0.
19	80	1.56	7.04 1.8700.0000.0000.000	0.
68	81	0.18	2.0280.8000.0000.0000.000	0.
81	80	0.00	3.70 0.0000.9350.9001.100	0.
77	82	2.98	8.53 8.1740.0000.0000.000	0.
82	83	1.12	3.66 3.7960.0000.0000.000	0.
83	84	6.25	13.20 2.5800.0000.0000.000	0.
83	85	4 30	14 80 3 4800 0000 0000 000	0
0.5	05	3.00	(<u>41</u> 1 2240 0000 0000 000	0.
84	85	3.02	6.41 1.2340.0000.0000.000	0.
85	86	3.50	12.30 2.7600.0000.0000.000	0.
86	87	2.83	20.74 4.4500.0000.0000.000	0.
85	88	2.00	10.20 2.7600.0000.0000.000	0.
85	89	2.39	17.30 4.7000.0000.0000.000	0.
88	89	1.39	7.12 1.9340.0000.0000.000	0.
00	90	1 62	6 5215 8800 0000 0000 000	0
09	90	2.03	0.3213.0000.0000.0000.000	0.
90	91	2.54	8.36 2.1400.0000.0000.000	0.
89	92	0.80	3.83 9.6200.0000.0000.000	0.
91	92	3.87	12.72 3.2680.0000.0000.000	0.
92	93	2.58	8.48 2.1800.0000.0000.000	0.
92	94	4.81	15.80 4.0600.0000.0000.000	0.
93	94	2 23	7 32 1 8760 0000 0000 000	0.
04	05	1 22	4 34 1 1100 0000 0000 000	0
94	95	1.52	4.54 1.1100.0000.0000.000	0.
80	96	3.56	18.20 4.9400.0000.0000.000	0.
82	96	1.62	5.30 5.4400.0000.0000.000	0.
94	96	2.69	8.69 2.3000.0000.0000.000	0.
80	97	1.83	9.34 2.5400.0000.0000.000	0.
80	98	2.38	10.80 2.8600.0000.0000.000	0.
80	99	4 54	20 60 5 4600 0000 0000 000	0
00	100	6 40	20.00 5.4000.0000.0000.000	0.
92	100	6.48	29.50 4.7200.0000.0000.000	0.
94	100	1.78	5.80 6.0400.0000.0000.000	0.
95	96	1.71	5.47 1.4740.0000.0000.000	0.
96	97	1.73	8.85 2.4000.0000.0000.000	0.
98	100	3.97	17.90 4.7600.0000.0000.000	0.
99	100	1.80	8,13,2,1600,0000,0000,000	0.
100	101	2 77	12 62 3 2800 0000 0000 000	0
100	101	1.00	F F0 1 4640 0000 0000 000	· ·
92	102	1.23	5.59 1.4840.0000.0000.000	0.
101	102	2.46	11.20 2.9400.0000.0000.000	0.
100	103	1.60	5.25 5.3600.0000.0000.000	0.
100	104	4.51	20.40 5.4100.0000.0000.000	0.
103	104	4.66	15.84 4.0700.0000.0000.000	0.
103	105	5.35	16.25 4.0800.0000.0000.000	0.
100	106	6 05	22 90 6 2000 0000 0000 000	0
100	100	0.03	22.90 0.2000.0000.0000.000	0.
104	105	0.99	3.78 0.9860.0000.0000.000	0.
105	106	1.40	5.47 1.4340.0000.0000.000	0.
105	107	5.30	18.30 4.7200.0000.0000.000	0.
105	108	2,61	7.03 1.8440.0000.0000.000	Ο.
106	107	5.30	18.30 4.7200.0000.0000.000	0.
108	109	1 05	2 88 0 7600 0000 0000 000	0
102	110	2 01	19 13 4 6100 0000 0000 000	0
105	110	3.71	76.15 4.0100.0000.0000.000	0.
109	110	2.78	7.62 2.0200.0000.0000.000	0.
110	111	2.20	7.55 2.0000.0000.0000.000	0.
110	112	2.47	6.40 6.2000.0000.0000.000	0.
17	113	0.91	3.01 0.7680.0000.0000.000	0.
32	113	6.15	20.30 5.1800.0000.0000.000	0.
32	114	1.35	6.12 1.6280.0000 0000 000	0
22	110	1.55	7 41 1 0720 0000 0000 000	ů.
21	115	1.64	1.41 1.9720.0000.0000.000	0.
114	115	0.23	1.04 0.2760.0000.0000.000	0.
68	116	0.03	0.4116.4000.0000.0000.000	0.
12	117	3.29	14.00 3.5800.0000.0000.000	Ο.
75	118	1.45	4.81 1.1980.0000.0000.000	0.
76	118	1.64	5.44 1.3560.0000.0000.000	0.
9999			್ರಾಯಾಗಿ ಕಾರ್ಯಕ್ರಿಸಿದರೆ ಸರ್ಕಾರ ಕಾರ್ಯಕ್ರಿಯಾಗಿ ಕಾರ್ಯಕ್ರಮ ಕಾರ್ಯಕ್ರಿಯಾಗಿ ಕೆಂಡ್ ಕಾರ್ಯಕ್ರಿಯಾಗಿ ಕಾರ್ಯಕ್ರಿಯಾಗಿ ಕಾರ್ಯಕ್ರ ಕಾರ್ಯಕ್ರಮ ಕಾರ್ಯಕ್ರಿಸಿದ್ದ ಕಾರ್ಯಕ್ರಿಯಾಗಿ ಕಾರ್ಯಕ್ರಿಯಾಗಿ ಕಾರ್ಯಕ್ರಿಯಾಗಿ ಕಾರ್ಯಕ್ರಿಯಾಗಿ ಕಾರ್ಯಕ್ರಿಯಾಗಿ ಕಾರ್ಯಕ್ರಿಯಾಗಿ ಕಾರ	57.18)
,,,,,	0 00	1 10		
0005	0.90	1.10		
9999	1020 - 1020-00			
10	0.01	5.00		
25	0.01	2.30		
26	0.01	3.20		
31	0.01	0.10		
10	0 01	0 20		
40	0.01	0.20		
49	0.01	2.10		
54	0.01	0.50		
59	0.01	1.65		
61	0.01	1.65		

66	0.01	4.00
80	0.01	5.00
87	0.01	0.10
89	0.01	6.10
100	0.01	2.60
103	0.01	0.50
111	0.01	0.45
9999		

ANEXO B

ESTADO FINAL DOS SISTEMAS

SISTEMA 3 BARRAS

*									
								*	
*		LOSE	- FLUXO D	E POTENCI	A ÓTIMO V1	.0 06/2002		*	
*								*	
******	******	******	*******	******	*******	********	********	****	
#####	#######	########	#########		******	###			
#						#			
# N	UMERO D	E ITERAÇ	OES	->	7	#			
# P	ERDAS TO	OTAIS DO	SISTEMA	(MW) ->	13.55	#			
#						#			
#####	#######	########	#########	##########	###########	###			
				== RELAT	ORIO DE BA	RRAS ====			
<x< td=""><td>X-</td><td>X</td><td>></td><td>(</td><td>X</td><td>xx</td><td>></td><td>(}</td><td>(</td></x<>	X-	X	>	(X	xx	>	(}	(
BARRA	TIPO '	TENSAO	ANGULO	GERACAO	GERACAO	PG MIN	PG MAX	QG MIN	QG MAX
		(PII)	(GRAU)	(MW)	(MVAR)	(MW)	(MW)	(MVAR)	(MVAR)
/V	V	(1 0)	(0.0.0)		Y	YY			
1	2	1 0.91	0.0	73 7	30.2	0 00	0 00	- 9999 00	
2	1	1 000	1.4	130 0	97 1	120 00	200.00	-9999 00	9999 00
2	1	1.099	1.4	139.9	97.1	120.00	200.00	- 9999.00	3333.00
.5			-3.3	0.0	0.0	0.00	0.00	0.00	0.00
	0	0.902		Constant and the second second	v	vv	v. v	v. 00	v
<x< td=""><td>X-</td><td>0.982</td><td>¥</td><td></td><td>X</td><td>xx-</td><td>X</td><td>x</td><td>·X</td></x<>	X-	0.982	¥		X	xx-	X	x	·X
<x< td=""><td>x-</td><td>0.982</td><td>></td><td>== RELAT</td><td>X ORIO DE LI</td><td>XX- NHAS ====</td><td>X</td><td>X</td><td>-x</td></x<>	x-	0.982	>	== RELAT	X ORIO DE LI	XX- NHAS ====	X	X	-x
xx	X-	0.982 X	> >	== RELAT	X ORIO DE LI AX-	XX- NHAS =====	X	X	×
<x< td=""><td>X-</td><td>DE</td><td>></td><td>== RELAT BARRA PAR</td><td>X ORIO DE LI AX-</td><td>XX- NHAS ==== (MW)</td><td>X</td><td>:X ::::::::::::::::::::::::::::</td><td>X</td></x<>	X-	DE	>	== RELAT BARRA PAR	X ORIO DE LI AX-	XX- NHAS ==== (MW)	X	:X ::::::::::::::::::::::::::::	X
<x< td=""><td>-BARRA I TENSAO</td><td>DE</td><td>> -X> X BARRA</td><td>== RELAT BARRA PAR TENSAO</td><td>X ORIO DE LI AX- ANGULO X</td><td>XX- NHAS ==== (MW)</td><td>FLUX (MVAR)</td><td>:X :0S TAP</td><td>X; LIMITE</td></x<>	-BARRA I TENSAO	DE	> -X> X BARRA	== RELAT BARRA PAR TENSAO	X ORIO DE LI AX- ANGULO X	XX- NHAS ==== (MW)	FLUX (MVAR)	:X :0S TAP	X; LIMITE
<x< td=""><td>X- -BARRA I TENSAO (PU)</td><td>DE ANGULO (GRAU)</td><td>-XX X BARRA X</td><td>== RELAT BARRA PAR TENSAO (PU)</td><td>XX- ORIO DE LI AX- ANGULO X (GRAU) X</td><td>XX- NHAS ===== (MW)</td><td>FLUX (MVAR)</td><td>:X :0S TAP</td><td>X LIMITE (MW)</td></x<>	X- -BARRA I TENSAO (PU)	DE ANGULO (GRAU)	-XX X BARRA X	== RELAT BARRA PAR TENSAO (PU)	XX- ORIO DE LI AX- ANGULO X (GRAU) X	XX- NHAS ===== (MW)	FLUX (MVAR)	:X :0S TAP	X LIMITE (MW)
<x BARRA <x< td=""><td>X- -BARRA 1 TENSAO (PU)</td><td>DE ANGULO (GRAU)</td><td>-X> X BARRA X -X</td><td>== RELAT BARRA PAR TENSAO (PU) XX</td><td>XX- ORIO DE LI AX- ANGULO X (GRAU) X X-</td><td>XX- NHAS ==== (MW)</td><td>FLUX (MVAR)</td><td>:XX COS TAP XX-</td><td>X LIMITE (MW)</td></x<></x 	X- -BARRA 1 TENSAO (PU)	DE ANGULO (GRAU)	-X> X BARRA X -X	== RELAT BARRA PAR TENSAO (PU) XX	XX- ORIO DE LI AX- ANGULO X (GRAU) X X-	XX- NHAS ==== (MW)	FLUX (MVAR)	:XX COS TAP XX-	X LIMITE (MW)
<x BARRA <x< td=""><td>X- -BARRA 1 TENSAO (PU) </td><td>DE ANGULO (GRAU) X</td><td>-X> X BARRA X -X</td><td>== RELAT BARRA PAR TENSAO (PU) XX</td><td>XX- ORIO DE LI AX- ANGULO X (GRAU) X X-</td><td>XX- NHAS ==== (MW) X</td><td>FLUX (MVAR)</td><td>::::::::::::::::::::::::::::::::::::::</td><td>X LIMITE (MW)</td></x<></x 	X- -BARRA 1 TENSAO (PU) 	DE ANGULO (GRAU) X	-X> X BARRA X -X	== RELAT BARRA PAR TENSAO (PU) XX	XX- ORIO DE LI AX- ANGULO X (GRAU) X X-	XX- NHAS ==== (MW) X	FLUX (MVAR)	::::::::::::::::::::::::::::::::::::::	X LIMITE (MW)
<x BARRA <x J</x </x 	X- -BARRA I TENSAO (PU) ; 1.081	DE ANGULO (GRAU) X	-X	== RELAT BARRA PAR TENSAO (PU) XX 0.982	XX- ORIO DE LI AX- ANGULO X (GRAU) X X- -3.3	XX- NHAS ==== (MW) X 73.68	FLUX (MVAR) 30.21	XXX	X LIMITE (MW) 0.00
<x BARRA <x 1 2</x </x 	X- -BARRA 1 TENSAO (PU) ; 1.081 1.099	DE ANGULO (GRAU) X 0.0	-X	== RELAT BARRA PAR TENSAO (PU) XX 0.982	XX- ORIO DE LI AX- ANGULO X (GRAU) X X- -3.3	XX- NHAS ==== (MW) X 73.68	FLUX (MVAR) 30.21	XXX	X LIMITE (MW) 0.00
<x BARRA <x 1 2</x </x 	X- -BARRA I TENSAO (PU) 2 1.081 1.099	0.982 DE ANGULO (GRAU) X 0.0 1.4	-X	== RELAT BARRA PAR TENSAO (PU) XX 0.982 0.982	XX- ORIO DE LI AX- ANGULO X (GRAU) X X- -3.3 -3.3	XX- NHAS ==== (MW) X 73.68 139.89	FLUX (MVAR) 30.21	COSX TAP XX- 1.000 0 1.000	X
XX BARRA XX 1 2 3	X- -BARRA I TENSAO (PU) 1.081 1.099 0.982	0.982 DE ANGULO (GRAU) X 0.0 1.4 -3.3	-X	== RELAT BARRA PAR TENSAO (PU) XX 0.982 0.982	XX- ANGULO X (GRAU) X X- -3.3 -3.3	XX- NHAS ==== (MW) X 73.68 139.89	FLUX (MVAR) 30.21 97.10	XXX	X
XX BARRA XX 1 2 3	X- -BARRA I TENSAO (PU) 1.081 1.099 0.982	0.982 DE ANGULO (GRAU) X 0.0 1.4 -3.3	-X	== RELAT BARRA PAR TENSAO (PU) XX 0.982 0.982 1.081	XX- ANGULO X (GRAU) X X- -3.3 -3.3 0.0	XX- NHAS ==== (MW) X 73.68 139.89 -68.39	FLUX (MVAR) 30.21 97.10	XXXX	X
<x BARRA <x 1 2 3</x </x 	X- -BARRA 1 TENSAO (PU) ; 1.081 1.099 0.982	DE ANGULO (GRAU) X 0.0 1.4 -3.3	-X	== RELAT BARRA PAR TENSAO (PU) XX 0.982 0.982 1.081	XX- ANGULO X (GRAU) X X- -3.3 -3.3 0.0 1.4	XX- NHAS ==== (MW) X 73.68 139.89 -68.39 -131.61	FLUX (MVAR) 30.21 97.10 -23.60	XXXXXX	X

----- VETORES MULTIPLICADORES DE LAGRANGE ------X-----X-----X------X BARRA TIPO LAMBDA X-----X-----X------X 3 0 0.67653 X-----X-----X------X X-----X-----X BARRA TIPO LAMBDA X----X----X-----X 3 0 0.69039 X-----X-----X------X PI PI S S BARRA TIPO LIM. SUP. LIM. IN. LIM. SUP. LIM. INF. X-----X-----X-----X-----X-----X DE PI S LINHA PARA x-----x-----x-----x------x------x 2 3 -0.0182 0.0011 1 PI PI S S BARRA TIPO LIM. SUP. LIM. INF. LIM. SUP. LIM. INF.
 1
 2
 -0.1969
 0.0080
 0.0188
 0.1812

 2
 1
 -0.2030
 0.0016
 0.0009
 0.1991

 3
 0
 -0.1617
 0.0303
 0.1178
 0.0822
1 SISTEMA 8 BARRAS SEM RESTRIÇÃO DE FLUXO * * LOSE - FLUXO DE POTENCIA ÓTIMO VI. 0 06/2002 * # # # NUMERO DE ITERAÇÕES 13 # -> PERDAS TOTAIS DO SISTEMA (MW) -> 38.42 # # Ħ #

				=== RELA	TORIO DE	BA	RRAS ====			
xX	X-	X		(-X		xx	X	>	(X
BARRA	TIPO	TENSAO (PU)	ANGULO (GRAU)	GERACAO (MW)	GERAC (MVAR	AO)	PG_MIN (MW)	PG_MAX (MW)	QG_MIN (MVAR)	QG_MAX (MVAR)
XX	X-	X		(-X		xx	X	>	<x< td=""></x<>
1	2	0.999	0.0	1549.6	-162	.0	0.00	0.00	-999.00	999.00
2	0	1.013	-11.3	0.0	0	.0	0.00	0.00	0.00	0.00
3	0	1.040	-21.3	0.0	0	. 0	0.00	0.00	0.00	0.00
4	0	1.046	-20.8	0.0	0	. 0	0.00	0.00	0.00	0.00
5	0	1.079	-28.3	0.0	0	0	0.00	0.00	0 00	0.00
6	1	1 076	-26 3	392 7	- 99	6	100 00	400 00	-100 00	100 00
7	0	0.978	-2.5	0.0	0	.0	0.00	0.00	0.00	0.00
8	0	1 025	-25 1	0.0	Ő	0	0.00	0.00	0.00	0.00
¥X	Y-	1.025		(-X		XX-	X	X	VY
X BARRA	-BARRA TENSAC	DE	-X X BARRA	=== RELA BARRA PA TENSAO	TORIO DE RA ANGULO	LI -X- X	NHAS ==== (MW)	FLUX((MVAR)	 OS TAP	LIMITE
	(PU)	(GRAU)	х	(PU)	(GRAU)	х				(MW)
XX		X	-X	-X	X	-X-	X		xx-	X
1	0.999	0.0								
			2	1.013	-11.3		1369.59	-258.00	1.000	0.00
			7	0.978	-2.5		180.00	92.07	1.001	0.00
2	1.013	-11.3								
			1	0.999	0.0		-1353.61	90.08	1.000	0.00
			3	1.040	-21.3		704.12	-183.19	1.000	0.00
			4	1.046	-20.8		649.49	-210.71	1.000	0.00
3	1.040	-21.3								
			2	1,013	-11.3		-696.78	106.09	1.000	0.00
			5	1.079	-28.3		406.78	-256.70	1.000	0.00
			8	1.025	-25.1		290.00	74.41	0.999	0.00
4	1.046	-20.8								
			2	1.013	-11.3		-642.73	112.92	1.000	0.00
			5	1.079	-28.3		508.73	-237.11	1.000	0.00
5	1.079	-28.3								
			3	1.040	-21.3		-403.60	34.95	1.000	0.00
			4	1.046	-20.8		-504.48	66.52	1.000	0.00
			6	1.076	-26.3		-391.91	14.98	1.000	0.00
6	1.076	-26.3								
			5	1.079	-28.3		392.72	-99.63	1,000	0.00
7	0.978	-2.5								
10 - C			1	0 999	0 0		-180 00	-82 26	1 001	0 00
8	1.025	-25 1	-	0.555	0.0		200.00	02.20	1.001	0.00
•	1.005	20.1	3	1 040	-21 3		-290 00	-54 39	0 999	0 00
XX		x	-x	-X	X	-x-	X		xx-	X
			==== VB	TORES MU	LTIPLICA	DOR	ES DE LAGR	ANGE =====		
******	******	******	*******	***** L	AMBDA DO	DE	LTAP ****	* * * * * * * * * * *	* * * * * * * * *	******
			X	X	X		X			

BARRA	TIPO	LAMBDA
X	(X	X
2	0	0.00771
3	0	0.01314
4	0	0.01267
5	0	0.01480
7	0	0.00004
8	0	0.01157
X	<x< td=""><td>X</td></x<>	X

BARRA	TIPO	LAMBDA
X	<x< td=""><td>X</td></x<>	X
2	0	00476
3	0	01099
4	0	01117
5	0	01709
7	0	0.00128
8	0	01161
X	<x< td=""><td>X</td></x<>	X

		PI	PI	S	S
BARRA	TIPO	LIM. SUP.	LIM. IN.	LIM. SUP.	LIM. INF.
[]	()	<	X	-X	-X
6	1	-0.0135	0.0010	0.0728	2.9272

			PI	PI	S	S
LINHA	DE	PARA	LIM. SUP.	LIM. INF.	LIM. SUP.	LIM. INF.
X		X>	{}	(-X	-X
7	1	7	-1.0222	0.9648	0.0991	0.1009
8	3	8	-0.9844	1.0026	0.1014	0.0986

