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Resumo

Este texto foi elaborado para a participação do autor no Concurso Público de Pro-

fessor Livre Docente junto ao Departamento de Sistemas de Computação do Ins-

tituto de Ciências Matemáticas e de Computação da Universidade de São Paulo

(SSC/ICMC/USP). No texto, é apresentada uma sistematização das pesquisas e

trabalhos realizados pelo autor, delineando seu foco de pesquisa em Teste de Soft-

ware. Primeiramente, são descritas as contribuições na área de Teste Baseado em

Máquinas de Estados Finitos, o qual concentra os principais esforços do autor e

as publicações mais recentes. Em seguida, são apresentadas as contribuições na

área de Teste de Programas Paralelos que caracteriza a segunda linha de atuação do

autor. Por fim, são descritas as outras linhas de pesquisa nas quais o autor tem

atuado.

Neste documento, são descritos os fundamentos e os pressupostos com as

quais as abordagens têm sido exploradas pelo autor, destacando as contribuições

e os desenvolvimentos realizados nos últimos seis anos de trabalho acadêmico,

correspondendo ao período posterior à conclusão do doutorado. Nesse período,

o autor publicou oito artigos completos em revistas, incluindo publicações na

IEEE Transactions on Computers, Oxford Computer Journal, IET Software e Computer

Languages, Systems and Structures, com Qualis A1, B1, B2 e B2, respectivamente.

Publicou também 24 artigos em congressos da área, sendo 13 em eventos interna-

cionais e 11 em eventos nacionais.
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Abstract

This document was elaborated to fulfill the requirements of the author’s appli-

cation for a position of Associate Professor in Software Engineering, at the Com-

puter Systems Department of the Institute of Mathematical Sciences and Com-

puting, University of São Paulo (SSC/ICMC/USP). The text systematizes the

author’s research contribution, focused on studies about Software Testing. First,

it presents the contributions on software testing based on Finite State Machines,

which represents the core of the author’s contributions and publications in recent

years. Then, it presents the contributions on Parallel Program Testing, which re-

presents his second main topic of investigation. Finally, it describes other research

topics which the author has investigated.

This text describes the background and the assumptions which are the basis

for the research done by the author, highlighting the contributions and develop-

ments accomplished in the last six years, i.e. after the conclusion of the Doctoral

Thesis. In this period, the author published eight papers in journals, including

IEEE Transactions on Computers, Oxford Computer Journal, IET Software e Computer

Languages, Systems and Structures, evaluated as Qualis A1, B1, B2 e B2, respec-

tively. He also published 24 papers in conferences, whereof 13 in international

events and 11 in national ones.
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Capítulo 1

Introdução

Neste capítulo, é apresentado o contexto das linhas de pesquisa em que se inse-

rem os trabalhos desenvolvidos pelo autor, bem como as motivações das ativida-

des e pesquisas realizadas (Seção 1.1). Na Seção 1.2 é apresentada a organização

do presente texto.

1.1 Contexto

O uso de software nas mais diversas áreas de aplicação impõe a necessidade de

técnicas e ferramentas que auxiliem em seu desenvolvimento. O objetivo geral

da Engenharia de Software é prover tais técnicas e ferramentas, buscando desen-

volver produtos de alta qualidade e baixo custo.

Embora a Engenharia de Software proporcione métodos, técnicas e ferramen-

tas para auxiliar na garantia da qualidade do produto de software desenvolvido,

defeitos podem ser inseridos, o que traz a necessidade de uma etapa no desen-

volvimento de software que tenha como objetivo minimizar a ocorrência de erros

e riscos associados (Maldonado et al., 2004). Uma das atividades dessa etapa é a

Verificação e Validação (V&V).

O Teste de Software é uma das atividades de V&V, a qual consiste na análise

dinâmica do software com o objetivo de revelar a presença de defeitos no pro-

duto e, indiretamente, aumentar a confiança na qualidade desse produto. Um
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teste bem sucedido é aquele que revela a presença de um ou mais defeitos até

então não encontrados (Myers et al., 2004). Quando executado de forma sistemá-

tica e criteriosa, o teste contribui para aumentar a confiança de que o software

apresenta os requisitos anteriormente estabelecidos, uma vez que, em geral, não

é possível provar que um programa está isento de defeitos (Harrold, 2000; Weyu-

ker, 1996).

De acordo com Pressman (2005), uma estratégia de teste de software integra

módulos de projeto de casos de teste em uma série planejada de etapas, forne-

cendo um roteiro que descreve os passos a serem conduzidos. Essa estratégia

deve ser flexível e, ao mesmo tempo, controlada, de forma a promover um pla-

nejamento razoável e acompanhamento gerencial à medida que o projeto avança.

Uma estratégia de teste deve incorporar atividades, tais como: planejamento de

teste, que é responsável por formular a maneira em que a atividade de teste será

conduzida, como por exemplo, a escolha das técnicas e critérios a serem utiliza-

dos; projeto de casos de teste, o qual consiste na elaboração dos casos de teste a

partir dos critérios estabelecidos; execução do teste, que conduz a aplicação dos

casos de teste criados anteriormente; coleta e avaliação dos resultados do teste, a

qual se tem um levantamento de como a atividade foi conduzida e os resultados

obtidos (Pressman, 2005; Maldonado, 1991; Beizer, 1990).

Um dos pontos mais importantes e cruciais da atividade de teste é o projeto

de casos de teste. Um caso de teste é um par ordenado composto pela entrada e

pela saída esperada. Um conjunto de casos de teste forma um conjunto de teste.

Segundo Myers et al. (2004), um bom caso de teste é aquele que tem alta proba-

bilidade de encontrar um defeito ainda não descoberto. Porém, a construção do

conjunto de teste não é trivial, uma vez que, na maioria dos casos, deve-se se-

lecionar um conjunto específico e finito, já que se torna impraticável testar todo

o domínio de entrada de um software. Para isso, tem-se o conceito de critério

de teste, que tem como objetivo a seleção e/ou avaliação dos casos de teste, de

forma a aumentar as possibilidades de revelar a presença de defeitos e estabelecer

um nível elevado de confiança na correção do produto (Fabbri and Maldonado,

2001). Um critério de teste define requisitos de teste que um conjunto de teste

deve satisfazer.
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Técnicas de teste foram estabelecidas com o objetivo de encontrar o máximo

de defeitos possíveis de um software. Essas técnicas são classificadas de acordo

com a origem da informação que é utilizada para estabelecer os requisitos de

testes (Maldonado, 1991). As principais técnicas de teste são:

Funcional: conhecida também como caixa-preta, considera o sistema como uma

caixa fechada da qual não se tem conhecimento sobre sua implementação

ou seu comportamento interno. No teste funcional, os testes são gerados

somente considerando os valores de entrada e saída do sistema utilizando

como base a sua especificação.

Estrutural: conhecida também como caixa-branca, estabelece os requisitos de

teste baseados na estrutura interna do produto em teste. A geração dos

testes considera as estruturas lógicas e funcionais implementadas, verifi-

cando se as funcionalidades e os resultados gerados estão de acordo com a

especificação. Por ser baseado no conhecimento da estrutura interna da im-

plementação, o testador deve ter acesso ao código fonte do programa, que

é utilizado para gerar os casos de teste.

Baseada em Defeitos: estabelece os requisitos de teste explorando os defeitos tí-

picos cometidos durante o desenvolvimento de software (DeMillo, 1980).

Várias características do desenvolvimento de software devem ser conside-

radas quando se trata do teste baseado em defeitos, como a linguagem uti-

lizada, ferramentas, tipo de software, entre outros.

Essas técnicas são em geral complementares, devendo ser aplicadas de forma

estratégica em um programa para obter melhores resultados (Maldonado, 1991).

Para auxiliar no projeto de casos de teste, é importante que se tenha uma de-

finição clara de o que é a saída esperada para uma dada entrada. Assume-se

a existência de um oráculo capaz de determinar se o programa passou ou não no

teste. Contudo, se o oráculo for um procedimento manual, a quantidade de testes

que podem ser executados é limitada. Uma abordagem que tem sido empregada

para, por um lado, ajudar na geração de casos de teste, e, por outro lado, simpli-

ficar a definição das saídas esperadas é a utilização de um modelo formal, com
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semântica bem definida, que permite automatizar a tarefa de decidir se o teste

produziu ou não a saída esperada. Coletivamente denominado Teste Baseado em

Modelos (Pretschner and Philipps, 2004), essa abordagem permite que um volume

maior de testes seja aplicado, pois, entre outras vantagens, automatiza a tarefa do

oráculo. Dentre as diversas técnicas de teste baseado em modelos, as baseadas

em máquinas de estados finitos vem recebendo grande atenção da comunidade

acadêmica e da indústria há várias décadas.

O teste baseado em máquinas de estados finitos tem uma longa história, sendo

que os primeiros trabalhos datam da década de 50 (Moore, 1956; Hennie, 1964).

Trata-se, contudo, de uma área que continua sendo ativamente investigada (Hi-

erons et al., 2009). Diversos métodos de geração têm sido propostos. Novos mé-

todos geralmente incorporam avanços no entendimento das características que

fazem com que os conjuntos de teste gerados apresentem propriedades deseja-

das.

A eficácia de uma estratégia de teste está diretamente relacionada com as ca-

racterísticas dos programas a serem testados. Por exemplo, programas que resol-

vem problemas numéricos devem ser testados de forma diferente de programas

baseados em transações. Assim, é importante que estratégias de teste sejam in-

vestigadas em diversos paradigmas e técnicas de programação.

Programas paralelos são aqueles em que dois ou mais processos são executa-

dos simultaneamente. Programas paralelos adicionam um nível maior de com-

plexidade durante a fases de projeto e implementação, pois devem ser levados

em consideração detalhes de comunicação e sincronização entre processos, não

determinismo, etc. Da mesma forma, o teste de programas paralelos deve le-

var em consideração características que podem impedir que técnicas de teste de

programas tradicionais sejam aplicadas adequadamente. O teste de programas

paralelos devem lidar com características que, em geral, não estão presentes no

teste de programas tradicionais, tais como problemas de sincronização entre pro-

cessos, deadlocks e livelocks, e o não determinismo na execução.

Os trabalhos desenvolvidos pelo autor após a conclusão do doutorado estão

focados principalmente nas subáreas do teste baseado em modelos, em particular,
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o teste baseado em máquinas de estados finitos, e no teste de programas parale-

los.

De acordo com Maldonado (1991), as contribuições na área de Teste de Soft-

ware podem ser divididas em:

Estudos Teóricos: Avançam o estado da arte melhorando o entendimento dos

problemas da área, propondo novas abordagens e descobrindo as limita-

ções teóricas inerentes às abordagens existentes. Por exemplo, pode-se de-

terminar qual é a complexidade de um critério de teste, tanto em termos do

custo para aplicá-lo quanto em termos do tamanho dos conjuntos de caso

de teste necessários para satisfazê-lo.

Estudos Experimentais: Permitem que as diversas abordagens de teste sejam

comparadas empiricamente, ou seja, por meio de experimentos com tes-

tadores ou artefatos gerados de forma a identificar o custo e a eficácia de

cada uma.

Automatização: Consiste no desenvolvimento de ferramentas e ambientes que

automatizem a atividade de teste. É de suma importância, pois aumenta a

produtividade e a qualidade dos testes realizados.

Os trabalhos do autor, sistematizados neste documento, enquadram-se nessas

três categorias.

1.2 Organização do Texto Sistematizado

Neste texto sistematizado é apresentada uma descrição das principais contribui-

ções resultantes das atividades de pesquisa realizadas pelo autor. No Capítulo 2

são descritos os trabalhos desenvolvidos nas linhas de pesquisa, dando ênfase ao

relacionamento entre as pesquisas realizadas. Na Seção 2.1 são apresentados os

trabalhos relacionados ao teste baseado em máquinas de estados finitos, ao passo

que na Seção 2.2 são apresentados os resultados relacionados ao teste de progra-

mas paralelos. Na Seção 2.3 são apresentados os trabalhos desenvolvidos na área

de teste de software, mas que não se enquadram nas duas linhas anteriores, tais

5



como o teste baseado em defeitos e o teste funcional. No Capítulo 3 são discutidas

as conclusões e indicados os trabalhos futuros e em andamento. Nos Apêndice A

e B são apresentados os principais conceitos e as definições relacionadas ao teste

baseado em máquinas de estados finitos e ao teste de programas paralelos, res-

pectivamente. Por fim, nos Apêndices C a J são incluídas as publicações mais

relevantes, resultantes do trabalho aqui reportado.
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Capítulo 2

Contribuições ao Teste de

Software

A seguir, são resumidos os trabalhos desenvolvidos pelo autor ou sob sua orien-

tação após a conclusão do doutorado. Os trabalhos serão classificados de acordo

com o enfoque principal. As publicações relacionadas serão indicadas ao longo

do texto e sumarizadas ao final. Os trabalhos foram divididos em três grupos,

correspondentes às subseções desse capítulo. Primeiramente, são apresentados

os trabalhos relacionados ao teste baseado em máquinas de estados finitos, que

representa a maior parte dos trabalhos desenvolvidos pelo autor. Em seguida,

apresenta-se o teste de programas paralelos, que representa uma área de investi-

gação que o autor tem desenvolvido, podendo ser considerada como sua segunda

principal área de atuação. Por fim, são apresentados trabalhos que são relevantes

desenvolvidos em outras linhas, todas relacionadas a diferentes aspectos do teste

de software.

Os trabalhos são apresentados de forma resumida. Apenas os conceitos prin-

cipais são apresentados, assim como os aspectos que distinguem os trabalhos e

caracterizam sua contribuição principal. Informações adicionais sobre os traba-

lhos são incluídas nos apêndices; definições formais, exemplos e detalhes podem

ser lá encontrados. A referência de cada publicação é incluída em uma nota de

rodapé, usando a seguinte convenção. Os círculos correspondem às publicações
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em revista, enquanto que os quadrados correspondem às publicações em confe-

rências. As publicações nacionais são apresentadas com linha tracejada. As oito

publicações mais relevantes são apresentadas com fundo cinza; cópias dessas pu-

blicações podem ser encontradas nos Apêndices C a J.

2.1 Teste Baseado em Máquinas de Estados Finitos

Nesta seção, são apresentados os resultados obtidos na área de pesquisa do teste

baseado em máquinas de estados finitos. Trata-se da área em que o autor tem

atuado mais diretamente após a conclusão de seu doutorado. Deve-se destacar

que no período de Ago/2008 a Jul/2010, o autor realizou um estágio de pós-

doutoramento junto ao Centre de Recherche Informatique de Montreal (CRIM), em

colaboração com o pesquisador Alexandre Petrenko, o que contribuiu para con-

solidar os resultados que vinham sendo desenvolvidos.

As pesquisas desenvolvidas nessa linha estão no contexto do teste baseado

em modelos, que busca uma forma automatizada de gerar casos de teste a partir

de uma especificação ou modelo. Embora alguns autores afirmem que o teste é

sempre baseado em modelos, dado que modelos mentais implícitos são usados

para guiar os testes (Binder, 1999), a ideia do teste baseado em modelos é utilizar

modelos explícitos (Pretschner and Philipps, 2004). Utting and Legeard (2006)

definem o teste baseado em modelos como automação do projeto de testes caixa-

preta em que, dado um modelo de teste adequado, sequências de teste podem ser

geradas e transformadas em scripts executáveis.

O modelo de teste pode ser construído manualmente, derivado de alguma es-

pecificação de requisitos ou fonte de conhecimento sobre o sistema, codificando o

comportamento esperado de uma implementação chamada de sistema sob teste

(System Under Test - SUT). É importante que a técnica de modelagem selecionada

para o teste baseado em modelos seja formal (em outras palavras, bem definida

sintática e semanticamente), pois a presença de modelos ou especificações for-

mais pode levar a um teste mais eficiente e efetivo (Hierons et al., 2009). Segundo

Utting and Legeard (2006), um modelo é formal se possui um significado preciso

e não ambíguo, representando o comportamento de uma forma compreensível e
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manipulável por ferramentas. Pela necessidade de validar o modelo, esse deve

ser mais simples que o SUT, ou, no mínimo, mais fácil de verificar, modificar e

manter (Utting et al., 2006). Entretanto, o modelo deve ser suficientemente pre-

ciso para servir como base para a geração de casos de teste significativos.

No teste baseado em modelos, a representação por meio de Máquinas de Esta-

dos Finitos (MEFs) (Gill, 1962) vem sendo frequentemente utilizada devido à sua

simplicidade e capacidade de modelar sistemas, principalmente na modelagem

de protocolos de comunicação e sistemas reativos. Além disso, o teste baseado

em MEFs pode ser aplicado em outros tipos de sistemas, como sistemas orien-

tados a objetos (Hong et al., 1995) e sistemas Web (Andrews et al., 2005). Outra

vantagem do uso de MEFs segue do fato de existirem vários métodos de geração

de sequências de teste, oferecendo apoio e direcionamento nos testes gerados e

executados.

As MEFs são uma técnica formal que se tem mostrado bastante útil para tratar

o comportamento de sistemas e para ser utilizada no teste de software. Essa téc-

nica é muito utilizada para modelar o comportamento de sistemas reativos, pois

esses são essencialmente dirigidos a eventos e dominados por controle. Além

disso, as MEFs possuem uma gama de aplicações bastante grande e genérica, po-

dendo ser utilizadas na modelagem de vários tipos de sistemas. Sendo assim,

seus modelos são aplicáveis em diversos contextos, como por exemplo, em pro-

tocolos de comunicação, sistemas reativos, circuitos elétricos, entre outros.

Segundo Gill (1962), uma MEF é uma máquina hipotética composta por esta-

dos e transições. Cada transição liga um estado a a um estado b (a e b podem ser o

mesmo estado). A cada instante, uma máquina pode estar em apenas um de seus

estados, o que caracteriza uma máquina determinística, caso contrário é uma má-

quina não determinística. Em resposta a um evento de entrada, a máquina gera

um evento de saída e executa uma transição. Tanto o evento de saída gerado

quanto o novo estado são definidos unicamente em função do estado atual e do

evento de entrada (Davis, 1988).

A utilização de MEFs no contexto do teste de software vem sendo investigado

há várias décadas, sendo que os primeiros trabalhos datam das décadas de 50

(Moore, 1956) e 60 (Hennie, 1964). Dentre os métodos mais conhecidos, pode-
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se destacar os métodos DS (Gonenc, 1970), W (Chow, 1978), UIO (Sabnani and

Dahbura, 1988), Wp (Fujiwara et al., 1991), HSI (Petrenko et al., 1993; Luo et al.,

1994), H (Dorofeeva et al., 2005a) e State Counting (Petrenko and Yevtushenko,

2005).

Em geral, a aplicação dos métodos de geração requer que as MEFs possuam

certas propriedades, sendo que diferentes métodos podem requerer diferentes

conjuntos de propriedades. Dessa forma, os diversos métodos de geração de

sequências de teste a partir de MEFs podem ser classificados com base em três

características:

• Aplicabilidade, que se refere às propriedades necessárias para aplicação do

método.

• Completude, que se refere à classe de defeitos que o método garante revelar.

• Tamanho dos conjuntos e número de sequências de teste geradas.

O custo de aplicação dos métodos pode ser calculado em relação ao custo de

geração das sequências de teste e ao custo da execução. Por exemplo, um mé-

todo pode ser eficiente para gerar as sequências de teste, porém se as sequências

geradas forem muito grandes, seu custo de execução é alto, o que pode torná-lo

ineficiente. O custo de execução das sequências de teste é normalmente o fator

dominante quando se avalia o custo da aplicação de um método. Sendo assim, o

tamanho do conjunto de sequências de teste é geralmente utilizado para compa-

rar o custo de aplicação do método. Além disso, o número de sequências geradas

pelos métodos também é um fator de influência no custo do teste. Em geral,

assume-se a existência de uma operação reset, que leva tanto a MEF quanto sua

implementação ao seu estado inicial. A operação reset deve ser inserida no início

de cada sequências do conjunto de teste; portanto, o número de operações resets

é igual ao número de sequências de um conjunto de teste.

Na geração de testes a partir de MEFs, assume-se que a implementação pode

ser modelada como uma MEF contida em um domínio de defeitos. Essa hipó-

tese, conhecida como hipótese de teste, é necessária para que um conjunto finito

de testes possa ser gerado (Chow, 1978; Ural et al., 1997; Hierons and Ural, 2006;
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Hennie, 1964). O teste baseado em MEFs consiste na geração de um conjunto de

sequências de teste cujo objetivo é encontrar o máximo de defeitos em uma imple-

mentação. Dessa forma, é possível verificar se a implementação da MEF está de

acordo com sua especificação. Dada uma MEFM com n estados,=m(M) denota o

domínio de defeitos definido pelo conjunto de todas as MEFs com o mesmo alfa-

beto de entrada e no máximo m estados, utilizado por grande parte dos métodos

de geração, como por exemplo, os métodos W (Chow, 1978), Wp (Fujiwara et al.,

1991), HSI (Petrenko et al., 1993; Luo et al., 1994), H (Dorofeeva et al., 2005a),

entre outros. De acordo com Chow (1978), os defeitos são classificados em:

Defeito de transferência: transição atinge estado incorreto.

Defeito de saída: transição gera uma saída incorreta.

Estados faltantes: os estados da implementação devem ser aumentados para

torná-la equivalente à especificação.

Estados extras: os estados da implementação devem ser reduzidos para torná-la

equivalente à especificação.

Todos esses defeitos podem ser modelados por MEFs pertencentes a =m(M),

caso o parâmetro m seja escolhido adequadamente. Para que o teste em MEFs

possa ser realizado, deve-se estimar o número m de estados da implementação,

sendo que quanto melhor for essa estimativa, melhor será o conjunto de teste

obtido. Os métodos de geração de casos de teste consideram que a MEF possui

no máximo m estados, tal que m seja maior ou igual a n (número de estados da

especificação). A partir dessa informação, a implementação estará de acordo com

sua especificação se não possuir defeitos de transferências nem defeitos de saída.

Para fins de entendimento deste trabalho, será considerado o teste de MEFs em

que o número de estados é igual o da implementação, ou seja, n = m e o defeito

de estados extras não é considerado. Dessa forma, =(M) contém todas as MEFs

que modelam os defeitos que se encaixam no contexto deste trabalho.

Um conjunto de sequências de teste T é n-completo, ou simplesmente completo,

se para cada MEF N ∈ =(M) tal que N e M são distinguíveis, existe uma sequên-

cia pertencente a T que distingue N de M . Ou seja, se o conjunto é completo, ele

11



é capaz de revelar todos os defeitos de uma implementação de M que possa ser

modelada por uma MEF de =(M).

Projeto Plavis

A pesquisa com a geração de testes baseados em MEFs era um dos objetivos do

projeto Plavis (Platform for Software Validation & Integration on Space Systems, CNPq

Processo no 473396/2003-3 Vigência: 01/06/2003 a 30/09/2005, prorrogado até

30/09/2006), no qual o autor participou após a conclusão do doutorado. O pro-

jeto contava com a participação de pesquisadores de diversas universidades bra-

sileiras e francesas, além do Instituto Nacional de Pesquisas Espaciais (INPE).

No contexto desse projeto, foi desenvolvido um ambiente para integrar diversas

ferramentas relacionadas ao teste e a MEFs desenvolvidas pelos membros do pro-

jeto. Esse ambiente, denominado Plavis/FSM (Simão et al., 2005) , foi utilizado

em alguns cursos de graduação no ICMC e continua sendo utilizado em cursos

de pós-graduação no INPE. O ambiente Plavis/FSM serviu como base para tra-

balhos de conclusão de curso e de iniciação científica. Contudo, no contexto dos

trabalhos desenvolvidos pelo autor, o projeto foi muito relevante, pois foi por

meio desse projeto que o autor iniciou a investigação dos problemas clássicos

referentes a essa linha de pesquisa.

A arquitetura da Plavis/FSM é apresentada na Figura 2.1; a Plavis/FSM foi

desenvolvida como uma aplicação Web e está disponível para uso remoto. A

principal motivação foi permitir que a ferramenta pudesse ser utilizada sem a

necessidade de instalação. A incorporação de as ferramentas integradas é feita

por meio de adaptadores; foram integradas as ferramentas Proteum/FSM (Fabbri

et al., 1999), Condado (Martins et al., 1999) e MGASet (Candolo et al., 2001).

Os primeiros trabalhos orientados pelo autor nessa linha foram dois trabalhos

de iniciação científica, em 2005. Primeiramente, no trabalho de Leonardo Filono-

nes Teixeira, foi desenvolvido um mecanismo de filtro de casos de teste. Em geral,

o número de casos de teste gerados pelos métodos integrados na Plavis/FSM é

A. S. Simão, A. M. Ambrosio, S. C. P. F. Fabbri, A. S. Amaral, E. Martins, J. C. Maldonado.
Plavis/FSM: an Environment to Integrate FSM-based Testing Tools. In: Sessão de Ferramentas do
Simpósio Brasileiro de Engenharia de Software, 2005. p. 1-6, Uberlândia, MG
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Figura 2.1: Arquitetura da Plavis/FSM.

muito alto. Dessa forma, nem sempre é possível que todos sejam aplicados. Um

subconjunto dos casos de teste deve ser selecionado. Vários critérios podem ser

utilizados para a seleção, tais como casos que passam por determinados estados,

usam uma determinada entrada ou saída, ou exercitam uma transição. Assim,

o testador pode definir critérios, por meio de alguns parâmetros simples, para a

seleção de casos de teste gerados a partir de MEFs. O filtro foi então incorporado

à Plavis/FSM. Ainda que seja um trabalho relativamente simples, os estudos rea-

lizados durante a iniciação científica foram base para definir metas de pesquisa a

longo prazo, tais como os trabalho de minimização de conjuntos de teste desen-

volvidos posteriormente em trabalhos de mestrado.

No trabalho de iniciação científica desenvolvido por Jorge Francisco Cutigi,

foi implementado o método HSI (Petrenko et al., 1993; Luo et al., 1994). O método

era relevante no contexto do projeto Plavis devido ao fato de que os métodos até

então integrados exigiam que a MEF fosse completamente especificada (ou seja,

em cada estado, existe uma transição para cada entrada), ao passo que muitas das

MEFs utilizadas no projeto eram parciais (ou seja, não completas). O método HSI

pode ser aplicado a MEFs parciais e nesse trabalho de iniciação científica ele foi

estudado e implementado. Novamente, esse trabalho foi importante para estabe-

lecer as bases para diversos trabalhos futuros. Principalmente, foi investigada a
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noção de completude de casos de teste, a qual passou a figurar em praticamente

todos os trabalhos posteriores nessa linha.

Minimização de Conjuntos Completos

Em 2006, o autor juntou-se ao corpo de orientadores do Programa de Pós-

Graduação de Ciências de Computação e Matemática Computacional do

ICMC/USP. O primeiro trabalho de mestrado nessa linha de investigação foi o

trabalho desenvolvido por Lúcio Felipe de Mello Neto. O tema investigado foi a

minimização de casos de teste, de forma a manter a completude na capacidade

de detecção de defeitos. Primeiramente, foi identificado um trabalho (Dorofeeva

et al., 2005a) que definia um conjunto de condições de suficiência para comple-

tude de casos de teste. Em geral, os métodos de geração garantem por construção

que o conjunto de testes obtidos são completos. Contudo, poucos trabalhos in-

vestigavam como um conjunto arbitrário de sequências pode ser analisado para

verificar se ele é ou não completo, sendo que os trabalhos de Petrenko et al. (1996)

e Yao et al. (1994) eram os únicos encontrados na literatura até então. O trabalho

de Dorofeeva et al. (2005a) apresenta um avanço, no sentido de identificar condi-

ções de suficiência mais flexíveis. Apesar de os autores desse trabalho apenas as

utilizarem para propor um novo método (o método H) que gera conjuntos com-

pletos por construção, durante o mestrado de Mello Neto foi observado que tais

condições poderiam ser utilizados para a minimização de conjuntos de forma a

manter a completude.

Foi desenvolvido um algoritmo, baseado nas condições de suficiência defini-

das por Dorofeeva et al. (2005a), que, dados uma MEF e um conjunto de teste

que satisfaz tais condições (e, portanto, é completo), seleciona um subconjunto

que ainda satisfaça tais condições. Resultados preliminares do algoritmo foi pu-

blicado em (Mello Neto and Simão, 2007) . A extensão do algoritmo e os estu-

dos experimentais realizados para avaliá-lo foram posteriormente publicados em

L. F. Mello Neto, A. S. Simão. Minimização de Conjuntos de Casos de Teste por Meio de
Condições de Suficiência. In: The 1st Brazilian Workshop on Systematic and Automated Software
Testing. p. 55-62. João Pessoa, PB, 2007.
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(Mello Neto and Simão, 2008) . Um possível cenário de utilização do algoritmo

é quando já existe um conjunto de teste (obtido de forma ad hoc), mas deseja-se

também a garantia de detecção de defeitos oferecida pelos métodos completos.

Assim, o conjunto inicial pode ser complementado com um conjunto completo

gerado pelos Métodos W, Wp, HSI ou H, e o algoritmo desenvolvido por de Mello

Neto se encarregaria de remover sequências desnecessárias.

O trabalho de Mello Neto motivou a investigação mais aprofundada do tra-

balho de Dorofeeva et al. (2005a). Foi desenvolvida a iniciação científica por José

Augusto Stuchi, cujo objetivo era a implementação do método H, proposto nesse

artigo. Apesar de ser apenas um trabalho de iniciação científica, as investigações

realizadas durante o desenvolvimento desse trabalho resultou em um melhor en-

tendimento das limitações das condições de suficiência propostas e serviu de base

para trabalhos futuros. Foi realizado um experimento com o método H e mostra-

ram que os conjuntos gerados por esse método é, em média, 66% do tamanho dos

conjuntos gerados pelo método HSI (Petrenko et al., 1993; Luo et al., 1994).

Um dos passos do método H que possui impacto direto diz respeito à escolha

de sequências de separação de dois estados (Dorofeeva et al., 2005a). Dados dois

estados, uma sequência de separação é uma sequência de entrada tal que esses

estados produzam resultados diferentes (ou seja, saídas diferentes). O trabalho de

conclusão de curso desenvolvido por Guilherme Botelho Diniz Junqueira tinha

como objetivo identificar estratégias que permitissem selecionar as sequências de

distinção que levariam ao menor acréscimo no tamanho atual do conjunto de

teste. Assim, pôde-se estudar como diferentes formas de selecionar as sequências

de distinção podem ser utilizadas e como essas formas influenciam o tamanho

final do conjunto de teste. Os resultados desses estudos foram incorporados em

trabalhos futuros.

L. F. Mello Neto, A. S. Simão. Test Suite Minimization Based on FSM Completeness
Sufficient Conditions. In: The 9th IEEE Latin-American Test Workshop. p. 93-98. Puebla, Mexico,
2008. (Qualis B3)
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Condições de Suficiência

Os trabalhos de Mello Neto (em nível de mestrado), Stuchi (em nível de iniciação

científica) e de Junqueira (em nível de conclusão de curso) motivaram o estudo

de condições de suficiência para completude de conjuntos de casos de teste ge-

rados a partir de MEFs. Observou-se que melhorias nessas condições podem

ser utilizadas em diversos contexto. Por exemplo, as condições propostas por

Dorofeeva et al. (2005a) foram a base para a proposição de um novo método (es-

pecificamente, o Método H, que foi estudado por Stuchi) e para implementar o

algoritmo de minimização no trabalho de mestrado de Mello Neto. Assim, me-

lhorias adicionais nas condições poderiam resultar em métodos mais eficazes.

Um conjunto separado de condições de suficiente é apresentado em (Ural

et al., 1997). Essas condições aplicam-se para sequências de verificação, que cor-

respondem a conjuntos completos formados por uma única sequência. Sequên-

cias de verificação são relevantes, pois não utilizam a operação de reset, a qual em

algumas situações pode ser custosa de ser utilizada.

As condições de suficiência propostas em (Dorofeeva et al., 2005a) e (Ural

et al., 1997) são ortogonais: umas não podem ser derivadas das outras. Por ou-

tro lado, todas as demais condições (por exemplo, (Petrenko et al., 1996) e (Aho

et al., 1991)) propostas na literatura podem ser derivadas de um ou outro con-

junto. Em (Simão and Petrenko, 2010a) , foi definido um conjunto de condi-

ções de suficiência que generalizam ambos os conjuntos. Por consequências, as

condições propostas generalizam todas as condições propostas na literatura até o

momento. Uma importante contribuição das condições foi demonstrar que tantos

os métodos baseados em conjuntos de caracterização (tais como, W, Wp, HSI e H)

e os baseados em sequências de distinção podem ser conciliados. Na Figura 2.2

ilustra-se a relação entre as condições de (Dorofeeva et al., 2005a), (Ural et al.,

1997) e (Simão and Petrenko, 2010a). Existem conjuntos que satisfazem as condi-

ções de (Dorofeeva et al., 2005a), mas não as de (Ural et al., 1997); similarmente,

existem conjuntos que satisfazem as condições de (Ural et al., 1997), mas não as

A. S. Simão, A. Petrenko. Checking Completeness of Tests for Finite State Machines.
IEEE Transactions on Computers, v. 59, p. 1023-1032, 2010. (Qualis A1)
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(Dorofeeva et al. 2005)
(Ural et al. 1997)

(Simao e Petrenko 2010)

Figura 2.2: Condições de Suficiência.

condições de (Dorofeeva et al., 2005a). Por outro lado, foi demonstrado que todos

os conjuntos que satisfazem quer as condições de (Dorofeeva et al., 2005a) quer

as condições de (Ural et al., 1997) também satisfazem as condições de (Simão and

Petrenko, 2010a). Além disso, demonstrou-se que existem conjuntos que satisfa-

zem as condições de (Simão and Petrenko, 2010a) e não satisfazem as condições

de (Dorofeeva et al., 2005a) e nem as de (Ural et al., 1997).

As condições propostas em (Simão and Petrenko, 2010a) foram a base para

dois trabalhos de mestrado. O artigo estava em avaliação enquanto os traba-

lhos estavam sendo desenvolvidos. No trabalho de Jorge Francisco Cutigi, foi

elaborado um método de minimização de conjuntos de teste completos. O mé-

todo pode ser aplicado com dois objetivos: redução no número de sequências do

conjunto ou redução no tamanho total do conjunto. Diferentemente do trabalho

de Mello Neto, as condições utilizadas por Cutigi permitiram que a redução no

número de sequências fosse muito expressiva (Cutigi et al., 2010) , em média

80%.

J. F. Cutigi, P. H. Ribeiro, A. S. Simão, S. R. S. Souza. Redução do Número de Sequências
no Teste de Conformidade de Protocolos. In: XI Workshop de Testes e Tolerância a Falhas, p.
105-117, 2010, Gramado, RS. (Qualis B5)
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Todos os métodos de geração, exceto o método State Counting (Petrenko and

Yevtushenko, 2005), só podem ser aplicados a MEFs reduzidas (ou seja, sem es-

tados equivalentes). Para ser aplicado a uma MEF não reduzida, essa deve por-

tanto ser inicialmente convertida para uma forma reduzida. Enquanto a redução

de MEFs completas pode ser realizada por algoritmos polinomiais, a redução de

MEFs parciais é um problema de alto custo computacional. No trabalho de Alex

Donizeti Betez Alberto, foi proposto um algoritmo para redução de MEFs parci-

ais. O algoritmo (Alberto and Simão, 2009) foi experimentalmente comparado

com algoritmos encontrados na literatura. Observou-se o que, por um lado, os re-

sultados eram comparáveis ao método que apresentavam os melhores resultados

enquanto que, por outro lado, o tempo gasto para a redução foi consideravel-

mente menor.

Sequências de Verificação

A geração de sequências de verificação é um tópico que vem sendo investigado

desde os trabalhos seminais de Hennie (Hennie, 1964). O objetivo é produzir uma

sequência de entrada que forme um conjunto completo unitário. Em (Hennie,

1964) foi demonstrado que se a MEF possui uma sequência de distinção, é pos-

sível gerar uma sequência de verificação. Contudo, não foi apresentado nenhum

método sistemático. Em (Gonenc, 1970), um algoritmo baseado em grafos é pro-

posto, o qual procura sistematizar o método proposto por Hennie. O interesse na

geração de sequências foi retomado a partir dos trabalhos de (Ural et al., 1997).

Em essência, esse trabalho é baseado no trabalho de (Gonenc, 1970), modelando-

o como um problema de otimização em grafo, a saber o problema do Carteiro

Rural Chinês (Aho et al., 1991). Diversos trabalhos seguiram a mesma linha, tais

como (Hierons and Ural, 2002; Chen et al., 2005; Ural and Zhang, 2006; Hierons

and Ural, 2006).

Apesar de diversos trabalhos terem sido desenvolvidos com base no trabalho

de (Ural et al., 1997), os ganhos na redução no tamanho das sequências de ve-

A. D. B. Alberto, A. S. Simão. Minimization of Incompletely Specified Finite State Ma-
chines Based on Distinction Graphs. In: The 10th Latin-American Test Workshop. p. 1-6, , Buzios,
RJ, 2009. (Qualis B3)
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rificação são pequenos. Parte do problema pode ser atribuído ao fato de que os

modelos de otimização se concentram em minimizar sequências de transferência,

que em geral correspondem a uma pequena parte do tamanho total do problema.

Dados dois estados, uma sequência de transferência é uma sequência de entrada

que leva a MEF de um estado a outro. Uma abordagem diferente, baseada em

busca local, foi proposta em (Simão and Petrenko, 2008) . Diferentemente dos

trabalhos baseados em (Ural et al., 1997), em vez de procurar modelar a geração

como um problema de otimização, o método proposto busca a cada passo adici-

onar o mínimo de entradas necessário para verificar uma transição. O trabalho

foi experimentalmente comparado com os dois melhores métodos baseados no

trabalho de (Ural et al., 1997), a saber, (Chen et al., 2005; Hierons and Ural, 2006);

em 75% dos casos, o método proposto gerou sequências menores do que as ge-

radas pelo método proposto por (Chen et al., 2005); em todos os casos, o método

proposto gerou sequências menores do que as geradas pelo método proposto por

(Hierons and Ural, 2006).

Em (Simão and Petrenko, 2009) , foi demonstrado que em alguns casos

pode-se utilizar as sequências de distinção em apenas algumas partes, enquanto

que em outras utilizam-se sequências de identificação de estado, tais como nos

métodos baseados no W. É importante observar que já em (Hennie, 1964) foi

mencionado que seria possível evitar a utilização das sequências de distinção

para geração de sequências de verificação. Contudo, ainda não havia um mé-

todo sistemático que indicasse como isso pudesse ser feito. Assim, o trabalho

desenvolvido corresponde a uma importante contribuição teórica. A contribui-

ção prática, por outro lado, ainda não está clara, pois não foi possível identificar

qual é o ganho na redução do tamanho das sequências de verificação geradas.

A. S. Simão, A. Petrenko. Generating Checking Sequences for Partial Reduced Finite
State Machines. In: The 20th IFIP Int. Conference on Testing of Communicating Systems (TEST-
COM), p. 153-168, Tokyo, Japão, 2008. (Qualis B3)

A. S. Simão, A. Petrenko. Checking Sequence Generation Using State Distinguishing
Subsequences. In: The 5th Workshop on Advances in Model Based Testing. p. 1-10, Denver, USA,
2009.
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No trabalho de mestrado de Paulo Henrique Ribeiro, um método baseado

em algoritmos genéticos foi proposto para a geração de sequências de verifica-

ção (Ribeiro et al., 2009) . Uma vez que condições de suficiência propostas

generalizam também as condições propostas por (Ural et al., 1997), elas podem

ser utilizadas para identificar quando uma sequência é uma sequência de veri-

ficação. Foi proposto então um método que, por meio de várias iterações e da

seleção das sequências mais aptas, busca produzir a menor sequência possível.

Apesar de realmente obter sequências de verificação menores, observou-se que o

custo de aplicação é alto e os ganhos são relativamente pequenos. Dessa forma,

outras estratégias de geração devem ser desenvolvidas. Ainda assim, pôde-se ob-

servar que as condições propostas em (Simão and Petrenko, 2010a) são realmente

melhores do que as de (Ural et al., 1997), uma vez que quando o método foi alte-

rado para utilizar estas condições no lugar daquelas, obteve-se sequências 12,7%

maiores.

Melhorias em Métodos de Geração Existentes

Foram investigados também possíveis generalizações e melhorias dos métodos

clássicos de geração. A investigação tinha como objetivo aumentar a aplicabili-

dade dos métodos (ou seja, permitir que fossem aplicados a uma classe maior de

MEFs) ou reduzir o tamanho dos conjuntos gerados.

Em (Bonifácio et al., 2008a) , foi proposta uma generalização do método

W, na qual não é requerido que a MEF possua um conjunto de caracterização.

Contudo, é necessário que se tenha um conjunto de sequências e que se saiba

em quantas classes esse conjunto particiona a implementação. Tais conjuntos po-

dem ser obtidos por meio de teste de regressão ou quando padrões de projeto e

implementação podem ter sido utilizados.

P. H. Ribeiro, J. F. Cutigi, A. S. Simão. Geração de Sequências de Verificação baseada em
Algoritmos Genéticos. In: The 3rd Brazilian Workshop on Systematic and Automated Software
Testing. p. 61-70, Gramado, RS, 2009.

A. L. Bonifácio, A. Moura, A. S. Simão. A Generalized Model-based Test Genera-
tion Method. In: The 6th IEEE International Conferences on Software Engineering and Formal
Methods, p. 139-148, Cape Town, Africa do Sul, 2008. (Qualis B2)
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Em geral, os conjuntos gerados são completos considerando todas as MEFs

com no máximo o mesmo número de estados como domínio de defeitos. Con-

tudo, domínios alternativos também podem ser considerados. Um domínio de

defeitos que foi utilizado em diversos trabalhos permite que a MEF que modela

a implementação possua estados extras, tais como as extensões dos métodos W,

Wp, HSI e H. O limite inferior no tamanho dos conjuntos é exponencial em rela-

ção ao número de estados extras. Apesar de não ser possível reduzir esse limite,

foi identificado que parte do tamanho dos conjuntos é na verdade devida ao ex-

cesso de prefixos comuns que são utilizados. Em (Simão et al., 2009c) , foi

desenvolvido uma abordagem que permite que diversos prefixos sejam elimina-

dos. Foi proposto então o método SPY, que é uma generalização do método HSI

no caso de implementações com estados extras. Foi demonstrado experimental-

mente que o método SPY gera conjuntos em geral 40% menores que o método

HSI.

O trabalho publicado em (Simão and Petrenko, 2010b) traz três contribui-

ções principais. Primeiramente, investigou-se o domínio de defeitos correspon-

dentes ao caso no qual a implementação pode ter no máximo um número menor

de estados do que a especificação. Apesar de ser um domínio relativamente sim-

ples, trata-se do primeiro método que é capaz de gerar conjuntos completos para

tal domínio. Em segundo lugar, a geração não precisa necessariamente começar

do zero; pode-se iniciar a geração a partir de um conjunto já existente. Dessa

forma, os conjuntos podem ser gerados incrementalmente. Observe que isso so-

mente é possível devido à combinação com a contribuição anterior. Por fim, as

condições propostas em (Simão and Petrenko, 2010a) foram generalizadas, de

forma a poderem ser aplicadas a outros domínios. Apesar de apenas o domínio

formado por implementações com no máximo um número menor de estados do

que a especificação, as condições apresentadas nesse trabalho podem ser futura-

A. S. Simão, A. Petrenko, N. Yevtushenko. Generating Reduced Tests for FSMs with Extra
States. In: The 21st IFIP Int. Conference on Testing of Communicating Systems (TESTCOM). p.
129-147, Eindhoven, Holanda, 2009. (Qualis B3)

A. S. Simão, A. Petrenko. Fault Coverage-Driven Incremental Test Generation. Compu-
ter Journal, v. 53, p. 1508-1522, 2010. (Qualis B1)
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mente generalizadas para domínios específicos, tais como implementações das

quais se sabe que algumas transições estão corretamente implementadas.

Testes Baseado em Verificadores de Modelos

Embora a geração de casos de teste a partir de MEFs ser um tópico bastante in-

vestigado, muitos sistemas não podem ser facilmente modelados se não forem

incluídos mecanismos para a inclusão de recursos que permitam descrever como

variáveis são manipuladas. Diversas extensões às MEFs para incluir tais recursos

têm sido propostas, dando origem às MEFs Estendidas (MEFEs). Em (Bonifácio

et al., 2006) , foi investigado como técnicas de verificação de modelos podem

ser utilizadas para orientar a geração de casos de teste a partir de MEFEs adici-

onadas com informações de tempo. Em geral, muitos problemas relacionados à

atividade de teste, tais como a distinção entre dois estados da MEFEs ou mesmo

se um determinado estado é alcançável, são indecidíveis. Dessa forma, a apli-

cação de técnicas de teste utilizadas em MEFs não são facilmente aplicáveis a

MEFEs. As técnicas de verificação de modelos são utilizadas para verificar se

uma determinada propriedade, especificada por meio de uma lógica temporal, é

válida para um determinado modelo. Caso não seja válida, um contraexemplo

é produzido. Se a propriedade a ser verificada é cuidadosamente definida para

refletir uma propriedade indesejada do sistema, o contraexemplo pode ser utili-

zado como base para a construção de casos de teste para testar a presença dessa

propriedade no sistema. Uma versão estendida desse trabalho foi publicado em

(Bonifácio et al., 2008b) .

A. L. Bonifacio, A. S. Simão, A. Moura, J. C. Maldonado. Conformance Testing by Model
Checking Timed Extended Finite State Machines. In: Simpósio Brasileiro de Métodos Formais. p.
43-58, Natal, RN, 2006. (Qualis B3)

A. L. Bonifacio, A. Moura, A. S. Simão, J. C. Maldonado. Towards Deriving Test Sequen-
ces by Model Checking. Electronic Notes in Theoretical Computer Science, v. 195, p. 21-40, 2008.
(Qualis B2)
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Estudos Experimentais

Em alguns casos, é possível identificar que um método de geração produz con-

juntos que são comprovadamente menores do que outros métodos. Contudo,

em várias situações, os métodos são teoricamente incomparáveis: não é possí-

vel determinar qual método gera os menores conjuntos. Nesses casos, estudos

experimentais são importantes (Dorofeeva et al., 2005b).

Em (Simão et al., 2007) , foi investigado qual é o comportamento típico de

diversos critérios de cobertura para MEFs. Em geral, apenas os limites teóricos do

tamanho dos conjuntos de teste gerados pelos diversos métodos são conhecidos.

Na maior parte dos casos, tais limites são quadráticos ou cúbicos em função do

número de estados da máquina. Contudo, mostrou-se no trabalho desenvolvido

que para MEFs geradas aleatoriamente tais limites são em média muito menores.

Por exemplo, enquanto o limite teórico para o método H é O(n3), onde n é o

número de estados da MEF, os estudos experimentais apontam que em geral o

tamanho do conjunto é O(n1.4). Estes dados são importantes para que o testador

possa ter subsídios para definir estratégias efetivas de teste. Uma extensão desse

trabalho com a comparação do tamanho de conjuntos completos foi publicada

em (Simão et al., 2009b) .

No trabalho de mestrado de Flávio Dusse (co-orientado pelo autor), foi inves-

tigado como a comparação do critérios de cobertura poderia ser melhorada com a

inclusão da Análise de Mutantes. A conclusão principal desse trabalho foi de que

o escore de mutação de um critério é diretamente relacionado ao tamanho médio

dos conjuntos adequados (Dusse et al., 2009) . Esse resultado confirma a intui-

A. S. Simão, A. Petrenko, J. C. Maldonado. Experimental Evaluation of Coverage Criteria
for FSM-based Testing. In: Simpósio Brasileiro de Engenharia de Software. p. 359-376. João
Pessoa, PB, 2007. (Qualis B3)

A. S. Simão, A. Petrenko, J. C. Maldonado. Comparing finite state machine test coverage
criteria. IET Software, v. 3, p. 91-105, 2009. (Qualis B2)

F. Dusse, A. S. Simão, J. C. Maldonado. Análise de Mutantes Aplicada a Critérios de Co-
bertura de Teste a partir de MEFs. In: The 3rd Brazilian Workshop on Systematic and Automated
Software Testing. p. 41-50. Gramado, RS, 2009
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ção de que critérios mais exigentes obtém também melhores escores de mutação

e, por conseguinte, devem resultar em melhores casos de teste.

Resumo

Foram orientados quatro trabalhos de mestrado, três trabalhos de iniciação cien-

tífica e um trabalho de conclusão de curso. Os trabalhos contaram com a cola-

boração ativa de diversos pesquisadores, em especial, Alexandre Petrenko, com

quem realizou o trabalho de pós-doutoramento; José Carlos Maldonado, que foi

o orientador do autor durante o mestrado e doutorado; Adilson Luiz Bonifácio,

Arnaldo Moura e Simone do Rocio Senger de Souza. Foram publicados quatro

artigos em revistas internacionais, seis artigos em eventos internacionais e sete

artigos em eventos nacionais.

2.2 Teste de Programas Paralelos

Nesta seção, são descritos os trabalhos desenvolvidos pelo autor na área de pes-

quisa relacionada ao teste de programas paralelos. Foram desenvolvidos crité-

rios, estratégias e ferramentas para o teste de programas paralelos.

O teste estrutural, ou teste caixa branca, utiliza a estrutura do programa para

definir critérios de teste. Um critério de teste estabelece requisitos que um con-

junto de teste deve atender, servindo tanto para avaliar a adequação de um con-

junto quanto para guiar a geração de conjuntos adequados. Os critérios de teste

são algumas vezes chamados de critérios de cobertura, pois em geral exige-se que

elementos específicos do programa sejam “cobertos”, ou seja, sejam executados

sob determinadas condições. Em geral, a estrutura do programa é abstraída na

forma de um grafo de fluxo de controle (GFC), no qual cada nó representa um

bloco de comandos sem desvio de controle (ou seja, ou todos os comandos de

um bloco são executados, ou nenhum o é), e cada aresta representa o desvio de

controle entre dois blocos.
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Critérios de teste para programas paralelos foram definido em (Souza et al.,

2008) . Primeiramente, o conceito de grafos de fluxo de controle foi estendido

de modo a ser aplicado para programas paralelos. Um programa paralelo foi mo-

delado com um conjunto de processos concorrentes, que se comunicam pela troca

de mensagens. Foram incluídos arestas de sincronização/comunicação, que re-

presentam o envio de uma mensagem de um processo a outro, definindo um GFC

paralelo. Mais especificamente, se o nó n1 do GFC de um processo possui um co-

mando que envia uma mensagem que pode ser recebida por um comando de um

n2 do GFC de outro processo, uma aresta inter-processo entre os nós n1 e n2 é

criada. Então, foram definidos critérios de cobertura que levam em consideração

tais arestas.

Os critérios propostos complementam os critérios estruturais introduzidos

por (Rapps and Weyuker, 1985) para programas sequenciais. Foi desenvolvida

a ferramenta ValiPar, que apoia o teste estrutural de programas paralelos basea-

dos nos critérios definidos (Souza et al., 2005) . A ferramenta foi desenvolvida

em módulos, como descrito na Figura 2.3.

Os módulos que compõem a ferramenta são:

Vali-Inst: É responsável pela geração do modelo de teste, instrumentação e ex-

tração das informações de fluxo de dados. A geração do modelo de teste

cria uma representação do programa de entrada no modelo GFC paralelo.

A ferramenta ValiPar utiliza uma abordagem conservativa para gerar os ar-

cos inter-processos. A instrumentação gera um programa instrumentado

em que comandos são inseridos no programa original para gravar infor-

mações sobre trechos executados. A extração das informações de fluxo de

dados armazena informações sobre definições e usos de variáveis.

S. R. S. Souza, S. R. Vergílio, P. S. L. Souza, A. S. Simão, A. Hausen. Structural Tes-
ting Criteria for Message-Passing Parallel Programs. Concurrency and Computation. Practice &
Experience, v. 20, p. 1893-1916, 2008. (Qualis B1)

S. R. S. Souza, S. R. Vergílio, P. S. L. Souza, A. S. Simão, T. B. Gonçalves, A. M. Lima, A.
C. Hausen. ValiPar: A Testing Tool for Message-Passing Parallel Programs. In: XVII International
Conference on Software Engineering and Knowledge Engineering. p. 386-392, Taipen, Taiwan,
2005. (Qualis B2)
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Figura 2.3: Arquitetura da Ferramenta ValiPar.

Vali-Exec: É responsável pela execução controlada do programa instrumentado

e gravação das instruções ocorridas. O programa é executado com os ca-

sos de teste fornecidos pelo usuário. As saídas dos testes e os traces são

armazenados para realização da análise de cobertura.

Vali-Elem: É responsável pela geração dos elementos requeridos dos critérios de

teste do modelo GFC paralelo. Esses elementos são gerados por meio do

modelo de teste e informações de fluxo de dados fornecidos pelo módulo

Vali-Inst.

Vali-Eval: É responsável pela avaliação da cobertura dos casos de teste em re-

lação aos critérios de teste selecionados. Utiliza informações dos módulos

Vali-Elem e Vali-Exec para determinar qual foi a cobertura alcançada pelos

casos de teste executados.

A ferramenta pode ser instanciada para diversas plataformas de computação

paralela. A ValiMPI é a versão para Message Passing Interface (MPI) da ValiPar
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(Hausen et al., 2006) , (Hausen et al., 2007) . Foi também desenvolvida uma

versão para Parallel Virtual Machine (PVM).

Os critérios definidos para a passagem de mensagem foram estendidos para

aplicar em outro paradigma de programação paralelo, quando a comunicação

inter-processos é realizada por meio de memória compartilhada (Sarmanho et al.,

2007) . O principal problema é como as várias linhas de execução comparti-

lham as variáveis e como isso impacta no fluxo de dados do programa. A sin-

cronização entre as linhas é realizadas por meio de semáforos (Sarmanho et al.,

2008) .

Como os critérios são baseados em sincronizações em geral produzem muitos

elementos requeridos, muitos dos quais não são executáveis, é importante que

se determine formas de se identificar quais sincronizações não podem ocorrer

durante a execução do programa. No trabalho de iniciação científica de Mário dos

Santos Camillo, foi investigado como a estratégia proposta por (Lei and Carver,

2006) poderia ser utilizada para gerar somente as sincronizações executáveis.

O modelo baseado em GFC para programas paralelos mostrou-se bastante

versátil para representar sistemas no contexto de composição de serviços web.

Um serviço web é um componente autônomo de software que pode ser invo-

cado por meio de protocolos abertos. Dois ou mais serviços web podem ser com-

binados para formar um novo serviço web, em um processo conhecido como

composição de serviços web. Existem duas formas principais de composição:

coreografia ou orquestração. No caso de orquestração, um serviço web princi-

A. C. Hausen, S. R. Vergílio, S. R. S. Souza, P. S. L. Souza, A. S. Simão. ValiMPI: Uma
Ferramenta para o Teste de Programas Paralelos. In: Sessão de Ferramentas - Simpósio Brasileiro
de Engenharia de Software. p. 1-6, Florianópolis, SC, 2006.

A. C. Hausen, S. R. Vergilio, S. R. S. Souza, P. S. L. Souza, A. S. Simão. A Tool for Structural
Testing of MPI Programs. In: The 8th IEEE LAtin-American Test Workshop, p1-6 Cuzco, Peru.
2007. (Qualis B3)

F. S. Sarmanho, P. S. L. Souza, S. R. S. Souza, A. S. Simão. Aplicação de Teste Estrutural
para Programas Multithreads Baseados em Semáforos. In: The 1st Workshop on Languages and
Tools for Parallel and Distributed Programming (LTPD). p. 18-21, Granado, RS, 2007.

F. S. Sarmanho, P. S. L. Souza and S. R. S. Souza, A. S. Simão. Structural Testing for
Semaphore-Based Multithread Programs. In: The 8th International Conference on Computational
Science. p. 337-346, Kraków, Polônia, 2008.
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pal faz chamadas síncronas e assíncronas a outros serviços. Dessa forma, uma

composição de serviços web pode ser encarada como um sistema paralelo. Essa

perspectiva foi explorada no trabalho de mestrado de Andre Takeshi Endo (Endo

et al., 2007) e (Endo et al., 2008) .

Observou-se que em algumas situações o modelo baseado em GFC não é su-

ficiente para representar adequadamente todos os aspectos de uma composição

de serviços. Assim, em (Endo et al., 2010) foi proposta uma estratégia que

combina duas abordagens: a abordagem baseada em cobertura, como as dos tra-

balhos citados acima, e a abordagem baseada em eventos, proposta por (Belli

et al., 2006).

Resumo

Os trabalhos nessa linha contaram com a colaboração ativa dos alunos de mes-

trado e iniciação científica, e também com diversos pesquisadores, em especial,

Simone do Rocio Senger de Souza, Paulo Sérgio Lopes de Souza e Silvia R. Ver-

gílio. Foram orientados um trabalho de mestrado e um trabalho de iniciação

científica. Foram publicados um artigo em revista internacional, seis artigos em

eventos internacionais e dois artigos em eventos nacionais.

2.3 Outras Linhas

Nesta seção, são apresentadas as contribuições que não se encaixam nas li-

nhas principal e secundária apresentadas nas seções anteriores. De modo geral,

tratam-se de linhas que ainda estão se desenvolvendo ou que representam uma

A. T. Endo, A. S. Simão, S. R. S. Souza, P. S. L. Souza. Aplicação de Teste Estrutural
para Composição de Web Services. In: The 1st Brazilian Workshop on Systematic and Automated
Software Testing. p. 13-20, João Pessoa, PB, 2007.

A. T. Endo, A. S. Simão, S. R. S. Souza and P. S. L. Souza. Web Services Composition Tes-
ting: A Strategy Based on Structural Testing of Parallel Programs. In: TaicPart: Testing Academic
& Industrial Conference - Practice and Research Techniques. p. 3-12, Windsor, UK, 2008.

A. T. Endo, M. Lindshulte, A. S. Simão, S. R. S. Souza. Event- and Coverage-Based Testing
of Web Services. In: 2nd Workshop on Model-Based Verification & Validation From Research to
Practice (MVV). p. 1-8, Cingapura, 2010.
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colaboração pontual. Contudo, são linhas que podem vir a se desenvolver futu-

ramente.

2.3.1 Teste de Mutação

O teste de mutação é uma técnica de teste baseado em defeitos, ou seja, utiliza-se

o conhecimento de erros típicos cometidos pelos desenvolvedores para guiar a

adequação de conjuntos de casos de teste. Durante o mestrado e o doutorado,

o autor investigou a aplicabilidade do teste de mutação para a geração de tes-

tes a partir de especificações, mais precisamente, de Redes de Petri e Redes de

Petri Coloridas. Dessa forma, ao término do doutorado, algumas contribuições

referentes a essa ainda foram obtidas, refletindo os resultados de investigações

iniciadas no doutorado e concluídas posteriormente.

O teste de mutação envolve uma série de passos que devem ser seguidos para

que o resultado obtido seja de qualidade. Cada passo por si só apresenta desafios

interessantes que têm sido atacados por meio de diversas contribuições teóricas

e práticas na área. Em uma tentativa de sistematizar essa contribuições, ou seja,

de catalogar e organizar as contribuições obtidas, em (Vincenzi et al., 2005)

é proposto um processo de teste baseado em mutação. O processo, cuja versão

estendida é apresentada em (Vincenzi et al., 2006) , descreve todos os passos

referentes ao teste de mutação e como os problemas encontrados podem ser re-

solvidos com diversas contribuições encontradas na literatura.

A qualidade do teste de mutação está diretamente relacionada à qualidade

dos mutantes utilizados. A primeira tarefa a ser realizada quando o teste de mu-

tação vai ser aplicado em um novo contexto, tais como uma nova linguagem de

programação ou técnica de especificação, é definir um conjunto de operadores de

mutação. Um operador de mutação é uma função que, dado o artefato original,

A. M. R. Vincenzi, M. E. Delamaro, A. S. Simão, J. C. Maldonado. Muta-Pro: Towards the
Definition of a Mutation Testing Process. In: The 6th LAtin-American Test Workshop. p. 149-154,
Salvador, BA, 2005. (Qualis B3)

A. M. R. Vincenzi, M. E. Delamaro, A. S. Simão, J. C. Maldonado. Muta-Pro: Towards
the Definition of a Mutation Testing Process. Journal of the Brazilian Computer Society, v. 12, p.
47-61, 2006. (Qualis B2)
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produz um conjunto de artefatos, cada um com alguma modificação refletindo

um possível engano que pode ser cometido pelo desenvolvedor. Os operadores

de mutação são, portanto, de suma importância para definir a qualidade do teste

baseado em mutação. Em (Simão et al., 2009a) , foi proposta uma linguagem,

chamadaMuDeL, que utiliza os conceitos dos paradigmas transformacional (em

especial, a linguagem TXL (Cordy et al., 1988)) e lógico (em especial, a linguagem

Prolog (Bratko, 1990)) para definir operadores de mutação. Com base na gramá-

tica livre de contexto da linguagem alvo, são criados diversos módulos que mani-

pulam um artefato produzido nessa linguagem. Inicialmente, a árvore sintática é

obtida. Em seguida, com base nos comandos do operador de mutação escritos em

MuDeL, a árvore sintática é alterada, dando origem a diversas árvores mutan-

tes. Por fim, os nós da árvore são visitados de modo a obter os mutantes. Todo o

processo é automatizado, de forma que o desenvolvedor necessita apenas definir

a gramática livre de contexto (geralmente disponível para diversas linguagens

de programação) e depois os operadores propriamente ditos. A linguagem foi

definida de forma a estimular o reúso dos operadores entre linguagens similares.

2.3.2 Teste de Regressão

Em geral, um software é desenvolvido por meio de várias versões, de forma que

uma versão introduz novas funcionalidades ou corrige problemas em versões

anteriores. Após a criação de uma nova versão, é importante se certificar que

problemas indesejáveis não tenham sido introduzidos no software. Por exemplo,

ao se tentar corrigir um problema em alguma parte do software, defeitos podem

ser incluídos em outras partes. Para evitar que isso ocorra, o teste de regressão

é geralmente aplicado. O teste de regressão busca aplicar testes para garantir

que defeitos não tenham sido inadvertidamente introduzidos no software. Os

testes utilizados durante o desenvolvimento das versões anteriores são em geral

aplicados. Contudo, a reexecução de todos os testes pode ser custosa. Diversas

A. S. Simão, J. C. Maldonado and R. S. Bigonha. A transformational language for mutant
description. Computer Languages, Systems & Structures, v. 35, p. 322-339, 2009. (Qualis B2)
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técnicas de priorização e seleção de testes para otimizar o teste de regressão tem

sido propostos (Rothermel et al., 2001).

Em (Simão et al., 2006) , foi proposta uma estratégia para a seleção de casos

de teste para o teste de regressão que é baseado em redes neurais. Para cada

caso de teste, é extraída uma assinatura que representa a execução do caso de

teste. A assinatura foi definida como sendo a quantidade de vezes que um nó foi

exercitado durante a execução. Em seguida, a rede neural particiona os casos de

teste em blocos que continham casos de teste com assinaturas semelhantes. Um

caso de teste de cada bloco é então selecionado. A premissa é que casos de teste

com assinaturas semelhantes exercitam características semelhantes do software e,

portanto, durante o teste de regressão, deve-se priorizar os testes mais distintos

possíveis.

