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Prof. Dr. Cláudio Ribeiro de Lucinda
Coordinator of the Graduate Program in Economics - Field: Applied Economics



CAIO AUGUSTO VIGO PEREIRA

Portfolio efficiency tests with conditioning information using
empirical likelihood estimation

Dissertation presented to the Graduate
Program in Economics - Field: Applied
Economics from the School of Economics,
Business and Accounting of Ribeirão Preto
at University of São Paulo, in order to obtain
the title of Master of Science. Corrected Ver-
sion. The original is available at FEA-RP/USP.

Advisor: Prof. Dr. Márcio Poletti Laurini
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Administração e Contabilidade de Ribeirão Preto da Universidade de
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Abstract

PEREIRA, C.A.V. Portfolio efficiency tests with conditioning information using
empirical likelihood estimation. 2016. 98 p. Dissertation (Master Degree). School of
Economics, Business and Accounting of Ribeirão Preto, University of São Paulo, Ribeirão
Preto, 2016.

We evaluate the use of Generalized Empirical Likelihood (GEL) estimators in portfolios

efficiency tests for asset pricing models in the presence of conditional information. Estima-

tors from GEL family presents some optimal statistical properties, such as robustness to

misspecification and better properties in finite samples. Unlike GMM, the bias for GEL

estimators do not increase as more moment conditions are included, which is expected in

conditional efficiency analysis. We found some evidences that estimators from GEL class

really performs differently in small samples, where efficiency tests using GEL generate

lower estimates compared to tests using the standard approach with GMM. With Monte

Carlo experiments we see that GEL has better performance when distortions are present

in data, especially under heavy tails and Gaussian shocks.

Keywords: Portfolio Efficiency. Conditional Information. Efficiency Tests. GEL.

JEL Classification: C12, C13, C58, G11, G12





Resumo

PEREIRA, C.A.V. Testes de eficiência com o uso de informação condicional em
portfólios com estimação por verossimilhança emṕırica. 2016. 98 f. Dissertação
(Mestrado). Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto,
Universidade de São Paulo, Ribeirão Preto, 2016.

Neste estudo avaliamos o uso de estimadores Generalized Empirical Likelihood (GEL)

em testes de eficiência de portfólios para modelos apreçamento de ativos na presença de

informação condicional. Estimadores da famı́lia GEL apresentam algumas propriedades

estat́ısticas ótimas, tais como robustez à má especificação e melhores propriedades em

amostras finitas. Diferentemente do GMM, o viés dos estimadores GEL não aumenta

conforme se incluem mais condições de momentos, o que é esperado na análise de eficiência

condicional. Encontramos algumas evidências de que os estimadores da classe GEL real-

mente performam diferentemente em amostras finitas, em que testes de eficiência com o

uso do GEL geram estimativas menores comparadas aos testes com o uso da abordagem

padrão com GMM. Através dos experimentos de Monte Carlo vemos que o GEL possui

melhor performance quando distorções estão presentes nos dados, especialmente sob heavy

tails e choques Gaussianos.

Palavras-chave: Portfólio Eficiente. Informação Condicional. Testes de Eficiência. GEL.

Classificação JEL: C12, C13, C58, G11, G12
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1 Introduction

In financial economics, the pivotal works of Markowitz (1952) and Sharpe (1964)

on portfolio allocation are fundamental pieces that influenced a whole range of subsequent

studies. With these works, we had the emergence of so-called Modern Portfolio Theory

(MPT), in which the mean-variance structure plays a central role. The mean-variance

structure had a significant impact in a number of areas, having influence not only in the

finance field, in which it has been used in portfolio analysis, asset pricing and corporate

finance; but also on analysis of economic policy under uncertainty, labor markets, monetary

policy, as well as in hedging and even in inventory problems.

The assessment of investments funds performance is of major importance in this

context. Not only for investors, but also for fund managers, in view that his remuneration

may be related with such performance. The efficiency of financial allocations plays a key

role in empirical asset pricing framework, with theoretical and practical importance in

financial markets.

More recently, approaches to examine efficiency tests under the conditional point of

view has been quickly developing (e.g. Ferson and Siegel (2009)), in contrast to tests that

are performed in the unconditional form. Given that the true values are not observable

(e.g. expected return and volatility), then these parameters must be estimated in some

way and the results analysis should be based on statistical inference.