		PI	PI	S	S
BARRA	TIPO	LIM. SUP.	LIM. INF.	LIM. SUP.	LIM. INF.
()	K	X	X	X	X
1	2	-0.0641	0.0787	0.1007	0.0993
2	0	-0.0971	0.0941	0.0866	0.1134
3	0	-0.1006	0.0881	0.0598	0.1402
4	0	-0.1031	0.0850	0.0543	0.1457
5	0	-0.1221	0.0667	0.0205	0.1795
6	1	-0.1301	0.0680	0.0237	0.1763
7	0	-0.0762	0.0929	0.1218	0.0782
8	0	-0.0894	0.1000	0.0749	0.1251

SISTEMA 8 BARRAS COM RESTRIÇÃO DE FLUXO

*****	************	*
*		*
*	LOSE - FLUXO DE POTENCIA ÓTIMO V1.0 06/2002	*
*	and many and participal statical international statements and the scient statements	*
*****	***************************************	*

Ħ									#
#	NUMERO	DE	ITE	RAÇ	DES		->	12	#
#	PERDAS	TOT	FAIS	DO	SISTEMA	(MW)	->	42.87	#
#							10001349920		17
###	#######	####	####	####	*########	*#####	####	*****	####

vv	v	v	v	8	v	vv	v		,
BARRA	TIPO	TENSAO (PU)	ANGULO (GRAU)	GERACAO (MW)	GERACAC (MVAR)	PG_MIN (MW)	PG_MAX (MW)	QG_MIN (MVAR)	QG_MAX (MVAR)
xx-	X-	(10)	X		-X	-XX	X	>	(
1	2	1 016	0.0	1646 8	-97 5	0 00	0 00	-999 00	999 00
2	0	1 021	-11 8	1010.0	0.0	0.00	0.00	0.00	0.00
2	0	1 043	-22.4	0.0	0.0	0.00	0.00	0.00	0.00
2	0	1.049	-21 8	0.0	0.0	0.00	0.00	0.00	0.00
4	0	1.040	-21.0	0.0	0.0	0.00	0.00	0.00	0.00
5	1	1.001	-30.0	200.0	0.0	100.00	400.00	100.00	100.00
0	1	1.077	-20.5	300.0	- 99.5	100.00	400.00	-100.00	100.00
,	0	0.994	-2.5	0.0	0.0	0.00	0.00	0.00	0.00
8	0	1.028	-26.1	0.0	0.0	0.00	0.00	0.00	0.00
				== RELA	TORIO DE L	INHAS ====			
X	-BARRA	DE	-X	BARRA PA	RAX		FLUX(DS	
BARRA	TENSAC (PU)	ANGULO (GRAU)	X BARRA X	TENSAO (PU)	ANGULO X (GRAU) X	(MW)	(MVAR)	TAP	LIMITE (MW)
xx-		X	-X	X	xx	X		<x-< td=""><td></td></x-<>	
1	1.016	0.0							
			2	1.021	-11.8	1466.79	-193.17	1.000	0.00
2	1.021	-11.8	7	0.994	-2.5	180.00	94.52	1.000	0.00
	11001	11.0	1	1 016	0.0	-1449.05	44.94	1.000	0.00
				1 043	-22 4	750 48	-163 11	1 000	0.00
			4	1.048	-21.8	698.57	-189.98	1.000	0.00
3	1.043	-22.4							
			2	1.021	-11.8	-742.31	98.18	1.000	0.00
			5	1.081	-30.0	452.31	-249.14	1.000	0.00
4	1 048	-21.8	8	1.028	-26.1	290.00	75.39	0.998	0.00
•	1.010	5110	2	1 021	-11 8	-690 96	104 33	1 000	0 00
			5	1 081	-30.0	556 96	-229 25	1 000	0.00
5	1 081	-30 0	5	1.001	50.0	550.70	447.45	1.000	0.00
5	1.001	50.0	э	1 043	-22 4	-119 51	27 26	1 000	0 00
			3	1 049	-21.9	-551 06	70 41	1 000	0.00
			4	1.040	-21.0	-200 52	9 10	1.000	300.00
6	1 077	20 E	0	1.077	-20.5	-233.32	9.10	1.000	300.00
0	1.077	-20.5	5	1.081	-30.0	300.00	-99.48	1.000	300.00
7	0.994	-2.5							
8	1.028	-26.1	1	1.016	0.0	-180.00	-84.91	1.000	0.00
			3	1.043	-22.4	-290.00	-55,44	0.998	0.00
XX-		X	-x	x	xx	X		<x-< td=""><td>;</td></x-<>	;
			==== VE	TORES MU	LTIPLICADO	RES DE LAGR	ANGE ====:		
******	******	******	*******	**** L	AMBDA DO D	ELTAP ****	*******	*******	******

BARRA	TIPO	LAMBDA
X>	<x< td=""><td>X</td></x<>	X
2	0	0.00672
3	0	0.01135
4	0	0.01090
5	0	0.01249
7	0	0.00005
8	0	0.00981

BARRA	TIPO	LAMBDA
X2	KX	X
2	0	00470
3	0	01072
4	0	01088
5	0	01652
7	0	0.00133
8	0	01133

		PI	PI	S	S
BARRA	TIPO	LIM. SUP.	LIM. IN.	LIM. SUP.	LIM. INF.
()	()	<	X	-X	-X
6	1	-0.0110	0.0010	1.0000	2.0000

LINHA	DE	PARA	PI	S
XX		xx-	X	>
6	5	6	0.0000	0.0000

			PI	PI	S	S
LINHA	DE	PARA	LIM. SUP.	LIM. INF.	LIM. SUP.	LIM. INF.
xx		X>	()	(-X	-X
7	1	7	-1.0300	0.9700	0.0997	0.1003
8	3	8	-0.9910	1.0089	0.1017	0.0983

		PI	PI	S	S
BARRA	TIPO	LIM. SUP.	LIM. INF.	LIM. SUP.	LIM. INF.
>	()	(X	X	X
1	2	-0.0663	0.0815	0.0844	0.1156
2	0	-0.1010	0.0983	0.0794	0.1206
3	0	-0.1035	0.0923	0.0570	0.1430
4	0	-0.1057	0.0891	0.0519	0.1481
5	0	-0.1188	0.0697	0.0195	0.1805
6	1	-0.1290	0.0712	0.0228	0.1772
7	0	-0.0795	0.0961	0.1058	0.0942
8	0	-0.0923	0.1048	0.0722	0.1278

SISTEMA 14 BARRAS

*****	******	*******	******	*******	*******	******	* * * * * * * * * * *	****	
*								*	
*		LOSE	- FLUXO I	DE POTENC	IA OTIMO V	/1.0 06/200	2	*	
*	******	********	*******	*******	******	*******	*******	*****	
####	########	*****			****				
#			5.72720		-	#			
# # #	NUMERO PERDAS	DE ITERAÇO TOTAIS DO	DES SISTEMA	-> (MW) ->	8 8.40	# # #			
####	#######	*****	########	*****	*****	****			
		********		== RELA	TORIO DE E	BARRAS ===			
X	XX	X		(-X		xx		<x< th=""></x<>
BARRA	TIPO	TENSAO (PU)	ANGULO (GRAU)	GERACAC (MW)	GERACAO (MVAR)) PG_MIN (MW)	PG_MAX (MW) XX	QG_MIN (MVAR)	QG_MAX (MVAR)
1	2	1.061	0.0	. 157.3	5.8	0.00	0.00	-9999.00	9999.00
2	1	1.042	-2.9	74.3	4.8	1.00	75.00	-40.00	50.00
3	-1	1.016	-9.1	0.0	15.7	0.00	0.00	0.00	40.00
4	0	1.016	-8.1	0.0	0.0	0.00	0.00	0.00	0.00
5	0	1.020	-6.9	0.0	0.0	0.00	0.00	0.00	0.00
57	-1	1.005	-12.7	0.0	13.	0.00	0.00	-0.00	24.00
8	-1	1.048	-11.6	0.0	15.3	7 0.00	0.00	-6.00	24.00
9	0	1.008	-13.4	0.0	0.0	0.00	0.00	0.00	0.00
10	0	1.000	-13.6	0.0	0.0	0.00	0.00	0.00	0.00
11	0	0.999	-13.4	0.0	0.0	0.00	0.00	0.00	0.00
12	0	0.990	-13.7	0.0	0.0	0.00	0.00	0.00	0.00
13	0	0.987	-13.8	0.0	0.0	0.00	0.00	0.00	0.00
14	0 V V	0.980	-14.7	, 0.0	v 0.0	0.00	0.00	0.00	0.00
	BARRA	DE	-x	-== RELA	TORIO DE I	JINHAS ===	FLUX		x
BARRA	(PU)	O ANGULO (GRAU)	X BARRA X	TENSAO (PU)	(GRAU)	(MW) ((MVAR)	TAP	(MW)
X	1 061	-X	-X	-X	X	(X	XX-	X
1	1.001	0.0	2	1.042	-2.9	97.00	0.56	1.000	97.00
2	1 042	-2 9	5	1.020	-0.9	00.29	5.25	1.000	0.00
	A. V 14	2.7	1	1.061	0.0	-95.37	-1.44	1.000	97.00
			3	1.016	-9.1	58.22	0.82	1.000	0.00
			4	1.016	-8.1	54.43	-1.85	1.000	0.00
3	1.016	-9.1	5	1.020	-6.9	42.51	-1.23	1.000	0.00
			2	1.042	-2.9	-56.75	0.74	1.000	0.00
4	1.016	-8.1	4	1.016	-8.1	-8.85	1.80	1.000	0.00
-			2	1.042	-2.9	-52.84	2.70	1.000	0.00
			3	1.016	-9.1	8.91	-5.21	1.000	0.00
			5	1.020	-6.9	-51.05	4.80	1.000	0.00
			7	1.021	-11.6	30.10	-1.86	1.002	0.00
5	1.020	-6.9	9	1.008	-13.4	17.09	2.12	1.002	0.00
			1	1.061	0.0	-58.51	-3.22	1.000	0.00
			2	1.042	-2.9	-41.56	0.51	1.000	0.00
			4	1.016	-8.1	51.40	-5.05	1.000	0.00
6	1.005	-12.7	6	1.005	-12.7	41.07	8.43	0.995	0.00
			5	1.020	-6.9	-41.07	-4.13	0.995	0.00
			11	0.999	-13.4	5.60	0.36	1.000	0.00
			12	0.990	-13.7	7.47	2.14	1.000	0.00

			13	0.987	-13.8	16.80	5.60	1.000	0.00
7	1.021	-11.6							
			4	1.016	-8.1	-30.10	3.70	1.002	0.00
			8	1.048	-11.6	0.00	-15.29	1.000	0.00
			9	1.008	-13.4	30.10	12.56	1.000	0.00
8	1.048	-11.6							
			7	1.021	-11.6	0.00	15.69	1.000	0.00
9	1.008	-13.4							
			4	1.016	-8.1	-17.09	-0.53	1.002	0.00
			7	1.021	-11.6	-30.10	-11.44	1.000	0.00
			10	1.000	-13.6	6.96	7.40	1.000	0.00
			14	0.980	-14.7	10.72	5.68	1,000	0.00
10	1.000	-13.6							
			9	1.008	-13.4	-6.93	-7.32	1.000	0.00
			11	0.999	-13.4	-2.07	1.52	1.000	0.00
11	0.999	-13.4							
			6	1.005	-12.7	-5.57	-0.29	1.000	0.00
			10	1.000	-13.6	2.07	-1.50	1.000	0.00
12	0.990	-13.7							
			6	1.005	-12.7	-7.40	-1.99	1.000	0.00
			13	0.987	-13.8	1.30	0.39	1.000	1.30
13	0.987	-13.8							
			6	1.005	-12.7	-16.59	-5.19	1.000	0.00
			12	0.990	-13.7	-1.30	-0.39	1.000	1.30
			14	0.980	-14.7	4.39	-0.22	1.000	0.00
14	0.980	-14.7							
			9	1.008	-13.4	-10.54	-5.29	1.000	0.00
			13	0.987	-13.8	-4.36	0.29	1.000	0.00
X>	{X	X-		xx	(X-	X	X	X	X
			== VE'	FORES MUL	TIPLICADOR	ES DE LAGRAN	GE =====		
******	*******	*******	*****	**** LAM	IBDA DO DEL	TAP ******	*******	*******	*******

BARRA	TIPO	LAMBDA
x	xx	X
3	-1	0.10531
4	0	0.09758
5	0	0.08391
6	-1	0.08523
7	0	0.09902
8	-1	0.09904
9	0	0.10009
10	0	0.10161
11	0	0.09642
12	0	0.07216
13	0	0.11702
14	0	0.12451

	DAMBDA
X	X
0	0.00093
0	0.00205
0	0.01474
0	0.00982
0	0.01103
0	0.01005
0	0.00751
0	0.01675
0	0.01929
	0 0 0 0 0 0 0 0 0 0 0 0 0 0

		PI	PI	S	S
BARRA	TIPO	LIM. SUP.	LIM. IN.	LIM. SUP.	LIM. INF.
>	()	X	X	-X	-X
2	1	-0.0827	0.0142	0.0073	0.7327

		PI	PI	S	S
BARRA	TIPO	LIM. SUP.	LIM. IN.	LIM. SUP.	LIM. INF.
()	()	K	X	-X	-X
3	-1	-0.0371	0.0409	0.2426	0.1574
6	-1	-0.2005	0.0250	0.1036	0.1964
8	-1	-0.1109	0.0339	0.0831	0.2169
2	1	-0.0339	0.0111	0.4522	0.4478

LINHA	DE	PARA	PI	S
XX	>	<x< th=""><th>X</th><th>}</th></x<>	X	}
1	1	2	-0.0553	0.0000
19	12	13	0.0000	0.0000

			PI	PI	S	S
LINHA	DE	PARA	LIM. SUP.	LIM. INF.	LIM. SUP.	LIM. INF.
X		X>	{	X	-X	-X
8	4	7	-1.1185	0.8872	0.0981	0.1019
9	4	9	-1.0838	0.9063	0.0979	0.1021
10	5	6	-1.0962	0.8999	0.1054	0.0946

		PI	PI	S	S
BARRA	TIPO	LIM. SUP.	LIM. INF.	LIM. SUP.	LIM. INF.
	<>	<	X:	X	X
1	2	-0.2110	0.0599	0.0395	0.1605
2	1	-0.1751	0.0636	0.0578	0.1422
3	-1	-0.1157	0.0777	0.0842	0.1158
4	0	-0.1201	0.0763	0.0843	0.1157
5	0	-0.1238	0.0748	0.0796	0.1204
6	-1	-0.1437	0.0642	0.0952	0.1048
7	0	-0.1713	0.0634	0.0786	0.1214
8	-1	-0.2101	0.0534	0.0522	0.1478
9	0	-0.1443	0.0677	0.0916	0.1084
10	0	-0.1314	0.0709	0.1000	0.1000
11	0	-0.1343	0.0692	0.1012	0.0988
12	0	-0.1246	0.0715	0.1097	0.0903
13	0	-0.1191	0.0740	0.1134	0.0866
14	0	-0.1063	0.0814	0.1201	0.0799

SISTEMA 30 BARRAS

******	******	* * *	*****	***	****	****	* * * * * *	*****	******	********	* * * * *
*											*
*	LOSE	-	FLUXO	DE	POTH	INCIA	ÓTIMO	V1.0	06/2002		*
*											*
******	******	* * *	*****	***	****	****	*****	*****	*******	********	* * * * *

BARRA	TIPO	TENSAO (PU)	ANGULO (GRAU)	GERACAO (MW)	GERACAO (MVAR)	PG_MIN (MW)	PG_MAX (MW)	QG_MIN (MVAR)	QG_MAX (MVAR)
<x< td=""><td>X</td><td>X</td><td></td><td>XX</td><td>(></td><td>X></td><td>{</td><td>XX</td><td>X</td></x<>	X	X		XX	(>	X>	{	XX	X
1	2	1.091	0.0	229.3	-0.7	0.00	0.00	-9999.00	9999.00
2	1	1.072	-4.4	69.6	48.8	1.00	70.00	-40.00	50.00
3	0	1.046	-7.0	0.0	0.0	0.00	0.00	0.00	0.00
4	0	1.036	-8.4	0.0	0.0	0.00	0.00	0.00	0.00
5	-1	1.037	-12.9	0.0	39.1	0.00	0.00	-40.00	40.00
6	0	1.032	-10.0	0.0	0.0	0.00	0.00	0.00	0.00
7	0	1.026	-11.7	0.0	0.0	0.00	0.00	0.00	0.00
8	-1	1.033	-10.7	0.0	40.0	0.00	0.00	-10.00	40.00
9	0	1.035	-13.4	0.0	0.0	0.00	0.00	0.00	0.00
10	0	1.017	-15.2	0.0	0.0	0.00	0.00	0.00	0.00
11	-1	1.073	-13.4	0.0	19.8	0.00	0.00	-6.00	24.00
12	0	1.003	-14.2	0.0	0.0	0.00	0.00	0.00	0.00
13	-1	1.004	-14.2	0.0	0.3	0.00	0.00	-6.00	24.00
14	0	0.990	-15.2	0.0	0.0	0.00	0.00	0.00	0.00
15	0	0.988	-15.3	0.0	0.0	0.00	0.00	0.00	0.00
16	0	1.001	-15.0	0.0	0.0	0.00	0.00	0.00	0.00
17	0	1.007	-15.4	0.0	0.0	0.00	0.00	0.00	0.00
18	0	0.986	-16.1	0.0	0.0	0.00	0.00	0.00	0.00
19	0	0.987	-16.3	0.0	0.0	0.00	0.00	0.00	0.00
20	0	0.994	-16.1	0.0	0.0	0.00	0.00	0.00	0.00
21	0	1.002	-15.7	0.0	0.0	0.00	0.00	0.00	0.00
22	0	1.002	-15.7	0.0	0.0	0.00	0.00	0.00	0.00
23	0	0.981	-15.8	0.0	0.0	0.00	0.00	0.00	0.00
24	0	0.981	-16.0	0.0	0.0	0.00	0.00	0.00	0.00
25	0	0.968	-15.4	0.0	0.0	0.00	0.00	0.00	0.00
26	0	0.949	-15.9	0.0	0.0	0.00	0.00	0.00	0.00
27	0	0.968	-14.8	0.0	0.0	0.00	0.00	0.00	0.00
28	0	1.029	-10.6	0.0	0.0	0.00	0.00	0.00	0.00
29	0	0.947	-16.2	0.0	0.0	0.00	0.00	0.00	0.00
30	0	0.935	-17.1	0.0	0.0	0.00	0.00	0.00	0.00

				== RELA	TORIO DE	ΓI	NHAS ====			
X	-BARRA D)E	X	BARRA PA	1RA	-X-		FLUXC)S	X
BARRA	TENSAO	ANGULO 2	X BARRA	TENSAO	ANGULO	Х	(MW)	(MVAR)	TAP	LIMITE
	(PU)	(GRAU)	x	(PU)	(GRAU)	Х				(MW)
XX	X		X	X	X	-X-	X-	y	(X	X
1	1.091	0.0								
			2	1.072	-4.4		151.65	-11.44	1.000	0.00
			3	1.046	-7.0		77.60	10.75	1.000	0.00
2	1.072	-4.4								
			1	1.091	0.0		-147.92	19.51	1.000	0.00
			4	1.036	-8.4		47.74	7.18	1.000	0.00

