• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
https://doi.org/10.11606/D.97.2019.tde-28052019-140603
Documento
Autor
Nombre completo
Marcos Moacir de Souza Júnior
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
Lorena, 2018
Director
Tribunal
Santos, Júlio César dos (Presidente)
Ebinuma, Valéria de Carvalho Santos
Felipe, Maria das Graças de Almeida
Pereira, Félix Monteiro
Título en portugués
Aplicação de técnicas de processamento e análise digital de imagens para a caracterização fisio-morfológica do fungo Monascus ruber Thieghan IOC 2225: crescimento e produção de pigmentos
Palabras clave en portugués
Monascus ruber
Pigmentos
Processamento e análise de imagens
Resumen en portugués
A caracterização morfológica para a compreensão de padrões sobre o perfil comportamental e de relações entre determinados parâmetros proporciona um maior entendimento sobre sistemas naturais. Neste sentido, o processamento e análise digital de imagens (PADI) é ferramenta útil e adequada para avaliação dos aspectos morfológicos e morfométricos de seres vivos. Este projeto teve como finalidade o desenvolvimento de técnicas de PADI para a caracterização do perfil de crescimento, propagação e produção de pigmentos do fungo filamentoso Monacus ruber, fornecendo informações importantes para identificação e conhecimento do comportamento deste fungo a partir da variação da concentração das fontes de carbono (glicose) e de nitrogênio (glutamato monossódico - GMS) e do pH do meio. Foram elaborados e identificados parâmetros para a caracterização da fermentação em estado semissólido a partir do PADI, sendo eles área micelial, crescimento radial pigmentar e micelial, espessura, variação da intensidade pigmentar, desvio padrão pigmentar e fator forma ao longo do tempo. Foram realizados experimentos conforme delineamento composto central rotacional (DCCR) 23 com triplicata no ponto central para avaliação de condições ótimas de produção de pigmentos amarelo, laranja e vermelho. As variáveis resposta empregadas foram produção de pigmentos amarelo, laranja, vermelho, área micelial, velocidade micelial, velocidade pigmentar e variação da intensidade pigmentar extracelular. Modelos empíricos foram ajustados e utilizados para maximização da produção de pigmentos. Os resultados mostraram que elevadas concentrações de glicose e GMS e baixo pH favoreceram a produção de pigmentos. As condições otimizadas foram: concentração de glicose de 51,37 g.L-1, concentração de GMS de 8,19 g.L-1 e pH 2,31. Nestas condições, produziram-se 123,05 UA.g-1, 95,98 UA.g-1 e 99,48 UA.g-1 de pigmentos amarelo, laranja e vermelho, respectivamente. A partir dos resultados pôde-se determinar que os parâmetros elaborados para caracterizar os padrões do crescimento e as relações morfológicas com outras variáveis utilizando de técnicas do PADI são ferramentas poderosas para o acompanhamento e rastreabilidade deste bioprocesso. Os resultados obtidos também favorecerão futuros estudos empregando inteligência artificial, como aprendizado de máquina e redes neurais artificiais, para elaboração de modelos e estratégicas de automação e acompanhamento on-line do padrão de crescimento do microrganismo e as relações entre variáveis de processo.
Título en inglés
Application of processing techniques and digital image analysis for the physio-morphological characterization of the fungus Monascus ruber Thieghan IOC 2225: growth and pigment production.
Palabras clave en inglés
Image processing and analysis
Monascus ruber
Pigments
Resumen en inglés
The morphological characterization for the understanding of patterns of the behavioral profile and relations between certain parameters provides a greater understanding about natural systems. In this sense, digital image processing and analysis (DIPA) is a useful and adequate tool for the evaluation of the morphological and morphometric aspects of living beings. This project aimed at the development of DIPA techniques for the characterization of the growth profile, propagation and production of pigments of the filamentous fungus Monacus ruber, providing important information to identify and know the behavior of this fungus from the variation of the concentration of the carbon source (glucose) and the nitrogen source (monosodium glutamate - MSG) and from the variation of the pH of the medium. Parameters for the characterization of the fermentation in semi-solid state were elaborated and identified using DIPA, which were mycelial area, pigmentary and mycelial radial growth, thickness, variation of pigment intensity, pigmentary standard deviation and form factor over time. Experiments were carried out in accordance with the delineation of the central rotational compound (DCRC) 23 with triplicate at the central point to evaluate optimal conditions of production of yellow, orange and red pigments. The response variables employed were yellow, orange, red pigment, mycelial area, mycelial velocity, pigment velocity and extracellular pigment intensity. Empirical models were fitted and used to maximize pigment production. The results showed that high concentrations of glucose and MSG and low pH favored the production of pigments. Optimized conditions were: glucose concentration of 51.37 g.L-1, MSG concentration of 8.19 g.L-1 and pH 2.31. Under these conditions were produced 123.05 AU.g-1, 95.98 AU.g-1 and 99.48 AU.g-1 of yellow, orange and red pigments, respectively. From the results it was possible to determine that the parameters elaborated to characterize growth patterns and morphological relationships with other variables using DIPA techniques are powerful tools for monitoring and traceability of this bioprocess. The results obtained will also favor future studies using artificial intelligence, such as machine learning and artificial neural networks, for the elaboration of automation strategies and online monitoring of the growth pattern of the microorganism and the relations between process variables.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
BID18010_C.pdf (6.57 Mbytes)
Fecha de Publicación
2019-05-28
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2024. Todos los derechos reservados.