This study uses an alternative econometric method based on Empirical Likelihood

estimators for comparing the portfolios efficiency. This class of estimators has some special

characteristics that confer it to have better statistical properties, such as robustness to

outliers and heavy tails distributions, and better finite and asymptotic properties compared

to the usual methods based on least squares and Generalized Method of Moments.

According to Chaussé (2010), financial data, in particular the return of stocks,

commonly presents heavy-tailed and asymmetric distributions. As the GMM estimators
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does not impose any restrictions on the data distribution, only being based on assumptions

about the moments, this method is widely used in finance. Cochrane (2009) also says

that GMM structure fits naturally for the stochastic discount factors formulation of

asset pricing theories, due to the easiness on the use of sample moments in the place of

population moments. However, GMM estimators can be suboptimal in finite samples. In

special, in two-stage and iterated GMM estimators are affected by the presence of a finite

sample bias component proportional to the number of moment conditions, and the use

of higher order moment conditions makes these estimators sensitive to the presence of

outliers in distributions with heavy tails (ANATOLYEV; GOSPODINOV, 2011; FERSON;

FOERSTER, 1994; NEWEY; SMITH, 2004).

This study analyses the use of Generalized Empirical Likelihood (GEL) to circum-

vent the deficiencies existing on the use of usual estimators in testing portfolio efficiency

in the presence of conditional information.

Primarily, we evaluate how efficiency tests based on GEL and GMM estimations can

lead to different decisions. We analyze this issue by comparing the test results for different

sample sizes and portfolios types, for two asset pricing models, as well as estimations with

and without conditional information. The results indicated that, in general, efficiency tests

using GEL generate lower estimates when compared to tests using the standard approach

based on GMM. Moreover, for the smallest sample in use, which is the one that most

resembles features of a finite sample size used in finance, we see that the efficiency tests

results are conflicting among GEL and GMM methodologies.

In the second part of the work we discuss the influence of the covariance matrix

estimation in the results of efficiency tests, comparing the use of the standard long-run

covariance HAC matrix estimators with the fixed bandwidth estimators, to overcome the

problems caused by serial correlation, heteroskedasticity and observation or measurement

errors that are common in financial data.

We also study tests robustness with the use of GMM and GEL estimators in a

finite sample context. With Monte Carlo experiments we assess the effects that data

contaminations, as outliers and the presence of heavy tails in the innovation structure, may
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cause on the results of efficiency tests. In general, we see that GEL has better performance

when heavy tails are present. While, regarding the presence of outliers, both GMM and

GEL may have better robustness depending on the DGP we choose to use. We also see

evidences that, under the null hypothesis, the tests using either GEL or GMM estimators

have a tendency to over-reject the hypothesis of efficiency in finite samples.

All these results gathered may be an evidence that efficiency tests based on esti-

mators from GEL class perform differently when compared to GMM, especially under

small samples. These results extend the findings from Almeida and Garcia (2008) who

obtain nonparametric estimates of bounds on the stochastic discount factors accounting

for higher moments in the distribution of returns. The same authors developed an econo-

metric method based on GEL that provides consistent estimators of information bounds

and specification-error bounds that are based on the minimum discrepancy measures

(ALMEIDA; GARCIA, 2012).

The structure of this work is as follows. Next section briefly review the litera-

ture, contextualizing the topic under evaluation. Section 3 introduces the methodology,

presenting the asset pricing theory and models, as well as the econometric models for

portfolios efficiency tests for both estimation methods assessed: GMM and GEL. Section 4

presents the data used: portfolios, factors and instruments. Section 5 presents the results

of the efficiency tests performed for all portfolios, asset pricing models and estimations

methodologies. It also provides the simulations experiments to evaluate tests robustness

under both methods of estimation. Finally, section 6 concludes. Additional tables and

figures are presented in Appendix.