÷

			5	1.037	-12.9	84.11	4.16	1.000	0.00
			6	1.032	-10.0	63.95	5.25	1.000	0.00
3	1.046	-7.0							
0			1	1 091	0 0	-75 26	-3 48	1 000	0 00
			4	1 026	0.0	73.20	2.20	1.000	0.00
		~ .	4	1.036	-0.4	12.00	2.20	1.000	0.00
4	1.036	-8.4							
			2	1.072	-4.4	-46.58	-5.68	1.000	0.00
			3	1.046	-7.0	-72.22	-0.89	1.000	0.00
			6	1.032	-10.0	70.20	-9.70	1.000	0.00
			12	1 003	-14 2	41 00	15 43	0 009	41 00
-	1 000	10.0	12	1.003	-14.2	41.00	15.45	0.998	41.00
5	1.037	-12.9						and shares	1.1.1.1.1.1.1.1
			2	1.072	-4.4	-81.20	5.77	1.000	0.00
			7	1.026	-11.7	-13.00	14.32	1.000	0.00
6	1.032	-10.0							
			2	1 072	- 1 1	-61 87	-0 99	1 000	0 00
			2	1.072	-4.4	-01.07	-0.55	1.000	0.00
			4	1.036	-8.4	-69.64	11.16	1.000	0.00
			7	1.026	-11.7	36.30	-3.96	1.000	0.00
			8	1.033	-10.7	29.43	-9.36	1.000	0.00
			9	1 035	-13 4	30 46	-0.24	1.000	0.00
			10	1 017	15.2	17 20	2 66	1 000	0.00
			10	1.017	-15.2	17.20	3.00	1.000	0.00
			28	1.029	-10.6	18.11	-0.49	1.000	0.00
7	1.026	-11.7							
			5	1.037	-12.9	13.17	-14.98	1.000	0.00
			6	1 032	-10 0	-35 97	4 08	1 000	0 00
	1 022	10 7	0	1.052	10.0	33.57	4.00	1.000	0.00
8	1.033	-10.7			101.001 101	10101110101			
			6	1.032	-10.0	-29.32	9.26	1.000	0.00
			28	1.029	-10.6	-0.68	0.73	1.000	0.00
9	1 035	-13.4							
-	11000		E	1 022	10 0	-20 16	2 05	1 000	0 00
			0	1.032	-10.0	-30.46	2.05	1.000	0.00
			10	1.017	-15.2	30.46	17.21	1.000	0.00
			11	1.073	-13.4	0.00	-19.12	1.000	0.00
10	1.017	-15.2							
			6	1 032	-10 0	-17 20	-2 05	1 000	0 00
			0	1.032	10.0	20.40	15.05	1.000	0.00
			9	1.035	-13.4	-30.46	-15.95	1.000	0.00
			17	1.007	-15.4	6.77	9.65	1.000	0.00
			20	0.994	-16.1	10.08	6.67	1.000	0.00
			21	1,002	-15.7	16.75	12.57	1.000	0.00
			22	1 002	-15 7	8 26	6 26	1 000	0 00
			66	1.002	-15.7	0.20	0.20	1.000	0.00
11	1.073	-13.4							
			9	1.035	-13.4	0.00	19.83	1.000	0.00
12	1.003	-14.2							
			4	1 036	-8.4	-41.00	-10.84	0.998	41.00
			12	1 004	14.2	0.00	0.26	1 000	0.00
			13	1.004	-14.2	0.00	-0.20	1.000	0.00
			14	0.990	-15.2	7.37	1.55	1.000	0.00
			15	0.988	-15.3	16.61	3.18	1.000	0.00
			16	1.001	-15.0	5.83	-1.83	1.000	0.00
13	1 004	-14 2	0.000	3.000.000.000.000					
10	1.004	-14.2	10	1 000	14.0	0.00	0.00	1 000	0.00
			12	1.003	-14.2	0.00	0.26	1.000	0.00
14	0.990	-15.2							
			12	1.003	-14.2	-7.30	-1.41	1.000	0.00
			15	0 988	-15 3	1 10	-0 19	1 000	0.00
16	0 000	-15 2	10	0.000	20.0		5.25	2.000	0.00
10	0.300	-12.2		1 000		10 10	0.00	1 000	0.00
			12	1.003	-14.2	-16.42	-2.80	1.000	0.00
			14	0.990	-15.2	-1.09	0.20	1.000	0.00
			18	0.986	-16.1	5.02	-1.24	1.000	0.00
			23	0,981	-15.8	4.30	1.35	1,000	0.00
10	1 001	15 0	25	0.501	1010	1150	2.00	1.000	0.00
10	1.001	-15.0			202				
			12	1.003	-14.2	-5.79	1.90	1.000	0.00
			17	1.007	-15.4	2.29	-3.70	1.000	0.00
17	1.007	-15.4							
			10	1.017	-15 2	-6 73	-9 54	1.000	0 00
			10	1 001	15.0	0.75	2.31	1 000	0.00
-	The Westmann	100 Mar	16	1.001	-15.0	-2.21	3.74	1.000	0.00
18	0.986	-16.1							
			15	0.988	-15.3	-4.99	1.30	1.000	0.00
			19	0.987	-16.3	1.79	-2.20	1,000	0.00
10	0 097	-16 3				ates 1250		200 CD 17 18 18	
19	0.907	10.5	10	0.000	10.1	1 70	0.01	1 000	0.00
			18	0.986	-16.1	-1.78	2.21	1.000	0.00
			20	0.994	-16.1	-7.72	-5.61	1.000	0.00
20	0.994	-16.1							
			10	1,017	-15.2	-9.95	-6.38	1.000	0.00
			10	0 007	-16 2	7 75	5 60	1 000	0.00
		16 5	19	0.907	-10.3	1.15	5.08	1.000	0.00
21	1.002	-15.7				100 M 100	1000		1.00
			10	1.017	-15.2	-16.60	-12.25	1.000	0.00
			22	1.002	-15.7	-0.90	1.05	1.000	0.00
					5 A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4				57 S.A.A.A.

22	1.002	-15.7							
			10	1.017	-15.2	-8,19	-6.10	1.000	0.00
			21	1.002	-15.7	0.90	-1.05	1.000	0.00
			24	0.981	-16.0	7.29	7.15	1.000	0.00
23	0.981	-15.8							
			15	0.988	-15.3	-4.27	-1.31	1.000	0.00
			24	0.981	-16.0	1.07	-0.29	1.000	0.00
24	0.981	-16.0							
100	12.1010.000		22	1.002	-15.7	-7.17	-6.97	1.000	0.00
			23	0 981	-15.8	-1 07	0 30	1 000	0 00
			25	0.968	-15.4	-0.46	4 15	1 000	0.00
25	0 969	-15 4	25	0.900	13.1	0.10	1.15	1.000	0.00
25	0.900	-15.4	24	0 091	16 0	0 40	-4 00	1 000	0 00
			24	0.981	-10.0	0.49	-4.09	1.000	0.00
			26	0.949	-15.9	3.55	2.37	1.000	0.00
122.15		104750 - 1981	27	0.968	-14.8	-4.04	1.72	1.000	0.00
26	0.949	-15.9							
			25	0.968	-15.4	-3.50	-2.30	1.000	0.00
27	0.968	-14.8							
			25	0.968	-15.4	4.06	-1.68	1.000	0.00
			28	1.029	-10.6	-17.38	-14.25	0.950	0.00
			29	0.947	-16.2	6.21	1.70	1.000	0.00
			30	0.935	-17.1	7.11	1.70	1.000	0.00
28	1 029	-10 6	20	0.000		and the second		2.000	0.00
20	1.025	10.0	6	1 032	-10 0	-18 06	-0.01	1 000	0 00
			0	1.032	-10.0	-10.00	-0.01	1.000	0.00
			0	1.033	-10.7	0.00	-3.00	1.000	0.00
			21	0.968	-14.8	17.38	16.52	0.950	0.00
29	0.947	-16.2	12121	120 120 2020	2012	10717010	1211-122723		121 1212
			27	0.968	-14.8	-6.11	-1.52	1.000	0.00
			30	0.935	-17.1	3.71	0.62	1.000	0.00
30	0.935	-17.1							
			27	0.968	-14.8	-6.93	-1.36	1.000	0.00
			29	0.947	-16.2	-3.67	-0.54	1.000	0.00
X2	x>	(X-		(X	X-	X	X	X-	X
			== VE	ORES MUL	TTPLICADO	RES DE LAGRAN	GE =====		
			=== VE1	FORES MUL	TIPLICADO	RES DE LAGRAN	GE =====		
*****	*******		=== VE1	FORES MUL	TIPLICADO	RES DE LAGRAN	GE ======	******	*********
*****	********		=== VE7	FORES MUL	TIPLICADOF MBDA DO DE	RES DE LAGRAN	GE ======	*******	********
*****	*******	*********	=== VE1	TORES MUL	TIPLICADOF MBDA DO DF	RES DE LAGRAN ELTAP ******	GE ======	******	*****
*****	******	*******	=== VE7	TORES MUL	TIPLICADOR MBDA DO DR	RES DE LAGRAN BLTAP ******	GE ======	******	******
*****	******	*******	=== VE7	TORES MUL	TIPLICADOR MBDA DO DR X O LAMBI	RES DE LAGRAN BLTAP ****** X DA	GE ======	******	******
*****	******		=== VE7 ******** X BAI X	TORES MUL	TIPLICADOR MBDA DO DE X O LAMBI X	RES DE LAGRAN ELTAP ****** X DA X	GE ======	******	*****
*****	*****		=== VE7 ******** X BAI X	FORES MUL	TIPLICADOR MBDA DO DR X O LAMBI X	RES DE LAGRAN ELTAP ****** X DA X 468	GE ======	*****	******
****	******		=== VE X BAI X	FORES MUL	TIPLICADOR MBDA DO DR X	RES DE LAGRAN ELTAP ****** X DA X 168 579	GE ======	*****	*****
****	*****		=== VE X BAI X	TORES MUL ***** LA X RRA TIP X 3 4 5	TIPLICADOR MBDA DO DR X O LAMBI X 0 0.074 0 0.096 1 0.135	RES DE LAGRAN ELTAP ****** X DA X 468 579 973	GE ======	*****	*****
*****	*******		x BAI X	TORES MUL ***** LA X RRA TIP 	TIPLICADOR MBDA DO DR X O LAMBI X 0 0.074 0 0.096 1 0.135 0 0.116	RES DE LAGRAN BLTAP ****** X DA X 468 579 573 509	GE ======	****	*****
****	*******		x BAN X	TORES MUL ***** LA X RRA TIP X 3 4 5 5 7	TIPLICADOF MBDA DO DF X O LAMBI X 0 0.074 0 0.094 1 0.135 0 0.132	RES DE LAGRAN ELTAP ****** X DA X 468 579 973 509 268	GE ======	****	******
****	******		x BAH X	TORES MUL	TIPLICADOR MBDA DO DR X	RES DE LAGRAN ELTAP ****** X DA X 668 579 973 509 268 590	GE ======	****	*****
*****	*******		× • • • • • • • • • • • • • • • • • • •	TORES MUL ***** LA X RRA TIP X 3 4 5 5 7 7 7 7 7 7 7 7 7 7 7	TIPLICADOR MBDA DO DR X	RES DE LAGRAN ELTAP ****** DA X 168 579 973 509 268 590 137	GE ======	****	*****
*****	*******		× • • • • • • • • • • • • • • • • • • •	TORES MUL	TIPLICADOR MBDA DO DR X	RES DE LAGRAN ELTAP ****** DA X 168 579 973 509 268 590 137 235	GE ======	****	*****
*****	*******		x BAI X	TORES MUL	TIPLICADOF MBDA DO DF X	RES DE LAGRAN SLTAP ****** X A 68 579 973 509 268 590 137 335 138	GE ======	****	****
****	*******		X BAN X 3 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	TORES MUL ***** LA X RRA TIP X 3 4 5 5 7 3 	TIPLICADOF MBDA DO DF X O LAMBI X 0 0.074 0 0.074 0 0.132 0 0.132 1 0.132 0 0.114 0 0.113 1 0.114 0 0.113 1 0.114	RES DE LAGRAN BLTAP ****** X DA X 668 579 973 509 268 590 137 335 138	GE ======	****	****
*****	*******		X BAR X 2 4 5 6 6 7 8 8 8 9 10 11 12	TORES MUL ***** LA X RRA TIP X 3 4 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	TIPLICADOF MBDA DO DF X	RES DE LAGRAN ELTAP ****** DA X 668 579 268 590 137 335 138 577	GE ======	****	****
*****	*******		x BAH X 2 4 5 6 6 7 8 8 9 10 11 12 13	TORES MUL	TIPLICADOR MBDA DO DR X	RES DE LAGRAN ELTAP ****** X DA X 1668 579 973 509 268 590 137 335 138 577 577	GE ======	****	****
*****	*******		X BAR X 2 4 5 6 6 7 7 8 8 8 9 10 11 12 12 14	TORES MUL ***** LA X RRA TIP X 3 4 5 	TIPLICADOR MBDA DO DR X	RES DE LAGRAN ELTAP ****** DA X 168 579 973 509 268 590 137 135 138 577 577 576	GE ======	****	****
*****	*******		X BAR X 3 4 5 6 6 7 8 8 9 9 10 11 12 13 14 15	TORES MUL	TIPLICADOR MBDA DO DR X	RES DE LAGRAN SLTAP ****** X A 68 579 973 509 268 590 137 335 138 577 577 576 162	GE ======	****	
****	*******		X BAN X 3 4 5 6 6 6 6 6 6 7 8 8 9 10 11 12 13 14 14 15 16	TORES MUL ***** LA X RRA TIP X 3 4 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	TIPLICADOF MBDA DO DF X O LAMBI X 0 0.074 0 0.074 0 0.132 0 0.132 1 0.132 0 0.114	RES DE LAGRAN SLTAP ****** X DA X 468 579 973 509 268 590 137 1335 138 577 577 577 576 162 975	GE ======	***	
****	*******		X BAR X X 3 4 5 6 6 7 7 10 11 12 13 14 15 16 17	TORES MUL ***** LA X RRA TIP X 3 4 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	TIPLICADOR MBDA DO DR X O LAMBI X 0 0.074 0 0.096 1 0.132 0 0.116 0 0.112 1 0.125 0 0.114 0 0.096 1 0.096 0 0.125 0 0.155 0 0.155	RES DE LAGRAN SLTAP ****** X DA X 468 579 268 590 137 335 138 577 576 462 275 550	GE ======	****	****
****	******		X BAH X X 2 4 5 6 6 7 7 8 8 9 9 10 11 12 12 12 12 12 12 12 12 12 12 12 12	TORES MUL	TIPLICADOR MBDA DO DR X	RES DE LAGRAN ELTAP ****** X DA X 668 579 973 509 268 590 137 335 138 577 577 577 577 577 577 577 577 577 57	GE ======	****	****
*****	*******		X BAR X Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	TORES MUL	TIPLICADOR MBDA DO DR X	RES DE LAGRAN ELTAP ****** X DA X 1668 579 973 509 268 590 137 335 138 577 576 162 975 576 162 975 550 734	GE ======	****	
*****	******		X BAR X	FORES MUL	TIPLICADOR MBDA DO DR X	RES DE LAGRAN SLTAP ****** X DA X 468 579 973 509 268 590 137 509 268 590 137 577 577 577 577 577 577 577 5	GE ======	****	
****	*******		X BAN X	FORES MUL	TIPLICADOF MBDA DO DF X O LAMBI X 0 0.074 0 0.074 0 0.132 0 0.112 0 0.114 0 0.112 0 0.114 0 0.114 0 0.115 0 0.116 0 0.116 0 0.116 0 0.117 0 0.116 0 0.116 0 0.117 0 0.116 0 0.116 0 0.117 0 0.116 0 0.117 0 0.116 0 0.117 0 0.116 0 0.117	RES DE LAGRAN SLTAP ****** X DA X 468 579 973 509 268 590 137 135 138 577 576 462 975 550 134 155 106 100	GE ======	****	
****	*******		X BAN X 3 4 5 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	TORES MUL	TIPLICADOF MBDA DO DF X	RES DE LAGRAN SLTAP ****** X DA X 468 579 973 509 268 590 137 335 138 577 577 577 577 577 577 577 57	GE ======	****	
*****	*******		X BAR X	TORES MUL	TIPLICADOF MBDA DO DF O LAMBI -X	RES DE LAGRAN SLTAP ****** X DA X 468 579 268 590 137 335 138 577 576 462 275 550 734 015 106 110 723 202	GE ======	****	
****	*******		X BAH X	TORES MUL	TIPLICADOR MBDA DO DR X	RES DE LAGRAN ELTAP ****** X DA X 468 579 973 509 268 590 137 335 138 577 577 577 576 162 975 550 734 015 106 710 723 102	GE ======	****	****
*****	*******		X BAH X	TORES MUL	TIPLICADOR MBDA DO DR X	RES DE LAGRAN SLTAP ****** X DA X 468 579 973 509 268 590 137 509 268 590 137 577 576 462 975 550 734 15 106 100 723 202 120	GE ======	****	
****	*******		X BAN X	FORES MUL	TIPLICADOF MBDA DO DF O LAMBI X 0 0.074 0 0.096 1 0.132 0 0.112 0 0.114 0 0.112 0 0.114	RES DE LAGRAN SLTAP ****** X DA X 468 579 973 509 268 590 137 135 138 577 576 462 975 550 134 155 106 710 723 202 120 158	GE ======	****	
****	*******		X BAN X X 3 4 5 6 6 6 7 7 8 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	TORES MUL	TIPLICADOF MBDA DO DF X	RES DE LAGRAN SLTAP ****** X DA X 468 579 268 590 137 335 138 577 576 462 275 550 734 115 406 710 723 202 202 202 202 24	GE ======	****	
*****	*******		X BAN X	TORES MUL	TIPLICADOF MBDA DO DF O LAMBI -X	RES DE LAGRAN SLTAP ****** X DA X 68 579 268 590 268 590 235 335 338 577 576 662 275 550 734 2015 506 202 220 558 224 286 24	GE ======	****	
*****	*******		X BAH X	TORES MUL	TIPLICADOF MBDA DO DF O LAMBI -X	RES DE LAGRAN SLTAP ****** X DA X 68 579 509 268 590 137 335 138 577 577 576 162 375 550 734 015 106 100 223 120 558 124 286 305 58	GE ======	****	
*****	*******		X BAH X	FORES MUL	TIPLICADOR MBDA DO DR X	RES DE LAGRAN BLTAP ****** X X 68 X 68 X 69 X 68 X 69 X 68 X 68 X 69 X 68 X 68 X 68 X 69	GE ======	****	
****	*******		X BAR X	FORES MUL	TIPLICADOF MBDA DO DF X	RES DE LAGRAN SLTAP ****** X DA X 468 579 973 509 268 590 137 335 138 590 137 577 576 462 975 550 734 15 106 100 723 202 420 558 124 226 805 550 203	GE ======	****	

i.

		LANDDA I	Do Dubing		
	X	xx	X		
	BARRA	TIPO	LAMBDA		
	X	·XX	X		
	3	0	0.00840		
	6	0	0.01373		
	7	0	0.01434		
	9	0	0.00407		
	10	0	0.00882		
	12	0	0.00443		
	14	0	0.01266		
	15	0	0.00766		
	17	0	0.01048		
	18	0	0.02245		
	19	0	0.02221		
	20	0	01896		
	22	0	0.02449		
	23	0	0.04164		
	24	0	0.06335		
	25	0	0.14186		
	26	0	0.19490		
	27	0	0.15521		
	29	0	0.22761		
	30	0	0.25148		
	X	XX	X		
2	1 0 0555	0 0000	0 0040	-XX	
2 XX	1 -0.0556 X	0.0063 X	0.0042 X JERAÇÃO DE PO	-XX 0.6858 -XX T. REATIVA *****	******
2 XX ***************************	1 -0.0556 X VETOR PI DOS I	0.0063 X	0.0042 X GERAÇÃO DE PO X	-XX 0.6858 -XX YT. REATIVA ***** -XX	******
2 XX ***************************	1 -0.0556 X	0.0063 X	0.0042 X GERAÇÃO DE PO X	-XX 0.6858 -XX WT. REATIVA ***** -XX S	* * * * * * *
2 XX ***************************	1 -0.0556 X	0.0063 X JIMITES DE (X PI LIM. IN.	0.0042 X GERAÇÃO DE PO X	-XX 0.6858 -XX WT. REATIVA ***** -XX S LIM. INF.	*****
2 XX ************************ XX BARRA TI XX	1 -0.0556 X	0.0063 X	0.0042 X	-XX 0.6858 -XX VT. REATIVA ***** -XX S LIM. INF. -X	*****
2 XX ************************ XX BARRA TI XX 5 8	1 -0.0556 X	0.0063 X	0.0042 X	-XX 0.6858 -XX VT. REATIVA ***** -XX S LIM. INF. -XX 0.7908 0.4999	*****
2 XX XX BARRA TI XX 5 8 11	1 -0.0556 X	0.0063 X	0.0042 X	-XX 0.6858 -XX WT. REATIVA ***** -XX S LIM. INF. -XX 0.7908 0.4999 0.2583	*****
2 XX XX BARRA TI XX 5 8 11 13 -	1 -0.0556 X	0.0063 X	0.0042 X	-XX 0.6858 -XX OT. REATIVA ***** -XX S LIM. INF. -XX 0.7908 0.4999 0.2583 0.0626 0.2021	*****
2 XX ***************************	1 -0.0556 X	0.0063 X	0.0042 X	-XX 0.6858 -XX WT. REATIVA ***** -XX S LIM. INF. -XX 0.7908 0.4999 0.2583 0.0626 0.8880 -XX	*****
2 XX BARRA TI XX 5 8 11 13 2 XX	1 -0.0556 X	0.0063 X	0.0042 X	0.6858 -XX WT. REATIVA ***** -XX S LIM. INF. -XX 0.7908 0.4999 0.2583 0.0626 0.8880 -XX NAS LINHAS ****	******
2 XX BARRA TI XX 5 8 11 13 2 XX **************************	1 -0.0556 X	0.0063 X	0.0042 X	0.6858 -XX WT. REATIVA ***** -XX S LIM. INF. -XX 0.7908 0.4999 0.2583 0.0626 0.8880 -XX NAS LINHAS ****	******
2 XX BARRA TI XX 5 8 11 13 2 XX LINHA D XX 15	1 -0.0556 XXXX	0.0063 X	0.0042 X	0.6858 -XX WT. REATIVA ***** -XX S LIM. INF. -XX 0.7908 0.4999 0.2583 0.0626 0.8880 -XX NAS LINHAS ****	*****
2 XX ***************************	1 -0.0556 X	0.0063 X	0.0042 X	0.6858 -XX VT. REATIVA ***** -XX LIM. INF. -XX 0.7908 0.4999 0.2583 0.0626 0.8880 -XX NAS LINHAS ****	******
2 XX BARRA TI XX 5 8 11 13 2 XX LINHA D XX 15 XX	1 -0.0556 X	0.0063 X	0.0042 X	-XX 0.6858 -XX VT. REATIVA ***** -XX LIM. INF. -XX 0.7908 0.4999 0.2583 0.0626 0.8880 -XX NAS LINHAS ****	********* ********* ********
2 XX BARRA TI XX 5 8 11 13 2 XX LINHA D XX 15 XX	1 -0.0556 X	0.0063 X	0.0042 X	<pre></pre>	********* ********* X
2 XX BARRA TI XX 5 8 11 13 2 XX LINHA D XX 15 XX 15 XX LINHA D	1 -0.0556 X	0.0063 X	0.0042 X	-XX 0.6858 -XX VT. REATIVA ***** -XX LIM. INF. -XX 0.7908 0.4999 0.2583 0.0626 0.8880 -XX NAS LINHAS **** ********************************	********* ********* X F.
2 XX BARRA TI XX 5 8 11 13 2 XX LINHA D XX 15 XX LINHA D XX	1 -0.0556 X	0.0063 X	0.0042 X	<pre></pre>	********* ********* X F. X
2 XX BARRA TI XX 5 8 11 13 2 XX LINHA D XX 15 XX LINHA D XX 11 12	1 -0.0556 X	0.0063 X	0.0042 X	-XX 0.6858 -XX VT. REATIVA ***** -XX S LIM. INF. -X	********* ********* X F. X 03 04
2 XX BARRA TI XX 5 8 11 13 2 XX LINHA D XX 15 XX LINHA D XX 11 12 15	1 -0.0556 X	0.0063 X	0.0042 X	-XX 0.6858 -XX VT. REATIVA ***** -XX S LIM. INF. -X	********* ********* X F. X 03 04 83