Em (Simão et al., 2008) , a abordagem foi aplicada utilizando-se como as-

sinatura os pares de definição e uso de variáveis. A abordagem foi comparada

com as abordagens Testar-Tudo e Aleatória, conseguindo uma economia de tempo

de execução em relação à primeira e na quantidade de defeitos encontrados em

relação à segunda.

2.3.3 Teste Funcional

O teste funcional utiliza as informações referentes a especificação do software

para avaliar a adequação de um conjunto de casos de teste. Também pode ser

utilizado como guia para a geração de casos de teste. Contudo, enquanto o teste

estrutural em geral possui um grande apoio ferramental, o teste funcional é nor-

malmente aplicado manualmente, tanto para a geração quanto para a avaliação

A. S. Simão, R. F. Mello, L. J. Senger. A Technique to Reduce the Test Case Suites for
Regression Testing Based on a Self-Organizing Neural Network Architecture. In: The 30th An-
nual International Computer Software and Applications Conference. p. 1-4, Chicago, USA, 2006.
(Qualis B1)

A. S. Simão, R. F. Mello, L. J. Senger, L. T. Yang, Improving regression testing perfor-
mance using the Adaptive Resonance Theory-2A self-organising neural network architecture. In-
ternational Journal of Autonomous and Adaptive Communications Systems, pp. 370-385, 2008.
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da adequação dos casos de teste. Em (Rocha et al., 2005) , foi proposta uma

ferramenta baseada em aspectos com o objetivo de automatizar a avaliação de

conjuntos de casos de teste com base na técnica funcional. Foram implementa-

dos os critérios Particionamento em Classes de Equivalência e Análise de Valor Limite.

Para cada condição de entrada, é definido uma classe de forma que cada classe

de equivalência é representada por um método. O método, que retorna um valor

booleano, decide se um conjunto de parâmetros de entrada de uma operação estão

em uma classe de equivalência. São definidos então aspectos que interceptam as

chamadas das operações do sistema e enfocam os métodos que correspondem às

classes. Assim, pode-se determinar quais classes foram cobertas.

2.4 Considerações Finais

Na Figura 2.4, são apresentadas as publicações obtidas após a conclusão do dou-

torado, separadas por ano e por linha de pesquisa. A numeração corresponde

ao número da nota de rodapé utilizada para introduzir a referência no decorrer

deste Capítulo 2. Como mencionado anteriormente, os círculos correspondem às

publicações em revista, enquanto que os quadrados correspondem às publicações

em conferências. As publicações nacionais são apresentadas com linha tracejada.

As oito publicações mais relevantes são apresentadas com fundo cinza; cópias

dessas publicações podem ser encontradas nos Apêndices C a J.

Pode-se observar que o volume de publicações se manteve adequado ao longo

de todo o período. Inicialmente, os trabalhos estavam mais dispersos entre as

diversas linhas de pesquisa, sendo que a maioria dos trabalhos eram publicados

em conferências nacionais. O perfil se altera a partir de 2008, coincidindo com

o período de pós-doutorado; mais publicações em conferências internacionais e

em revistas foram obtidas, concentrando-se principalmente no teste baseado em

MEFs, tema do pós-doutorado.

A. D. Rocha, A. S. Simão, J. C. Maldonado, P. C. Masiero. Uma ferramenta baseada em
aspectos para o teste funcional de programas Java. In: Simpósio Brasileiro de Engenharia de
Software. p. 263-278, Uberlandia, MG, 2005. (Qualis B3)
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Outro ponto a se destacar é que o autor atuou nas três técnicas de teste, a saber,

estrutural (no teste de programas paralelos), funcional (incluindo o teste baseado

em modelos) e baseada em defeitos (no teste de mutação). Portanto, obteve-se

uma visão ampla da área de pesquisa. Vale lembrar que apesar de estar dividido

em cinco linhas distintas de pesquisa, os trabalhos estão todos relacionadas ao

teste de software, que é uma subárea da engenharia de software.

As contribuições para a área de teste de software podem ser classificadas em:

estudos teóricos, estudos experimentais e automatização. Na Figura 2.5, é apre-

sentado como as publicações obtidas podem ser mapeadas nessas três categorias.

Pode-se observar que o autor tem atuado nas três categorias, com maior desta-

que nos estudos teóricos. Em geral, estudos teóricos podem abrir novas linhas

de investigação nas duas outras categorias. Assim, espera-se que futuramente

trabalhos envolvendo estudos experimentais e automatização possam ser desen-

volvidos.
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Capítulo 3

Conclusões

3.1 Discussão e Reflexões

Após a conclusão do doutorado, o autor continuou a desenvolver pesquisas em

teste de software. Várias linhas de pesquisa dentro dessa área foram investiga-

das. Maior ênfase foi dada ao teste baseado em MEFs, que caracteriza a linha

principal de pesquisa. Diversos resultados relevantes foram obtidos, com avan-

ços em importantes problemas que estão sendo investigados há algumas décadas.

Tratam-se de problemas fundamentais que foram alvo de diversos trabalhos ao

longo do tempo.

Outra linha de investigação que foi explorada pelo autor é o teste de pro-

gramas paralelos. Assim como novos desafios são adicionados à programação

de programas paralelos, o teste de programas paralelos também difere do teste

de programas tradicionais. Pode-se observar que as publicações nessa linha são

anteriores a 2009. De fato, em agosto de 2008, o autor afastou-se para realizar

pós-doutorado (a propósito, para dar continuidade às investigações na linha do

teste baseado em MEFs). Dessa forma, houve uma interrupção natural no desen-

volvimento dessa linha por parte do autor. Espera-se que no futuro essa linha

volte a ser investigada.

Um ponto a se destacar é que apenas os trabalhos desenvolvidos após a con-

clusão do doutorado foram apresentados neste documento. Assim, não foram
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incluídos diversos trabalhos desenvolvidos e publicados antes da conclusão, o

que se constitui de 3 publicações em revistas e 13 trabalhos em conferências. O

tema principal desses trabalhos é o teste de mutação, em especial no teste de es-

pecificações.

Atualmente, o autor possui uma boa inserção no cenário acadêmico. O au-

tor é membro do comitê de programa do Simpósio Brasileiro de Engenharia de

Software, do Simpósio Brasileiro de Métodos Formais e do Simpósio Brasileiro

de Qualidade de Software, que se constituem nos principais eventos nacionais na

sua área de pesquisa. Foi também co-chair de um evento internacional (22nd IFIP

International Conference on Testing Software and Systems — ICTSS) e co-chair do

primeiro workshop brasileiro voltado para a área de teste de software (Brazilian

Workshop On Systematic and Automated Software Testing — SAST). O autor é

também co-chair do Simpósio Brasileiro de Métodos Formais 2011.

3.2 Trabalhos Futuros e em Andamento

Atualmente, o autor orienta um aluno de doutorado e um aluno de mestrado,

ambos com temas relacionados ao teste baseado em MEFs. Note-se que, por estar

afastado para a realização de pós-doutorado, o número de alunos que puderam

ser orientados foi reduzido; porém, deve-se nos próximos anos aumentar o nú-

mero de trabalhos.

No trabalho de doutorado do aluno André Endo, investiga-se métodos de ge-

ração de teste para serviços Web, dando continuidade ao trabalho desenvolvido

por ele no mestrado. Os métodos de geração de teste a partir de MEFs estão

sendo estudados, de forma a identificar quando e como eles podem ser aplicados

nesse contexto. De certa forma, pode-se dizer que esse trabalho une as duas prin-

cipais linhas de pesquisa do autor, uma vez que serviços web podem ser tratados

como programas paralelos e os métodos de geração estudados foram resultados

dos trabalhos com MEFs.

No trabalho de mestrado da aluna Arineiza Cristina Pinheiro, investiga-se

como os métodos podem ser aplicados no teste de sistemas embarcados. O inte-

resse nesse contexto de aplicação deve-se ao fato da participação do autor no Ins-
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tituto Nacional de Ciência e Tecnologia em Sistemas Embarcados Críticos (INCT-

SEC). Um dos objetivos do trabalho de Pinheiro é identificar uma aplicação real

que possa ser testada com os métodos de geração baseados em MEFs. Eventual-

mente, a ferramenta Plavis/FSM poderá ser reestruturada para se adequar a esse

contexto.

Além disso, foi recentemente aprovado um projeto de pesquisa pelo Edital

Universal do CNPq, que tem como tema a continuidade dos trabalhos de in-

vestigação sobre métodos de geração de conjuntos completos para MEFs. Dessa

forma, pode-se destacar como trabalhos futuros nessa linhas o estudo dos seguin-

tes itens:

• Geração de testes para MEFs não determinísticas; todos os trabalhos desen-

volvidos pelo autor até o momento tratam de MEFs determinística. Con-

tudo, existem domínios que podem ser melhores descritos com a inclusão

de não determinismo.

• Geração de sequências de verificação a partir de MEFs sem sequências de

distinção.

• Consolidação de aplicações práticas de teste baseado em MEFs para domí-

nios específicos, tais como sistemas embarcados e arquiteturas orientadas a

serviço.
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Apêndice A

Teste baseado em Máquinas

de Estados Finitos:

Definições e Exemplos

Neste apêndice, são apresentados os principais conceitos do teste baseado em

Máquinas de Estados Finitos, bem como as definições formais dos conceitos dis-

cutidos na Seção 2.1. Este apêndice é baseado no capítulo de livro (Simão, 2007),

e no Capítulo 3 da dissertação de mestrado de de Mello Neto (2008).

A.1 Definições

Uma MEF A pode ser representada formalmente por uma tupla

(S, s0, X, Y,DA, δ, λ), (Petrenko and Yevtushenko, 2005) , onde:

• S é um conjunto finito de estados, incluindo o estado inicial s0;

• X é um conjunto finito de entradas;

• Y é um conjunto finito de saídas;

• DA ⊆ S ×X é um domínio da especificação;

• δ é uma função de transição, δ : DA → S, e
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• λ é uma função de saída, λ : DA → Y ;

Dados um estado si ∈ S e uma entrada x ∈ X , diz-se que (si, x) é uma tran-

sição definida se e somente se (si, x) ∈ DA. Os estados si e sj = δ(si, x) são

chamados de estado inicial e estado final da transição, respectivamente.

Sejam M = (S, s0, X, Y,DM , δ, λ) e I = (T, t0, X, Y,DI ,∆,Λ) duas MEFs que

representam uma especificação e uma implementação, respectivamente. Uma

sequência de entrada α = x1x2 . . . xk ∈ X∗ é chamada de sequência de entrada

definida para o estado si ∈ S se existe uma sequência de transições (si1, x1), onde

sij+1 é o estado final da transição (sij, xj). A notação ΩM(si) representa o conjunto

de todas as sequências de entrada definidas no estado si da máquina M . Para

uma sequência de entrada α e uma estrada x, tal que αx é definido no estado

si, define-se que δ(si, αx) = δ(δ(si, α), x) e λ(si, αx) = λ(si, α)λ(δ(si, α), x). Para

a sequência vazia, denotada por ε, define-se que, para todo s ∈ S, δ(s, ε) = s e

λ(s, ε) = ε.

Dois estados si, sj ∈ M são compatíveis se, para todo α ∈ ΩM(si) ∩ ΩM(sj),

tem-se que λ(si, α) = λ(sj, α). Caso contrário, os estados são distinguíveis. For-

malmente, os estados si e sj são distinguíveis se existe uma sequência de entrada

γ ∈ ΩM(si)∩ΩM(sj), chamada de sequência de separação (separating sequence), tal

que λ(si, γ) 6= λ(sj, γ).

O estado si é quasi-equivalente ao estado sj , se ΩM(si) ⊇ ΩM(sj) e λ(si, α) =

λ(sj, α) para todo α ∈ ΩM(sj). Em outras palavras, um estado si é quasi-

equivalente a um estado sj se para toda entrada definida em sj , si produzir a

mesma saída.

Dados os estados si, sj ∈ S e uma sequência α ∈ ΩM(si) tal que δM(si, α) = sj ,

diz-se que α é uma sequência de transferência (transfer sequence) de si para sj .

Um conjunto state cover Q de uma MEF M com n estados é definido como um

conjunto com n sequência . de transferência, incluindo a sequência vazia ε, que

leva M a partir de seu estado inicial para cada um dos estados.

Um conjunto transition cover P é um conjunto de sequências de entrada em que

para cada transição definida (s, x), existe uma sequência de entrada α ∈ ΩM(s0),

50



tal que δ(s0, α) = s e αx ∈ P . Ou seja, o conjunto P faz com que a máquina

execute cada transição e que, em seguida, pare.

Uma sequência de distinção (distinguishing sequence) é uma sequência de en-

trada d em que a sequência de saída produzida pela MEF M , em resposta à en-

trada d, identifica o estado da máquina M , ou seja, para todo si, sj ∈ S, si 6=
sj, λM(si, d) 6= λM(sj, d).

Uma sequência UIO (unique input/output sequence) de um estado sj , denotado

por UIO(sj) é uma sequência de entrada/saída única para esse estado, ou seja,

para todo si ∈ S sj, λM(si, UIO(sj)) 6= λM(sj, UIO(sj)). Dessa forma, com a apli-

cação da sequência UIO pode-se distinguir o estado sj de qualquer outro estado,

pois a saída produzida é específica (única) do estado sj .

Um conjunto de caracterização (characterization set), frequentemente chamado

de conjuntoW , é um conjunto de sequências de entrada tal que, para dois estados

quaisquer sj e si, i 6= j, existe uma sequência β ∈ W tal que λM(sj, β) 6= λM(si, β).

Em outras palavras, o conjunto W é um conjunto de sequências de entrada que

possui uma sequência que diferencia todo par de estados existentes em M .

Um conjunto Wj ⊆ ΩM(sj) de sequências de entrada definidas é chamado de

identificador de estado (state identifier) ou conjunto de separação (separating set)

do estado sj se para qualquer outro estado si existe α ∈ Wj ∩ ΩM(si) tal que

λM(sj, α) 6= λM(si, α). Em outras palavras, o conjunto Wj é um identificador

do estado sj se possui uma sequência de entrada α que o diferencia de todos os

demais estados.

Uma família de separação (separating family) ou identificadores harmonizados

(harmonized identifiers) é um conjunto de identificadores de estado Hj, sj ∈ S, tal

que para dois estados quaisquer sj, si ∈ S, i 6= j, existe β ∈ Hj e γ ∈ Hi que têm

um prefixo comum α tal que α ∈ ΩM(sj) ∩ ΩM(si) e λM(sj, α) 6= λM(si, α).

A operação reset (representada como “r” nas sequências de entrada) é uma

operação que “reinicia” corretamente a MEF, ou seja, leva a implementação ao

seu estado inicial. A maior parte do métodos de geração utilizam essa operação

para permitir que múltiplas sequências sejam aplicadas.
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Dado um conjunto de sequências de entradaK, diz-se que dois estados si, sj ∈
S são K-equivalentes, denotado por si ≡K sj , se para todo α ∈ K ∩ ΩM(si) ∩
ΩM(sj), tem-se que λ(si, α) = λ(sj, α).

A implementação I está em conformidade com a especificação M se, e so-

mente se para todo α ∈ ΩM(s0) ∩ ΩM(t0), tem-se que λ(s0, α) = λ(t0, α). Isso

significa que, para cada sequência de entrada onde um comportamento de M

seja definido, I comporta-se de maneira idêntica. Diz-se que a implementação é

quasi-equivalente à especificação (Gill, 1962; Sidhu and Leung, 1989).

A.2 Propriedades de MEFs

Diversos métodos de geração requerem que as MEFs possuam determinadas pro-

priedades para serem aplicados. As principais propriedades são apresentadas a

seguir. Uma MEF é completamente especificada (ou completa) se existem transições

definidas para todos os símbolos de entrada em cada estado da MEF. Caso con-

trário, a MEF é parcialmente especificada (ou parcial). Formalmente, uma MEF é

completa se DA = S ×X . Uma MEF é fortemente conexa se para cada par de esta-

dos (si e sj ∈ S) existe uma sequência que leva a MEF M do estado si ao estado

sj . Uma MEF é dita ser inicialmente conexa se para cada estado s ∈ S existe uma

sequência que leva a MEF do estado inicial s0 ao estado s. De uma forma geral,

somente as MEFs inicialmente conectadas são consideradas nos estudos realiza-

dos, pois de acordo com Yannakakis and Lee (1995) qualquer estado inatingível a

partir do estado inicial não afeta o comportamento da MEF. Uma MEF parcial é re-

duzida se seus estados, tomados par-a-par, são distinguíveis. Uma MEF completa

é minimal se não possui par de estados equivalentes. Neste trabalho os termos re-

duzida e minimal são utilizados como sinônimos. Uma MEF é determinística se em

cada estado, dada uma entrada, há somente uma única transição definida para

um próximo estado caso contrário, a MEF é não determinística.
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A.3 Domínio de Defeitos

Para um conjunto de sequências de teste gerado a partir de uma MEF, uma ques-

tão importante refere-se em como avaliar a efetividade (ou qualidade) do mesmo,

ou seja, avaliar sua cobertura em relação aos defeitos revelados. Como, por um

lado, infinitos defeitos são possíveis e, por outro, o conjunto de casos de teste deve

ser finito, define-se um domínio de defeitos, representando o conjunto de possí-

veis defeitos que o teste deve revelar. Domínios de falha diferentes podem ser

definidos para refletir características particulares de uma configuração de teste.

No teste baseado em MEFs, domínios de defeitos são definidos em função do

número máximo de estados que a implementação pode ter. Assim, dado um nú-

mero m, o domínio de defeitos é o conjunto de todas as MEFs com no máximo m

estados. Note-se que em geral o domínio de defeitos, apesar de finito, possui um

número muito grande de MEFs. Como a implementação é considerada uma caixa

preta, esse número máximo não é conhecido, sendo que assume-se um valor que

baseado em heurísticas. Trata-se de uma hipótese de teste (Chow, 1978; Petrenko

and Yevtushenko, 2005; Hierons and Ural, 2006)

O conjunto de teste ém-completo se para qualquer implementação I do domí-

nio de defeitos, I vai passar pelo teste, se e somente se, I estiver em conformidade

com a especificação M .

Alguns métodos garantem a geração de conjuntos de teste m-completos, para

qualquer m ≥ n pré-definido, sendo n o número de estados da especificação.

Outros métodos apenas garantem para o caso de m = n, onde n é o número de

estados da especificação. Além disso, alguns métodos não oferecem esse tipo de

garantia.

A.4 Custo de Aplicação do Critério

O custo de aplicação de um método pode ser dividido em dois fatores principais.

Por um lado, tem-se o custo para a geração das sequências de teste. Esse custo

relaciona-se com a complexidade dos algoritmos utilizados durante o processo

de geração. Os algoritmos de geração devem ser tratáveis, no sentido de que o
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tempo necessário para gerar deve ser de ordem polinomial no tamanho da MEF.

Por outro lado, tem-se o custo da execução das sequências de teste. Cada sequên-

cia de teste deve ser traduzida em entradas concretas para a implementação, a

qual deve ser executada com essas entradas. Normalmente, o custo de execução

é o principal fator na avaliação do custo da aplicação de um método, uma vez

que é normalmente aceitável um método que demande mais tempo para geração

das sequências de teste, se ele conseguir gerar um conjunto menor. Dessa forma,

o custo de aplicação de um método é medido em termos do tamanho do conjunto

de teste gerado, tanto no caso médio como no pior caso.

A forma usual de medir o custo é pela quantidade de símbolos de entrada

presentes no conjunto, também conhecido como comprimento do conjunto. As

sequências que são prefixos de outras sequências do conjunto não são contadas,

pois ao se aplicar uma sequência, todos os seus prefixos já são necessariamente

aplicados. Além disso, assume-se que para levar a implementação ao estado ini-

cial, deve-se utilizar uma entrada adicional de reset. Assim, dado uma sequência

de teste t, define-se o custo de t como sendo o comprimento de t mais 1. Dado

um conjunto de sequências de teste T , define-se o comprimento como sendo a

soma dos comprimentos de todas as sequências que não são prefixos de outras

sequências em T .

A.5 Métodos de Geração

Nesta seção são apresentados os principais métodos de geração de casos de teste a

partir de MEFs. O objetivo é fornecer uma visão geral dos métodos e da evolução

histórica dos mesmos.

Embora os métodos possuam um objetivo comum (de verificar se uma imple-

mentação está correta com sua especificação), eles diferem com relação ao custo da

geração das sequências de teste, tamanho do conjunto de teste e capacidade de de-

tecção de defeitos (eficácia). Da mesma forma que as sequências geradas precisam

detectar o máximo de defeitos existentes em uma implementação, elas devem ser

relativamente pequenas para que seja possível sua aplicação na prática.
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Nesta seção, são apresentados alguns métodos de geração de casos de teste,

buscando ilustrar as diferenças apresentadas em relação ao conjunto de pro-

priedades requeridas. Uma MEF, ilustrada na Figura A.1, será utilizada como

exemplo para a geração dos casos de teste. Essa MEF possui quatro estados

{S1, S2, S3, S4}, sendo S1 o estado inicial, as entradas X = {x, y} e as saídas

Y = {0, 1}. A MEF também admite o conjunto de sequências {x, y, yy} como o

conjunto W , o conjunto state cover Q = {ε, y, x, yy}, os identificadores de estado

W1 = {yy}, W2 = {y}, W3 = {x} e W4 = {x, yy} e as famílias de separação

H1 = {x, yy}, H2 = {x, y}, H3 = {x} e H4 = {x, yy}.

S1

x/1 y/0

y/0

y/0

y/1

x/1

x/1

x/0

S2

S3 S4

Figura A.1: Exemplo de MEF extraído de Dorofeeva et al. (2005b).

Cobertura de Estados e Transições Em Holzmann (1991) um algoritmo é pro-

posto para o teste de conformidade.

O algoritmo de teste de conformidade funciona com a aplicação das mensa-

gens status, reset e set para todo estado s ∈ S, sendo α ∈ X da seguinte forma.

1. Aplique uma mensagem de reset para trazer Mi ao seu estado inicial.

2. Aplique uma mensagem set(s) para levar Mi ao estado s.

3. Aplique a entrada α.

4. Verifique se a saída produzida está em conformidade com a especificação

M , ou seja, é igual λS(s, α).
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5. Aplique a mensagem de status e verifique se o estado final está em confor-

midade com a especificação Ms, ou seja, é igual δS(s, α).

A checking sequence produzida pelo algoritmo é uma concatenação das sequên-

cias reset, set(s), α e status repetida para cada estado do conjunto de estados S e

para cada símbolo de entrada do conjunto de símbolos de entrada X . Esse algo-

ritmo é capaz de revelar qualquer defeito de saída e de transferência. No entanto,

o algoritmo baseia-se na mensagem set, que por sua vez, pode não existir.

Para evitar o uso de mensagens set, uma sequência transition tour (TT) pode

ser construída. Essa sequência percorre a máquina visitando cada estado e cada

transição ao menos uma vez sem que ela precise ser reiniciada após a execução

de cada teste. Pela aplicação do método TT, juntamente com uma mensagem de

status (inserida após cada entrada da sequência TT), uma checking sequence é ob-

tida. Essa sequência de entrada consegue descobrir os defeitos de transferência

e de saída. No entanto o método TT, proposto originalmente por Naito and Tsu-

noyama (1981), não utiliza a mensagem de status e obtém somente uma cobertura

das transições. Dessa forma, o método TT não garante a detecção de defeitos de

transferência.

As mensagens de status raramente estão disponíveis. Diversos métodos de

geração de casos de teste utilizam algumas sequências de separação, ao invés

da mensagem de status, para identificar os estados de uma MEF. Para a MEF da

Figura A.1, o conjunto de casos de teste, gerado pelo método TT, é composto pelas

sequências que realizam a cobertura das transições. O conjunto de teste obtido

poderia ser TSTT = {ryxyyxyxxyxy} de tamanho 12.

Método DS O método DS, proposto por Gonenc (1970), baseia-se na sequência

de distinção, ou seja, para a sua utilização é necessária que a MEF possua essa

sequência. No entanto, segundo Gill (1962), tal sequência pode não existir mesmo

para MEFs minimais.

É importante selecionar a menor sequência de distinção para que, consequen-

temente, se obtenha um conjunto menor de casos de teste. Seja Xd a sequência de

distinção escolhida. O método resulta na geração de uma checking sequence pela

composição de duas subsequências:
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Sequências-α: Verificam todos os estados da MEF.

Sequências-β: Verificam todas as transições.

Primeiramente, o método consiste na geração das sequências-α. Para isso, um

grafo (grafo-Xd) é construído de modo que cada estado da MEF seja representado

por um nó. Para cada nó, existe uma aresta que o liga a um outro nó represen-

tando a aplicação deXd. As sequências-α são geradas percorrendo-se o grafo sem

repetir as arestas.

Em seguida, as sequências-β são produzidas de forma semelhante às

sequências-α. Um outro grafo é produzido (grafo-β), no entanto, as arestas re-

presentam sequências da forma xi.Xd. As sequências-β são geradas obtendo-se

uma cobertura das arestas do grafo-β.

Considerando a MEF da Figura A.1 com a sequência de distinção Xd = yyy, o

método DS é ilustrado a seguir.

Para a geração das sequências-α o grafo-Xd, ilustrado na Figura A.2, é cons-

truído. Para cada nó, as transições referentes à aplicação deXd são representadas.

S1

X
d

S2

S3 S4

X
d

X
d

X
d

Figura A.2: Grafo-Xd.

No início, um estado que não é destino de nenhuma aresta (estado origem)

é escolhido arbitrariamente. Por exemplo, o estado S1 é escolhido e marcado

como “reconhecido”. Aplica-se a sequência Xd atingindo o estado S4 que tam-

bém é marcado como “reconhecido”. Aplica-se Xd atingindo o estado S4 nova-

mente. Assim, um novo estado origem deve ser selecionado, mas antes disso,

aplica-se novamente Xd para verificar se o estado atingido foi realmente o estado
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S4. A partir de S4 aplica-se x que leva a MEF ao novo estado origem S3. Es-

tando no estado S3, repete-se o procedimento anterior. A sequência-α obtida é:

{yyy yyy yyy x yyy yyy xx yyy yyy}.
Em seguida, para a construção das sequências-β o grafo-β (Figura A.3(a)) é

criado. Considerando que as sequências-α já foram aplicadas e, dessa forma,

todos os estados já foram verificados, duas reduções podem ser realizadas no

grafo-β. A primeira refere-se à última transição da aplicação de Xd. Por exemplo,

aplicando-se Xd ao estado S1 a MEF passa pelos estados S2, S4 e S4. O último

passo pode ser descartado, pois essa verificação já foi realizada na construção das

sequências-α. Desse modo, a transição de S4 com a entrada y pode ser retirada

do grafo-β. De maneira semelhante, a transição de S2 com a entrada y pode ser

retirada do grafo-β.

A segunda redução refere-se à última transição da sequência incluída para

ligar os estados de origem. Por exemplo, a sequência x ligou o estado S4 ao

estado S3, então a transição de S4 com a entrada x pode ser retirada do grafo-

β. Do mesmo modo, a sequência xx ligou o estado S4 ao estado S2, passando

pelo estado S3. Dessa forma, a transição de S3 com a entrada x também pode ser

retirada do grafo-β. O grafo-β reduzido é ilustrado na Figura A.3(b).

S1

x.Xd

S3

S2

S4 x.Xd

x.Xd

y.Xd y.Xd

y.Xd

y.Xdx.Xd

(a)

S1

x.Xd

S3

S2

S4

x.Xd

y.Xd
y.Xd

(b)

Figura A.3: Grafo-β e Grafo-β reduzido.

Percorre-se o grafo-β reduzido para a obtenção da sequência-β. A sequência-β

obtida é: {xyyy xy yyyy xx xyyy x yyyy}.
O conjunto de casos de teste resultante da aplicação do método DS é: TSDS =

{yyy yyy yyy x yyy yyy xx yyy yyy xyyy xy yyyy xx xyyy x yyyy} de tamanho 45.
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É importante salientar que trabalhos vêm sendo desenvolvidos em relação à

redução de checking sequences. No trabalho de Ural et al. (1997), um método para

a construção de checking sequences é proposto e, da mesma forma que o método

DS, é aplicável somente para MEFs que possuam uma sequência de distinção. No

trabalho de Hierons and Ural (2002) uma melhoria é proposta ao método criado

em Ural et al. (1997) para a construção de checking sequences de tamanho mínimo.

A partir dessa melhoria, houve uma redução no tamanho das checking sequen-

ces geradas a partir de MEFs determinísticas, minimais e completamente espe-

cificadas. A checking sequence é produzida com base nos conjuntos A (conjunto

de sequências) e Ec (conjunto de transições). No trabalho de Hierons and Ural

(2006) investiga-se a escolha desses conjuntos. Os autores demonstram como o

conjunto A deve ser escolhido para minimizar a soma dos tamanhos das sequên-

cias e como essa etapa deve ser adaptada para a geração de um conjuntoEc ótimo.

Os resultados obtidos apontam uma redução de 25 a 40% das checking sequences.

Método W Um dos métodos mais conhecidos para a geração de sequências de

teste é o método W (Automata Theoretic) proposto por Chow, em 1978. O método

W não é aplicado a MEFs parciais, considerando apenas MEFs inicialmente co-

nectadas, completamente especificadas, minimais e determinísticas. Esse método

consiste em gerar dois conjuntos de sequências e concatená-los de forma a obter

sequências de entrada para o teste de determinada MEF. Esses dois conjuntos são:

P : Conjunto de sequências que percorre cada transição ao menos uma vez.

T : Conjunto de sequências capaz de identificar qual é o estado da máquina.

O conjunto T é gerado a partir de um conjunto de caracterização (conjunto

W ). Em seguida, é estimado o número m de estados da máquina a ser testada.

Se o número estimado for igual ao número de estados n da máquina real, então

T = W , senão tem-se T =
⋃m−n

i=0 (X i •W ), onde X i é o conjunto de todas as

sequências com i entradas, e A • B = {αβ | α ∈ A ∧ β ∈ B}. Ao fim, a sequência

de teste gerada dá-se pela concatenação de P com T .

As sequências desse conjunto são executadas uma a uma na máquina, ge-

rando as saídas que são analisadas posteriormente.
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Em suma, o método W consiste em três passos principais:

1. Estima-se um número máximo (m) de estados que a implementação possa

conter.

2. Geração das sequências de teste que garantem que cada transição foi imple-

mentada corretamente.

3. Verificação das respostas geradas pelas sequências de teste produzidas na

segunda etapa.

Se a implementação da MEF (a máquina em teste) gerar saídas corretas a partir

das sequências de entrada geradas pelo método W, esta máquina está correta,

pois o método é confiável para testar estruturas de controle modeladas por uma

MEF (Chow, 1978). Contudo, o método W produz muitas sequências de entrada

para serem testadas, o que pode promover um alto custo para a realização da

etapa de teste.

A aplicação do método W na MEF da Figura A.1 é ilustrada a seguir.

Considerando m = n tem-se o conjunto T = W = {x, y, yy}. Considera-

se o conjunto transition cover P = {ε, x, y, xx, xy, yy, yx, yyy, yyx}.
Pela concatenação de P com T obtém-se as sequências

{x, y, yy, xx, xy, xyy, yx, yy, yyy, xxx, xxy, xxyy, xyx, xyy, xyyy, yyx, yyy, yyyy,
yxx, yxy, yxyy, yyyx, yyyy, yyyyy, yyxx, yyxy, yyxyy}.

Com a retirada das sequências que são prefixos de outras, a aplica-

ção do método W na MEF da Figura A.1 resulta no conjunto TSW =

{rxxx, rxxyy, rxyx, rxyyy, ryxx, ryxyy, ryyxx, ryyxyy, ryyyx, ryyyyy} de ta-

manho 49.

Método Wp Fujiwara et al. (1991) propuseram o método Wp (partial W) que

é um aprimoramento do método W. A principal vantagem do método Wp em

relação ao W é que ele utiliza um subconjunto do conjunto W para a criação das

sequências de teste, e, assim, obtém-se uma quantidade reduzida de casos de

teste para serem utilizados.

O método Wp, semelhante ao W, também opera em MEFs completas. Esse

método possui o mesmo poder do método W na detecção de defeitos, mas produz
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um menor conjunto de sequências de entradas (Fujiwara et al., 1991). O método

basicamente consiste em duas fases:

Fase 1: É verificado se todos os estados definidos na especificação também são

encontrados na implementação.

Fase 2: Todas as transições definidas na especificação e que não foram testadas

na fase 1 são verificadas.

Um conjunto transition cover P que cobre todas as transições da MEF é deter-

minado e identifica-se um subconjunto state cover Q que cobre todos os estados

da MEF. Para cada estado si ∈ S da especificação determina-se um conjunto de

identificação Wi, que distingue o estado si de todos os demais. A união de to-

dos os conjuntos Wi resulta no conjunto W e diferentes casos de testes podem ser

gerados dependendo da escolha dos conjuntos P , Q e Wi.

Na primeira fase, os casos de teste resultam da concatenação dos conjuntos Q

e W . Se o teste obtiver sucesso significa que o número de estados da implemen-

tação é igual ao número de estados da especificação.

Na segunda fase, os casos de teste são gerados a partir da concatenação das

sequências do conjunto P , menos as sequências do conjunto Q, com o conjunto

Wi correspondente ao estado atingido após a execução de cada sequência, ou

seja, R = P − Q e R ⊗ W =
⋃

p∈R
{p} • Wi. A operação R ⊗ W resulta em um

conjunto formado pela união da concatenação das sequências do conjunto R com

o conjunto de identificação Wi. Dessa forma, obtém-se um conjunto de casos de

teste menor em relação ao conjunto gerado pelo método W , pois a concatenação

ocorre com um subconjunto Wi ao invés de ocorrer com o conjunto W .

Para a MEF da Figura A.1, a aplicação do método Wp é ilustrado a seguir. Na

primeira fase, considerando o conjunto state cover Q, as sequências são geradas

pela concatenação de Q com W . Dessa forma, como resultado da primeira fase

tem-se as sequências {x, y, yy, yx, yy, yyy, xx, xy, xyy, yyx, yyy, yyyy}.
Na segunda fase, considerando o conjunto transition cover P =

{ε, x, y, xx, xy, yy, yx, yyy, yyx}, as sequências são geradas pela concatenação

do conjunto P , menos o conjunto Q, com o conjunto Wi de cada estado Si atin-

gido. Tem-se R = P −Q = {xx, xy, yyy, yyx, yx}. Realizando a operação R⊗W
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obtém-se as sequências da forma: {xx.W2, xy.W1, yyy.W4, yyx.W3, yx.W2}.
Realizando as substituições necessárias, as sequências obtidas são:

{xxy, xyyy, yyyx, yyyyy, yyxx, yxy}.
Com a retirada das sequências que são prefixos de outras, a aplica-

ção do método Wp na MEF da Figura A.1 produz o conjunto TSWp =

{rxxy, rxyyy, ryxy, ryyxx, ryyyx, ryyyyy} de tamanho 29.

Método State Counting O método State Counting (SC), proposto por Petrenko

and Yevtushenko (2005), atinge os mesmos objetivos do método W em relação à

efetividade, ou seja, o método garante a cobertura completa de defeitos existentes

na implementação de uma MEF parcial.

De um modo geral, o método State Counting utiliza um algoritmo que ex-

pande as sequências de teste a partir de um estado da MEF até que seja atingida

uma condição que permita verificar que todos os defeitos já foram identificados.

Por exemplo, se um estado é visitado mais do que m vezes, sendo m o número

de estados da MEF, pode-se parar de expandir a sequência, uma vez que, desse

ponto em diante, o comportamento começará a se repetir. Os autores provam

que, utilizando-se as relações de quasi-equivalência entre estados e sequências

capazes de distinguir pares de estado, pode-se determinar a parada da expansão

da sequência sem que seja necessário atingir o limite de m visitas a um estado.

O método State Counting pode ser utilizado com MEFs parciais e gera um

conjunto de casos de teste que pode ser usado para identificar todos os possíveis

defeitos, sendo, dessa forma, mais eficiente que o método HSI e mais amplamente

aplicável que os métodos W e Wp. Contudo, verifica-se que, em geral, o número

de casos de teste gerados é elevado. Esse método gera um conjunto de casos de

teste completo a partir de MEF parciais e não reduzidas.

Método HSI O método HSI (Petrenko et al., 1993), semelhante ao método Wp,

também é uma modificação do método W. Ele garante a cobertura completa de

defeitos existentes sendo aplicável em qualquer especificação reduzida, seja ela

completa ou parcial. Esse método utiliza o conceito de família de separação. Uma
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família de separação é um conjunto de identificadores de estado Hj, sj ∈ S, que

satisfaz a seguinte condição:

Com o objetivo de testar a conformidade de uma implementação I em relação

à especificaçãoM , o método consiste basicamente em, dado um transition cover P ,

anexar a cada sequência α ∈ P , o conjunto de separação Hj , tal que sj = δ(s0, α).

Se a MEF resultar em respostas corretas para as sequências produzidas em

ambas as fases, pode-se considerar que ela está em conformidade com sua espe-

cificação.

Para a MEF da Figura A.1, a aplicação do método HIS é ilustrado a seguir,

considerando o conjunto state cover Q e as famílias de separação H1, H2, H3, H4.

Na primeira fase (Identificação de Estados) as sequências geradas

são da forma: {ε.H1, y.H2, x.H3, yy.H4} resultando nas sequências

{x, yy, yx, yy, xx, yyx, yyyy}.
Na segunda fase (Teste de Transições) as sequências geradas são da

forma: ε.x.H3, ε.y.H2, y.x.H2, y.y.H4, x.x.H2, x.y.H1, yy.x.H3, yy.y.H4.

Realizando as substituições necessárias, essa fase gera as sequências:

{xx, xy, yx, yy, yxx, yxy, yyx, yyyy, xxx, xxy, xyx, xyyy, yyxx, yyyx, yyyyy}.
Com a retirada das sequências que são prefixos de outras, o método HIS gera o

conjunto TSHIS = {rxxx, rxxy, rxyx, rxyyy, ryxx, ryxy, ryyxx, ryyyx, ryyyyy}
de tamanho 41.

Método H O método H (Dorofeeva et al., 2005a) é uma melhoria do método

HIS. A idéia é não utilizar, a priori, os identificadores de estados gerados. Os

identificadores de estado são construídos com base nos casos de teste já deriva-

dos com o intuito de distinguir-se os estados finais das transições. No trabalho

de Dorofeeva et al. (2005a) o método H, proposto originalmente para MEFs com-

pletas e determinísticas, é estendido para MEFs determinísticas parciais.

Os autores também estenderam o método H para máquinas parciais não de-

terminísticas. Segundo os autores, o método H, bem como o HIS, gera um con-

junto de teste completo, sendo aplicável em qualquer especificação reduzida

completa ou parcial. No entanto, o tamanho do conjunto dos casos de teste ge-

rado depende da ordem na qual as transições são verificadas. Os autores afir-
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mam que um procedimento para determinar a ordem de escolha das transições

está sendo incorporado ao método para a obtenção de sequências menores.

Considerando a MEF da Figura A.1, para identificar os estados, o método

H utiliza os identificadores de estado W1, W2, W3,W4 gerando as sequências

{yx, xx, yyx, yyyy}. Para verificar as transições, os identificadores de estados

são gerados. Por exemplo, seja a transição do estado S3 para o estado S2 com

a entrada x. Ao invés de se utilizar a sequência x.x.H2 como no método HIS,

utiliza-se a sequência x.x.y.

Para a MEF da Figura A.1, a aplicação do método H produz o conjunto TSH =

{rxxy, rxyyy, ryxy, ryyxx, ryyyyyy} de tamanho 25.

Método SPY O método SPY (Simão et al., 2009c), baseado em condições de su-

ficiência propostas em (Simão and Petrenko, 2010b), reduz o tamanho dos con-

juntos de teste pela distribuição dos identificadores entre várias sequências. A

completude do conjunto é garantida pela verificação de que as várias sequências

levam a um mesmo estado na implementação. Apesar de a implementação ser

uma caixa preta, a suposição de ela comporta-se como uma MEF com um número

máximo, conhecido de estados e de que ela é deterministica permite concluir que

algumas sequências devem levar ao mesmo estado. Assim, o método SPY evita

que muitas sequências seja adicionadas ao conjunto, aumentando seu tamanho.

Note-se que o método não especifica quais identificadores devem ser utilizados.

Dessa forma, ele pode ser combinado com os métodos Wp, HSI ou H.

A.5.1 Comparação entre os Métodos de Geração

Para que o testador escolha um método de geração com o objetivo de aplicá-lo em

alguma especificação baseada em MEF, é necessário que algumas características

sejam observadas. Essas características referem-se à exigência de cada método

para que a MEF possua certas propriedades, ao tamanho das sequências geradas

e à aplicabilidade de cada um.

Na Tabela A.1 é fornecida uma comparação entre os métodos apresentados

nesta seção. Todos os métodos são aplicados às MEFs determinísticas, fortemente
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conexas, completas e minimais. Dessa forma, na Tabela A.1 são apresentadas ou-

tras características das MEFs em que alguns métodos ainda podem ser aplicados.

Tabela A.1: Comparação entre os métodos de geração.

TT DS W Wp SC HSI H SPY
Não-minimal � �

Parcial � � � � �
Não-determinística �

Cobertura Completa � � � � � � �

Tamanho do Conjunto 12 45 49 29 39 39 25 25

Dentre os métodos apresentados, o método State Counting é o único que pode

ser aplicado às MEFs não reduzidas e que obtém um conjunto de casos de teste

completo. De acordo com Petrenko and Yevtushenko (2005), tem-se trabalhado

para realizar a generalização desse método para que seja aplicado às MEFs não

determinísticas.

Para a aplicação do método W, o conjunto de caracterização (conjunto W) deve

existir, sendo que ele sempre existe em MEFs minimais. O método DS fica restrito

à existência da sequência de distinção. Os métodos H e SPY, são os mais recen-

tes, incorporando estratégias possibilitadas por novas condições de suficiência

identificados (por exemplo, (Dorofeeva et al., 2005a; Simão et al., 2009c).
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Apêndice B

Teste de Programas Paralelos:

Definições e Exemplos

A seguir são apresentados os conceitos do teste de programas paralelos. Primei-

ramente, apresenta-se o modelo Parallel Control Flow Graph (PCFG) (Souza et al.,

2008) e em seguida, os critérios definidos são ilustrados. Este apêndice foi base-

ado na Seção 5.2 da dissertação de mestrado de Endo (2008).

O modelo PCFG foi definido para capturar o fluxo de controle, dados e co-

municação em programas paralelos baseados em passagem de mensagens. O

modelo considera um número n fixo e conhecido de processos dado pelo con-

junto Prog = {p0, p1, . . . pn−1}. A comunicação entre esses processos é feita por

meio das primitivas send e receive. Cada processo p possui seu próprio grafo de

fluxo de controle CFGp (Rapps and Weyuker, 1985).

O PCFG é composto pelos GFCs dos processos e pela representação da co-

municação entre os processos. N e E representam os conjuntos de nós e arcos,

respectivamente. Cada nó ni no processo p é representado com a notação np
i .

Dois subconjuntos de N são definidos: Ns e Nr, compostos de nós que são associ-

ados às primitivas send e receive, respectivamente. O conjunto E também possui

dois subconjuntos: Ep
i contém os arcos intra-processo (internos) do processo p e

Es contém os arcos inter-processos (representam a comunicação) do PCFG. A

criação dos arcos inter-processos pode ser realizada utilizando uma abordagem
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conservativa, em que são combinados todos os nós send com todos os nós receive,

exceto os que estão no mesmo processo. Um problema desse tipo de abordagem

é o grande número de arcos inter-processos que são gerados.

Um caminho πp em um CFGp é chamado caminho intra-processo. Um ca-

minho inter-processos possui pelo menos um arco inter-processos e é dado por

um conjunto de caminhos, Π = (π0, π1, . . . πk, S), onde S é o conjunto de arcos

inter-processos (pares de sincronização) que foram executados.

Uma variável é geralmente definida em atribuições e comandos de entrada.

No contexto de ambientes de passagem de mensagens, uma variável também

pode ser definida em funções de comunicação como o receive. Essas funções de-

finem uma ou mais variáveis com valores recebidos na mensagem (Souza et al.,

2008). Um conjunto de variáveis que são definidas no nó np
i é representado por

def(np
i ), ou seja, def(np

i ) = {x | x é uma variável definida em np
i }. Um caminho

π = (n1, n2, ..., nk−1, nk) é livre de definição com respeito à variável x do nó n1

para o nó nk ou arco (nk−1, nk), se x ∈ def(n1) e x 6∈ def(ni), para i = 2..k − 1.

Além dos tradicionais uso predicativo (p-uso) e uso computacional (c-uso) de

variáveis, o modelo PCFG adiciona o uso de comunicação (s-uso). Um s-uso

ocorre quando uma variável é usada em uma sentença de comunicação, relaci-

onada a um arco inter-processos. Essas associações são definidas a seguir:

• Um c-uso é definido pela tripla (np
i , n

p
j , x) | x ∈ def(np

i ) e, np
j possui um c-uso

de x e, existe um caminho livre de definição em relação à x de np
i para np

j .

• Um p-uso é definido pela tripla (np
i , (n

p
j , n

p
k), x) | x ∈ def(np

i ) e, (np
j , n

p
k)

possui um p-uso de x e, existe um caminho livre de definição em relação à x

de np
i para (np

j , n
p
k).

• Um s-uso é definido pela tripla (np1
i , (n

p1
j , n

p2
k ), x) | x ∈ def(np1

i ) e, (np1
j , n

p2
k )

possui um s-uso de x e, existe um caminho livre de definição em relação à x

de np1
i para (np1

j , n
p2
k ).

• Um s-c-uso é definido por (np1
i , (n

p1
j , n

p2
k ), np2

l , x
p1, xp2), onde existe uma as-

sociação s-uso (np1
i , (n

p1
j , n

p2
k ), xp1) e uma associação c-uso (np2

k , n
p2
l , x

p2).
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• Um s-p-uso é definido por (np1
i , (n

p1
j , n

p2
k ), (np2

l , n
p2
m ), xp1, xp2), onde

existe uma associação s-uso (np1
i , (n

p1
j , n

p2
k ), xp1) e uma associação p-uso

(np2
k , (n

p2
l , n

p2
m ), xp2).

Para ilustrar o modelo, a seguir é apresentado o exemplo GCD. Esse exem-

plo é implementado usando a biblioteca PVM (Listagem B.1 e Listagem B.2). O

programa utiliza quatro processos (pm, p0, p1, p2) para calcular o máximo divisor

comum entre três números. O processo mestre pm cria os processos escravos

p0, p1 and p2, que executam o código “gcd.c”. Cada escravo espera o recebimento

de dois valores enviados pelo processo pm e calculam o máximo divisor comum

para esses valores. Ao final, os processos escravos enviam o valor calculado para

o processo mestre.

Listing B.1: Programa GCD em PVM - processo mestre.

/* Master program GCD - mgcd.c */

#include<stdio.h>

#include "pvm3.h"

extern void pack(int);

extern int unpack();

int main(){

/*1*/ int x,y,z, S[3];

/*1*/ scanf("%d%d%d",&x,&y,&z);

/*1*/ pvm_spawn("gcd",(char**)0,0,"",3,S);

/*2*/ pack(&x);

/*2*/ pack(&y);

/*2*/ pvm_send(S[0],1);

/*3*/ pack(&y);

/*3*/ pack(&z);

/*3*/ pvm_send(S[1],1);

/*4*/ pvm_recv(-1,2);

/*4*/ x = unpack();

/*5*/ pvm_recv(-1,2);

/*5*/ y = unpack();

/*6*/ if ((x>1)&&(y>1)) {

/*7*/ pack(&x);

/*7*/ pack(&y);

/*7*/ pvm_send(S[2],1);
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/*8*/ pvm_recv(-1,2);

/*8*/ z = unpack(); }

/*9*/ else { pvm_kill(S[2]);

/*9*/ z = 1; }

/*10*/ printf("%d", z);

/*10*/ pvm_exit(); }

Listing B.2: Programa GCD em PVM - processo escravo.

/* Slave program GCD - gcd.c */

#include<stdio.h>

#include"pvm3.h"

extern void pack(int);

extern int unpack();

int main(){

/*1*/ int tid,x,y;

/*1*/ tid = pvm_parent();

/*2*/ pvm_recv(tid,-1);

/*2*/ x = unpack();

/*2*/ y = unpack();

/*3*/ while (x != y){

/*4*/ if (x<y)

/*5*/ y = y-x;

/*6*/ else

/*6*/ x = x-y;

/*7*/ }

/*8*/ pack(&x);

/*8*/ pvm_send(tid,2);

/*9*/ pvm_exit();}

O PCFG é apresentado na Figura B.1. O número à esquerda do código-fonte

(Listagem B.1 e B.2) representa o nó no grafo associado a cada comando. Arcos

inter-processos são representados por arcos tracejados.

B.1 Critérios de Teste

Durante a atividade de teste, é essencial avaliar a qualidade dos testes realizados.

Um critério de teste define propriedades ou requisitos que precisam ser testados
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Figura B.1: PCFG para o programa GCD (Souza et al., 2008).
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para garantir a qualidade do software (Rapps and Weyuker, 1985). Critérios de

teste são usados para avaliar sistematicamente casos de teste e guiar a seleção

de casos de teste. Baseado no modelo PCFG, Souza et al. (2008) definiram um

conjunto de critérios de cobertura, listados a seguir.

• Todos-Nós-s: os casos de teste devem exercitar cada nó np
i ∈ Ns.

• Todos-Nós-r: os casos de teste devem exercitar cada nó np
i ∈ Nr.

• Todos-Nós: os casos de teste devem executar todas as atividades em todos

os processos.

• Todos-Arcos-s: os casos de teste devem executar no mínimo uma vez cada

comunicação entre os processos.

• Todos-Arcos: os casos de teste devem executar todos os desvios de execu-

ção e comunicação entre processos.

• Todos-s-usos: os casos de teste devem executar todas as associações s-uso.

• Todos-s-c-usos: os casos de teste devem executar todas as associações s-c-

uso.

• todos-s-p-usos: os casos de teste devem executar todas as associações s-p-

uso.

Durante a análise de cobertura, que consiste basicamente em determinar o

percentual de elementos requeridos de critério de teste que foram exercitados

pelo conjunto de casos de teste, é fundamental o conhecimento sobre as limita-

ções inerentes à atividade de teste (Maldonado et al., 2004). Sabe-se que alguns

elementos requeridos podem ser não executáveis, e em geral, determinar a não

executabilidade de um dado requisito de teste é feita de forma manual.
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Checking Completeness of
Tests for Finite State Machines

Adenilso Simao and Alexandre Petrenko

Abstract—In testing from a Finite State Machine (FSM), the generation of test suites which guarantee full fault detection, known as

complete test suites, has been a long-standing research topic. In this paper, we present conditions that are sufficient for a test suite to

be complete. We demonstrate that the existing conditions are special cases of the proposed ones. An algorithm that checks whether a

given test suite is complete is given. The experimental results show that the algorithm can be used for relatively large FSMs and test

suites.

Index Terms—Finite State Machine, test analysis, fault coverage, test completeness conditions, test generation.

Ç

1 INTRODUCTION

TEST generation from a Finite State Machine (FSM) is a
long-standing research problem, with numerous con-

tributions over decades. Since the seminal work of Moore [12]
and Hennie [8], several methods have been proposed to
generate a test suite with full fault detection capability, i.e., a
test suite which provides full coverage of the set of all
possible FSMs with a certain number of states that model
implementations of a given specification FSM; such test
suites have complete fault coverage and, in this sense, are
complete [1], [2], [4], [5], [9], [10], [15], [17], [18], [20]. These
methods rely on sufficient conditions for test suite complete-
ness. The conditions appear either explicitly in the methods
or implicitly in the proof of their correctness.

The generation methods usually require the existence of
sequences which identify states in the specification FSM
based on their outputs. If the FSM is completely specified
and has a diagnostic sequence, a complete test suite with a
single sequence can be generated, as in, e.g., [5], [9], [10], [8],
[18]. The sufficient conditions underlying the correctness
proof of these methods are captured in a theorem presented
in [18]. However, a diagnostic sequence may not exist for an
arbitrary reduced FSM. In this case, methods which do not
require the existence of a diagnostic sequence can be used,
such as those presented in [17], [20]. These methods are
applicable to any reduced FSMs and generate test suites
with multiple sequences, as they rely on the availability of a
reliable reset operation. The related sufficient conditions are
summarized in [14] and refined in [2].

Besides supporting the definition of generation methods,
sufficient conditions for test completeness can be used to

address other related issues, namely, the analysis of the fault
coverage of a test suite and test minimization. Completeness
of a test suite can be established by exhaustive approaches
which explicitly enumerate either all possible faulty FSMs,
as in, e.g., [16] or all minimal forms of the partially specified
FSM representing a test suite as a tree (see [19], [6]). By their
nature, these approaches do not scale well. This fact explains
why approaches which reduce the task of deciding whether
a given test suite has complete fault detection capability to
checking the satisfaction of sufficient conditions appear
to be more practical even if they cannot give a definitive
answer when the conditions are not satisfied.

The relevance of investigating sufficient completeness
conditions is thus twofold. On one hand, weakening
sufficient conditions can allow for improvement in methods
for test generation, obtaining shorter tests of a proven fault
detection capability. On the other hand, weaker sufficient
conditions can be used to prove completeness of a much
larger class of tests, as well as to further minimize existing
complete tests.

In this paper, we present sufficient conditions for test
suite completeness that are weaker than the ones known in
the literature. We consider the case when implementation
FSMs have at most as many states (n) as the specification
FSM. Test completeness in this case is usually called
n-completeness. We introduce the notion of confirmed
sequence set. A set of input sequences is confirmed with
respect to a test suite T and an FSM M if sequences leading
to a same state in M also lead to a same state in any FSM
that has the same output responses to T and has as many
states as M. We show that if there exists a confirmed set
which includes the empty sequence and traverses each
defined transition, then a test suite is n-complete. We also
demonstrate that the proposed conditions generalize both
those proposed in [18] (which do not need a reliable reset
but require a diagnostic sequence) and in [2] (which need a
reliable reset but do not require a diagnostic sequence). We
also present an approach for determining confirmed sets
and elaborate an algorithm for analyzing test completeness.
The effectiveness of the algorithm is demonstrated by
experimenting with randomly generated FSMs with up to
500 states and test suites with up to 300,000 inputs.
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This paper is organized as follows: In Section 2, we
provide the necessary basic definitions. In Section 3, we
define the notion of confirmed sets, state sufficient
conditions for a test suite to be n-complete, based on the
existence of confirmed sets and elaborate an approach for
determining confirmed sets. An algorithm for checking
n-completeness is presented in Section 4. We then demon-
strate in Section 5 that all known sufficient conditions for
n-completeness are special cases of the conditions proposed
in this paper. The results of the experimental evaluation of
the formulated conditions and method to check them are
discussed in Section 6. Section 7 concludes the paper.

2 DEFINITIONS

A Finite State Machine is a deterministic Mealy machine,
which can be defined as follows:

Definition 1. A Finite State Machine (FSM) M is a 7-tuple
(S; s0; I; O; D; �; �), where

. S is a finite set of states with the initial state s0,

. I is a finite set of inputs,

. O is a finite set of outputs,

. D � S � I is a specification domain,

. � : D! S is a transition function, and

. � : D! O is an output function.

If D ¼ S � I, then M is a complete FSM; otherwise, it is a
partial FSM. As M is deterministic, a tuple ðs; xÞ 2 D
determines uniquely a (defined) transition of M in state s. For
simplicity, we use (s; x) to denote the transition, thus omitting
its output and final state. A string� ¼ x1 . . .xk; � 2 I�, is said
to be a defined input sequence for state s 2 S, if there exist
s1; . . . ; skþ1, where s1 ¼ s, such that (si; xi)2 D and �ðsi; xiÞ ¼
siþ1; for all 1 � i � k. We use �ðsÞ to denote the set of all
defined input sequences for state s and �M as a shorthand for
�ðs0Þ, i.e., for the input sequences defined for the initial state
of M and, hence, for M itself. Fig. 1 shows the example of a
partial FSM.

We extend the transition and output functions from
input symbols to defined input sequences, including the
empty sequence ", as usual: for s 2 S; �ðs; "Þ ¼ s and
�ðs; "Þ ¼ "; and for input sequence � and input x, �ðs; �xÞ ¼
�ð�ðs; �Þ; xÞ and �ðs; �xÞ ¼ �ðs; �Þ�ð�ðs; �Þ; xÞ. Moreover,
we extend the transition function to sets of defined input
sequences. Given an FSM M, a state s of M, and a set of

defined input sequences C � �ðsÞ, we define �ðs; CÞ to be
the set of states reached by the sequences in C, i.e.,
�ðs; CÞ ¼ f�ðs; �Þ j � 2 Cg. For simplicity, we slightly abuse
the notation and write �ðs; CÞ ¼ s0, whenever �ðs; CÞ ¼ fs0g.
Given sequences �; �; � 2 I�, if � ¼ ��, then � is a prefix of
�; if, moreover, � is not empty, then � is a proper prefix of
�. A set of sequences A is prefix-closed, if for each
sequence � 2 A, it holds that A contains all prefixes of �.

An FSM M is said to be initially connected, if for each state
s 2 S, there exists a defined input sequence � 2 �M , called a
transfer sequence for state s, such that �ðs0; �Þ ¼ s. In this
paper, only initially connected machines are considered,
since any state that is not reachable from the initial state can
be removed without changing the machine’s behavior.

Two states s, s0 2 S are distinguishable, if there exists
� 2 �ðsÞ \ �ðs0Þ, such that �ðs; �Þ 6¼ �ðs0; �Þ. We say that �
distinguishes s and s0. If a sequence � distinguishes each
pair of distinct states, then � is a diagnostic sequence. Given
a set C � �ðsÞ \ �ðs0Þ, states s and s0 are C-equivalent, if
�ðs; �Þ ¼ �ðs0; �Þ, for all � 2 C. We finally define distin-
guishability and C-equivalence of machines as a corre-
sponding relation between their initial states. An FSM M is
said to be reduced, if all states are pairwise distinguishable.

3 COMPLETE TEST SUITE AND SUFFICIENT

CONDITIONS

We consider only deterministic machines in this paper.
Thus, a test case can be defined using just inputs, as
expected outputs are uniquely determined from the inputs
by a given specification FSM.

Definition 2. A defined input sequence of FSM M is called a test
case (or simply a test) of M. A test suite T of M is a finite
prefix-closed set of tests of M. A test � 2 T is maximal (with
respect to T), if it is not a proper prefix of another test in T.

The execution of a test implies the execution of all its
proper prefixes. Thus, to execute a test suite only its
maximal tests have to be considered. As tests should be
applied in the initial states, the implementation must be
brought to its initial state before the application of a test. If
the test suite possesses only a single maximal test, this can
be accomplished by using a homing sequence, as in [8], [9],
[18]. On the other hand, to execute a test suite with more
than one maximal test, it is assumed that the implementa-
tion has a reset which reliably brings the machine to its
initial state prior to applying the next test, e.g., [1], [2], [4],
[14]. For the sake of simplicity, we define the length of a test
� as j�j þ 1, i.e., the number of inputs plus a reset needed to
bring the machine to the initial state, regardless of the fact
that test suites with a single maximal test does not actually
require such a reset. The length of a test suite T is defined as
the sum of the lengths of all its maximal tests.

Given a reduced FSM M with n states, let =ðMÞ be the
set of all reduced complete deterministic FSMs with the
same input alphabet and at most n states.

Definition 3. A given test suite T of FSM M is n-complete, if
for each FSM N 2 =ðMÞ, such that N and M are
distinguishable, there exists a test in T that distinguishes them.

If an n-complete test suite is the set of all prefixes of a
single sequence R 2 �M , i.e., R is its only maximal test, then
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R is, in fact, a so-called “checking sequence,” used for
testing FSM without a reset operation [18].

In this paper, we are concerned with conditions that
are sufficient to guarantee that a given test suite is
n-complete. We first introduce the notion of confirmed
sets of defined input sequences. Throughout this paper, let
N ¼ ðQ; q0; I; O

0; D0;�;�Þ, where D0 ¼ Q� I, be an arbi-
trary element of =ðMÞ. Given a test suite T , let =T ðMÞ be
the set of all N 2 =ðMÞ, such that N and M are
T -equivalent.

Definition 4. Let T be a test suite of an FSM M ¼ ðS; s0; I; O;
D; �; �Þ and K � T . The set K is confirmed if �ðs0; KÞ ¼ S
and, for each N 2 =T ðMÞ, it holds that for all �, � 2 K,
�ðq0; �Þ ¼ �ðq0; �Þ if and only if �ðs0; �Þ ¼ �ðs0; �Þ. An
input sequence is confirmed if there exists a confirmed set
that contains it.

In words, a confirmed set of input sequences contains
transfer sequences for all states of M and any sequences
converging (i.e., leading to a same state) in any FSM that
has the same output responses to T and has as many
states as M also converge in M. This key property is
exploited by methods for constructing complete test suites,
such as [1], [2], [4], [5], [9], [10], [8], [15], [17], [18], [20], in
one way or another.

Notice that, according to Definition 4, we can establish
that two sequences in a confirmed set for a given test suite T
converge in any FSM that reacts to T as the FSM M only by
determining that they converge in the FSM M.

The next theorem states that, for a given test suite to be
n-complete for given FSM, it suffices that there exists a
confirmed set which contains the empty sequence and
covers each transition of FSM. A set of input sequences
covers a transition if the set contains a transfer sequence for
its initial state and the sequence is extended in the
confirmed set with the input labelling the transition.

Theorem 1 (Sufficient Conditions for n-Completeness of a
Test Suite). Let T be a test suite of an initially connected
reduced FSM M ¼ ðS; s0; I; O;D; �; �Þ with n states. T is
n-complete for M, if there exists a confirmed set K � T with
the following properties:

1. " 2 K.
2. For each ðs; xÞ 2 D, there exist �; �x 2 K, such that

�ðs0; �Þ ¼ s.
Proof. Let N 2 =T ðMÞ. As M is initially connected, for

each s 2 S, there exists � 2 K, such that �ðs0; �Þ ¼ s.
For each � 2 K, if �ðs0; �Þ 6¼ �ðs0; �Þ, then we have that
�ðq0; �Þ 6¼ �ðq0; �Þ. Thus, jQj ¼ n. Consequently, there
exists a bijection f : S ! Q, such that for each
� 2 K; fð�ðs0; �ÞÞ ¼ �ðq0; �Þ. As " 2 K; fðs0Þ ¼ q0. We
prove that, for each � 2 �M; fð�ðs0; �ÞÞ ¼ �ðq0; �Þ using
induction on �, and, moreover, �ðs; xÞ ¼ �ðfðsÞ; xÞ, for
each ðs; xÞ 2 D.