2 Literature Review

In the investment decisions and portfolios evaluation literature, we have in the

theory introduced by Markowitz (1952), and complemented by Sharpe (1964), a grounding

milestone in the asset allocation field, with impacts and consequences still present in the

most recent contributions in the economic finance area. Both works, given the influence

and diffusion that had, gave rise to what today is known as Modern Portfolio Theory

(MPT). In his study, Markowitz (1952) shows that investors face a trade-off between gains

and risk, which respectively are the first two moments of the returns distribution: mean

and variance. Based on this, the investor could choose the best portfolios, i.e., those with

low risk for a given return, obtaining what would be the efficient frontier.

Prior to the MPT, the construction of portfolios were mostly based on the returns,

taking the risk a secondary figure. With Markowitz theory, the focus on returns remained,

but the risk was elevated to a similar importance given to the returns. With the MPT, we

have a clear demonstration that with assets diversification it was possible improving the

reduction of variance, thereby building portfolios that as a whole have better risk-return

ratio, instead of building portfolios taking each asset and their characteristics individually.

In short, with Markowitz’s theory it was possible to understand that no positive marginal

expected return can be achieved without an impact in the portfolio’s risk characteristics.

It is worth mentioning that, in general, under this approach it is imposed the assumption

that investors have quadratic utility function. Thus, the expected utility should be a

function of the first two moments of the distribution, which implies that the mean-variance

framework would be sufficient to describe investors behavior.

With the broad concept of assets diversification derived from Markowitz, the

question of optimizing portfolios has taken shape, and in recent decades different methods

have emerged influenced by the MPT. The mean-variance framework for risk-return

evaluation guided the main measures and indexes that have come to light with the purpose

of assisting investors in asset performance assessment and portfolio construction. Sharpe
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(1966), Treynor (1965), Jensen (1968), Sortino and Price (1994) and many others developed

measurements for portfolios evaluation.

From Sharpe (1966), we have the most traditional and widely used measure for

portfolios evaluation. Known as Sharpe ratio, it is given by: E(Rt)−Rf

σ
. The numerator of

this ratio can be understood as the portfolio risk premium, measured by the difference

between expected return (E(Rt)) and the risk-free asset (Rf ) representing the investor’s

opportunity cost, i.e., a benchmark set by himself. So, the Sharpe ratio evaluates the net

expected return of the portfolio in relation to its risk (σ). Note that this measure implies

that there is a uniform weighting by the investor for returns above and below the sample

mean.

When we focus in the problem of testing portfolios efficiency, we step into a form

of optimization problem. The optimization solution of the mean-variance structure can be

made either conditionally on a set of information, as unconditionally too. Ferson and Siegel

(2001) define that the conditional information is present when the optimal solution may

be a function of the information received from the future returns probability distribution.

Among several studies, Chen and Knez (1996) and Ferson and Schadt (1996) show

that conditioning in the state of the economy is statistically and economically significant for

investment performance measurement. Christopherson, Ferson and Glassman (1998) found

that the overall distribution of conditional alphas is similar to that of the unconditional

alphas.

Hansen and Richard (1987) is an important study which analyzes and compares

the conditional and unconditional approaches. The authors propose to study the efficiency

of the mean-variance structure with respect to conditional information, and they conclude

that unconditional efficiency portfolios should be conditionally efficient, but the reciprocal

is not necessarily true. Ferson and Siegel (2001) derive the solution of the mean-variance

structure optimization in the presence of conditional information, in what might be framed

as unconditional mean variance efficiency. Continuing this analysis, Ferson and Siegel

(2009) derive a methodology to test portfolios efficiency under the structure that they

derived in 2001.



3 Methodology

This study aims to evaluate an alternative econometric method for comparing

portfolios efficiency in the presence of conditional information. Ferson and Siegel (2009)

presented results in this direction, and this project intends to expand the results and

applications of this research, testing an alternative methodology for this analysis.

The methodology to be tested is based in the Empirical Likelihood estimation

method. Thus, it is expected that estimators have better statistical properties, such as

robustness and better asymptotic bias in finite samples. The study proposed here, has

at this point the main difference when compared to the Ferson and Siegel (2009). How,

essentially, we must work with finite sample data, we seek in this research to analyze the

behavior of an estimator which has superior properties under this characteristic of the

sample.