X>	{}	X:	X	X	xX
		PI	PI	S	S
BARRA	TIPO	LIM. SUP.	LIM. INF.	LIM. SUP.	LIM. INF.
X>	()	X:	XX	X	хХ
1	2	-0.2036	0.0334	0.0093	0.1907
2	1	-0.1199	0.0381	0.0277	0.1723
3	0	-0.0898	0.0434	0.0541	0.1459
4	0	-0.0788	0.0466	0.0638	0.1362
5	-1	-0.0655	0.0513	0.0632	0.1368
6	0	-0.0729	0.0489	0.0677	0.1323
7	0	-0.0639	0.0536	0.0739	0.1261
8	-1	-0.0719	0.0492	0.0673	0.1327
9	0	-0.0771	0.0473	0.0654	0.1346
10	0	-0.0717	0.0496	0.0832	0.1168
11	-1	-0.1040	0.0370	0.0270	0.1730
12	0	-0.0745	0.0483	0.0968	0.1032
13	-1	-0.1008	0.0402	0.0965	0.1035
14	0	-0.0627	0.0551	0.1097	0.0903
15	0	-0.0600	0.0573	0.1117	0.0883
16	0	-0.0671	0.0521	0.0986	0.1014
17	0	-0.0659	0.0528	0.0934	0.1066
18	0	-0.0561	0.0615	0.1143	0.0857
19	0	-0.0556	0.0621	0.1126	0.0874
20	0	-0.0584	0.0589	0.1061	0.0939
21	0	-0.0608	0.0566	0.0981	0.1019
22	0	-0.0608	0.0566	0.0983	0.1017
23	0	-0.0537	0.0646	0.1188	0.0812
24	0	-0.0506	0.0698	0.1194	0.0806
25	0	-0.0437	0.0890	0.1324	0.0676
26	0	-0.0384	0.1240	0,1511	0.0489
27	0	-0.0430	0.0921	0.1315	0.0685
28	0	-0.0710	0.0499	0.0705	0.1295
29	0	-0.0373	0.1375	0.1526	0.0474
30	0	-0.0346	0.1922	0.1648	0.0352
X>	()	(:	xx	X	KX

SISTEMA 118 BARRAS

******	****	****	****	**	* * * * *	****	****	****	*****	****	*******	*****	t
*												,	t
*			LOSE	3 -	FLUX	O DE	POT	ENCIA	ÓTIMO	V1.0	06/2002		t
*													t
******	****	****	****	**	* * * * *	* * * *	****	* * * * *	*****	* * * * * *	* * * * * * * * *	***********	ł

	0	1 0 2 1	1 0	0.0	0 0	0 00	0 00	0 00	0 00
5	0	1.031	-1.0	0.0	0.0	0.00	0.00	0.00	0.00
6	-1	1.022	-1.4	0.0	-1.3	0.00	0.00	-50.00	50.00
7	0	1.025	-1.0	0.0	0.0	0.00	0.00	0.00	0.00
8	-1	1.045	0.4	0.0	-48.4	0.00	0.00	-50.00	50.00
9	0	1 053	4 3	0.0	0.0	0 00	0.00	0.00	0.00
10	1	1 026	9.6	246 0	-160.2	1 00	500.00	-250.00	250.00
10	1	1.020	0.0	240.0	-100.2	1.00	500.00	-250.00	230.00
11	0	1.023	-1.2	0.0	0.0	0.00	0.00	0.00	0.00
1	-1	1.013	-3.2	0.0	25.3	0.00	0.00	-50.00	50.00
13	0	1.007	-3.8	0.0	0.0	0.00	0.00	0.00	0.00
14	0	1.025	-2.6	0.0	0.0	0.00	0.00	0.00	0.00
15	-1	1 012	-8 2	0.0	21 9	0 00	0.00	-50.00	50 00
10	-	1 022	2.0	0.0	0.0	0.00	0.00	0.00	0.00
10	0	1.022	-2.0	0.0	0.0	0.00	0.00	0.00	0.00
17	0	1.026	-6.5	0.0	0.0	0.00	0.00	0.00	0.00
18	-1	1.012	-8.6	0.0	23.5	0.00	0.00	-50.00	50.00
19	-1	1.010	-9.1	0.0	24.6	0.00	0.00	-50.00	115.00
20	0	1.003	-9.3	0.0	0.0	0.00	0.00	0.00	0.00
21	0	1,002	-8.6	0.0	0.0	0.00	0.00	0.00	0.00
22	0	1 009	-7.0	0.0	0.0	0 00	0 00	0 00	0 00
22	0	1.000	2.7	0.0	0.0	0.00	0.00	0.00	0.00
23	0	1.030	-3.7	0.0	0.0	0.00	0.00	0.00	0.00
24	0	1.029	-4.3	0.0	0.0	0.00	0.00	0.00	0.00
25	1	1.047	2.4	150.5	-26.7	1.00	230.00	-250.00	250.00
26	1	1.045	4.7	276.5	-25.4	1.00	320.00	-250.00	250.00
27	-1	1.013	-8.2	0.0	24.2	0.00	0.00	-50.00	50.00
28	0	1.004	-9.3	0.0	0.0	0.00	0.00	0.00	0.00
20	0	1 002	-9.7	0.0	0.0	0.00	0.00	0.00	0.00
29	0	1.003	-9.7	0.0	0.0	0.00	0.00	0.00	0.00
30	0	1.046	-2.7	0.0	0.0	0.00	0.00	0.00	0.00
31	1	1.006	-9.4	7.6	25.8	1.00	10.00	-50.00	50.00
32	-1	1.011	-8.4	0.0	19.2	0.00	0.00	-50.00	100.00
33	0	1.013	-9.9	0.0	0.0	0.00	0.00	0.00	0.00
34	0	1,026	-10.5	0.0	0.0	0.00	0.00	0.00	0.00
35	0	1 021	-10 9	0 0	0 0	0 00	0.00	0.00	0.00
30	1	1.020	-10.9	0.0	0.7	0.00	0.00	-50.00	50.00
20	-1	1.020	-10.9	0.0	0.7	0.00	0.00	0.00	0.00
31	0	1.031	-10.1	0.0	0.0	0.00	0.00	0.00	0.00
38	0	1.044	-5.3	0.0	0.0	0.00	0.00	0.00	0.00
39	0	1.007	-13.6	0.0	0.0	0.00	0.00	0.00	0.00
40	-1	1.004	-14.9	0.0	33.2	0.00	0.00	-50,00	150.00
41	0	0.998	-15.4	0.0	0.0	0.00	0.00	0.00	0.00
42	-1	1 007	-14 4	0 0	28 1	0 00	0 00	-50 00	50 00
42	-	1.007	11.1	0.0	0.0	0.00	0.00	0.00	0.00
43	0	1.014	-11.3	0.0	0.0	0.00	0.00	0.00	0.00
44	0	1.013	-10.0	0.0	0.0	0.00	0.00	0.00	0.00
45	0	1.010	-8.7	0.0	0.0	0.00	0.00	0.00	0.00
46	1	1.024	-6.4	16.9	-7.4	1.00	20.00	-50.00	50.00
47	0	1.036	-4.5	0.0	0.0	0.00	0.00	0.00	0.00
48	0	1.038	-4.9	0.0	0.0	0.00	0.00	0.00	0.00
40	1	1 041	-3.9	204 6	48 7	1 00	210 00	-250 00	250 00
49	1	1.041	-3.9	204.0	40.7	1.00	210.00	-250.00	230.00
50	0	1.028	-5.9	0.0	0.0	0.00	0.00	0.00	0.00
51	0	1.008	-8.5	0.0	0.0	0.00	0.00	0.00	0.00
52	0	1.002	-9.4	0.0	0.0	0.00	0.00	0.00	0.00
53	0	1.000	-10.3	0.0	0.0	0.00	0.00	0.00	0.00
54	1	1.015	-9.6	47.4	48.1	1.00	50.00	-50.00	150.00
55	-1	1 013	-9.8	0.0	24.0	0.00	0.00	-50.00	150.00
EC		1 012	-9.6	0.0	17.8	0.00	0.00	-50.00	150 00
50	-1	1.013	-9.0	0.0	17.0	0.00	0.00	- 30.00	130.00
57	0	1.017	-8.4	0.0	0.0	0.00	0.00	0.00	0.00
58	0	1.008	-9.2	0.0	0.0	0.00	0.00	0.00	0.00
59	1	1.026	-5.3	160.1	48.7	1.00	165.00	-50.00	50.00
60	0	1.040	-1.8	0.0	0.0	0.00	0.00	0.00	0.00
61	1	1 043	-1.0	157.1	17.2	1.00	165.00	-250.00	250.00
62	1	1 020	-1 6	0.0	2.0	0.00	0.00	-50 00	50 00
62	-1	1.035	-1.0	0.0	2.0	0.00	0.00	0.00	0.00
63	0	1.028	-2.1	0.0	0.0	0.00	0.00	0.00	0.00
64	0	1.039	-0.5	0.0	0.0	0.00	0.00	0.00	0.00
65	1	1.047	2.6	387.5	-103.2	1.00	400.00	-250.00	250.00
66	1	1.057	2.5	383.1	-23.4	1.00	400.00	-250.00	250.00
67	0	1.043	-0.2	0.0	0.0	0.00	0.00	0.00	0.00
68	0	1.054	2 3	0.0	0.0	0.00	0.00	0.00	0.00
60	_ 1	1 050	2.0	0.0	-10.3	0.00	0.00	-250.00	250.00
09	-1	1.050	2.0	0.0	-10.3	0.00	0.00	-230.00	250.00
70	-1	1.026	-4.6	0.0	16.9	0.00	0.00	-50.00	50.00
71	0	1.024	-4.8	0.0	0.0	0.00	0.00	0.00	0.00
72	-1	1.017	-5.1	0.0	-11.7	0.00	0.00	-50.00	50.00
73	-1	1.021	-4.9	0.0	-5.9	0.00	0.00	-50.00	50.00
74	-1	1.017	-5.9	0.0	21.3	0.00	0.00	-50.00	80.00
75	0	1 019	-4 7	0.0	0.0	0 00	0 00	0.00	0 00
75	1	1 014	6.1	0.0	47.0	0.00	0.00	- 50.00	100.00
10	-1	1.014	-0.1	0.0	47.9	0.00	0.00	-50.00	100.00
77	-1	1.037	-1.1	0.0	40.0	0.00	0.00	-50.00	50.00
78	0	1.032	-1.3	0.0	0.0	0.00	0.00	0.00	0.00

÷.