If � ¼ ", we have � 2 K, and, by definition, fð�ðs0; �ÞÞ ¼
�ðq0; �Þ. Let � ¼ ’x and assume that fð�ðs0; ’ÞÞ ¼�ðq0; ’Þ.
There exists � 2 K, such that �ðs0; �Þ ¼ �ðs0; ’Þ and
�x 2 K. Thus, we have that fð�ðs0; �xÞÞ ¼ �ðq0; �xÞ and
�ðq0; �Þ ¼ fð�ðs0; �ÞÞ ¼ fð�ðs0; ’ÞÞ ¼ �ðq0; ’Þ. It follows
that

fð�ðs0; ’xÞÞ ¼ fð�ð�ðs0; ’Þ; xÞÞ ¼ fð�ð�ðs0; �Þ; xÞÞ
¼ fð�ðs0; �xÞÞ ¼ �ðq0; �xÞ ¼ �ð�ðq0; �Þ; xÞ
¼ �ð�ðq0; ’Þ; xÞ ¼ �ðq0; ’xÞ:

Therefore, fð�ðs0; ’xÞÞ ¼ �ðq0; ’xÞ and, by induction, for
any � 2 �M; fð�ðs0; �ÞÞ ¼ �ðq0; �Þ.

For each ðs; xÞ 2 D, there exists �x 2 T , �ðs0; �Þ ¼ s,
� 2 K. Therefore, �ð�ðs0; �Þ; xÞ ¼ �ð�ðq0; �Þ; xÞ. As
� 2 K, we have that �ðq0; �Þ ¼ fðsÞ and, as N is
T -equivalent to M, it follows that �ðs; xÞ ¼ �ðfðsÞ; xÞ.

Suppose finally that N can be distinguished from M.
Therefore, there exists a defined sequence �x 2 �M , such
that �ðs0; �Þ ¼ �ðq0; �Þ and �ðs0; �xÞ 6¼ �ðq0; �xÞ. There
exist � 2 K, such that �ðs0; �Þ ¼ �ðs0; �Þ, and�x 2 K, such
that �ð�ðs0; �Þ; xÞ ¼ �ðfð�ðs0; �ÞÞ; xÞ. From �ðs0; �Þ ¼
�ðs0; �Þ, it follows that �ð�ðs0; �Þ; xÞ ¼ �ðfð�ðs0; �ÞÞ; xÞ ¼
�ð�ðq0; �Þ; xÞ; and from �ðs0; �Þ ¼ �ðq0; �Þ, it follows that

�ðs0; �xÞ ¼ �ðs0; �Þ�ð�ðs0; �Þ; xÞ ¼ �ðq0; �Þ�ð�ðq0; �Þ; xÞ
¼ �ðq0; �xÞ:

The resulting contradiction concludes the proof. tu
If all the sequences in T are prefixes of a single input

sequence, the test can be applied without a reliable reset.
Thus, the conditions apply to both testing scenarios, with
and without a reliable reset operation. In Section 5, we show
that they are weaker than those known in the literature in
either case.

The following lemmas indicate several possibilities for
constructing a confirmed set. Our first lemma presents a
sufficient condition for a minimal state cover (which contains
a single transfer sequence for each state) to be a confirmed
set. Given a test suite T of an FSMM, two sequences �; � 2 T
are T-distinguishable (or simply distinguishable), if there exist
��; �� 2 T , such that �ð�ðs0; �Þ; �Þ 6¼ �ð�ðs0; �Þ; �Þ.
Lemma 1. Let T be a test suite of FSM M and K be a minimal

state cover. If each two sequences of K are T-distinguishable,
then K is confirmed.

Proof. Let N 2 =T ðMÞ. The set K contains exactly
n transfer sequences for all states of M, then, for each
s 2 S, there exists only one sequence in K that takes M
to s. For any �; � 2 K, we have that �ðs0; �Þ 6¼ �ðs0; �Þ
and �ðq0; �Þ 6¼ �ðq0; �Þ. Therefore, as N has no more
states than M, we have that j�ðq0; KÞj ¼ n, and K is
confirmed. tu
The next statements indicate sufficient conditions for

adding a sequence to a set while preserving the property of
“being confirmed” of the set, based on which confirmed sets
can incrementally be derived.

Lemma 2. Let K be a confirmed set and � be a transfer sequence
for state s. If for each s0 2 S n fsg, there exists � 2 K,
�ðs0; �Þ ¼ s0, such that � and � are T-distinguishable, then the
set K [ f�g is confirmed.

Proof. Let N 2 =T ðMÞ. Let f : S ! Q be a bijection, such
that for each � 2 K; fð�ðs0; �ÞÞ ¼ �ðq0; �Þ. It is sufficient
to show that fðsÞ ¼ �ðq0; �Þ. For each s0 2 S n fsg, there
exists � 2 K; �ðs0; �Þ ¼ s0, such that � and � are
T -distinguishable. Therefore, we have that �ðq0; �Þ 6¼
�ðq0; �Þ ¼ fðs0Þ. It follows that �ðq0; �Þ ¼ fðsÞ and, thus,
K [ f�g is confirmed. tu
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The next statement relies on the fact that, if proper
prefixes of some transfer sequences converge, then the
sequences converge as well.

Lemma 3. Let K be a confirmed set and � 2 T . If there exist
�; � 2 K, such that �ðs0; �Þ ¼ �ðs0; �Þ, and a sequence ’,
such that �’ 2 K and �’ ¼ �, then the set K [ f�g is also
confirmed.

Proof. Let N 2 =T ðMÞ. As �; � and �’ are in K, we have
that �ðq0; �Þ ¼ �ðq0; �Þ and, therefore, it follows that

�ðq0; �’Þ ¼ �ð�ðq0; �Þ; ’Þ ¼ �ð�ðq0; �Þ; ’Þ ¼ �ðq0; �’Þ
¼ �ðq0; �Þ:

Thus, as �ðs0; �’Þ ¼ �ðs0; �Þ and �ðq0; �’Þ ¼ �ðq0; �Þ, we
have that K [ f�g is confirmed. tu
In the following theorem, we summarize the above

lemmas in sufficient conditions for a given set of defined
input sequences to be confirmed:

Theorem 2 (Sufficient Conditions for the Existence of a
Confirmed Set). Let T be a test suite of FSM M with n states
and L � T be a set of k sequences, k � n. For an arbitrary
ordering of the sequences �1; . . . ; �k in L, let Li ¼
f�j 2 L j 1 � j � ig. Then L is a confirmed set if there exists
an ordering �1; . . . ; �k, such that the corresponding L1; . . . ; Lk
satisfy the following conditions:

1. Ln is a minimal state cover such that every two
sequences are T-distinguishable.

2. If k > n, then for each �i; n < i � k, it holds that either

a. for each s 2 S n f�ðs0; �iÞg, there exists � 2
Li�1; �ðs0; �Þ ¼ s, such that �i and � are
T-distinguishable; or

b. there exist �, �, and ’, such that �i ¼ �’, and
�’, �, � 2 Li�1, �ðs0; �Þ ¼ �ðs0; �Þ;

Proof. We prove by induction on Li. For the basis step, Ln is
a confirmed set by Lemma 1. For the induction step,
assume that Li, n � i < k, is a confirmed set. We show
that Liþ1 is also confirmed. If 2a holds, then Lemma 2
applies; otherwise, if 2b holds, Lemma 3 does. Conse-
quently, the set Li [ f�ig ¼ Liþ1 is confirmed. tu

4 ALGORITHM FOR CHECKING n-COMPLETENESS

In this section, we present an algorithm for determining the
n-completeness of a given test suite based on Theorems 1
and 2. As the conditions of these theorems are sufficient, if
the algorithm terminates with a positive result, then the test
suite is indeed n-complete. However, as the conditions are
not necessary, based on a negative answer, we cannot
conclude that the test suite is not n-complete.

The algorithm involves three main steps:

1. minimal confirmed sets are identified by applying
Lemma 1 to a given test suite T ;

2. the minimal confirmed sets are repeatedly extended
by the application of Lemmas 2 and 3 to sequences
of T as long as possible, thus obtaining maximal
confirmed sets; and

3. the maximal confirmed set are checked for satisfac-
tion of Theorem 1.

We first apply Lemma 1 to find minimal confirmed sets
(i.e., containing a single transfer sequence for each state ofM),
which are subsets of T with n pairwise T -distinguishable
sequences. The problem of finding minimal confirmed sets
can be cast as a problem of finding cliques in a graph, as
follows: We define a distinguishability graph G on T as a graph
whose vertices are the sequences in T , such that two vertices
are adjacent in G if and only if the corresponding sequences
are T -distinguishable. Then, the sequences that appear in a
clique of size n (an n-clique) of G form a confirmed set.
The problem of finding n-cliques in an arbitrary graph is
NP-complete [11]. However, several properties of distin-
guishability graphs can be used to formulate heuristics which
allow dealing with large graphs. Notice first that G is an
n-partite graph, since the sequences that transfer to same state
are not adjacent and, therefore, we can partition its vertices
into n blocks. Thus, we deal with the special case of finding
n-cliques in an n-partite graph. This problem has already
been investigated in [7], where a specialized algorithm is
proposed to find all n-cliques. The algorithm implements a
branch-and-bound approach, where a partial solution is
extended in a search tree (branching), and the search is
pruned as soon as it is possible to determine that a given
partial solution is fruitless (bounding). The initial partial
solution is a trivial empty clique. It is extended with
sequences that are adjacent to every sequence in the partial
clique. Based on the fact that the graph is n-partite, the
authors propose heuristics that help determine very early
when a partial clique cannot be extended to an n-clique. The
proposed heuristics are also useful to solve our problem.
Moreover, differently from that work, we do not need to find
all n-cliques, as discussed below.

From a minimal confirmed set K, we can obtain a
confirmed set K0 � T , such that K � K0 and K0 is the
largest set which satisfies the conditions in Theorem 2. To
determine K0, we initialize a set Kcur (a current confirmed
set) with K. Then, we iteratively select a sequence � 2
T nKcur and try to apply either Lemma 2 or Lemma 3. If no
new sequence satisfies them, the confirmed set Kcur so far
obtained is the largest one.

Notice that it is not necessary to check a minimal
confirmed set K that is included in some largest confirmed
setK0 that was already analyzed, as stated in the next lemma.

Lemma 4. Let K be a largest confirmed set that satisfies the
conditions of Theorem 2. LetK0 be a minimal confirmed set and
K00 be the largest confirmed set obtained by applying Lemmas 2
and 3 to the set K0. Then if K0 � K, it holds that K00 � K.

Proof. We prove by contradiction. Assume thatK0 � K, and
K00 6� K. The sequences ofK00 can be ordered as�1; . . . ; �k,
according to Theorem 2. Let j be such that Kj ¼ f�1; . . . ;
�j�1g � K, but�j 62 K. Thus, there exists a set of sequences
W � Kj which, in conjunction with �j, satisfy the
conditions of either Lemma 2 or Lemma 3. In this case, K
can be extended by the inclusion of �j, since W � K.
However, this contradicts the fact that K is a largest set
with respect to the conditions of Theorem 2. tu

Thus, according to Lemma 4, after finding an n-clique that
represents a minimal confirmed set, the search tree can be
bounded whenever it can be concluded that any n-clique
obtained from a given partial clique would be included in
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some largest confirmed set already determined. As discussed
in Section 6, this heuristic is a key factor for the performance
of the algorithm.

It remains to verify whether the obtained maximal
confirmed set satisfies Theorem 1, which is a straightfor-
ward step. If it does, the test suite is n-complete for M.
Otherwise, if another minimal confirmed set can be found,
the whole process iterates again.

We finally present the algorithm in details.

Algorithm 1.

Input: An FSM M and a test suite T .

Output: True, if T is n-complete according to Theorems 1

and 2.

1. Build the distinguishability graph G of T .
2. Let L be the empty set.

3. Determine (by using the branch-and-bound approach)

an n-clique K of G, such that there does not exist

K0 2 L with K � K0. If no such a clique exists, then

terminate with the answer False.

4. Find a sequence � 2 T nK, such that either Lemma 2

or Lemma 3 can be applied. If no such a sequence

exists, go to Step 6.
5. Include � in K and go to Step 4.

6. If K satisfies Theorem 1, then terminate with the

answer True.

7. Include K in L and go to Step 3.

We have implemented Algorithm 1 in a tool and applied
the tool to randomly generated FSMs and test suites. The
obtained results are discussed in Section 6.

5 COMPARISON WITH PREVIOUS WORK

In this section, we show that the sufficient conditions in [2]
and [18] are special cases of the conditions presented in this
paper. The conditions of [18] are formulated for checking
sequences; moreover, they can only be applied to strongly
connected FSMs possessing a diagnostic sequence, which
may not exist for an arbitrary reduced FSM. The conditions of
[2] apply to initially connected FSMs even without diagnostic
sequences; however, an implementation is assumed to have
a reliable reset operation and, thus, test suites can have more
than one maximal test.

In [2], the authors present the weakest sufficient
conditions found in literature for an n-complete test suite
using the reset operation. The conditions are stated in
Theorem 3, slightly rephrased using our notations.

Theorem 3 [2]. Let T be a test suite and Q be a prefix-closed state
cover of an FSM M, such that the following conditions hold:

1. For all sequences �; � 2 Q, such that �ðs0; �Þ 6¼
�ðs0; �Þ, it holds that � and � are T-distinguishable.

2. For each defined transition ðs; xÞ 2 D, there exists
�x 2 T , such that �ðs0; �Þ ¼ s, with the following
properties.

a. For each � 2 Q, such that �ðs0; �Þ 6¼ s, it holds
that � and � are T-distinguishable.

b. For each � 2 Q, such that �ðs0; �Þ 6¼ �ðs; xÞ, it
holds that �x and � are T-distinguishable.

Then, T is n-complete.

We show that Theorem 3 is a special case of Theorem 1.

Theorem 4. Let T be a test suite as in Theorem 3. Then T satisfies

the conditions of Theorem 1.

Proof. We first show that a state cover Q � T defined in

Theorem 3 is a confirmed set. Let Q0 � Q be a minimal

state cover. Clearly, each two sequences in Q0 are

T -distinguishable, by Condition 1. Then, by Lemma 1,

Q0 is a confirmed set. Let � 2 Q nQ0. By Condition 1, � is

T -distinguishable from each sequence � 2 Q0 which does

not transfer to the same state as �. Consequently, by

Lemma 2, we have that Q0 [ f�g is a confirmed set and so

isQ. Condition 2.i implies that Q [ f�g is a confirmed set,

since � is T -distinguishable from each sequence � 2 Q
which does not transfer to the same state as � and,

therefore, Lemma 2 can be applied. Similarly, Q [ f�xg is

a confirmed set, as �x is T -distinguishable from each

sequence � 2 Q which does not lead to the same state as

�x. Thus, let K be a confirmed set which includes Q and

the corresponding sequences � and �x, for each defined

transition ðs; xÞ 2 DM; �ðs0; �Þ ¼ s. Therefore, as " 2 Q
(recall thatQ is prefix-closed),K satisfies the conditions of

Theorem 1. tu

We now demonstrate that the converse is not true, by

showing an n-complete test suite for which Theorem 3 does

not hold, while Theorem 1 does. Consider the FSM in Fig. 1

and the test suite T1 which contains xyyxy, yyyyyyxyyy, and

their prefixes. It does not satisfy the conditions of Theorem 3,

since there is no state cover in the test suite T1 with the

required characteristics. Indeed, xyy is the only sequence

which leads to state 2 and is followed by x in T1. Therefore,

� ¼ xyy is the only sequence that could be used in Condition 2

for the defined transition (2, x). However, the input sequence

xy is the only sequence applied after the sequence xyy, but it

does not distinguish state 2 from state 3, since input x is not

defined in latter state. Thus, Condition 2i is violated.
Nonetheless, by using Lemmas 1, 2, and 3, we can find a

confirmed set, which satisfies the conditions of Theorem 1.
We have that the set f"; y; yy; yyyyyyxg ¼ K0 is confirmed,
by Lemma 1. By repeatedly applying Lemma 2, we can
prove that the set K0 [ fxyyx; yyy; yyyyyyxy; yyyyyyxyyg ¼
K1 is confirmed. After several applications of Lemma 3, we
obtain the confirmed set K1 [ fyyyy; yyyyy; yyyyyyg ¼ K2.
Now, we can apply Lemma 2 to prove that K2 [ fxg ¼ K3 is
confirmed. Finally, we add sequences xy and xyy by
applying Lemma 3 and obtain the confirmed set f"; x; xy;
xyy; xyyx; y; yy; yyy; yyyy; yyyyy; yyyyyy; yyyyyyx; yyyyyyxyg,
which satisfies the conditions of Theorem 1.

Ural et al. [18] present conditions for a sequence to be a
checking sequence. In that work, a sequence is defined to be
a checking sequence if it can distinguish a complete
strongly connected deterministic reduced FSM M from
each FSM with at most as many as states as M that is not
isomorphic to M. The conditions rely on the existence of a
diagnostic sequence (also called a distinguishing sequence).
We first restate a definition used in [9], [10], [18] for
constructing checking sequences for complete as well as
partial reduced FSMs.
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Definition 5. Given R 2 �M, let d be a diagnostic sequence of a
strongly connected deterministic reduced (possibly partial)
FSM M. Then,

1. A prefix � of R is (d-)recognized in R if �d a prefix of R.
2. If �; �, and �� are recognized in R and �ðs0; �Þ ¼

�ðs0; �Þ, then �� is recognized in R.
3. If � and �x are recognized in R and �ðs0; �Þ ¼ s, then

the transition (s, x) is verified in R.

We present a theorem which is similar to the one
formulated in [18], but is stronger in the sense that all the
implementation FMSs which are distinguishable from the
specification FSM are considered, and not only those which
are not isomorphic [18] or not equivalent to the specification
FSM [9], [10]. The statement is a special case of Theorem 1
and, thus, takes into account initialization faults as well, as
opposed to [9], [10], [18]. Compared to the original version
of the theorem, we add the requirement that d must be a
prefix of the checking sequence.

Theorem 5. Given R 2 �M , if d is a prefix of R and every
transition of M is verified in R, then the set of prefixes of R is
an n-complete test suite.

Proof. Let K0 be the set of d-recognized prefixes of R. We
first show that �ðs0; K0Þ ¼ S. Let s 2 S. There exists at
least one recognized sequence that leads to s, since every
transition is verified and M is strongly connected. For a
sequence to be recognized, either Condition 1 or Condi-
tion 2 must hold. For Condition 2, however, another
recognized sequence that also leads to s is required and,
consequently, at least one sequence satisfies Condition 1.
Therefore, for each s, there exists at least one sequence
that is d-recognized and, thus, s 2 �ðs0; K0Þ.

As d is a diagnostic sequence, for all �; � 2 K0,
such that �ðs0; �Þ 6¼ �ðs0; �Þ, it holds that � and � are
T -distinguishable. Then, by Lemma 1, K0 is a confirmed
set. Furthermore, we have that " 2 K0, since d is a prefix
of R. If �; �; ��, and �� are prefixes of R and �; �, and ��
are in a confirmed set, then �� can also be included in the
confirmed set, by Lemma 2. Consequently, if a sequence
’ is recognized and K0 is a confirmed set, then so is
K0 [ f’g. Let K be the set of all recognized prefixes of R.
It follows that K is a confirmed set and K0 � K. As every
transition is verified in R, for each ðs; xÞ 2 D, there exist
�; �x 2 K. Therefore, by Theorem 1, the set of R0s
prefixes is n-complete. tu

We now present an example of an n-complete test suite
that satisfies Theorem 1, but not Theorem 5. Consider the
FSM in Fig. 1 and the sequence R ¼ yyyyyyxyyyxyxyyxy.
The shortest diagnostic sequence for this FSM is yyy. The
d-recognized sequences are ", y, yy, yyy, and yyyyyyx. The
recognized sequences are yyyy, yyyyy, and yyyyyy. Then, the
set of verified transitions is fð1; yÞ; ð2; yÞ; ð4; yÞ; ð4; xÞg, which
includes only four out of seven defined transitions.

Now we demonstrate that the test suite T2, containing the
maximal test R ¼ yyyyyyxyyyxyxyyxy, satisfies Theorem 1
and, thus, that R is a checking sequence. First, it holds, by
Lemma 1, that f"; y; yy; yyyyyyxg ¼ K0 is a confirmed set. By
the application of Lemma 2, we have that K0 [ fyyyg ¼ K1

is confirmed. We repeatedly apply Lemma 3 to prove that

K1 [ fyyyy; yyyyy; yyyyyyg ¼ K2 is a confirmed set. Using
Lemma 2, we obtain the confirmed set K2 [ fyyyyyyxy;
yyyyyyxyyg ¼ K3. Then, K3 [ fyyyyyyxyyy; yyyyyyxyyyx;
yyyyyyxyyyxyg ¼ K4 is a confirmed set, according to
Lemma 3. Next, we have that K4 [ fyyyyyyxyyyxyxg ¼ K5

is also confirmed (Lemma 2). Now, we can prove that K5 [
fyyyyyyxyyyxyxy; yyyyyyxyyyxyxyyg ¼ K6 is a confirmed
set. Finally, the sequences yyyyyyxyyyxyxyyx and yyyyyyx-
yyyxyxyyxy are also confirmed according to Lemmas 2 and
3, respectively. The resulting confirmed set satisfies the
conditions of Theorem 1.

Another interesting feature of the conditions is that they
are more flexible than the previous ones. For instance,
although both the test suites T1 and T2 satisfy conditions
proposed in this paper, they do not satisfy the conditions of
[2] and [18]. The test suite T1 has length 17 and two
maximal tests, whereas the test suite T2 has length 18 and a
single maximal test. Thus, the proposed conditions are not
parameterized with the number of resets needed to execute
all the tests; this feature allows to elaborate a test generation
method to produce a test suite which is most suitable (in
terms of the number of tests) to a given situation.

Another approach to determine whether a given test
suite is n-complete is presented in [19], [14]. Given an
FSM M and a test suite T , the tree machine with the set of
defined sequences being exactly T is first constructed. Then
one needs to construct all the possible reduced forms of the
tree machine (the FSM M is one of them), using an existing
algorithm for partial FSM minimization (recent publications
on this topic include, e.g., [6], [13]). If at least one of the
obtained reduced FSMs is distinguishable from M, then T is
not n-complete. Otherwise, it is n-complete. Compared to
our approach, this method is exhaustive, while ours is
approximate, in the sense that we can positively identify
some n-complete test suites, but cannot provide definitive
negative answer. However, the problem of partial FSM
minimization is NP-complete and the existing algorithms
can deal only with small machines and small test suites, as
the experimental results of recent publications (e.g., [6])
show. Our method must also deal with the NP-complete
problem of finding an n-clique. Nonetheless, the heuristics
derived from Lemma 4 and the fact that the distinguish-
ability graph is n-partite allow us to cope with significantly
larger FSMs and test suites (compared to [6], [19]), as the
experimental results in Section 6 indicate. On the other
hand, the solution of [6] requires that all n-cliques be found
and checked, so its applicability is reduced to FSMs with
few states.

6 EXPERIMENTAL RESULTS

To evaluate the proposed sufficient conditions as well as
the method for checking test completeness a number of
experiments involving random generation of FSMs and
tests were performed using a tool, called Chico (Checking
completeness), which checks whether test suites satisfy the
conditions proposed in this paper. The first set of experi-
ments addressed the scalability of the method, and the
second compared it with the checkers of conditions of [2]
and [18].
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In the experiments, we used randomly generated FSMs
and test suites. We randomly generate initially connected
reduced FSMs in the following way. Sets of states, inputs,
and outputs with the required number of elements are first
created. The generation proceeds then in three phases. In
the first phase, a state is selected as the initial state and
marked as “reached.” Then, for each state s not marked as
“reached,” the generator randomly selects a reached state s0,
an input x, and an output y and adds a transition from s0 to
s with input x and output y, and mark s as “reached.” When
this phase is completed, an initially connected FSM is
obtained. In the second phase, the generator adds, if
needed, more transitions (by randomly selecting two states,
an input, and an output) to the machine until the required
(given a priori) number of transitions is obtained. In the
third phase, the distinguishability of each pair of distinct
states is checked. If the FSM is not reduced, it is discarded
and another FSM is generated.

Once a reduced FSM is obtained, a test suite is randomly
generated as follows: We start with a test suite Tcur
containing only the empty sequence, i.e., Tcur ¼ f"g. Then,
a defined sequence � is iteratively generated starting from
� ¼ " by adding to it an input randomly selected among
those defined in the state reached by the current sequence.
The sequence growing process terminates as soon as
� 62 Tcur; the sequence � is then included into Tcur. After
the inclusion of �, the number of sequences in Tcur is
increased by one.

6.1 Scalability of the Proposed Algorithm

An important question is how many minimal confirmed
sets have to be analyzed for a given test suite. To answer
this question, we executed Chico with the FSM in Fig. 1
and 10,000 randomly generated test suites. We observed
that the tool usually finds the first minimal confirmed set
rather quickly and the maximal confirmed set is then
determined. The subsequent search for another minimal
confirmed set is bounded quickly due to Lemma 4. In this
experiment, no test suite required the analysis of more than
two minimal confirmed sets, and in most cases, only a
single minimal confirmed set was analyzed. Moreover, only
in 144 out of 10,000 test suites, two minimal confirmed sets
were used. This experiment indicates that the number of
minimal confirmed sets to be analyzed may not be always

large in spite of the fact that their total number grows
exponentially with the number of states. This dependency is
an essential impediment to any approach explicitly enu-
merating all n-cliques of a graph, e.g., [19]. However, for
our algorithm, the larger the number of n-cliques, the easier
it is to find one of them and the remaining search can be
bounded early. Table 1 illustrates the saving due to
Lemma 4 in another set of experiments. We randomly
generated reduced complete FSMs with two inputs, two
outputs, and test suites of with 200 tests and selected the
FSMs for which the number of minimal confirmed sets is
the largest, representing a worst-case scenario. For none of
them, the test suite was determined to be n-complete by the
tool. Indeed, the number of minimal confirmed sets is large
(see, for instance, the experiments with the FSM with eight
states). However, the size of the largest confirmed set
obtained from the first identified minimal confirmed set is
also large. Then, all other minimal confirmed sets are
included in the first largest confirmed set and this fact can
be established rather early, bounding the search.

During some of the experiments with large FSMs and
tests, the runtime to find the first minimal confirmed set
becomes unacceptably long. This is not surprising, since the
problem is NP-complete and even with the heuristics
employed in the tool it may eventually take an exponential
amount of time to find a minimal confirmed set. An
important question here is how often the tool fails due to
the impossibility of finding a minimal confirmed set in a
reasonable amount of time. We have chosen a timeout of
one hour to terminate executions. All the experiments were
run on a Pentium IV HT 64 bits 3.4 GHz computer, with
2 Gb of memory. We generated 500 FSMs with 10 inputs,
10 outputs, number of states randomly chosen between one
and 500 as well as 500 test suites of length between one and
300,000. Fig. 2 shows the results, where small crosses
represent runs that ended before the timeout expiration
with a positive answer (the test suite was n-complete), small
squares represent runs that ended before the timeout with a
negative answer, and big stars represent the ones lasting
at least one hour. There were 22 runs terminated by the
timeout, which correspond to 4.4 percent of the executions;
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none of them occurred for FSMs with fewer than 200 states

or for test suites with length smaller than 80,000.
To see how execution time depends on the number of

states of the FSMs, we randomly generated 500 reduced

complete FSMs with 10 inputs, 10 outputs, and states
ranging from 3 to 500, as well as test suites with 20,000 tests.

We consider only the runs that were not ended by a timeout.
As seen in the previous experiment, the probability of a run
ending by timeout for this setting is negligible, since

timeouts only occurred with larger test suites. The average
time was 61.046 seconds and the standard deviation was

3.451 seconds. Thus, all things being equal, the execution
time varies only slightly with the number of states. Actually,
we observed that the parameter with the greatest impact on

execution time is the test suite length, as discussed next.
Fig. 3 shows how the execution time grows as the test

suite length increases. We generated 500 complete FSMs

with 10 inputs, 10 outputs, and the number of states ranging
from 3 to 500. The length of the test suites ranges from 1 to

300,000. Since the number of edges in the distinguishability
graph and, consequently, the time for constructing it, grows
quadratically with the test suite length, the overall execu-

tion time increases in the same way. We notice that even for
test suites of length as big as 300,000 and for FSMs with up

to 500 states, the tool was able to produce a result in less
than 1,500 seconds. In this experiment, we also excluded the
runs in which the tool was terminated by timeout. For

larger test suites, the tool runs out of memory, since the
amount of memory required for data structures used to

build and represent the distinguishability graph also grows
quadratically with the length of the test suite.

6.2 Experimental Comparison with Previous Work

The conditions proposed in this paper are more complex

than the conditions in previous work, except for [19].
Therefore, an important question is what is the overhead of
their checking. We compare the scalability of methods

checking the proposed and existing sufficient conditions.
Notice that neither [2] nor [18] discuss how the conditions

can be checked, since n-complete test suite generation is
the focus of either work. Nonetheless, checkers for both

conditions could easily be derived from the tool Chico, by
limiting the application of certain lemmas and heuristics.

For Dorofeeva et al.’s conditions, Lemmas 3 and 4 are not
applicable and, moreover, the use of Lemma 2 is limited to
prefix-closed confirmed sets. We implemented a checker of
the conditions of [2], named ChicoD, and determined the
time required to check the n-completeness of test suites in
two scenarios.

In the first scenario, complete reduced FSMs are
randomly generated, but the test suites are obtained by
the State Counting method [15], which produces n-complete
test suites. This scenario is the most favorable for the
conditions of [2], since a test suite obtained by the above
method satisfies them and, moreover, the determination of
a suitable state cover required by those conditions is
straightforward. Not surprisingly, all things being equal,
Chico needs more time than ChicoD. In Fig. 4, we present
the average execution time for 100 FSMs with three inputs,
three outputs, and number of states ranging from 3 to 100,
totalling 9,800 FSMs. For each FSM, we generated an
n-complete test suite using State Counting method. Notice
that the length of the test suite increases as the number of
states increases. We divided the execution time into two
parts: the time required to construct the distinguishing
graph of a given test suite and the time for checking the
respective conditions based on the graph. The results show
that, although Chico employs more complex conditions,
the overhead is still reasonable, even when the conditions of
[2] can be more promptly checked. Notice that as the FSMs
grow (and, consequently, the length of the test suite
increases), the time required to construct the distinguishing
graph increases faster than the time required to check the
conditions. The distinguishing graph allows one to avoid
recalculating the T -distinguishability of pairs of sequences
and, thus, cannot be removed without an increase in the
execution time. We, thus, observe that the overhead tends to
become insignificant, even in the scenario that is most
favorable to Dorofeeva et al.’s conditions.

In the second scenario, we used randomly generated test
suites. In this scenario, the heuristics that we implemented
in Chico allow treating much larger FSMs than the checker
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of Dorofeeva et al.’s conditions. We randomly generated
100 complete reduced FSMs with three inputs, three
outputs, and number of states from 3 to 30. The test suites
are randomly generated with 1,000 test cases. Each
execution of Chico terminated in less than 0.2 seconds.
On the other hand, the execution of ChicoD took often
more than 10 minutes, which is a timeout we set to
terminate executions. Fig. 5 shows the number of executions
that terminate before the timeout. Notice that while for
small FSMs the conditions of Theorem 3 could be checked
for every FSM, the probability that ChicoD fails to verify
the Dorofeeva et al.’s conditions within a reasonable
amount of time grows with the state number of a
specification FSM, since Lemma 4 is not applicable and
state covers to verify are numerous.

To check whether a given input sequence satisfies
Theorem 5, it is first necessary to determine if any of its
prefixes is a diagnostic sequence. Then, only this diagnostic
sequence is considered to determine T -distinguishability of
sequences. However, the actual limitation of those condi-
tions is their applicability. For instance, experimental
studies [3] indicate that the probability of a randomly
generated FSM to have a diagnostic sequence is low, circa
15 percent. Moreover, even if an FSM has a diagnostic
sequence, the probability that an input sequence satisfies
the conditions of Theorem 5 is yet smaller. We implemen-
ted a checker of the conditions of [18], named ChicoU.
Lemmas 1, 2, and 3 are still applicable in checking those
conditions, but Lemma 4 is not. We generated 100 complete
reduced FSMs with three inputs, three outputs, and
number of states from 3 to 15. Then, we randomly
generated input sequences of length 1,000. The test suite
obtained from each input sequence is then checked with
Chico. If Theorem 1 is not satisfied, the FSM and test suite
are discarded and others are generated. We repeat this
process until we obtain a set of 1,200 FSMs (i.e., 100 for each
size of FSMs) and respective checking sequences that satisfy
Theorem 1. Then, using ChicoU, we checked whether they
also satisfy Theorem 5. We observed that the number of
checking sequences satisfying Theorem 5 drops quickly. For
FSMs with three states, 88 out of 100 sequences satisfy it,
while for FSMs with eight states only two sequences do. For
bigger FSMs, no checking sequence satisfies Theorem 5.

The experimental results obtained for relatively large

FSMs and tests indicate that the proposed conditions have a

wider applicability compared to [18]; checking them scales

better than checking the conditions [19] and [2].

7 CONCLUSIONS

In this paper, we presented sufficient conditions for test suite
n-completeness that are weaker than those known in the
literature. The conditions apply to both testing scenarios,
with and without reliable reset operation. They can be used
in several ways. On one hand, sufficient conditions can
guide the definition of new generation methods or the
improvement of existing ones. Elaboration of such a method
based on the proposed sufficient conditions is an open
research issue. On the other hand, the n-completeness of
existing test suites can be checked by the algorithm we
proposed. Strategies for minimizing complete tests without
losing fault detection capability can also be elaborated.
Although the algorithm requires the identification of a clique
in a graph, an NP-complete problem, the experimental
results we presented show that the algorithm can be used for
relatively large FSMs and test suites.

As future work, we can mention several possible exten-

sions of the presented results. First, it is interesting to see how

Theorem 1 can be extended to the case of m-completeness,

where m � n. Another possible generalization of conditions

would be to consider nondeterministic specification FSMs.

Finally, since the proposed test completeness conditions are

only claimed to be sufficient, we believe that the quest for

necessary and sufficient conditions will go on.
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In this paper, we consider a classical problem of complete test generation for deterministic finite-
state machines (FSMs) in a more general setting. The first generalization is that the number of states
in implementation FSMs can even be smaller than that of the specification FSM. Previous work
deals only with the case when the implementation FSMs are allowed to have the same number of
states as the specification FSM. This generalization provides more options to the test designer: when
traditional methods trigger a test explosion for large specification machines, tests with a lower, but
yet guaranteed, fault coverage can still be generated. The second generalization is that tests can
be generated starting with a user-defined test suite, by incrementally extending it until the desired
fault coverage is achieved. Solving the generalized test derivation problem, we formulate sufficient
conditions for test suite completeness weaker than the existing ones and use them to elaborate an
algorithm that can be used both for extending user-defined test suites to achieve the desired fault
coverage and for test generation. We present the experimental results that indicate that the proposed

algorithm allows obtaining a trade-off between the length and fault coverage of test suites.

Keywords: software testing; finite-state machines; test generation
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1. INTRODUCTION

The problem of generating tests with guaranteed fault coverage,
called n-complete tests, for a specification FSM with n

states, aka checking experiments and checking sequences,
has traditionally been investigated only for the fault domain
containing all implementation FSMs with at most n states or
even higher; see, e.g. [1–6]. An n-complete test suite guarantees
to the test designer exhaustive fault coverage with respect to the
given upper bound n on the number of states in implementation
machines [7]. The length of n-complete tests is proportional
to n3 [2]; thus their size can become unacceptably large for
complex specifications. The test designer may resort to less
exhaustive coverage criteria used in FSM-based testing such
as state, transition and path coverage; see, e.g. [8, 9]. Indeed,
tests that satisfy these criteria scale much better that n-complete
tests, but they offer no guaranteed fault coverage in terms of the
number of states in faulty implementation FSMs.

We believe that the test designer may want to be able to
generate tests while retaining a (reduced) guaranteed fault

coverage similar to that offered by n-complete tests. More
specifically, the question is how can one generate a p-complete
test suite for p < n. A solution to this problem would provide
control of the degree of test exhaustiveness by varying a the
maximal number of states p of faulty state machines whose
detection by a p-complete test suite is guaranteed. Methods
for building tests providing fault coverage with respect to
a number of states in implementation FSMs smaller than that of
a specification FSM are thus needed to offer to the test designer a
possibility for finding a desirable compromise between the fault
coverage and the size of a test suite. Clearly, an n-complete test
suite is also p-complete for any p ≤ n; however, it may well be
redundant when p < n. Intuitively, the smaller the state number
bound for which the fault coverage is guaranteed, the shorter
the required tests. We are not aware of any work addressing
complete test generation for the case when faulty FSMs do not
necessarily have as many states as the specification FSM.

In this paper, we consider a problem of test generation in a
more general setting, namely, how a user-defined test suite for a
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Fault Coverage-Driven Incremental Test Generation 1509

given deterministic FSM with n states which may contain just an
empty sequence can be extended until it becomes p-complete,
for a given p ≤ n.

The generalization considering initial user-defined tests has
practical motivations. The test designer may start test generation
using approaches based on specification coverage criteria [8],
use-cases [10] or test purposes [11]. Test generation can then
be completed with additional tests to achieve a required level of
fault coverage. A naïve approach would just ignore the existing
tests and use a generation method that provides the required
fault coverage. This approach likely results in redundant tests.
However, if test generation starts with a given test suite, as
proposed in this paper, both, specification and fault coverage-
driven approaches can in fact be employed together, i.e. it is
possible to construct tests that satisfy specification as well as
fault coverage criteria.

Solving the generalized test derivation problem, we present
sufficient conditions for test suite completeness that are weaker
than the ones known in the literature. Based on these conditions,
we propose an algorithm that generates a p-complete test suite
starting with user-defined initial tests if they are available. The
algorithm is also able to determine whether the user-defined test
suite satisfies the sufficient conditions; thus, can also be used
for test analysis.

We present the results of an experiment that indicate that
p-complete test suites, when p < n, are indeed shorter than n-
complete ones. The results also suggest that p-complete tests
suites, for reasonably big p, have a high fault coverage even
compared to n-complete test suites.

This paper is organized as follows. In Section 2 we present
the necessary basic definitions. In Section 3 we define p-
completeness of test suites and discuss tests convergence and
divergence in a set of FSMs. These relationships are the basis for
defining sufficient conditions for p-completeness in Section 4.
In Section 5 an algorithm for generating p-complete test suites is
elaborated and its complexity is analysed. We illustrate the algo-
rithm in various scenarios of usage in Section 6. In Section 7 we
present the experimental results. In Section 8 we summarize the
contributions and discuss the related work. Finally, in Section 9
we present concluding remarks and point to future work.

2. DEFINITIONS

A finite-state machine (FSM) is a deterministic Mealy machine,
which can be defined as follows.

Definition 1. An FSM M is a 7-tuple (S, s0, I, O, D, δ, λ),
where S is a finite set of states with the initial state s0, I is a
finite set of inputs, O is a finite set of outputs, D ⊆ S × I is a
specification domain, δ : D → S is a transition function and
λ : D → O is an output function.

If D = S × I , then M is a complete FSM; otherwise, it
is a partial FSM. As M is deterministic, a tuple (s, x) ∈ D

determines uniquely a defined transition of M . For simplicity
we use (s, x) to denote the transition, thus omitting its output
and final state. A string α = x1 . . . xk, α ∈ I ∗, is said to be a
defined input sequence at state s ∈ S if there exist s1, . . . , sk+1,
where s1 = s such that (si, xi) ∈ D and δ(si, xi) = si+1, for all
1 ≤ i ≤ k. We use �(s) to denote the set of all defined input
sequences for state s and �M as a shorthand for �(s0), i.e. for
the input sequences defined for the initial state of M and, hence,
for M itself. Figure 1 presents an example of a complete FSM.
The initial state is highlighted in bold. The input symbols are
a and b and the output symbols are 0 and 1. The label ‘x/y’
of an edge (transition) from state s to state s ′ indicates that
δ(s, x) = s ′ and λ(s, x) = y, i.e. when the machine is in state
s, it responds to input x by producing output y and moving to
state s ′.

We extend the transition and output functions from input
symbols to defined input sequences, including the empty
sequence ε, as usual, assuming δ(s, ε) = s and λ(s, ε) = ε

for s ∈ S. An FSM M is said to be initially connected, if for
each state s ∈ S, there exists an input sequence α ∈ �M , such
that δ(s0, α) = s, called a transfer sequence for state s. In
this paper, only initially connected machines are considered,
since any state that is not reachable from the initial state can
be removed without changing the machine’s behaviour. A set
C ⊆ �M is a state cover for an FSM M if, for each state s ∈ S,
there exists α ∈ C such that δ(s0, α) = s. A state cover is
minimal if it contains exactly one transfer sequence for each
state. The set C ⊆ �M covers a transition (s, x) if there exists
α ∈ C such that δ(s0, α) = s and αx ∈ C. The set C is a
transition cover (for M) if it covers every defined transition
of M . A set of sequences is initialized if it contains the empty
sequence.

Given a set C ⊆ �(s) ∩ �(s ′), states s and s ′ are C-
equivalent if λ(s, γ ) = λ(s ′, γ ) for all γ ∈ C. Otherwise,
i.e. if there exists γ ∈ C such that λ(s, γ ) 	= λ(s ′, γ ), states
s and s ′ are C-distinguishable. We say that γ distinguishes s

and s ′ if s and s ′ are {γ }-distinguishable. States s and s ′ are
equivalent if they are (�(s)∩�(s ′))-equivalent. Similarly, they
are distinguishable if they are (�(s) ∩ �(s ′))-distinguishable.
We define distinguishability and equivalence of machines as
a corresponding relation between their initial states. An FSM

1

3

2
a/1

b/0
a/1

b/1

a/0

b/1

FIGURE 1. A complete FSM M1.
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1510 A. Simão and A. Petrenko

is reduced if all its states are pairwise distinguishable. For
instance, the FSM M1 in Fig. 1 is reduced, since states 1 and 2
are {a}-distinguishable, states 1 and 3 are {b}-distinguishable,
while states 2 and 3 are {aa}-distinguishable. In this paper, all
the FSMs are assumed to be reduced.1

Given sequences α, β, γ ∈ I ∗, if β = αγ , then α is a
prefix of β, denoted by α ≤ β, and γ is a suffix of β. We
also say that a prefix of γ extends α (in β) and that β is an
extension of α. We denote by pref(β) the set of prefixes of β,
i.e. pref(β) = {α|α ≤ β}. For a set of sequences A, pref(A) is
the union of pref(β) for all β ∈ A. If A = pref(A), then we
say that A is prefix-closed. Given a sequence α and k ≥ 0, we
define αk recursively as follows: α0 = ε; αk = ααk−1, if k > 0.
The common extensions of two sequences are the sequences
obtained by appending a common sequence to them.

3. TEST PROPERTIES

In this section, we discuss various properties of FSM tests used
to formulate a test generation method. First, we formalize the
notion of test suite completeness with respect to a given fault
domain.

Throughout this paper, we assume that M = (S, s0,

I, O, D, δ, λ) and N = (Q, q0, I, O
′, D′, 	, 
) are a

specification FSM and an implementation FSM, respectively.
Moreover, n is the number of states of M . We denote by � the
set of all deterministic FSMs with the same input alphabet as M

for which all sequences in �M are defined, i.e. for each N ∈ �
it holds that �M ⊆ �N . The set � is called a fault domain for
M . Given p ≤ n, let �p be the FSMs of � with at most p states,
i.e. the set �p is the fault domain for M which represents all
faults that can occur in an implementation of M with no more
than p states. Faults can be detected by tests, which are input
sequences defined in the specification FSM M .

Definition 2. A defined input sequence of FSM M is called
a test case (or simply a test) of M. A test suite of M is a finite
prefix-closed set of tests of M. A given test suite T of FSM M is
p-complete, p ≤ n, if for each FSM, N ∈ �p, distinguishable
from M , there exists a test in T that distinguishes them.

Since the distinguishability of FSMs is defined as the
corresponding relation of their initial states, tests are assumed to
be applied in the initial state. Similarly, FSMs are T -equivalent,
for a test suite T , if their initial states are T -equivalent. A trivial
test suite contains only the empty sequence.

Thep-completeness of a test suite provides full fault coverage
for the fault domain defined by the input alphabet of the
specification FSM and maximal number of states p.

The rest of the paper is devoted to the problem of extending
a given test suite until it becomes p-complete for a given

1Test generation considering only reduced state machines is in fact the
mainstream in FSM-based testing research; removing this assumption is left
for future work.

p ≤ n. The approach developed in this paper is based on the
intricate properties of FSM tests, namely their convergence and
divergence. Two defined input sequences of an FSM converge if
when applied to the initial state they take the FSM into the same
state. Similarly, defined input sequences diverge if they take the
FSM from the initial state to different states. We generalize these
notions to sets of tests and sets of FSMs. Given a non-empty set
of FSMs � ⊆ � and two tests α, β ∈ �M , we say that α and
β are �-convergent if they converge in each FSM of the set �.
Similarly, we say that α and β are �-divergent if they diverge
in each FSM of �. We slightly abuse the notation and say that
two tests are M-convergent (M-divergent) when they are {M}-
convergent ({M}-divergent). Moreover, when it is clear from
the context, we drop the set in which tests are convergent or
divergent. A set of tests is convergent (divergent) if each pair of
its tests are convergent (divergent).

Test convergence and divergence with respect to a single FSM
are complementary, i.e. any two tests are either convergent or
divergent. However, when a set of FSMs � is considered, some
tests are neither �-convergent nor �-divergent. Note that the �-
convergence relation is reflexive, symmetric and transitive, i.e.
it is an equivalence relation over the set of tests. On the other
hand, the �-divergence relation is irreflexive and symmetric.
Consider the FSMs M1 and M2 in Figs 1 and 2, respectively. The
tests aaa and ba are {M1, M2}-convergent, whereas the tests bb
and ab are {M1, M2}-divergent. On the other hand, tests ab and
baa are neither {M1, M2}-convergent nor {M1, M2}-divergent
since they are M1-convergent and M2-divergent.

Several properties of test convergence and divergence can be
established.

Lemma 1. Given a non-empty set � of deterministic reduced
FSMs with the same input alphabet, the following properties
hold:

(i) Common extensions of �-convergent tests are also
�-convergent.

(ii) Tests that have �-divergent common extensions are also
�-divergent.

(iii) Given two �-divergent tests, any test �-convergent with
one of them is �-divergent with the other.

1

3

2

a/1

b/0
a/1

b/1

a/0

b/1

FIGURE 2. A complete FSM M2.
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(iv) If tests α and αϕk are �-divergent, for k > 1, then α

and αϕ are also �-divergent.
(v) If tests α and αβγ are �-convergent and tests α and αγ

are �-divergent, then α and αβ are also �-divergent.
(vi) If tests α and αγ are �-convergent and tests β and βγ

are �-divergent, then α and β are also �-divergent.

Proof. Properties (i) and (ii) follow directly from the
determinism of the FSMs in �, whereas property (iii) comes
from the fact that convergence is transitive and divergence is
irreflexive.

For property (iv), note that if α and αϕ converge in some
FSM of �, then so do α and αϕ2, by (i) and the transitiveness
of convergence. By the same token, α and αϕ3, αϕ4, . . . , αϕk

would converge, which is a contradiction.
For property (v), suppose α and αβ converge in some FSM

of �. Then, due to Lemma 1(ii), αγ and αβγ would also
be convergent. Thus, α and αγ would converge due to the
transitiveness of convergence, which is a contradiction.

For property (vi), suppose that α and β converge in some
FSM of �. Then, by Lemma 1(i), αγ and βγ would converge.
Consequently, β and βγ would also converge, which is a
contradiction.

Two tests α and β in a given test suite T are T-separated
if there exist common extensions αγ, βγ ∈ T , such that
λ(δ(s0, α), γ ) 	= λ(δ(s0, β), γ ). An important property of T -
separated tests is that they are divergent in all FSMs that are
T -equivalent to M. Given a test suite T , let �(T ) be the set of
all N ∈ �, such that N and M are T -equivalent.

Lemma 2. Given a test suite T of an FSM M, T-separated
tests are �(T )-divergent.

Proof. Let tests α and β be T -separated. Thus, there exist
common extensions αγ, βγ ∈ T and λ(δ(s0, α), γ ) 	=
λ(δ(s0, β), γ ). Let N be an FSM T -equivalent to M;
thus, we have that λ(δ(s0, α), γ ) = 
(	(q0, α), γ )

and λ(δ(s0, β), γ ) = 
(	(q0, β), γ ). It follows that

(	(q0, α), γ ) 	= 
(	(q0, β), γ ). Thus, 	(q0, α) 	=
	(q0, β), i.e. α and β are N -divergent.

Consider the FSM M1 in Fig. 1 and the test suite T =
pref({aaa, baa}). We have that tests aa and ba are T -separated
since they are extended by a, which distinguishes states 1 =
δ(1, aa) and 2 = δ(1, ba); thus, they are �(T )-divergent. In
fact, no deterministic machine that responds to the test suite T

as M1 can reach the same state after the two tests aa and ba.
We now address the problem of demonstrating that tests

are �(T )-convergent, which is more involved than ensuring
divergence. Divergence of two tests can be witnessed by
different outputs produced by the tests, which are thus divergent
in any FSM T -equivalent to M , while convergence of two tests
cannot be directly ascertained. However, it can be shown that if a
maximal number of states of FSMs in the fault domain is known,
and the two tests are �(T )-divergent with tests reaching all but

one state of the FSM M , these two tests must also converge in a
same state in any FSM in the fault domain that is T -equivalent
to M . Given a test suite T , let �n(T ) = �n ∩ �(T ), i.e. the set
of FSMs in � which are T -equivalent to M and have at most
n states. Below we consider only �n(T )-convergence, instead
of �(T )-convergence. In particular, we show how the �n(T )-
convergence of tests can be established based on the existence
of an �n(T )-divergent set with n tests. Note that, while �(T )-
divergent tests are also �n(T )-divergent, the converse does not
hold, i.e. there are �n(T )-divergent tests that are not �(T )-
divergent. For instance, Lemma 1 can be used to establish
the �n(T )-divergence of tests from the �n(T )-divergence and
�n(T )-convergence of other tests, but cannot determine their
�(T )-divergence, which requires that the tests in question are
T -separated.

Lemma 3. Given a test suite T and α ∈ T , let K be an �n(T )-
divergent set with n tests and β ∈ K be a test M-convergent
with α. If α is �n(T )-divergent with each test in K\{β}, then α

and β are �n(T )-convergent.

Proof. Let K ′ = K\{β}. The set K ′ is an �n(T )-divergent set
and thus it reaches n − 1 states of M . As both α and β are
�n(T )-divergent with each test in K ′, in any FSM of �n(T ),
both α and β reach a state that is not reached by the tests in
K ′. As K ′ reaches n − 1 states and any FSM in �n(T ) has at
most n states, α and β must reach the same state, i.e. they are
�n(T )-convergent.

Consider the FSM M1 in Fig. 1 and the test suite T =
pref({aaa, baa}). We have that the tests ε and aa are �n(T )-
convergent, since the set {ε, a, b} is �n(T )-divergent and the
test aa is �n(T )-divergent with a and b.

In the next section, we use test divergence and convergence
properties to formulate conditions that ensure p-completeness
of test suites.

4. SUFFICIENT CONDITIONS FOR
p-COMPLETENESS

In this section, we present sufficient conditions for test
completeness with respect to the fault domain �p, where each
FSM has at most p states. These conditions are used to elaborate
a generation method in the next section.

The conditions for p-completeness of a test suite T can be
divided into two cases, depending on whether p < n or p = n.
If p < n, then it is sufficient show that no FSM in �p is T -
equivalent to M , i.e. that �p(T ) is empty. However, if p = n,
then M ∈ �n and, thus, �n(T ) is by definition not empty. To
formulate the conditions for dealing with the case of p = n, we
introduce the notion of convergence-preserving set, for which
the M-convergence implies the �n(T )-convergence.

Definition 3. Given a test suite T of an FSM M, a
set of tests is �n(T )-convergence-preserving (or, simply,
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1512 A. Simão and A. Petrenko

convergence-preserving) if all its M-convergent tests are
�n(T )-convergent.

Note that any M-divergent set is, by definition, convergence-
preserving. Consider the FSM M1 in Fig. 1 and the test suite
T = pref({aaa, baa}). The set {ε, a, b} is �n(T )-convergence-
preserving since it does not contain any M-convergent tests.
The set {ε, a, aa, b} is also �n(T )-convergence-preserving
since the M-convergent tests ε and aa are �m(T )-convergent.
However, the set {ε, a, b, ba} is not �n(T )-convergence-
preserving since the tests a and ba are M-convergent but not
�n(T )-convergent.

Theorem 1. Let T be a test suite for an FSM M with n states
and p ≤ n. We have that T is a p-complete test suite for M if:

(i) p < n and T contains a �(T )-divergent set with p + 1
tests; or

(ii) p = n and T contains an �n(T )-convergence-preserving
initialized transition cover for M.

Proof. (i) If T contains an �(T )-divergent set with p + 1 tests,
then any FSM T -equivalent to M has at least p + 1 states. As
there exists no such FSM in �p(T ), it follows that the test suite
T is p-complete.

(ii) Assume now that T contains an �n(T )-convergence-
preserving initialized transition cover K for M and p = n.
We prove by contradiction that T is n-complete. Suppose that
T is not n-complete. Thus, there exists an FSM N ∈ �n(T )

distinguishable from M . Let ϕx be a shortest input sequence
distinguishing N and M , where x is an input symbol, and hence
λ(δ(s0, ϕ), x) 	= 
(	(q0, ϕ), x). We show, by induction on the
length of ϕ, that there exists a test in K that is N -convergent
with ϕ. In the base case, we have that ϕ is the empty sequence.
As K includes this sequence, the result follows. The inductive
hypothesis is that ϕ = βy, for some input sequence β and input
symbol y, such that β is N -convergent with some test π in K .
Since K is a transition cover, it follows that there exists a test υ

in K such that υ and π are M-convergent and υy ∈ K . As K

is �n(T )-convergence-preserving and υ, π ∈ K , it follows that
υ and π are �n(T )-convergent. As N ∈ �n(T ), we have that υ

and π are N -convergent, thus so are υ and β. By Lemma 1(i),
we have that υy and by are also N -convergent, and the result
follows.

Let χ be a test in K that is N -convergent with ϕ. As K

is a transition cover for M , there exists α ∈ K such that
α and χ are M-convergent and αx ∈ K . As K is �n(T )-
convergence-preserving, α and χ are �n(T )-convergent; hence
α and χ are N -convergent since N ∈ �n(T ). It follows
that λ(δ(s0, α), x) = λ(δ(s0, χ), x) = λ(δ(s0, ϕ), x) 	=

(	(q0, ϕ), x) = 
(	(q0, χ), x) = 
(	(q0, α), x), i.e.
λ(s0, αx) 	= 
(q0, αx). Thus, αx distinguishes M and N ,
and, as αx ∈ K ⊆ T , we can conclude that M and N

are T -distinguishable, which is a contradiction. Thus, T is n-
complete.

In the next section, the proposed conditions are used to
elaborate an algorithm for extending a given (possibly trivial)
test suite until it becomes p-complete.

5. ALGORITHM FOR GENERATING p-COMPLETE
TEST SUITES

In this section, we present an algorithm for generating p-
complete test suites based on Theorem 1 and Lemmas 1–3.
Before we introduce the algorithm in Fig. 3, we provide the
intuition behind its main steps. Given an FSM M , a (possibly
trivial) test suite T and a p ≤ n, the algorithm generates a test
suite that contains T and satisfies the conditions of Theorem
1, and thus the resulting test suite is p-complete. The tests in
T are analysed, so that more tests are added only if needed.
Depending on the value of p, it is sufficient to do so until the
test suite has either an �(T )-divergent set with p + 1 tests or an
�n(T )-convergence-preserving initialized transition cover.

Note that an �(T )-divergent set corresponds to a clique
in a graph which represents the �(T )-divergence relation.
A divergence graph on the tests in T is a graph such that
two tests α, β ∈ T are adjacent if α and β are �(T )-
divergent. Thus, an �(T )-divergent set corresponds to a clique
in a divergence graph. If p < n, to obtain a p-complete
test suite, it is sufficient to guarantee that the corresponding
divergence graph contains a clique of size p + 1. If p = n,
however, another approach should be considered, since there
exists no �(T )-divergent set with more than n tests. In this
case it is required to ensure the existence of an initialized
transition cover that is �n(T )-convergence-preserving. Recall
that convergence of some tests is implied by divergence
and/or convergence of other tests, according to Lemma 1.
Thus, the �n(T )-convergence and �n(T )-divergence relations
should be determined incrementally. To this end, we define
two relations C and D to represent, respectively, the subsets
of �n(T )-convergence and �n(T )-divergence relationships
which are already identified. Initially, the relation C is the
identity relation, representing the fact that initially no �n(T )-
convergence relationships are known, except for the trivial
reflexive relationships. On the other hand, the relation D is
initially the set of all pairs of T -separated tests according to
Lemma 2. These relations are iteratively updated by applying
a set of rules that infer new relationships from existing
relationships, following Lemma 1. The rules are event-driven,
in the sense that they are applied when some relationship is
added to C or D. More than one rule can be applicable at the
same time.

We derive these rules from Lemma 1 as follows.

Rule 1: If (α, β) is added to C, for each (α, χ) ∈ C, add
(β, χ) to C (transitiveness).

Rule 2: If (α, β) is added to C, then, for all their common
extensions αϕ, βϕ ∈ T , add (αϕ, βϕ) to C

(Lemma 1(i)).
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No 

| K | ≥ min ( p  + 1, n )? 

Condition  1  

| K | ≥ p  + 1?  

Condition  2  

Is C ∪( K ) an initialized  
transition cover? 

Condition 3  

∃ M -convergent 
tests j ∈ T  \  C ∪( K ), c ∈ K , 

s.t. ∀u ∈ K  \ { c }, 
( j , u ) ∈ D ? 

Condition 4  

e ∈ C ∪( K )? 

Condition 5  

C  := Identity relation  
D  :=  T -separated test pairs  

Apply Rules 1–10  
Build a divergence graph for  D 

Find a maximal cli q ue K 

Step 1 

Step 2  

Select a ∉ K 
s.t. K ∪ { a } is  M -divergent 

For each  b ∈ K , s.t.  a  and  b  are  M - 
divergent, ( a , b ) ∉ D , select 
a sequence  g  distinguishing 

d ( s 0 , a ) and  d ( s 0 , b ) 
T  :=  T ∪ pref ({ ag , bg }) 

D  :=  D ∪ {( a , b )} 
Update C  and  D  for  T 

Apply Rules 1–10  
K  :=  K ∪ { a } 

C  :=  C ∪ {( j , c )} 
Apply Rules 1–10  

Step 3  

Let c ∈ K  be  M -convergent with  j 
For each  u ∈ K  \ { c }, s.t. ( u , c ) ∉ D , 

select a ∈ C ( u ), b ∈ C ( c ) and 
a sequence  g  distinguishing 

d ( s 0 , a ) and  d ( s 0 , b ) 
T  :=  T ∪ pref ({ ag , bg }) 

D  :=  D ∪ {( a , b )} 
U p date C and D  for  T 

Step 4  

Step 5  

j , c 

j , c 

Select a transition ( s , x ) not covered  
by C ∪( K ) and  a ∈ C ∪( K ), 

s.t. d ( s 0 , a ) =  s 
T  :=  T ∪ pref ( a x ) 

Update C  and  D  for  T 
A pp l y  Rules 1–10  

j  :=  ax 

Yes 

p -complete 
test suite  T 

j  :=  e 

Initial test suite  T 

FIGURE 3. Algorithm for generating a p-complete test suite.

Rule 3: If (α, β) is added to D, and they are common
extensions of tests α′ and β ′, then add (α′, β ′) to
D (Lemma 1(ii)).

Rule 4: If (α, β) is added to C, then, for each χ ∈ T if
(α, χ) ∈ D, add (β, χ ) to D; if (β, χ) ∈ D, add
(α, χ ) to D (Lemma 1(iii)).

Rule 5: If (α, β) is added to D, then, for each χ ∈ T if
(α, χ) ∈ C, add (β, χ ) to D; if (β, χ) ∈ C, add
(α, χ ) to D (Lemma 1(iii)).

Rule 6: If (α, β), with α ≤ β, is added to D and there exists
sequence ϕ and k > 1, such that β = αϕk , then add
(α, αϕ) to D (Lemma 1(iv)).
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1514 A. Simão and A. Petrenko

Rule 7: If (α, αβγ ) is added to C, and (α, αγ ) ∈ D, then
add (α, αβ) to D (Lemma 1(v)).

Rule 8: If (α, αγ ) is added to D, then, for each sequence β

such that (α, αβγ ) ∈ C, add (α, αβ) to D (Lemma
1(v)).

Rule 9: If (α, αγ ) is added to C, then, for each sequence
β such that (β, βγ ) ∈ D, add (α, β) to D

(Lemma 1(vi)).
Rule 10: If (β, βγ ) is added to D, then, for each sequence

α such that (α, αγ ) ∈ C, add (α, β) to D

(Lemma 1(vi)).

If, to achieve p-completeness, more tests are added to T , the
relations C and D should also be extended with the new tests.
Recall that a test suite is prefix-closed. Thus, adding a test α to
T results in the addition of all prefixes of α. If α is added to
T , the identity pair (α, α) has to be added to C. Moreover, the
test pairs that are T -separated in the extended test suite must be
added to D.

Initially, the algorithm finds a largest �(T )-divergent set,
which corresponds to a clique in the divergence graph. If the
determined clique has more than p+ 1 tests, then the test suite
is already p-complete. Recall, however, that no �(T )-divergent
set has more than n tests. Thus, when the clique has fewer than
min(p+1, n) tests, a test that is not in the clique may be selected
to extend it. It is possible to do so if the test to be added is
�(T )-divergent with all tests in the clique. Hence, if the test is
not �(T )-divergent with some test in the clique, it is sufficient
to add tests to T , so that the two tests become T -separated.
If p = n, an n-clique, i.e. a clique with n nodes, can thus
be eventually obtained, but this is not sufficient for ensuring
the n-completeness, according to Theorem 1. In this case, it is
additionally required to ensure that T contains an initialized
transition cover that is �n(T )-convergence-preserving.

We now show how such a transition cover can be obtained
from an n-clique. As the relation C is an equivalence relation,
it induces a partition on the tests in T . Given a test α ∈ T , let
C(α) = {β|(α, β) ∈ C} be the block of the partition induced
by C that contains α. Let K be an n-clique. We denote by
C∪(K) the union of the blocks which have a test in K , i.e.
C∪(K) = {β|(α, β) ∈ C, α ∈ K}. Recall that in an �n(T )-
divergent set, no tests are M-convergent, i.e. an �n(T )-divergent
set is trivially �n(T )-convergence-preserving. Thus, the set of
tests C∪(K) is �n(T )-convergence-preserving. To ensure that
C∪(K) is an initialized transition cover for M , we might need to
extend it. We say that a test α is added to C∪(K), when (α, β) is
added to C, where β ∈ C∪(K) is a test �n(T )-convergent with
α. Lemma 3 indicates that a test can be added to C∪(K) if it is
�n(T )-divergent with n − 1 tests in K . It is sufficient to show
that the test which is not in C∪(K) is �n(T )-divergent with the
n − 1 tests of the clique. If the tests form a pair in D, then they
are already �n(T )-divergent. Otherwise, tests could be added
so that the two tests become T -separated and, thus, �n(T )-
divergent. The set C∪(K) resulting from the addition of (α, β) to

C remains �n(T )-convergence-preserving. Therefore, to obtain
an n-complete test suite, it is sufficient to add suitable tests to
C∪(K) until it becomes an initialized transition cover for M .