Note that, when testing portfolios efficiency with the use of conditional information,

one should seek to maximize the unconditional mean relative to the unconditional variance,

where portfolio composition strategies are functions of the information matrix. This is the

line followed by the unconditional mean variance efficiency with respect to the information.

It is valid to compare this framework with the conditional efficiency, where efficiency of the

mean-variance structure is evaluated under conditionals means and variance. Note that in

the first case, being the approach pursued by this work, the conditional information is used

in the construction of the portfolio, and then the efficiency is assessed unconditionally.

3.1 Incorporating Conditional Information

Any asset pricing model may be defined following the basic pricing equation:

pt = Et(mt+1xt+1) (3.1)

where pt is the asset price, xt+1 the asset payoff, and mt+1 is the stochastic discount factor
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(SDF). Depending the purpose of the research, the SDF may also be known as change of

measure, pricing kernel, or even as state-price density.

Notice that the models need to portray the prices taking into account conditional

moments. This may be observed in equation (3.1) when it represents with the use of a

conditional expectation the available set of information to the investor in period t of time.

Defining Zt as the set of available information at t, the equation (3.1) may also be written

as pt = E(mt+1xt+1|Zt).

According to Cochrane (2009), all asset pricing models may be reduced to distinct

ways to connect the SDF to the data. Restricting only to assets in stock class, succinctly,

the payoff may be represented as xt+1 = pt+1 + dt+1, where dt+1 is the dividend from the

asset evaluated. For practical reasons, it is preferable to work with the gross return, i.e.,

Rt+1 ≡
xt+1

pt
. Thus, follows that the pricing models can be represented in accordance with

the fundamental valuation equation:

E(mt+1Rt+1|Zt) = 1 (3.2)

Assuming that exist a subset of variables Z̃t such that Z̃t ⊂ Zt and multiplying

both sides by the elements of Z̃t it is possible to get:

Et(mt+1Rt+1 ⊗ Z̃t) = 1⊗ Z̃t (3.3)

where ⊗ represents a Kronecker product. If we take the unconditional expectation in (3.3)

we get:

E(mt+1Rt+1 ⊗ Z̃t) = E(1⊗ Z̃t) (3.4)

For the equation (3.1) it is also possible to incorporate instruments and work with

unconditional moments as in E(mt+1xt+1 ⊗ Z̃t) = E(pt ⊗ Z̃t). This approach is known

as managed portfolios, being the product Rt+1 ⊗ Z̃t denominated scaled returns, and the

product xt+1 ⊗ Z̃t as scaled payoffs. As the instrument zt ∈ Z̃t is inserted in the pricing
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equation as a product, this approach may also be denominated as multiplicative approach.

Intuitively, following Ferson and Siegel (2009), the equation (3.4) asks the SDF to price the

dynamic strategy payoffs on average, which may also be understood in an unconditionally

form.

Notice that with managed portfolios it is possible to incorporate conditional infor-

mation and still work with unconditional moments. The main advantage of this structure

is that there is no need (i) to explicit model conditional distributions, and besides (ii)

it avoids the range problem of the conditional information under assumption. If it was

necessary to incorporate conditional information with the use of conditional moments,

from (i) would be necessary to formulate parametric models taking the risk of incorrectly

define it; while from (ii) would be necessary to assume that all investors use the same set

Z̃t of instruments that was included in the conditional model, what clearly incorporates a

high degree of uncertainty.

3.2 Estimation Methodology

The use of generalized method of moments (GMM) is fairly common in the

estimation of asset pricing models. This happens primarily because with GMM there is no

need to impose any distribution regarding the data, requiring only assumptions about the

population moment conditions. In addition, for the multiplicative approach, its structure

entails that the amount of instruments must exceed the moment conditions, justifying the

use of the GMM. Then, from equation (3.1) we can take unconditional expectations to get:

pt = Et(mt+1xt+1)

⇒ pt = E(mt+1xt+1|Zt)

⇒ E(pt) = E(mt+1xt+1)

(3.5)

the asset pricing under unconditional moments must be a specific case of pricing under

conditional moments. To do so, we must use the Law of Iterated Expectations.