79	0	1.034	-0.9	0.0	0.0	0.00	0.00	0.00	0.00
80	1	1.052	1.7	487.9	-15.4	1.00	500.00	-250.00	250.00
81	0	1.051	2.1	0.0	0.0	0.00	0.00	0.00	0.00
82	0	1 033	-2 0	0 0	0 0	0 00	0 00	0.00	0.00
02	0	1.035	1.7	0.0	0.0	0.00	0.00	0.00	0.00
03	0	1.036	-1.7	0.0	0.0	0.00	0.00	0.00	0.00
84	0	1.041	-0.6	0.0	0.0	0.00	0.00	0.00	0.00
85	-1	1.050	0.2	0.0	-13.9	0.00	0.00	-50.00	80.00
86	0	1.033	-0.6	0.0	0.0	0.00	0.00	0.00	0.00
87	1	1.027	0.2	6.6	-6.0	1.00	10.00	-250.00	250.00
88	0	1 072	1.9	0.0	0.0	0.00	0.00	0.00	0.00
00	ĩ	1 100	1 6	500 3	120.2	1 00	610 00	-250 00	250 00
89	1	1.100	4.0	500.5	120.2	1.00	010.00	-250.00	200.00
90	-1	1.064	-0.3	0.0	28.0	0.00	0.00	-50.00	100.00
91	-1	1.059	0.0	0.0	-12.3	0.00	0.00	-50.00	50.00
92	-1	1.067	1.1	0.0	-12.8	0.00	0.00	-50.00	100.00
93	0	1.048	-0.4	0.0	0.0	0.00	0.00	0.00	0.00
94	0	1.037	-1.3	0.0	0.0	0.00	0.00	0.00	0.00
05	õ	1 025	-1 9	0.0	0.0	0.00	0.00	0 00	0 00
22	0	1.025	1.5	0.0	0.0	0.00	0.00	0.00	0.00
96	0	1.032	-1.6	0.0	0.0	0.00	0.00	0.00	0.00
97	0	1.037	-0.3	0.0	0.0	0.00	0.00	0.00	0.00
98	0	1.043	-0.6	0.0	0.0	0.00	0.00	0.00	0.00
99	-1	1.041	-1.7	0.0	-9.2	0.00	0.00	-50.00	50.00
100	1	1 049	-1.3	253.8	36.9	1.00	260.00	-250.00	250.00
101	Â	1 045	-1 1	0.0	0.0	0.00	0.00	0.00	0.00
101	0	1.045	-1.1	0.0	0.0	0.00	0.00	0.00	0.00
102	0	1.059	0.3	0.0	0.0	0.00	0.00	0.00	0.00
103	1	1.038	-4.4	46.5	37.3	1.00	50.00	-250.00	250.00
104	-1	1.016	-7.1	0.0	0.0	0.00	0.00	-50.00	0.00
105	-1	1.016	-8.2	0.0	18.4	0.00	0.00	-50.00	20.00
106	0	1 011	-8.4	0.0	0.0	0.00	0.00	0.00	0.00
107	1	1 000	.11 0	0.0	11 4	0.00	0.00	-50 00	60 00
107	-1	1.009	-11.0	0.0	11.4	0.00	0.00	0.00	00.00
108	0	1.010	-9.0	0.0	0.0	0.00	0.00	0.00	0.00
109	0	1.007	-9.3	0.0	0.0	0.00	0.00	0.00	0.00
110	-1	1.005	-9.8	0.0	-1.0	0.00	0.00	-50.00	0.00
111	1	1.013	-8.0	42.5	-1.3	1.00	45.00	-250.00	0.00
112	-1	0 999	-12 5	0 0	28 5	0 00	0.00	-50.00	50.00
112	1	1 010	6.7	0.0	20.5	0.00	0.00	-50.00	0.00
113	-1	1.019	-0.7	0.0	-21.5	0.00	0.00	-30.00	0.00
114	0	1.007	-8.8	0.0	0.0	0.00	0.00	0.00	0.00
115	0	1 007	0 0	0 0	0 0	0 00	0 00	0 00	0.00
110	U	1.007	-0.0	0.0	0.0	0.00	0.00	0.00	0.00
116	-1	1.052	2.3	0.0	-47.3	0.00	0.00	-50.00	0.00
116 117	-1 0	1.052	-8.8 2.3 -1.4	0.0	-47.3 0.0	0.00	0.00	-50.00	0.00
116 117 118	-1 0 0	1.007 1.052 1.018	-8.8 2.3 -1.4 -5.8	0.0	-47.3 0.0	0.00	0.00	-50.00	0.00
115 116 117 118	-1 0 0	1.007 1.052 1.018 1.011	-8.8 2.3 -1.4 -5.8	0.0 0.0 0.0	-47.3 0.0 0.0	0.00 0.00 0.00	0.00 0.00 0.00	-50.00 0.00 0.00	0.00 0.00 0.00
115 116 117 118 XX	-1 0 0	1.007 1.052 1.018 1.011	-8.8 2.3 -1.4 -5.8	0.0 0.0 0.0	-47.3 0.0 0.0	0.00 0.00 0.00 XX	0.00 0.00 0.00 0.00	-50.00 0.00 0.00	0.00 0.00 0.00 0.00
115 116 117 118 XX	-1 0 0	1.007 1.052 1.018 1.011	2.3 -1.4 -5.8	0.0 0.0 0.0	-47.3 0.0 0.0	0.00 0.00 0.00 XX	0.00 0.00 0.00	-50.00 0.00 0.00	0.00 0.00 0.00 -XX
116 117 118 XX	-1 0 0	1.057 1.052 1.018 1.011	-8.8 2.3 -1.4 -5.8	0.0 0.0 0.0	-47.3 0.0 0.0	0.00 0.00 0.00 XX	0.00 0.00 0.00	-50.00 0.00 0.00	0.00 0.00 0.00 -XX
116 117 118 XX	-1 0 0	1.052 1.018 1.011 X-	- 3 . 8 2 . 3 - 1 . 4 - 5 . 8	0.0 0.0 0.0 	-47.3 0.0 0.0 -X	0.00 0.00 0.00 XX	0.00 0.00 0.00	-50.00 0.00 0.00	0.00 0.00 0.00 -XX
116 117 118 XX	-1 0 0	1.052 1.018 1.011 X-	- 3. 8 2. 3 - 1. 4 - 5. 8	0.0 0.0 0.0 	-47.3 0.0 0.0 -X	0.00 0.00 0.00 XX	0.00 0.00 0.00 X	-50.00 0.00 0.00	0.00 0.00 0.00 -XX
113 116 117 118 XX	-1 0 0 X	1.007 1.052 1.018 1.011 X-	-0.0 2.3 -1.4 -5.8 X	0.0 0.0 0.0 	-47.3 0.0 0.0 -X TORIO DE LI	0.00 0.00 0.00 XX	0.00 0.00 0.00 X	-50.00 0.00 0.00	0.00 0.00 0.00 -xx
110 116 117 118 XX	-1 0 0 X	1.007 1.052 1.018 1.011 X-	2.3 -1.4 -5.8 X	0.0 0.0 0.0 == RELA BARRA PA	-47.3 -47.3 0.0 -X	0.00 0.00 0.00 XX	0.00 0.00 0.00 	-50.00 0.00 0.00	0.00 0.00 0.00 -XX
116 116 117 118 XX	-1 0 0 X -BARRA D TENSAO	1.007 1.052 1.018 1.011 X- E ANGULO	2.3 -1.4 -5.8 	0.0 0.0 0.0 == RELA BARRA PA TENSAO	-47.3 0.0 0.0 -X TORIO DE LI RAX- ANGULO X	0.00 0.00 0.00 XX NHAS ====== (MW)	0.00 0.00 0.00 FLUXC (MVAR)	-50.00 -50.00 0.00 0.00 X DS TAP	0.00 0.00 0.00 -X
113 116 117 118 XX	-1 0 0 X -BARRA D TENSAO (PU)	1.007 1.052 1.018 1.011 X- PE	2.3 -1.4 -5.8 X XX X BARRA X	0.0 0.0 0.0 == RELA BARRA PA TENSAO (PU)	-47.3 0.0 0.0 -X TORIO DE LI RAX- ANGULO X (GRAU) X	0.00 0.00 0.00 XX NHAS ===== (MW)	0.00 0.00 0.00 FLUXC (MVAR)	-50.00 -50.00 0.00 X DS TAP	0.00 0.00 -XX LIMITE (MW)
115 116 117 118 XX ======= X BARRA XX	-1 0 0 X -BARRA D TENSAO (PU) X	1.007 1.052 1.018 1.011 X- PE ANGULO (GRAU)	2.3 -1.4 -5.8 	0.0 0.0 0.0 == RELA BARRA PA TENSAO (PU) X	-47.3 -47.3 0.0 -X TORIO DE LI RAX- ANGULO X (GRAU) X XX-	0.00 0.00 0.00 XX NHAS ===== (MW)	0.00 0.00 0.00 FLUXC (MVAR)	-50.00 -50.00 0.00 0.00 X DS TAP	0.00 0.00 0.00 -XX LIMITE (MW)
115 116 117 118 XX BARRA XX 12	-1 0 0 X -BARRA D TENSAO (PU) X 1.033	1.007 1.052 1.018 1.011 X- 	2.3 -1.4 -5.8 X X BARRA X X X BARRA X	0.0 0.0 0.0 == RELA BARRA PA TENSAO (PU) X	-47.3 -47.3 0.0 -X	0.00 0.00 0.00 XX NHAS ===== (MW)	0.00 0.00 0.00 FLUXC (MVAR)	-50.00 0.00 0.00 X DS TAP	0.00 0.00 -XX LIMITE (MW)
115 116 117 118 XX BARRA XX 12	-1 0 0 X -BARRA D TENSAO (PU) X 1.033	1.007 1.052 1.018 1.011 X- PE	2.3 -1.4 -5.8 	0.0 0.0 0.0 == RELA BARRA PA TENSAO (PU) X 1.020	-47.3 -47.3 0.0 -X TORIO DE LI RAX- ANGULO X (GRAU) X XX- -1.6	0.00 0.00 0.00 XX NHAS ===== (MW) X- 49.46	0.00 0.00 0.00 FLUXC (MVAR) >	-50.00 -50.00 0.00 X DS TAP (X- 1.000	0.00 0.00 0.00 -X
113 116 117 118 XX BARRA XX 12	-1 0 0 X -BARRA D TENSAO (PU) X 1.033	1.007 1.052 1.018 1.011 X- PE	2.3 -1.4 -5.8 X X BARRA X X X BARRA X X 2 3	0.0 0.0 0.0 == RELA BARRA PA TENSAO (PU) X 1.020 1.016	-47.3 -47.3 0.0 -X TORIO DE LI RAX- ANGULO X (GRAU) X XX- -1.6 -2.7	0.00 0.00 0.00 XX NHAS ===== (MW) X- 49.46 31.43	0.00 0.00 0.00 	-50.00 -50.00 0.00 0.00 X DS TAP (X- 1.000 1.000	0.00 0.00 -X
115 116 117 118 XX ======= X BARRA XX 12	-1 0 0 X -BARRA D TENSAO (PU) X 1.033	1.007 1.052 1.018 1.011 X- 	2.3 -1.4 -5.8 	0.0 0.0 0.0 == RELA BARRA PA TENSAO (PU) X 1.020 1.020 1.016	-47.3 -47.3 0.0 0.0 -X TORIO DE LI RAX- ANGULO X (GRAU) X XX- -1.6 -2.7 -1.0	0.00 0.00 0.00 XX NHAS ===== (MW) X- 49.46 31.43 55 52	0.00 0.00 0.00 FLUXC (MVAR) 	-50.00 -50.00 0.00 0.00 X TAP (X- 1.000 1.000 1.000	0.00 0.00 -XX LIMITE (MW) X 0.00 0.00
115 116 117 118 XX ======= X BARRA XX 12	-1 0 0 X -BARRA D TENSAO (PU) X 1.033	1.007 1.052 1.018 1.011 X- DE	2.3 -1.4 -5.8 X X BARRA X X X BARRA X X 2 3 7	== RELA BARRA PA TENSAO (PU) X 1.020 1.016 1.025	-47.3 -47.3 0.0 0.0 -X	0.00 0.00 0.00 XX NHAS ===== (MW) X- 49.46 31.43 55.52	6.57 -0.10 9.91	-50.00 -50.00 0.00 0.00 	0.00 0.00 -XX LIMITE (MW) 0.00 0.00 0.00
115 116 117 118 XX BARRA XX 12	-1 0 0 X -BARRA D TENSAO (PU) X 1.033	1.007 1.052 1.018 1.011 X- PE ANGULO (GRAU) 	2.3 -1.4 -5.8 	0.0 0.0 0.0 == RELA BARRA PA TENSAO (PU) X 1.020 1.016 1.025 1.023	-47.3 -47.3 0.0 -X	0.00 0.00 0.00 XX NHAS ===== (MW) X- 49.46 31.43 55.52 121.48	6.57 	-50.00 -50.00 0.00 X TAP {X: 1.000 1.000 1.000 1.000	0.00 0.00 0.00 -XX LIMITE (MW) 0.00 0.00 0.00 0.00 0.00
115 116 117 118 XX BARRA XX 12	-1 0 0 X -BARRA D TENSAO (PU) X 1.033	1.007 1.052 1.018 1.011 X- PE	2.3 -1.4 -5.8 	0.0 0.0 0.0 == RELA BARRA PA TENSAO (PU) X 1.020 1.016 1.025 1.023 1.025	-47.3 -47.3 0.0 -X TORIO DE LI RAX- ANGULO X (GRAU) X XX- -1.6 -2.7 -1.0 -1.2 -2.6	0.00 0.00 0.00 XX (MW) X- 49.46 31.43 55.52 121.48 65.20	6.57 -0.10 9.91 15.24 -7.03	-50.00 -50.00 0.00 	0.00 0.00 0.00 -X
116 117 118 XX ======= X BARRA XX 12	-1 0 0 X -BARRA D TENSAO (PU) X 1.033	1.007 1.052 1.018 1.011 X- 	2.3 -1.4 -5.8 	0.0 0.0 0.0 == RELA BARRA PA TENSAO (PU) X 1.020 1.016 1.025 1.023 1.025 1.022	-47.3 -47.3 0.0 0.0 -X TORIO DE LI RAX- ANGULO X (GRAU) X XX- -1.6 -2.7 -1.0 -1.2 -2.6 -2.8	0.00 0.00 0.00 XX (MW) X- (MW) X- (MW) X- (MW) X- (MW) X- (1.43 55.52 121.48 65.20 61.05	6.57 FLUXC (MVAR) 	-50.00 -50.00 0.00 0.00 X TAP (X- 1.000 1.000 1.000 1.000 1.000	0.00 0.00 -XX LIMITE (MW) X 0.00 0.00 0.00 0.00 0.00 0.00 0.
116 117 118 XX ======= X BARRA XX 12	-1 0 0 X -BARRA D TENSAO (PU) X 1.033	1.007 1.052 1.018 1.011 X- 	2.3 -1.4 -5.8 	0.0 0.0 0.0 0.0 == RELA BARRA PA TENSAO (PU) X 1.020 1.016 1.025 1.023 1.025 1.022 1.018	-47.3 -47.3 0.0 0.0 -X	0.00 0.00 0.00 XX (MW) X- (MW) X- (MW) X- (MW) X- (MW) X- (MW) X- (MW) X (MW) X (MW) X (MW) X (MW) X (MW) 	6.57 FLUXC (MVAR) FLUXC (MVAR) FLUXC (MVAR) 	-50.00 -50.00 0.00 0.00 TAP XX- TAP XX- 1.000 1.000 1.000 1.000 1.000	0.00 0.00 -XX LIMITE (MW) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
116 117 118 XX BARRA XX 12	-1 0 0 X -BARRA D TENSAO (PU) X 1.033	1.007 1.052 1.018 1.011 X- 	2.3 -1.4 -5.8 	0.0 0.0 0.0 == RELA BARRA PA TENSAO (PU) X 1.020 1.016 1.025 1.023 1.025 1.022 1.018	-47.3 -47.3 0.0 -47.3 0.0 -47.3 0.0 -47.3 -47.3 -47.3 -47.3 -47.3 -1.6 -2.7 -1.6 -2.7 -1.0 -1.2 -2.6 -2.8 -1.4	0.00 0.00 0.00 XX (MW) X- 49.46 31.43 55.52 121.48 65.20 61.05 20.14	6.57 FLUXC (MVAR) 6.57 -0.10 9.91 15.24 -7.03 -1.59 4.83	-50.00 -50.00 0.00 0.00 X TAP XX: 1.000 1.000 1.000 1.000 1.000 1.000	0.00 0.00 0.00 -XX LIMITE (MW) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
116 117 118 XX BARRA XX 12	-1 0 0 X -BARRA D TENSAO (PU) X 1.033	1.007 1.052 1.018 1.011 X- PE ANGULO (GRAU) 0.0	2.3 -1.4 -5.8 	0.0 0.0 0.0 == RELA BARRA PA TENSAO (PU) X 1.020 1.016 1.025 1.023 1.025 1.022 1.018	-47.3 -47.3 0.0 -47.3 0.0 -47.3 0.0 -47.3 0.0 -47.3 (GRAU) 2 -X	0.00 0.00 0.00 XX NHAS ===== (MW) X- 49.46 31.43 55.52 121.48 65.20 61.05 20.14 29.02	6.57 FLUXC (MVAR) > 6.57 -0.10 9.91 15.24 -7.03 -1.59 4.83 -2.21	-50.00 -50.00 0.00 0.00 X TAP (X- 1.000 1.000 1.000 1.000 1.000 1.000	0.00 0.00 0.00 -XX LIMITE (MW) X 0.00 0.00 0.00 0.00 0.00 0.00 0.
116 117 118 XX BARRA XX 12	-1 0 0 X -BARRA D TENSAO (PU) X 1.033	1.007 1.052 1.018 1.011 X-	2.3 -1.4 -5.8 X XX X BARRA X X X BARRA X X X BARRA X 11 14 16 117 1	0.0 0.0 0.0 0.0 == RELA BARRA PA TENSAO (PU) X 1.020 1.016 1.025 1.022 1.016 1.025 1.022 1.018 1.013	-47.3 -47.3 0.0 0.0 -X TORIO DE LI RAX- ANGULO X (GRAU) X XX- -1.6 -2.7 -1.0 -1.2 -2.6 -2.8 -1.4 -3.2 0.0	0.00 0.00 0.00 XX (MW) X- (MW) X- (MW) X- (MW) X- (MW) X- (1.43 55.52 121.48 65.20 61.05 20.14 29.02	6.57 FLUXC (MVAR) 	-50.00 -50.00 0.00 0.00 X TAP (X- 1.000 1.000 1.000 1.000 1.000 1.000 1.000	0.00 0.00 0.00 -XX LIMITE (MW) X 0.00 0.00 0.00 0.00 0.00 0.00 0.
116 117 118 XX ======= X BARRA XX 12 2	-1 0 0 X BARRA D TENSAO (PU) X 1.033	1.007 1.052 1.018 1.011 X- 	2.3 -1.4 -5.8 	<pre>0.0 0.0 0.0 0.0 == RELA BARRA PA TENSAO (PU) X 1.020 1.016 1.025 1.022 1.018 1.013 1.033</pre>	-47.3 -47.3 0.0 0.0 -X	0.00 0.00 0.00 XX (MW) X- (MW) X- (MW) X- (MW) X- (MW) X- (MW) X- (MW) X (MW) X (MW) X (MW) X (MW) X (MW) 	6.57 FLUXC (MVAR) FLUXC (MVAR) 	-50.00 -50.00 0.00 0.00 X TAP (X- TAP (X- 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	0.00 0.00 0.00 -XX LIMITE (MW) X 0.00 0.00 0.00 0.00 0.00 0.00 0.
116 117 118 XX BARRA XX 12 2 3	-1 0 0 X -BARRA D TENSAO (PU) X 1.033 1.020 1.016	1.007 1.052 1.018 1.011 X- 	2.3 -1.4 -5.8 X X BARRA X X X BARRA X X X BARRA X 11 11 16 117 1 12	<pre>0.0 0.0 0.0 0.0 0.0 == RELA BARRA PA TENSAO (PU) X 1.020 1.016 1.025 1.023 1.025 1.022 1.018 1.013 1.033</pre>	-47.3 0.0 -47.3 0.0 0.0 -X	0.00 0.00 0.00 XX (MW) X- (MW) X- (MW) X- (MW) X- (MW) X- (MW) X- (MW) X (MW) X (MW) X (MW) X (MW) X (MW) 	6.57 FLUXC (MVAR) 6.57 -0.10 9.91 15.24 -7.03 -1.59 4.83 -2.21 -6.79	-50.00 -50.00 0.00 0.00 	0.00 0.00 0.00 -XX LIMITE (MW) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
116 117 118 XX BARRA XX 12 2 3	-1 0 0 X BARRA D TENSAO (PU) X 1.033 1.020 1.020	1.007 1.052 1.018 1.011 X- 	2.3 -1.4 -5.8 	0.0 0.0 0.0 0.0 == RELA BARRA PA TENSAO (PU) X 1.020 1.016 1.025 1.023 1.025 1.022 1.018 1.013 1.033 1.013	-47.3 -47.3 0.0 -47.3 0.0 -47.3 0.0 -47.3 0.0 -47.3 -47.3 -47.3 -1.6 -2.7 -1.0 -1.2 -2.6 -2.8 -1.4 -3.2 0.0 -3.2	0.00 0.00 0.00 XX NHAS ===== (MW) X- 49.46 31.43 55.52 121.48 65.20 61.05 20.14 29.02 -49.02 22.29	6.57 PLUXC (MVAR) > 6.57 -0.10 9.91 15.24 -7.03 -1.59 4.83 -2.21 -6.79 1.21	-50.00 -50.00 0.00 0.00 X TAP {X: 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	0.00 0.00 0.00 -XX LIMITE (MW) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
116 117 118 XX BARRA XX 12 2 3	-1 0 0 X -BARRA D TENSAO (PU) X 1.033 1.020 1.016	1.007 1.052 1.018 1.011 X- PE ANGULO (GRAU) -1.6 -2.7	2.3 -1.4 -5.8 X XX X BARRA X X X BARRA X X X BARRA X 11 14 16 117 1 12 1 5	0.0 0.0 0.0 0.0 == RELA BARRA PA TENSAO (PU) X 1.020 1.016 1.025 1.022 1.016 1.025 1.022 1.018 1.013 1.033 1.013 1.031	-47.3 -47.3 0.0 0.0 -X TORIO DE LI RAX- ANGULO X (GRAU) X XX- -1.6 -2.7 -1.0 -1.2 -2.6 -2.8 -1.4 -3.2 0.0 -3.2 -1.0	0.00 0.00 0.00 XX NHAS ===== (MW) X- 49.46 31.43 55.52 121.48 65.20 61.05 20.14 29.02 -49.02 22.29 -30.31	6.57 FLUXC (MVAR) 	-50.00 -50.00 0.00 0.00 0.00 TAP (X- 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	0.00 0.00 0.00 -XX LIMITE (MW) X 0.00 0.00 0.00 0.00 0.00 0.00 0.
116 117 118 XX ======= X BARRA XX 12 2 3	-1 0 0 X BARRA D TENSAO (PU) X 1.033 1.020 1.016	1.007 1.052 1.018 1.011 X- 	2.3 -1.4 -5.8 X X BARRA X X X BARRA X X X BARRA X 11 14 16 117 1 12 1 12 1 5 12	0.0 0.0 0.0 0.0 == RELA BARRA PA TENSAO (PU) X 1.020 1.016 1.025 1.022 1.016 1.025 1.022 1.018 1.013 1.033 1.013 1.031 1.033	-47.3 -47.3 0.0 0.0 -X	0.00 0.00 0.00 XX NHAS ===== (MW) X- 49.46 31.43 55.52 121.48 65.20 61.05 20.14 29.02 -49.02 22.29 -30.31 -30.98	6.57 FLUXC (MVAR) 6.57 -0.10 9.91 15.24 -7.03 -1.59 4.83 -2.21 -6.79 1.21 -8.53 -2.67	-50.00 -50.00 0.00 0.00 X TAP (X- 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	0.00 0.00 0.00 -XX LIMITE (MW) X 0.00 0.00 0.00 0.00 0.00 0.00 0.
115 116 117 118 XX BARRA XX 12 2 3	-1 0 0 X -BARRA D TENSAO (PU) X 1.033 1.020 1.016	1.007 1.052 1.018 1.011 X- 	2.3 -1.4 -5.8 X X X BARRA X X X BARRA X X X 3 7 11 14 16 117 1 12 1 12 1 5 12	<pre>0.0 0.0 0.0 0.0 0.0 == RELA BARRA PA TENSAO (PU) X 1.020 1.016 1.025 1.022 1.016 1.025 1.022 1.018 1.013 1.033 1.013 1.031 1.033</pre>	-47.3 0.0 -47.3 0.0 0.0 -X	0.00 0.00 0.00 0.00 XX (MW) X- (MW) 	6.57 FLUXC (MVAR) 6.57 -0.10 9.91 15.24 -7.03 -1.59 4.83 -2.21 -6.79 1.21 -8.53 -2.67	-50.00 -50.00 0.00 0.00 	0.00 0.00 0.00 -XX LIMITE (MW) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
116 117 118 XX ====== X BARRA XX 12 2 3 4	-1 0 0 X -BARRA D TENSAO (PU) X 1.033 1.020 1.016 1.026	1.007 1.052 1.018 1.011 	2.3 -1.4 -5.8 -5.8 X X BARRA X X X BARRA X X X BARRA X 11 11 16 117 1 12 1 5 12	0.0 0.0 0.0 0.0 == RELA BARRA PA TENSAO (PU) X 1.020 1.016 1.025 1.022 1.018 1.025 1.022 1.018 1.013 1.033 1.013 1.031 1.033	-47.3 0.0 -47.3 0.0 0.0 -X	0.00 0.00 0.00 XX NHAS ===== (MW) X- 49.46 31.43 55.52 121.48 65.20 61.05 20.14 29.02 -49.02 22.29 -30.31 -30.98 -42.88	6.57 FLUXC (MVAR) 6.57 -0.10 9.91 15.24 -7.03 -1.59 4.83 -2.21 -6.79 1.21 -8.53 -2.67	-50.00 -50.00 0.00 0.00 	0.00 0.00 0.00 -XX LIMITE (MW) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
116 117 118 XX BARRA XX 12 2 3 4	-1 0 0 X -BARRA D TENSAO (PU) X 1.033 1.020 1.016 1.026	1.007 1.052 1.018 1.011 X- PE ANGULO (GRAU) 0.0 -1.6 -2.7 -1.1	2.3 -1.4 -5.8 X X BARRA X XX X BARRA X X X BARRA X X X BARRA X 11 14 16 117 1 12 1 5 12 5	0.0 0.0 0.0 0.0 0.0 BARRA PA TENSAO (PU) X 1.020 1.016 1.025 1.022 1.018 1.013 1.033 1.013 1.031 1.031 1.031	-47.3 -47.3 0.0 0.0 -X	0.00 0.00 0.00 XX NHAS ===== (MW) X- 49.46 31.43 55.52 121.48 65.20 61.05 20.14 29.02 -49.02 22.29 -30.31 -30.98 -42.98 -42.98	0.00 0.00 0.00 0.00 PLUXC (MVAR) 	-50.00 -50.00 0.00 0.00 X TAP (X- 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	0.00 0.00 0.00 -XX LIMITE (MW) 0.00
116 117 118 XX ======= X BARRA XX 12 2 3 4	-1 0 0 X -BARRA D TENSAO (PU) X 1.033 1.020 1.016 1.026	1.007 1.052 1.018 1.011 X- 	2.3 -1.4 -5.8 X X BARRA X XX X BARRA X X X BARRA X X X BARRA X 11 14 16 117 1 12 1 1 5 12 5 11	0.0 0.0 0.0 0.0 == RELA BARRA PA TENSAO (PU) X 1.020 1.016 1.025 1.022 1.018 1.013 1.013 1.013 1.031 1.033 1.031 1.023	-47.3 -47.3 0.0 0.0 -X	0.00 0.00 0.00 XX NHAS ===== (MW) X- 49.46 31.43 55.52 121.48 65.20 61.05 20.14 29.02 -49.02 22.29 -30.31 -30.98 -42.98 3.98	0.00 0.991 15.24 -7.03 -1.59 4.83 -2.21 -6.79 1.21 -8.53 -2.67 -0.60 83 1.78	-50.00 -50.00 0.00 0.00 0.00 TAP (X- TAP (X- 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	0.00 0.00 0.00 -XX LIMITE (MW) X 0.00 0.00 0.00 0.00 0.00 0.00 0.
115 116 117 118 XX BARRA XX 12 2 3 4 5	-1 0 0 X BARRA D TENSAO (PU) X 1.033 1.020 1.016 1.026 1.031	1.007 1.052 1.018 1.011 X- ANGULO (GRAU) 0.0 -1.6 -2.7 -1.1 -1.0	2.3 -1.4 -5.8 X X BARRA X X X BARRA X X 11 14 16 117 1 12 1 12 1 15 12 5 11	<pre>0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</pre>	-47.3 -47.3 0.0 0.0 -X	0.00 0.00 0.00 0.00 XX (MW) X- (MW) 	6.57 FLUXC (MVAR) FLUXC (MVAR) 	-50.00 -50.00 0.00 0.00 0.00 TAP (X TAP (X- 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	0.00 0.00 0.00 -XX LIMITE (MW) 0.00
116 117 118 XX ====== X BARRA XX 12 2 3 4 5	-1 0 0 X -BARRA D TENSAO (PU) X 1.033 1.020 1.016 1.026 1.031	1.007 1.052 1.018 1.011 	2.3 -1.4 -5.8 -5.8 X X BARRA X XX X BARRA X X X BARRA X X X BARRA X 11 14 16 117 1 12 15 12 5 11 3	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	-47.3 0.0 -47.3 0.0 0.0 -X	0.00 0.00 0.00 0.00 XX NHAS ===== (MW) X- 49.46 31.43 55.52 121.48 65.20 61.05 20.14 29.02 -49.02 22.29 -30.31 -30.98 -42.98 3.98 30.53	0.00 0.911 15.24 -7.03 -1.59 4.83 -2.21 -6.79 1.21 -8.53 -2.67 -60.83 1.78 6.57	-50.00 -50.00 0.00 0.00 0.00 TAP (X- 1.000	0.00 0.00 0.00 -XX LIMITE (MW) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
116 117 118 XX BARRA XX 12 2 3 4 5	-1 0 0 X ======= -BARRA D TENSAO (PU) X 1.033 1.020 1.016 1.026 1.031	1.007 1.052 1.018 1.011 X- PE ANGULO (GRAU) 0.0 -1.6 -2.7 -1.1 -1.0	2.3 -1.4 -5.8 X X BARRA X XX X BARRA X XX 11 14 16 117 1 12 1 1 12 1 5 12 5 11 1 3 4	0.0 0.0 0.0 0.0 0.0 == RELA BARRA PA TENSAO (PU) X 1.020 1.016 1.025 1.022 1.018 1.013 1.033 1.013 1.031 1.033 1.031 1.023 1.021 1.023 1.021 1.023 1.021 1.023 1.021 1.023 1.023 1.023 1.023 1.023 1.023 1.023 1.023 1.023 1.023 1.023 1.025 1.023 1.025 1.022 1.025 1.022 1.025 1.022 1.025 1.025 1.022 1.025 1.023 1.025 1.023 1.025 1.023 1.025 1.023 1.033 1.031 1.023 1.023 1.023 1.023 1.025 1.023 1.025 1.023 1.025 1.023 1.025 1.023 1.025 1.023 1.025 1.023 1.025 1.023 1.025 1.023 1.025 1.023 1.025 1.023 1.025 1.023 1.025 1.023 1.025 1.023 1.025 1.023 1.025 1.023 1.025 1.023 1.025 1.023 1.025 1.023 1.031 1.023 1.025 1.023 1.025 1.023 1.025 1.023 1.031 1.023 1.025 1.023 1.025 1.023 1.031 1.023 1.025 1.023 1.025 1.023 1.031 1.023 1.025 1.023 1.031 1.023 1.025 1.023 1.031 1.023 1.025 1.025 1.023 1.031 1.023 1.025 1.0	-47.3 -47.3 0.0 0.0 -X	0.00 0.00 0.00 0.00 XX NHAS ===== (MW) X- 49.46 31.43 55.52 121.48 65.20 61.05 20.14 29.02 -49.02 22.29 -30.31 -30.98 -42.98 3.98 30.53 43.07	0.00 0.00 0.00 0.00 FLUXC (MVAR) FLUXC (MVAR) 	-50.00 -50.00 0.00 0.00 	0.00 0.00 0.00 -XX LIMITE (MW) 0.00
116 117 118 XX ======= X BARRA XX 12 2 3 4 5	-1 0 0 X ======== -BARRA D TENSAO (PU) X 1.033 1.020 1.016 1.026 1.031	1.007 1.052 1.018 1.011 X- 	2.3 -1.4 -5.8 X X BARRA X XX X BARRA X X X BARRA X X X BARRA X 11 14 16 117 1 12 1 1 5 12 5 11 3 4 6	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	-47.3 -47.3 0.0 0.0 -X	0.00 0.00 0.00 0.00 XX NHAS ===== (MW) X- 49.46 31.43 55.52 121.48 65.20 61.05 20.14 29.02 -49.02 22.29 -30.31 -30.98 -42.98 3.98 30.53 43.07 15.85	0.00 0.91 15.24 -7.03 -1.59 4.83 -2.21 -6.79 1.21 -8.53 -2.67 -60.83 1.78 6.57 61.03 1.3.91	-50.00 -50.00 0.00 0.00 0.00 1.000	0.00 0.00 0.00 -XX LIMITE (MW) X 0.00
116 117 118 XX ======= X BARRA XX 12 2 3 4 5	-1 0 0 X BARRA D TENSAO (PU) X 1.033 1.020 1.016 1.026 1.031	1.007 1.052 1.018 1.011 X- ANGULO (GRAU) 0.0 -1.6 -2.7 -1.1 -1.0	2.3 -1.4 -5.8 X X BARRA X X X BARRA X X X BARRA X X 11 14 16 117 1 12 1 12 1 5 12 5 11 3 4 6 8	<pre>0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</pre>	-47.3 -47.3 0.0 0.0 -X	0.00 0.00 0.00 0.00 XX NHAS ===== (MW) X- 49.46 31.43 55.52 121.48 65.20 61.05 20.14 29.02 -49.02 22.29 -30.31 -30.98 -42.98 3.98 30.53 43.07 15.85 -98 90	0.00 0.00 0.00 0.00 X FLUXC (MVAR) 6.57 -0.10 9.91 15.24 -7.03 -1.59 4.83 -2.21 -6.79 1.21 -8.53 -2.67 -60.83 1.78 6.57 6.57 -61.03 13.91 -51.54	-50.00 -50.00 0.00 0.00 0.00 0.00 1.00 1.000	0.00 0.00 0.00 -XX LIMITE (MW) X 0.00
116 117 118 XX ======= X BARRA XX 12 2 3 4 5	-1 0 0 X -BARRA D TENSAO (PU) X 1.033 1.020 1.016 1.026 1.031	1.007 1.052 1.018 1.011 X- ANGULO (GRAU) 0.0 -1.6 -2.7 -1.1 -1.0	2.3 -1.4 -5.8 X X BARRA X XX X BARRA X X X BARRA X X X BARRA X X X BARRA X 11 11 12 12 15 12 11 15 12 11 3 4 6 8 11	<pre>0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</pre>	-47.3 0.0 -47.3 0.0 0.0 -X	0.00 0.00 0.00 0.00 XX NHAS ===== (MW) X- 49.46 31.43 55.52 121.48 65.20 61.05 20.14 29.02 -49.02 22.29 -30.31 -30.98 -42.98 3.98 30.53 43.07 15.85 -98.90 -45.50 -98.90	0.00 0.00 0.00 0.00 FLUXC (MVAR) FLUXC (MVAR) FLUXC (MVAR) FLUXC (MVAR) FLUXC -0.10 9.91 15.24 -7.03 -1.59 4.83 -2.21 -6.79 1.21 -8.53 -2.67 -60.83 1.78 6.57 6.57 6.57 -61.03 13.91 -51.54 54	-50.00 -50.00 0.00 0.00 0.00 TAP (X- TAP (X- 1.000 1	0.00 0.00 0.00 -X
116 117 118 XX BARRA XX 12 2 3 4 5	-1 0 0 X -BARRA D TENSAO (PU) X 1.033 1.020 1.016 1.026 1.031	1.007 1.052 1.018 1.011 X- 	2.3 -1.4 -5.8 -5.8 X X BARRA X X X BARRA X X X BARRA X X 1 1 1 1 1 1 1 2 1 5 11 1 5 12 5 11 3 4 6 8 11	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	-47.3 0.0 -47.3 0.0 0.0 -X	0.00 0.00 0.00 0.00 XX NHAS ===== (MW) X- 49.46 31.43 55.52 121.48 65.20 61.05 20.14 29.02 -49.02 22.29 -30.31 -30.98 -42.98 3.98 30.53 43.07 15.85 -98.90 9.45	0.00 0.00 0.00 0.00 FLUXC (MVAR) FLUXC (MVAR) 	-50.00 -50.00 0.00 0.00 0.00 	0.00 0.00 0.00 -XX LIMITE (MW) X 0.00 0.00 0.00 0.00 0.00 0.00 0.