Depending on the tests that are already in the sets C∪(K)

and T , there are three cases to consider. The first case occurs
when tests can be added to C∪(K) without adding tests to T , i.e.
when there are tests that already satisfy the condition of Lemma
3. As a result, the number of blocks in the partition induced by
C is decreased, since the blocks to which these tests belong are
merged in the resulting partition. It is important to note that this
case may result in C∪(K) = T . Thus, if T is also a transition
cover for M (recall that T is prefix-closed and, thus, initialized),
then T is n-complete.

In the remaining cases, adding tests to C∪(K) requires new
tests be first added to T , making Lemma 3 applicable. If the
empty sequence is not in C∪(K), tests are added so that the
empty sequence can be added to C∪(K). Then, C∪(K) becomes
initialized. Finally, if there is a transition not covered by C∪(K),
a test is added to C∪(K) so that it becomes covered. Thus,
C∪(K) eventually becomes a transition cover. As it is also
initialized and �n(T )-convergence-preserving, by Theorem 1,
T is p-complete.

The above discussion leads to the algorithm, presented in
Fig. 3, for extending a test suite until its p-completeness can be
guaranteed. Labels on edges connecting steps and conditions, ϕ
and χ , denote the tests defined in a precedent step or condition.

We illustrate the algorithm in Section 6. It is important to
note that in several steps of the algorithm we do not restrict the
selection of tests with the required properties. Various selection
strategies can be used there, for instance, the distinguishing
sequences selected in Step 4 can be obtained from identification
sets obtained a priori, as in the methods W [2, 3] and Wp [4], or
on-the-fly, as in H method [12]. Moreover, the sequences needed
to reach a state (in Step 2) or to cover a transition (in Step 5)
can be selected using different strategies, such as a breadth-
first traversal of the FSM or a transition tour. We believe that
several alternative selection strategies should become options
in a tool implementing the proposed algorithm for constructing
complete tests for FSMs.

In the remainder of this section, we prove that the algorithm
terminates and the obtained test suite is indeed p-complete.
This discussion is independent from the strategies for sequence
selection. Then, we show that the algorithm can be executed in
polynomial time if the strategies used to select sequences can
be executed in polynomial time.

Theorem 2. The algorithm terminates with a p-complete test
suite for M.

Proof. The algorithm contains four cycles. We show that each
cycle can be executed a finite number of times and, thus, the
algorithm indeed terminates. Then, we prove that the resulting
test suite is p-complete.

In the cycle that contains Step 2, the size of the clique is
increased in each iteration, until the required size is reached.

The Computer Journal, Vol. 53 No. 9, 2010

 at F
M

R
P

/U
S

P
/B

IB
LIO

T
E

C
A

 C
E

N
T

R
A

L on January 18, 2011
com

jnl.oxfordjournals.org
D

ow
nloaded from

 



Fault Coverage-Driven Incremental Test Generation 1515

Thus, this cycle can only be executed a finite number of times.
The other cycles correspond to the three cases discussed above.
At the end, in the execution of each cycle, (ϕ, χ ) is added to C

and Rules 1–10 are applied as long as possible, in Step 3. The
steps that precede Step 3 guarantee that ϕ and χ are �n(T )-
convergent. For instance, if necessary, Step 4 adds tests to T so
that Lemma 3 can be applied.

Cycle 1 corresponds to the executions where Condition 3 does
not hold, but Condition 4 does, i.e. C∪(K) is not an initialized
transition cover and there exists a test that can be added to
C∪(K) without adding new tests to T . As the number of tests
in C∪(K) is increased in each execution of this cycle and the
number of tests in T is not changed, after a finite number
of executions, the cycle can no longer be executed without
involving other cycles. Note that those cycles add new tests to
T , possibly increasing the number of blocks. However, as will
be shown, those cycles also can be executed a finite number of
times and, thus, the number of executions of Cycle 1 is bounded.

Cycle 2 corresponds to the executions where Conditions 3–5
do not hold, i.e. the empty sequence is not in C∪(K). Then, the
empty sequence is added to C∪(K) and, thus, this cycle can be
executed at most once.

Cycle 3 corresponds to the executions where Conditions 3 and
4 do not hold, but Condition 5 does, i.e. C∪(K) is initialized but
is not a transition cover. Step 5 selects a transition (s, x) that is
not covered by C∪(K) and a test α ∈ C∪(K), δ(s0, α) = s. The
test αx is added to T . Then, Step 4 adds tests to T so that αx is
added to C∪(K) and, thus, the transition (s, x) becomes covered
by C∪(K). Therefore, each execution of this cycle requires that
a transition not covered by C∪(K) exists and it results in the cov-
ering of at least one transition. This cycle can thus be executed
at most as many times as the number of transitions of M .

Therefore, the algorithm actually terminates since all cycles
can be executed only a finite number of times.

We now show that the obtained test suite is p-complete.
When the algorithm terminates, either Condition 2 or Condi-
tion 3 holds. If Condition 2 holds, the clique has p + 1 tests;
then the test suite contains an �(T )-divergent set with p + 1
tests and, thus, is p-complete, by Theorem 1. If Condition 3
holds, the set C∪(K) is an initialized transition cover for M .
As C∪(K) is �n(T )-convergence-preserving, by Theorem 1,
the resulting test suite T is p-complete.

We next discuss the worst case time complexity of the
algorithm and the upper bounds of p-complete test suites. When
appropriate, we discriminate the cases p < n and p = n, since
they have different worst case time complexity. Recall that in
several steps of the algorithm we do not restrict the selection
of tests with the required properties. However, we show that
the algorithm terminates in polynomial time, as long as tests
are selected in polynomial time. When appropriate, we indicate
strategies for doing so.

Initially, the algorithm needs to find a maximal clique in a
graph. This problem is known to be NP-complete and, thus, an

optimal solution cannot be found in reasonable time for some
instances. Nonetheless, the algorithm does not rely on the fact
that the clique found is a largest one. Indeed, if a suboptimal
clique is found, it will be extended to the required size by adding
new tests to create T -separability relationships omitted when a
subclique is chosen. Thus, it is always possible to reduce the
time needed to find a largest clique at a price of increasing the
test suite. In other words, the NP-completeness of the maximal
clique problem does not imply that the proposed algorithm does
not scale. For instance, for finding cliques polynomial time
greedy-based algorithms can be used; see, [13, 14]; optimization
techniques have also been used to solve this problem, which
can handle very large graphs in reasonable time [15, 16].
Nevertheless, even in the worst case when the maximal clique
found is smaller than a largest one, a complete test suite can be
obtained, though its irreducibility might be hard to claim.

In Steps 2 and 5, the algorithm requires that tests are added
to obtain divergence relationships. Specifically, given two tests,
it is necessary to select a sequence that distinguishes the states
reached by them. This problem can be solved by a breadth-first
search in a product machine, as defined in [6], in O(v + w),
where v and w are the numbers of vertices and edges in the
graph, respectively. The product machine has at most n2 vertices
and kn2 edges, where n is the number of states and k is the
number of inputs of M . Thus, the time required to find shortest
distinguishing sequences is O(n2 + kn2) = O(kn2) [5].

The algorithm requires the manipulation of the tests in T ;
thus, its complexity depends on the number of tests included
in T at a given stage of the algorithm. As the execution of
the algorithm changes this number, we follow a conservative
approach, considering the number of tests in the resulting test
suite, which is certainly larger than the number of tests actually
manipulated by the algorithm at the execution of a given step.
Thus, let l be the number of tests in the test suite obtained by
the algorithm.

The application of Rules 1–10 in the algorithm is event-
driven, in the sense that the rules are applied when new
relationships are added to C or D. Thus, they are applied at
most once for each pair of tests. Thus, there are O(l2) pairs
of tests. As the relation C is an equivalence relation, it can
be represented by the partition it induces. Using a union-
find algorithm, the time for performing the operations on the
partition is O(Ack−1(l, l)), where Ack−1(l, l) is the inverse of
the extremely quickly-growing Ackermann function. For any
reasonable value of l, Ack−1(l, l) is less than five, i.e. the
running time of the operations on C is effectively a small
constant [17].

As the execution of the algorithm advances, the size of the
relation D approximates l(l – 1)/2. Thus, we represent this
relation in a symmetrical matrix, so that the operations on D

can be performed in constant time, at the price of using O(l2)

space.
We now discuss the complexity of executing each rule. Based

on the discussion above, we assume that the operation of
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1516 A. Simão and A. Petrenko

verifying whether a pair is in C or in D can be completed in
constant time. Thus, we show that all the rules can be executed
in O(l) time. Rule 1 enforces the transitiveness of relation C,
which, in the worst case, requires analysing all tests. This can
be done in O(l). Rule 2 requires the identification of common
extensions of two tests, which can be achieved, in the worst
case, by inspecting all tests, i.e. in O(l). Similarly, Rule 3 can
be executed by checking whether the tests in a pair added to
D are common extensions of their prefixes. In the worst case,
the time required for Rule 3 is the number of prefixes of the
longest test, which is O(l) when the test suite contains a single
test. Both Rules 4 and 5 require the inspection of all tests, i.e. in
O(l). Rules 6–10 are applicable if one test is a prefix of the other,
which can be checked in O(l). For Rules 6 and 7, it is sufficient to
check if the suffix is in an appropriate form. Rules 8–10 require
inspecting all the tests and, thus, their complexity is O(l).

As there are O(l2) pairs and each may need operations with
O(l) time, the worst case complexity time for applying Rules
1–10 is O(l3). It is important to note that, although the rules
are applied in various steps executed several times, each pair
is analysed at most once, when it is added to the respective
relation.

The algorithm contains four cycles. In the cycle that contains
Step 2, the size of the clique is increased, until the required size
is reached. If p < n, in the worst case, the cycle can be executed
p + 1 times. In each iteration, Step 2 requires finding at most p

distinguishing sequences. Thus, in the worst case, the execution
time complexity of this cycle, which is the only cycle executed
by the algorithm if p < n, is O(p2)O(kn2) = O(kp2n2). If
p = n, the cycle can be executed n times, requiring the search
for n − 1 distinguishing sequences; thus, in the worst case, the
execution time of this cycle is O(n2)O(kn2) = O(kn4).

The cycle where Condition 4 holds can be executed at most
l − n times, i.e. O(l). Condition 4 requires inspecting n tests in
K and at most l − n tests in T \C∪(K), totalling at most O(nl)
pairs. For each pair, the other n − 1 tests in K are analysed.
Thus, the execution time of Condition 4 is O(n2l), and the cycle
that contains it requires a time of O(n2l2).

The other cycles require the execution of Step 4, which finds
n − 1 distinguishing sequences; thus, its execution time is
O(n)O(kn2) = O(kn3). This step is involved in two cycles,
which can be executed at most as many times as the number of
defined transitions, i.e. O(kn). Thus, these cycles are executed
in O(kn)O(kn3) = O(k2n4).

The cost of the algorithm is thus O(CLIQUE)+O(n2l2+l3+
k2n4), where O(CLIQUE) is the time required by the algorithm
chosen for finding a maximal clique. Thus, the algorithm runs
in polynomial time, after a maximal clique has been found.

The algorithm proposed in this paper can generate p-
complete test suites even when p < n. The authors are not
aware of other methods with such property. It allows the test
designer to find a compromise between the cost of complete
tests and the size of the fault domain where the completeness
is guaranteed. For instance, if n-complete test suites are too

expensive to be used, the test designer may choose using, say,
(n/2)-complete test suites, which nonetheless ensures that if any
faulty implementation has at most n/2 states, it will be caught
by the test suite. Moreover, by increasing the value of p, the
test designer can enlarge the tests until an implementation bug
is discovered; at the end, there is well-defined guaranteed fault
coverage in terms of the number of states.

Finally, we discuss the upper bounds of p-complete test suites
when p < n. For p = n, it is known that the size of an n-
complete test suite can reach O(kn3), for complete FSMs [2] or
O(kn4), for reduced partial FSMs [5]. For p < n, in the worst
case, a p-complete test suite contains p + 1 tests, reaching p

+ 1 distinct states, and each pair of states requires a distinct
distinguishing sequence. Thus, a p-complete test suite needs at
most p(p+1) tests.Any state in an initially connected FSM can
be reached by a test no longer than n−1. In a complete FSM, any
pair of states can be distinguished by a sequence of at most n−1
inputs. Thus, there is a p-complete test suite for a complete FSM
with at most p(p + 1)2(n − 1) inputs, i.e. O(p2n). In a partial
FSM, any pair of distinguishable states can be distinguished
by a sequence no longer than n(n − 1)/2 [6]. There is thus a
p-complete test suite for a partial reduced FSM with at most
p(p + 1)(n − 1 + n(n − 1)/2) = p(p + 1)((n + 2)(n − 1)/2)

inputs, i.e. O(p2n2). Therefore, when p < n, the upper bounds
for p-complete test suites are lower than those for n-complete
test suites by a factor of O((p/n)2). It is important to note
that reasonable choices have to be made when sequences are
selected for the algorithm to obtain a test suite not exceeding
these bounds. For example, a longer test suite would be obtained
if distinguishing sequences selected in Step 2 are not the shortest
ones (e.g. longer than n − 1).

In Section 7, we provide the results of experimental
evaluation of the length of p-complete test suites.

6. EXAMPLES

In this section we present examples of the execution of the
algorithm for the FSM M1 in Fig. 1. In the first example,
the algorithm generates a series of test suites with increasing
fault coverage for various values of p. In the second example,
the algorithm is given a test suite that already has the desired
fault coverage. As expected, the algorithm terminates without
adding new tests, even though the test suite does not satisfy the
existing sufficient conditions. This demonstrates the fact that
the proposed conditions are weaker and the algorithm improves
the state-of-the-art in test coverage analysis. Finally, in the last
example, we illustrate that the algorithm can be used to extend
a given test suite until complete fault coverage is achieved.

6.1. Incremental generation

We consecutively execute the algorithm to obtain p-complete
test suites Tp, p = 1, 2, 3. Initially a test suite contains only the
empty sequence {ε}.
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Fault Coverage-Driven Incremental Test Generation 1517

Case p = 1: As the divergence graph has just one vertex,
it has a 1-clique K = {ε}. We have that Condition 1 does not
hold. Then, in Step 2, a test α = a is added to T , which reaches
a new state and we select the sequence γ = a to distinguish
δ(s0, a) and δ(s0, ε). We then add aa to T , resulting in a 2-
clique K = {ε, a}. The resulting test suite T1 = pref(aa) is
1-complete.

Case p = 2: We now want to obtain a 2-complete test suite,
starting the algorithm with T1. The algorithm finds the 2-clique
K = {ε, a}. We have that Condition 1 does not hold. A test
α = b reaches a new state is added in Step 2. Then, tests are
added to T so that b and ε, as well as b and a, are T -separated.
For b and ε, we add ba to T . For b and a we add aaa and
baa. Then, the clique is extended with b, resulting in a 3-clique
K = {ε, a, b}. The final test suite T2 = pref({aaa, baa}) is
2-complete.

Case p = 3: Finally, we execute the algorithm to obtain a
3-complete test suite. The test suite T2 is used to initialize the
algorithm and the clique K = {ε, a, b} is found. We have that
Condition 1 holds, but Condition 2 does not.Then, it is necessary
to add tests to T to obtain an �n(T )-convergence-preserving
initialized transition cover. The relation D is represented in
the divergence graph in Fig. 4a. We use ϒ(C) to represent
the partition induced by the relation C. In this case, ϒ(C) =
{{ε}, {a}, {aa}, {aaa}, {b}, {ba}, {baa}}.

Condition 3 holds for ϕ = aa and χ = ε. Then,
after execution of Step 3, we obtain ϒ(C) =
{{ε, aa}, {a, aaa}, {b}, {ba}, {baa}} and the divergence
graph in Fig. 4b. For simplicity, only one test per block is
shown in this and the following divergence graphs, since the
relationships of the omitted tests can be inferred.

Condition 4 does not hold, but Condition 5 does. Then,
we select α = b and x = a and execute Steps 3–5 for
ϕ = ba and χ = a. For υ = ε, no additional tests are
necessary. However, for υ = b, we add the test baaa to T ,
so that b and ba are T distinguishable. Then, after adding (ba
and a) to C and applying Rules 1–10, we obtain ϒ(C) =
{{ε, aa, baa}, {a, aaa, ba, baaa}, {b}}.

As C∪(K) is not a transition cover, Step 5 is executed,
extending T to cover a yet uncovered transition. We select

εε aa

a

aaa ba

b

baa

(a)

ε

a

ba

b

baa

(b)

FIGURE 4. Divergence graphs obtained during the generation of
T = pref({aaaba, baaa, bbaa}).

the transition (2, b), the tests α = aaa, x = b and execute
Steps 3 and 4 for ϕ = aaab and χ = ε. For υ = a, we
add the test aaaba to T . For υ = b, it is not necessary to
add new tests since b and aaab are already T -separated. The
application of Rules 1–10 results in the partition ϒ(C) =
{{ε, aa, baa, aaab}, {a, aaa, ba, baaa, aaaba}, {b}}.

The algorithm continues to cover the transition (3, b). In
Step 5, we select the test bb to be added to T . Then, Steps
4 and 5 are executed for ϕ = bb and χ = b. The test
bbaa is added to T . The resulting partition is ϒ(C) =
{{ε, aa, baa, aaab, bbaa}, {a, aaa, ba, baaa, aaaba, bba}, {b,

bb}}. As C∪(K) is an initialized transition cover, the resulting
test suite T = pref({aaaba, baaa, bbaa}), which has length 16
and requires three resets, is 3-complete.

The example shows that the algorithm allows generating tests
that require fewer resets than the existing methods. In particular,
the Wp [4] and H method [12] generate the same test suite
T3−complete = pref({aaa, aba, baaa, bbaa}) of length 18, which
requires four resets.

6.2. Confirming p-completeness

We illustrate the execution of Algorithm 1 with the FSM M1

in Fig. 1, initial test suite T = pref({aaa, abb, baba, bbab})
and p = n = 3. We show that T is indeed an n-complete
test suite for M1, without adding more tests. Note that the n-
completeness of T cannot be established using the conditions
proposed in [12, 18] in the sense that this test suite does not
satisfy either of the two conditions but is, nevertheless, 3-
complete.

Initially, C is the identity relation. After populating D with
the T -separated tests (Rules 1–10 are not applicable), we obtain
the divergence graph in Fig. 5a. The algorithm then finds the
maximal clique K = {ε, b, ba}.

As Condition 4 holds for χ = ε and ϕ = ab, Step 3 is
executed, adding ab to C∪(K). After applying Rules 1–10, the
following relationships are determined:

(i) (b, abb) is added to C (Rule 2);
(ii) (bb, ab) is added to D (Rule 4);

(iii) (b, a) is added to D (Rule 3);
(iv) (abb, ε), (abb, aa), (abb, ab), (abb, bab), (abb, a), (abb,

ba) are added to D (Rule 4).

We have that ϒ(C) = {{ε, ab}, {b, abb}, {ba}, {a}, {aa},
{aaa}, {bab}, {baba}, {bb}, {bba}, {bbab}}. Figure 5b presents
the updated divergence graph. We represent the tests in
C∪(K) in bold type and the edges added to the graph are
dashed.

As Condition 4 holds for χ = ba and ϕ = a, Step 4 is
executed. Then, (ba, a) is added to C and Rules 1–10 are applied.
The following relationships are determined:

(i) (ab, bab) is added to C (Rule 2);
(ii) (ε, bab) is added to C (Rule 1);
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FIGURE 5. Divergence graphs obtained during the execution with
T = pref({aaa, abb, baba, bbab}).

(iii) (ba, bab), (ba, aa), (bba, aa), (bab, bba) are added to
D (Rule 4);

(iv) (bb, a) is added to D (Rule 3);
(v) (bb, ba) is added to D (Rule 5).

In Fig. 5c, we present the updated divergence graph.
We have that ϒ(C) = {{ε, ab, bab}, {ba, a}, {b, abb}, {aa},
{aaa}, {baba}, {bb}, {bba}, {bbab}}.

Now, Condition 4 holds for χ = ε and ϕ = aa. The execution
of Step 4 adds (ε, aa) to C and Rules 1–10 are applied, resulting
in the following additional relationships:

(i) (ab, aa), (bab, aa) are added to C (Rule 1);
(ii) (a, aaa), (aaa, baba) are added to C (Rule 2);

(iii) (ba, baba), (a, baba) are added to C (Rule 1);
(iv) (aaa, bab), (aaa, ab), (aaa, aa), (aaa, ε), (aaa, abb),

(aaa, bb), (aaa, b), (baba, bab), (baba, ab), (baba, aa),
(baba, ε), (baba, abb), (baba, bb), (baba, b) are added
to D (Rule 4).

In Fig. 5d, we present the updated divergence graph.
We have that ϒ(C) = {{ε, aa, ab, bab}, {ba, a, aaa, baba},
{b, abb}, {bb}, {bba}, {bbab}}.

Condition 4 holds once more, selecting χ = b and ϕ = bb.
Then, (b, bb) is added to C and Rules 1–10 are applied. Now,
we have that C∪(K) is an initialized transition cover for M1;
thus T is indeed 3-complete.

The example demonstrates that the proposed sufficient
conditions are weaker than the existing ones, as the latter cannot
establish the test suite completeness.

6.3. Completing user-defined test suites

We now illustrate how the algorithm can be used to extend a user-
defined test suite, obtaining a p-complete test suite. Consider
again the FSM M1 in Fig. 1 and p = 1, 2, 3. In this example,
we use a test suite Ttour = pref(bbabaa), which is derived from
a transition tour for M1. Figure 6a presents the corresponding
divergence graphs of Ttour. Note that the set {ε, b, bba} is �n(T )-
divergent. Thus, when the algorithm is executed with Ttour and
p = 1 or p = 2, no test is added, since the test suite T already
satisfies the conditions for 1- and 2-completeness of Theorem 1.

Let T = Ttour. The set K = {ε, b, bba} is the only max-
imal 3-clique in the divergence graph. Step 5 is executed,
selecting the transition (3, b) and α = b. Then, Step 4 is
executed for ϕ = bb and χ = b. For υ = ε, we add the
test a to T . For υ = bba, we add bbba to T . After applying
Rules 1–10, we obtain the following partition ϒ(C) = {{ε},
{b, bb, bbb}, {bba, bbba}, {a}, {bbab}, {bbaba}, {bbabaa}}.
The resulting divergence graph is presented in Fig. 6b.

As C∪(K) is initialized but is not a transition cover, Step 5 is
executed. We select the transition (2, b) and the test α = bba.
Then, we execute Steps 3 and 4 for ϕ = bbab and χ = ε. For
υ = bba, we may add test bbaa, so that bba and bbab become
T -separated. However, as (bba, bbba) ∈ C, we instead add
bbbaa, which ensure the T -separability of bbbaa and bbab.
After applying Rules 1–10 (specifically, Rule 5), (bba, bbab)
is added to D, as required. This choice is motivated by the
fact that adding bbbaa instead of bbaa would not require an
additional reset. After applying Rules 1–10, we obtain ϒ(C) =
{{ε, bbab}, {b, bb, bbb}, {bba, bbba}, {a, bbaba}, {bbabaa},
{bbbaa}}. Figure 6c presents the resulting graph.

εε
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bbabaa

(b)

ε

bbbaa

bba

b

a

bbabaa

(c)

ε

bbbaa

bba

b

(d)

FIGURE 6. Divergence graphs obtained during the generation of
T = pref({a, bbabaab, bbbaa}).
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As C∪(K) is not a transition cover, we execute Step 5 for
the transition (1, a) and α = bbab. Steps 3 and 4 are exe-
cuted for ϕ = bbaba and χ = bba. For υ = ε, it is not
necessary to add tests to T . For υ = b, we add bbabaab
to T . After applying Rules 1–10, we obtain ϒ(C) = {{ε,
bbab}, {b, bb, bbb}, {bba, a, bbba, bbaba}, {bbbaa, bbabaa}}.
Figure 6d presents the resulting graph.

We have that, with ϕ = bbbaa and χ = ε, (ϕ, χ ) can be added
to C without adding new tests. Now we have that C∪(K) =
T = pref({a, bbabaab, bbbaa}) is a transition cover, and thus
3-complete, whose length is 16. The example shows how a
user-defined test suite (derived using a specification coverage
criterion in this particular example) can be extended using the
proposed algorithm to achieve the desired fault coverage.

Finally, we compare the proposed algorithm with a simplistic
approach for extending a user-defined test suite to ensure its
p-completeness. Instead of analysing the tests furnished by
the user, a p-complete test suite is otherwise generated and
added to the used-defined test suite. If p < n, a p-complete
tests suite can obtained as follows. A (minimal) set with p

+ 1 tests, reaching p + 1 states in M1, can be determined.
Then, to each pair of tests, a sequence that distinguishes the
reached states is appended. The obtained test suite, which is
p-complete, is added to Ttour, thus ignoring the tests already
in Ttour. For instance, a 2-complete test suite for M1 obtained
in this way is T2−complete = pref({aaa, baa}) of length 8.
However, recall that the user-defined test suite Ttour, which
has length 7, is already 2-complete and no additional test is
added by the proposed algorithm. Nevertheless, the simplistic
approach would just add T2−complete to Ttour, resulting in a
test suite of length 15. Additionally, note that the test suite
T2−complete corresponds to the 2-complete test suite obtained
by the proposed algorithm in Section 6.1, where the test
suite was incrementally generated from a trivial test suite.
Similarly, if p = n, a 3-complete test suite can be generated
by an existing method and added to Ttour . For instance, as
mentioned before, the Wp and H methods generate the test
suite T3−complete = pref({aaa, aba, baaa, bbaa}). Therefore,
the resulting test suite would be Ttour ∪T3−complete, whose length
is 25, while the length of the test suite produced by the proposed
method is 16.

7. EXPERIMENTAL RESULTS

In this section we present the experimental results on the fault
coverage of p-complete test suites. We also show how the length
of a p-complete test suite grows as the value of p increases. The
average length of the p-complete test suites is compared with
the upper bound discussed in Section 5.

Although experiments involving ‘realistic’ FSM designed by
human testers are highly desirable, the manual generation of
a sufficient number of FSMs could be excessively expensive.
Thus, in the experiments, we used randomly generated FSMs,

as it is usual in experimental evaluation of FSM-based test
generation methods [9, 19, 20].

Complete reduced FSMs are generated as follows. Initially,
sets of states, inputs and outputs with the required number of
elements are generated. The generation then proceeds in two
phases. In the first phase, a state is selected as the initial state
and marked as ‘reached’. Then, for each state s not marked as
‘reached’, we select a reached state s ′, an input x and an output
y and add to the machine being generated a transition from s ′ to
s with input x and output y, and mark s as ‘reached’. When this
phase is completed, an initially connected FSM is obtained.
In the second phase, transitions are added to the machine by
randomly selecting two states, an input and an output, until it is
complete. We then check if the FSM is reduced. A non-reduced
FSM is discarded and another FSM is generated.

In the experiments, we randomly generated 100 complete
reduced FSMs with 50 states, four inputs and four outputs.
For each FSM M , we incrementally generated p-complete test
suites,2 p < n = 50. The average length of the obtained
test suites is shown in Fig. 7. Recall that the upper bound for
p-complete test suites is O(p2n). We note that, although the
length of p-complete test suites grows nonlinearly, it is well
below the theoretical limit (the curve p2 is also included in
Fig. 7 for comparison). A similar property is also observed
when the length of n-complete test suites is compared with
the upper bound; see, e.g. [9, 19]. The average length of n-
complete test suites for the FSMs used in our experiment
exceeds 3000, whereas the average length of p-complete test
suites, for p = n − 1, is less than 700, i.e. they are at least
four times shorter than n-complete test suites. In the next
experiment, we investigate the fault coverage of p-complete
test suites.

By definition, n-complete test suites provide 100% fault
coverage in the fault domain �n. As p-complete test suites
are shorter, they are expected to provide lower fault coverage.
Since the number of FSMs in �n is huge (for the FSMs in our
experiment, the fault domain �n has as many as 200200 FSMs),
we estimate the fault coverage using a mutation approach [21].
Given a specification FSMM , a mutant is generated by changing
the end states of randomly selected transitions of M . Outputs of
transitions are not mutated, since output faults are rather easy
to catch, thus not very interesting for fault coverage analysis.
Note that the higher the number of mutated transitions, the
bigger the difference between the mutant and the specification
and, consequently, the higher the probability for the mutant to
be killed, i.e. to be T -distinguishable from M . Thus, various
percentages of mutated transitions are considered. Mutants that
are equivalent to M are discarded since they are not relevant
to the estimation of the fault coverage. For each FSM and each
p-complete test suite, we generated 10 000 FSMs by mutating
k% transitions of M , for k = 0.5, 2, 5, 10. We then determined

2Each p-complete test suite was generated in less than 0.01 s on an Intel
2.4 GHz computer running Gentoo linux.
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FIGURE 7. Average length of p-complete test suites.

FIGURE 8. Fault coverage of p-complete test suites.

the mutation score, i.e. the percentage of mutants killed by each
p-complete test suite. The variation of the score mutation with
respect to p is shown in Fig. 8. Note that for mutants with
0.5% of mutated transitions, the fault coverage of p-complete
test suites grows linearly; however, it does not exceed 30%. As
expected, the coverage improves with the number of mutated
transitions. For instance, for mutants with 10% of mutated
transitions, a high fault coverage of 95% is obtained with an
(n/2)-complete test suite.

The experimental results indicate that the proposed approach
for incremental test generation of tests parameterized with p

reaching the number of states n in the specification FSM can
be used for relatively complex specifications. Its effectiveness
in fault detection lies in the possibility of using shorter than n-
complete tests, which nevertheless provide good fault coverage
for ‘buggy’ implementations, increasing the value of p to
enlarge the tests until an implementation bug is discovered,
and providing at the end of the testing process well-defined
guaranteed fault coverage in terms of the number of states in
implementations.

8. CONTRIBUTIONS AND RELATED WORK

In this section, we summarize the contributions of this paper,
comparing them with the related work in four research
directions.

First, test generation for a fault domain containing only
implementation FSMs with fewer states than the specification
FSM is investigated, addressing the concern of the scalability
of complete tests for sizeable specifications. Note that all
the existing methods for complete test suite generation
provide guaranteed fault coverage only for fault domains that
necessarily include FSMs with at least as many states as in a
specification FSM. As a result, they offer no means to avoid
a test explosion, while the proposed approach allows the test
designer to find a compromise between the guaranteed fault
coverage and the size of a test suite.

Second, the proposed approach allows incremental test
generation; it may start not with a trivial test suite as all the
existing methods, but with some tests already conceived by the
test designer. The problem of test extension has in fact been
considered in previous work, namely, [22, 23]. However, these
methods assume that an existing test suite is n-complete for a
given specification FSM M that is modified into another FSM.
Thus, tests have to be added to the test suite until a test suite
complete for the modified machine is obtained. The method
of [22] assumes further that the parts of the implementation that
correspond to the unmodified parts of the specification have not
been changed. The approach of [23] relies on the knowledge of
not only a method that produced the initial test suite, but also the
state identification sequences used in it. In the setting assumed
in this paper, no such assumptions are needed.

Third, the proposed test generation method improves the
existing methods that start with a trivial test suite and terminate
with an n-complete test suite (aka checking experiments). These
methods rely on ‘centralized’ state identification, in the sense
that all sequences that distinguish a state in question from all
the other states are applied after a transfer sequence chosen
to reach the state (the reader is referred to several surveys
available, e.g. [5, 7]). This is achieved without using the reset
input, when there exists a preset distinguishing sequence, as
in [24], or an adaptive one, as in [5, 25]. However, when
preset or adaptive distinguishing sequences cannot be found,
characterization sets, i.e. state identifiers containing several
sequences, and the reset input are usually used to ensure that
all of them extend the same transfer sequence from a chosen
state cover. Different from these methods, the proposed method
allows state identification in a ‘distributed’ way, meaning that
sequences in a state identifier, distinguishing a given state from
all the other states, can in fact extend not necessarily the same but
various convergent transfer sequences for this state. As a result,
not only state identifiers, as in [12], but also transfer sequences
can be chosen on-the-fly, while an n-complete test suite is
constructed. Thus the method exploits new possibilities for
overlapping subsequences in a complete test suite and reducing
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its length. Moreover, since the reset input is not necessarily used
each time a given state is to be reached, the number of tests in
a test suite, i.e. the number of reset inputs, can thus become
a subject for optimization. Examples in Section 6 illustrate a
potential saving which the proposed method can achieve.

Fourth, the proposed algorithm improves the state-of-the-
art in fault coverage analysis. The sufficient conditions for the
p-completeness proposed in this paper generalize the existing
ones, such as [7, 8, 12, 21], by allowing p < n and further relax
them for the case p = n. In our recent work [18], we elaborated
sufficient conditions for the case of p = n and showed
that they are weaker than the sufficient conditions in [12] for
checking experiments and those in [24] for checking sequences.
Besides being applicable when p < n, the conditions
proposed in this paper require the existence of an initialized
convergence-preserving transition cover, while in [18], not
only the convergence, but also divergence is considered for
the tests in the initialized transition cover. Moreover, the
conditions rely on new possibilities for determining divergence
and convergence of tests, which are not used in the previous
work. Thus, the formulated sufficient conditions are weaker than
the existing ones.

9. CONCLUSION

In this paper, we considered a problem of incrementally gen-
erating tests until the desired level of fault coverage is reached.
Solving this problem, we presented sufficient conditions for test
suite completeness that are weaker than the ones known in the
literature. Based on these conditions, we proposed an algorithm
that generates a test suite with complete fault coverage starting
with a given set of initial tests, if it is available. The algorithm
determines whether the initial test suite already satisfies the
sufficient conditions and, thus, can also be used for test suite
analysis. The possibility of augmenting the fault coverage of
test suites also demonstrates the fact that the algorithm allows
one to generate tests using specification coverage as well as
fault coverage criteria. Note that these two criteria are often
considered as alternatives, where specification coverage criteria
are presumed to be more practical. Finally, we experimentally
compared both the length and fault coverage of p-complete test
suites, for p < n, with those of n-complete ones; the results
suggest that a trade-off between the test length and the fault
coverage can be obtained by selecting a proper value of p.

As a forthcoming step in this work, it is interesting to
investigate how the results in this paper can be extended to other
fault domains, e.g. to deal with cases when the implementations
may have more states than the specification.
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Abstract: To plan testing activities, testers face the challenge of determining a strategy, including a test coverage
criterion that offers an acceptable compromise between the available resources and test goals. Known theoretical
properties of coverage criteria do not always help and, thus, empirical data are needed. The results of an
experimental evaluation of several coverage criteria for finite state machines (FSMs) are presented, namely,
state and transition coverage; initialisation fault and transition fault coverage. The first two criteria focus on
FSM structure, whereas the other two on potential faults in FSM implementations. The authors elaborate a
comparison approach that includes random generation of FSM, construction of an adequate test suite and
test minimisation for each criterion to ensure that tests are obtained in a uniform way. The last step uses an
improved greedy algorithm.

1 Introduction
Model-based testing refers to the derivation of test suites
from a model representing software behaviour. Such models
can be constructed early in the development cycle, allowing
testing activities to start before the coding phase, as tests
can be based on what the software should do, and not on
what the software does. Finite state machines (FSMs) are
state-based models, which have been widely used in many
areas, such as hardware design, language recognition,
conformance testing of protocols and object-oriented
software testing; for example, [1, 2]. The existence of
several methods for test generation from state-based models
provides flexibility for testers to devise effective testing
strategies.

Test generation methods are based on coverage criteria. A
coverage criterion defines a set of testing requirements that
must be covered by an adequate test suite. It is usually
derived from elements of the model that the tester
considers important to be tested. For instance, a coverage
criterion can require that all transitions of an FSM must be
traversed. There exist several coverage criteria that can be
used to guide test generation, as well as to assess the quality
of a given test suite. Usually, the cost of a coverage

criterion can be estimated by the length of a test suite that
is required to satisfy it. When one has to choose among
several coverage criteria, it is desirable to use the most
effective applicable criterion, that is, the criterion that has
the highest probability to reveal the faults in the
implementation under test with a minimum cost. A high
fault detection capability usually comes with a price: the
tests may simply explode and then a weaker criterion might
be used instead. Budget and schedule constraints must also
be taken into account. For instance, if the tests are
manually executed, their total length should be much
shorter than those executed automatically. Therefore it is
important to be able to estimate the length of tests
adequate for various testing criteria.

The comparison of test coverage criteria can be based on
their theoretical properties, for example, upper bounds for
test lengths and subsumption relations [3]. As an example,
Binder [2] discusses the trade-offs of various state-based
test strategies, highlighting the importance of comparing
the expected length of test suites generated by different
approaches when a test strategy must be chosen. The
discussion is based on the worst-case minimum and
maximum lengths. However, the maximum lengths are
reached for FSMs with a special structure, for example,
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Moore lock FSMs that require the longest sequence to reach
and identify a certain state [4]. Thus, the usage of upper
bounds for various coverage criteria can be misleading. It is
important to have at least some indications on the average
lengths of adequate test suites. Based on these indications,
a test engineer can plan a testing strategy that better fits the
constraints of a testing project. Concerning the
subsumption relation [3], which indicates when a test suite
adequate to one criterion is also adequate to another, it can
be established for some criteria; however, not all of them
are comparable with respect to this relation. Then, it is
important to have other means of comparing such criteria.
In this context, experimental data are useful for choosing
coverage criteria and defining effective testing strategies.
Experimental data characterising the average lengths of test
suites adequate for various criteria help in assessing the
applicability of a particular criterion. Furthermore,
assuming the tester has chosen a given criterion, an
important question is how the test suites adequate for this
criterion relate to others in order to know how the cost
would change if the tester decides to generate a test suite
that is adequate according to another stronger criterion.

Despite the importance of experimental data, there is a lack of
work in the literature that provides those concerning FSM tests.
The monograph [2] refers to just the worst-case test lengths. We
are aware of only the work of Dorofeeva et al. [5], which reports
the results of an experiment comparing various test generation
methods. However, no experimental comparison among
coverage criteria for FSMs is available. In this paper, we
address the experimental comparison of test coverage criteria
for FSMs. The contributions of this paper are 2-fold. First, we
consider four criteria, namely, state coverage (SC), transition
coverage (TC), initialisation fault (IF) coverage and transition
fault (TF) coverage criteria, and provide experimental data on
the length of tests generated from an FSM specification to
satisfy these coverage criteria. We investigate the impacts of
FSM parameters on the cost associated with the usage of
those criteria. Although the cost of test suites adequate for
various criteria can be estimated in various ways, we use the
length of test suites as a measure of the cost since it is an
objective measure which can easily be obtained for a large
number of FSMs, as required in our experiments, and
provides a good approximation of the real cost: all things
being equal, longer test suites are likely more expensive. Thus,
we are interested in comparing the average length of the test
suites for those criteria, both to each other and to the
theoretical upper limits. We also investigate how the test suites
adequate for these criteria are related to the notion of n-
completeness [6], which plays an important role in the
comparison of test generation methods. The experiments
involve random generation of FSM specifications and tests in
order to provide experimental characterisation of how the test
length depends on FSM parameters and coverage criteria.

Secondly, we elaborate the approach for comparing
criteria, which ensures that tests are generated in a uniform
way. This is achieved by first constructing a test suite

adequate for all the criteria and minimising it for each
criterion with a generalised greedy algorithm. We propose a
heuristics that decreases the execution time of the
algorithm, without compromising much its effectiveness.

The paper is organised as follows. Section 2 contains basic
definitions related to FSMs and test suites. In Section 3, we
present the main concepts related to test coverage criteria and
define the criteria that we investigate in this paper. The
discussion on how to compare the cost of different criteria
based on the length of the adequate test suites is presented
in Section 4. Section 5 details the comparison approach
which includes random generation of FSM, construction of
adequate test suite and test minimisation. The results of
the experiments and their analyses are presented in Section
6. In Section 7, we discuss the threats to the validity of the
results. Finally, in Section 8, we draw concluding remarks
and point to future work.

2 FSM and tests
An FSM is a deterministic Mealy machine, which can be
defined as follows.

Definition 1: An FSM M is a 7-tuple (S, s0, I, O, D, d, l),
where

† S is a finite set of states with the initial state s0,

† I is a finite set of inputs,

† O is a finite set of outputs,

† D # S � I is a specification domain,

† d: D! S is a transition function and

† l: D! O is an output function.

An FSM M is said to be completely specified (a complete
FSM, CFSM), if D ¼ S � I. Otherwise, M is called a
partially specified machine (a partial FSM, PFSM). A tuple
(s, x) [ D is a transition of M. Fig. 1a presents an example
of a partial FSM. The initial state is highlighted in bold.
The input symbols are a and b, and the output symbols are
0 and 1. The label ‘x/y ’ of an edge (transition) from state s
to state s0 indicates that d(s, x) ¼ s0 and l(s, x) ¼ y, that is,
when the machine is in state s, it responds to input x by
producing output y and moving to state s0. State s 0 is the
tail state of this transition.

A string x1, . . . , xk [ I� is said to be a defined input
sequence at state s [ S if there exist s1, . . . , sk, skþ1, where
s1 ¼ s, such that (si, xi) [ D and d(si, xi) ¼ siþ1 for all i ¼
1, . . . , k. We use VM(s) to denote the set of all defined input
sequences for state s and VM as a shorthand for VM(s0), that
is, for the input sequences defined for the initial state of M
and, hence, for M itself. Given sequences a, b [ I�, we write
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a � b, ifa is a prefix ofb. For a sequenceb [ I�, pref(b) is the
set of prefixes of b, that is, pref(b) ¼ fa j a � bg. For a set of
sequences T # I�, pref(T ) is the union of pref(b), for all
b [ T; T is prefix-closed if T ¼ pref(T ).

We extend, as usual, the transition and output functions
from input symbols to defined input sequences. For the
empty sequence 1, we have that d(s, 1) ¼ s and l(s, 1) ¼ 1

for any s [ S. For an input sequence a defined at a state
s [ S and an input x, we have that d(s, ax) ¼ d(d(s, a), x)
and l(s, ax) ¼ l(s, a)l(d(s, a), x). A sequence a [ VM is
a transfer sequence to a state s, if d(s0, a) ¼ s. An FSM M
is said to be initial connected if for each state s [ S there
exists a transfer sequence to s. In this paper, we assume
that FSMs for which tests are generated are initially
connected, since any state that is not reachable from the
initial state can be removed without changing the behaviour
of the machine. A natural r is called an accessibility degree
of the FSM M if for each state there exists a transfer
sequence to the state with at most r input symbols.

Given an FSM M ¼ (S, s0, I, O, D, d, l), states s and t are
distinguishable, denoted by s � t, if there exists an input
sequence g [ VM(s) > VM(t), such that l(s, g) = l(t, g);
g is called a separating sequence for s and t. A natural d is
called a distinguishability degree of the FSM M if for any
two distinguishable states there exists a separating sequence
with at most d input symbols. An FSM is reduced, if all
state pairs are distinguishable.

Definition 2: A defined input sequence of FSM M is called
a test case (or simply a test) of M. A test suite of M is a finite

set of tests of M, such that no test is a proper prefix of another
test.

To model implementation faults, we use the notion of a
mutant of a given specification FSM.

Definition 3: Given a specification FSM M ¼ (S, s0, I, O,
D, d, l), a mutant of M is any FSM over the state set S and
input set I.

A mutant N ¼ (S, s00, I, O, DN, D, L) is distinguishable
from M, denoted N � M, if there exists g [ VM > VN

such that l(s0, g) = L(s00, g). We say that g kills N. N has
a transfer fault in the transition (s, x) [ D with respect to
M, if d(s, x) = D(s, x). N has an output fault in the
transition (s, x) [ D with respect to M, if l(s, x) = L(s,
x). N has an IF with respect to M, if s0 = s 00. N has a TF
in (s, x) [ D with respect to M, if it has an output or
transfer fault or both. Fig. 1 shows examples of mutants
with each of these faults. The mutant in N has an IF, since
the initial state is changed to state 4. The mutant in Fig. 1c
has an output fault in the transition (2, b), since the output
was changed from 1 to 0. The mutant in Fig. 1d has a
transfer fault in the transition (4, a), since the tail state of
the transition was changed from state 4 to state 1.

Many methods generate test suites that are guaranteed to
reveal any possible fault in the implementation under test
(under some assumptions). The key property of these test
suites is established in the following definition. Recall that,
as a mutant is an FSM, a complete mutant is a completely
specified FSM.

Definition 4: Let T be a test suite of a reduced FSM M
with n states. T is n-complete, if each complete mutant of
M with at most n states, which is distinguishable from M,
is killed by some test case in T.

Note that the definition refers only to complete mutants.
The rationale is that the implementation of an FSM
cannot ‘refuse’ inputs and, thus, they are modelled by
completely specified machines.

3 Test coverage criteria
A test coverage criterion can be thought of as a systematic
way of defining testing requirements, which an adequate
test suite must fulfil. Therefore we can compare two test
suites with respect to a given criterion by analysing the
set of testing requirements they satisfy. Let K be a test
coverage criterion. We use TRK(M ) to denote the set of
testing requirements that the criterion K defines for a
given FSM M. Let T be a test suite. We define
TSK(M, T ) # TRK(M ) as the set of testing requirements
that are satisfied by T. The test coverage of T, denoted by
CK(M, T ), is the ratio between the number of testing
requirements it fulfils and the total number of testing
requirements, that is, CK(M, T ) ¼ jTSK(M, T )j/jTRK(M)j.

Figure 1 Partial FSM and some of its mutants

a Partial FSM
b Initialisation fault mutant
c Output fault mutant
d Transfer fault mutant
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If TSK(M, T ) ¼ TRK(M), it is said that T is K-adequate
for M. A criterion K subsumes another criterion K0, if any
K-adequate test suite is also K0-adequate.

Test coverage criteria are usually defined with specification
or fault coverage in mind. When an FSM is the specification
for testing, tests covering an FSM specification target one or
several elements such as inputs, outputs, states and fragments
of its transition graph. Covering inputs and outputs is usually
considered as extremely weak requirement for FSM testing
and hence, we will not consider them in this paper. Paths
are typical fragments of the transition graph considered for
coverage. However, path coverage has to be selective, as the
number of paths is infinite in the presence of cycles. One
of the most cited criteria is the TC, which we consider in
this paper. It is a special case of an ‘x-switch’ coverage
criterion, proposed in [7], which defines a testing
requirement as a tuple of transitions to cover by a test; for
simplicity, we concentrate only on the traditional TC
criterion defined below.

Testing with fault coverage in mind relies on fault models.
Fault models represent the kind of faults the tester is
interested in at a particular moment. They are important to
make the test activity more manageable, aiding with
focusing the testing efforts in the particular kind of faults
they embody. Among simple FSM fault models, we should
mention the IFs and TFs considered in this paper. The
former states that the only possible faults in FSM
implementations are related to a wrong initial state of a
specification FSM, whereas the latter assumes that
implementation faults occur in transitions.

Thus, we choose the following four FSM test coverage
criteria: (i) SC, (ii) TC, (iii) IF coverage and (iv) TF
coverage. These criteria are defined in the next sections.

3.1 State coverage (SC) criterion

For the SC criterion, we assume that reaching a state of the
FSM M by some test is a testing requirement. To simplify
the presentation, we define TRSC(M ) ¼ S, where
TRSC(M ) is a set of states that are required to be covered,
whereas S denotes the set of states. A more general way of
defining it would be to use a subset of states (to reach and,
thus, to cover by tests) instead of the whole set S. TSSC(M,
T ) is the set of states that are covered by T, and thus,
CSC(M, T ) ¼ jTSSC(M, T )j/jSj. As an example, for the
FSM in Fig. 1a the test suite fab, bg is SC-adequate; note
that the initial state is reachable with the empty transfer
sequence, while the prefix a of the test ab is a transfer
sequence to state 4.

3.2 Transition coverage (TC) criterion

For the TC criterion, we assume that covering a transition of
the FSM M is a testing requirement. Again, for simplicity,
we define TRTC(M ) ¼ D. TSTC(M, T ) is the set of

transitions covered by tests in T, that is, TSTC(M,
T ) ¼ f(s, x) [ D j 9 p [ T, ax � p, d(s0, a) ¼ sg. Note
that, since only initially connected FSMs are considered,
each state can be reached and therefore each transition can
be covered. Thus, CTC(M, T ) ¼ jTSTC(M, T )j/jDj. If T
is TC-adequate, then it is easy to verify that T is also SC-
adequate. Therefore the TC criterion subsumes the SC
criterion. The usefulness of this criterion is that a TC-
adequate test suite detects all output faults in
implementations, provided that there are no transfer faults.
For our example FSM in Fig. 1a, the test suite faa, aba, ba,
bbg is TC-adequate.

3.3 Initialisation fault (IF) coverage
criterion

For the IF coverage criterion, we define coverage with respect to
IFs, that is, the testing requirements address the states that
could wrongly be used as the initial state of an FSM
implementation. To satisfy such a requirement, a test suite
should include a sequence which is applied to the suspected
initial state and seperates it from the actual initial state. Then,
we define TRIF(M) ¼ fs [ S j s � s0g. Note that TRIF(M)
ranges from the empty set for M with no distinguishable
states to S\fs0g for a reduced M. The criterion is, thus,
applicable to an FSM with at least one state distinguishable
from the initial state. TSIF(M, T ) is defined as follows

TSIF(M, T ) ¼ fs [ S j s � s0, 9 p, x [ T, g � p,
bg � x, d(s0, b) ¼ s, l(s0, g) = l(s,g)g, and thus, CIF(M,
T ) ¼ jTSIF(M, T )j / jTRIF(M )j.

In this formula, g is a sequence that distinguishes s0 from a
state s and, hence, the test suite T should contain a test, that
starts with g, as well as a test, that takes the FSM M into the
state s and then continues with g. An IF-adequate test suite
should have such tests for each state distinguishable from the
initial state. Thus, for reduced FSMs, a test suite that is IF-
adequate is also SC-adequate, that is, the criterion IF
subsumes the criterion SC. For the FSM in Fig. 1a, the
test suite {aa, aba, bb} is IF-adequate. Indeed, we have that
the input sequence b is a transfer sequence to state 2 and is
followed by b, which distinguishes the initial state and state 2.
Similarly, the tests aba and aa satisfy the requirements
related to states 3 and 4, respectively.

3.4 Transition fault (TF) coverage
criterion

For a pair (s, x) [ D, we define a coverage with respect to
TFs, by considering that the transition from state s under
input x in some mutant may have an unexpected output
or/and wrongly end in another state distinguishable from
d(s, x). Thus, the set of testing requirements is defined as
TRTF(M ) ¼ f(s, x, s 0) [ D � S j d(s, x) � s0g. Since
TRTF(M ) is empty for M with no distinguishable states,
the criterion is applicable for an FSM with at least one pair
of distinguishable states. Thus, a testing requirement is a
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pair of a transition, represented by the pair (s, x), and a state
from which the tail state of the transition should be
distinguished. To satisfy such a requirement, a test suite
should not only cover a transition as in the case of the TC
criterion, but also have corresponding separating sequences
applied in both concerned states. TSTF(M, T ) is defined
by the requirements that are satisfied

TSTF(M, T ) ¼ f(s, x, s 0) [ D � S j d(s, x) � s 0, 9 p,
x [ T, axg � p, bg � x, d(s0, a) ¼ s, d(s0, b) ¼ s 0,
l(d(s0, ax), g) = l(s0, g)g.

Thus, CTF(M, T ) ¼ jTSTF(M, T )j/jTRTF(M )j. For the
example FSM (Fig. 1a), the test suite faaaaa, abaaa, baa,
bbaaag is TF-adequate. Consider, for instance, the
transition (2, b), whose tail state is 4. Test bb covers this
transition. States 4 and 1 are distinguished by a, which
follows bb and the empty sequence; states 4 and 2 are
distinguished by aa, which follows bb and b; and states 4
and 3 are distinguished by aaa, which follows bb and ab.
Thus, all requirements related to transition (2, b) are
satisfied. One can check that the other requirements are
also satisfied.

We note that the idea of this criterion is similar to the one
proposed in [6], where the fault coverage of a given test suite
is defined as the percentage of states that are distinguished
from the tail state of each transition by the test suite.

For reduced FSMs, if a test suite is TF-adequate, then it is
also TC-adequate, since the test suite must cover each
transition in order to reveal each transfer fault. Therefore,
the criterion TF subsumes the criterion TC, and
consequently, SC, for reduced FSMs, as shown in Fig. 2.
The criterion TF also subsumes the criterion IF, once the
former is augmented with the requirement that all the
sequences separating the initial state from a tail state of
each transition are appended to the empty sequence.

4 Comparing adequate tests
The definition of testing strategies requires a careful analysis
of the cost and benefits of all applicable coverage criteria.
This analysis can be based on the known theoretical
properties of the criteria. For instance, one may prefer to
choose a criterion most powerful in revealing faults.
However, if the chosen criterion requires an adequate test
suite that is impractical (because of test explosion) or too
costly to execute, it will hardly be chosen. Thus, in many
practical situations, the cost of applying a criterion becomes

a major factor in choosing a proper test coverage criterion.
For simplicity, we assume here that the total length of an
adequate test suite with respect to a given criterion is the
cost of the test suite and, thus, the cost of applying the
criterion for a given specification FSM. Although this
measure neglects important practical issues about the
execution of a test suite, such as a varying cost of executing
different inputs, it provides a fair basis for comparing
different criteria. For instance, distinct costs could be
represented by weighted inputs, but the impact of these
weights should be uniform among the criteria. Thus, we
assume that all inputs have equal cost.

The upper bounds of the test length for the criteria that we
are considering grow rapidly with the FSM parameters (see
discussions below); these bounds characterise the so-called
test explosion effect. Although at least some of these
bounds are shown to be tight, we want to know if the
notorious test explosion may occur for a given FSM and for
each coverage criterion and, if it does, how big it might be
on an average compared with what the formulae indicate.
Ideally, if an FSM specification is available in a machine-
processable form and an appropriate FSM test generation
tool is easily accessible, one would just generate a test suite
for each of the candidate coverage criterion and choose the
one that corresponds to a desired compromise between test
effectiveness and cost. In reality, however, a number of
factors can prevent testers from following this simple-
minded method. For example, a test strategy may have to
be chosen even before a detailed specification is obtained or
tools might not always be readily available. Last but not the
least, one may not need to generate an adequate test suite
for a given criterion; he may well restrict himself to, for
example, ‘90%’ of coverage for a certain criterion. In such
situations, experimental data, if available, may provide
indications on the expected length of test suites 90%-
adequate for the chosen coverage criterion.

The upper bounds of the length of tests adequate for
various coverage criteria can be derived by considering an
FSM with the ‘worst’ values of parameters for a given
criterion. For the SC criterion, such a parameter is the
accessibility degree r, which is the maximum length of a
minimal transfer sequence to a given state; clearly,
0 � r � n 2 1. Henceforth, n denotes the number of states,
k the number of inputs and l the number of outputs. The
length of SC-adequate test suites does not exceed rn, thus
n(n 2 1) (note that the formula can further be refined by
excluding prefixes of transfer sequences). Similarly, the
length of TC-adequate test suite is bounded by
kn(rþ 1) ¼ kn2. For the initialisation and TF coverage
criteria, the distinguishability degree d has also to be taken
into account. It may reach the value of n 2 1 for complete
FSMs and n(n 2 1)/2 for partial FSMs. An IF-adequate
test suite may contain n 2 1 separating sequences applied
in the initial state as well as n 2 1 transfer sequences each
of which is followed by a separating sequence. The total
length does not exceed d(n 2 1)þ (n 2 1)(rþ d ) ¼Figure 2 Subsumption relation of FSM coverage criteria
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(n 2 1)(n 2 1þ 2d ). Then, complete FSMs may require up
to (n 2 1)(n 2 1þ 2n – 2) ¼ 3(n 2 1)2, whereas partial
FSMs (n 2 1)(n 2 1þ 2n(n 2 1)/2) ¼ (nþ 1)(n 2 1)2.
For the TF coverage, a single transition may require at
most two tests, each of which does not exceed the value
rþ 1þ d; hence, kn transitions need 2kn(rþ
1þ d ) ¼ 2kn(nþ d ) inputs. Thus, the length of the TF-
adequate test suite does not exceed 2kn(2n 2 1) for
complete FSMs and kn2(nþ 1) for partial ones.

In addition to the above characterisation of worst cases,
one may also consider asymptotic characterisation of FSM
parameters for ‘almost all FSMs’. Indeed, the monograph
[8] indicates that the accessibility degree r is asymptotically
equal to logk n and the distinguishability degree d is
asymptotically equal to logk logl n for a complete FSM
with n states, k inputs and l outputs. These formulae give
the values expected to be valid for almost all FSMs. We
use them to derive the expected length of the test suites for
the four criteria. For the SC-criterion, the expected length
is rn ¼ n logk n. For the TC-criterion, the length is
kn(rþ 1) ¼ kn(logk nþ 1). The IF-criterion yields (for
complete FSMs) d(n 2 1)þ (n 2 1)(rþ d ) ¼ (n 2 1)
(logk nþ 2 logk logl n). Finally, for the TF-criterion, the
expected length is 2kn(rþ 1þ d ) ¼ 2kn(1þ logk nþ logk

logl n).

At the same time, given a specification FSM and a
coverage criterion, it is not clear how close to these bounds
the test length might be. Since currently it does not seem
plausible to gather sufficient data about actual specifications
and tests adequate for various criteria, experiments
involving random generation of specifications and tests may
provide experimental characterisation of how the test length
depends on FSM parameters and coverage criteria. The
remaining part of this paper is devoted to the experiments
addressing the following questions:

† How does the average length of an adequate test suite
compare with the upper bound?

† How do test suites adequate for various criteria relate in
terms of the length?

† If a test suite is adequate for one criterion, how adequate
would it be for another criterion?

† Which of the FSM parameters contribute more to test
explosion and for which of the four criteria?

† How probable is the condition that test suites adequate for
various criteria are n-complete?

5 Comparison approach
Experiments for comparison of testing criteria are based on
the following main operations on FSMs and tests: (i) FSM
generation, (ii) generation of a test suite adequate for the

given criteria and (iii) minimisation of a test suite with
respect to a given criterion. In the following sections, we
explain these operations.

5.1 FSM generation

We implemented a tool to randomly generate initially
connected FSMs with given numbers of states, inputs,
outputs and transitions. The tool first generates sets of
states, inputs and outputs with the required number of
elements. The generation proceeds then in two phases. In
the first phase, a state is selected as the initial state and
marked as ‘reached’. Then, for each state s not marked as
‘reached’, the generator randomly selects a reached state s 0,
an input x and an output y, adds a transition from s0 to s
with input x and output y, and marks s as ‘reached’. When
this phase is completed, an initially connected FSM is
obtained. In the second phase, the generator adds, if
needed, more transitions (by randomly selecting two states,
an input and an output) to the machine until the required
number of transitions is obtained.

There are at least two alternatives to the random
generation approach. First, one may involve human testers
in experiments by asking them to generate FSMs using
their experience and domain knowledge. This setting
would allow considering the human factor in the
experiments and hopefully obtaining more ‘realistic’ FSM
specifications. However, manual generation of a sufficient
number of FSMs could be excessively expensive. Another
alternative would be to use only FSMs found in the
literature, forming a benchmark of FSMs. This setting is
attractive, but again, not many such FSMs are publicly
available.

5.2 Test generation

To compare the length of test suites implied by various test
coverage criteria, one first needs to generate these tests in a
uniform way, as the test length may significantly vary
depending on algorithms used for test generation. As an
example, to derive a test suite adequate for the SC
criterion, one may use different graph traversal algorithms,
obtaining test suites of different lengths. Similarly, there
are various algorithms for generating test sequences for the
other criteria. One possibility of reducing any impact of
using different search algorithms and enforcing the
uniformity of test generation with various criteria is to use
only one test generation algorithm that yields a test suite
adequate for all the test coverage criteria considered. Once
such a ‘super’ test suite is obtained, one may then
determine a (minimal) subset of this test suite adequate for
a given criterion and to compare the lengths of the
resulting adequate test suites. This approach is
implemented as a two-step procedure: (1) generate a
(quasi-minimal) test suite adequate for all the four criteria
and (2) minimise it for each criterion.
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For a given specification FSM M ¼ (S, s0, I, O, D, d, l), a
test suite which is SC-, TC-, IF- and TF-adequate is
generated in the following manner. For each pair of states s
and s0, we determine a shortest distinguishing input
sequence, gs,s 0 . Note that, as non-reduced FSMs can also be
generated, there may be some state pairs for which no such
sequence exists. Then, we determine a minimal transition
cover T by building a spanning tree of M and augmenting it
with missing transitions. We add the empty sequence to T.
The test suite is initialised with T. Finally, for each a [ T,
d(s0, a) ¼ s and each s0 [ S, such that d(s0, a) is
distinguishable from s0, we include ags,s 0 in T. The resulting
test suite is n-complete for any reduced FSM M, since the
adopted test generation algorithm is in fact the HSI-method
[9] developed for reduced FSMs, and the test suite is what
we need for our experiments: it is SC-TC-IF-TF-adequate.

5.3 Test minimisation

Given a specification FSM M and an SC-TC-IF-TF-
adequate test suite T, we need to determine its subsets
adequate for state, transition, initialisation and TF coverage
criteria, that is, SC-, TC-, IF- and TF-adequate test suites,
respectively.

Thus, the problem of test minimisation arises. Given a test
suite T and a particular criterion K, we want to find T0 # T
such that TSK(M, T0) ¼ TSK(M, T ) and the cost function
w(T0) is minimised. As a special case, if T is K-adequate,
T0 is also K-adequate. The cost function can be defined to
reflect the cost of applying a given test suite. We define the
cost w(a) of a sequence a [ I� as jaj þ 1, that is, the
length of a plus the implicit reset symbol used to bring
the FSM back to the initial state before applying a. We
define w(R) as the sum of w(a) of all sequences a [ R,
such that a is not a proper prefix of another sequence in R.
Thus, it is assumed that all inputs are of the same cost,
although if needed, one can easily diversify the cost of inputs.

For the SC criterion, we need to find a minimal subset
T 0 # T that reaches every state of a given FSM. This can

be posed as a weighted set-cover problem, where the
ground set is the set of states and the covering elements are
tests (as well as all their prefixes). This problem is known
to be NP-complete [10]. A greedy algorithm can be used
to find a near optimal covering set. We start with an empty
covering set T0 ¼ Ø. At each step, we pick up a sequence
t [ T\T0 that is the most cost-effective and include it in
T0. The cost-effectiveness of a sequence t with respect to
T0 is defined as the ratio between the cost and coverage
increments induced by the inclusion of t in T0, that is,
(w(T 0 < ftg) 2 w(T 0))/jTSSC(M, T 0 < ftg)\TSSC(M, T0)j.
For the TC criterion, a similar approach can be followed by
replacing the set states S by the set of defined transitions D.