When we use the asset pricing equation under unconditional moments, the moments
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conditions necessary for the estimation by GMM become evident. Isolating the terms from

equation (3.5) we can define the errors ut, so that ut = 0, i.e., ut = mt+1Rt+1 − 1. Thus,

the conditions under unconditional moments can be written as:

E(mt+1xt+1 − pt) = 0 (3.6)

replicating the same procedure in the equation with the gross returns :

E(mt+1Rt+1 − 1) = 0 (3.7)

For managed portfolios, the unconditional moments conditions are easily derived

from equation (3.7):

E[(mt+1Rt+1 − 1)⊗ Z̃t] = 0⇒ E[mt+1(Rt+1 ⊗ Z̃t)− (1⊗ Z̃t)] = 0 (3.8)

Thus, the sample means of ut are defined as:

gT = 1
T

T∑
t=1

ut = 1
T

T∑
t=1

[mt+1Rt+1 − 1] (3.9)

while for the managed portfolios approach the sample means of ut are defined as:

gT = 1
T

T∑
t=1

ut = 1
T

T∑
t=1

[mt+1(Rt+1 ⊗ Z̃t)− (1⊗ Z̃t)] (3.10)

As the moment conditions are nothing more than the difference between observed

and expected returns; then, in a graph that relates both returns, the alpha from Jensen

(1968) must be the vertical distance between the points and a straight 45° line. It is worth

to pay attention for the fact that, to make use of GMM all variables that comprise the

moment conditions must be jointly stationary and ergodic, besides having finite fourth

moments. This case highlights the need to use the equation given in (3.7), instead of

equation (3.6). In the latter one, even that the payoffs are explicit in the definition of the
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moments condition, as prices and dividends are expected to rise over time, this fact would

cause failure in the stationarity hypothesis.

Finally, denoting by θ as the vector of parameters to be estimated, the GMM

estimator can be defined as:

θ̂T (Ŵ ) ≡ argmin
θ̂
gT (θ̂)′ŴTgT (θ̂) (3.11)

where, Ŵ is the conventional positive weighting matrix q × q, for q moment conditions

from GMM estimation.

3.2.1 Empirical Likelihood Estimation

Smith (1997) and Owen (2001) recently introduced a new family of estimators

denominated Generalized Empirical Likelihood (GEL), that just as GMM, it is only based

on moment conditions. According to Anatolyev and Gospodinov (2011), this is a non-

parametric method that has the important attractive of asymptotic properties and finite

samples with a variety of applications and can be used as a convenient structure analysis,

estimation and inference. According to them, the class of estimators GEL leads to a better

understanding regarding the properties of the estimators based on moments and allow

more powerful tests, more efficient estimation of the density and distribution functions,

and better bootstrap methods.

Following Anatolyev and Gospodinov (2011), suppose a system of restrictions on

unconditional moments, such as:

E[g(w, θ0)] = 0 (3.12)

where θ ∈ Θ is a k × 1 vector of the true parameters, w is a vector of observables,

{wi}ni=1 is a random sample, and g(w, θ) is a vector q × 1 of the moments conditions.

Let p = (p1, p2, . . . , pn) be a collection of probability weights assigned to each sample
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observation. Thus, we have the following empirical likelihood problem:

maxp,θ 1
n

∑n
i=1 log(pi)

subject to ∑n
i=1 pig(wi, θ) = 0∑n
i=1 pi = 1

From this constraint maximization we obtain the saddlepoint problem, given by:

max
θ∈Θ

min
λ

1
n

n∑
i=1
−log(1 + λ′g(wi, θ)) (3.13)

from the solution of this problem it is possible to obtain the Empirical Likelihood estimator

θ̂ (as well as the GEL multipliers λ̂). If the substitution is made in the saddlepoint problem

in (3.13) by an arbitrary criterion that is subject to certain shape conditions, it can be

obtained the GEL estimator. To do so, let ρ(υ) be a strictly concave smooth function

which satisfies ρ(0) = 0, ∂ρ(0)/∂υ = ∂2ρ(0)/∂υ2 = −1. This brings up the GEL estimator,

given by θ̂, and the GEL multipliers, given by λ̂, which are the solution of the saddlepoint

problem below:

min
θ∈Θ

sup
λ∈Λn

n∑
i=1

ρ(λ′g(wi, θ)) (3.14)

where, Λn = {λ : λ′m(wi, θ) ∈ Υ, i = 1, . . . , n} and Υ is some open set containing zero

(NEWEY; SMITH, 2004).