			5	1.031	-1.0	-15.80	-15.17	1.000	0.00
			7	1.025	-1.0	-36.20	-8.12	1.000	0.00
7	1 025	-1.0							
127	1.025	2.0	6	1 022	-1 4	36 26	7 82	1 000	0 00
			10	1.022	-1.4	55.20	0.02	1.000	0.00
			12	1.033	0.0	-55.20	-9.82	1.000	0.00
8	1.045	0.4							
			5	1.031	-1.0	98.90	54.67	0.999	0.00
			9	1.053	4.3	-243.00	-62.86	1.000	0.00
			30	1.046	-2.7	116.10	-36.08	1.000	0.00
9	1.053	4.3							
-	1.055		0	1 045	0.4	244 30	-49 52	1 000	0 00
			0	1.045	0.4	244.50	40.52	1.000	0.00
			10	1.026	8.6	-244.29	48.52	1.000	0.00
10	1.026	8.6							
			9	1.053	4.3	246.01	-160.17	1.000	0.00
11	1.023	-1.2							
			4	1.026	-1.1	-3.97	-3.60	1.000	0.00
			5	1 031	-1 0	-9 41	-10 26	1 000	0.00
			10	1 022	2.0	120 64	12 02	1 000	0.00
			12	1.033	0.0	-120.04	-13.02	1.000	0.00
			13	1.007	-3.8	64.02	3.88	1.000	0.00
1	1.013	-3.2							
			2	1.020	-1.6	-28.77	0.40	1.000	0.00
			3	1.016	-2.7	-22.23	-2.12	1.000	0.00
13	1 007	-3.8							
13	1.007	5.0	11	1 000	1 0	62 14	2 04	1 000	0 00
			11	1.023	-1.2	-03.14	-2.94	1.000	0.00
			15	1.012	-8.2	29.15	-13.06	1.000	0.00
14	1.025	-2.6							
			12	1.033	0.0	-64.34	7.95	1.000	0.00
			15	1.012	-8.2	50.34	-8.95	1.000	0.00
15	1 012	- 0 2			• • • •		A BARA	1212	
10	1.012	-0.2	10	1 007	2.0	20 45	0.00	1 000	0 00
			13	1.007	-3.8	-28.45	8.96	1.000	0.00
			14	1.025	-2.6	-48.88	8.52	1.000	0.00
			17	1.026	-6.5	-73.56	-10.26	1.000	0.00
			19	1.010	-9.1	38.86	-7.13	1.000	0.00
			33	1 013	-9 9	22 03	-8 23	1 000	0.00
10	1 000	2.0	55	1.015	5.5	22.05	0.25	1.000	0.00
10	1.022	-2.8				60.01	0.01	1 000	0 00
			12	1.033	0.0	-60.31	2.24	1.000	0.00
			17	1.026	-6.5	35.31	-12.24	1.000	0.00
17	1.026	-6.5							
			15	1.012	-8.2	74.26	7.99	1.000	0.00
			16	1 022	-28	-34 72	9 67	1 000	0 00
			10	1 012	0 6	70 57	10 27	1 000	0.00
			10	1.012	-0.0	10.37	10.27	1.000	0.00
			30	1.046	-2.1	-184.11	-46.31	1.001	0.00
			31	1.006	-9.4	34.52	1.28	1.000	0.00
			113	1.019	-6.7	20.48	18.07	1.000	0.00
18	1.012	-8.6							
			17	1 026	-6.5	-77 83	-8.60	1,000	0.00
			10	1 010		17 93	-1 02	1 000	0 00
10	1 010	0.1	19	1.010	-9.1	17.05	1.72	1.000	0.00
19	1.010	-9.1	2.2				6		
			15	1.012	-8.2	-38.68	6.70	1.000	0.00
			18	1.012	-8.6	-17.80	0.91	1.000	0.00
			20	1.003	-9.3	3.86	3.74	1.000	0.00
			34	1.026	-10.5	7.62	-11.73	1.000	0.00
20	1 003	-9.2							
20	1.005	5.5	10	1 010	0.1	2 05	C 70	1 000	0 00
			19	1.010	-9.1	-3.85	-0.72	1.000	0.00
			21	1.002	-8.6	-14.15	3.72	1.000	0.00
21	1.002	-8.6							
			20	1.003	-9.3	14.19	-5.70	1.000	0.00
			22	1.009	-7.0	-28.19	-2.30	1.000	0.00
22	1 009	-7 0		1.1.1.1.1.1					
22	1.005	7.0	21	1 000	0 0	20 25	0 50	1 000	0 00
			21	1.002	-0.0	20.35	0.50	1.000	0.00
			23	1.030	-3.7	-38.35	-5.58	1.000	0.00
23	1.030	-3.7							
			22	1.009	-7.0	38.85	3.70	1.000	0.00
			24	1.029	-4.3	22.12	-7.90	1.000	0.00
			25	1 047	2 4	-141 06	7 68	1,000	0 00
			20	1 011	0 4	72 00	-6 40	1 000	0.00
			32	1.011	-0.4	13.09	-0.48	1.000	0.00
24	1.029	-4.3			12	2 5 2 55	36. 540.57	3 N.S. 8	128 - 2000
			23	1.030	-3.7	-22.06	2.86	1.000	0.00
			70	1.026	-4.6	1.06	-4.66	1.000	0.00
			72	1.017	-5.1	8.00	1.79	1.000	8.00
25	1.047	2.4							
20			22	1 020	-3 7	144 01	-1 97	1 000	0 00
			25	1.030	- 5.7	114 00	-1.07	1 010	0.00
			26	1.045	4.7	-114.72	8.28	1.012	0.00
			27	1.013	-8.2	121.25	-0.10	1.000	0.00

26	1.045	4.7							
			25	1.047	2.4	114.72	-3.77	1.012	0.00
			20	1 040	2.1	161 77	54 02	1 000	0.00
1000000		12 12	30	1.040	-2.1	101.77	- 54 . 95	1.000	0.00
27	1.013	-8.2							
			25	1.047	2.4	-116.96	3.36	1.000	0.00
			28	1.004	-9.3	24.33	3.58	1.000	0.00
			32	1 011	-8 4	4 89	0 41	1 000	0.00
			115	1.011	0.1	1.05	0.11	1.000	0.00
			115	1.007	-8.8	16.74	3.84	1.000	0.00
28	1.004	-9.3							
			27	1.013	-8.2	-24.21	-5.27	1.000	0.00
			29	1 003	-9.7	7 21	-1 73	1 000	0 00
20	1 000	0 7		1.000	2.1		2.75	2.000	0.00
29	1.003	-9.7							
			28	1.004	-9.3	-7.20	-0.62	1.000	0.00
			31	1.006	-9.4	-16.80	-3.38	1.000	0.00
30	1.046	-2.7							
		10000	8	1 045	0.4	-115 56	-13 84	1 000	0 00
			10	1.045	0.4	104.11	13.04	1.000	0.00
			17	1.026	-6.5	184.11	59.56	1.001	0.00
			26	1.045	4.7	-159.85	-23.67	1.000	0.00
			38	1.044	-5.3	91.31	-26.18	1.000	0.00
31	1.006	-9.4							
	21000		17	1 026	-6 5	- 22 00	-2 61	1 000	0 00
			17	1.020	-0.5	-33.90	-3.01	1.000	0.00
			29	1.003	-9.7	16.83	2.64	1.000	0.00
			32	1.011	-8.4	-18.23	-0.28	1.000	0.00
32	1.011	-8.4							
			23	1.030	-3.7	-71.49	0.08	1.000	0.00
			22	1 010	_0.0	4 00	2.00	1 000	0.00
			21	1.013	-8.2	-4.89	-2.36	1.000	0.00
			31	1.006	-9.4	18.33	-1.95	1.000	0.00
			113	1.019	-6.7	-14.29	-2.09	1.000	0.00
			114	1.007	-8.8	13.34	2.55	1.000	0.00
2.2	1 012	0 0		1.007	0.0	10.01	2100	1.000	0.00
22	1.015	-9.9							
			15	1.012	-8.2	-21.83	5.60	1.000	0.00
			37	1.031	-10.1	-1.17	-14.60	1.000	0.00
34	1.026	-10.5							
			19	1 010	-91	-7 52	5 50	1 000	0 00
			20	1.010	10.0	20.00	10.00	1.000	0.00
			36	1.020	-10.9	30.68	10.93	1.000	0.00
			37	1.031	-10.1	-91.76	-30.18	1.000	0.00
			43	1.014	-11.3	9.60	2.48	1.000	0.00
35	1.021	-10.9							
	21002		26	1 020	10 0	0 41	1 70	1 000	0 00
			30	1.020	-10.9	0.41	4.70	1.000	0.00
			37	1.031	-10.1	-33.41	-13.78	1.000	0.00
36	1.020	-10.9							
			34	1.026	-10.5	-30.59	-11.26	1.000	0.00
			35	1 021	-10 9	-0.41	-5.06	1 000	0 00
27	1 021	10 1	55	1.021	10.5	0.11	5.00	1.000	0.00
31	1.031	-10.1	1919						
			33	1.013	-9.9	1.24	11.00	1.000	0.00
			34	1.026	-10.5	91.99	29.97	1.000	0.00
			35	1.021	-10.9	33.55	13.01	1.000	0.00
			20	1 044	-5.3	-240 75	-26 74	1 001	0.00
			50	1.011	10.5	240.75	20.74	1.001	0.00
			39	1.007	-13.6	62.48	5.27	1.000	0.00
			40	1.004	-14.9	51.50	-1.82	1.000	0.00
38	1.044	-5.3							
			30	1.046	-2 7	-90.96	-15.79	1,000	0.00
			27	1 021	-10 1	240 75	47 30	1 001	0.00
			31	1.031	-10.1	240.75	47.39	1.001	0.00
			65	1.047	2.6	-149.79	-35.86	1.000	0.00
39	1.007	-13.6							
			37	1.031	-10.1	-61.29	-4.13	1,000	0.00
			40	1 004	-14.9	34 20	-6.97	1 000	0.00
			40	1.004	-14.9	54.25	-0.07	1.000	0.00
40	1.004	-14.9					No.		0.005
			37	1.031	-10.1	-50.02	1.66	1.000	0.00
			39	1.007	-13.6	-34.07	6.02	1.000	0.00
			41	0 998	-15 4	22 70	5 11	1 000	0 00
			40	1 007	_14 4	-4 (1	-2 (1	1 000	0.00
. No crist	10217. 1174-1280-1411		42	1.007	-14.4	-4.61	-2.61	1.000	0.00
41	0.998	-15.4							
			40	1.004	-14.9	-22.62	-6.07	1.000	0.00
			42	1.007	-14.4	-14.38	-3.93	1.000	0.00
40	1 007	-14 4							
44	1.007	-14.4		1			0.00	1	
			40	1.004	-14.9	4.62	-2.06	1.000	0.00
			41	0.998	-15.4	14.46	0.75	1.000	0.00
			49	1.041	-3.9	-115.08	6.46	1.000	0.00
43	1.014	-11 3	10.01	1000	1994 B.	0.22.9	12.0	2.0	10.0
13	1.011		24	1 000	10 5	0 50	C C0	1 000	0 00
			34	1.026	-10.5	-9.56	-6.69	1.000	0.00
			44	1.013	-10.0	-8.44	-0.31	1.000	0.00
44	1.013	-10.0							
			43	1,014	-11.3	8.49	-5.74	1,000	0.00