For the IF and TF coverage criteria, the test minimisation
problem cannot directly be cast as a set-cover problem, since
to cover some testing requirements two sequences may be
needed at the same time. In this case, the test minimisation
problem is defined as a set-cover with pairs (SCP). The
SCP problem can be viewed as a generalisation of the
classical set-cover problem (see [11] for discussion on its
complexity). Hassin and Segev [11] propose a
generalisation of the greedy algorithm to work with pairs of
elements. At each iteration, the cost-effectiveness of single
sequences as well as pairs of sequences is evaluated and the
most cost-effective one is selected (either a single sequence
or a pair of sequences).

We noted that, although the algorithm checks single
sequences and pairs of all the given sequences to determine
which are the most cost-effective, in almost all iterations, the
algorithm ends up selecting a single sequence, if it exists. In
these cases, computing the cost-effectiveness of pairs of
sequences usually does not significantly contribute to the
results, but it is a resource-consuming process. Therefore we
propose below a slightly different algorithm implementing
the heuristics that at each iteration the cost-effectiveness of
sequence pairs is only computed if no single sequence
increases the coverage. In Fig. 3, we compare the proposed
algorithm with the original algorithm of [11]. We consider

Figure 3 Proposed algorithm with the original algorithm

a Average time execution of original and proposed algorithms
b Average loss of reduction efficiency
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the reduction ratio and the execution. We randomly generate
100 FSMs with two inputs, two outputs, the number of states
ranging from 3 to 20 and the degrees of completeness of 0.4,
0.6, 0.8, 0.9 and 1.0. The degree of completeness is the ratio
between the defined transitions and the number of possible
transitions in a deterministic FSM, that is, kn. Note that the
degree 1.0 corresponds to complete FSMs. Note also that at
least n 2 1 transitions are required for the FSM to be
initially connected. Therefore we subtract n 2 1, both from
the number of defined transitions and the number of
possible transitions. Thus, given the number of transitions t,
the degree of completeness m is calculated as m ¼ (t –
nþ 1)/(kn – nþ 1) ¼ (t – nþ 1)/(k(n 2 1)þ 1). For
instance, for an FSM with k ¼ 4 and n ¼ 20 and with 55
transitions, the degree of completeness is 0.59. To obtain an
FSM with a given degree of completeness m, we calculate
the number of transitions that is necessary to guarantee that
the degree of completeness is at least m. An SC-TC-IF-
TF-adequate test suite is obtained for each FSM and then
minimised with respect to the transfer fault coverage
criterion. Note that state and TC criteria would not be
useful for this comparison, since they require only a single
sequence to cover a testing requirement. An IF coverage
criterion could be used as well. Fig. 3a shows the average
time required to execute the algorithms. The execution time
for FSMs with up to ten states is comparable for both
algorithms. However, for larger FSMs, the execution time of
the original algorithm increases quicker than that for the
proposed algorithm. In Fig. 3b, we present the loss of
reduction efficiency. Let to and tn be the length of the test
suite obtained by the original algorithm and the proposed
one, respectively. Then, the reduction efficiency loss is
determined as (tn 2 to)/to, that is, the percentage of the
additional length of the test suites produced by the proposed
algorithm with respect to the original algorithm. We can
observe that, although for FSMs with three states the
reduction loss is about 3%, for FSMs with at least five states,
the reduction loss is about 1%. Therefore considering the
reduction of the execution time, the decrease in the
efficiency in the proposed algorithm is rather low.

We further generalised the algorithm to deal not only with
pairs, but also with arbitrary subsets of sequences in order to
minimise test suites using more complex criteria. In the
algorithm, the variable p indicates a size of the considered
subsets. In each iteration, the value of p is initially set to 1
and incremented until there exists a set of p sequences,
which increases the coverage of requirements.

Note that it is not necessary to define a maximum value of p
in the algorithm. Indeed, for any of the criteria defined in this
paper, there exists a maximum value of p which represents the
largest number of sequences necessary to cover a single
requirement. For state (respectively, transition) coverage, a
single sequence is sufficient to cover a state (respectively, a
transition). Thus, the maximum value of p is 1. For
transition and IF coverage criteria, the maximum value of p
is 2, since in some cases, two sequences might be needed to

cover a single requirement. Observe that one can formulate
complex test coverage criteria, which, for example, concern
simultaneously several paths, requiring multiple sequences to
cover. Nonetheless, the generalised greedy algorithm could
be used to minimise a test suite based on these criteria as
well. We observe that, if the value of p is limited to 1, the
algorithm is an instantiation of the classical greedy
algorithm for the set-cover problem, and for p ¼ 2 of the
algorithm for SCP in [11]. The difference, as stated earlier,
is that, to accelerate computations, the coverage of sequence
pairs is computed as a last resort. Moreover, our notion of
cost-effectiveness of covering elements differs from that in
[11], since we need to take into account the relation ‘is a
prefix’ between tests, so that, for example, including into a
cover a longer test after its prefix has already been included
is not ‘penalised’. At the same time, our test minimisation
algorithm (Fig. 4) needs to determine at each iteration the
set of covered testing requirements (ground elements), a
trivial step in the abstract set-cover problem, which may
become involved for a complex test criterion. As an example,
consider the complexity of determining TSTF(M, T ).
For each pair of sequences a, b [ T, and for each
requirement (s, x, s0) [ TRTF(M ), it is necessary to evaluate
each pair of prefixes of both sequences. In the worst case,
there are n(n 2 1)k requirements. Assuming that g is the
longest common prefix of both a and b, there are
jaj þ jbj2 jgj prefixes. In the worst case, we have that
jgj ¼ 0. Thus, the complexity of determining TSTF(M, fa,
bg) is n(n 2 1)k(jaj þ jbj)2. As there are t(t 2 1)/2 such
pairs of sequences a, b [ T, where t is the number of

Figure 4 Greedy test minimisation algorithm

98 IET Softw., 2009, Vol. 3, Iss. 2, pp. 91–105

& The Institution of Engineering and Technology 2009 doi: 10.1049/iet-sen.2008.0018

www.ietdl.org



sequences in T, the complexity of determining TSTF(M, T ) is
of the order O(t2n2kl2), where l is the maximum length of
sequences a and b.

Note that if a given test suite contains just one sequence, the
algorithm cannot remove it, but can still shorten it if we use the
set of prefixes of all tests as the input to the algorithm. Thus, to
further minimise a test suite T with multiple tests, we should
extend it with the set of all prefixes of its sequences, denoted
by pref(T ). This extension increases the complexity of the
input to the algorithm and all computations. In the worst
case, the number of elements to be considered now is of the
order of w(T ), since jpref(T )j is close to w(T ), when the test
sequences in T do not share many common prefixes. Note
that jpref(fag)j ¼ w(a) and jpref(fa, bg)j ¼ w(a)þw(b) –
w(g), where g is the longest common prefix of both a and b.
It is easy to see that jpref(T )j � w(T ). If the computational
cost of including all the test prefixes is too high, a
compromise option may be including a subset of them,
preferably with those that are proper prefixes of several tests,
since in this way the number of sequences to be considered
can be smaller. Note that in the step in Line 25, not only the
sequences that are chosen but also all their prefixes are
removed from R. This can be done because of the fact that
for any test coverage criterion K and any test suite T, if
a [ pref(T ), we have that TSK(M, T ) ¼ TSK(M, T < fag).

6 Experimental results
In the following sections, we present the settings and results
of the experiments that we carried out to answer the questions
stated in Section 4.

6.1 Average length against upper bounds

We address here the question: for each criterion, how does the
average length of the adequate test suites compare with the
upper bounds? The formulae of the upper bounds of the test
length (Table 1) contain the major FSM parameter n, the
number of states, which is varied in our experiments from 3
to 20. For each value of n, we generate 1000 initially
connected deterministic FSMs with four inputs and four
outputs for each of the following degrees of completeness:
0.4, 0.6, 0.8, 0.9 and 1.0. Thus, for each value of n, we
generate 5000 FSMs, totalling 90 000 FSMs. Fig. 5 shows
the maximal test length defined by the corresponding

formulae for the upper bounds (for complete and partial
FSMs, when applicable), the expected test length obtained
with the parameters expected for ‘almost all FSMs’, and the
average length for state, transition, IF and TF coverage
criteria. The average length of adequate tests in our
experiments is far below the worst-case length. Moreover,
we notice that it grows not as fast as the upper bounds
suggest. It is, thus, interesting to determine how the average
length grows for the various criteria. For SC and IF coverage
criteria, we model this growth as a function of the form
f (n) ¼ anb

þ c, where n is the number of states, for some
parameters a, b and c. For TC and TF coverage criteria, we
model this growth as a function of the form f (n) ¼ aknb

þ c,
where n is the number of states and k is the number of
inputs for some constants a, b and c. Note that k ¼ 4 for all
the FSMs we have generated in this experiment. The forms
of these formulae are chosen to resemble the theoretical
upper bound formulae. We use the implementation of the
nonlinear least-squares (NLLS) Marquardt–Levenberg
algorithm [12] available in the ‘gnuplot’ tool to the values of
a, b and c that make f (n) fit best to the collected data. The
resulting functions are given in Table 2.

The table also contains the computed ratios of the test
length, which allow one to estimate the price of changing a
coverage criterion in terms of the increase in the expected
test length. As an example, the increase in the test length
by switching from an SC criterion to a TC criterion is
approximated by the function 0.893kn0.08. Thus, all things
being equal, a TC-adequate test suite is roughly 3.5 times
larger than an SC-adequate test suite (recall that k ¼ 4 for
the FSMs we have considered) while the number of states
has a marginal impact. Note that in the ratio between IF-
adequate and SC-adequate tests, 2.023n20.09, the impact of
the number of states is negative, which implies that the
difference in the length of test suites for both criteria tends
to decrease as the number of states increases. As the
number of states increases, so does the accessibility degree
of the FSM, and longer sequences more likely contain
sequences needed to distinguish the initial state from other
states; thus, their impact on the test length diminishes.

6.2 Criteria relative strength

Addressing our third question, ‘Given a test suite adequate
for one criterion, how adequate is it for another stronger

Table 1 Formulae for the test length for state, transition, IF and TF coverage criteria

Coverage criterion Maximum length for all FSMs Expected length for almost all (complete) FSMs

SC n(n 2 1) n logk n

TC kn2 kn logk n

IF CFSMs: 3(n 2 1)2

PFSMs: (nþ 1)(n2 1)2
(n–1)(logk nþ 2 logk logl n)

TF CFSMs: 2kn(2n 2 1)
PFSMs: kn2(nþ 1)

2kn(1þ logk nþ logk logl n)
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criterion?’, we determine the coverage of a test suite adequate
for one criterion with respect to other criteria. We randomly
generate 5000 FSMs with two inputs, two outputs, the
number of states ranging from 3 to 20, and the degrees of
completeness of 0.4, 0.6, 0.8, 0.9 and 1.0. An adequate test
suite (a ‘super’ test suite) is obtained for each FSM and
criterion; then its coverage for the other criteria is
determined. For instance, given an SC-adequate test suite,
we calculate the percentage of covered transitions. Table 3
shows the relative strength of the four criteria. We present
both the average and the standard deviation. For instance,

we can observe that a TC-adequate test suite covers on an
average 0.928 of the testing requirements of the IF
coverage criterion, with the standard deviation of 0.122.
Note that, as we generated both reduced and unreduced
FSMs, some test suites that are adequate for TF coverage
criterion are not adequate even for SC, since there may
exist some states that are not distinguishable from any
other states. In this case, the TF coverage criterion does
not require covering all the states. However, as expected,
the test suites adequate for this criterion are almost always
adequate for any of the other criteria.

Figure 5 Maximum, expected and average lengths of adequate test suites with respect to the number of states for:

a State coverage
b Transition coverage
c Initialisation fault coverage
d Transition fault coverage

Table 2 Fitted formulae and ratios for the test length for state, transition, IF and TF coverage criteria

Coverage criterion Fitted formulae Ratios

SC 1.31n1.07 2 0.23 –

TC 1.17kn1.15
þ 6.31 TC/SC ¼ 0.893kn0.08

IF 2.65n0.96 2 2.25 IF/SC ¼ 2.023n20.09

TF 2.17kn1.33
þ 7.34 TF/TC ¼ 1.855n0.18

TF/IF ¼ 0.819kn0.37
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6.3 FSM parameters

Addressing the question: ‘Which FSM parameters contribute
more to test explosion and for which of the four criteria?’,
we investigate the effect of various FSM parameters on the
length of the test suites for the four criteria. We observe
that the impact of the number of states is essential, as
discussed in Section 4. Here, we are interested in other
parameters that characterise an FSM, namely, the number
of inputs, outputs and transitions.

Fig. 6a shows how the test suite length varies with the
number of inputs. We generate FSMs with ten states, two
outputs, the number of inputs ranging from two to seven
and the degrees of completeness of 0.4, 0.6, 0.8, 0.9 and
1.0 (100 FSMs for each setting, totalling 3000 FSMs).
The obtained data indicate that, with respect to the
number of inputs, the test length grows almost linearly for
transition and TF coverage criteria. At the same time, the
number of inputs does not impact the test length for state
and IF coverage criteria.

Fig. 6b shows how the test length for considered criteria
depends on the number of outputs. We generate FSMs
with ten states, two inputs, the number of outputs ranging
from two to ten and the degrees of completeness of 0.4,
0.6, 0.8, 0.9 and 1.0 (100 FSMs for each setting, totalling
4500 FSMs). We observe that, as expected, the test length
for state and TC criteria does not significantly depend on
the number of outputs. On the other hand, the length of
tests adequate for the TF coverage criterion decreases when
the number of outputs increases. The reason is that the
length of separating sequences tends to decrease if an FSM
has more outputs. Accordingly, the length of test suites for
criteria that rely on separating sequences tends to decrease
as well. Although the length of a test suite adequate for the
IF coverage criterion which also uses separating sequences
should also depend on the number of outputs, its impact
on the length is negligible in the performed experiments.

Fig. 6c shows how the test suite length varies with the
number of transitions. Recall that, for fixed numbers of
states and inputs, the number of transitions determines the
degree of completeness of the FSMs. We generate FSMs
with ten states, two outputs, two inputs, and with the
number of transitions ranging from 12 to 20 (100 FSMs
for each setting, totalling 900 FSMs). We observe that the

test length for state and IF coverage criteria does not vary,
whereas that for transition and TF coverage criteria grows
quasi-linearly.

Dorofeeva et al. [5] point out that the length of test suites
generated by Wp, HSI, UIOv and H methods is of the order
4n2. These methods generate n-complete test suites. In our
experiment, we generated SC-TC-IF-TF-adequate test
suites, which are also n-complete for reduced FSMs. We
expected that the test suite lengths for the SC-TC-IF-TF-
adequate test suites were also of the same order. In Fig. 6d,
we present the average length of SC-TC-IF-TF-adequate
test suites and the curve 4n2. For each value of n, the
average is computed over test suites generated for 900
complete reduced FSMs with four inputs and four outputs,
totalling 16 200 FSMs. In the experiments of Dorofeeva
et al. 1100 complete reduced FSMs are generated with the
FSM parameters different from ours, in particular, the
number of states ranges from 30 to 100 and the number of
inputs and outputs from six to ten. Although the different
settings hinder the comparison of obtained data, we
observe that our experimental data do not confirm the
conclusion of Dorofeeva et al. We fitted the data to the
f (n) ¼ a nb

þ c with NLLS and obtained 13.01 n1.418 –
3.697. The data suggest that the length of n-complete test
suites in our experiments grows slower than O(n2).
However, this observation must be checked with more
experiments.

6.4 n-completeness of adequate test
suites

To address the question, ‘How probable is that test suites
adequate for various criteria are n-complete?’, we determine
the percentage of test suites adequate for each criterion
which are n-complete. Recall that such tests are guaranteed
to deliver the perfect mutation score of 100%, as by
definition they kill each and every possible mutant with at
most n states. The n-completeness of a test suite is difficult
to determine. A negative answer can only be given for
small FSMs and in some special cases when exhaustive
mutant enumeration is possible. Since this is usually
unfeasible, we decided to avoid mutation score calculation
and rely on the fact that n-complete test suites can be
identified by checking whether known sufficient conditions
for n-completeness are satisfied [13]. Thus, we used the
algorithm presented in [13] to check whether the test suites

Table 3 Relative strength of FSM coverage criteria

SC TC IF TF

SC – 1.000/0.000 0.970/0.064 0.994/0.034

TC 0.679/0.132 – 0.772/0.107 0.989/0.047

IF 0.645/0.248 0.928/0.122 – 0.993/0.053

TF 0.299/0.182 0.691/0.134 0.478/0.171 –
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are n-complete. We randomly generate 7200 reduced FSMs
with two inputs, two outputs, the number of states ranging
from 3 to 20, and the degrees of completeness of 0.6, 0.8,
0.9 and 1.0. An SC-TC-IF-TF-adequate test suite is
obtained for each FSM and each criterion; and then it is
checked whether the test suite satisfies the sufficient
conditions for n-completeness. Fig. 7 shows how the
percentage of n-complete test suites adequate for each
criterion varies as the number of states increases. We
observe that the test suites adequate for state and
initialisation coverage criteria are n-complete only for
FSMs with fewer than five states. Even for those FSMs,
the percentage of n-complete test suites is lower than 10%.
For the TC criterion, the adequate test suites are n-
complete only for FSMs with fewer than nine states. For
the TF coverage, the percentage of n-complete adequate
test suites is always above zero, decreasing rapidly as the
number of states increases.

Note that in this experiment, the FSMs have only four
distinct degrees of completeness. To investigate how the
degree of completeness of the FSM impacts the probability

of obtaining an n-complete test suite adequate for the
various criteria, we set up another experiment. We generate
8000 reduced FSMs with two inputs, two outputs, ten

Figure 6 Average length of adequate test suites for each coverage criteria with respect to

a Number of inputs
b Number of outputs
c Number of transitions
d Average length of SC-TC-IF-TF-adequate test suites against the curve 4n2

Figure 7 Variation of the percentage of n-complete test
suite adequate for each criterion with respect to the
number of states
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states and number of transitions ranging from 13 to 20. An
adequate test suite is obtained for each FSM and each
criterion. The n-completeness of the adequate test suite is
then checked. Fig. 8 shows the variation of the percentage
of the n-complete test suites with respect to the number of
transitions. We observe that the percentage of n-complete
adequate test suites increases as the number of transitions
decreases, that is, the less defined the FSM, the more likely
a test suite adequate for this criterion is n-complete.
Considering the TF coverage criterion, we observe that for
FSMs with 13 transitions (degree of completeness 0.363),
more than 80% of the test suites are n-complete. As the
number of transitions increases, the percentage of n-
complete test suites decreases rapidly. When the FSM has
18 states or more (degree of completeness of at least
0.818), the percentage of n-complete test suites is lower
than 5%.

The above experiments indicate that the chances of
obtaining test suites with high fault detection power using
less powerful criteria are small. One of possible practical
implications is that the actual fault detection power of test
suites adequate for the coverage criteria considered in this
paper is not high. More precise characterisation of the
relative fault detection power of the criteria needs
experiments with exhaustive enumeration of complete
mutants within a given number of states. On the other
hand, the latter can hardly be implemented for FSMs
bigger than the ones considered in our experiments.

7 Threats to validity
There are several caveats in interpreting the experimental
results, which must be noted:

1. As discussed in Section 5.1, FSMs used in our
experiments are randomly generated. As a result, it remains
unknown how close they are to ‘realistic’ FSM

specifications. It may be the case that some conclusions
drawn based on random state machines do not completely
apply to all practical situations. Checking them against
state machines adequate to a particular application domain
is advised.

2. As explained in Section 5.1, to ensure that only initially
connected FSMs are generated, initially a tree FSM with
the required number of states and the minimal number of
transitions is first randomly generated and then more
transitions are added. This procedure tends to generate
FSMs in which the states with a lower accessibility degree
may have more defined transitions than the states with a
higher accessibility degree, especially for partial FSMs with
a few transitions. As the number of transitions increases,
the transitions tend to be more normally distributed. A
possible approach that could be used to bypass this problem
would be to randomly generate an FSM, and then check
whether it is initially connected. However, this approach
does not look practical, since the probability of generating
an initially connected FSM by a random FSM generator is
not high.

3. As previously stated, in order to not bias a test suite by test
generation methods, we use a single method to generate test
suites that are adequate for all the considered criteria and then
minimise them using the same minimisation method, solving
a set-cover problem. Another approach that could be tried
here is to generate tests using several alternative techniques
for obtaining tests adequate for a given criterion and to
consider an average test length. For instance, we may
generate a TC adequate test suite by determining a
transition tour. However, the comparison would still be
biased by the methods selected for generation.

4. In the main algorithm for generating tests, for each pair of
states, we determine in advance a shortest separating
sequence, which is used throughout the algorithm. This
approach is similar to traditional test generation methods,
such as W, Wp and HSI. However, Dorofeeva et al. [14]
demonstrate that a shorter test suite can be obtained if the
separating sequences are determined on-the-fly. If shorter
tests may thus be generated, test suites adequate for the TF
and IF coverage criteria may also be shorter than the ones
obtained in our experiments. Even if the charts for the test
length may further be refined, the obtained characterisation
of adequate tests and their ratios may well persist.

5. The test minimisation is a computationally hard problem.
Hence, approximation algorithms based on greedy
approaches have been employed; as a result, the minimised
test suites are not guaranteed to be minimal. The
replication of these experiments with another minimisation
algorithm may allow to factor out the impact of a
minimisation algorithm on the adequate test length.

6. We use sufficient conditions for a check of n-completeness.
Therefore there may exist n-complete test suites that

Figure 8 Variation of the percentage of n-complete test
suite adequate for each criterion with respect to the
number of transitions
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violate them. Thus, our experiments report conservative
values for the n-completeness probability, since the actual
value may be even higher.

8 Conclusion
This paper is devoted to experiments with common coverage
criteria used for FSM-based testing. We developed an
approach for generating tests adequate for each of the
criteria in such a way that the results do not significantly
depend on methods used for test generation from randomly
generated FSMs. The idea is to first generate a test suite
that is adequate for all the considered criteria and then
minimise it for each criterion separately using a single test
minimisation algorithm that solves a combinatorial set-
cover problem. We proposed a generalised greedy
algorithm, which is used to minimise test suites with
respect to a given coverage criteria. The algorithm
implements a heuristics based on the idea that pairs of
sequences should be considered only when single sequences
cannot cover a new testing requirement. The experiments
showed that the proposed algorithm is faster than
algorithms found in the literature, at the cost of a small loss
of reduction power. The prototype tool environment
developed for the experiments has a much wider
application area, as it can be used to actually generate tests
adequate for various test coverage criteria. It can treat not
only criteria that may require pairs of sequences to cover
some testing requirements, but also more complex criteria
which may require a larger number of sequences.

The obtained experimental data shed some light on the
expected length of test suites adequate for state, transition,
initialisation and TF coverage criteria. In particular, the
experiments show that, as expected, the tests are much
shorter than the upper limits suggest. Moreover, the
average length of test suites grows much slower than the
corresponding formulae suggest. For instance, the length of
test suites adequate for the TF coverage criterion are of the
order O(kn1.33), which is lower than the theoretical O(kn3).
The formulae for the expected length of the test suites for
the four criteria, which we derived using some known
(although rarely used) results on the asymptotic
characterisation of FSMs, give values much closer to
experimental data than worst-case estimations. We have
also compared the relative strength of the criteria. As the
TF coverage criterion subsumes TC and IF coverage
criteria only for reduced FSMs, the experimental results
suggest that, even for unreduced ones, test suites adequate
for the TF coverage criterion, cover, on average, about 99%
of the requirements of TC and IF coverage criteria.

The experiments confirmed that the number of states has
the greatest impact on the length of the test suites adequate
for all criteria. The number of inputs influences almost
linearly the length for TC and TF coverage criteria. At the
same time, the number of inputs does not impact the test
length for state and initialisation coverage criteria. An

increase in the number of outputs does not lead to an
increase in the test length for SC and TC criteria. On the
other hand, the test length for IF and TF coverage criteria
tends to decrease with the growth in the number of
outputs, because of the resulting shortening of separating
sequences. As expected, the number of transitions has a
nearly linear impact on the test length for transition and
TF coverage criteria, with no sensible influence on the
length of tests adequate for SC and IF coverage criteria.
Our experimental data also suggest that the length of
n-complete test suites increases slower than O(n2), as
concluded in a previous work. However, as the parameters
of the FSMs generated in the experiments differ, more
experiments are necessary to draw a more definitive
conclusion. Our experiments also indicate that test suites
adequate for TF coverage criterion have a fairly high
probability of being n-complete for small FSMs. Moreover,
they demonstrate that the chances of obtaining test suites
with high fault-detection power are small for test suites
adequate for the coverage criteria considered in this paper.

We need to conduct more experiments also to refine the
formula to estimate the test length that we suggested. In
our fitted formulae, we only allow the variation of the
number of states, using a fixed number of inputs. It would
be interesting to find fitted formulae that include both
variables. We also intend to assess the variation in the test
suite length with respect to other FSM parameters, such
the accessibility degree, distinguishability degree and
distinguishability ratio. It would be interesting to try to
enrich the experimental data using more realistic data
obtained with the help of testers, for example, along with
random generation of FSMs and test suites, one could
consider FSMs and test suites manually built by testers.
Finally, it would also be interesting to investigate how
FSM coverage criteria relate to those of the program code,
which implements state machines.
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SUMMARY

Parallel programs present some features such as concurrency, communication and synchronization that
make the test a challenging activity. Because of these characteristics, the direct application of traditional
testing is not always possible and adequate testing criteria and tools are necessary. In this paper we
investigate the challenges of validating message-passing parallel programs and present a set of specific
testing criteria. We introduce a family of structural testing criteria based on a test model. The model
captures control and data flow of the message-passing programs, by considering their sequential and
parallel aspects. The criteria provide a coverage measure that can be used for evaluating the progress
of the testing activity and also provide guidelines for the generation of test data. We also describe a
tool, called ValiPar, which supports the application of the proposed testing criteria. Currently, ValiPar
is configured for parallel virtual machine (PVM) and message-passing interface (MPI). Results of the
application of the proposed criteria to MPI programs are also presented and analyzed. Copyright © 2008
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Parallel computing is essential to reduce the execution time in many different applications, such as
weather forecast, dynamic molecular simulation, bio-informatics and image processing. According
to Almasi and Gottlieb [1], there are three basic approaches to build parallel software: (i) automatic
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environments that generate parallel code from sequential algorithms; (ii) concurrent programming
languages such as CSP and ADA; and (iii) extensions for traditional languages, such as C and
Fortran, implemented by message-passing environments. These environments include a function
library that allows the creation and communication of different processes and, consequently, the
development of parallel programs, usually running in a cluster of computers. The most known and
used message-passing environments are parallel virtual machine (PVM) [2] and message-passing
interface (MPI) [3]. Such environments have gained importance in the last decade and they are the
focus of our work.
Parallel software applications are usually more complex than sequential ones and, in many

cases, require high reliability levels. Thus, the validation and test of such applications are crucial
activities. However, parallel programs present some features that make the testing activity more
complex, such as non-determinism, concurrence, synchronization and communication. In addition,
the testing teams are usually not trained for testing this class of applications, which makes the
test of parallel programs very expensive. For sequential programs, many of the testing problems
were reduced with the introduction of testing criteria and the implementation of supporting tools.
A testing criterion is a predicate to be satisfied by a set of test cases and can be used as a guideline
for the generation of test data. Structural criteria utilize the code, the implementation and structural
aspects of the program to select test cases. They are usually based on a control-flow graph (CFG)
and definitions and uses of variables in the program [4].
Yang [5] describes some challenges to test parallel programs: (1) developing static analysis;

(2) detecting unintentional races and deadlock situations in non-deterministic programs; (3) forcing
a path to be executed when non-determinism might exist; (4) reproducing a test execution using
the same input data; (5) generating the CFG of non-deterministic programs; (6) providing a testing
framework as a theoretical base for applying sequential testing criteria to parallel programs; (7) in-
vestigating the applicability of sequential testing criteria to parallel program testing; and (8) defining
test coverage criteria based on control and data flows.
There have been some initiatives to define testing criteria for shared memory parallel pro-

grams [6–11]. Other works have investigated the detection of race conditions [12–14] and mech-
anisms to replay testing for non-deterministic programs [15,16]. However, few works are found
that investigate the application of the testing coverage criteria and supporting tools in the context
of message-passing parallel programs. For these programs, new aspects need to be considered. For
instance, data-flow information must consider that an association between one variable definition
and one use can occur in different addressing spaces. Because of this different paradigm, the in-
vestigation of challenges mentioned above, in the context of message-passing parallel programs,
is not a trivial task and presents some difficulties. To overcome these difficulties, we present a
family of structural testing criteria for this kind of programs, based on a test model, which includes
their main features, such as synchronization, communication, parallelism and concurrency. Testing
criteria were defined to exploit the control and data flows of these programs, considering their
sequential and parallel aspects. The main contribution of the testing criteria proposed in this paper
is to provide a coverage measure that can be used for evaluating the progress of the testing activity.
This is important to evaluate the quality of test cases as well as to consider that a program has been
tested enough.
The practical application of a testing criterion is possible only if a tool is available. Most exis-

tent tools for message-passing parallel programs aid only the simulation, visualization and
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debugging [16–21]. They do not support the application of testing criteria. To fulfill the demand
for tools to support the application of testing criteria in message-passing parallel programming
and to evaluate the proposed criteria, we implemented a tool, called ValiPar, which supports
the application of the proposed testing criteria and offers two basic functionalities: the selec-
tion and evaluation of test data. ValiPar is independent of the message-passing environment and
can be configured to different environments and languages. Currently, ValiPar is configured for
PVM and MPI programs, in C language. ValiPar was used in an experiment with MPI pro-
grams to evaluate the applicability of the proposed criteria, whose results are presented in this
paper.
The remainder of this paper is organized as follows. In Section 2, we present the basic concepts and

the test model adopted for the definition of the testing criteria. We also introduce the specific criteria
for message-passing programs and show an example of usage. In Section 3, the main functionalities
of ValiPar are presented and some implementation aspects are discussed. In Section 4, the results
of the testing criteria application are presented. In Section 5, related work is presented. Concluding
remarks are presented in Section 6.

2. STRUCTURAL TESTING CRITERIA FOR MESSAGE-PASSING PROGRAMS

In this section, we introduce a set of testing criteria defined based on a model that represents the
main characteristics of the message-passing parallel programs. This test model is first presented.
In order to illustrate the application of the proposed testing criteria, an example of use is presented
in Section 2.3.

2.1. Test model and basic concepts

A test model is defined to capture the control, data and communication information of the message-
passing parallel programs. This model is based on Yang and Chung’s work [11]. The test model
considers that a fixed and known number n of processes is created at the initialization of the parallel
application. These processes may execute different programs. However, each one executes its own
code in its own memory space.
The communication between processes uses two basic mechanisms. The first one is the point-

to-point communication. A process can send a message to another one using primitives such as send
and receive. The second one is named collective communication; a process can send a message
to all processes in the application (or to a particular group of them). In our model the collective
communication happens in only one pre-defined domain (or context) that includes all the processes
in the parallel application. The primitives for collective communication are represented in terms of
several basic sends.
The parallel program is given by a set of n parallel processes Prog= {p0, p1, . . . , pn−1}. Each

process p has its own control flow graph, CFGp, which is built by using the same concepts of
traditional programs [4]. In short, a CFG of a process p is composed by a set of nodes N p and
a set of edges E p. These edges that link two nodes of a same process is called intra-process.
Each node n in the process p is represented by the notation n p and corresponds to a set of
commands that are sequentially executed or can be associated with a communication primitive (send
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or receive). The communication primitives are associated with separate nodes and are represented
by the notations send(p,k,t) (respectively, receive(p,k,t)), meaning that the process p
sends (respectively, receives) a message with tag t to (respectively, from) the process k. Note that
the model considers blocking and non-blocking receives, such that all possible interleaving between
send–receive pairs are represented. The path analysis, described next, permits one to capture the
send–receive matching during the parallel program execution.
Each CFGp has two special nodes: the entry and exit nodes, which correspond to the first and

last statements in p, respectively. An edge links a node to another one.
A parallel program Prog is associated with a parallel control-flow graph (PCFG), which is

composed of CFGp (for p= 0 . . . n − 1) and of the representation of the communication between
the processes. N and E represent the set of nodes and edges of the PCFG, respectively.
Two subsets of N are defined: Ns and Nr , composed of nodes that are associated with send and

receive primitives, respectively. With each n p
i ∈ Ns , a set R

p
i is associated, such that

Rp
i = {nkj ∈ Nr |∃ (send(p,k,t) at node n p

i and

receive(k,p,t)atnodenkj ), ∀k �= p ∧ k = 0 . . . n − 1}

i.e. Rp
i contains the nodes that can receive a message sent by node n p

i .
Using the above definitions, we also define the following sets:

• set of inter-processes edges (Es): contains edges that represent the communication between
two processes, such that

Es = {(n p1
j , n p2

k ) | n p1
j ∈ Ns, n

p2
k ∈ Rp1

j }
• set of edges (E): contains all edges, such that

E = Es ∪
n−1⋃

p=0
E p

A path �p in a CFGp is called an intra-process path. It is given by a finite sequence of nodes,
�p = (n p

1 , n p
2 , . . . , n p

m), where (n p
i , n p

i+1) ∈ E p. �= (�0, �1, . . . , �k, S) is an inter-processes path
of the concurrent execution of Prog, where S is the set of synchronization pairs that were executed,
such that S ⊆ Es . Observe that the synchronization pairs of S can be used to establish a conceptual

path (n p1
1 , n p1

2 , . . . , n p1
i , k p2j . . . n p1

m ) or (k p21 , k p
2

2 , . . . , n p1
i , k p2j . . . k pl p2). Such paths contain inter-

processes edges.
An intra-processes path �p = (n1, n2, . . . , nm) is simple if all its nodes are distinct, except pos-

sibly the first and the last ones. It is loop free if all its nodes are distinct. It is complete if n1 and
nm are the entry and exit nodes of CFGp, respectively. We extend these notions to inter-processes
paths. An inter-processes path �= (�0, �1, . . . , �n−1, S) is simple if all �i are simple. It is loop
free if all �i are loop free. It is complete if all �i are complete. Only complete paths are executed by
the test cases, i.e. all the processes execute complete paths. A node, edge or a sub-path is covered
(or exercised) if a complete path that includes them is executed.
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A variable x is defined when a value is stored in the corresponding memory position. Typical
definition statements are assignment and input commands. A variable is also defined when it
is passed as an output parameter (reference) to a function. In the context of message-passing
environments, we need to consider the communication primitives. For instance, the primitive receive
sets one or more variables with the value t received in the message; thus, this is considered a
definition. Therefore, we define:

def(n p) = {x | x is defined inn p}
The use of variable x occurs when the value associated with x is referred. The uses can be:

1. a computational use (c-use): occurs in a computation statement, related to a node n p in the
PCFG;

2. a predicate use (p-use): occurs in a condition (predicate) associated with control-flow state-
ments, related to an intra-processes edge (n p,mp) in the PCFG; and

3. a communication use (s-use): occurs in a communication statement (communication primi-
tives), related to an inter-processes edge (n p1,mp2) ∈ Es .

A path �= (n1, n2, . . . , n j , nk) is definition clear with respect to (w.r.t.) a variable x from node
n1 to node nk or edge (n j , nk), if x ∈ def(n1) and x /∈ def(ni ), for i = 2 . . . j .
Similar to traditional testing, we establish pairs composed of definitions and uses of the same

variables to be tested [4]. Three kinds of associations are introduced:
c-use association is defined by a triple (n p,mp, x), such that x ∈ def(n p), mp has a c-use of x

and there is a definition-clear path w.r.t. x from n p to mp.
p-use association is defined by a triple (n p, (mp, k p), x), such that x ∈ def(n p), (mp, k p) has a

p-use of x and there is a definition-clear path w.r.t. x from n p to (mp, k p).
s-use association is defined by a triple (n p1, (mp1, k p2), x), such that x ∈ def(n p1), (mp1, k p2)

has an s-use of x and there is a definition-clear path w.r.t. x from n p1 to (mp1, k p2).
Note that p-use and c-use associations are intra-processes, i.e. the definition and the use of

x occur in the same process p. These associations are usually required if we apply the tradi-
tional testing criteria to each process separately. An s-use association supposes the existence of a
second process and it is an inter-processes association; s-use associations allow the detection of
communication faults (in the use of send and receive primitives). Considering this context, we pro-
pose another kind of inter-processes associations to discover communication and synchronization
faults:
s–c-use association is given by (n p1, (mp1, k p2), l p2, x p1, x p2), where there is an s-use associ-

ation (n p1, (mp1, k p2), x p1) and a c-use association (k p2, l p2, x p2).
s–p-use association is given by (n p1, (mp1, k p2), (n p2,mp2), x p1, x p2), where there is an s-use

association (n p1, (mp1, k p2), x p1) and a p-use association (k p2, (n p2,mp2), x p2).

2.2. Structural testing criteria

In this section, we propose two sets of structural testing criteria for message-passing parallel
programs, based on test model and definitions presented in previous section. These criteria allow
the testing of sequential and parallel aspects of the programs.
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2.2.1. Testing criteria based on the control and communication flows

Each CFGp (for p= 0...n−1) can be tested separately by applying the traditional criteria all-edges
and all-nodes. Our objective, however, is also to test the communications in the PCFG. Thus,
the testing criteria introduced below are based on the types of edges (inter- and intra-processes
edges).

• all-nodes-s criterion: The test sets must execute paths that cover all the nodes n p
i ∈Ns.

• all-nodes-r criterion: The test sets must execute paths that cover all the nodes n p
i ∈Nr.

• all-nodes criterion: The test sets must execute paths that cover all the nodes n p
i ∈ N .

• all-edges-s criterion: The test sets must execute paths that cover all the edges (n p1
j , n p2

k ) ∈Es.
• all-edges criterion the test sets must execute paths that cover all the edges (n j , nk) ∈ E .

Other criteria could be proposed such as all-paths in the CFGp and in the PCFG (intra- and
inter-processes paths). These criteria generally require an infinite number of elements, due to loops
in the program. Thus, in such cases, only loop-free paths should be required or selected.

2.2.2. Testing criteria based on data and message-passing flows

These criteria require associations between definitions and uses of variables. The objective is to
validate the data flow between the processes when a message is passed.

• all-defs criterion: For each node n p
i and each x ∈ def(n p

i ), the test set must execute a path that
covers an association (c-use, p-use or s-use) w.r.t. x .

• all-defs-s criterion: For each node n p
i and each x ∈ def(n p

i ), the test set must execute a path
that covers an inter-processes association (s–c-use or s–p-use) w.r.t. x . In the case where such
association does not exist, another one should be selected to exercise the definition of x .

• all-c-uses criterion: The test set must execute paths that cover all the c-use associations.
• all-p-uses criterion: The test set must execute paths that cover all the p-use associations.
• all-s-uses criterion: The test set must execute paths that cover all the s-use associations.
• all-s–c-uses criterion: The test set must execute paths that cover all the s–c-use associations.
• all-s–p-uses criterion: The test set must execute paths that cover all the s–p-use associations.

Required elements are the minimal information that must be covered to satisfy a testing criterion.
For instance, the required elements for the criterion all-edges-s are all possible synchronization
between parallel processes. However, satisfying a testing criterion is not always possible, due to
infeasible elements. An element required by a criterion is infeasible if there is no set of values for
the parameters, the input and global variables of the program that executes a path that cover that
element. The determination of infeasible paths is an undecidable problem [22].
Non-determinism is another issue that makes the testing activity difficult. An example is presented

in Figure 1. Suppose that the nodes 81 and 91 in p1 have non-deterministic receives and in the nodes
20 (p0) and 22 (p2) have sends to p1. The figure illustrates the possible synchronizations between
these processes. These synchronizations represent correct behavior of the application. Therefore,
during the testing activity it is essential to guarantee that these synchronizations are executed.
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Figure 1. Example of non-determinism.
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p0 p1
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Figure 2. Example of non-blocking receive.

Controlled execution is a mechanism used to achieve deterministic execution, i.e. two executions
of the program with the same input are guaranteed to execute the same instruction sequence [15]
(and the same synchronization sequence). This mechanism is implemented in ValiPar tool and is
described in Section 3.
Figure 2 illustrates an example with non-blocking receive. Suppose that the nodes 31 and 71 in p1

have non-blocking receive. Two synchronization edges are possible, but only one is exercised in each
execution. During the path analysis, it is possible to determine the edges that were covered. This
information is available in path �, which is obtained by instrumentation of the parallel program.
This instrumentation is described in Section 3.

2.3. An example

In order to illustrate the introduced definitions, consider the GCD program in PVM (Figure 3),
described in [23]. This program uses four parallel processes (pm, p0, p1, p2) to calculate the
maximum common divisor of three numbers. The master process pm (Figure 3(a)) creates the
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(a) (b)

Figure 3. GCD program in PVM: (a) master process and (b) slave process.

slave processes p0, p1 and p2, which run ‘gcd.c’ (Figure 3(b)). Each slave waits (blocked receive)
two values sent by pm and calculates the maximum divisor for these values. To finish, the slaves
send the calculated values to pm and terminate their executions. The computation can involve p0, p1

and p2 or only p0 and p1, depending on the input values. In pm , the receive commands (nodes 4m ,
5m and 8m) are non-deterministic; thus which message will be received in each receive command
depends on the execution time of each process.
ThePCFG is presented in Figure 4. The numbers on the left of the source code (Figure 3) represent

the nodes in the graph. Inter-processes edges are represented by dotted lines. For simplification
reasons, in this figure, only some inter-processes edges (and related s-use) are represented. Table I
presents the sets def(n p

i ). Table II contains the values of all sets introduced in Section 2.1.
In Table III, we present some elements required by the structural testing criteria introduced in

Section 2.2. Test inputs must be generated in order to exercise each possible required element. For
example, considering the test input {x = 1, y = 2, z = 1}, the execution path is �= (�m, �0, �1, S),
where �m = {1m, 2m, 3m, 4m, 5m, 6m, 9m, 10m}, �0 ={10, 20, 30, 40, 50, 70, 30, 80, 90}, �1={11, 21,
31, 41, 61, 71, 31, 81, 91}, S ={(2m, 20), (3m, 21), (80, 4m), (81, 5m)}. Note that p2 does not execute
any path because the result has been already produced by p0 and p1. Owing to the receive non-
deterministic in nodes 4m and 5m , four synchronization edges will be possible: (80, 4m), (80, 5m),

(81, 4m), (81, 5m) and only two of them are exercised for each execution of path � depending
on the execution time ((80, 4m) or (80, 5m), (81, 4m) or (81, 5m)). In each program execution, it
is necessary to determine the inter-processes edges that were executed. This aspect is related to
the evaluation of the test cases and was considered in the implementation of ValiPar, described in
Section 3.
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Figure 4. Parallel control-flow graph for GCD program.

Table I. Definition sets for GCD program.

def(1m) = {x, y, z, S} def(10) = {tid}
def(4m) = {x} def(20) = {x, y}
def(5m) = {y} def(50) = {y}
def(8m) = {z} def(60) = {x}
def(9m) = {z}
def(11) = {tid} def(12) = {tid}
def(21) = {x, y} def(22) = {x, y}
def(51) = {y} def(52) = {y}
def(61) = {x} def(62) = {x}

2.4. Revealing faults

The efficacy (in terms of fault revealing) of the proposed criteria can be illustrated by some kinds
of faults that could be present in program GCD (Figure 3) and showing how the criteria contribute
to reveal these kinds of faults. The fault situations are based on the works of Howden [24] and
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Table II. Sets of the test model for GCD program.

n = 4
Prog= {pm , p0, p1, p2}
N = {1m , 2m , 3m , 4m , 5m , 6m , 7m , 8m , 9m , 10m , 10, 20, 30, 40, 50, 60, 70,
80, 90, 11, 21, 31, 41, 51, 61, 71, 81, 91, 12, 22, 32, 42, 52, 62, 72, 82, 92}
Ns = {2m , 3m , 7m , 80, 81, 82} (nodes with pvm send())
Nr = {4m , 5m , 8m , 20, 21, 22} (nodes with pvm recv())
Rm
2 = {20, 21, 22}

Rm
3 = {20, 21, 22}

Rm
7 = {20, 21, 22}

R0
8 = {4m , 5m , 8m}

R1
8 = {4m , 5m , 8m}

R2
8 = {4m , 5m , 8m}

E = E p
i ∪ Es

Em
i = {(1m , 2m), (2m , 3m), (3m , 4m), (4m , 5m), (5m , 6m), (6m , 7m),

(7m , 8m), (8m , 10m), (6m , 9m), (9m , 10m)}
E0
i = {(10, 20), (20, 30), (30, 40), (40, 50), (40, 60), (50, 70), (60, 70),

(70, 30), (30, 80), (80, 90)}
E1
i = {(11, 21), (21, 31), (31, 41), (41, 51), (41, 61), (51, 71), (61, 71),

(71, 31), (31, 81), (81, 91)}
E2
i = {(12, 22), (22, 32), (32, 42), (42, 52), (42, 62), (52, 72), (62, 72),

(72, 32), (32, 82), (82, 92)}
Es = {(2m , 20), (2m , 21), (2m , 22), (3m , 20), (3m , 21), (3m , 22), (7m , 20),
(7m , 21), (7m , 22), (80, 4m), (80, 5m), (80, 8m), (81, 4m), (81, 5m), (81, 8m),

(82, 4m), (82, 5m), (82, 8m)}

Krawczyk and Wiszniewski [23], which describe typical faults in traditional and parallel programs,
respectively.
Howden [24] introduces two types of faults in traditional programs: computation and domain

faults. The first one occurs when the result of a computation for an input of the program domain
is different from the expected result. The second one occurs when a path that is different from
the expected one is executed. For example, in the process slave (gcd.c), replacing the command of
node 51 ‘y = y − x’ by the incorrect command ‘y = y + x’ corresponds to a computation fault. A
domain fault can be illustrated by changing the predicate (x<y) in edge (41, 51) by the incorrect
predicate (x>y), taking a different path during the execution. These faults are revealed by applying
traditional criteria, all-edges, all-nodes, etc., and testing each CFG separately. Executing the test
input {x = 1, y = 2, z = 1} the node 51 is covered and the first fault is revealed. Considering the
second fault, the test input {x = 2, y = 3, z = 2} executes a path that covers the edge (41, 51) and
reveals the fault. For both inputs, the program executes the loop of node 3 (gcd.c) forever, and a
failure is produced. These situations illustrate the importance of investigating the application of
criteria for sequential testing in parallel software.
In the context of parallel programs, a computation fault can be related to a communication fault.

To illustrate this fact, consider that in slave process (Figure 3(b)) the variable y is mistakenly
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Table III. Some elements required by the proposed testing criteria for GCD program.

all-nodes-s 2m , 3m , 7m , 80, 81, 82

all-nodes-r 4m , 5m , 8m , 20, 21, 22

all-nodes 1m , 2m , 3m , 4m , 5m , 6m , 7m , 8m , 9m , . . . , 10, 20, 30, . . . , 11, 21, 31, . . .
all-edges-s (2m , 20), (2m , 21), (2m , 22), (3m , 20), (3m , 21), (3m , 22), (7m , 22), (80, 4m), (80, 5m),

(80, 8m), (81, 4m), (81, 5m), (81, 8m), 82, 4m), (82, 5m), (82, 8m) . . .

all-edges (1m , 2m), (2m , 3m), . . . , (10, 20), (20, 30), . . . , (11, 21), (21, 31), . . . (2m , 20), (2m , 21) . . .

all-defs (8m , 10m , z), (20, 50, x), (20, 60, x), (20, (30, 40), x), (20, 60, y) . . .

all-defs-s (1m , (2m , 20), 50, x, x), (1m , (2m , 20), 60, y, y),
(1m , (2m , 20), (40, 50), y, y), (1m , (3m , 20), 50, z, y), . . .

all-c-uses (1m , 10m , z), (8m , 10m , z), (20, 80, x) . . .
all-p-uses (4m , (6m , 7m), x), (4m , (6m , 9m), x), (5m , (6m , 7m), y),

(5m , (6m , 9m), y), (20, (30, 40), x), (20, (30, 80), y) . . .

all-s-uses (1m , (2m , 20), x, y), (1m , (2m , 21), x, y), (1m , (3m , 20), y, z),
(4m , (7m , 22), x), (5m , (7m , 20), y), (5m , (7m , 21), y), . . .

all-s–c-uses (1m , (2m , 20), 50, x, x), (1m , (2m , 20), 60, x, x), (1m , (2m , 20), 50, y, y),
(1m , (2m , 20), 60, y, y), (1m , (2m , 21), 61, x, x),
(1m , (3m , 21), 61, x, x), (20, (80, 8m), 10m , x, z), . . .

all-s–p-uses (1m , (2m , 20), (30, 40), x, x), (1m , (2m , 20), (30, 80), x, x),
(1m , (2m , 20), (40, 50), x, x), (1m , (3m , 20), (30, 40), z, y),
(5m , (7m , 20), (30, 40), y, x), (20, (80, 4m), (6m , 7m), x, y), . . .

replaced by the variable x in communication statement y = unpack() (node 5m). The received
value is written in the same variable received previously (variable x). Some test inputs, such as
{x = 1, y = 2, z = 1)}, do not reveal this fault. However, this fault can be revealed when we apply, for
example, the all-defs-s criterion. The test input {x = 2, y = 8, z = 4}, which covers the association
(5m, (7m, 22), 52, y, y), reveals this fault.
Krawczyk and Wiszniewski [23] present two kinds of faults related to parallel programs: ob-

servability and locking faults. The observability fault is a special kind of domain fault, related to
synchronization faults. These faults can be observed or not during the execution of a same test input;
the observation depends on the parallel environment and on the execution time (non-determinism).
Locking faults occur when the parallel program does not finish its execution, staying locked, waiting
forever. To illustrate this fault, consider again the execution of the program GCD with the test input
{x = 7, y = 14, z = 28}. The expected output is (7) and the expected matching points between send–
receive pairs are (2m, 20), (3m, 21), (80, 4m) or (80, 5m), (81, 5m) or (81, 4m), (7m, 22), (82, 8m).
It is important to point out that nodes 4m and 5m have non-deterministic receive primitives
(Section 2.3).
Without loss of generality, let us consider that the matching points reached are (80, 4m) and

(81, 5m). Suppose that in node 5m the statement pvm recv() has been mistakenly changed to
pvm nrecv(), a non-blocking primitive. In this case, the message sent by slave p1 may be not
reached by non-blocking receive in node 5m , before the execution of this node. This is a syn-
chronization fault. Thus, variable y is not updated with the value sent from slave p1. This fact
could appear irrelevant here, since the value of y (14) is equal to the value that must be received
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from p1. However, this fault makes the node 8m to receive the message from 81 instead of the
message from 82. This fault can be revealed by the all-s-uses criterion. To cover the s-use as-
sociation (62, (82, 8m), x), the tester has to provide a test input that executes the slave process
p2, for instance, {x = 3, y = 9, z = 4}. The expected output (1) is obtained, but the s-use associ-
ation is not covered (due to the fault related to the non-blocking receive). This test case did not
reveal the fault, but it indicated an unexpected path. The tester must try to select a test input
that covers the s-use association. The test input {x = 7, y = 14, z = 28} covers the association and
also produces an unexpected output. The tester can conclude that the program has a fault. Vali-
Par (discussed in Section 3) provides support in this case, allowing the analysis of the execution
trace. By analyzing the execution trace, the tester can observe that a wrong matching point was
reached.
This fault is related to non-determinism and the occurrence of the illustrated matching points is

not guaranteed. For example, if the slave process p1 is fast enough to execute, the sent message
reaches the node 5m and the fault will not be observed. Notwithstanding, the synchronizations
illustrated previously are more probable, considering the order of the processes creation.
A special type of the locking error is deadlock [25], a classical problem in parallel programs.

Ideally, it must be detected before the parallel program execution. It is not the focus of the testing
criteria proposed in this work; nonetheless, the information extracted from the parallel programs
during the application of the coverage criteria may be used to statically detect deadlock situations.

3. ValiPar TESTING TOOL

To support the effective application of the testing criteria defined in the previous section, we have
implemented ValiPar. ValiPar works with the concept of test sessions, which can be set up to test a
given parallel program and allows one to stop testing activity and resume it later. Basically, the tool
provides functionalities to (i) create test sessions, (ii) save and execute test data and (iii) evaluate
the testing coverage w.r.t. a given testing criterion.
The implementation of the tool follows the architecture shown in Figure 5. This architecture

was also described in [26]. ValiPar has four main modules: ValiInst performs all static analysis
of parallel program; ValiElem generates the list of required elements; ValiEval performs test case
evaluation (coverage computation); and ValiExec involves the parallel program execution (virtual
machine creation) and generation of the executed paths.
ValiPar is able to validate parallel programs in different message-passing environments with a

fixed number of processes. It is currently instanced for PVM and MPI parallel programs in C
language. To adapt this tool for another message-passing environment or programming language,
it is required to instance the modules ValiInst and ValiExec.

3.1. ValiInst

The ValiInst module is responsible for extracting flow information of the parallel program and
for instrumenting the program with statements that will register the actual paths of execution.
These tasks are accomplished mostly using the idelgen system, which is a compiler for the
IDeL language (Instrumentation Description Language) [27]. IDeL is a meta-language that can
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Figure 5. ValiPar tool architecture.

be instanced for different languages. In the context of this work, the instantiation of IDeL for C
language was used and it was extended to treat specific aspects of PVM and MPI.
The PCFG is generated with information about nodes, edges, definitions and uses of variables

in the nodes, as well as the presence of send and receive primitives‡. In this version of ValiPar the
primitives for collective communication were not implemented. They need to be mapped in terms
of send and receive basics.
This information set is generated for each process. The idelgen accomplishes the syntactic

and semantic analysis of the program, according to the grammar of a given language, extracting
the necessary information for instrumentation. The instrumented program is obtained by inserting
check-point statements in the program being tested. These statements do not change the program
semantics. They only write necessary information in a trace file, by registering the node and the
process identifier in the send and receive commands. The instrumented program will produce the
paths executed in each process, as well as the synchronization sequence produced within a test
case.

‡The following primitives were considered. For MPI: MPI send(), MPI Isend(), MPI recv() and MPI Irecv(); for PVM:
pvm send(), pvm recv() and pvm nrecv().
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3.2. ValiElem

The ValiElem module generates the required elements by the coverage testing criteria defined in
this paper. These elements are generated from PCFGs and data-flow information, generated by
ValiInst. For that purpose, two other graphs are used: the heirs reduced graph, proposed by Chusho
[28], and the graph(i), used by the testing tool Poketool [29].
In a reduced graph of heirs, all the branches are primitive. The algorithm is based on the fact that

there are edges inside a PCFG, which are always executed when another one is executed. If each
complete path that includes the edge a also includes the edge b, then b is called heir of a, and a is
called ancestral of b, because b inherits information about execution of a. In other words, an edge
that is always executed when another one is executed is called heir edge. An edge is called primitive,
if it is not heir of any other one. ValiPar adapted the algorithm for the parallel programs context.
The concept of synchronization edge was included to the concept of primitive edge. Minimizing
the number of edges required by ValiPar is possible by the use of both concepts.
A graph(i) is built for each node that contains a variable definition. The purpose of this is to

obtain all definition-clear paths w.r.t. a variable x ∈ def(n p
i ). Hence, a given node k will belong to a

graph(i) if at least one path from i to k exists and this path does not redefine at least one variable x,
defined in i . A node k can generate several different images in the graph because just one graph(i)
is built for all defined variables in node i . However, the paths in the graph(i) are simple. To do this
and to avoid infinite paths, caused by the existence of loops in the CFG, in the same path of the
graph(i) only a node can contain more than one image, and its image is the last node of the path.
The graph(i) is used to establish associations between definitions and uses of variables, generating
the elements required by the data-flow testing criteria introduced in Section 2.
For each required element, ValiElem also produces a descriptor, which is a regular expression

that describes a path that exercises a required element. For instance, the descriptor for the elements
required by all-nodes criterion is given by the expression:

N ∗ n p
i N∗

where N is the set of nodes in CFGp. A required node n p
i will be exercised by the path �p, if

�p includes ni . In the same way, a regular expression is defined for each element required by all
testing criteria.
The descriptor describes all the paths in the graph that exercise the corresponding element and

is used by ValiEval module. Figure 6 shows the required elements generated for the all-edges-s
criterion, considering the program in Figure 3
Note that, in this section, we follow the notation that is adopted in the tool. For instance, 2–0

means node 2 in process 0. Moreover, the master process is always represented by process 0 and
the slave processes are appropriately named 1, 2, 3, . . . and so on.

3.3. ValiExec

ValiExec executes the instrumented program with the test data provided by the user. A script is
used to initialize the message-passing environment before parallel program execution. ValiExec
stores the test case, the execution parameters and the respective execution trace. The execution
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Figure 6. Required elements of all-edges-s criterion.

Figure 7. Trace file.

trace includes the executed path of each parallel process, as well as the synchronization sequences.
It will be used by ValiEval to determine the elements that were covered.
After the execution, the tester can visualize the outputs and the execution trace to determine

whether the obtained output is the same as that expected. If it is not, a fault was identified and may
be corrected before continuing the test.
A trace of a parallel process is represented by a sequence of nodes executed in this process. A

synchronization from nai to mb
j is represented at the trace of the sender process of the message

by the sequence nai−1 nai mb
j nai nai+1. Note that process a is unable to know to which node j

of process b the message was sent. The same synchronization is represented at the trace of the
receiver process by the sequence mb

j−1 mb
j n

a
i mb

j m
b
j+1. In this way, it is possible to determine

whether the inter-processes edge (nai ,m
b
j ) was covered. The produced traces are used to evaluate

the test cases and they provide a way for debugging the program. To illustrate, Figure 7 shows the
traces generated for GCD program, executed with the test input: {x = 1, y = 3, z = 5}. For this test,
process 3 was not executed.
ValiExec also enables the controlled execution of the parallel program under test. This feature

is useful for replaying the test activity. Controlled execution guarantees that two executions of the
parallel program with the same input will produce the same paths and the same synchronization
sequences. The implementation of controlled execution is based on the work of Carver and Tai [15],
adapted to message-passing programs. Synchronization sequences of each process are gathered in
runtime by the instrumented check-points of blocking and non-blocking sends and receives. The
latter is also subject to non-determinism; hence, each request is associated with the number of
times it has been evaluated. This information and other program inputs are used to achieve the
deterministic execution and, thus, to allow test case replay.
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3.4. ValiEval

ValiEval evaluates the coverage obtained by a test case set w.r.t. a given criterion. ValiEval uses
the descriptors, the required elements generated by ValiElem and the paths executed by the test
cases to verify which elements required for a given testing criterion are exercised. The module
implements the automata associated with the descriptors. Thus, a required element is covered if
an executed path is recognized by its corresponding automaton. The coverage score (percentage of
covered elements) and the list of covered and not covered elements for the selected test criterion
is provided as output. Figure 8 shows this information considering the all-edges-s criterion and
the GCD program (Figure 3). These results were generated after the execution of test inputs in
Figure 9.

Figure 8. Informations about coverage of the all-edges-s criterion.

Figure 9. Test cases executed for GCD program.
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3.5. Testing procedures with ValiPar

ValiPar tool and proposed criteria can be applied following two basic procedures: (1) to guide the
selection of test cases to the program and (2) to evaluate the test set quality, in terms of code and
communication coverage.
1. Test data selection with ValiPar: Suppose that the tester uses ValiPar for supporting the test

data selection. For this, the following steps must be conducted:

(a) Choose a testing criterion to guide the test data selection.
(b) Identify test data that exercise the elements required by the testing criterion.
(c) For each test case, analyze if the output is correct; otherwise, the program must be corrected.
(d) While uncovered required elements exist, identify new test cases that exercise each one of

them.
(e) The tester proceeds with this method until the desired coverage is obtained (ideally 100%).

In addition, other testing criteria may be selected to improve the quality of the generated test
cases.

In some cases, the existence of infeasible elements does not allow a 100% coverage of a criterion.
The determination of infeasible elements is an undecidable problem [22]. Because of this, the tester
has to manually determine the infeasibility of the paths and required elements.
2. Test data evaluation with ValiPar: Suppose that the tester has a test set T and wishes to know

how good it is, considering a particular testing criterion. Another possible scenario is that the tester
wishes to compare two test sets T1 and T2. The coverage w.r.t. a testing criterion can be used in
both cases. The tester can use ValiPar in the following way:

(a) Execute the program with all test cases of T (or T1 and T2) to generate the execution traces
or executed paths.

(b) Select a testing criterion and evaluate the coverage of T (or the coverage of T1 and T2).
(c) If the coverage obtained is not the expected, the tester can improve this coverage by generating

new test data.
(d) To compare sets T1 and T2, the tester can proceed as before, creating a test session for each

test set and then comparing the coverage obtained. The greater the coverage obtained, the
better the test set.

Note that these procedures are not exclusive. If an ad hoc test set is available, it can be evaluated
according to Procedure 2. If the obtained coverage is not adequate, this set can be improved by
using Procedure 1. The use of such an initial test set allows effort reduction in the application of the
criteria. In this way, our criteria can be considered complementary to ad hoc approaches. They can
improve the efficacy of the test cases generated by ad hoc strategies and offer a coverage measure
to evaluate them. This measure can be used to know whether a program has been tested enough
and to stop testing.

4. APPLICATION OF TESTING CRITERIA

In this section, we present the results of the application of the criteria for message-passing parallel
programs. The objective is to evaluate the proposed criteria costs in terms of the test set sizes and
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number of required elements. Although this issue would need a broader range of studies to achieve
statistically significant results, the current work provides evidences of the applicability of the testing
criteria proposed herein.
Five programs implemented in MPI were used: (1) gcd, which calculates the greatest com-

mon divisor of three numbers (example used in Figure 4); (2) phil, which implements the dining
philosophers problem (five philosophers); (3) prod-cons, which implements a multiple-producer
single-consumer problem; (4) matrix, which implements multiplication of matrix; (5) jacobi, which
implements the iterative method of the Gauss–Jacobi for solving a linear system of equations. These
programs represent concurrent-programming classical problems. Table IV shows the complexity
of the programs, in terms of the number of parallel processes and the number of receive and send
commands.
For each program, an initial test set (Ti ) was randomly generated. Then, Ti was submitted to

ValiPar (version MPI) and an initial coverage was obtained for all the criteria. After this, additional
test cases (Ta) were generated to cover the elements required by each criterion and not covered
by Ti . The final coverage was then obtained. In this step, the infeasible elements were detected
with support of the controlled execution. Table V presents the number of covered and infeasible
elements for the testing criteria. The adequate set was obtained from Ti ∪ Ta by taking only the test
cases that really contributed to cover elements in the executed order. The size of the adequate sets
is presented in Table VI.

Table IV. Characteristics of the case studies.

Programs Processes Sends Receives

gcd 4 7 7
phil 6 36 11
prod-cons 4 3 2
matrix 4 36 36
jacobi 4 23 31

Table V. Number of covered and infeasible elements for the case studies.

Covered elements/infeasible elements

Testing criteria gcd phil prod-cons matrix jacobi

all-nodes 62/0 176/0 60/0 368/200 499/19
all-nodes-r 7/0 11/0 2/0 36/15 31/2
all-nodes-s 7/0 36/0 3/0 36/21 23/2
all-edges 41/20 356/280 21/0 1032/982 652/499
all-edges-s 30/20 325/280 6/0 972/945 531/492
all-c-uses 29/0 50/0 43/2 572/337 608/77
all-p-uses 40/0 148/27 42/2 304/206 514/118
all-s-uses 66/47 335/280 6/0 1404/1375 768/729
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Table VI. Size of effective test case sets.