Anatolyev and Gospodinov (2011) demonstrate how both estimators class, GEL

and GMM, have equivalent asymptotic properties. The authors point out the asymptotic

normality of GEL estimators. To do so, they invoke the Central Limit Theorem and show

that for
√
n
∑m
i=1 g(w, θ0) implies that the GEL estimator θ:

√
n(θ̂ − θ0) d−→ N(0,Ωθ) (3.15)
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Thus, under overidentification conditions, the elements of the multiplier estimator

λ̂ are linearly dependent. The authors also show that the GEL estimators of θ0 e λ0 are

asymptotically independent.

However, even if GEL and GMM estimators have identical asymptotic properties,

in finite samples they exhibit different behaviors. According to Newey and Smith (2004),

a good way to evaluate the bias of these estimators would be through the analysis of

how many terms compose the analytical expressions of the second order asymptotic bias,

and also by the precise manner in which their magnitudes are related to the number of

moments constraints from the model.

Therefore, the examination should focus on the analysis of the higher-orders

asymptotic bias expressions. Newey and Smith (2004) derive this higher-order asymptotic

bias for the i.i.d. case using a random sample for both GEL and GMM estimators. They

conclude that GEL estimation is preferable to GMM because GEL has one less term in

its second order asymptotic bias expression. Moreover, the authors also demonstrate a

practical implication when there are a considerable quantity of instruments: under this

situation would not be recommended to select many instruments on a GMM estimation

to avoid inflating the bias. Anatolyev (2005) get similar conclusions when comparing the

second order asymptotic bias for GEL and GMM estimators in time series models. In

summary, estimations based via GEL implies that, in opposition to GMM, the bias should

not increases as the number of moment conditions grows.

Thus, using the criterion of bias assessment from Newey and Smith (2004), GEL

estimator shows to be the best compared to GMM estimator. According to Anatolyev

and Gospodinov (2011), this higher order asymptotic superiority from GEL estimator is

usually attributed to its one-step nature, as opposed to the multi-step of GMM.

Succinctly, one can say that the estimation by GEL method seeks to minimize the

distance between the vector of probabilities p and the empirical density 1/n in equation

(3.13). Each of the estimators which are within the GEL class use different metrics

to measure the distance. Owen (2001) defines the Empirical Likelihood (EL), where

ρ(υ) = ln(1 − υ). Kitamura and Stutzer (1997) developed the estimator exponential
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tilting (ET), where ρ(υ) = −exp(υ). Finally, one can still highlight the continuous updated

estimator (CUE), where ρ(υ) is a quadratic function. The CUE was developed by Hansen,

Heaton and Yaron (1996), but were Newey and Smith (2004) who have shown that this

estimator can also be classified in GEL family.

3.2.2 HAC Estimation

The equation (3.11) that defines the GMM estimator may have an alternative

representation. Let θ0 be the true value, and assume θ0 is an interior point of Θ, so that

θ ∈ Θ ⊂ Rp. Let wt be a vector of observed data, the estimator θ̂(Ŵ ) may be defined as

the solution to the p first-order conditions associated with:

GT (θ̂T )′WTgT (θ̂T ) = 0 (3.16)

where GT (θ̂T ) = T−1∑t
j=1 ∂g(wj, θ)/∂θ′, g(·) is a q × 1 vector with q moment conditions,

and q ≥ p.

As the returns of the assets may not be an i.i.d. process, this fact creates the

need to work under serial correlation or even with dependence on returns. Consider also

that other violations of the i.i.d. processes may still be present, such as fat tails, or even

non-linearity of returns.