\$

			45	1.010	-8.7	-24.49	8.00	1.000	0.00
45	1.010	-8.7							
			44	1.013	-10.0	24.64	-9.69	1.000	0.00
			46	1.024	-6.4	-31.13	-2.26	1.000	0.00
			49	1.041	-3.9	-46.50	0.16	1.000	0.00
46	1.024	-6.4							
			45	1.010	-8.7	31.51	0.11	1.000	0.00
			47	1.036	-4.5	-27.43	-2.39	1.000	0.00
			48	1.038	-4.9	-15.22	-4.66	1.000	0.00
47	1.036	-4.5							
- /	2.000		46	1.024	-6.4	27.70	-0.05	1.000	0.00
			49	1 041	-3.9	-19 31	-3 33	1 000	0 00
			69	1 058	2.0	-42 39	3 38	1 000	0.00
4.8	1 038	-4 9	02	1.050	2.0	12.55	5.50	1.000	0.00
40	1.030	-4.9	16	1 024	E A	15 26	0 07	1 000	0 00
			40	1.024	-0.4	25.30	5.12	1.000	0.00
4.0	1 041	.2.0	49	1.041	-3.9	- 35.35	5.12	1.000	0.00
49	1.041	-3.9	40	1 007	14 4	110 02	2 05	1 000	0 00
			42	1.007	-14.4	119.03	-3.05	1.000	0.00
			45	1.010	-8.7	47.95	-0.88	1.000	0.00
			47	1.036	-4.5	19.38	1.82	1.000	0.00
			48	1.038	-4.9	35.57	-5.88	1.000	0.00
			50	1.028	-5.9	51.10	-0.23	1.000	0.00
			51	1.008	-8.5	63.41	3.26	1.000	0.00
			54	1.015	-9.6	71.64	-5.33	1.000	0.00
			66	1.057	2.5	-258.41	27.10	1.000	0.00
			69	1.058	2.0	-32.84	1.84	1.000	0.00
50	1.028	-5.9							
			49	1.041	-3.9	-50.45	0.04	1.000	0.00
			57	1.017	-8.4	33.45	-4.04	1.000	0.00
51	1.008	-8.5							
			49	1.041	-3.9	-61.59	-1.74	1.000	0.00
			52	1.002	-9.4	27.88	0.59	1.000	0.00
			58	1.008	-9.2	16.71	-6.85	1.000	0.00
52	1.002	-9.4							
			51	1.008	-8.5	-27.73	-1.55	1.000	0.00
			53	1.000	-10.3	9.73	-3.45	1.000	0.00
53	1.000	-10.3							
			52	1.002	-9.4	-9.69	-0.46	1.000	0.00
			54	1.015	-9.6	-13.31	-10.54	1.000	0.00
54	1 015	-9.6	J .	2.025	5.0				
51	1.015	2.0	49	1 041	-3.9	-69 74	-3 18	1 000	0 00
			53	1 000	-10.3	13 38	7 71	1 000	0.00
			55	1 013	-9.8	6 53	0.16	1 000	0.00
			56	1 013	-9.6	17 31	10.87	1 000	0.00
			50	1.013	-5.0	-22 12	0.56	1 000	0.00
EC	1 012	0 0	55	1.020	-3.5	-33.13	0.50	1.000	0.00
55	1.015	-9.0	E A	1 015	0 6	6 52	2 20	1 000	0 00
			54	1.013	-9.0	10.00	2.20	1.000	0.00
			50	1.013	-9.0	-19.22	0.71	1.000	0.00
	1 010	0.6	59	1.026	-5.3	-37.25	0.71	1.000	0.00
56	1.013	-9.6		1 015	0.0	17 20	11 50	1 000	0 00
			54	1.015	-9.6	-17.30	-11.58	1.000	0.00
			55	1.013	-9.8	19.24	-3.84	1.000	0.00
			57	1.017	-8.4	-20.80	2.92	1.000	0.00
			58	1.008	-9.2	-4.60	5.86	1.000	0.00
122000		1211 - 10110	59	1.026	-5.3	-60.53	6.43	1.000	0.00
57	1.017	-8.4	0.048820	g (proto	122 122	123722 112222			1000 - 1000 AN
			50	1.028	-5.9	-32.95	1.99	1.000	0.00
			56	1.013	-9.6	20.95	-4.99	1.000	0.00
58	1.008	-9.2							
			51	1.008	-8.5	-16.63	5.26	1.000	0.00
			56	1.013	-9.6	4.63	-8.26	1.000	0.00
59	1.026	-5.3							
			54	1.015	-9.6	33.67	-4.32	1.000	0.00
			55	1.013	-9.8	37.90	-3.63	1.000	0.00
			56	1.013	-9.6	62.04	-13.41	1.000	0.00
			60	1.040	-1.8	-43.92	-0.73	1.000	0.00
			61	1.043	-1.0	-52.52	-0.33	1.000	0.00
			63	1.028	-2.1	-154.04	-2.05	1.015	0.00
60	1.040	-1.8	- T	100 A 100	1. S.				
			59	1,026	-5.3	44.50	-0.62	1,000	0.00
			61	1.043	-1.0	-114.02	-4.74	1.000	0.00
			62	1,039	-1.6	-8.48	2.36	1.000	0.00
61	1 043	-1 0	02	1.000	1.0	0.10	4.50		0.00
U1	1.015	1.0	50	1 026	-5.2	53 28	0 11	1,000	0 00
			55	1.020	5.5	55.50	0.11	1.000	0.00

			60	1.040	-1.8	114.33	4.79	1.000	0.00
			62	1 039	-1 6	28 12	5 00	1 000	0 00
			02	1.035	-1.0	20.12	5.00	1.000	0.00
			64	1.039	-0.5	-38.78	16.11	1.002	0.00
62	1.039	-1.6							
04	21002		60	1 010	1 0	0.40	2 01	1 000	0 00
			60	1.040	-1.8	8.49	-3.91	1.000	0.00
			61	1.043	-1.0	-28,06	-5.77	1.000	0.00
				1 057	2 5	25.25	2 50	1 000	0 00
			66	1.057	2.5	-35.25	-2.59	1.000	0.00
			67	1.043	-0.2	-22.17	0.31	1.000	0.00
62	1 020	-2 1							
03	1.020	-2.1							
			59	1.026	-5.3	154.04	10.51	1.015	0.00
			64	1 039	-0.5	-154 04	-51 22	1 000	0 00
100000	1142 Balling (182)	Date: There	01	1.000	0.5	191.01	51.00	2.000	0.00
64	1.039	-0.5							
			61	1.043	-1.0	38.78	-15.68	1,002	0.00
			60	1 000		154.45	20.00	1 000	0.00
			63	1.028	-2.1	154.45	32.93	1.000	0.00
			65	1.047	2.6	-193.23	-25.98	1.000	0.00
65	1 047	2 4	1.00000	1000		an 10 (10 (10 (10 (10))	100000000000000000000000000000000000000		10920046
65	1.047	2.6							
			38	1.044	-5.3	151.68	-57.83	1.000	0.00
			CA	1 020	0 5	104 17	4 01	1 000	0 00
			64	1.039	-0.5	194.17	-4.91	1.000	0.00
			66	1.057	2.5	6.57	-27.35	1.022	0.00
			60	1 054	2 2	25 00	- 90 56	1 000	0 00
		22.425	00	1.034	2.5	55.05	00.50	1.000	0.00
66	1.057	2.5							
			49	1.041	-3.9	264.03	-3.85	1,000	0.00
						201.00	1.05	1 000	0.00
			62	1.039	-1.6	35.81	-1.25	1.000	0.00
			65	1.047	2.6	-6.57	27.61	1.022	0.00
			67	1 040	0.0	F0 01	2 20	1 000	0.00
			67	1.043	-0.2	50.81	3.28	1.000	0.00
67	1.043	-0.2							
0.000	- 100 100 (2002)	10 TR. 2780 TT.	60	1 020	-1 6	22 20	-2 12	1 000	0 00
			02	1.039	-1.0	22.29	-3.13	1.000	0.00
			66	1.057	2.5	-50.29	-3.87	1.000	0.00
68	1 054	23							
00	1.054	4.5							
			65	1.047	2.6	-35.05	10.65	1.000	0.00
			69	1.058	2.0	14.32	-12.57	1,003	0.00
			0.5	1.050	2.0	11.56	12.57	1.005	0.00
			81	1.051	2.1	20.72	-35.51	1.000	0.00
			116	1.052	2.3	0.00	29.14	1.000	0.00
c 0	1 050	0.0			1929-2042-070	100000000000			0.500.000.000
69	1.058	2.0							
			47	1.036	-4.5	43.84	-6.37	1.000	0.00
			4.0	1 041	2.0	22.00	7 62	1 000	0 00
			49	1.041	-3.9	55.00	-1.02	1.000	0.00
			68	1.054	2.3	-14.32	12.69	1.003	0.00
			70	1 026	-4 6	99 92	1 71	1 000	0.00
			10	1.020	4.0	55.52	1.11	1.000	0.00
			75	1.019	-4.7	105.29	-1.93	1.000	0.00
			77	1 037	-1 1	60.41	-0.42	1.000	0.00
				1.00,	* • *	00.11		1.000	0.00
70	1.026	-4.6							
			24	1.029	-4.3	-1.06	-6.11	1.000	0.00
				1 050		00.00	0.55	1 000	0.00
			69	1.058	2.0	-91.22	-3.55	1.000	0.00
			71	1.024	-4.8	10.06	4.27	1.000	0.00
			77.4	1 017	E O	10 00	0 07	1 000	0 00
			74	1.017	-5.9	10.00	-0.07	1.000	0.00
			75	1.019	-4.7	3.34	2.35	1.000	0.00
71	1 024	4 0							
11	1.024	-4.8							100 00082
			70	1.026	-4.6	-10.05	-5.15	1.000	0.00
			72	1 017	-5.1	4.05	0 41	1,000	0 00
			14	1.017	3.1	4.05	0.41	1.000	0.00
			73	1.021	-4.9	6.01	4.74	1.000	0.00
72	1,017	-5.1							
				1 000	1 3	7 00	6 75	1 000	0 00
			24	1.029	-4.3	-1.90	-0.75	1.000	8.00
			71	1.024	-4.8	-4.04	-5.00	1.000	0.00
72	1 001	-1 0							
13	1.021	-4.9		-					
			71	1.024	-4.8	-6.00	-5.94	1.000	0.00
74	1 017	-5 9							
14	1.017	5.5			100	16 51	0.00	1	
			70	1.026	-4.6	-18.74	-3.00	1.000	0.00
			75	1.019	-4.7	-49.26	9.71	1,000	0.00
	2 2 2 2 2	Sec. 1922	15	1.012		12.20	2.14	1.000	0.00
75	1.019	-4.7							
			69	1.058	2.0	-101.27	0.66	1.000	0.00
			70	1 000		2 22	C 07	1 000	0.00
			10	1.026	-4.6	-3.33	-0.07	1.000	0.00
			74	1.017	-5.9	49.56	-9.79	1.000	0.00
			70	1 027		-22 01	-0 60	1 000	0 00
			11	1.037	-1.1	-32.91	-0.09	1.000	0.00
			118	1.011	-5.8	40.95	4.89	1.000	0.00
76	1 014	-6 1							
10	1.014	-0.1					_		12 2 2
			77	1.037	-1.1	-60.31	3.52	1.000	0.00
			118	1,011	-58	-7 69	8 35	1,000	0.00
	a generation		110	1.011	5.0	1.05	0.55	1.000	0.00
77	1.037	-1.1							
			69	1.058	2.0	-59.40	-7.65	1.000	0.00
			00	1 010		22 54	2.40	1 000	0.00
			15	1.019	-4.7	33.54	-2.48	1.000	0.00
			76	1.014	-6.1	61.89	-2.12	1.000	0.00
			70	1 022	1 0	20 14	25 24	1 000	0 00
			18	1.032	-1.3	39.14	23.24	1.000	0.00
			80	1.052	1.7	-156.11	5.08	1.000	0.00
			00	1 022	-2.0	10 04	-6 10	1 000	0 00
			02	1.033	-2.0	17.74	-0.10	1.000	0.00

78	1.032	-1.3							
10000			77	1 037	-1 1	-39.06	-26 34	1 000	0 00
			70	1.034	0.0	21.04	0.34	1.000	0.00
-	1 004		19	1.034	-0.9	-31.94	0.34	1.000	0.00
79	1.034	-0.9							
			78	1.032	-1.3	31.99	-0.80	1.000	0.00
			80	1.052	1.7	-70.99	-9.83	1.000	0.00
80	1.052	1.7							
			77	1 037	-1 1	158 59	-5 16	1 000	0 00
			70	1 024	-0.9	71 72	11 17	1 000	0.00
			73	1.054	-0.9	71.75	11.17	1.000	0.00
			81	1.051	2.1	-20.71	0.37	1.018	0.00
			96	1.032	-1.6	34.61	2.86	1.000	0.00
			97	1.037	-0.3	41.92	7.57	1.000	0.00
			98	1.043	-0.6	40.57	-1.23	1.000	0.00
			99	1 041	-1.7	31 18	-3 77	1 000	0 00
01	1 051	2 1	22	1.011	. .,	51.10	5.77	1.000	0.00
91	1.051	2.1							
			68	1.054	2.3	-20.71	-53.91	1.000	0.00
			80	1.052	1.7	20.71	-0.24	1.018	0.00
82	1.033	-2.0							
			77	1.037	-1.1	-19.82	-2.33	1.000	0.00
			83	1 036	-17	-18 90	-6 68	1 000	0 00
			05	1.030	1.1	15.00	0.00	1.000	0.00
	1 2 2 2	91.122	96	1.032	-1.6	-15.28	3.34	1.000	0.00
83	1.036	-1.7							
			82	1.033	-2.0	18.94	2.74	1.000	0.00
			84	1.041	-0.6	-14.05	1.67	1.000	0.00
			85	1 050	0.2	-24 88	-3 68	1 000	0.00
0.4	1 041	0 6	05	1.050	0.2	21.00	5.00	1.000	0.00
84	1.041	-0.6				2.2.2.2		-	12 12 2
			83	1.036	-1.7	14.17	-4.20	1.000	0.00
			85	1.050	0.2	-25.17	-2.80	1.000	0.00
85	1.050	0.2							
			83	1 036	-17	25 13	0 75	1 000	0 00
			0.4	1 041	0.0	25.25	1 02	1 000	0.00
			84	1.041	-0.8	25.35	1.83	1.000	0.00
			86	1.033	-0.6	14.55	8.74	1.000	0.00
			88	1.072	1.9	-35.07	-16.76	1.000	0.00
			89	1.100	4.6	-53.97	-23.44	1.000	0.00
86	1 033	-0.6							
00	1.000	0.0	05	1 050	0.2	14 45	11 20	1 000	0 00
			65	1.030	0.2	-14.45	-11.30	1.000	0.00
			87	1.027	0.2	-6.55	1.38	1.000	0.00
87	1.027	0.2							
			86	1.033	-0.6	6.56	-6.00	1.000	0.00
88	1.072	1.9							
100000	0.0000000000000000000000000000000000000	1000	85	1 050	0.2	35 34	15 01	1 000	0 00
			0.5	1.050	0.2	02.24	15.01	1.000	0.00
			89	1.100	4.6	-83.34	-25.01	1.000	0.00
89	1.100	4.6							
			85	1.050	0.2	54.69	23.26	1.000	0.00
			88	1.072	1.9	84.25	27.39	1.000	0.00
			90	1 064	-03	160 44	16 70	1 000	0 00
			00	1 067	1 1	200.02	52.00	1 000	0.00
			92	1.007	1.1	200.93	52.90	1.000	0.00
90	1.064	-0.3							
			89	1.100	4.6	-156.88	-21.04	1.000	0.00
			91	1.059	0.0	-6.12	7.01	1.000	0.00
91	1.059	0.0							
1000		1000	90	1 064	-0.3	6 14	-9 34	1 000	0 00
			20	1.004	1.1	16.14	0.04	1.000	0.00
			92	1.067	1.1	-10.14	-2.94	1.000	0.00
92	1.067	1.1							
			89	1.100	4.6	-198.03	-50.31	1.000	0.00
			91	1.059	0.0	16.23	-0.46	1,000	0.00
			93	1 048	-0 4	38 12	11 53	1 000	0 00
			04	1 027	1 2	20.12	20.00	1.000	0.00
			94	1.037	-1.3	32.52	8.06	1.000	0.00
			100	1.049	-1.3	16.29	0.30	1.000	0.00
			102	1.059	0.3	29.86	8.09	1.000	0.00
93	1.048	-0.4							
			92	1.067	1.1	-37.76	-12.76	1.000	0.00
			94	1 037	-1 2	25 75	5 76	1,000	0 00
04	1 027	1 .	24	1.037	1.5	23.15	5.70	1.000	0.00
94	1.037	-1.3	-202	12 (20200)×		200 800	12.200 A200	2 (2020)20	120 12000
			92	1.067	1.1	-32.03	-10.94	1.000	0.00
			93	1.048	-0.4	-25.61	-7.33	1.000	0.00
			95	1.025	-1.9	28.82	20.83	1.000	0.00
			96	1 032	-1.6	5 99	3 70	1 000	0 00
			100	1 040	_1.0	-7 17	-22.20	1 000	0.00
		1 <u>84</u> 17 <u>19</u> 5	100	1.049	-1.3	-/.1/	-22.20	1.000	0.00
95	1.025	-1.9				122.000			
			94	1.037	-1.3	-28.67	-21.49	1.000	0.00
			96	1.032	-1.6	-13.33	-9.51	1.000	0.00
96	1.032	-1.6							
			80	1 052	1 7	-34 22	-6 20	1 000	0 00
			00	1.052	- • /	51.66	-0.20	1.000	0.00

			82	1.033	-2.0	15.32	-9.00	1.000	0.00
			94	1.037	-1.3	-5.97	-6.11	1.000	0.00
			95	1.025	-1.9	13.37	8.09	1.000	0.00
			97	1 037	-0.3	-26 50	-1 77	1 000	0.00
07	1 027	0.2	21	1.057	0.5	20.50	1.77	1.000	0.00
97	1.037	-0.3	0.0	1 050	1 1	11 60	0 70	1 000	0.00
			80	1.052	1.7	-41.62	-8.79	1.000	0.00
			96	1.032	-1.6	26.62	-0.21	1.000	0.00
98	1.043	-0.6							
			80	1.052	1.7	-40.22	-0.30	1.000	0.00
			100	1.049	-1.3	6.22	-7.70	1.000	0.00
99	1 041	-17							
	1.011	1	80	1 052	1 7	-20 79	-0.20	1 000	0 00
			100	1.052	1.7	-30.78	-0.39	1.000	0.00
S. 1975.	20 - 000-000 Dat	100 100	100	1.049	-1.3	-11.22	-8.82	1.000	0.00
100	1.049	-1.3							
			92	1.067	1.1	-16.14	-4.87	1.000	0.00
			94	1.037	-1.3	7.24	15.90	1.000	0.00
			98	1.043	-0.6	-6.19	2.60	1.000	0.00
			99	1.041	-1.7	11.25	6.60	1.000	0.00
			101	1 045	.1.1	-2.60	2 50	1 000	0.00
			101	1.045	-1.1	-2.00	2.59	1.000	0.00
			103	1.038	-4.4	110.02	-11.17	1.000	0.00
			104	1.016	-7.1	54.43	5.03	1.000	0.00
			106	1.011	-8.4	58.79	2.16	1.000	0.00
101	1.045	-1.1							
			100	1.049	-1.3	2.61	-6.16	1.000	0.00
			102	1 059	0.3	-24 61	-8 84	1 000	0.00
100	1 050	0.2	102	1.055	0.5	24.01	0.04	1.000	0.00
102	1.059	0.3				00.05	0.04	1 000	0.00
			92	1.067	1.1	-29.75	-9.26	1.000	0.00
			101	1.045	-1.1	24.75	6.26	1.000	0.00
103	1.038	-4.4							
			100	1.049	-1.3	-108.25	11.13	1.000	0.00
			104	1.016	-7.1	32.83	3.72	1.000	0.00
			105	1 016	- 9 2	12 01	-0.70	1 000	0.00
			105	1.010	-0.2	12.91	-0.70	1.000	0.00
5.2.2			110	1.005	-9.8	56.00	1.18	1.000	0.00
104	1.016	-7.1							
			100	1.049	-1.3	-53.19	-5.19	1.000	0.00
			103	1.038	-4.4	-32.35	-6.38	1.000	0.00
			105	1.016	-8.2	47.55	-13.46	1.000	0.00
105	1.016	-8.2							
105	1.010	0.2	107	1 029	- 1 1	-41 00	-0.92	1 000	0 00
			103	1.030	-4.4	47.01	10.03	1.000	0.00
			104	1.016	-7.1	-47.31	13.33	1.000	0.00
			106	1.011	-8.4	9.92	5.78	1.000	0.00
			107	1.009	-11.0	26.91	-5.43	1.000	0.00
			108	1.010	-9.0	21.48	0.22	1.000	0.00
106	1.011	-8.4							
-			100	1 049	-1 3	-56 88	-1 49	1 000	0 00
			100	1.015	0.0	0.00	7 10	1.000	0.00
			105	1.010	-0.2	-9.90	-7.10	1.000	0.00
			107	1.009	-11.0	23.77	-7.32	1.000	0.00
107	1.009	-11.0							
			105	1.016	-8.2	-26.53	1.89	1.000	0.00
			106	1.011	-8.4	-23.47	3.57	1.000	0.00
108	1,010	-9.0							
			105	1 016	-8.2	-21 37	-1 70	1,000	0 00
			100	1 007	0.2	10.27	0.70	1.000	0.00
	1 0 0 0		109	1.007	-9.3	19.37	0.79	1.000	0.00
109	1.007	-9.3							
			108	1.010	-9.0	-19.33	-1.46	1.000	0.00
			110	1.005	-9.8	11.33	-1.54	1.000	0.00
110	1.005	-9.8							
			103	1,038	-4.4	-54.83	-6.56	1.000	0.00
			109	1 007	-93	-11 29	-0.41	1 000	0 00
			111	1 012	0.0	42 10	0.60	1.000	0.00
			111	1.013	-8.0	-42.10	0.60	1.000	0.00
	is manual	WICH LAND	112	0.999	-12.5	69.23	-18.56	1.000	0.00
111	1.013	-8.0							
			110	1,005	-9.8	42.49	-1.30	1.000	0.00
112	0.999	-12.5							
		1000	110	1,005	-9.8	-68 00	15.53	1,000	0.00
112	1 010	-67	110	1.000	2.0	00.00	20.00	2.000	0.00
113	1.019	-0./		1 007		00.11	10	1 000	0.00
			17	1.026	-6.5	-20.41	-18.65	1.000	0.00
			32	1.011	-8.4	14.41	-2.84	1.000	0.00
114	1.007	-8.8							
			32	1.011	-8.4	-13.31	-4.10	1.000	0.00
			115	1.007	-8.8	5.31	1.10	1,000	0.00
115	1 007	_ 0 0	220	2.007	0.0		1.10		0.00
112	1.007	-0.0	0.7	1 010	<u> </u>	10 00	F (A	1 000	0.00
			27	1.013	-8.2	-16.69	-5.63	1.000	0.00
			114	1.007	-8.8	-5.31	-1.37	1.000	0.00