Size of adequate test sets

Testing criteria gcd phil prod-cons matrix jacobi

all-nodes 6 2 2 2 7
all-nodes-r 2 1 2 1 3
all-nodes-s 2 2 1 1 3
all-edges 3 2 2 2 7
all-edges-s 3 2 2 1 3
all-c-uses 6 2 2 2 9
all-p-uses 9 4 3 2 9
all-s-uses 10 2 2 3 6

By analyzing the results, we observe that the criteria are applicable. In spite of the great number
of required elements for the programs phil, matrix and jacobi, the number of test cases does not
grow proportionally. The size of the adequate test sets is small.
In fact, some effort is necessary to identify infeasible elements. In this study, the controlled

execution was used to aid in the identification of the infeasible elements. A good strategy is to
analyze the required elements to decide infeasibility only when the addition of new test cases does
not contribute to improve coverage. In this case, paths are identified to cover the remaining elements
and, if possible, specific test cases are generated. Other strategy is to use infeasible patterns for
classification of the paths. Infeasible patterns are structures composed of sequence of nodes with
inconsistent conditions [30]. The use of patterns is an important mechanism to identify infeasibility
in traditional programs. If a path contains such patterns it will be infeasible. In order to reduce
the problem of infeasible paths, we intend to implement in ValiPar a mechanism for automatically
discarding infeasible paths according to a pattern provided by the tester.
We observed, in the results of the experiment, that many infeasible elements are related to the

s-uses (all-edges-s and all-s-uses criteria). This situation occurs because we adopted a conservative
position by generating all the possible inter-processes edges, even when the communication may
not be possible in the practice. This was adopted with the objective of revealing faults related to
missing communications. We are now implementing a mechanism to disable the generation of all
the combinations, if desired by the tester. Another idea is to generate all possible communication
uses (s-uses) during the static analysis and, during the program execution, to obtain which s-uses
tried to synchronize (race situation). These s-uses that participate in the race have high probability
of being feasible; otherwise, s-uses have major probability of being infeasible. This investigation
is inspired on the work of Damodaran-Kamal and Francioni [16].

5. RELATED WORK

Motivated by the fact that traditional testing techniques are not adequate for testing features of
concurrent/parallel programming, such as non-determinism and concurrency, many researchers
have developed specific testing techniques addressing these issues.
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Lei and Carver [14] present a method that guarantees that every partially ordered synchro-
nization will be exercised exactly once without saving any sequences that have already been
exercised. The method is based on the reachability testing. By definition, the approach avoids
generation of unreachable testing requirements. Their method is complementary to our approach.
On the one hand, the authors employ a reachability schema to calculate the synchronization se-
quence automatically. They do not address how to select the test case which will be used for
the first run. On the other hand, we use the static analysis of the program to indicate the test
cases that are worth selecting. Therefore, the coverage metrics we proposed can be used to
derive the test case suite that will be input to the reachability-based testing, as argued by the
authors.
Wong et al. [31] propose a set of methods to generate test sequences for structural testing of

concurrent programs. The reachability graph is used to represent the concurrent program and to
select test sequences to the all-node and all-edge criteria. The methods aim the generation of a
small test sequences set that covers all the nodes and the edges in a reachability graph. For this,
the methods provide information about which parts of the program should be covered first to
effectively increase the coverage of these criteria. The authors stress that the major advantage of the
reachability graph is that only feasible paths are generated. However, the authors do not explain how
to generate the reachability graph from the concurrent program or how to deal with the state space
explosion.
Yang and Chung [11] introduce the path analysis testing of concurrent programs. Given a program,

two models are proposed: (1) task flow graph, which corresponds to the syntactical view of the task
execution behavior and models the task control flow, and (2) rendezvous graph, which corresponds
to the runtime view and models the possible rendezvous sequences among tasks. An execution of
the program will traverse one concurrent path of the rendezvous graph (C-route) and one concurrent
path of the flow graph (C-path). A method called controlled execution to support the debugging
activity of concurrent programs is presented. They pointed out three research issues to be addressed
to make their approach practical: C-path selection, test generation and test execution.
Taylor et al. [8] propose a set of structural coverage criteria for concurrent programs based

on the notion of concurrent states and on the concurrency graph. Five criteria are defined: all-
concurrency-paths, all-proper-cc-histories, all-edges-between-cc-states, all-cc-states and all-
possible-rendezvous. The hierarchy (subsumption relation) among these criteria is analyzed. They
stress that every approach based on reachability analysis would be limited in practice by state space
explosion. They mentioned some alternatives to overcome the associated constraints.
In the same vein of Taylor and colleagues’ work, Chung et al. [6] propose four testing criteria

for Ada programs: all-entry-call, all-possible-entry-acceptance, all-entry-call-permutation and all-
entry-call-dependency-permutation. These criteria focus the rendezvous among tasks. They also
present the hierarchy among these criteria.
Edelstein et al. [12,13] present a multi-threaded bug detection architecture called ConTest for

Java programs. This architecture combines a replay algorithm with a seeding technique, where
the coverage is specific to race conditions. The seeding technique seeds the program with sleep
statements at shared memory access and synchronization events and heuristics are used to decide
when a sleep statement must be activated. The replay algorithm is used to re-execute a test when
race conditions are detected, ensuring that all accesses in race will be executed. The focus of the
work is the non-determinism problem, not dealing with code coverage and testing criteria.
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Yang et al. [9,10] extend the data-flow criteria [4] to shared memory parallel programs. The
parallel program model used consists of multiple threads of control that can be executed simulta-
neously. A parallel program-flow graph is constructed and is traversed to obtain the paths, variable
definitions and uses. All paths that have definition and use of variables related with parallelism of
threads constitute test requirements to be exercised. The Della Pasta Tool (Delaware Parallel Soft-
ware Testing Aid) automates their approach. The authors presented the foundations and theoretical
results for structural testing of parallel programs, with definition of the all-du-path and all-uses cri-
teria for shared memory programs. This work inspired the test model definition for message-passing
parallel programs, described in Section 2.
The previous works stress the relevance of providing coverage measures for concurrent and

parallel programs, considering essentially shared memory parallel programs. They do not address
coverage criteria that consider the main features of the message-passing programs. Our work is
based on the works mentioned above, but differently we explore control and data-flow concepts to
introduce criteria specific for the message-passing environment paradigm and describe a supporting
tool.
A related, but orthogonal, approach to testing is the use of model checking methods to provide

evidences of the correctness of an algorithm, by suitably exploring the state space of all possi-
ble executions [32]. Improvements in model checking theory and algorithms allow handling huge
state space. When effectively done, model checking can provide a slightly stronger assertion on
the correctness of parallel programs than testing with selected test cases. There exist some ini-
tiatives of model checking of parallel programs [33–36]. These approaches suffer from several
drawbacks, though. Firstly, the program cannot usually be model-checked directly, requiring in-
stead the conversion into a suitable model. This conversion is rarely automated and must be made
manually [36]. However, in this case, it is the correction of the model that is analyzed, not of
the actual program. It remains to be demonstrated that the model correctly represents the pro-
gram. Sometimes, the model is difficult to obtain, since important primitives of parallel program
may not be directly represented in the model. This problem has been recently tackled in [34],
where an extension to the model checker SPIN, called MPI-SPIN, is proposed. Although the gap
between the program and the model is reduced, a direct translation is far from being feasible.
Another drawback of model checking is the awkward handling of user inputs. There exist some
approaches that use symbolic execution in order to represent all possible user inputs symbolically,
e.g. [33]. Nonetheless, symbolic execution is a long-term research topic and brings its own prob-
lems, since the expression obtained along the paths grows intractable. Then, even if model checking
is used in the verification of some model of the program, the testing of the program is still im-
portant, and the problem of measuring the quality of the test cases used to test the program still
remains.
In relation to parallel testing tools, most tools available aid only the simulation, visualization and

debugging; they do not support the application of testing criteria. Examples of these tools are TDC
Ada [20] and ConAn [19], respectively, for ADA and Java. For message-passing environments,
we can mention Xab [17], Visit [18] and MDB [16] for PVM, and XMPI [37] and Umpire [21]
for MPI.
When we consider testing criteria support, we can mention the tool Della Pasta [9], based on

threads, and the tool STEPS [38]. This last one works with PVM programs and generates paths
to cover some elements in the control-flow graphs of PVM programs. We could not find in the
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Table VII. Existent testing tools.

Tool Data flow Control flow Test replay Debug Language

TDC Ada
√

Ada
ConAn

√
Java

Della Pasta
√ √ √

C
Xab

√
PVM

Visit
√

PVM
MDB

√ √
PVM

STEPS
√ √ √

PVM
Astral

√ √
PVM

XMPI
√

MPI
Umpire

√
MPI

ValiPar
√ √ √ √

PVM and MPI

literature a tool, which implements criteria based on control, data and communication flows, as
the one presented in this paper. Table VII shows the main facilities of ValiPar, compared with the
existing tools.

6. CONCLUDING REMARKS

Testing parallel programs is not a trivial task. As mentioned previously, to perform this activity
some problems need to be investigated. This paper contributes in this direction by addressing some
of them in the context of message-passing programs: definition of a model to capture relevant
control and data-flow information and to statically generate the corresponding graph; proposition
of specific testing coverage criteria; development of a tool to support the proposed criteria, as well
as, sequential testing; implementation of mechanisms to reproduce a test execution and to force the
execution of a given path in the presence of non-determinism; and evaluation of the criteria and
investigation of the applicability of the criteria.
The proposed testing criteria are based on models of control and data flows and include the

main features of the most used message-passing environments. The model considers communica-
tion, concurrency and synchronization faults between parallel processes and also fault related to
sequential aspects of each process.
The use of the proposed criteria contributes to improve the quality of the test cases. The criteria

offer a coverage measure that can be used in two testing procedures. The first one for the generation
of test cases, where these criteria can be used as guideline for test data selection. The second one
is related to the evaluation of a test set. The criteria can be used to determine when the testing
activity can be ended and also to compare test sets. This work also showed that the testing criteria
can contribute to reveal important faults related with parallel programs.
The paper described ValiPar, a tool that supports the proposed criteria. ValiPar is independent

of the message-passing environment and is currently configured for PVM (ValiPVM) and MPI
(ValiMPI). These versions are configured for language C. We intend to configure other versions of
ValiPar, considering others languages used for message-passing parallel programs, e.g. Fortran.
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Non-determinism is very common in parallel programs and causes problems for validation
activity. To minimize these problems, we implemented in ValiPar mechanisms to permit con-
trolled execution of parallel programs. With these mechanisms, synchronization sequences can be
re-executed, repeating the test and, thus, contributing for the revalidation and regression testing of
the parallel programs.
Using the MPI version of ValiPar, we carried out a case study that showed the applicability

of the proposed criteria. The results showed a great number of required elements mainly for the
communication-flow-based criteria. This should be evaluated in future experiments and some refine-
ments may be proposed to the criteria. We intend to conduct other experiments to explore efficacy
aspects to propose changes in the way of generating the required elements and to avoid a large
number of infeasible ones.
The advantage of our coverage criteria, comparing with another techniques for testing parallel

programs, is to systematize the testing activity. In fact, there exists an amount of cost and time
associated with the application of the coverage criteria. However, the criteria provide a coverage
measure that can be used to assess the quality of the tests conducted. In the case of critical appli-
cations, this evaluation is fundamental. In addition, ValiPar reduces this cost, by automating most
of the activities related on parallel program testing.
The evolution of our work on this subject is directed to several lines of research: (1) development

of experiments to refine and evaluate the testing criteria; (2) use of ValiPar for real and more
complex parallel programs; (3) implementation of mechanisms to validate parallel programs that
dynamically create processes and other ones to help the tester in identifying infeasible elements;
(4) conduction of an experiment to evaluate the efficacy of the generated test data against ad hoc
test sets; and (5) definition of a strategy that synergistically combines model checking methods and
the testing criteria.
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Mutation testing has been used to assess the quality of test case suites by analyzing the ability
in distinguishing the artifact under testing from a set of alternative artifacts, the so-called mu-
tants. The mutants are generated from the artifact under testing by applying a set of mutant
operators, which produce artifacts with simple syntactical differences. The mutant operators
are usually based on typical errors that occur during the software development and can be
related to a fault model. In this paper, we propose a language—named MuDeL (MUtant
DEfinition Language)—for the definition of mutant operators, aiming not only at automating
themutant generation, but also at providing precision and formality to the operator definition.
The proposed language is based on concepts from transformational and logical program-
ming paradigms, as well as from context-free grammar theory. Denotational semantics formal
framework is employed to define the semantics of the MuDeL language. We also describe
a system—named mudelgen—developed to support the use of this language. An executable
representation of the denotational semantics of the language is used to check the correctness
of the implementation of mudelgen. At the very end, a mutant generator module is produced,
which can be incorporated into a specific mutant tool/environment.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Originally, mutation testing [1,2] is a testing approach to assess the quality of a test case suite in revealing some specific
classes of faults, and can be classified as a fault-based testing technique. Although it was originally proposed for program testing
[2], several researchers have applied its underlying concepts in a variety of other contexts, testing different kinds of artifacts,
e.g., specifications [3–7], protocols testing [8] and network security models [9]. Moreover, mutation testing has been employed
as a useful mechanism to improve statistical validity when testing criteria are compared, such as in [10].

The main idea behind mutation testing is to use a set of alternative artifacts (the so-called mutants) of the artifact under
testing (the original artifact) to evaluate test case sets. These mutants are generated from the original artifact by introducing
simple syntactical changes and, thus, inducing specific faults. Usually, only a simple modification is made in the original artifact.
The resulting mutants are the so-called 1-order mutants [11]. A k-order mutant can be thought of as a mutant in which several
1-order mutations were applied [12]. The ability of a test case suite in revealing these faults is checked by running the mutants
and comparing their results against the result of the original artifact for the same test cases.

The faults considered to generate the mutants are based upon knowledge about errors that typically occur during software
development and can be associated to a fault model. In themutation testing approach, the fault model is embedded in themutant
operators [13]. A mutant operator can be thought of as a function that takes an artifact as input and produces a set of mutants,
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in which the fault modeled by that particular operator is injected. The fault model has great impact in the mutation testing cost
and effectiveness, and, hence, so does the mutant operator set. In general, when the mutation testing is proposed for a particular
artifact, one of the first steps is to describe the fault model and a mutant operator set.

Considering the important role of mutant operators to the mutation testing, their definition and implementation are ba-
sic issues for its efficient and effective application. The mutant operator set has to be assessed and evolved to improve its
accuracy w.r.t. the language in question. This is usually made by theoretical and/or empirical analysis. Specifically for em-
pirical analysis, it is necessary to design and construct a prototype or a supporting tool, because manual mutant generation
is very costly and error-prone. However, the tool design and construction are also costly and time-consuming tasks. An ap-
proach that can be used to tackle this problem is to establish prototyping mechanisms that provide a low-cost alternative,
making easier the evaluation and evolution of the mutant operators without requiring too much effort to be expended in
developing tools. At the very end, the produced mutant generator module may be incorporated into a specific mutant tool/
environment.

Another important issue to be considered is that, given the already mentioned impact on the mutation testing effectiveness,
mutant operators must be described in a way as rigorous as possible, in order to avoid ambiguities and inconsistencies. This
is similar to what happens to other artifacts of software engineering. Several initiatives towards defining mutant operators for
different programming languages can be found in the literature [14–19]. Although we can identify some approaches in which
the operators are formally defined (e.g., [20]), in most of the cases, the definition is informal and based on a textual description
of the changes that are required in order to generate the mutants (see, e.g., [14]).

From theseworks, we can observe that there are common conceptual mutations amongst different languages, such as Fortran,
C, C + +, Statecharts, FSMs and so on, although this point has not been explicitly explored by the authors. This fact motivated
us to investigate mechanisms to design and validate mutation operators as independent as possible of the target language. This
same scenario leads to opportunities to reuse the knowledge underlying the mutations (i.e., effectiveness, costs related to the
generation of mutants, to determination of equivalent mutants, to the number of test cases required to obtain an adequate test
case set) of particular mutations, and of the related operators [21,22].

In this paper, we present a language—calledMuDeL (MUtant DEfinition Language)—for the definition of mutant operators,
a tool to support the language and case studies that show how these mechanisms have been employed in several different
contexts. The language was designed with concepts from transformational [23] and logical [24] paradigms. Its motivation is
threefold. Firstly, MuDeL provides a way to precisely and unambiguously describe the operators. In this respect, MuDeL is
an alternative for sharing mutant descriptions. We employed denotational semantics [25,26] to formally define the semantics of
MuDeL language [27].Observe that thedescriptionof themutant are syntaxdrivenand the semantics of themutant itself arenot
taken into consideration. Secondly, the mutant operator description can be “compiled” into an actual mutant operator, enabling
the mutant operator designer to validate the description and potentially to improve it. With this purpose, we have implemented
the mudelgen system. Given a mutant operator defined in MuDeL and the original artifact, the mudelgen compiles the
definition and generates the mutants, based on a given context-free grammar of the original artifact. The denotational semantics
ofMuDeL was used as a pseudo-oracle (in the sense discussed by Weyuker [28]) in the validation of the mudelgen [27]. And
finally, by providing an abstract view of the mutations, MuDeL eases the reuse of mutant operators defined for syntactically
similar languages. For example, although the actual grammars of, say, C and Java are quite different, they both share several similar
constructions, and, by carefully designing their grammars and the mutant operators, one can reuse the mutant operators that
operate on the same construction, e.g., deleting statements, swapping expressions, and so on, on both languages.We have applied
MuDeL and mudelgen with the languages C, C++ and Java and with the specification languages FSMs and CPNs. In particular,
we used them in the context of Plavis project, which involves Brazilian National Space Agency. We observe that for languages
with similar grammar, we could reuse not only the conceptual framework behind the mutation, but also the MuDeL mutant
operators themselves.

Mutation testing demands several functionalities other than just generating mutants, e.g., test cases handling, mutant execu-
tion and output checking. Both MuDeL and mudelgen are to be used as a piece in a complete mutation tool, either in a tool
specifically tailored to a particular language or in a generic tool—a tool that could be used to support mutation testing application
having the most used languages as target languages. In fact, MuDeL and mudelgen are steps towards the implementation of
such generic tools.

This paper is organized as follows. In Section 2 we discuss some related work and summarize the main features of mu-
tant operators, highlighting the requirements for a description language for this specific domain. In Section 3 we present the
MuDeL language and illustrate its main features. In Section 4 we show results from the application of the language we have
made up to now, emphasizing the cases where we could effectively reuse mutant operator descriptions in different languages.
In Section 5 we discuss relevant implementation aspects of the mudelgen system and depict its overall architecture. Finally, in
Section 6 we make concluding remarks and point to further work.

2. Mutant operators

Mutation testing has been applied in several context, for several different languages. Therefore, mutant operators have been
defined for those applications. The definitions are usually made in an ad hoc way, ranging from textual descriptions to formal
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definitions. Notwithstanding, to the best of our knowledge,MuDeL is the first proposal to provide a precise language to describe
mutant operators.

Mutation testing was first applied for the FORTRAN language [15]. DeMillo designed 22 mutant operators and developed the
MOTHRA tool. The mutant operator descriptions were textual and heavily based on examples. Although the examples are very
useful to illustrate the mutant operator, describing it by these means is ambiguous, and does not promote reuse.

Agrawal [14] proposed 77 mutant operators for the C language. The definition were based on the FORTRANmutant operators.
Most C mutant operators are basically a translation of the respective FORTRANmutant operators. However, since the C language
has amuch richer set of arithmetic and logical operators, there aremoremutant operators for theC language. These operatorswere
implemented in the Proteum tool [29]. (Actually the mutant operators implemented by Delamaro et al. [29] are adapted versions
of the Agrawal's ones.) Afterwards, Delamaro et al. [18] proposedmutant operators for testing the interfaces betweenmodules in
the C language, named interface mutation. The Proteum tool was extended with these operators, deriving the Proteum/IM [18].

Fabbri [30] investigated mutation testing concepts in the context of specification techniques for reactive systems. Mutant
operatorswere designed for Petri nets, Statecharts and finite statemachines (FSMs). Differently from the above approaches, those
mutant operators were formally defined, using the same formalism of the corresponding technique.

Kim et al. [16] have proposed a technique named “hazard and operability studies” (HAZOP) [31] to systematically derive
mutant operators. The technique is based on two main concepts. It first identifies in the grammar of the target language where
mutationmay occur and then defines themutations guided by “GuideWords”. They applied their technique to the Java language.
Although the resulting operators do not significantly differ from previous works, the proposed methodology is an important step
towards a more rigorous discipline in the definition of mutant operators.

From these examples, we can summarize the characteristics of mutant operators used in different context. Usually, from a
single original artifact, a mutant operator will generate several mutants. For example, a mutant operator that exchanges awhile
statement into a do–while statement will generate as many mutants as the number of while statements in the artifact. In each
mutant, a singlewhilewill be replaced by a do–while.

The number of mutants that can be generated from a particular artifact is very large. Considering an original artifact, any
other artifact in the same language could be considered as a mutant, due to the informal and broad definition of “syntactical
change” necessary to generate a mutant. To keep the number of mutants at a tractable level, only mutants with simple changes
are considered. Roughly speaking, a change is considered simple when it cannot be decomposed into smaller, simpler changes.
For that reason, to describe a mutant operator, usually only one change should be defined.

An important point that should be highlighted is that a change being simple does not mean it is straightforward. The syntax
of the artifact should be taken into account, in order to generate syntactically valid mutants. Concerning this point, a mechanism
based on simple text replacement is not enough. It is necessary to embody some mechanisms to guarantee that the mutants
are also valid artifacts in the original language. The pattern replacement, which is typical in transformational languages, is more
suitable in this context.

Sometimes the single logical change implies in changing more than one place in the artifact. For example, a mutant operator
for exchanging two constants must indicate that two different but related changes, one in each place where the exchanging
constants appear. Moreover, in some cases, although being treated as a single entity, the mutant operator involves different
changes in different places. Therefore, it is necessary to be able to relate these different changes into the mutant operator.

Mutations can be classified into twomajor groups: context-freemutations and context-sensitive ones. Context-freemutations
are those that can be carried out regardless the syntactical context inwhich themutated part occurs. Conversely, context-sensitive
mutations depend upon the context, e.g., the variables visible in a specific scope. Most mutant operators in literature [3,6,14,17]
involve context-free mutations. Even for a context-sensitive language, there can be context-free mutations. An example of
context-free mutations is the change of “x = 1” by “x + = 1”, since wherever the first expression is valid, so is the second.
However, the change of “x = 1” by “y = 1” is context-sensitive, since the second expression will not be valid unless y has
the same declaration status as does x. To tackle this difficult problem, a language for describing mutants should either embody
features to specify context-sensitive grammar or provide some way to gather information from the context in some kind of
lookup table.

3. MuDeL language

Based on the characteristics of mutants, we designed a language to allow the definition of mutants in a way as easy, language-
independent and natural as possible. However, due to pragmatical issues, we have taken some design decisions that trades off
between the goals listed above and the possibility of implementing of an efficient supporting tool. Therefore, MuDeL does
not provide a completely language-neutral mechanism for describing and implementing mutant operator. Indeed, the syntax of
the target language should be somewhat embodied in the mutant definition.MuDeL language is, thus, a mixed language that
brings together concepts of both the transformational and the logical paradigms. From the transformational paradigm it employs
the concept of pattern matching and replacement. The transformational language that is closest toMuDeL is TXL [32,33]. TXL
has bothmatching and replacement operations. However, TXLworks in a one-to-one basis and has a imperative-like control flow,
making unnatural to describe mutant operators. Instead, the control flow ofMuDeL is inspired in Prolog's. The most important
similarity of MuDeL and Prolog's is, however, the way a mutant operator definition is interpreted. Like a Prolog clause,



A. Simão et al. / Computer Languages, Systems & Structures 35 (2009) 322 -- 339 325

Fig. 1. The pattern tree for `( :a ) * :b'. The types of `:a' and `:b' have been declared as 〈A〉 and 〈B〉, respectively.

a MuDeL definition can be thought of as a predicate. A mutant should satisfy the “predicate” of a mutant operator definition
in order to be a mutant of this operator w.r.t. the respective original artifact. However, like a findall predicate in Prolog, the
MuDeL definition can be used to enumerate all mutants that satisfy it. This is made by the mudelgen system, described in
Section 5.

3.1. Basic notations

In order to be able to handle different kinds of artifacts, we should choose an intermediate format to which every artifact
can be mapped. Assuming that most artifacts can be thought of as elements of a language defined by a context-free grammar,
the use of syntax tree has an immediate appeal [34]. Therefore, in the MuDeL language, every artifact, either a program or a
specification, is mapped into a syntax tree. The mapping is carried out by parsing the artifact based on a context-free grammar
of the language. The syntax tree can be handled and modified in order to represent the mutations. It is thus necessary a way to
describe how the syntax tree must be handled.

We define a setM ofmeta-variables1 and extend the syntax tree to allow for leaves to be meta-variables as well as terminal
symbols. Moreover, in this extension, the root node can be any non-terminal symbol (not only the initial one, as in the syntax
trees). We call these extended syntax trees pattern trees, or, if it is unambiguous from the context, just patterns. Each meta-
variable has an associated non-terminal symbol, which is called its type. Ameta-variable can be either free or bound. Every bound
meta-variable is associated to a sub tree that can be generated from its type. Therefore, a syntax tree is just a special kind of
pattern tree; a kindwhere everymeta-variable (if any) is bound. Fig. 1 shows an example of a pattern tree. As a way to distinguish
from ordinary identifiers, we prefix the meta-variables with a colon (:). Even in the presence of meta-variables, the children of a
node must be in accordance with its artifact, i.e., a meta-variable can only occur where a non-terminal of its type also could.

To specify patterns we use the following notation. The simplest pattern is formed by an anonymous meta-variable, as its root
node. This pattern is expressed just by the non-terminal symbol that is its root node enclosed in squared brackets. For example,
[A] is a pattern whose root node is an anonymous meta-variable of type 〈A〉. In most cases, such a simple notation will not be
enough to specify pattern trees. One can use a more elaborated pattern notation, instead. The non-terminal root symbol is placed
in squared brackets, as before, but following it, in angle brackets, a sequence of terminal symbols and meta-variables is included.
For example, the pattern tree in Fig. 1 is denoted by [S<( :a )* :b>]. Note that inside the angle brackets the grammar of the
artifact, rather than theMuDeL's grammar, is to be respected. Nonetheless,meta-variables come fromMuDeL itself and, thus,
the previous pattern will only be valid if the meta-variables :a and :b are declared with proper types. Therefore, instead of being
just a language,MuDeL is indeed ameta-language, in that aMuDeL's definition is valid or not w.r.t. a given source grammar.
In other words, given a source grammar of an artifact language, we can instantiate MuDeL language for that grammar. The
source grammar determines the form and the syntax of the pattern trees.

The unification of a tree and a pattern is in the kernel of any transformational system. In the unification, two pattern trees c and
m are taken and an attempt to unify them is done. The unification can either fail or succeed. In case of success, the meta-variables
in the pattern trees are accordingly bound to respective tree nodes, in a way that makes them unrestrictly interchangeable. In
case of failure, no meta-variable binding occurs. The unification algorithm is similar to Prolog's one [24]. Fig. 2 shows an example
of a successful unification. The dashed line indicates the meta-variable bindings.

3.2. Operator structure

A mutant operator definition has three main parts: operator name, meta-variable declarations and body. The operator name
declaration comes first. This name is just for documentation purposes and has no impact in the remaining parts of the definition.
Next, there is the optional section of meta-variable declarations. If present, this section is started by the keyword var followed
by a list of one or more meta-variable declarations. A meta-variable declaration is a meta-variable name followed by a pattern
tree, which is its type. The last section, enclosed by the keywords begin and end operator, is the body of the operator, which

1 We chose the term meta-variable instead of the term variable, which has a particular meaning in most language to whichMuDeL can be applied.
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Fig. 2. An example of unification.

Fig. 3. A simple mutant operator. For every statement in the program, a mutant is generated by “deleting” the statement.

is a compound mutation operation (explained later). This operation will be executed w.r.t. the syntax tree of the original artifact.
Fig. 3 presents a mutant operator definition, illustrating its overall structure. This mutant operator, whose name is STDL,
declares the meta-variable :s with the type 〈statement〉, and has a simple operation as its body, that, as will be clarified later,
generates mutants replacing nodes with type 〈statement〉 by a semi-colon (the null statement), according to the grammar of the C
programming language. Observe that there is no explicit indication of which node should be considered by the replace operation,
which, in this case, implies that the whole tree should be used.

The body of a mutant definition written in MuDeL is composed by a combination of operations. The syntax of MuDeL's
body part can be divided into operations, combiners and modifiers. An operation can be thought of as a predicate that either
modify the syntax tree or control the way the remain operations act. The operations can be joined by combiners. The behavior of
an operation can be altered by modifiers.

If a set of operations must be used in several different points in a mutant operator, it is possible to declare a rule with
these operations and invoke the rule wherever necessary. Rules can be thought of as procedures of conventional programming
languages. In this way, mutant operators can be defined in a modular way. Rules can be defined in a separated file and imported
in the mutant operator, allowing to reuse similar operations among a set of related mutant operators.

3.3. Operations

An operation is a particular statement about how to proceed in the generation of a particular mutant. An operation takes place
in a particular state, which is formed by the current syntax tree. Every operation, being it simple or compound, can result in zero
or more alternative syntax trees. If it results in zero alternative syntax tree, we say that the operation result in failure, i.e., that it
fails.

3.3.1. Replace operation
The replace operation is the most important one inMuDeL language, since it is responsible for altering the original syntax

tree into the mutated one. It requires three arguments: the tree c to be altered, the pattern tree r, that is to be unified with c, and
the pattern tree b, that will replace c in the case of a successful unification of c and r. Both r and b can contain meta-variables that
allow to use parts of c in the replacement.

The syntax of a replace operation is

c @@ replace r by b

where c must be a meta-variable.
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:C

:B

:A

type(’z’, ’int’)

(’x’, ’float’)

type(’x’, ’int’)

Fig. 4. Facts in the syntax tree.

3.3.2. Match operation
Thematching operation can be used to select where the replacement is applied. Thematching operation takes two arguments:

a tree c and a pattern tree m. It tries to unify c, which must be a meta-variable, and m, binding meta-variables in m if necessary.
The bindings are still active after the unification, allowing to select parts of c to be further handled.

3.4. Assert and consult operations

Most of the mutations can be made in a context-free basis. This is true due to fact that if the original artifact is syntactically
valid, the mutant operator can safely rearrange some part of it and ensure the mutant is also syntactically correct. However,
there are some mutant operators that require some information that comes from the context in which the mutated parts are
located. For instance, when exchanging a variable by another one, it is necessary to check whether their declared types are
compatible. Strictly speaking, this could be made with the operations, modifiers and combiner described. Nonetheless, such a
way of definition will be quite awkward. We tackle this problem by enriching the syntax tree with attributes [35]. The attributes
are a set of tuples that has a name and a set of values and is associated to a node in the syntax tree. The attributes are calculated
and stored when the syntax tree is built. (See Section 5 for a discussion on how the attributes are calculated.)

To access the values of the attributes, MuDeL has the consult operation. The consult operation takes an starting tree
node c, an attribute name n, and a list of meta-variables or pattern trees, which represent the arguments of the attribute. The
operation will look for any tuple with name n in the tree node c. If it finds any, it will try to unify the list of arguments with
the list of arguments in the tuple. Each tuple that successfully matches the list of arguments will produce an alternative state.
However, when there is no tuple in c with name n, the consult operation will recursively search in the parent node of c, until a
node with such a tuple is found or it has already searched in the root of the tree (that has no parent). Observe that this upward
search embodies the way context information is usually dealt with. It also allows the correct dealing with a scope of most typed
languages, in which the attributes of an entity can be overridden in an inner scope. The consult operation can be compared to
the Prolog consult predicate. However, the Prolog's consult predicate uses a single global base of facts, while inMuDeL the
facts are scattered over the tree and are searched in a hierarchical way. The operation can be negated, analogously to thematching
operation. Fig. 4 illustrates how attributes are stored and retrieved in syntax trees. We annotate in each which tuples are defined.
If the operation

:C @@ consult type with :v :t

is executed with :v unified to `x', it will fail, since there is no fact about `x' in :C. However, if the same operation is executed with
:v unified to `z', it will succeed with the unification of :t to `int'. If the operation

:B @@ consult type with :v :t

is executed with :v unified to `x', it will succeed with the unification of :t to `float'. If the same operation is executed with :v
unified to `z', it will succeed with the unification of :t to `int', since this fact is stored in the parent of :B. If the operation

:A @@ consult type with :v :t

is executed with :v unified to `x', it will succeed with the unification of :t to `int'. Observer that the facts in :Bwere overridden.
Inmost of the cases, the attributes that are consulted are stored in the treewhen it is built (see Section 5). However, sometimes,

it may be useful to also be able to store tuples in the tree. This is made with the assert operation. It takes a context tree c, an
attribute name n, a list of meta-variables or patterns, which represents the arguments of the tuple, and a list of patterns that
represent where the tuple should be stored. The operation will search upwards from c for a tree node that matches any of the
patterns. If it finds such a node, the tuple is stored in it. Otherwise, the tuple will be stored in the root node.

3.4.1. Donothing, abort and cut operations
We include some atomic operations that enhance the control of generation of the mutants. They control the set of alternative

states the next operations will deal with. The donothing operation, as its name suggests, does nothing at all. It succeed exactly
once. It can be thought of as a placeholder for situations where an operation is necessary but no effect is indeed required. It is
similar to the true predicate of Prolog.
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Fig. 5. Replace operator.

Fig. 6. An example of the application of operation in Fig. 5.

The abort operation will ignore any alternative state. It always results in failure and, therefore, can be used (in conjunction
with the combiners) to avoid generated some mutants. It is similar to the false predicate of Prolog.

The cut operation will prune the set of alternative states, in such a way that only the first alternative state will be considered.
It is similar to, and was inspired by, the ! of Prolog.

3.5. MuDeL combiners

Two or more operations can be combined into a compound operation using the combiners ;; and ||. They were inspired in
the Prolog operators comma (,) and semi-colon (;).

The first combiner is the sequence one, which is represented by ;; in the MuDeL syntax. The compound operation a;;b
incorporates the effects of both a and b. Every time the operation a results in success, the operation b is applied. As a side-effects,
if the operation a does not succeed, the operation bwill be ignored.

The second combiner is the alternative one, which is represented by || in theMuDeL syntax. The compound operation a||b
indicates that both a and b are alternative operations for the same purpose. Therefore, the results of either one can appear in a
mutant. Actually, the compound operation succeeds every time the operation a does and every time the operation b does.

The combiners can beusedwithmore than twooperations. For instance,we can join three operations as ina;;b;;c.Moreover,
both combiners can be used together. In this case, the combiner ;; has a higher precedence than the combiner ||. The operations
can be grouped with double parenthesis to overpass the precedence. For instance, in the compound operation ((a||b));;c, the
operation cwill be applied to the alternative syntax trees resulting from the operations a and b.

3.6. MuDeL modifiers

There are twomodifiers that can be applied to an operation. The negationmodifier is used to “invert” the result of an operation.
It is syntactically represented by a ∼ placed in front of the modified operation. Every operation in MuDeL can result in either
a failure or a success. The precise meaning depends on the specific operation on which it is applied. For instance, the match
operation results in a success if it can unify its operands, and results in failure otherwise. When modified with ∼, a unification
will be considered a failure, while the inability to unify will be considered successful.

The in depth modifier is used to indicate that the modifier operation should be applied not only to the context tree, but also
to every of its subtrees. For instance, when applied to a match operation, the unification will be tried with the context tree and
with each of its subtrees. Whenever a unification is successful, the match operation will result in success and a mutant will be
generated. For the replace operation, the effects of themodifier is similar. The replacement will bemade not only in the context
tree, but also in every of its subtrees, in turn. It is important to note that each replacement will take place in the original tree, i.e.,
after each replacement, the tree is restored to the original one before the next replacement be searched.

3.7. Usage examples

In this section, we illustrate the usage of elements ofMuDeL syntax. We present only the operator body, not including the
operators name and the meta-variable declaration sections, once they can be inferred from the operations. Moreover, we give
only an informal definition of the semantics of each operation. A formal definition can be found elsewhere [27]. All the examples
describe mutant operators for the C language.

An example of a replace operation is presented in Fig. 5, that replaces a while statement (matched in Line 1) by a do–while
one (Line 2). This is the objective of the SWDW mutant operator defined by Agrawal [14].

Assuming that :p is bound to the syntax tree of the fragment of C code in Fig. 6(a), after the application the operation in
Fig. 5, the code will be replaced by that in Fig. 6(b).
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Fig. 7. An example of while statements that will not be replaced by the operation in Fig. 5.

Fig. 8. The replace operation modified by *.

Fig. 9. A C function example.

1

Fig. 10. An example of the matching operation.

1

2
3
4

Fig. 11. A usage example of the combiner ;;.

Suppose now that :p is bound to the C code in Fig. 7(a). In this case the operation in Fig. 5 will not be applicable, since the
while statement will form a sub-tree of the whole statement, and, thus, the pattern of the replace operation will not unify to it.
Another situation that should be dealt with is illustrated in the C code in Fig. 7. In this case, we have threewhile statements.

To properly deal with this situation, we can modify the replace operation with the modifier *. The meaning of a replace
operation with the modifier * is that every successful matching of b with c itself or any of its subtrees will produce a mutated
tree. Indeed, we can think of this modified operation as producing alternative states, and each of such states will have its own
execution flow and eventually producing a mutant. Therefore, a more adequate mutant for the SWDW is the one presented in
Fig. 8.

Suppose that themeta-variable :f is bound to the code in Fig. 9. Then, after the application of thematching operation in Fig. 10,
the meta-variable :s will be bound to the body of the function. Observe that the pattern will match a function with no arguments
that returns an int value.

The compoundoperation in Fig. 11will replace every variable in the control expression of awhile statement to 0. It is important
to note that, for every such a control expression, the matching will produce an alternative state and the replace operation in
Line 3 will be applied to each one, possibly generating more alternative states by itself. This example illustrates the usage of the
match operation to constrain the context in which the replacement should be applied. In this case, the operator was designed to
be applicable only towhile statement control expressions. Suppose now that one wants the replacement to be applied to control
expression of every iterate statement, i.e., every while, do–while or for statement. In other words, we want to join the set of
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Fig. 12. A usage example of the combiner ||.

Fig. 13. An example of the usage of parenthesis to factor out common modifiers.

Fig. 14. Example of consult operation.

Fig. 15. Example of operations that exchanges an identifier by every other identifier.

alternative states of three matching operations. This can be done with the alternative combiner, which is represented by || in
theMuDeL syntax. For instance, the compound operation in Fig. 12 will achieve the objective. (The parenthesis are necessary
because ;; has a higher precedence than ||.)

The parenthesis can also be used to avoid explicitly declaring the context tree in every operation, as well as the * modifier.
Therefore, the compound operation in Fig. 12 is equivalent to the compound operation in Fig. 13. There is, however, a small
difference between both w.r.t. the efficiency and the order in which the alternative states (and, hence, the eventual mutants) are
produced. While in Fig. 12 :f is traversed three times, since for each match operation starts from the root node of the :f syntax, in
Fig. 13 :f is traversed only once.

The other two basic operations (namely, assert and consult) are related to context-sensitivemutants. The consult operation
in Fig. 14 is used to ensure that only identifiers with the int attribute is mutated to 0.

To illustrate the use of the assert operation, consider a mutant operator that exchanges each identifier by each distinct
identifier in the artifact. (For sake of simplicity, we assume that this mutation can be carried out without taking context into
consideration.) Firstly, consider the operator in Fig. 15, which will exchange each identifier matched in Line 3 by the identifier
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Fig. 16. Example of usage of consult and assert operations to avoid employing the same identifier more than once.

Fig. 17. Usage of cut operation.

matched in Line 1 that are not equal to each other (ensured by the negated matching in Line 6). If the same identifier occurs in
more than one location, the match in Line 1 will produce an alternative state for each one, and the replacement will generate
several identical mutants. We canavoid this situation with the usage of consult and assert operations, as illustrated in Fig. 16.
In this way, the consult operation in Line 3 ensures that there is no tuple for the used attribute with the :id1 value. Then, if so,
the assert operation stores such a tuple in the root node (since no context pattern was furnished).

The cut operation can be used to prune the set of alternative states that the previous operations might have generated. It was
introduced in MuDeL language for sake of completeness, since the other operations are inspired in Prolog, and this language
has the cut operator (!), whose purpose is similar. An example of the usage of cut is presented in Fig. 17, which equals the example
in Fig. 13, expect for the cut operation added in the end. The effect is that after the cut operation is executed, any pending
alternative states are forgotten, i.e., at most one mutant will be generated.

In Fig. 18 we present the SDWE operator that is meant to change everywhile statement into a do–while and also change the
control expression into 0 and 1. This kind of mutant is usually necessary when branch coverage is required. Observe that, in a C
program, changing the control expression into 0 has the effect of iterating the body of thewhile statement exactly once, whereas
changing the control expression into 1 converts the do–while into an infinite loop. Fig. 19(a) presents a simple C program and
Figs. 19(b)–(e) present the mutants that will be generated for this program with the SDWE operator.

The replacing operation in Lines 5 and 6 changes every while statement into a do–while statement, in any depth. The meta-
variable :e stands for the control expression of the while. The group of operations in Lines 8–20 makes changes in this control
expression. Observe that the context pattern declaration in Line 8 affects the whole group, and, consequently, every operation
therein.

The (negated) matching in Line 9 makes sure that the context pattern (:e, in this case) is not equal to 0. If so, the context
pattern is changed to 0, by the replacement in Lines 11 and 12, and amutant is generated. Note that these two operations compose
a sequence, which is part of an alternative list. Then, the next alternative is tried, in this turn w.r.t. the expression 1. Finally, the
operation in Line 19 is tried and a mutant is generated only with the replacement of Line 5.

Analyzinghow themutants are generated in this example illustrates thewayMuDeL processes amutant operator definition.
The replacing operation (Lines 5 and 6) is marked with the in depth modifier and, therefore, the whole program syntax tree will
be scanned, looking for nodes that match the respectivepattern and changing them accordingly. The replacing operation and
the group of operations in Lines 8–20 compose a sequence, i.e., every mutant should include the effects of the replacing and the
effects (if any) of the group. This group, by its turn, is composed by a list of three alternatives: the first alternative is in Lines 9–12;
the second one is in Lines 14–17; and the last one is in Line 19. Only the effects (if any) of one of these alternatives will be included
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Fig. 18. A multi-purpose whilemutant operator.

in a particular mutant. For instance, Mutants #1 and #2 in Figs. 19(b)–(c) are generated by replacing the outermost while of the
program in Fig. 19(a) and applying the first and the third alternatives, respectively. (Observe that the second alternative does
not generate a mutant, since the operation in line 14 does not succeed.) On the other hand, Mutants #3–#5 in Figs. 19(d)–(f) are
generated by replacing the innermost while and applying each of the alternatives, respectively.

4. Applying MuDeL

The usefulness of MuDeL can be measured by its suitability in defining mutants, which is its primary goal; in allowing
the reuse of mutant operators in different languages; and in generating a mutant generator prototype module that can be
evolved and incorporated into a mutation-testing environment. Currently, we have already described mutant operators for (i)
specifications written in colored Petri nets (CPNs) and FSMs, (ii) for the functional language standard meta-language (SML), and
(iii) for traditional languages such as C, C + + and Java.

In this section, we present our experience usingMuDeL, and bring some evidence of its usefulness. However, more studies
are necessary in order to soundly validate the language. Moreover, there is a lack of feedback from other research groups, and a
thorough validation would involve the use of the language by others.

FSM, CPN and SML mutant operators: We used MuDeL to define mutants for specifications written in FSMs [36] and CPNs
[37]. In the case of FSMs, we use MuDeL to describe the nine mutant operators defined by Fabbri et al. [38]. Using the
mudelgen system (described in the next section), we were able to use the mutant operators within the Plavis/FSM environment,
which are being used in experiments in Brazilian National Space Agency, in the scope of a project supported by CNPq and CAPES-
Coffecub.2 In the case of CPNs, we observed that the language was useful to allow a rapid prototyping and experimentation with
different kinds of mutants. In the whole, 29 mutant operators were defined and used in Proteum/CPN tool [37]. It is important
to mention that CPNs annotation language is based on SML and we could reuse some common parts of the mutant operator
descriptions in both languages [39].

C and C + + mutant operators: For C language, we described the 77 mutant operators proposed by Agrawal [14], which are
implemented in Proteum/C tool. Next, we adapted these operators and described similar mutant operators for C++. We realized
that, by carefully designed the grammar and the MuDeL definition, we could reuse 65 operators, nearly 85% of them. To
illustrate how this was possible, consider again the operator in Fig. 5. Examining the definition, we can observe that the only
relation between the operator and the language of the artifact is in the patterns. Even in the patterns, only the types of the patterns
and of the meta-variables and the sequence of terminal symbols are relevant. Therefore, the same definition can be applied both
for C and C+ +, provided that the respective grammars agree in these points: (i) the name of the relevant non-terminal symbols

2 http://www.labes.icmc.usp.br/plavis/.
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Fig. 19. (a) Original program. (b)–(e) Mutants generated by operator in Fig. 18. The mutated parts of the code are highlighted.

(that define the types available) and (ii) the sequence of terminal symbols that appear in the relevant non-terminal productions.
Observe that not thewhole sequence of terminal symbols should be the same. Rather, only the terminal symbols that are relevant
to theMuDeL definition. In the SDWD example, for the mutant definition to be applicable, it is necessary that both grammars
have a non-terminal symbol S and that there is a derivation from S to `while' `(' 〈E〉 `)' 〈S〉 and to `do' 〈S〉 `while' `(' 〈E〉 `)' `;'.

Java mutants: We have also carried out a study, in which we try to apply the mutant descriptions for C and C + + to the Java
language. Since the grammar of these languages are similar, we could observe that 31 mutant operators could be reused for Java.
The results of the application to C, C + + and Java are summarized in Fig. 20.

We have investigated how MuDeL can be used with mutant operators that are more semantic-driven. We have described
the class mutant proposed by Kim et al. [40,41]. Some of those operators are related to the semantics of inheritance, overloading
and overriding concepts, which varies from one OO language to another. Those complex operators can only be described with
complex MuDeL code. Indeed, the complexity is inherent to the operators and, to our knowledge, their definition could only
made simpler if we hide the complexity in a more complex operation of the language. The same situation occurs with any
language. There is a trade-off between the simplicity of the operations and its ability to handle complex mutants. The complexity
of these kinds of mutants comes from the underlying semantics of those languages. For instance, let us consider CM operators
defined by Kim et al. [41]. From the 20 mutant operators, we could describe easily 10 of them, since they require only syntax
driven changes. Other five could be described, provided that some semantic information is collected and is available to consult
operations. However, this semantic should be coded, anyway, and to adequately capture the semantics of OO languages is not
an easy task and is still open issue in the programming language semantics research. Unfortunately, we could not find an easy
way to tackle this problem, either. The remaining five ones might be described, depending on what exactly the authors mean.
For instance, FAR operator is defined as “Replace a field access expression with other field expressions of the same field name”.
Unfortunately, it is not clear what “a field access expression” exactly means. Other example of ambiguity is the definition of
AOC operator. In Kim et al. [41], the authors defined it as “Change a method argument order in method invocation expressions”.
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Fig. 20. Mutant definition reuse for C, C + + and Java.

It is not clear how many mutants can be generated from a method with more than two arguments. The possibilities are: (i) one
mutant for each permutation of the arguments (i.e., exponentially many mutants); (ii) one mutant for every shift, in the same
vein as Agrawal's SSOM mutation operator. In Kim et al. [40], the authors give a little bit more explanation about the operator
and provide an example, neither of which clarify the point. These ambiguities evidence the necessity of a formal definition of
mutant operator.

5. mudelgen

In order to be able to process the MuDeL descriptions, we implemented the mudelgen system. In this section we discuss
its main implementation aspects. Suppose that we are interested in describing mutant operators for a language L. The first step
is to obtain a grammar G for L. When mudelgen is input with G, it produces a program mudel.G. This program can then be run
with a mutant operator definition OD and an artifact P. After checking whether both OD and P are syntactically correct w.r.t. the
input grammar G, a mutant set M is generated.

Tomanipulate themudelgen input grammar,weusebisonandflex,whichareopen sourceprograms similar to, respectively,
yacc and lex [42]. Although these tools ease the task of manipulating grammars, they, on the other hand, restrict the set of
grammars that mudelgen can currently deal with to LALR(1) grammars [34,35,42]. The grammar input to mudelgen is provided
in two files: the .y and the .l. The .y file is the context-free grammar, written in a subset of yacc syntax [42]. The .l file is a
lexical analyzer and gives the actual form of the terminal symbols of the grammar and it is encoded in a subset of the lex syntax
[42]. The attribute values are attached to the tree nodes with special C functions put in the semantic action of the productions of
.y. For instance, the function assertFact can be used to store an attribute value in a way similar to the assert operation.

The mudelgen is divided into two parts: one part with the elements that depend on the input grammar and the other one
with elements that do not. Fig. 21 depicts how these parts interact and illustrates the overall execution schema of mudelgen. The
grammar-dependent part is actually composed by three modules, which are executable programs: treegen, opdescgen and
linker. The grammar-independent part is embodied in the Object Library. The major portion of the Object Library is
devoted to the so-calledMuDeL Kernel, which is responsible for interpreting the mutant operator definition and manipulating
the syntax tree accordingly. The remaining units in the Object Library allow the communication between theMuDeL Kernel
and the external modulesMuDeL Animator and DS Oracle, described later.

The units that depend on the grammar are built either by treegen or by opdescgen. Module treegen analyzes G and
generates the units: (i) STP (syntax tree processor), which is responsible to syntactically analyze a source product P into a syntax
tree and (ii) Unparse, which is responsible to convert the mutated syntax trees into the actual mutants. Module opdescgen
analyzes G and generates the unit ODP (operator description processor), which analyzes a mutant operator description OD w.r.t.
G and generates an abstract representation of how to manipulate the syntax tree in order to produce the mutants. Finally, the
linkermodule will link all these grammar-depending units and the appropriate portion of the Object Library and generate
the program mudel.G.

The program mudel.G is input with a source product P and a mutant operator definition OD. These input data are processed
by STP and ODP, respectively, and handled by MuDeL Kernel. During its execution, MuDeL Kernel will generate one or more
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mutated syntax trees,which are processedbyUnparse in order to generate the actualmutants.Unparse canoutput the generated
mutants in several formats. Currently, themutants can be (i) sent to standard output; (ii) restored in SQL databases (e.g., MySQL);
or (iii) written to ordinary files (each mutant in a separate file). Optionally, the DS Oracle can be used to check whether the
mutants were correctly generated (see Section 5.1). The execution of the program mudel.G can be visually inspected with the
MuDeL Animator (see Section 5.2). The overall execution schema of mudel.G is depicted in Fig. 22.

5.1. Denotational semantics-based oracle

The number of mutants generated is often very large and manually checking them is very costly and error-prone. Therefore,
the validation of mudelgen is a hard task, mainly due to the amount of output which is produced. To cope with this problem,
we adopted an approach that can be summarized in two steps. Firstly, we employed denotational semantics [25] to formally
define the semantics ofMuDeL language [27]. Secondly, supported by the fact that denotational semantics is primarily based
on lambda calculus, we used the language SML [43], which is also based on lambda calculus, to code and run the denotational
semantics of MuDeL. We implemented an external module DS Oracle that can be run in parallel with mudel.G through the
Oracle Interface in a validation mode. When invoked, the DS Oracle receives the information about a mutant operator OD
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Fig. 23.MuDeL Animatormain window.

and derives a denotational function � (in themathematical sense) that formally defines the semantics of OD. Then, theDS Oracle
reads the information about the source product P and the set of generated mutants M. The mutants in M are compared with the
mutants defined by �. Any identified difference is reported in the discrepancy report D.

It is important to remark that the validation mode has no usefulness for users interested in mudelgen's functionalities, since
it brings no apparent benefit. However, it is very useful for validation purpose, since it improves the confidence that the mutants
are generated in the right way. Nonetheless, from a theoretical viewpoint, there is a possibility that a fault in the implementation
be not discovered, due to the fact that the SML implementation may also possess a fault that makes it produces the same
incorrect outputs. However, the probability that this occurs in practice is very small. Both languages (i.e., C + + and SML) are
very different from one another. Moreover, the algorithms and overall architectures of both implementations are very distinct.
While we employed an imperative stack-based approach in C + +, we extensively used continuation and mappings [25] in SML.
Consequently, it is not trivial to induce the same kind of misbehavior in both implementations. In other words, although none of
them is fault free, the kind of faults they are likely to include is very distinct. With this consideration, we conclude that the use
of denotational semantics and SML was a powerful validation mechanism for mudelgen.

5.2. MuDeL animator

We have also implemented a prototyping graphical interface—calledMuDeL Animator—for easing the visualization of the
execution of a mutant operator. MuDeL Animator was implemented in Perl/Tk and currently has some limited features that
allows inspecting the log of execution, without, however, being able to interfere in the process. SinceMuDeL Animator enables
us to observe the execution of a mutant operator definition, it is very useful not only for obtaining a better understanding of the
MuDeL's mechanisms, but also for (passively) debugging a mutant operator.

Fig. 23 presents the main window ofMuDeL Animator, where the example of Fig. 18 was loaded and is being executed. At
the top of the window are the buttons that control the execution of the animator, such as Step, Exit, etc. The remaining of the
window is divided up into four areas:

MuDeL description: In the left bottom area, MuDeL Animator presents the mutant operator definition. A rectangle in-
dicates which line is currently executing. Every meta-variable is highlighted with a specific color. The same color is used in
whichever occurrence of the same meta-variable throughout all the other areas.

Mutant tree: In the left top area, the animator shows the syntax tree of the product, reflecting any change so far accomplished
by the execution. An arrow indicates which node is currently the context tree. Meta-variable bindings are presented by including
the names of the meta-variable above the respective tree nodes.

Current product: In the right bottom area, the current state of the product, obtained by traversing the current state of the
mutant tree, is presented. The parts in the mutant that correspond to the nodes bound to meta-variables are highlighted with
the respective color.

Pattern tree: In the right top area,MuDeL Animator shows the tree of the pattern currently active (i.e., in the current line)
in theMuDeL description area.
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SinceMuDeL Animator enables us to observe the execution of a mutant operator description, it is very useful not only for
obtaining a better understanding of theMuDeL's mechanisms, but also for (passively) debugging a mutant operator.

5.3. Operational aspects

Wehave designed mudelgen to generate amodule for each particular language. Thesemodulesmight be used as a standalone
tool, or as an component within a larger, more complete upper-level environment. Therefore, we delegate some common tasks
of managing mutants to this upper-level environment, such as (i) preparing the source code; (ii) selecting parts of the source
code to which the operators should be applied; (iii) selecting which of the generated mutants should be used or discarded, and
so on. We decided to keep these tasks to the upper-level as a way of increasing flexibility. In this way, the module could be used
in different context and with different purpose, such as constraint mutation [44], essential mutation [11] and so on. However,
this upper-level environment is very important to make the application of mutant testing feasible. For instance, the module
mudelgen will apply the mutant operator to the whole source code that is provided as input. For large source codes, this could
be impractical or even impossible.

Besides being generated, the mutants must be executed in some way, in order to collect the results and decide whether a
mutant was killed by a test set or would stay alive. In general, the execution of mutants can be very costly. In the particular case
of mutants of programs, it may be necessary to compile and execute every mutant. To tackle this problem, some researchers
have proposed alternative schemas of execution. For instance, Untch et al. [45] use mutant schemata. Several mutants are put in
a single generic source, which is parameterized to behave like any of the individual mutants. In this way, only one compilation
for each schemata is necessary. A similar approach is employed by Delamaro et al. [18] in Proteum/IM to avoid compiling every
mutant in a separate file.

ConsideringMuDeL as a language to define mutants, any of these approaches can be used, although the most natural one is
the individual compilation schema. For instance, a specializedMuDeL compiler can be constructed, which will generate one or
more mutant schematas instead of individual mutants. However, it is necessary to take into account the semantics of the target
language, since the way several mutants can vary from one language to another. This is an interesting point for future research.
Nonetheless, it is important to highlight that a language likeMuDeL can help in this context, providing a uniform notation and
precise semantics for describing the construction of each mutant.

6. Concluding remarks

The efficacy of mutation testing is heavily related to the quality of the mutants employed. Mutant operators, therefore, play
a fundamental role in this scenario, because they are used to generate the mutants. Due to their importance, mutant operators
should be precisely defined. Moreover, they should be experimented with and improved. However, implementing tools to
support experimentation and validation of the mutant operators before delivering a mutant environment is very costly and
time-consuming.

In this paper we presented the MuDeL language as a device for describing mutant operators and generating a mutant
generator prototypingmodule. The language is based on the transformational paradigm and also uses some concepts from logical
programming. Being defined in MuDeL, an operator can be “compiled” and the respective mutants can be generated using
the mudelgen system.MuDeL and mudelgen together form a powerful mechanism to develop mutant operators. The mutant
operators canbevalidated either formally (with the facilities ofDS Oracle) ormanually (with the facilities ofMuDeL Animator).

The design decisions we have taken lead us one step further towards the achievement of our goals. There are some points
that need to be further investigated. For instance, MuDeL was mainly designed to deal with context-free mutations. With
this decision, we keep the language quite simple, yet considerably expressive. However, there are some important kinds of
mutants that are inherently context-sensitive. For example, some programmutant operators might need knowledge that are not
readily available, such as the set of variables defined prior to a specific point in the program, or whether a method overrides the
method of a parent class. Although, these situations can be dealt with assert and consult operations, we realize that these
mutant operators are not easy to write nor are the definition easy to follow. Indeed, the problem of dealing with context aware
transformation is a hard problem for any transformational language [33]. We are still investigating how these situations can be
more suitably handled. For instance, we observe some idioms in the mutant operators that might be candidates to be included in
the language as primary operations.

The experiments we have carried out withMuDeL involved languages for which there were supporting tools, namely Petri
nets and C programs. Although fully useful in demonstrating its potential usage, these experiments are not a complete validation.
Right now, we are working on a project where Java mutant operators are being described, what will further contribute towards
the validation of the ideas presented herein.

There are tasks that are hard, cumbersomeor even impossible to be carried out onlywith the constructionMuDeL embodies.
As example, we can cite arithmetics and string manipulation. To tackle this problem, we are currently developing an API
(application programming interface) to allow the implementation and inclusion of built-in rules written in a conventional
programming language, namely, in C+ +. We, then, keep the kernel ofMuDeL tiny, whereas built-in rules can be provided for
any further need we have to take care of.
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Some forthcoming steps in this research include:

• To develop an integrated development environment (IDE), providing features to edit the context-free grammar, the mutant
operator and the original product in amanner as uniform as possible, and also providing features to compile, execute and debug
the mutant operator definition mudelgen is currently operated by means of command-line invocations and has some limited
graphical interaction (withMuDeL Animator). To ease the usage and experimentation, an IDE would be more appropriate.

• To further investigate the context-sensitiveness of some kinds of mutants and devise constructions to cope with them.
• To integrate theMuDeL and the mudelgen in a completemutation tool. Mutation testing demands also other activities such
as test case handling, mutation execution, result analysis, and so on.We are now specifying and designing a completemutation
tool which follows the main ideas ofMuDeL, i.e., a tool with multi-language support.

• To investigate the relationship between syntax and semantic mutation.
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Abstract

Model-based testing automatically generates test cases from a model describing the behavior of the system
under test. Although there exist several model-based formal testing methods, they usually do not address
time constraints, mainly due to the fact that some supporting formalisms do not allow a suitable represen-
tation of time. In this paper, we consider such constraints in a framework of Timed Extended Finite State
Machines (TEFSMs), which augment the Extended Finite State Machine (EFSM) model by including a
notion of explicit and implicit time advancement. We use this extension to address conformance testing by
reducing the confirming configuration problem to the problem of finding a path in a TEFSM product.

Keywords: Model Checking, Timed EFSM, Conformance testing, Suspicious Configuration.

1 Introduction

Model-based testing comprises the automatic generation of efficient test cases using

models of system requirements, usually based on formally specified system function-

alities. It involves the (i) construction of a suitable formal model, (ii) derivation

of test inputs, (iii) calculation of test outputs, (iv) execution of test inputs over

implementations, (v) comparison of the results from the calculated test outputs

and the implementation executions, and (vi) decision of whether the testing should

be stopped. All these tasks are tightly related to each other. For instance, the
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way the model is written impacts on how test inputs can be generated. Moreover,

the decision of whether the implementation has already been tested enough de-

pends on one’s ability to determine how many undiscovered faults may remain in

it. Usually the purpose of testing is not to demonstrate that the implementation is

equivalent to its specification, since this goal is infeasible for most practical applica-

tions. Instead, this ideal equivalence is relaxed into a conformance relation [13,15].

The so-called conformance testing aims at demonstrating that the implementation

behavior conforms (in some sense) to the behavior dictated by the specification [29].

The problem of generating test cases for conformance testing based on Finite

State Machines (FSMs) has already been investigated [7,21,28,8,14,12]. However,

there are many situations in which the modeling of the system as a FSM is cum-

bersome, due to the state explosion problem, or even impossible, due to the fact

that there are some relevant aspects that can not be properly expressed, e.g., the

passage of time. Some extensions to the FSM model have been proposed in order

to overcome these problems [33,6,1]. Other extensions incorporate notions like con-

text variables and input/output parameters, allowing the succinct representation of

many different configurations [27]. Still others incorporate notions of time, allowing

the model to capture the evolution of time [24,4,36].

An Extended Finite State Machine (EFSM) can be thought of as a folded FSM

[27]. Given an EFSM, and assuming that domains are finite, it is possible to un-

fold it into a pure FSM by expanding the values of its parameters and variables.

The resulting FSM can be used with FSM-based methods for test derivation with

complete fault coverage, which means that all fault possibilities can be exhausted.

Nonetheless, in most practical situations, this approach is unfeasible, mainly due to

the state explosion effect [22,27].

Time plays an important role in determining the acceptability of system behavior

in many system categories since not only the input/output relationship can be

relevant, but also the period of time when those events occur may be important. In

such cases, it is mandatory to be able to represent time constraints of the system,

and to test whether a given implementation conforms to these constraints. There

are some formalisms that allow the representation of various time related concepts,

such as Timed Petri Nets [19] and Timed Automata [2,1,32,11]. Nonetheless, there

are few, if any, methods that allow a satisfactory derivation of adequate test cases

from those models.

We are interested in model-based methods for testing systems with time con-

straints. In particular, we are addressing the problem posed in tasks (i)-(iii) alluded

to above, namely the construction of an adequate formalism for modeling systems

and the automatic generation of test cases, as well as the determination of the ex-

pected outputs. These tasks are closely related, and should be considered together.