116	1.052	2.3							
			68	1.054	2.3	0.00	-47.27	1.000	0.00
117	1.018	-1.4							
			12	1.033	0.0	-20.00	-8.00	1.000	0.00
118	1.011	-5.8							
			75	1.019	-4.7	-40.71	-5.34	1.000	0.00
			76	1.014	-6.1	7.71	-9.66	1.000	0.00
X2	xx	X-)	KX	X-	X	X	X-	X
			== VE'	FORES MULT	FIPLICADOR	ES DE LAGRAN	IGE =====		
*****	* * * * * * * * * *	*******	* * * * * *	*** LAMBI	DA DO DELT	AP ******	*******	*******	******
			X	X	X	X			

BARRA	TIPO	LAMBDA
xx	X-	0 00248
3	0	0.00638
4	-1	0.00876
5	ō	0.00906
6	-1	0.00524
7	0	0.00342
8	-1	0.00901
9	0	0.00817
11	0	0.00417
12	-1	0.00590
13	0	0.00734
14	0	0.00400
15	-1	0.01496
16	0	0.00507
10	0	0.01439
10	-1	0.01655
20	0	0.01830
21	0	0.01907
22	õ	0.01946
23	õ	0.01953
24	õ	0.02198
27	-1	0.02110
28	0	0.02122
29	0	0.02068
30	0	0.01371
32	-1	0.02123
33	0	0.01730
34	0	0.01831
35	0	0.01856
36	-1	0.01860
37	0	0.01791
38	0	0.01693
39	0	0.02217
40	-1	0.02390
41	0	0.02478
42	-1	0.02522
43	0	0.02004
44	0	0.02128
45	0	0.02127
47	0	0.02011
50	ő	0.02052
51	õ	0.02208
52	õ	0.02265
53	0	0.02250
55	-1	0.02208
56	-1	0.02199
57	0	0.02173
58	0	0.02232
60	0	0.01889
62	-1	0.01888
63	0	0.01896
64	0	0.01867
67	0	0.01817
68	0	0.01926
69	-1	0.01877
70	-1	0.02146

71	0	0.02170
72	-1	0.02287
73	-1	0.02176
74	-1	0.02442
75	0	0.02410
76	-1	0.02646
77	-1	0.02439
78	0	0.02462
79	0	0.02432
81	0	0.02105
82	0	0.03003
83	0	0.03167
84	0	0.03447
85	-1	0.03531
86	0	0.03604
88	0	0.03588
90	-1	0.03824
91	-1	0.03730
92	-1	0.03526
93	0	0.03393
94	0	0.03237
95	0	0.03146
96	0	0.02924
97	0	0.02616
98	0	0.02708
99	-1	0.03063
101	0	0.03429
102	0	0.03499
104	-1	0.03784
105	-1	0.03893
106	0	0.03891
107	-1	0.04096
108	0	0.03994
109	0	0.04029
110	-1	0.04073
112	-1	0.04496
113	-1	0.01539
114	0	0.02151
115	0	0.02153
116	-1	0.01926
117	0	0.00080
118	0	0.02558
XX-	X	X

BARRA	TIPO	LAMBDA
X	<x< td=""><td>X</td></x<>	X
2	0	00001
3	0	00023
5	0	00091
7	0	00028
9	0	00096
11	0	00018
13	0	0.00014
14	0	00024
16	0	00007
17	0	00005
20	0	0.00060
21	0	0.00082
22	0	0.00063
23	0	00023
24	0	00025
28	0	0.00064
29	0	0.00049
30	0	00002
33	0	00017
34	0	00046
35	0	00040
37	0	00048
38	0	0.00033
39	0	00006

41	0	0.00033
43	0	00026
44	0	0.00045
45	0	0.00100
47	0	00036
48	0	00037
50	0	00011
51	0	0.00034
52	0	0.00051
53	0	0.00029
57	0	00008
58	0	0.00022
60	0	00002
63	0	0.00048
64	0	0.00027
67	0	00003
68	0	0.00020
71	0	0.00008
75	0	0.00043
78	0	0.00088
79	0	0.00088
81	0	0.00045
82	0	0.00082
83	0	0.00079
84	0	0.00085
86	0	0.00046
88	0	0.00054
93	0	0.00075
94	0	0.00085
95	0	0.00127
96	0	0.00097
97	0	0.00076
98	0	0.00076
101	0	0.00042
102	0	0.00041
106	0	0.00084
108	0	0.00155
109	0	0.00174
114	0	0.00050
115	0	0.00053
117	0	00030
118	0	0.00064
XX-	X	X

****************** VETOR PI DOS LIMITES DE GERAÇÃO DE POT. ATIVA **********************

		PI	PI	S	S
BARRA	TIPO	LIM. SUP.	LIM. IN.	LIM. SUP.	LIM. INF.
	XX	K	X	-X	-X
10	1	-0.0258	0.0021	2.5396	2.4504
25	1	-0.1093	0.0045	0.7946	1.4954
26	1	-0.1709	0.0032	0.4353	2.7541
31	1	-0.3378	0.1626	0.0239	0.0661
46	1	-0.9528	0.0550	0.0313	0.1587
49	1	-0.1744	0.0049	0.0539	2.0361
54	1	-0.4887	0.0210	0.0265	0.4635
59	1	-0.1126	0.0064	0.0488	1.5912
61	1	-0.2049	0.0062	0.0795	1.5605
65	1	-0.1215	0.0025	0.1249	3.8651
66	1	-0.1330	0.0025	0.1691	3.8209
80	1	-0.0631	0.0020	0.1210	4.8690
87	1	-0.1742	0.2934	0.0344	0.0556
89	1	-0.3465	0.0016	1.0968	4,9932
100	1	-0.1491	0.0039	0.0619	2.5281
103	1	-0.1275	0.0235	0.0351	0.4549
111	1	-0.1397	0.0263	0.0251	0.4149

****************** VETOR PI DOS LIMITES DE GERAÇÃO DE POT. REATIVA *******************

X>	{}	{;	X	-X	-xx
		PI	PI	S	S
BARRA	TIPO	LIM. SUP.	LIM. IN.	LIM. SUP.	LIM. INF.
X>	{}	{]	X	-X	-XX
4	-1	-0.0243	0.0165	0.9705	0.0295
6	-1	-0.0326	0.0140	0.5129	0.4871
8	-1	-0.0130	0.0400	0.9842	0.0158
12	-1	-0.0383	0.0132	0.2472	0.7528
15	-1	-0.0319	0.0142	0.2815	0.7185
18	-1	-0.0548	0.0120	0.2652	0.7348
19	-1	-0.0103	0.0140	0.9038	0.7462
27	-1	-0.0203	0.0190	0.2582	0.7418
32	-1	-0.0112	0.0157	0.8076	0.6924
36	-1	-0.0284	0.0150	0.4932	0.5068
40	-1	-0.0075	0.0143	1.1681	0.8319
42	-1	-0.0250	0.0162	0.2185	0.7815
55	-1	-0.0075	0.0143	1.2598	0.7402
56	-1	-0.0070	0.0162	1.3220	0.6780
62	-1	-0.0233	0.0170	0.4795	0.5205
69	-1	-0.0021	0.0247	2.6028	2.3972
70	-1	-0.0218	0.0179	0.3311	0.6689
72	-1	-0.0180	0.0216	0.6175	0.3825
73	-1	-0.0194	0.0198	0.5594	0.4406
74	-1	-0.0148	0.0155	0.5869	0.7131
76	-1	-0.0149	0.0116	0.5213	0.9787
77	-1	-0.0249	0.0162	0.1003	0.8997
85	-1	-0.0138	0.0166	0.9389	0.3611
90	-1	-0.0145	0.0119	0.7204	0.7796
91	-1	-0.0187	0.0206	0.6228	0.3772
92	-1	-0.0097	0.0200	1.1280	0.3720
99	-1	-0.0184	0.0210	0.5921	0.4079
104	-1	-0.4673	0.0143	0.0003	0.4997
105	-1	-0.0474	0.0199	0.0156	0.6844
107	-1	-0.0170	0.0188	0.4864	0.6136
110	-1	-0.4684	0.0150	0.0099	0.4901
112	-1	-0.0252	0.0161	0.2147	0.7853
113	-1	-0.3134	0.0209	0.2149	0.2851
116	-1	-0.1150	0.0237	0.4726	0.0274
10	1	-0.0031	0.0055	4.1017	0.8983
25	1	-0.0026	0.0076	2.7669	2.2331
26	1	-0.0053	0.0031	2.7542	2.2458
31	1	-0.0361	0.0135	0.2425	0.7575
46	1	-0.0178	0.0220	0.5744	0.4256
49	1	-0.0040	0.0039	2.0135	2.9865
54	1	-0.0075	0.0142	1.0190	0.9810
59	1	-0.0167	0.0240	0.0130	0.9870
61	1	-0.0032	0.0051	2.3277	2.6723
65	1	-0.0065	0.0028	3.5317	1.4683
66	1	-0.0023	0.0126	2.7341	2.2659
80	1	-0.0024	0.0117	2.6539	2.3461
87	1	-0.0039	0.0039	2.5600	2.4400
89	1	-0.0037	0.0042	1.2975	3.7025
100	1	-0.0040	0.0039	2.1315	2.8685
103	1	-0.0041	0.0038	2.1266	2.8734
111	1	-0.9331	0.0039	0.0131	2.4869
XX	(X		{	-X	-XX

LINHA	DE	PARA	PI	S
xx		xx-	X-	X
107	24	72	0.0000	0.0000

X2	{;	xx-	рт	е рт	-X	s	S.
LINHA	DE	PARA	LIM. SUP.	LIM. INF.	LIM	. SUP.	LIM, INF.
8	8	5	-1.1615	0.8754	~	0.1010	0.0990
32	26	25	-1.6528	0.7159		0.0885	0.1115
36	30	17	-1.6529	0.7170		0.0986	0.1014
51	38	37	-3.0764	0.6003		0.0986	0.1014
90	63	59	-1.6692	0.7128		0.0854	0.1146
92	64	61	-1.1684	0.8715		0.0978	0.1022
98	65	66	-3.1225	0.5963		0.0775	0.1225
103	81	80	-3.1298	0.5965		0.0822	0.1178
******	******	***** VE1	OR PI DOS I	LIMITES DAS	TENS	ÕES ****	*****
X>	()	X	X	X		-X	X
DVDDV	TTDO	LTM OT	PI TATT OI		S	S T TH	
BARRA	1110	LIM. SU	е. БIМ. J	LMF. L1M.	SUP.	DIM.	INP.
1	2	-0 101	9 0.00	959 0	0669	0 1	331
2	0	-0.100	5 0.00	972 0	0799	0.1	201
3	õ	-0.099	0.09	986 0	0837	0.1	163
4	-1	-0.099	1 0.09	986 0.	0741	0.1	259
5	0	-0.099	3 0.09	985 0.	0686	0.1	314
6	-1	-0.099	9 0.09	978 0.	0781	0.1	219
7	0	-0.100	5 0.09	972 0.	0748	0.1	252
8	-1	-0.101	0.09	969 0.	0549	0.1	451
9	0	-0.100	9 0.09	972 0.	0471	0.1	.529
10	1	-0.098	0 0.09	998 0.	0738	0.1	.262
11	0	-0.100	4 0.05	973 0.	0767	0.1	233
12	-1	-0.099	0 0.05	987 0.	0872	0.1	069
14	0	-0.101	0 0.05	967 0.	0753	0.1	247
15	-1	-0.098	9 0.09	988 0.	0876	0.1	124
16	0	-0.100	6 0.09	971 0.	0779	0.1	221
17	0	-0.099	5 0.09	982 0.	0741	0.1	259
18	-1	-0.098	7 0.09	90 0.	0883	0.1	117
19	-1	-0.098	8 0.09	989 0.	0895	0.1	105
20	0	-0.097	9 0.09	998 0.	0966	0.1	034
21	0	-0.097	5 0.10	002 0.	0980	0.1	.020
22	0	-0.097	5 0.10		0907	0.1	093
23	0	-0.098	4 0.05	997 0. 003 0	0705	0.1	295
25	1	-0.098	6 0.09	993 0.	0527	0.1	473
26	ĩ	-0.099	6 0.09	983 0.	0549	0.1	451
27	-1	-0.097	1 0.10	005 0.	0872	0.1	128
28	0	-0.096	8 0.10	009 0.	0956	0.1	044
29	0	-0.097	0 0.10	007 0.	0967	0.1	033
30	0	-0.100	6 0.09	973 0.	0543	0.1	457
31	1	-0.097	3 0.10	0.004 0.	0939	0.1	061
32	-1	-0.097	4 0.10	0.03 0.	0894	0.1	106
53	0	-0.099	z 0.09	704 0. 070 0	07/1	0.1	250
34	0	-0.100	2 0.05	975 0.	0791	0.1	209
35	-1	-0.100	1 0.05	976 0.	0796	0.1	204
37	0	-0.100	9 0.09	968 0.	0690	0.1	310
38	õ	-0.100	1 0.09	978 0.	0557	0.1	443
39	0	-0.098	9 0.09	987 0.	0935	0.1	065
40	-1	-0.098	5 0.09	992 0.	0959	0.1	041
41	0	-0.097	8 0.09	998 0.	1019	0.0	981
42	-1	-0.097	5 0.10	02 0.	0928	0.1	072
43	0	-0.099	4 0.09	983 0.	0856	0.1	144
44	0	-0.098	8 0.09	0.	0871	0.1	129
45	0	-0.098	4 0.09	993 0.	0895	0.1	105
46	1	-0.098	9 0.09	988 0,	0756	0.1	244
4/	0	-0.099	1 0.05	200 U. 287 A	0622	0.1	300
40	1	-0.099	2 0.05	987 O.	0589	0.1	411
50	0	-0.099	3 0.05	994 0	0719	0.1	281
51	0	-0.097	1 0.10	005 0	0919	0.1	081
					0.00 D C C C C C C C C C C C C C C C C C C		

50	0	-0 0969	0 1009	0 0992	0 1019
52	0	-0.0900	0.1009	0.0902	0.1010
55	1	-0.0986	0.1010	0.0997	0.1003
54	T	-0.0975	0.1002	0.0851	0.1149
55	- 1	-0.0974	0.1003	0.0870	0.1130
56	-1	-0.0974	0.1003	0.0866	0.1134
57	0	-0.0976	0.1000	0.0834	0.1166
58	0	-0.0971	0.1005	0.0918	0.1082
59	1	-0.0977	0.1000	0.0741	0.1259
60	0	-0.0985	0.0994	0.0604	0.1396
61	1	-0.0987	0 0992	0 0569	0 1431
62	-1	-0.0984	0.0992	0.0505	0 1289
62	-1	-0.0984	0.0994	0.0011	0.1309
63	0	-0.0978	0.0999	0.0717	0.1283
64	0	-0.0985	0.0993	0.0610	0.1390
65	1	-0.0993	0.0986	0.0529	0.1471
66	1	-0.0998	0.0984	0.0432	0.1568
67	0	-0.0987	0.0992	0.0575	0.1425
68	0	-0.0990	0.0991	0.0464	0.1536
69	-1	-0.0999	0.0983	0.0420	0.1580
70	-1	-0.0990	0.0987	0.0738	0.1262
71	0	-0.0989	0.0988	0.0763	0.1237
72	-1	-0.0982	0.0995	0 0828	0.1172
72	_1	-0.0989	0.0000	0.0793	0.1209
73	-1	-0.0989	0.0988	0.0792	0.1208
/4	-1	-0.0981	0.0996	0.0831	0.1169
75	0	-0.0980	0.0997	0.0810	0.1190
76	-1	-0.0976	0.1001	0.0857	0.1143
77	-1	-0.0985	0.0993	0.0632	0.1368
78	0	-0.0982	0.0995	0.0678	0.1322
79	0	-0.0984	0.0994	0.0662	0.1338
80	1	-0.0998	0.0982	0.0484	0.1516
81	0	-0.0984	0.0997	0.0485	0.1515
82	0	-0 0975	0 1003	0 0674	0 1326
83	0	-0.0974	0 1004	0.0637	0 1363
0.3	0	-0.0974	0.1004	0.0037	0.1411
84	0	-0.0969	0.1009	0.0589	0.1411
85	- 1	-0.0972	0.1008	0.0502	0.1498
86	0	-0.0973	0.1005	0.0670	0.1330
87	1	-0.0992	0.0986	0.0727	0.1273
88	0	-0.0977	0.1011	0.0283	0.1717
89	1	-0.0886	0.1007	0.0003	0.1997
90	-1	-0.0962	0.1022	0.0358	0.1642
91	-1	-0.0967	0.1015	0.0408	0.1592
92	-1	-0.0980	0.1005	0.0334	0.1666
63	0	-0.0974	0 1006	0 0524	0 1476
04	0	-0.0974	0.1000	0.0524	0.1375
94	0	-0.0976	0.1003	0.0625	0.1375
95	0	-0.0970	0.1008	0.0751	0.1249
96	0	-0.0978	0.1000	0.0682	0.1318
97	0	-0.0984	0.0994	0.0631	0.1369
98	0	-0.0990	0.0989	0.0571	0.1429
99	-1	-0.0992	0.0987	0.0586	0.1414
100	1	-0.0991	0.0989	0.0506	0.1494
101	0	-0.0976	0.1003	0.0552	0.1448
102	0	-0.0977	0.1005	0.0414	0.1586
103	1	-0.0989	0.0989	0.0618	0.1382
104	- 1	-0.0970	0.1007	0.0844	0.1156
105	-1	-0.0970	0 1007	0 0841	0 1159
105	-	-0.0969	0.1009	0.0041	0.1111
107	1	-0.0900	0.1008	0.0005	0.1111
107	-1	-0.0970	0.1007	0.0915	0.1005
108	0	-0.0968	0.1008	0.0903	0.1097
109	0	-0.0967	0.1009	0.0926	0.1074
110	-1	-0.0968	0.1008	0.0953	0.1047
111	1	-0.0974	0.1003	0.0868	0.1132
112	-1	-0.0966	0.1010	0.1014	0.0986
113	-1	-0.0991	0.0986	0.0814	0.1186
114	0	-0.0970	0.1007	0.0932	0.1068
115	0	-0.0969	0.1007	0.0934	0.1066
116	-1	-0.0989	0.0991	0.0479	0.1521
117	õ	-0.1009	0.0967	0 0822	0 1178
110	0	-0 0974	0 1002	0 0802	0 1107
V	v	-0.09/4	V	0.0095	0.1107
vy-	X		vY.	X	X