To this end, we define Timed EFSMs [5], or TEFSMs, by including the notion

of explicit and implicit time advancement in the EFSM formalism. Then, we can

adapt some well-established results, derived for FSMs and EFSMs, to the context

of systems that require time constraints. In particular, we address the problem

of configuration confirmation for TEFSMs in the same vein as done by Petrenko
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et al. for EFSMs [27]. In that work, it is shown how the problem of configura-

tion confirmation for EFSMs can be reduced to the problem of finding a path in

an EFSM product. By defining a property that states when no such a path ex-

ists, model-checking techniques can be used to generate a confirming sequence. We

show how the notion of product machines and confirming sequences can be applied

to the extended formalism of TEFSMs. Given a configuration and a set of suspi-

cious configurations, a confirming sequence is a sequence of (parameterized) inputs

that allows us to distinguish the given configuration from suspicious configurations

by comparing outputs and, possibly, observing the time indicated in each of the

outputs. Finding a confirming sequence can also be seen as an extension of the

state identification problem [20,16].

This paper is organized as follows. In Section 2 we present the concepts of

EFSMs and Extended Timed Transition Systems [7]. In Section 3 we introduce

the Timed Extended FSMs. The product of TEFSMs is presented in Section 4. In

Section 5 we describe how the TEFSM product can be used in a model-checking

set-up, and illustrate this process with a simple example in Section 6. Finally, in

Section 7, we draw some concluding remarks and indicate possible directions for

future research.

2 Basic Formal Concepts

In this section, we give a brief overview of the formal concepts that are involved in

this work. First, we present EFSMs which are used to specify system requirements.

Next, important aspects of extended timed transition systems are introduced.

2.1 Extended FSM Model

An EFSM is an extension of a conventional FSM. In contrast to FSMs, in the EFSM

model we have to consider other items [27], such as input and output parameters,

and context variables. Also, update and output functions, as well as predicates are

defined over context variables and input parameters.

Let X and Y be finite sets of input and output symbols. Let R be a finite set

of parameter symbols. For z ∈ X ∪ Y , we denote by Rz ⊆ R the set of parameters

associated with z. Also Dz denotes the set of parameter valuations associated with

z. An element of Dz maps Rz to some valuation domain. Similarly, let V be a

finite set of context variable names, with DV denoting a set of valuations for V .

At this point, there is no need to further specify the valuation domains. An EFSM

M over X, Y , R, V and the associated valuation domains is a tuple (S, T, s0, λ0),

where S and T are finite sets of states and transitions, respectively, s0 ∈ S is the

initial state, and λ0 is an initial context variable valuation. Each transition t ∈ T

is a tuple (s, x, P, op, y, up, s′), where:

• s, s′ ∈ S are the source and the target states of the transition, respectively;

• x ∈ X is the input symbol of the transition;

• y ∈ Y is the output symbol of the transition;
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• P , op and up are functions defined over valuations of the input parameters and

context variables V , thus:

· P : Dx ×DV → {True, False} is the predicate of the transition;

· op : Dx ×DV → Dy is the output parameter function of the transition;

· up : Dx ×DV → DV is the context update function of the transition.

Given an input x and the set of input parameter valuations Dx, a parameterized

input is a pair (x, px), where px ∈ Dx. The parameterized outputs are defined in a

similar way. A configuration of M is a pair (s, λ) ∈ S ×DV , where s is a state and

λ is a context variable valuation. A transition (s, x, P, op, y, up, s′) is enabled for a

configuration (s, λ) and parameterized input (x, px) if P (px, λ) evaluates to true.

The machine starts from the initial configuration and operates as follows. Upon

receiving an input along with the corresponding parameter valuation, and computes

the predicates that are satisfied for the current configuration. From among the

presently enabled transitions one will fire. By executing the chosen transition, the

machine produces an output along with an output parameter valuation using of

the output parameter function. The latter is computed by the output parameter

valuation. The machine updates the current context variable valuation according

to the context update function, and moves from the source to the target state of

the transition.

An EFSM, furthermore, is considered to be:

• Predicate complete: for each pair (s, x) ∈ S × X, every element in Dx × DV

evaluates at least one predicate to true among the set of all predicates guarding

transitions leaving s with input x;

• Input complete: for each pair (s, x) ∈ S ×X, there exists at least one transition

leaving state s with input x;

• Deterministic: any two transitions leaving the same state and with the same input

have mutually exclusive predicates;

• Observable: for each state s and each input x, every outgoing transition from s

on x has a distinct output symbol.

2.2 Extended Timed Transition Systems

We can extend the original timed transition system (TTS) notion of [7] by asso-

ciating a set of clocks and invariant conditions with each state. All clocks in the

model increase in an uniform way, according to a global time frame [1,2], and the

corresponding invariant condition must hold in the current state of the model.

First, we say how clocks behave during system evolution [1]. Let C be the set

of clock names (or clocks, for short), Φ(C) is the set of clock constraints δ in the

form,

δ := c ≤ τ | τ ≤ c | ¬δ | δ1 ∧ δ2,

where c is a clock and τ ∈ Q 5 is a time instant. A clock interpretation, ν, is a

5 Q is the set of rationals and Q>0 is the set of positive rationals.
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mapping from C to Q. The set of clock interpretations is denoted by [C �→ Q]. An

interpretation ν over C satisfies δ ∈ Φ(C), written ν � δ, iff δ evaluates to true

when each clock c is substituted by ν(c) in δ.

Let ν ∈ [C �→ Q] be a clock interpretation. For τ ∈ Q, we define the clock

interpretation ν + τ , which maps each clock c to the value ν(c) + τ . Also, for

K ⊆ C, [K �→ τ ]ν is the clock interpretation that assigns τ ∈ Q to each clock c ∈ K

and agrees with ν on the rest of the clocks.

An Extended TTS (ETTS) is given by a tuple (S, s0,X,C, Inv,−→), where S

is a finite set of states, s0 ∈ S is the initial state, X is a finite set of events, C is

a finite set of clocks, Inv : S → Φ(C) maps states to invariant conditions, and −→
is a transition relation, where −→⊆ (S × X × 2C × Φ(C) × S). A configuration

is given by a pair (s, ν), where s is a state and ν is a clock interpretation. The

initial configuration is given by (s0, ν0), where ν0(c) = 0, for all c ∈ C, is the initial

clock interpretation, and ν0 � Inv(s0). Given a configuration (s, ν), a transition

(s, x,K, δ, s′) indicates that from state s, receiving the input event x, and provided

that ν satisfies δ, the system may move to state s′, resetting all the clocks in K

to zero. The ETTS always starts in the initial configuration (s0, ν0), and with the

(global) time set to zero.

A time sequence is a sequence τ̄ = τ0τ1τ2 . . ., where τi ∈ Q, i ≥ 0, τ0 = 0, and

τi ≥ τi−1, i ≥ 1. A timed sequence is a pair (x̄, τ̄ ), where τ̄ is a time sequence

and x̄ = x0x1x2 . . . is a sequence of input symbols. The intuitive idea is that the

symbol xi occurs at time τi. Given two configurations, (s1, ν1) and (s2, ν2), a time

delay τ ≥ 0 and an input x, we say that (s2, ν2) evolves from (s1, ν1) over τ and x,

denoted by (s1, ν1)
x→
τ
(s2, ν2), iff there is a transition (s1, x,K, δ, s2) such that:

(i) ν1 + η � Inv(s1) for all 0 ≤ η ≤ τ ,

(ii) ν1 + τ � δ,

(iii) ν2 = [K �→ 0](ν1 + τ), and

(iv) ν2 � Inv(s2).

A sequence of configurations γ̄ = γ0γ1γ2 . . . is a run of M iff γ0 is the initial

configuration of M , and there is a timed input (x̄, τ̄) such that

γi−1
xi−→
θi

γi, where θi = τi − τi−1, i ≥ 1.

In this case, we say that γ̄ is a run of M over (x̄, τ̄ ) from γ0.

Note that, in a timed sequence (x̄, τ̄ ), time evolves by (τi − τi−1) units from the

moment when xi−1 occurred until xi occurs (for i > 1). Intuitively a run captures

the system evolution, as follows:

(i) it starts at state s0, with all clocks set to zero;

(ii) time evolves by τ1 − τ0 = τ1 units;

(iii) at instant τ1 the system changes to state s1 on input x1 while resetting clocks

in K1 to zero;
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(iv) time evolves by another τ2 − τ1 units;

(v) at instant τ1 + (τ2 − τ1) = τ2 the system changes to state s2 on input x2 while

resetting clocks in K2 to zero;

(vi) and so on.

We can see that:

• a change of state can only occur when the transition (s, x,K, δ, s′) is enabled, i.e.,
when δ is satisfied in the present configuration;

• clocks can be reset to zero in any transition;

• any clock reading is the elapsed time since the last instant it was reset to zero;

and

• all clocks increase uniformly according to a global time frame.

3 The Timed EFSM model

In the previous sections, we have presented two formalisms: EFSMs and ETTSs.

While EFSMs capture the relationships between inputs, outputs and context vari-

ables, ETTSs offer a treatment of time evolution and its constraints. We observe

that there are several methods and techniques for deriving tests from (E)FSM mod-

els (e.g., [27,17,8,26]). However, the derivation of test cases from (E)TTSs is less

established, although some works have considered it (e.g., [30,7,18]). It is worth

combining both ETTSs and EFSMs formalisms in order to benefit from the power

of both models in terms of expressiveness. This section redefines the EFSM model

in order to capture real-time. We use the ETTS definition as inspiration for this

purpose.

3.1 Creating a TEFSM model from an ETTS and an EFSM model

Let X be a finite set of inputs, Y be a finite set of outputs, C be a finite set of

clocks, R be a finite set of parameters, and V be a finite set of context variables.

A Timed Extended Finite State Machine, or TEFSM, M over X, Y , R, V , C, and

the associated valuation domains is a tuple (S, T, Inv, s0, ν0, λ0), where S and T

are finite sets of states and transitions, respectively, Inv is a finite set of invariant

conditions associated with states and, s0 ∈ S is the initial state, ν0 = [C �→ 0] is

the initial clock interpretation and λ0 is an initial context variable valuation. In

the TEFSM model: (i) the dynamic behavior is given by clocks and their resetting,

as in the ETTS model; and (ii) the data and control flow are given by parameters

and context variables, as in the EFSM model. A transition t ∈ T is expressed by a

tuple (s, x,Q,K, op, y, up, s′), where:

• s, x, s′ and K are as defined in the ETTS formalism; see Section 2.2;

• op, y, and up are as defined in the EFSM formalism; see Section 2.1;

• Q : Dx × [C �→ Q]×DV → {True, False} is the predicate of the transition.
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It can be seen that the TEFSM model comprises the EFSM formalism. That is,

given a EFSM M over X,Y,R, V and some valuation domains, as defined in Sec-

tion 2.1, we can construct a TEFSM model M̂ over the same sets X,Y,R, V and the

corresponding domains, by letting the clock set C be simply {c}. For each transition

t = (s, x, P, op, y, up, s′) in M , we define a transition t̂ = (s, x,Q,K, op, y, up, s′) in
M̂ by letting Q(px, ν, λ) = P (px, λ), for any (px, ν, λ) in Dx × [C �→ Q] ×DV . We

also let K = ∅. Clearly, for any px ∈ Dx, λv ∈ DV and any clock interpretation

ν ∈ [C �→ Q], we have that Q(px, ν, λv) is true iff P (px, λv) is true. For each state

s ∈ S in M , we define the invariant condition ˆInv(s) = (c ≥ 0) in M̂ . Clearly,

ν � ˆInv(s) for any ν ∈ [C �→ Q] and s ∈ S.

Also, any ETTS model can be cast as a TEFSM model. For that, let M =

(S, s0,X,C, Inv,−→) be an ETTS model. Take a trivial common domain {0} for

all parameters and context variables, a single output symbol Y = {o} and a single

context variable V = {v}. For each parameter z ∈ X ∪ Y , we define Rz = {z}.
Then, the set of z-valuations is the singleton Dz = {pz}, where pz maps z to

0, for all z ∈ X ∪ {o}. Similarly, DV = {λv}, where λv maps v to 0. Now,

a transition t = (s, x,K, δ, s′) in M gives rise to a corresponding transition t̂ =

(s, x,Q,K, op, o, up, s′) in M̂ , where:

• op maps (px, λv) to po;

• up maps (px, λv) to λv; and

• Q maps (px, ν, λv) to True iff ν � δ.

Here, the set of invariant conditions Inv for M is the same for M̂ . The initial state

s0 in M̂ is the same initial state s0 from M .

A configuration of a TEFSM M is a triple (s, ν, λ), where s is a state, ν is a

clock interpretation and λ is a context variable valuation. The initial configuration

is (s0, ν0, λ0), where s0 is the initial state of M , ν0 is the initial clock interpretation

of M and λ0 is an initial context variable valuation of M . A configuration (s, ν, λ)

is valid iff ν � Inv(s). Let Γ ⊆ S × [C �→ Q] ×DV be the set of configurations of

M .

3.2 The Operational Semantics for TEFSM models

Considering the dynamic behavior of ETTS models and the data and control flow

of EFSM models, we define the operational semantics of a TEFSM M as follows.

Definition 3.1 Let γi = (si, νi, λi) ∈ Γ, i = 1, 2, be two configurations of M .

There is an implicit move from γ1 to γ2 iff

(i) s1 = s2,

(ii) λ1 = λ2,

(iii) ν2 = ν1 + τ , for some τ ∈ Q>0, and

(iv) ν2 + η � Inv(s1), for all η, 0 ≤ η ≤ τ .

We denote such an implicit move by γ1 −→
τ

γ2.
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Definition 3.2 Let γi = (si, νi, λi) ∈ Γ, i = 1, 2, be two configurations of M . Let

(x, px) be a parameterized input and (y, py) be a parameterized output. There is an

explicit move from γ1 to γ2 over (x, px) and yielding (y, py) iff there is a transition

(s1, x,Q,K, op, y, up, s2) in T such that:

(i) ν2 = [K �→ 0]ν1,

(ii) ν2 � Inv(s2),

(iii) Q maps (px, ν1, λ1) to True,

(iv) op maps (px, λ1) to py, and

(v) up maps (px, λ1) to λ2.

We denote such an explicit move by γ1
χ/ξ−→ γ2, where χ = (x, px) e ξ = (y, py).

Definition 3.3 Let γi = (si, νi, λi) ∈ Γ, i = 1, 2, 3; τ ∈ Q>0, (x, px) a parameter-

ized input and (y, py) a parameterized output. If γ1 −→
τ

γ2 and γ2
χ/ξ−→ γ3, where

χ = (x, px) e ξ = (y, py), then we say that there is a move from γ1 to γ3 and indicate

this by γ1
χ/ξ−→
τ

γ3.

Some of the decorations over and under −→ may be dropped if they are clear

from the context.

A parameterized input sequence is any sequence ρ̄ = ρ1ρ2 . . . where each ρi is

a parameterized input. A parameterized timed input sequence, or timed input, is

a pair (ρ̄, τ̄ ) where ρ̄ is a parameterized input and τ̄ is a time sequence. Simi-

lar definitions hold for parameterized outputs. In particular a timed output is a

parameterized timed output sequence.

A sequence of configurations γ̄ = γ0γ1γ2 . . . is a run of M iff there are a timed

input (ρ̄, τ̄) and a parameterized output sequence μ̄ such that

γi−1
ρi/μi−→
θi

γi, where θi = τi − τi−1, for all i ≥ 1.

We say that the run is over the timed input (ρ̄, τ̄) and produces the timed output

(μ̄, τ̄ ). We also say that (μ̄, τ̄ ), or μ̄, is produced by M from γ0 in response to (ρ̄, τ̄).

Some notions from the EFSM and ETTS models are extended to the TEFSM

model:

• A TEFSM M is said to be predicate complete if, from any configuration (s, ν, λ)

and given any parameterized input (x, p), there is a delay τ and a transition

(s, x,Q,K, op, y, up, s′) such that Q evaluates (p, ν + τ, λ) to True and ν + η �
Inv(s), for all 0 ≤ η ≤ τ .

• The TEFSM M is complete if, for each state s there is a transition leaving s on

any input symbol x.

• We say M is deterministic if, for any configuration (s, ν, λ), any parameter-

ized input (x, p), and any time instant τ , there are no two different transitions

(s, x,Q1,K1, op1, y1, up1, s1) and (s, x,Q2,K2, op2, y2, up2, s2) such that both Q1
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and Q2 evaluate (p, ν + τ, λ) to True.

• And, we say M is observable if, for any configuration (p, ν, λ), any parameter-

ized input (x, p) there are no two transitions (s, x,Q1,K1, op1, y1, up1, s1) and

(s, x,Q2,K2, op2, y2, up2, s2) with y1 �= y2 and with Q1 and Q2 both evaluating

(p, ν, λ) to True.

3.3 Configuration Distinguishability in the TEFSM model

Distinguishability of configurations in the Timed Extended Finite State Machine

model is defined over parameterized input sequences. Two configurations γ and γ′

of two distinct machines M and M ′, respectively, are distinguishable over a timed

input (ρ̄, τ̄ ) if the corresponding timed outputs (μ̄, τ̄ ) and (μ̄′, τ̄ ′), produced by M

and M ′ over (ρ̄, τ̄ ) from γ and γ′, respectively, are not compatible, in a sense to

be defined shortly. We also say that (ρ̄, τ̄) is a timed input separating those two

configurations. We formalize these notions in the sequel, extending the definitions in

[27]. Given a context variable valuation λ and a set of variables U , the U -projection

of λ is the valuation obtained from λ by retaining the variables that are in the set

U , denoted by λ ↓ U . Similarly, for input symbols and their valuations, and for

output symbols and the corresponding valuations.

Definition 3.4 Let y and y′ be outputs of TEFSMs M and M ′, respectively. Let

R and R′ be the sets of parameters associated, respectively, with y and y′. The

parameterized outputs (y, p) and (y′, p′) are said to be compatible if y = y′ and
p ↓ R′ = p′ ↓ R. Two parameterized output sequences, (y1, p1) . . . (yk, pk) of M and

(y′1, p
′
1) . . . (y

′
k, p

′
k) of M ′ are compatible if, for all i = 1, . . . , k, the parameterized

outputs (yi, pi) and (y′i, p
′
i) are compatible.

Intuitively, parameterized outputs are compatible when the output symbol is

the same, and the output valuation agrees on all common output symbols. Distin-

guishability of configurations is defined as follows.

Definition 3.5 Given a timed input ᾱ = (ρ̄, τ̄), a configuration γ of M and a

configuration γ′ of M ′ are distinguishable by ᾱ if parameterized output sequence

produced by M from γ in response to ᾱ is not compatible with any parameterized

output sequence that can be produced by M ′ from γ′ in response to ᾱ. The timed

input ᾱ is said to be a sequence separating γ from γ′.

4 Timed Extended FSM Product

In Section 5 we extend to TEFSMs the method for the derivation of configuration

confirming sequences defined in [27]. Since this method requires the notion of prod-

uct machines, in this section we present the necessary extension of that notion to

TEFSMs.

In the product of TEFSMs, the occurrence of implicit transitions can be ignored,

since the global time frame which is used for all clock variables is the same for both
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TEFSMs. This guarantees that the system evolution is maintained during implicit

transitions.

Let M i = (Si, Invi, T i), i = 1, 2, and γi = (si0, ν
i
0, λ

i
0), i = 1, 2, be two TEFSMs

and their corresponding initial configurations. The product machine is denoted by

M1 × M2. We will use superscript 1 to denote elements of M1, like R1 is the set

of parameters for M1. Likewise, superscript 2 will indicate objects associated with

M2, like V 2 is the set of context variables of M2. The superscript 1, 2 is reserved

for the product machine M1 ×M2.

The set of input symbols of M1,2 is X1,2 = X1 ∪X2. Likewise, Y 1,2 = Y 1 ∪ Y 2.

The set of parameters of M1,2 is given by R1,2 = R1 ∪R2, with the proviso that for

all z ∈ R1 ∩ R2, the valuations of z in M1 and M2 have a common domain. It is

clear that we are using the same parameter domains in M1,2 as they were in M1 and

M2. For any z ∈ X1,2 ∪ Y 1,2, we let R1,2
z = R1

z ∪ R2
z. Note that, given a valuation

r1,2z for elements in R1,2
z we can get valuations r1z = r1,2z ↓ R1

z and r2z = r1,2z ↓ R2
z, for

machines M1 and M2, respectively, and, moreover, r1,2z = r1z∪r2z . Similarly for clock

interpretations and context variable valuations. We assume that clocks and context

variables are disjoint, i.e., C1,2 = C1 ∪ C2, with C1 ∩ C2 = ∅, and V 1,2 = V 1 ∪ V 2,

with V 1 ∩ V 2 = ∅. As for the valuation domains, they are the same as in M1 as in

M2. The set of states of M1,2 is given by S1,2 = S1 × (S2 ∪ {fail}), where fail is a

new state. The set of invariant conditions Inv1,2 of M1,2 maps S1,2 to Φ(C1,2), and

it is given by Inv1,2(s1, s2) = Inv1(s1) ∧ Inv2(s2), for all (s1, s2) ∈ S1,2. Moreover,

Inv1,2(s1, fail) = Inv1(s1), for all s1 ∈ S1.

The initial configuration of M1,2 will be given by γ1,20 = ((s10, s
2
0), (ν

1,2
0 , λ1,2

0 )),

where ν1,20 = ν10 ∪ ν20 and λ1,2
0 = λ1

0 ∪ λ2
0. Note that we can take unions here, since

clock and context variables are disjoint in M1 and M2.

It remains to specify the transitions of M1,2. Let (si1, x,Q
i,Ki, opi, yi, upi, si2),

i = 1, 2, be transitions of M1 and M2, both with the same input x. In the following

definition we will be considering a parameterized input (x, p1,2x ), a clock interpre-

tation ν1,2 and a context variable valuation λ1,2, all for the machine M1,2. We

also let p1x = p1,2x ↓ R1
x and p2x = p1,2x ↓ R2

x. Likewise, we let ν1 = ν1,2 ↓ C1 and

ν2 = ν1,2 ↓ C2, and also λ1 = λ1,2 ↓ V 1 and λ2 = λ1,2 ↓ V 2. There are two cases:

case 1: y1 = y2 and op1(p, λ) ↓ R1,2 = op2(p, λ) ↓ R1,2, for all (p, λ) ∈ Dx × DV

where R1,2 = R1
y1 ∩ R2

y2 . That is, the output symbol is the same and the output

valuations of both transitions are the same on each common output parameter.

We add two transitions to T 1,2,

(i) ((s11, s
2
1), x,Q,K, op, y1, up, (s12, s

2
2)), where:

(a) Q(p1,2x , ν1,2, λ1,2) = Q1(p1x, ν
1, λ1) ∧Q2(p2x, ν

2, λ2)

(b) K = K1 ∪K2

(c) op(p1,2x , λ1,2) = op1(p1x, λ
1)∪ op2(p2x, λ

2). Recall that op1 and op2 coincide on

common output parameters and so we can safely take the union.

(d) up(p1,2x , λ1,2) = up1(p1x, λ
1) ∪ up2(p2x, λ

2). Recall that V 1 ∩ V 2 = ∅.
(ii) ((s11, s

2
1), x,Q,K, op, y1, up, (s12, fail)), where:
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(a) Q(p1,2x , ν1,2, λ1,2) = Q1(p1x, ν
1, λ1) ∧ (¬Q2(p2x, ν

2, λ2))

(b) K = K1

(c) op(p1,2x , λ1,2) = op1(p1x, λ
1)

(d) up(p1,2x , λ1,2) = up1(p1x, λ
1)

case 2: Else, when the output valuations or the output symbols do not match, we

add the transition ((s11, s
2
1), x,Q,K, op, y, up, (s12, fail)) to T 1,2, where:

(i) Q(p1,2x , ν1,2, λ1,2) = Q1(p1x, ν
1, λ1)

(ii) K = K1

(iii) op(p1,2x , λ1,2) = op1(p1x, λ
1)

(iv) up(p1,2x , λ1,2) = up1(p1x, λ
1)

Moreover, if (s11, x,Q,K, op, y, up, s12) is a transition of M1, we add to M1,2 the

transition ((s11, fail), x,Q,K, op, y, up, (s12, fail)).

Suppose that the product machine is in the state (s11, s
2
1), and on input (x, p1,2x )

we find that M1, on state s11, has a transition on input (s11, p
1
x), where p1x is the

reduction of p1,2x to the parameters associated with x in M1. Similarly, M2, on

state s21, has a transition on (x, p2x). Moreover, the output of these transitions agree

on the output symbol y, and also on valuations of any common output parameter

of y in M1 and in M2. In this situation, we would want the product machine M1,2

to enact both transitions of M1 and M2, componentwise. For that: (i) the same

clocks are reset; (ii) the output parameter valuations are copied from M1 and M2;

and (iii) both context updates are also carried over to M1,2. But we can only enable

this action in M1,2 if both transitions in M1 and M2 are enabled. This is case 1(i).

Otherwise, we consider the situation where the transition in M1 is enabled, but

the one in M2 is not. Here, we follow case 1(ii), and make the product machineM1,2

enact the behavior of M1 using for that the first state component, while the second

component is marked as fail, thereby ignoring the transition fromM2. Note that, in

this scenario, M1 might have taken its transition, while M2 would be forbidden to

do so, even when their external behavior would have been indistinguishable. After

the second state component is set to fail, M1,2 behaves essentially as M1.

Finally, when the product machine is in state (s11, s
2
1), and we are considering

an input (x, p1,2x ), and we have picked two transitions from M1 and M2, starting

respectively at s11 and s21, and whose output symbols or output parameter valuations

do not match as above, then we proceed as in case 2. This is similar to case 1(ii) in

that the second state component in M1,2 is marked as fail, and M1,2 uses the first

state component to behave as M1, from this moment on.

Consider configurations γi = (si, νi, λi) of machine M i, i = 1, 2. Let ρ̄ = (x̄, p̄x)

be a parameterized input sequence for M1×M2, and let ᾱ = (ρ̄, τ̄) is a timed input

for M1×M2. Note that, M1 and M2 can be the same machine with different initial

configurations. We say that ᾱ is a separating sequence for γ1 and γ2 iff there is a

run γ̄ = γ0γ1 . . . of M
1,2 over ᾱ, where γ0 = ((s1, s2), ν1 ∪ ν2, λ1 ∪ λ2) and for some

i ≥ 1, γi is a configuration of M1,2 whose state is (s1j , fail) for some s1j ∈ S1.

The problem of determining a separating sequence for two configurations of a
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given TEFSM M can be reduced to a reachability problem. The reachability analy-

sis is tractable but hard for EFSMs [23]. Indeed, for TEFSMs it is intractable. This

is due to the temporal aspect within the new model. Another difficulty is the com-

binatorial explosion in the number of states in product machines. Some approaches

try to overcome this difficulty by relaxing their restrictions. Approximation algo-

rithms are also used when doing reachability analysis. Other approaches adapted

known algorithms in order to manipulate symbolic data structures [34,9,35].

Other simpler contexts [25,3] present algorithms to obtain separating sequences.

We postulate that these ideas can be adapted and extended in order to obtain

separating sequences in the TEFSM formalism. Such separating sequences would

be the result of the test case generation procedure. Moreover, we have been working

with the notion of automata discretization in order to overcome the problem of

infinite time instants. In addition, it is possible to modify conventional algorithms

to reduce the state space generated by the product machine. Another alternative to

obtain tractability in a timed approach for finding separating sequences is through

the use of suspicious configurations [5]. In this case, we can choose a set of suspicious

states, representing a important class fault, based on the expertise of test designers

and on assumptions of implementations faults, as seen in [13,31].

5 Test Generation

This section outlines the main concepts for test case generation. First, we present

some discussion on the main rationale of conformance testing. Second, we discuss

the notion of confirming configurations, and how it is applied. At last, we discuss

deriving test sequences by model-checking for TEFSMs.

5.1 Conformance Testing

Conformance testing aims at determining whether an implementation behaves in

accordance with a given specification [21,15]. In general, an implementation is

regarded as a black box, of which only input/output interfaces are known. In this

situation, to verify whether an implementation is in conformance to a specification

usually requires an infinite set of test cases in order to exhaust all error possibilities

in the implementation. To overcome this problem, one possibility is to define a

set of test hypotheses in order to reduce the number of test cases to be considered

[13]. Test hypotheses strike a balance between two conflicting aspects. On the

one hand, test hypotheses must be defined to be restrictive enough to render the

method feasible and tractable. On the other hand, these hypotheses must be as less

restrictive as possible, in such a way to be applicable to the largest possible set of

implementations.

Conformance testing is guided by a conformance relation between the implemen-

tation and the specification [13]. In order to decide whether an implementation is

in conformance to a specification, we observe the implementation’s outputs to some

applied inputs. Considering real-time systems, it must be also verified whether

an implementation when stimulated by inputs responds with the expected outputs
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within an allowed time interval.

The problem of using a conformance relation is the number of test sequences

which should be obtained in order to verify whether each possible implementation

is in conformance to a given specification. This problem is worse for timed systems,

where there are infinite time instants for a transition to occur. To overcome this

problem, we also need to enforce certain hypotheses about the implementation, as

discussed in Section 5. This set of hypotheses will reduce the number of possible

faults to be considered over the implementation and will render the method feasible

in practical cases.

Several methods employ identification sequences to generate test cases from

models. An identification sequence has the property of determining the correctness

of the configuration reached after some input sequence is taken. Identification se-

quences may be defined as characterization sets [8,13], as distinguishing sequences

[17] or as confirming configuration sequences (CCSs) [27], depending on the model

and the generation method. A CCS which are investigated in this paper is a se-

quence that can increase the confidence that the correct configuration has been

reached in the implementation.

5.2 Configuration Confirming Sequences

A configuration confirming sequence (CCS) is a timed input that can be applied to

the implementation in order to increase the confidence on its correctness. A CCS

can be derived from the product of two machines, one being a specification and

the other an undesirable configuration. However, unlike the FSM models where

a finite set of undesirable configurations can be postulated, with EFSM models

and TEFSM models it is not possible, or desirable, to determine all undesirable

configurations. To overcome this problem, a finite set of suspicious configurations is

considered [27]. A set of suspicious configurations is derived from the specification

to model suspicious implementations which can potentially have faults, reflecting

the test designer’s assumptions about the implementation faults. The suspicious

configurations are extracted from the specification using a set of test hypotheses

based on the fault model (e.g., [13]) and relying on the test designer’s expertise.

These hypotheses define equivalence classes of implementations that must be put

under testing, and they are used to reduce the number of possible implementations

that need to be considered. In this work, we assume the following test hypotheses:

(i) Specifications and suspicious implementations are modeled by TEFSMs;

(ii) The number of clocks in the specification must be less than or equal to the

number of clocks in the suspicious implementations; and

(iii) The same alphabets are used in both specification and suspicious implementa-

tions.

Given a configuration and a suspicious configuration, deriving a CCS can be

reduced to the problem of finding a path in the product of two distinct TEFSMs,

or of the same core TEFSM with distinct initial configurations. Such a sought
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path would run from the initial state to a fail state. If the fail state can not be

reached, then the suspicious configuration is equivalent to the original configuration.

However, if a fail state is reachable, the model-checking algorithm will produce a

counter-example, as a sequence of transitions that leads to this fail state [10]. This

sequence would make a test case for the suspicious configuration. However, it is

still necessary to identify in which moment each transition was taken, as well as the

valuation of the input parameters associated with each input symbol. Gathering of

this information forms a set of test cases. The test case is then used to exercise a real

implementation, and the outputs are compared with the outputs produced by the

specification over the same data. If a disagreement is found between corresponding

outputs, then a fault has been identified.

5.3 Model-checking

Design errors frequently occur when conventional simulation and testing techniques

are used to check safety systems. Model checking is a set of techniques for the

automatic analysis of reactive and real-time systems. Some model checking algo-

rithms have been modified to discover such errors, thus providing more quality and

accuracy in system verifications. In general, given a transition system and a prop-

erty, the model checking problem is to decide whether the property holds or not in

the model represented by the transition system. If not, the model checking algo-

rithm provides a counterexample, i.e. an execution over the model that violates the

property [23].

Reachability analysis is a special kind of model-checking method that can be

applied in a formal model. In general, given a special state to be found in a model,

the reachability analysis decides if it is possible to move from the initial state to the

final special state.

To summarize, to automatically test implementations based on a specification

represented by a machine M , the following steps are performed:

(i) An empty set TC of test cases is defined.

(ii) Given a configuration γ of M , a set of suspicious configurations Γ is defined,

based on test hypotheses, fault models and some specific test engineer’s objec-

tives.

(iii) For each suspicious configuration γs ∈ Γ, the product of M with itself is con-

structed, having γ as the initial configuration of the first instance of M in the

product, and having γs as the initial configuration of the second instance.

(iv) Reachability analysis is carried out, in order to find a path to a fail state in

the product machine. If such a path is found, it is added to TC.

(v) For each tc ∈ TC, a time and an input parameter valuation sequences are

derived so as to satisfy the predicates along the path specified by tc.

(vi) Each path in TC, with its associated data, is applied to the real implementation

under testing.
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6 An Example

We are given two TEFSMs M and N , where M is a specification and N is a

suspicious implementation of M . We obtain the product of these machines, M ×
N , by applying our method. In this example, as is usual in practice, N has the

same transitions as M . They differ only in their associated initial configurations.

Accordingly, we will denote the product by M0×M1, where M0 is the specification

and M1 is the suspicious configuration. The TEFSM M depicted in Figure 1.

a, x ≥ 5, {x, y}, c
b, x < 5, {x, y}, d

a,
y
>
16
∧ w

>
4,
{x
},
d,
w
:=

0 b, x ≤
1 ∧

y ≥
17, {x, y}, e(w

)

a, x
>
1 ∨

y
<
17, {x, y}, c

s1 s3

s2

a, x ≤ 4 ∧ w ≤ 4, {x}, c, w := w + 1
b, y ≤ 16, {x, y}, e(w)

Fig. 1. The TEFSM M .

It has three states and seven transitions. The input set is {a, b} and the output

set is {c, d, e}. Furthermore, M has two clock variables, x and y, and one context

variable w. There are no parameters associated with the input symbols, i.e. Ra =

Rb = ∅. Likewise, Rc = Rd = ∅. For each state s in M , the control remains in s

whenever its invariant condition is satisfied. The output e has only one associated

parameter. In this case, it is not necessary to name the parameter. Instead, in

Figure 1 and in the sequel we write e(w) to indicate that the current value of the

context variable w is to be attributed to the parameter associated with e. In the

figure, each arrow is labeled by a sequence of items. The first three are always

the input symbol, the predicate function and the set of clocks to be reset in the

transition, respectively. Next, comes the output symbols, either c or d, and we write

directly e(w) to indicate both the output symbol and the value of its parameter.

Finally, if the value of the context variable w is altered by the transition, this is

indicated by the attribution that appears at the end of the label; if the value of w

is not altered by the transition we simply omit the trivial expression w := w.

A configuration of M is given by a state, a clock interpretation and a context
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variable valuation. Hence, a configuration of M will be denoted by (s, (n,m), k) in-

dicating that the machine is in state s, n and m are the values for the clock variables

x and y, respectively, and k is the value for the context variable w. The integers

are selected as a common valuation domain. In the configuration (s1, (3, 2), 4) the

transition a, x ≤ 4∧w ≤ 4, {x}, c, w := w+1, from s1 to itself, is enabled. Likewise,

the transition b, y ≤ 16, {x, y}, e(w), from s1 to s3, is also enabled.

For the product, let M0 designate M with the initial configuration (s1, (0, 0), 2),

and let M1 designate M with initial configuration (s1, (4, 2), 5). The TEFSM prod-

uct of M0 ×M1 is shown in Figure 2. To simplify the notation in the example, we

will use subscript i to denote items of machine M i, for i = 0, 1, e.g. x1 represents

the clock variable x of M1, while w0 denotes the variable w in M0.

The initial configuration of M0 × M1 is denoted by ((s1, s1), (0, 0, 2, 4), (2, 5)),

where we list first the items corresponding to M0, followed by the items associated

with M1. Note that, in the figure, states are represented by subscripts, e.g., the

state (s1, s1) in the product is named s11.

By inspection of the product, we can see that the input b enables the transi-

tion to fire, since clock conditions on y0 and y1 are satisfied for the initial con-

figuration. After that the transition is taken, the new configuration is given by

((s3, s3), (0, 0, 2, 0), (0, 5)). It is easy to see that neither input a nor input b will

enable transitions to fire so as to reach, directly, a fail state. Note that, every clock

variable was reset to zero, and transition guards are excluding for clock variables

x0 and x1. If the input b occurs within less than 5 time units, the configuration

becomes ((s1, s1), (0, 0, 2, 0), (0, 5)). Otherwise, if the time evolves for more than 5

time units, only the input a could stimulate the machine to change configurations.

The new configuration would still be ((s1, s1), (0, 0, 2, 0), (0, 5)). Both transitions

would drive the control back to the initial state, where the transition stimulated by

input b is the unique one enabled to fire. This cycle would be executed repeatedly

and a fail state would not be reached.

Another possibility is to take the transition on the input a. It is easy to see

that the input a separates the configurations (0, 0, 2) from (4, 2, 5). The final con-

figuration reached is ((s1, fail), (0, 0, 3, 4), (2, 5)). On the other hand, the control

can be kept within the state (s1, s1), by a continuous time evolution. After that,

the stimulation by input a enables the transition to fire, and the configuration

((s1, s1), (1, 1, 2, 5), (3, 5)) can be reached. Then, the transition from state (s1, s1),

on input a and with associated predicate x0 ≤ 4 ∧ w0 ≤ 4 ∧ (w1 > 4 ∨ x1 > 4)

is enabled and takes the machine to the fail state (s1, fail). Here, only the clock

variable x0 is reset, and the context variable w0 is updated by one unit. The new

configuration will be ((s1, fail), (0, 1, 3, 5), (3, 5)). From here, we see that input a

separates the configuration (0, 0, 2) from (4, 2, 5), after some time passes. The new

configuration that can be reached in this case is ((s1, fail), (0, 1, 3, 5), (3, 5)).

If we consider another situation, where the initial configurations of M0 and M1,

respectively, are given by (0, 0, 2) and (4, 2, 4), another run of M0 × M1 will also

reach the fail state. In this case, a reachability analysis shows that the fail state of

M0 ×M1 can only be reached when a sequence of one or two consecutive inputs a
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s3fail

s1fail

s22

s33

s2fail

s11

b, x
0
<
5 ∧

(x
1 ≥

5), {x
0 , y

0 }, d

a, y
0
>
16 ∧

y
1
>
16 ∧

w
0
>
4 ∧

w
1
>
4),

{x
0 , x

1 }, d, w
0
:=

0, w
1
:=

0

{x
0
, y

0
, x

1
, y

1
},
e(
w
0
),
e(
w
1
)

a
, x

0
>

1
∧
x 1

>
1
∧
y 0

<
17

∧
y 1

<
17
),

{x
0
, y

0
, x

1
, y

1
},
c

a, x0 > 1 ∧ y0 < 17 ∧ (x1 ≥ 1 ∨ y1 ≥ 17), {x0, y0, x1, y1}, c

b,
x 0

≤
1
∧
x 1

≤
1
∧
y 0

≥
17

∧
y 1

≤
17
),

a, x
0 ≥

5 ∧
(x

1
<
5){x

0 , y
0 }, c

{x
0
, x

1
},
c,
w
0
:=

w
0
+
1,
w
1
:=

w
1
+
1

a
, x

0
≤

4
∧
x 1

≤
4
∧
w
0
≤

4
∧
w
1
≤

4)
,

b,
y 0

≤
16

∧
(y

1
>

16
),
{x

0
, y

0
},
e(
w
0
)

b, x0 < 5 ∧ x1 < 5), {x0, y0, x1, y1}, d

b, x0 ≤ 1 ∧ y0 ≥ 17 ∧ (x1 ≥ 1 ∨ y1 ≤ 17), {x0, y0}, e(w0)

a, x0 ≥ 5 ∧ x1 ≥ 5), {x0, y0, x1, y1}, c

b, y0 ≤ 16 ∧ y1 ≤ 16), {x0, y0, x1, y1}, e(w0), e(w1)

a,
x 0

≤
4
∧ w

0
≤
4
∧ (

x 1
>
4
∨ w

1
>
4)
, {
x 0
}, c

, w
0
:=

w
0
+
1

a, y
0
>
16 ∧

w
0
>

4 ∧
(y

1 ≤
16 ∨

w
1 ≤

4), {x
0 }, d, w

0
:=

0

Fig. 2. The TEFSM product of M with itself.

is applied.

In the example, M0 represents the specification, M1 represents a suspicious im-

plementation, and the product M0 ×M1 is used to find sequences of configurations

that show non conformance between a suspicious implementation and the specifica-

tion. We can derive traces from the reachability analysis of M0×M1. The resulting

traces are runs that reach the fail state in the product machine, starting from the

initial configurations of the participating TEFSMs.
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7 Concluding Remarks

The ability to derive test cases from formal models opens the possibility that we

can construct more rigorous and dependable systems, by providing a sound basis for

the validation of the systems’ behaviors. There is a direct relationship between the

kinds of systems that a given model can deal with and the availability of methods

for deriving test cases. The FSM and EFSM models are well-established and have

been intensively investigated. One important feature they both lack is the ability to

deal with time. In this paper we define TEFSMs as a model that extends the EFSM

model with the notion of time. From that, we discussed an extended method for

deriving configuration confirming sequences for TEFSMs, a step toward automating

the generation of test cases from these models.

Although we can argue that both the model and the generation method can be

used, we do not have answers for pragmatic questions, such as (i) how difficult is

it to describe a system using TEFSMs and (ii) how large are the models we can

handle. To answer these questions, it is necessary to deepen the investigations and

implement adequate supporting software tools. We are currently working in this

direction.

Other aspects that can be investigated include how to allow time constraint to

be defined over outputs. We note that our definition does not deal with constraints

that may reflect output response that is not instantaneous. The input and output

occur in the same time instant. We are considering how this extension might impact

the test case generation methods.
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Abstract. We address the problem of generating tests from a deterministic 
Finite State Machine to provide full fault coverage even if the faults may 
introduce extra states in the implementations. It is well-known that such tests 
should include the sequences in the so-called traversal set, which contains all 
sequences of length defined by the number of extra states. Therefore, the only 
apparent opportunity to produce shorter tests is to find within a test suite a 
suitable arrangement of the sequences in the inescapable traversal set. We 
observe that the direct concatenation of the traversal set to a given state cover, 
suggested by all existing generation methods with full fault coverage, results in 
extensive test branching, when a test has to be repeatedly executed to apply all 
the sequences of the traversal set. In this paper, we state conditions which allow 
distributing these sequences over several tests. We then utilize these conditions 
to elaborate a method, called SPY-method, which shortens tests by avoiding test 
branching as much as possible. We present the results of the experimental 
comparison of the proposed method with an existing method which indicate that 
the resulting save can be up to 40%. 

1   Introduction 

Finite State Machines (FSMs) have been used to model systems in many areas, such as 
hardware design, formal language recognition, conformance testing of protocols [1] 
and object-oriented software testing [2]. Regarding test generation, one of the main 
advantages of using FSMs is the existence of generation methods which guarantee full 
fault coverage: given a specification FSM with n states and any black-box 
implementation which can be modelled as an FSM with at most m states, m ≥ n, the 
methods generate a test suite, often called m-complete test suite, which has the ability 
to detect all faults in any such implementations. In the particular case of m = n, there 
are many efficient methods which generate complete test suites [7] [3] [5] [10] [4].  

However, on the other hand, in spite of the fact that the problem of generating m-
complete test suites for m > n is a longstanding one which can be traced back to the 
work of Moore [11] and Hennie [9], it has received much less attention compared to 
the problem of constructing n-complete test suites. One of the main reasons might be 
the fact that test generation becomes more challenging in the case of extra states. It is 
known that an m-complete test suite should include each sequence in the so-called 



130 A. Simão, A. Petrenko, and N. Yevtushenko 

traversal set, which contains all input sequences with m – n + 1 inputs [13]. Moreover, 
the traversal set should be applied to each state of the specification. Not surprisingly, 
all, not numerous, existing methods for generating m-complete test suites [13] [3] [5] 
[14] [4] [8] [12] do exactly this and differ only in a type of state identification 
sequences they add to traversal sequences.  

Driven by this observation and the obvious absence of significant progress in 
solving the longstanding problem of generating m-complete test suite, we revisit it in 
this paper and aim at answering the question whether m-complete test suite is 
irreducible due to the inevitability of the traversal set. 

We observe that a considerable part of an m-complete test suite is not related to the 
traversal set itself, but to the test branching when a test has to be repeatedly executed 
to apply all the sequences of the traversal set. Apparently, the test length reduction 
can only be achieved by reducing the test branching, which in turn can be obtained by 
distributing the traversal set over several tests. The caveat is that an arbitrary 
distribution of the traversal set may break the m-completeness of a resulting test suite. 
Thus, we need first to establish conditions for a distribution of the traversal set such 
that the m-completeness of a test suite is preserved. The main idea developed in this 
paper is to distribute it among those tests in a test suite which are convergent, i.e., 
transfer to the same state, in all FSMs of the fault domain which pass the test suite. 
The approach we elaborate is based on properties of FSM tests, namely their 
convergence and divergence. We investigate when the convergence and divergence of 
tests in the specification (which can be easily checked) can be safely assumed to also 
hold in the implementation under test. The divergence of two tests can be witnessed 
by different outputs produced by the tests. On the other hand, although convergence 
of two tests cannot be directly ascertained by considering only the two tests, we show 
that the knowledge of the maximum number of states of FSMs in the fault domain can 
be used to formulate conditions for the convergence of tests. We then use the notion 
of convergence and divergence to state necessary and sufficient conditions for a test 
suite to be m-complete. 

Based on these conditions, we elaborate a method, called SPY-method, for m-
complete test suite generation. The method distributes the sequences of the traversal 
set over several tests in order to reduce test branching and generate shorter test suites. 
To assess the potential saving which can be obtained with the approach proposed in 
this paper, we experimentally compare it with the HSI method [14]. The results 
suggest that SPY-method can generate test suites up to 40% shorter, on average. 

The rest of the paper is organized as follows. In Section 2, we provide the 
necessary basic definitions. In Section 3, we formally state the problem of generating 
m-complete test suites and discuss existing methods. In Section 4, we investigate test 
properties and formulate conditions for guaranteeing the m-completeness of test 
suites. In Section 5, we develop a generation method based on the proposed 
conditions. In Section 6, the method is illustrated on an example. Experimental results 
are reported in Section 7 and Section 8 concludes the paper. 

2   Definitions 

A Finite State Machine is a (complete) deterministic Mealy machine, which can be 
defined as follows. 
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Definition 1. A Finite State Machine (FSM) S is a 6-tuple (S, s0, X, Y, δS, λS), where 

• S is a finite set of states with the initial state s0, 
• X is a finite set of inputs, 
• Y is a finite set of outputs, 

• δS : S × X → S is a transition function, and 

• λS : S × X → Y is an output function. 

A tuple (s, x) ∈ S × X is a transition of S. We extend the transition and output 
functions from input symbols to input sequences, including the empty sequence ε, as 
usual: for s ∈ S, δS(s, ε) = s and λS(s, ε) = ε; and for input sequence α and input x, δS(s, 
αx) = δS(δS(s, α), x) and λS(s, αx) = λS(s, α)λS(δS(s, α), x) . An FSM S is said to be 
initially connected, if for each state s ∈ S, there exists an input sequence α ∈ X*, 
called a transfer sequence for state s, such that δS(s0, α) = s. In this paper, only 
initially connected machines are considered. Input sequences converge if they are 
transfer sequences for the same state. Similarly, input sequences diverge if they are 
transfer sequences for different states of the same FSM. A set K ⊆ X* is a state cover 
for S if it contains at least one transfer sequence for each state of S. A state cover is 
minimal if it contains exactly one transfer sequence for each state. A set A ⊆ X* 
covers a transition (s, x) if there exist α, αx ∈ A, where α is a transfer sequence for s. 
The set A is a transition cover for S if it covers every transition of S. A set of 
sequences is initialized, if it contains the empty sequence. 

Given sequences α, β, γ ∈ X*, if β = αγ, then α is a prefix of β, and γ is a suffix of 
β; if γ is not the empty sequence, then α is a proper prefix of β. We also say that a 
prefix of γ extends α (in β) and that β is an extension of α. We denote by pref(β) the 
set of all prefixes of β. For a set of sequences A, pref(A) is the union of pref(β), for all 
β ∈ A. If A = pref(A), then we say that A is prefix closed. Given two sets of sequences 
A and B, we denote by A.B the set of sequences A.B = {αβ | α ∈ A and β ∈ B}. We 
will slightly abuse the notation by writing α.B instead of {α}.B and A.β instead of 
A.{β}. For a natural number k, we denote by X≤k the set of all input sequences of 
length at most k. 

Given a set A ⊆ X*, states s and s′ are A-equivalent, if λ
S
(s, γ) = λ

S
(s′, γ) for all γ ∈ 

A. Otherwise, s and s' are A-distinguishable. We say that γ distinguishes s and s′, if s 
and s' are {γ}-distinguishable. States s, s′ are equivalent, if they are X*-equivalent. 
Similarly, they are distinguishable if they are X*-distinguishable. We define 
distinguishability and equivalence of machines as a corresponding relation between 
their initial states. An FSM is minimal, if all states are pairwise distinguishable. In this 
paper, all the FSMs are assumed to be minimal. A characterization set is a set of 
sequences W such that every two states are W-distinguishable. The set Ws ⊆ W is a 
state identifier for state s if any other state is Ws-distinguishable from s. A family of 
harmonized state identifiers is a collection of sets {Hs | s ∈ S}, such that states s and s' 
are (pref(Hs) ∩ pref(Hs'))-distinguishable. 
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3   Problem Statement and Existing Methods 

In this section, we discuss the problem of generating test suites with full fault 
coverage along with the existing methods and present the main idea of the approach 
elaborated in this paper.  

Henceforth, we assume that S = (S, s0, X, Y, δS, λS) and Q = (Q, q0, X, Y', δQ, λQ) 
are a specification FSM and an implementation FSM, respectively. Moreover, n is the 
number of states of S. We denote by ℑ the set of all minimal implementation FSMs 
with the same input alphabet as S. The set ℑ is called a fault domain for S. For m ≥ n, 
let ℑm be the FSMs of ℑ with at most m states, i.e., the set ℑm represents all faults that 
can occur in an implementation of S with at most m states. We denote the maximum 
number of extra states that an implementation may have by Δ = m – n. Faults can be 
detected by tests, which are input sequences of the specification FSM S. 

Definition 2. An input sequence of FSM S is called a test case (or simply a test) of S. 
A test suite of S is a finite prefix closed set of tests of S. A test suite T of FSM S is m-
complete, if for each FSM Q ∈ ℑm, distinguishable from S, there exists a test in T that 
distinguishes them. 

An FSM passes a test suite T if it is T-equivalent to the specification. Thus, a test suite 
is m-complete if the FSMs in ℑm which pass it are equivalent to the specification. Two 
tests α and β in a given test suite T are T-separable, if there exist αγ, βγ ∈ T, such that 
states δS(s0, α) and δS(s0, β) are {γ}-distinguishable. Clearly, if T-separable tests α and 
β are convergent in some implementation FSM, it can be distinguished from S by 
either αγ or βγ. 

Since the distinguishability of FSMs is defined as the corresponding relation of 
their initial states, tests are assumed to be applied in the initial state. For accounting to 
the reset operation required to bring the FSMs to the initial state, we define the length 
of a test α as |α| + 1, where |α| is the number of input symbols in α. As the application 
of a test results in the application of all its prefixes, the length of a test suite T, 
denoted by len(T), is the sum of the lengths of all tests in T which are not proper 
prefixes of other tests in T. 

In this paper, we address the problem of generating an m-complete test suite, when 
implementation FSMs can have more that n states, i.e., m ≥ n. This problem has 
received much less attention compared to the (classical) problem of constructing n-
complete test suites, often called checking experiments. One of the main reasons 
might be the fact that test generation becomes more challenging. To illustrate this, let 
us consider the FSMs in Figures 1 and 2, where S0 is the specification machine and S1 
is an implementation machine, which has two extra states. Notice that states 1 and 2 
in S1 are similar to states 1 and 2 in S0, except that S1 has two extra states 1' and 2', 
and the transition (2, b) leads to an “erroneous” state 2'.  

The shortest test able to distinguish S0 and S1 should be formed by the input 
sequence a, which is a transfer sequence for state 2, and the input sequence baa. 
Indeed, for any other input sequence of length three, it is possible to construct a 
distinguishable FSM with two extra states for which only that particular sequence 
applied to a proper state distinguishes it from S0. As those FSMs are in the fault  
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Fig. 1. FSM S0 

 

Fig. 2. FSM S1 

domain ℑ4, any 4-complete test suite for S0 should include all input sequences of 
length three, applied to all states of S0. In the general case, an m-complete test suite 
for an FSM with n states should include all input sequences of length Δ + 1, applied to 
each state. An early work of Moore [11] uses such sequences to establish a lower 
bound for sequences identifying ‘‘combination lock’’ machines. In fact, the lower 
bound for the length of an m-complete test suite for an FSM with n states and p inputs 
is O(n3pΔ+1), i.e., it is exponential on the number of extra states [13].  

Existing methods, such as W [13] [3], Wp [5], HSI [14] and H [4], which generate 
an m-complete test suite T for a given minimal deterministic FSM S can be 
summarized as follows.  

Step 1: Determine a minimal initialized state cover K for S. 
Step 2: Extend the sequences in K by the (traversal) set X≤Δ+1. 
Step 3: Extend the sequences in K.X≤Δ+1 in such a way that any two divergent 
sequences, i.e., reaching distinct states in S, are T-separable.  

Existing methods differ mainly in the sequences they use to ensure T-separability in 
Step 3. In the W method, all sequences in K.X≤Δ+1 are extended by a characterization 
set. The Wp method uses a characterization set for sequences in K. X≤Δ and state 
identifiers for the other sequences. The HSI method uses the harmonized state 
identifiers for all sequences in K.X≤Δ+1. The H method determines on-the-fly a 
distinguishing sequence for states reached by each pair of divergent sequences in K. 
X≤Δ+1.  

We illustrate the generation of a 3-complete test suite for the 2-state FSM in Figure 1 
following the strategy used by the existing methods. For this machine, the 
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characterization set corresponds to a family of harmonized state identifiers W = H1 = H2 
= {a}. A minimal state cover for this FSM is K = {ε, a}. Then, in the W, Wp, HSI, H 
methods the sequences in K.X≤Δ+1 = pref({aaa, aab, aba, abb, ba, bb}) are extended by 
the sequence a. The resulting test suite is T1 = pref({aaaa, aaba, abaa, abba, baa, bba}) 
of length 28; Figure 3 shows its tree representation, where nodes are labelled with states 
of the specification FSM and edges are labelled with inputs. Each test corresponds to the 
sequence of inputs along a path from the root to a node. 

 

 

Fig. 3. Tree representation of a 3-complete test suite for S0 

If, in Step 1, shortest transfer sequences are included into a state cover and, in Step 3, 
shortest distinguishing sequences are used, tests in a resulting m-complete test suite 
cannot be shortened and if we want to reduce the total length of a test suite we need to 
find a way of reducing test branching. Indeed, once a test of length l branches into k 
tests, the test prefix of l inputs contributes kl inputs to the total length of a test suite. 
For instance, each of tests aa, ab and b branches into two tests in T1, thus contributing 
twice to its total length. In the existing methods, test branching occurs mainly in Step 2, 
where each test in a minimal state cover is extended by the sequences in the traversal 
set X≤Δ+1. As a result of this, such a test branches into at least |X|Δ+1 tests. Apparently, 
the test length reduction could be achieved by reducing the test branching, which in 
turn can be performed by distributing the traversal set X≤Δ+1 over several tests. As 
soon as one of these tests is a proper prefix of another the overall test branching and 
thus the test length are reduced. This key observation is illustrated in Figure 4. 
Assume that test α should be extended by the sequences aa and ba. In Figure 4(a) 
both sequences extend α, branching the test. Consequently, α contributes twice to the 
length of the test suite. Suppose that tests α and αb are convergent, and, instead of α, 
the test αb is extended by aa, as shown in Figure 4(b). We note that this results in a 
test suite which is, all things being equal, |α| – 1 inputs shorter than before. The 
problem is that an arbitrary distribution of the traversal set may break the m-
completeness of a resulting test suite. Thus, we need first to establish conditions for a 
distribution of the traversal set X≤Δ+1 such that the m-completeness of a test suite is  
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(a)    (b) 

Fig. 4. Test branching (a) versus test extension (b) 

preserved. The main idea developed in this paper is to distribute it among those tests 
in a test suite which are convergent, i.e., transfer to the same state, in all FSMs of the 
fault domain which pass the test suite, reducing test branching.  

4   Test Properties 

The approach elaborated in this paper is based on properties of FSM tests, namely 
their convergence and divergence. Recall that two defined input sequences of an FSM 
converge or diverge if they are transfer sequences for the same state or for different 
ones, respectively. We generalize these notions to sets of FSMs. Given a non-empty 
set of FSMs Σ ⊆ ℑ and two tests α, β ∈ X*, we say that α and β are Σ-convergent, if 
they converge in each FSM of the set Σ. Similarly, we say that α and β are Σ-
divergent, if they diverge in each FSM of Σ. Two tests are S-convergent (S-divergent) 
if they are {S}-convergent ({S}-divergent). Moreover, when it is clear from the 
context, we will drop the set in which tests are convergent or divergent.  

Test convergence and divergence with respect to a single FSM are complementary, 
i.e., any two tests are either convergent or divergent. However, when a set of FSMs Σ 
is considered, some tests are neither Σ-convergent nor Σ-divergent. Notice that the Σ-
convergence relation is reflexive, symmetric, and transitive, i.e., it is an equivalence 
relation over the set of tests. Given a test α, let [α] be the corresponding equivalence 
class in a non-empty set Σ of FSMs with the same input alphabet. The test 
convergence and divergence possess the following properties.  

Lemma 1. Given tests α, β, such that [α] = [β], the following properties hold: 

(i) [αγ] = [βγ], for any input sequence γ. 
(ii) For any test ϕ, if [α] ≠ [ϕ], then [β] ≠ [ϕ]. 

An important property of T-separable tests is that they are divergent in all FSMs 
which are T-equivalent to S. Given a test suite T, let ℑ(T) be the set of all Q ∈ ℑ, 
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such that Q and S are T-equivalent, i.e., ℑ(T) is the set of all FSMs in ℑ which pass 
the test suite T. 

Lemma 2. Given a test suite T of an FSM S, T-separable tests are ℑ(T)-divergent. 
Proof. Let tests α and β be T-separable. Thus, there exist a sequence γ such that αγ, 
βγ ∈ T and λS(δS(s0, α), γ) ≠ λS(δS(s0, β), γ). Let Q be an FSM T-equivalent to S; thus, 
we have that λS(δS(s0, α), γ) = λQ(δQ(q0, α), γ) and λS(δS(s0, β), γ) = λQ(δQ(q0, β), γ). It 
follows that λQ(δQ(q0, α), γ) ≠ λQ(δQ(q0, β), γ). Thus, δQ(q0, α) ≠ δQ(q0, β).                 ♦ 

Existing methods for test generation ensure that two tests are divergent by extending 
them with an appropriate distinguishing sequence. However, Lemmas 1 and 2 indicate 
that the convergence and divergence of tests also applies to their equivalence classes. 
It is thus important to identify under which conditions tests are guaranteed to be 
convergent, i.e., belong to the same equivalence class. 

Ensuring convergence is more involved than ensuring divergence; divergence of 
two tests can be witnessed by different outputs produced in response to a common 
suffix sequence. The two tests are thus divergent in any FSM T-equivalent to S. 
However, convergence of two tests cannot be directly ascertained by considering only 
the two tests. It turns out that the knowledge of the maximum number of states of 
FSMs in the fault domain allows us to formulate conditions for the convergence of 
tests. Given a test suite T and a natural number m ≥ n, let ℑm(T) = ℑm ∩ ℑ(T), i.e., the 
set of FSMs in ℑ which are T-equivalent to S and have at most m states.  

As S is in the fault domain ℑm(T), tests which are ℑm(T)-convergent are also S-
convergent. Thus, two tests can be ℑm(T)-convergent only if they are S-convergent.  

Definition 3. A set of tests is ℑm(T)-convergence-preserving if all its S-convergent 
tests are ℑm(T)-convergent. Similarly, a set of tests is ℑm(T)-divergence-preserving if 
all its S-divergent tests are ℑm(T)-divergent. 

In other words, a set of tests is ℑm(T)-convergence-preserving if the convergence in 
the specification FSM is “preserved” in each FSM which passes the test suite T. 
Similarly, a set of tests is ℑm(T)-divergence-preserving if the divergence in the 
specification FSM is preserved in each FSM which passes the test suite T.  

In the following lemma, the ℑm(T)-convergence relation is considered; thus, [α] is 
the subset of tests of T which are ℑm(T)-convergent with test α.  

Lemma 3. Given a test suite T for an FSM S and Δ = m - n ≥ 0, let π and ϕ be S-
convergent tests in T, such that, for any sequence υ of length Δ, there exist tests α ∈ 
[π], β ∈ [ϕ], and an ℑm(T)-divergence-preserving state cover for S in T containing 
{α, β}.pref(υ). Then, π and ϕ are ℑm(T)-convergent.  

Proof. Suppose that π and ϕ are not ℑm(T)-convergent. Thus, there exists Q ∈ ℑm(T), 
such that π and ϕ are Q-divergent. As π and ϕ are S-convergent, the FSM Q is not 
equivalent to S and there must exist an input sequence γ such that S and Q are {πγ, 
ϕγ}-distinguishable. Assume that γ is a shortest input sequence with this property. 
Thus,  

 S and Q are (([π] ∪ [ϕ]).γ')-equivalent, for all γ', such that |γ'| < |γ|.            (1) 
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We have that |γ| > Δ, since otherwise there would exist α' ∈ [π] and β' ∈ [ϕ] such 
that {α'γ, β'γ} ⊆ T, implying that S and Q are T-distinguishable.  

Let α ∈ [π] and β ∈ [ϕ] be such that there exists an ℑm(T)-divergence-preserving 
state cover for S in T containing the set {α, β}.pref(γΔ), where γi is the prefix of γ of 
length i. Without loss of generality, we assume that S and Q are {αγ}-distinguishable, 
i.e., λQ(q0, αγ) ≠ λS(s0, αγ). Let Ai = {α, β}.pref(γi), 0 ≤ i ≤ Δ. The tests αγi and βγi are 
Q-divergent and, moreover, Ai is ℑm(T)-divergence-preserving. We show by 
induction that, for all 0 ≤ i ≤ Δ, |δQ(q0, Ai)| ≥ i + |δS(s0, Ai)| + 1. 

Base case: For i = 0, we have that A0 = {α, β}. As α and β are S-convergent and Q-
divergent, the result follows, since |δQ(q0, A0)| = 2 and |δS(s0, A0)| = 1. 

Inductive Step: Suppose that the result holds i, 0 ≤ i < Δ, i.e.,  

                                 |δQ(q0, Ai)| ≥ i + |δS(s0, Ai)| + 1.                                    (2) 

We show that the result holds for i + 1. Let j ≤ i. Suppose that αγi+1 and αγj are S-
divergent; then αγi+1 is Q-divergent with αγj and βγj, since Ai+1 is ℑm(T)-divergence-
preserving. Suppose now that αγi+1 and αγj are S-convergent. Let χ be the suffix 
which extends γi+1 in γ, i.e., γ = γi+1χ. If αγi+1 is Q-convergent with αγj, then αγjχ 
distinguishes S and Q, since λQ(q0, αγjχ) = λQ(q0, αγi+1χ) = λQ(q0, αγ) ≠ λS(s0, αγ) = 
λS(s0, αγi+1χ) = λS(s0, αγjχ). As |γjχ| < |γi+1χ| = |γ|, it follows that αγi+1 should be Q-
divergent with αγj and βγj, since otherwise we have a contradiction to (1). By the 
same token, the test αγi+1 is Q-divergent with βγj. Thus, αγi+1 is Q-divergent with αγj, 
j ≤ i, i.e., with all tests in Ai and reaches a state in Q which is not reached by the tests 
in Ai. Hence,  

                      |δQ(q0, Ai+1)| ≥ |δQ(q0, Ai)| + |δQ(q0, αγi+1)| ≥ |δQ(q0, Ai)| + 1.                  (3) 

If αγi+1 is S-convergent with some test in Ai, then  

                                           |δS(s0, Ai+1)| = |δS(s0, Ai)|.                                                   (4) 

The induction thus applies, since  

 |δQ(q0, Ai)| ≥ i + |δS(s0, Ai)| + 1  (inductive hypothesis (2)) 
 |δQ(q0, Ai)| + 1 ≥ (i + 1) + |δS(s0, Ai)| + 1 
 |δQ(q0, Ai+1)| ≥ (i + 1) + |δS(s0, Ai+1)| + 1 (due to (3) and (4)) 

On the other hand, if αγi+1 is S-divergent with all tests in Ai, then  

                                        |δS(s0, Ai+1)| = |δS(s0, Ai)| + 1                                                 (5) 

In this case, βγi+1 is also Q-divergent with all tests in Ai, since Ai+1 is ℑm(T)-
divergence-preserving. Moreover, βγi+1 is Q-divergent with αγi+1. Thus, we have that  

                  |δQ(q0, Ai+1)| = |δQ(q0, Ai)| + |δQ(q0, {αγj, βγj})| ≥ |δQ(q0, Ai)| + 2                (6) 

The induction also applies, since 

 |δQ(q0, Ai)| ≥ i + |δS(s0, Ai)| + 1  (inductive hypothesis (2)) 
 |δQ(q0, Ai)| + 2 ≥ (i + 1) + (|δS(s0, Ai)| + 1) + 1 
 |δQ(q0, Ai+1)| ≥ (i + 1) + |δS(s0, Ai+1)| + 1 (due to (5) and (6)) 
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This concludes the induction proof. Then, for all 0 ≤ i ≤ Δ, it holds that |δQ(q0, Ai)| ≥ i 
+ |δS(s0, Ai)| + 1. In particular, the set of tests AΔ reaches at least Δ + |δS(s0, AΔ)| + 1 
states in Q. 

Consider now a smallest set K, such that K ∪ AΔ is an ℑm(T)-divergence-preserving 
state cover for S in T; thus, |K| = n – |δS(s0, AΔ)|, since α and β are S-convergent. As K 
∪ AΔ is ℑm(T)-divergence-preserving, the tests of the set K reach exactly n – |δS(s0, 
AΔ)| states in Q, and each of them is distinct from all states reached by AΔ. Thus, the 
tests in K ∪ AΔ reach at least n – |δS(s0, AΔ)| + Δ + |δS(s0, AΔ)| + 1 = n + m – n + 1 = m 
+ 1 states in Q, contradicting the fact that Q has at most m states.                              ♦ 

The importance of Lemma 3 for test generation is that it shows how to ensure the 
ℑm(T)-convergence of two S-convergent tests. This in turn, allows including these 
tests into the same equivalence class. Then, Lemma 1 can be applied, which indicates 
that if a test should be extended by given sequences, e.g., from the traversal set, any 
tests of its equivalence class can be chosen, distributing these sequences over several 
tests. Lemma 3 also leads to the necessary and sufficient conditions for test 
completeness with respect to the fault domain ℑm, where each FSM has at most m 
states, m ≥ n.  

Theorem 1. Let T be a test suite for an FSM S with n states and m ≥ n. Then, the 
following statements are equivalent: 

(i) T is an m-complete test suite for S  

(ii) T contains an ℑm(T)-convergence-preserving initialized transition cover for S.  

Proof  
(ii) ⇒ (i) Let T contain an ℑm(T)-convergence-preserving initialized transition 

cover A for S, and Q ∈ ℑm(T). Define the relation h ⊆ S × Q as follows:  

(s, q) ∈ h ⇔ there exists α ∈ A, such that δS(s0, α) = s and δQ(q0, α) = q. 
As A is a transition cover for S, for each s ∈ S there exists q ∈ Q such that (s, q) ∈ h. 
Moreover, as A is ℑm(T)-convergence-preserving, for each s ∈ S, there exists only one 
q ∈ Q such that (s, q) ∈ h; thus, h is a mapping. As ε ∈ A,  

h(s0) = q0. 
Let s ∈ S and x ∈ X. As A is a transition cover for S,  

there exists αx ∈ A such that δS(s0, α) = s. 
Correspondingly, 

h(δS(s0, α), x) = h(δS(s0, αx)) = δQ(q0, αx) = δQ(δQ(q0, α), x) = δQ(h(δS(s0, α)), x)
  

and 

λS(δS(s0, α), x) = λQ(δQ(q0, α), x) = λQ(h(δS(s0, α)), x), 
as Q ∈ ℑm(T). 

Thus, h is an isomorphism and, as h(s0) = q0, it follows that Q is equivalent to S.  
 
(i) ⇒ (ii) Let T be an m-complete test suite. First, notice that any m-complete test 

suite is a transition cover for the FSM S. Otherwise, there exists a transition of S 
which is not traversed by the test suite; an FSM that is T-equivalent to, but 
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distinguishable from, S can be obtained from S by mutating the output in this 
transition. By definition, T is prefix closed, thus, it is an initialized transition cover. 

As T is an m-complete test suite, each FSM Q ∈ ℑm(T) is equivalent to S, i.e., there 
exists a mapping h: S  → Q such that h(s0) = q0 and for each transition (s, x) it holds 
that 

h(δS(s, x)) = δQ(h(q), x) 

and thus, since h(s0) = q0, for each input sequence α it holds that  

h(δS(s0, α)) = δQ(h(s0), α) = δQ(q0, α). 

Let α and β be S-convergent, i.e., δS(s0, α) = δS(s0, β). It follows that 

δQ(q0, α) = h(δS(s0, α)) = h(δS(s0, β)) = δQ(q0, β). 

Thus, α and β are also Q-convergent and, consequently, the set is ℑm(T)-
convergence-preserving.                                                                                               ♦ 

Considering the generation methods discussed in Section 3, we note that the 
conditions of Lemma 3 are satisfied for all pairs of S-convergent tests in K ∪ K.X, 
which turns out to be a transition cover for S. Thus, the test suites generated by these 
methods satisfy the conditions of Theorem 1, since K ∪ K.X is an initialized transition 
cover. At the same time, Theorem 1 suggests that rather than considering the whole 
set of tests in K.X≤Δ+1 at once, as the existing methods do, it is sufficient to ensure 
convergence of tests covering all transitions, using Lemma 3. Moreover, Lemmas 1, 
2, and 3 indicate that this can be achieved in an iterative way, namely, the 
convergence for tests covering a current transition can be ensured based on the 
convergence established for other transitions. In the next section we elaborate this 
idea in a method for complete test suite generation. 

5   Test Generation Method 

In this section, we present a method, called SPY-method, which generates an m-
complete test suite by building an ℑm(T)-convergence-preserving transition cover. In 
the method, the knowledge about test convergence and divergence obtained during 
the execution helps identify the possibility of extending tests already in the test suite. 
Such an extension avoids branching of tests and thus contributes to test suite 
shortening. During the execution of the method, the ℑm(T)-convergence of tests is 
determined. Notice that any two ℑm(T)-convergent tests are also ℑm(T')-convergent, 
for each T' ⊇ T. Thus, the inclusion of new tests in T does not invalidate this property.  

As the ℑm(T)-convergence relation is an equivalence relation, it can be represented 
by the partition it induces. In a given stage of the method execution only a subset of 
the ℑm(T)-convergence relation might be known. We denote by Π the partition 
induced by the pairs of tests which are known to be ℑm(T)-convergent. Given a test α 
∈ T, we denote by [α]Π the block of the partition Π which contains α. 

We assume that a family H of harmonized state identifiers is provided. Given a test 

α, let H(α) ∈ H be the state identifier for state δS(s0, α). The method starts by 
determining a minimal initialized state cover K, as in Step 1 of existing methods. 
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Then, the tests in K are extended by the appropriate state identifiers. Each block in the 
initial partition Π is a singleton, since no convergence is initially known. The method 
iterates until the set of tests which are ℑm(T)-convergent with the tests in K becomes a 
transition cover for S. 

During the execution of the method, it is necessary to extend two tests in T to 
ensure their divergence. As the divergence of tests also applies to other tests in their 
blocks, when more than one test is available in a given block, the one which will 
result in a shorter test suite is selected. This is achieved as follows. Suppose that test 
α ∉ T should be added to T. Let β be the longest prefix of α which is in T. If β is not a 
proper prefix of another test in T, we have that len(T ∪ {α}) = len(T) + |α| - |β|, i.e., 
adding α to T results only in extending the test β by |α| - |β| input symbols. On the 
other hand, if β is a proper prefix of some other test in T, it holds that len(T ∪ {α}) = 
len(T) + |α| + 1, as it results in an additional testing branching. Thus, selection of a 
test which has to be extended by some input sequence, e.g., a state distinguishing 
sequence, should result, whenever possible, in extending some test in T that is not a 
proper prefix of another test. 

After adding new tests two blocks containing tests that are ℑm(T)-convergent, are 
merged, i.e., replaced by their union, iteratively. The merge of blocks can result in a 
new partition for which the ℑm(T)-convergence of other tests can be concluded, due to 
the application of Lemma 1(i) and thus, the procedure of merging should be repeated. 
We denote by closure(Π) the partition obtained after merging the blocks of Π as 
much as possible, by applying subset merging and Lemma 1(i).  

We now present SPY-method. 

 
Input: An FSM S with n states, a family of harmonized state identifiers H and a 
natural number m ≥ n. 
Output: An m-complete test suite. 
Determine a minimal initialized state cover K. 
T := pref({α.H(α) | α ∈ K}) 
Π := {{α}| α ∈ T} 
While there exists a transition (s, x) not covered by the set of tests in T which are 
ℑm(T)-convergent with some test in K 

 Let α, β ∈ K be such that δS(s0, α) = s and δS(s0, β) = δS(s, x) 
 For each γ ∈ X≤Δ, each σ ∈ H(βγ) 
  Select α' ∈ [α]Π, such that len(T ∪ {α'xγσ}) is minimal 
  T := T ∪ pref(α'xγσ) 
  Select β' ∈ [β]Π, such that len(T ∪ {β'γσ}) is minimal 
  T := T ∪ pref(β'γσ) 
  Π := closure(Π ∪ {{χ} | χ ∈ {α'x, β'}.pref(γσ)}) 
 End for 
 Π := closure(Π ∪ {[αx]Π ∪ [β]Π}) 

End while 
Return T 
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Theorem 2. SPY-method generates an m-complete test suite T for S. 

Proof. Let C = {β ∈ [α]Π | α ∈ K}, i.e., C is the set of tests which are ℑm(T)-
convergent with some test in K. Notice that C is ℑm(T)-convergence-preserving, since 
by its definition, any two tests in C which are S-convergent are also ℑm(T)-
convergent. We first show that in each iteration of the method, C is extended to cover 
a transition (s, x) which was not yet covered. Let α, β ∈ K be such that δS(s0, α) = s 
and δS(s0, β) = δS(s, x). The method then uses the state identifiers required to ensure 
that tests αx and β are ℑm(T)-convergent. Indeed, for all γ ∈ X≤Δ, tests α' and β', 
which are ℑm(T)-convergent with α and β, respectively, are selected and the tests α'xγ 
and β'γ are extended with the corresponding state identifiers. As the state cover K is 
also extended by the state identifiers, we have that for each sequence γ of length Δ, 
the set K ∪ {αx, β}.pref(γ) is ℑm(T)-divergence-preserving; thus, the conditions of 
Lemma 3 are satisfied and tests αx and β are ℑm(T)-convergent. The the blocks 
containing αx and β are merged. As a result, the transition (s, x) is covered by C. 
When the method terminates, C is a transition cover for S. As K is initialized and K ⊆ 
C, C is also initialized. Hence, by Theorem 1, T is m-complete, since C ⊆ T is an 
ℑm(T)-convergence-preserving initialized transition cover.                                          ♦ 

In each iteration the proposed method deals with the set X≤Δ, while the theoretical 
results indicate that an m-complete test suite should include all sequences in the 
traversal set X≤Δ+1 [11] [8]. Notice, however, that to obtain a transition cover as 
required by Theorem 1, the tests of a state cover has to be extended by X, which is in 
its turn extended by X≤Δ. Therefore, all sequences in the traversal set X≤Δ+1 are indeed 
present in the resulting test suite. Nevertheless, the distribution of the traversal set 
over several tests usually results in shorter test suites, as demonstrated by the example 
and the experimental results on the next sections. 

Compared with the existing methods for m-complete test suite generation, SPY-
method requires the additional operations of handling the partitions of tests and selecting 
the tests in a partition which lead to a minimal length increase. We discuss the overhead 
imposed by these operations. The partitions used in the method can be efficiently handled 
using a union-find structure [6]. The operation of merging blocks and determining to 
which block a test belongs can be performed in O(Ack-1(l, l)), where Ack-1(l, l) is the 
inverse of the extremely quickly-growing Ackermann function [6]. For any reasonable 
value of l, Ack-1(l, l) is less than five, i.e., the running time of these operations is 
effectively a small constant. In order to efficiently calculate a length increase caused by 
new tests, test suites can be represented by trees. Then it is possible to identify when a 
test will create a new test (branching at a non-leaf node) or extend an existing one 
(extending a leaf node) by retrieving the information about nodes in the tree. As the size 
of the tree is proportional to the length of the test suite, the overhead imposed by the 
additional operations required by the method, i.e., maintaining the partitions and 
determining the length increase, is polynomial in the length of the test suite.  

6   Example 

In this section, we illustrate the execution of the method. Consider the FSM in Figure 1. 
We generate a 3-complete test suite, using the family of harmonized state identifiers as 
in Section 3, H1 = H2 = {a}. Note that as before, n = 2 and m = 3. 
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The method determines a minimal initialized state cover K = {ε, a}. The test suite 
is initialized with T := {α.H(α) | α ∈ K} = pref(aa) and the partition Π := {{ε}, {a}, 
{aa}}. Notice that the tests in K already cover the transition (1, a). Then, the method 
iterates until all the other transitions are also covered by the tests which are ℑm(T)-
convergent with either ε or a. Notice that in this example, both H1 and H2 contain only 
the sequence a. Therefore, each state identifier used in the method is always equal to 
{a}, i.e., σ = a throughout this example.  

The method selects the transition (s, x) = (1, b); thus α = β = ε. At this stage each 
block is a singleton; thus, selecting the empty sequence ε is the only option in the first 
iteration. For each γ ∈ X≤Δ = {ε, a, b}, the test ε is extended by xγσ and γσ; namely, 
the empty sequence is extended by the sequences ba, a, baa, aa, bba, and ba. The test 
suite becomes T = pref({aa, baa, bba}) and the partition Π is updated to include the 
new tests (each of them also becomes a singleton block in the partition). According to 
Lemma 3, ε and b are now ℑm(T)-convergent, thus, blocks {ε} and {b} should be 
merged. After updating the partition and determining its closure, the partition Π = 
{{ε, b, bb}, {a, ba, bba}, {aa, baa}} is obtained. The resulting test suite is 
represented in Figure 4. The nodes with the same color are in the same block of the 
partition Π. 

 
 

 

Fig. 4. Tree representation of pref({aa, baa, bba}) 

The methods selects the transition (s, x) = (2, a). Then α = a and β = ε. In this 
iteration, the blocks of the partition contain several tests; thus, there are choices when 
selecting the test which is extended by the state identifier. For each γ ∈ X≤Δ = {ε, a, 
b}, some test in [α]Π = [a]Π should be extended by xγσ and some test in [β]Π = [ε]Π 
should be extended by γσ. For γ = ε some test in [a]Π = {a, ba, bba} has to be 
extended by xγσ = aa; the test suites resulting from extending a, ba and bba by aa 
have lengths 12, 12 and 13, respectively. Thus, the test a is selected and aaa is added 
to T. Then, some test in [ε]Π = {ε, b, bb} should be extended by a. As a ∈ T, no 
additional test is included. For γ = a, some test in [a]Π has to be extended by xγσ = 
aaa and some test in [ε]Π by γσ = aa. A test suite of shorter length can be obtained by 
extending either a or ba. The test a is selected and aaaa is added to T. There is no 
need to extend any sequence in [ε]Π by γσ = aa, since aa ∈ T. For γ = b, σ = a, some 
test in [a]Π should be extended by xγσ = aba and some test in [ε]Π by γσ = ba. 
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Extending tests a, ba and bba by aba results in test suites of lengths 17, 15 and 16, 
respectively. The test ba is, then, selected and baaba is added to T. Again, there is no 
need to extend any sequence in [ε]Π by γσ = ba. The test suite becomes T = 
pref({aaaa, baaba, bba}). The tests ε and aa are now ℑm(T)-convergent and thus, 
blocks {ε, b, bb} and {aa, baa} should be merged. After merging these blocks and 
deriving the closure, the partition Π = {{ε, aa, aaaa, b, baa, baab, bb}, {a, aaa, ba, 
baaba, bba}} is obtained. Figure 5 represents the resulting test suite. 

 
 

 

Fig. 5. Tree representation of pref({aaaa, baaba, bba}) 

It remains to cover the transition (s, x) = (2, b); thus α = β = a. For γ = ε, some test in 
[a]Π = {a, aaa, ba, baaba, bba} should be extended by xγσ = ba and γσ = a. The test 
suites obtained by extending either test baaba or bba by ba have the same length; the 
test bba is then selected and bbaba is added to T. Some test in [a]Π has to be extended 
by γσ = a, which does not need any additional test, since aa ∈ T. For γ = a, some test in 
[a]Π should be extended by xγσ = baa and γσ = aa. The test suite of a shorter length is 
obtained by extending bba by baa and the test bbabaa is added to T. There is no need to 
extend any test in [a]Π by aa, since aaa ∈ T. For γ = b, some test in [a]Π should be 
extended by xγσ = bba and γσ = ba. The test suite of a shorter length is obtained by 
extending baaba by bba and the test baababba is added to T. To extend some test in 
[a]Π by γσ = ba, no additional test is required, since baaba ∈ T and baa ∈ [a]Π. The 
resulting test suite is T = pref({aaaa, baababba, bbabaa}) of length 21. Recall that the 
test suite T1 obtained by the existing methods for the machine in Figure 1 has length 28. 

7   Experimental Results 

In this section, we present the results of an experiment with the HSI method and the 
proposed method, comparing the length of the test suites they generate. We randomly 
generate minimal FSMs with five inputs, five outputs and the number of states n 
ranging from five to 50. We executed both the HSI method and the proposed method 
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for generating m-complete test suites, for n ≤ m ≤ n + 3 and calculated the ratio of 
reduction, i.e., the average ratio of the length of the test suite generated by SPY-
method and the length of the test suite generated by the HSI method. For each setting 
(values of n and m), we generated 30 FSMs and the respective test suites, totalling 
5520 FSMs. In Figure 6, we plot the variation of the average ratio with respect to the 
number of states. We notice that the test suites generated by our method are on 
average up to 40% shorter than the test suites obtained by the HSI method; moreover, 
the larger the number of states in the specification FSM and the number of extra states 
in implementations, the bigger the reduction. 

 

Fig. 6. Average reduction ratio 

8   Conclusions 

In this paper we investigated the problem of generating m-complete test suites for an 
FSM with n states, when implementation FSMs may have extra states. 

The main contributions of this paper are as follows. Firstly, although we have not 
refuted the inevitability of including the sequences of a traversal set in an m-complete 
test suite, we showed that these sequences can be arranged in such a way that test 
branching is significantly reduced. Secondly, we stated conditions which guarantee 
that the resulting test suite is indeed m-complete and elaborated a test generation 
method based on these conditions. Differently from all existing methods, the proposed 
method distributes the sequences in the traversal set over several tests avoiding as 
much as possible test branching and thus leading to shortening of the resulting test 
suite. Finally, we experimentally compared the proposed method with the HSI-
method. The experimental results indicate that obtained tests are on average up to 
40% shorter. 
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As future work, it is possible to combine the on-the-fly determination of 
distinguishing sequences used in the H method with the possibility of distributing 
them. Another possible extension is the further investigation of properties of test 
convergence and divergence.  
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Abstract

In this paper we present a generalization to the W-
method [3], which can be used for automatically generating
test cases. In contrast to the W-method, this generaliza-
tion allows for test case generation even in the absence of
characterization sets for the specification. We give proofs of
correctness for this generalization, and show how to derive
the original W-method from it as a particular case. Proofs
of correctness for the W-method, not given in the original
paper, are also presented in a clear and detailed way.

1 Introduction

Conformance testing aims at demonstrating that the im-
plementation behavior conforms to the behavior dictated by
the specification [7, 20, 21]. In the literature, there are many
model-based test derivation methods for conformance test-
ing of critical and reactive systems [4, 14, 22]. The problem
of generating test cases for conformance testing has been
intensively studied, specially for models based on Finite
State Machines (FSMs) [5, 9, 10, 11, 19, 23]. One of the
most well-known of these test generation methods is the W-
method [3], which uses the notion of characterization sets.
The W-method was proposed for deterministic FSMs and
it has been widely investigated, and many variations have
been developed around its main ideas [11, 12, 13, 18].

In this paper we present a generalization of the W-
method. This generalization allows us to derive a m-
complete test suite without using a characterization set. A
test suite is m-complete if it guarantees a complete fault

∗Supported by CNPq grant 141978/2008-2
�Supported by CNPq grant 472504/2007-0

coverage[17], while considering deterministic FSM imple-
mentations with up to m states. In fact, our method can
generate test suites using only subsets of any characteriza-
tion set. We discuss how to refine the generalization in order
to arrive at the original W-method, demonstrating that the
latter is a particular case of our method. Proofs of correct-
ness are presented in a clear form, including the correctness
for the original W-method.

This paper is organized as follows. In Section 2 we de-
scribe some work related to our proposal, and we review
some basic concepts. The concept of transition covers for
FSMs is presented in Section 3. In Section 4 we introduce
equivalence in FSMs, and stratified families of sets. The
generation of a complete test suite is presented in Section 5.
In Section 6 we reconsider characterization sets. How to
refine our method in order to obtain the original W-method
is described in Section 7. In Section 8 we present the algo-
rithm for the generalized method, and illustrate its useful-
ness with an example in Section 9. Finally, in Section 10,
we give some concluding remarks.

2 Related Works

This section reviews the FSM model and some important
related notions. We also present more details about the W-
method and other variant model-based test generation meth-
ods, such as the Wp and HSI methods.

2.1 Finite State Machines

The basic model used to capture a system behavior
is the FSM. Formally, a FSM [8] is a system M =
(X,Y, S, s0, δ, λ) given by:

• a finite input alphabet, X ;
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• a finite output alphabet, Y ;

• a finite set of states, S;

• an initial state s0 ∈ S; and

• output and transition functions, respectively, λ : X ×
S → Y and δ : X × S → S.

Note that such a machine is deterministic and complete.
A FSM is called complete if for each state s of M , there is
a transition from s with input symbol a, for every a ∈ X . A
deterministic FSM does not allow two different transitions
going out of the same state with identical input symbols.

Successive applications of the transition function δ give
rise to the extended transition function δ̂ : X� × S → S,
defined by

δ̂(ε, s) = s,

δ̂(aρ, s) = δ̂(ρ, δ(a, s)),where a ∈ X and ρ ∈ X�.

Here, ε will denote the empty word. For convenience, if
δ̂(ρ, s1) = s2 we also write s1

ρ→ s2.
We extend λ to λ̂ : X� × S → Y � thus

λ̂(ε, s) = ε,

λ̂(aρ, s) = λ(a, s)λ̂(ρ, δ(a, s)),with a ∈ X , ρ ∈ X�.

Henceforth, unless mention to the contrary, we will as-
sume that M and M ′ denote FSMs in the form M =
(X,Y, S, s0, δ, λ) and M ′ = (X,Y ′, S′, s′0, δ

′, λ′). Note
that M and M ′ have the same input alphabet.

The reachability notion expresses the idea of starting at
the initial state, traversing some transitions, and reaching a
target state.

Definition 1 A state s in a FSM M is reachable if and only
if there exists ρ ∈ X� such that δ̂(ρ, s0) = s.

We also say that λ̂(ρ, s) is the behavior of M from state
s over the input sequence ρ. The behavior of M over ρ is
simply the behavior of M from s0 over ρ. A sequence ρ
distinguishes two states s1 and s2 of M if ρ gives distinct
behaviors for s1 and s2, that is, if λ̂(ρ, s1) �= λ̂(ρ, s2).

2.2 FSM-based testing

Here, we briefly describe the basic W-method, which can
be used for test generation using FSM models. We also
briefly describe the related Wp and the HSI methods.

The W-method The objective is to verify whether imple-
mentation models conform to a specification model, as char-
acterized by the behavior responses generated by external
stimuli [3].

Basically, the application of this method consists in two
main steps, given a specification FSM M and an implemen-
tation FSM M ′: (i) test sequences generation, based on M ;
and (ii) application of each test sequence to M and M ′, fol-
lowed by a comparison of their respective behaviors.

The technique uses characterization sets of M in order to
obtain a complete set of test case sequences. A character-
ization set, loosely speaking, can distinguish every pair of
machine states (see Section 6). Let W be a characterization
set for M . In order to obtain the test sequences, the W-
method prefixes the sequences in W with certain sequences
from X�, thus obtaining a set Z containing extended se-
quences. Furthermore, the method also computes a cover
set P for M . Basically, applying sequences from P one can
traverse any edge of M . The desired set of test sequences is
the product PZ . More details to be presented in the sequel.

The Wp-method A related technique, the so called Wp-
method [6], can potentially reduce the total length of the
test sequences generated by the basic W-method. Again, let
W be a characterization set for the specification model, M .
For each state si of M , an identification subset Wi ⊆ W
is obtained. The idea is that for each state sj of M , with
si �= sj , there exists an input sequence ρj ∈ Wi such that
si and sj are distinguishable by ρj , and no other proper
subset of Wi has this property.

Then, a checking sequence for each state is prefixed to all
sequences in the corresponding identification set. A check-
ing sequence for a given state is simply an input sequence
reaching that state, when starting at the initial state. It is
proven [6] that the length of the resulting test sequences
may be shorter, compared to those sequences obtained us-
ing the complete PZ concatenation of the basic W-method.

The HSI-method The HSI-method [16] uses the notion
of trace-inclusion and a quasi-equivalence relation to verify
conformance between partial non-deterministic FSM im-
plementations and a given FSM specification. For that, so
called harmonized sate identification sets are used instead of
the identification subsets used in the Wp-method. Whereas
identification sets fixed the sequences associated with a spe-
cific state si, a harmonized state identification set Di, is
constructed by taking prefixes of a characterization set W ,
but now allowing the reuse of a same prefix for different
states. Distinguishing sequences for states are then taken
from the intersection of Di-sets. The discussion in [16]
affirms that shorter sequences can be found to distinguish
every pair of states in M .

3 Transition Covers

Let M be a FSM. A cover set P ⊆ X� is required
to exercise every transition in M , i.e., for every transition
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δ(a, s) = r in M there must be ρ, ρa ∈ P such that
δ̂(ρ, s0) = s. In this way, we can obtain a behavior of M
that reaches state s, and terminates by traversing the specific
edge from s to r, labeled by a.

The cover set notion is formalized next.

Definition 2 A set of input sequences C ⊆ X� is a cover
set for a FSM M if for every pair of states s, r ∈ S and
every input symbol a ∈ X , with δ(a, s) = r, there exist
ρ, ρa ∈ C such that δ̂(ρ, s0) = s.

A cover set can be obtained by constructing a labeled tree
for M . A labeled tree is a system T = (N,A, lv, le), where
N is a set of nodes, A is the set of edges, and lv : N → S
and le : A → X are labeling functions of nodes and edges,
respectively. The nodes in the tree will be labeled by states
of M and edges will be labeled by symbols from X .

Construction 3 A labeled tree for M , T = (N,A, lv, le),
can be constructed as follows:

1. Initiate with N = {n0}, A = ∅, lv(n0) = s0 and
le = ∅, where s0 is the initial state of M and n0 is the
root of T . We say that n0 has level zero in T .

2. Inductively, suppose T is already constructed up to
level k ≥ 0. Level k + 1 is constructed by inspect-
ing of nodes in level k from left to right:

(a) let n ∈ N be the next node to be inspected.

(b) if there already exists m ∈ N with lv(m) =
lv(n), and m is at some level l < k in T , then
node n is ignored, and we take the next node at
level k. Otherwise, for every input a ∈ X and
every r ∈ S with r = δ(a, lv(n)), we add a new
node n′ to N , a new edge (n, n′) to A, and define
lv(n

′) = r and le(n, n
′) = a. We then proceed

to the next node in level k.

3. Step 2 is repeated if new nodes were added to T in the
last iteration; otherwise, T is completed.

The process will always terminate since the set of states
in M is finite. Depending on how the symbols from X are
selected, different trees can be obtained (see step 2b in Con-
struction 3).

The next definition shows how to construct a required
cover set.

Definition 4 Let T be a labeled tree for M . The set PT

is defined by all words α ∈ X� which label paths in T ,
starting at the root.

Note that ε ∈ PT . When T is clear from the context, we
will use the simplified notation P instead of PT .

We can now show that PT , from Definition 4, is a cover
set for machine M . Before that, we need a property of la-
belled trees.

Lemma 5 Let T = (N,A, lv, le) be a labeled tree for a
FSM M , as given by Construction 3. Let PT be the set
obtained as in Definition 4. Let ρ ∈ X� and s ∈ S be such
that δ̂(ρ, s0) = s. Then, there exists a node n ∈ N with
lv(n) = s. Furthermore, there exists a sequence α ∈ PT

with δ̂(α, s0) = s and such that for every edge δ(a, s) = r
we have αa ∈ PT .

Proof Directly from Construction 3. Details in [2].

Now we can enunciate the cover set property.

Corollary 6 Let T = (N,A, lv, le) be the labeled tree for
a FSM M , as given by Construction 3. Let PT be the set
obtained as in Definition 4. If every state of M is reachable,
then the set PT ⊆ X� is a cover set for M .

Proof Let δ(a, r) = s be an edge. As r is reachable, we
have δ̂(ρ, s0) = r, for some ρ ∈ X�. By Lemma 5, we
have α, αa ∈ PT with δ̂(α, s0) = r, for some α ∈ X�.
Thus, PT is a cover set for M .

4 Equivalences and Stratified Families

This section deals with state equivalence relations in-
duced by the transition functions of the extended machines.
The next definition exposes those notions in a general con-
text.

Definition 7 Let M and M ′ be two FSMs over the same
input alphabet, X , and let s and s′ be states of M and M ′,
respectively.

1. Let ρ ∈ X�. We say that s is ρ-equivalent to s′ if
λ̂(ρ, s) = λ̂′(ρ, s′). In this case, we write s ≈ρ s′.
Otherwise, s and s′ are ρ-distinguishable and we write
s �≈ρ s′.

2. Let K ⊆ X�. We say that s is K-equivalent to s′

if s is ρ-equivalent to s′, for every ρ ∈ K . In this
case, we write s ≈K s′. Otherwise, s and s′ are K-
distinguishable and we write s �≈K s′.

3. Let k ≥ 0. We say that s is k-equivalent to s′ if s
is Xk-equivalent to s′. Otherwise, s and s′ are k-
distinguishable. We write, respectively, s ≈k s′ and
s �≈k s′.

4. State s is equivalent to s′ if s is k-equivalent to s′, for
every k ≥ 0. Otherwise, s and s′ are distinguishable.
We write, respectively, s ≈ s′ and s �≈ s′.

We will avoid overloading the notation by indicating M and
M ′ explicitly, e.g., in the form ≈M,M ′

k , since both machines
will always be clear from the context. Definition 7, obvi-
ously, also applies when M and M ′ are the same machine.
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In this case, it is easy to verify that all relations defined
above are, in fact, equivalence relations over the state set
of the machine. Hence, each such equivalence relation ≈Z

gives rise to a partition [Z] of the state set S.

Definition 8 Let M be a FSM. The index of M , ιM , is the
number of equivalence classes induced by the ≈ relation
over the states of M .

Clearly, we will always have 1 ≤ ιM ≤ |S|, where S is the
state set of M .

The next lemma gathers some simple observations.

Lemma 9 Let M and M ′ be two FSMs with states s and
s′, respectively.

1. Let K ⊆ X�. If s ≈K s′, then s ≈L s′, for every
L with L ⊆ K . On the other hand, if s �≈K s′, then
s �≈L s′, for every L with K ⊆ L.

2. Let k ≥ 0. If s ≈k s′ then s ≈l s′ for every l with
l ≤ k. On the other hand, if s �≈k s′, then s �≈l s

′, for
every l with l ≥ k.

3. Let K,L ⊆ X�. If s �≈K s′, then s �≈KL s′, for every
L �= ∅.

Proof Trivial.

In the sequel, we will be considering specific sets of in-
put sequences.

Definition 10 Let Zi ⊆ X�, i ≥ 0, where X is an alpha-
bet. We say that {Zi}i≥0 is a stratified family over X if

1. Z0 �= ∅; and

2. (X ∪ {ε})Zi = Zi+1, for every i ≥ 0.

It is easy to see that these properties are independent of each
other.

Another characterization for stratification is given as fol-
lows.

Proposition 11 Let Zi ⊆ X�, i ≥ 0, where X is an alpha-
bet and with Z0 �= ∅. Then, the family {Zi}i≥0 is stratified
if and only if Zk =

⋃k
j=0 X

jZ0 for every k ≥ 0.

Proof Details can be found in [2].

The next result guarantees that certain sequences always
have continuations in some of the Zk sets.

Lemma 12 Let {Zi}i≥0 be a stratified family over X and
let k ≥ 0. Then

1. Zk ⊆ Zj , for every j ≥ k; and

2. For every α ∈ Xj , with 0 ≤ j ≤ k, there exists β ∈
X� such that αβ ∈ Zk.

Proof From Proposition 11, we deduce that Zi ⊆ Zi+1, for
every i ≥ 0. A simple induction establishes item (1). For
item (2), since Z0 �= ∅, we take γ ∈ Z0. Since j ≤ k,
we take σ ∈ Xk−j . Hence, ασγ ∈ XkZ0. From Proposi-
tion 11 we conclude ασγ ∈ Zk.

Let M be a FSM and let Z ⊆ X� be a set of input se-
quences. We indicate by [Z] the partition induced by Z
(see observation after Definition 7) over the states of M ,
i.e, s ≈Z r if and only if s, r ∈ w, for some w ∈ [Z]. Let
[Z1] and [Z2] be two partitions over S. Then we say that
[Z2] refines [Z1] if and only if for all w2 ∈ [Z2] there exists
some w1 ∈ [Z1] such that w2 ⊆ w1.

The next result expresses properties of these partitions.

Lemma 13 Let {Zi}i≥0 be a stratified family over the al-
phabet X of a FSM M . Then

1. [Zi+1] refines [Zi], for every i ≥ 0; and

2. if |[Zk]| = |[Zk+1]| for some k ≥ 0, then we must have
[Zk] = [Zk+1] = [Zk+2].

Proof We show each item, in turn.
For item (1), assume that it does not hold for some i ≥ 0.

Then we will have states s and r such that s ≈Zi+1 r and
s �≈Zi r. From Lemma 9(1) and Lemma 12(1) we deduce
s �≈Zi+1 r, a contradiction.

Now we verify item (2). From item (1), we know that
[Zk+1] refines [Zk]. Then [Zk] = [Zk+1], otherwise we
would have |[Zk]| < |[Zk+1]|. Again continuing by contra-
diction, assume that [Zk+1] �= [Zk+2]. Since [Zk+2] refines
[Zk+1], we will have states r and s such that s �≈Zk+2

r and
s ≈Zk+1

r. Hence, we obtain ρ ∈ Zk+2, with ρ = aβ and
a ∈ X , and such that s �≈aβ r. We also conclude that
aβ �∈ Zk+1, otherwise we would have the contradiction
s �≈Zk+1

r. Therefore, from Definition 10(2), we deduce
aβ ∈ XZk+1, and so, β ∈ Zk+1.

Let s1, r1 ∈ S with s1 = δ(a, s), r1 = δ(a, r). If
s1 �≈Zk+1

r1 then s1 �≈Zk
r1, because we already know

that [Zk] = [Zk+1]. Hence, we would have γ ∈ Zk

with λ̂(γ, s1) �= λ̂(γ, r1). From Definition 10(1) we have
XZk ⊆ Zk+1, and then aγ ∈ Zk+1. But,

λ̂(aγ, s) = λ(a, s)λ̂(γ, s1)

λ̂(aγ, r) = λ(a, r)λ̂(γ, r1).

Then we have λ̂(aγ, s) �= λ̂(aγ, r), thus forcing the contra-
diction s �≈Zk+1

r. We conclude that s1 ≈Zk+1
r1.

Since β ∈ Zk+1, we deduce s1 ≈β r1. Again,

λ̂(aβ, s) = λ(a, s)λ̂(β, s1)

λ̂(aβ, r) = λ(a, r)λ̂(β, r1),
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and, since we already have λ̂(ρ, s) �= λ̂(ρ, r), we conclude
that λ(a, s) �= λ(a, r). From a ∈ X and Lemma 12(2) we
infer σ ∈ X� with aσ ∈ Zk+1. Hence, we have s �≈aσ r,
contradicting s ≈Zk+1

r.

The next result gives the equality of successive parti-
tions.

Corollary 14 Let {Zi}i≥0 be a stratified family over the
input alphabet X of a FSM M . If |[Zk]| = |[Zk+1]| for
some k ≥ 0, then [Zk] = [Zk+l] for every l ≥ 0.

Proof When l = 0, the result is immediate. When l = 1
or l = 2, the result follows directly from Lemma 13(2).
Assume the result holds for every j, 0 ≤ j ≤ l, with l ≥ 2.
We want to show that the result holds for l + 1. From the
induction, we have [Zk] = [Zk+l] and [Zk] = [Zk+l−1].
Hence, [Zk+l−1] = [Zk+l]. Using Lemma 13(2), we obtain
[Zk+l−1] = [Zk+l] = [Zk+l+1]. Hence, [Zk] = [Zk+l+1],
as required.

Now let M be a FSM with m states. Suppose we have
a stratified family for X , {Zi}i≥0, in which Z0 partitions
the states of M in n ≤ m equivalence classes. We want to
study the partitions over states of M induced by the Zi sets,
for i ≥ 0. The next lemma establishes the basic result.

Lemma 15 Let M be a FSM with index m. Let {Zi}i≥0 be
a stratified family for X such that Z0 partitions the states
of M in at least n ≤ m equivalence classes. Then |[Zi]| ≥
n+ i, for every i, with 0 ≤ i ≤ m− n.

Proof When i = 0 we have n + i = n and, from the hy-
pothesis, |[Z0]| ≥ n, establishing the base. Assume the
result for every j, 0 ≤ j ≤ i, with i < m−n. We are going
to show that the result holds for i+ 1. If |[Zi]| ≥ n+ i+ 1
then |[Zi+1]| ≥ n + i + 1 (from Lemma 13(1)), and the
induction is extended in this case.

Now, let |[Zi]| < n+i+1. From the induction hypothesis
we conclude that |[Zi]| = n+ i. Since m ≥ n+ i+1 is the
index of M , there exist nonequivalent states in M , r and s,
with r ≈Zi s. Then, s �≈Xk r, for some k ≥ 0 (see Defini-
tion 7). From Lemma 12(2), we conclude s �≈Zk

r. If k ≤ i,
Lemma 12(1) would force Zk ⊆ Zi. Using Lemma 9(1) we
would have s �≈Zi r, a contradiction. Hence, k > i.

If |[Zi]| = |[Zi+1]| then, by Corollary 14, we get Zi =
Zk, forcing again the contradiction s �≈Zi r. Since [Zi+1]
refines [Zi], we can not have |[Zi+1]| < |[Zi]|. We conclude
that |[Zi+1]| > |[Zi]|. But, since |[Zi]| = n+ i, we deduce
the result desired, that is, |[Zi+1]| ≥ n+ i+ 1.

Using this result, it will be easy to confirm that some
Z ∈ {Zi}i≥0 will distinguish every pair of nonequivalent
states.

Corollary 16 Let M be a FSM with index m. Let {Zi}i≥0

be a stratified family for X such that Z0 partitions the states
of M in at least n ≤ m equivalence classes. Then Zm−n

will distinguish every pair of nonequivalent states of M .

Proof From Lemma 15, it follows that |[Zm−n]| ≥ n +
(m − n) = m. Since [Zm−n] is the partition induced by
Zm−n, we conclude that Zm−n partitions states of M in m
classes. Since M has index m, we conclude that Zm−n will
distinguish every pair of nonequivalent states of M .

5 A m-complete Test Suite

Let M and M ′ be two FSMs operating over the same
alphabet X . Machine M represents a specification and M ′

represents a possible implementation. We want to obtain a
set K ⊆ X� such that s0 �≈ s′0 if and only if s0 �≈K s′0.
Such a set K is a m-complete test suite, where m is an
upper bound on the index of M ′. Given K , if we want to
test whether M and M ′ have distinct behaviors, it is enough
to apply the sequences in K to both machines and compare
the corresponding output sequences.

We obtain the required set by combining a cover set for
M with a stratified family for M ′. The next lemma estab-
lishes an auxiliary result.

Lemma 17 Let M and M ′ be two FSMs operating over the
same input alphabet, X . Assume that M ′ has index m and
that P is a cover set for M . Let Z ⊆ X� be nonempty
and such that Z partitions the states of M ′ in at least m
equivalence classes. If s0 ≈PZ s′0 and s0 �≈ s′0, then there
exist γ ∈ X�, s ∈ S, s′ ∈ S′ such that δ̂(γ, s0) = s,
δ̂′(γ, s′0) = s′ and s �≈Z s′.

Proof This proof can be found in [2].

Now we are in a position to enunciate the result which
will give us the capability of testing two machines for equiv-
alence.

Theorem 18 Let M and M ′ be two FSMs operating over
the same input alphabet, X . Assume that M ′ has index m
and that P is a cover set for M . Let Z ⊆ X� be nonempty
and such that Z partitions states of M ′ in at least m equiv-
alence classes. Then, s0 ≈ s′0 if and only if s0 ≈PZ s′0.

Proof If s0 ≈ s′0 then, trivially, s0 ≈PZ s′0.
For the opposite direction, assume s0 ≈PZ s′0. For the

sake of contradiction, assume s0 �≈ s′0. From Lemma 17,
we obtain β ∈ X�, s ∈ S and s′ ∈ S′ with δ̂(β, s0) = s,
δ̂′(β, s′0) = s′, and s �≈Z s′. We can assume, without loss
of generality, that |β| is minimal. If β = ε, we would have
s = s0 and s′ = s′0, and then s0 �≈Z s′0. But, since ε ∈ P ,
this would force the contradiction s0 �≈PZ s′0. We conclude
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that β = αa, with a ∈ X . Let r ∈ S and r′ ∈ S′ with
δ̂(α, s0) = r, δ̂′(α, s′0) = r′, δ(a, r) = s and δ′(a, r′) = s′.
Using the minimality of |β| we have r ≈Z r′.

On the other hand, since P is a cover set for M , from
the edge δ(a, r) = s we obtain ρ ∈ P and ρa ∈ P with
δ̂(ρ, s0) = r. Let r′′ ∈ S′ with δ̂′(ρ, s′0) = r′′. If we had
r �≈Z r′′, we would obtain γ ∈ Z with λ̂(γ, r) �= λ̂′(γ, r′′).
But then

λ̂(ργ, s0) = λ̂(ρ, s0)λ̂(γ, r) and

λ̂′(ργ, s′0) = λ̂′(ρ, s′0)λ̂′(γ, r′′).

Hence, λ̂(ργ, s0) �= λ̂′(ργ, s′0), giving the contradiction
s0 �≈ργ s′0 with ργ ∈ PZ . We conclude that r ≈Z r′′.

Since we already have r ≈Z r′, we obtain r′ ≈Z r′′.
Since Z partitions the states of M ′ in m classes and m is
the index of M ′, we conclude that r′ ≈ r′′. Now, from
s �≈Z s′, we obtain σ ∈ Z with λ̂(σ, s) �= λ̂′(σ, s′). But,

λ̂(ρaσ, s0) = λ̂(ρ, s0)λ(a, r)λ̂(σ, s) and

λ̂′(ρaσ, s′0) = λ̂′(ρ, s′0)λ̂′(aσ, r′′)

= λ̂′(ρ, s′0)λ̂′(aσ, r′)

= λ̂′(ρ, s′0)λ
′(a, r′)λ̂′(σ, s′).

Then, λ̂(ρaσ, s0) �= λ̂′(ρaσ, s′0). But ρaσ ∈ PZ and we
would have s0 �≈PZ s′0, contradicting the hypothesis. This
concludes the proof.

Combining the previous results, we have the following
corollary, useful to determine whether two FSMs have dis-
tinguishing behaviors.

Corollary 19 Let M and M ′ two FSMs operating over the
same input alphabet, X . Assume that M ′ has index m. As-
sume also that P is a cover set for M , that R ⊆ X� is
nonempty and that it partitions the states of M ′ in at least
n ≤ m equivalence classes. Then, s0 and s′0 are equiv-
alent if and only if s0 and s′0 are PZ-equivalent, where
Z =

⋃m−n
i=0 X iR.

Proof Let Zk =
⋃k

i=0 X
iR, k ≥ 0. From Proposition 11

we have that such family {Zk}k≥0 is stratified. From Corol-
lary 16 we conclude that Z distinguishes every pair of
nonequivalent states of M ′. Then the result follows directly
from Theorem 18.

6 Characterization Sets

From the previous corollary, it might appear that Z and
M are independent, since the only hypothesis involving M ,
in that corollary, is that P is a cover set for M . But, in
fact, there is a relationship between Z and M . Before we
expose the relationship between Z and M , we need another
auxiliary result.

Lemma 20 Let M and M ′ be two FSMs operating over
the same input alphabet, X . Assume that all states of M
are reachable and that s0 ≈ s′0. Let Z ⊆ X� be a set par-
titioning the states of M ′ in m equivalence classes, where
m is the index of M ′. Then Z distinguishes every pair of
nonequivalent states of M .

Proof Let s1, s2 ∈ S with s1 �≈ s2 and assume s1 ≈Z s2.
Since all states of M are reachable, we have ρ1, ρ2 ∈ X�

such that δ̂(ρi, s0) = si, with i = 1, 2. In M ′ we would
have some s′1, s

′
2 ∈ S′ and with δ̂′(ρi, s′0) = s′i, where

i = 1, 2.
Now let β ∈ Z . We have,

λ̂(ρ2β, s0) = λ̂(ρ2, s0)λ̂(β, s2)

λ̂′(ρ2β, s
′
0) = λ̂′(ρ2, s

′
0)λ̂

′(β, s′2)

and, since s0 ≈ s′0, we obtain λ̂(β, s2) = λ̂′(β, s′2) and
λ̂(ρ2, s0) = λ̂′(ρ2, s′0). Since β is arbitrary, we conclude
that s2 ≈Z s′2.

Similarly,

λ̂(ρ1β, s0) = λ̂(ρ1, s0)λ̂(β, s1)

λ̂′(ρ1β, s
′
0) = λ̂′(ρ1, s

′
0)λ̂

′(β, s′1),

and we conclude that s1 ≈Z s′1, together with λ̂(ρ1, s0) =

λ̂′(ρ1, s′0).
Putting it together, and knowing that s1 ≈Z s2, we ob-

tain s1 ≈Z s′2 and also s2 ≈Z s′1. Hence, s′1 ≈Z s′2. But s′1
and s′2 are states of M ′ and so the hypothesis over Z gives
s′1 ≈ s′2.

On the other hand, since s1 �≈ s2, we obtain σ ∈ X�

such that λ̂(σ, s1) �= λ̂(σ, s2). Now,

λ̂(ρ1σ, s0) = λ̂(ρ1, s0)λ̂(σ, s1)

λ̂′(ρ1σ, s
′
0) = λ̂′(ρ1, s

′
0)λ̂

′(σ, s′1).

Hence, from λ̂(ρ1σ, s0) = λ̂′(ρ1σ, s′0) and λ̂(ρ1, s0) =

λ̂′(ρ1, s′0), we deduce λ̂(σ, s1) = λ̂′(σ, s′1).
Similarly,

λ̂(ρ2σ, s0) = λ̂(ρ2, s0)λ̂(σ, s2)

λ̂′(ρ2σ, s
′
0) = λ̂′(ρ2, s

′
0)λ̂

′(σ, s′2),

and then λ̂(σ, s2) = λ̂′(σ, s′2). However, since we al-
ready know that s′1 ≈ s′2 and this leads to the contradiction
λ̂(σ, s1) = λ̂(σ, s2). This shows that the initial hypothesis
was false. Hence, whenever s1 �≈ s2 holds we must also
have s1 �≈Z s2, establishing the result.

A set in these conditions is called a characterization set
of M .
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Definition 21 Let M be a FSM and W a set of input se-
quences. W is a characterization set for M if W distin-
guishes any pair of nonequivalent states of M .

The required relation between M and Z says that Z is a
characterization set of M , under certain hypothesis.

Theorem 22 Let M and M ′ be two FSMs operating over
the same input alphabet, X . Assume that M ′ has index
m and that P is a cover set for M . Assume also that
W ⊆ X� is nonempty and partitions the states of M ′ in
at least n ≤ m equivalence classes. If s0 ≈PZ s′0 then
Z =

⋃m−n
i=0 X iW is a characterization set for M .

Proof From Proposition 11 and from Corollary 16 we con-
clude that Z distinguishes every pair of nonequivalent states
of M ′. Since P is cover set for M , we conclude that ev-
ery state of M is reachable. From s0 ≈PZ s′0, together
with Corollary 19, we deduce s0 ≈ s′0. Now we can use
Lemma 20 and obtain that Z distinguishes every pair of
nonequivalent states of M . From Definition 21, Z is a char-
acterization set for M .

It is also easy to see that the reverse does not hold. For
that, let M and M ′ be two FSMs. It is clear that W = X�

partitions the states of M and M ′ in the maximum number
of equivalence classes. In this case, we will have Z = W =
X� and, obviously, Z is a characterization set for M and
M ′. But it is not the case that we will always have s0 ≈ s′0,
as it is easy to construct a counter-example.

Next result shows that, under relaxed conditions, when
two FSMs are equivalents both must have the same index.

Theorem 23 Let M and M ′ be two FSMs operating over
the same input alphabet, X . Let n and n′ be the index of
M and M ′, respectively. Assume that all states from both
FSMs are reachable. If s0 ≈ s′0 then n = n′.

Proof For the sake of contradiction, and without loss gen-
erality, we will assume n < n′.

Let s′i ∈ S′, 1 ≤ i ≤ n′, be states from each one of n′

equivalence classes induced by ≈ in S′. Since all states of
M ′ are reachable, we obtain ρi ∈ X� with δ̂′(ρi, s′0) = s′i,
1 ≤ i ≤ n′. In M , we will have some si ∈ S such that
δ̂(ρi, s0) = si, 1 ≤ i ≤ n′. Since n < n′, without loss
generality, we can say that s1 ≈ s2.

Take any z ∈ X�. We have

λ̂(ρ1z, s0) = λ̂(ρ1, s0)λ̂(z, s1) and

λ̂′(ρ1z, s
′
0) = λ̂′(ρ1, s

′
0)λ̂

′(z, s′1).

Since s0 ≈ s′0, it follows that λ̂(z, s1) = λ̂′(z, s′1). Simi-
larly, λ̂(z, s2) = λ̂′(z, s′2).

But since s1 ≈ s2, we obtain λ̂(z, s1) = λ̂(z, s2).
Therefore, λ̂′(z, s′1) = λ̂′(z, s′2). Since z ∈ X� is arbi-
trary, we conclude that s′1 ≈ s′2, a contradiction given that
s′1 and s′2 are in distinct classes in M ′.

Hence, we must have n ≥ n′. Similarly, n′ ≥ n, and
then n = n′.

The same result indicates that when the ≈ relation in-
duces a different number of equivalence classes in two
FSMs, these machines can not be equivalent to each other
(under the weak hypothesis of Theorem 23). On the other
hand, it is simple to obtain two nonequivalent FSMs, in a
such way that the ≈ relation induces the same number of
equivalence classes in both machines. For details, see [2].

7 The W-method as a Particular Case

Consider the hypothesis of Theorem 22. We can show
that W is a characterization set of M if n is the index of M
and the behaviors of both machines must match.

Corollary 24 Let M and M ′ be two FSMs operating over
the same input alphabet, X , and assume that all states in
M ′ are reachable. Assume further that M ′ has index m,
that P is a cover set for M and that M has index n. Assume
also that W ⊆ X� is nonempty and partitions the states of
M ′ in at least n ≤ m equivalence classes. If s0 ≈PZ s′0,
where Z =

⋃m−n
i=0 X iW , then n = m, Z = W and W is a

characterization set for M .

Proof Since s0 ≈PZ s′0, together with Corollary 19, we
conclude that s0 ≈ s′0. Next, we infer that n = m, from
Theorem 23. Hence, Z = W . Therefore, by Theorem 22,
W is a characterization set for M .

When W is a characterization set for M we can guar-
antee the partitioning of M ′ in a number of classes at least
equal to the index of M , if the machines are to be PZ-
equivalent.

Lemma 25 Let M and M ′ be two FSMs operating over the
same input alphabet, X . Assume that M ′ has index m, that
M has index n and that P is a cover set for M , with n ≤ m.
Assume also that W ⊆ X� is a characterization set for M
and that s0 ≈PZ s′0, where Z =

⋃m−n
i=0 X iW . Then W

partitions M ′ in at least n equivalence classes.

Proof We know that M has n equivalence classes: Let
C1, . . . , Cn be these classes. Let si ∈ Ci and sj ∈ Cj ,
where 1 ≤ i < j ≤ n. Then since W is a characterization
set for M , we have si �≈W sj . Since P is cover set of M ,
we have δ̂(ρ, s0) = si, for some ρ ∈ P . We also know
that δ̂′(ρ, s′0) = s′i, for some s′i of M ′. Since s0 ≈PZ s′0,
we get si ≈Z s′i. Since W ⊆ Z , then si ≈W s′i. In the
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same way, we have s′j of M ′ with sj ≈W s′j . Then we ob-
tain s′i �≈W s′j , otherwise si ≈W sj . We conclude that W
partitions M ′ in at least n ≤ m equivalence classes.

Now we can use Lemma 25 to show another version of
Corollary 19, under the hypothesis that the basic set of input
sequences is a characterization set for the specification.

Theorem 26 Let M and M ′ be two FSMs operating over
the same input alphabet, X . Assume that M ′ has index m,
that P is a cover set for M and that M has index n, with
n ≤ m. Assume also that W ⊆ X� is a characterization
set for M and that s0 ≈PZ s′0, where Z =

⋃m−n
i=0 X iW .

Then s0 ≈ s′0.

Proof Assume s0 ≈PZ s′0. Use Lemma 25 to show that W
partitions M ′ in at least n classes. Now use Corollary 16 to
show that Z partitions M ′ in m classes. Finally, use Theo-
rem 18.

The next result is the main postulate of the basic W-
method, as given in [3].

Theorem 27 Let M and M ′ be two FSMs operating over
the same input alphabet, X . Assume that M ′ has index m,
that P is a cover set for M and that M has index n, with
n ≤ m. Assume also that W ⊆ X� is a characterization
set for M . Then s0 ≈ s′0 if and only if s0 ≈PZ s′0, where
Z =

⋃m−n
i=0 X iW .

Proof If s0 ≈ s′0, then s0 ≈PZ s′0, trivially. For the other
direction, use Theorem 26.

In general, W need not be a characterization set for M
(see Corollary 19). For the method to work, we need only
guarantee that M ′ will be partitioned in at least n equiva-
lence classes with n ≤ m, where m is the index of M ′.
No relationship between W and M is needed. On the other
hand, when using the basic W-method directly, we need to
obtain a characterization set W for M , we need to know
the index of M , and we also need to secure the relationship
n ≤ m. When W is not a characterization set for M , the
method may fail, as shown by the following example.

Example 28 The alphabet of M and M ′ is X = {a, b, c}.
See Figures 1 and 2. It is easy to see that M has index
n = 3, because s1 ≈ s3. The index of M ′ is m = 3 since
s′1 ≈ s′3 ≈ s′4. Hence m = n, and we would be left with
Z = W (see Theorem 27). Now take W = {ε}. A cover
set can be given by P = {ε, aa, ab, ac, ba, bb, bc, ca, cb, cc}.
Then, PZ = PW = P .

It is easy to see that M and M ′ are PZ-equivalent. But
s0 ≈ s′0 is not true. To see that, take α = bbb. We have
λ̂(α, s0) = 100 and λ̂′(α, s′0) = 101. Note how W induces
only one equivalence class in M ′. Therefore, clearly, W is
not a characterization set for M .

s0

s1 s2 s3

c/1

a/0

b/1

a, b, c/0 a, b, c/1 a, b, c/0

Figure 1. Specification M .

s0

s1 s2

s3 s4

a/0 b, c/1

a, b, c/1 a, b, c/0

a, b, c/1 a, b, c/1

Figure 2. Implementation candidate M ′.

In general, it would be important to devise a mechanism
by which we could obtain the number of classes induced by
W in M ′. First, because in this case we might avoid cal-
culating a characterization set for M when using our more
general method. Secondly, we could potentially reduce the
size of the sequences in Z , when W partitions M ′ in k
classes, with k > n, given that Z =

⋃m−n
i=0 X iW .

8 The Generalized Test Generation Method

Algorithm 1 presents the generalized model-based test
generation method. The input parameters are: M represents
a system specification, M ′ is an implementation candidate
for the specification M , R is any set of input sequences, n
is a lower bound on the number of classes induced by R in
M ′, and m is an upper bound on the index of M ′. Thus, the
method requires knowledge of a lower bound on the number
n of equivalence classes induced by R in the implementa-
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tion machine M ′, as well as an upper bound on the index
m of M ′. In an extreme case, once can set n = 1 and
m = |S ′|, that is, set m to the number of states in M ′. Note
that the implementation M ′ is given as a black box. So, we
do not have access to its internal structure, and the parame-
ters n and m must be estimated. As for the specification M ,
R may partition it in any number k of classes. Of course, if
M and M ′ turn out to be equivalent, then they will have the
same index and Z will, in fact, be a characterization set for
both M and M ′.

If the condition n ≤ m is secured and it turns out that M
and M ′ are not equivalent, the algorithm produces a partic-
ular input sequence σ that is a witness to this fact, that is,
M and M ′ display distinct behaviors over σ.

Algorithm 1: Generalized test generation algorithm.

Input: M , M ′, R, m, n
begin

Obtain a cover set P for M ;
if n ≤ m then

Compute Z =
⋃m−n

i=0 X iR;
Compute PZ;

else
mesg: M and M ′ are not equivalent;
return ;

end
foreach σ ∈ PZ do

Apply σ to M and to M ′;
Obtain y = λ̂(σ, s0) and y′ = λ̂′(σ, s′0);
if y �= y′ then

mesg: M and M ′ are not equivalent;
mesg: σ is an input witness;
return ;

end
end
mesg: M and M ′ are equivalents;
return ;

end

In order to apply the basic W-method (see Theorem 27)
some extra effort must be applied to compute the index of
M as well as a characterization set for M .

In our proposal, we do not need characterization sets, nor
is it necessary to inform the index of the specification ma-
chine M . On the other hand, practical information about
M can aid in obtaining a good candidate for R. For exam-
ple, based on the number of symbols in the input alphabet
and on the number of states and transitions in M , some dis-
tinguishing sequences can be inserted into R. Then, it is
easy to obtain the set Z using the notion of stratification.
Clearly, after obtaining the concatenation PZ , we can use
this product to verify conformance between the specifica-
tion and several proposed implementations.

Note that the size of the PZ set depends on the algorithm
used to obtain the cover set P . In fact, this algorithm is

polynomial in the size of M (see Section 3). Furthermore,
it depends on the choice of the set R and the bound m.

9 An Example

We apply the generalized algorithm to a simple example.

Example 29 Let a specification M be given as in Figure 3.
Then M has k = 4 states, its input alphabet is X = {a, b},
its output alphabet is Y = {0, 1}, and its transition function
is as depicted in the figure.

As we can see, some transitions over the input a produce
either the output 0 or the output 1. Hence, there are at least
two distinct classes. Now, if we use the sequences aa and ba
there is a good chance that such sequences can distinguish
other states as well. Therefore, we take R = {aa, ba} and
assume that R partitions M ′, an implementation candidate,
in at least n = 3 equivalence classes. If we accept m = 5
as a maximum on the number of states in M ′, we have all
input conditions for Algorithm 1 secured. Note that R is not

s0 s1

s2 s3

a/0

b/0 a/0
b/0

a/0

b/0
b/0

a/1

Figure 3. Machine specification M .

a characterization set for M because we have states s0 and
s1 in the same equivalence class induced by R.

Next we calculate a cover set P for M . In the example,
using the labeled tree construction (see Section 3) we get
P = {ε, a, b, aa, ab, ba, bb, aab, aaa}.

Now, withm = 5, n = 3 andR = {aa, ba}, we compute
Z =

⋃m−n
i=0 X iR and obtain

Z = {aa, ba, aaa, aba, baa, bba, aaaa,
abaa, baaa, bbaa, aaba, abba, baba, bbba}.

Then, the concatenation PZ will count 56 sequences.

10 Concluding Remarks

The Finite State Machine (FSM) model is well estab-
lished and has been intensively investigated as a foundation
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for the automatic generation of test cases. The W-method
is a well known technique used to compute test sequences
having FSMs as its basic formal model.

In this paper, our contribution is threefold. First, we
generalized the basic W-method, avoiding the computation
of characteristic sets and indexes. Secondly, we demon-
strated in a clear way how the basic W-method follows from
our generalized method. And finally, we presented detailed
proofs of correctness both of our algorithm, as well as for
the main tenets of the basic W-method, the latter being ab-
sent in the original work where it was introduced.

Note that some recent test generation methods, such as
those presented in Section 2.2, have to calculate a charac-
terization set of the specification, in the same way as the
basic W-method. On the other hand, our method does not
need characterization sets in order to generate test cases.
We envisage that similar ideas can be used to extend and
generalize other test case generation techniques, such as the
Wp and HSI methods.

As future steps we plan to integrate the results presented
in this paper with extensions of the basic FSM model, now
also taking into account time constraints [1, 15].
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