Thus, it is necessary to work with estimators that have robust qualities for these

deviations. One possibility to overcome these situations is with the use of estimators based

on long-run covariance matrix. To this end, under the assumption of weak stationarity

and ergodicity, the long-run covariance matrix Ω can be defined as the optimal matrix W

from the equation (3.11), as follows:

W ∗ = {limn→∞V ar(
√
T ḡT (θ0)) ≡ Ω(θ0)}−1 (3.17)
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where,

Ω(θ0) =
∞∑

j=−∞
γ(j) (3.18)

where γ(j) the autocovariances are defined by γ(j) = E [(wt − E(wt)) (wt−j − E(wt−j))]

for the j-th order. For the multivariate version, the long-run covariance matrix Ω has the

widely known expression:

Ω(θ0) =
∞∑

j=−∞
Γj = Γ0 +

∞∑
j=1

(
Γj + Γ′j

)
= ΛΛ′ (3.19)

where Λ is a lower triangular matrix given by the Cholesky decomposition of Ω(θ0), and

Γj is the j-th order autocovariance matrix defined by:

Γj = E(gtg′t−j), j = 0,±1,±2, . . . (3.20)

An important estimator class for Ω(θ0) matrix are the non-parametric estimators.

As the autocovariances are unknown; then, they may be replaced by sample autocovariances:

Γ̂j = T−1∑T
t=j+1 ĝtĝ

′
t−j, j = 0, 1, . . . , T − 1

Γ̂j = T−1∑T
t=j+1 g(wt, θ̂T )g(wt−j, θ̂T )′, para j ≥ 0,

Γ̂j = Γ̂′−j, para j < 0

(3.21)

While it is possible to estimate the corresponding samples, the estimator (3.21) is

not consistent because the number of parameters grows in proportion to the sample size.

To overcome this difficulty Newey and West (1987) and Andrews (1991) formulated a now

widely used class of non-parametric estimators for the optimal long-run covariance matrix

consistent to heteroskedasticity and autocorrelation (HAC) defined by:

Ω̂HAC(θ0) =
T−1∑

j=−(T−1)
k(j/b)Γ̂j (3.22)
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where k(·) is a kernel function k : R→ R satisfying the properties k(x) = k(−x), k(0) = 1,

|k(x)| ≤ 1, being k(x) continuous at x = 0 and
∫∞
−∞ k

2(x)dx <∞. The necessary conditions

for ΩHAC(θ0) be consistent requires that the bandwidth b grows in a lower rate when

compared to the sample size, so that b→∞ and b/T → 0 when T →∞.

Some options have been proposed for the kernel function, as well as the bandwidth

in (3.22). There are a variety of choices for HAC matrix Andrews (1991) and Newey and

West (1987) propose some possibilities for the kernel function and procedures for the

bandwidth selection. It is known that the asymptotic properties of the GMM are not

affected by the choice of a kernel or a specific bandwidth.

The estimation of the optimal long-run covariance matrix consistent to heteroskedas-

ticity and autocorrelation ΩHAC(θ0) should be used in the estimation of the parameters

via GMM methods. Therefore, the GMM estimator θ̂T may be defined as:

θ̂(Ω̂HAC(θ0)) ≡ argmin
θ̂
gT (θ̂)′Ω̂−1

HAC(θ0)gT (θ̂) (3.23)

3.2.3 Fixed-b Estimators

A recent econometric literature has developed a number of methods to circumvent

the problems caused by serial correlation, heteroskedasticity and observation or measure-

ment errors. The conventional asymptotic theory of estimators HAC has a critical point

in its structure when assuming that the estimator variance depends on a fraction of the

sampling autocovariances, wherein the number of these tend to infinity, while the fraction

tends to zero when the sample size increases. On that basis, assuming that the variance is

known it is possible to derive the asymptotic distribution of the coefficients estimations.

Despite the important outcome of consistency with the autocorrelation and het-

eroskedasticity (HAC) of the variance estimators based on a long-run covariance matrix,

this methodology has some weaknesses. Müller (2007) shows that this asymptotic estimator

class does not performs well in case of finite samples. This characteristic is more evident

especially in processes with strong dependence and temporal heterogeneity, as well as
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in the presence of contamination and measurement errors. Kiefer and Vogelsang (2005)

discuss that HAC robust tests have a tendency to over-reject in finite samples under the

null hypothesis. According to the authors, there are two major sources of distortion in finite

samples: one related to low accuracy through the Central Limit Theorem, and another

related to the sampling variability of the asymptotic variance using the HAC methodology.

It is focused on this second source of distortion that Kiefer and Vogelsang (2002b) propose

an alternative method to build more robust tests. One of the usual problems is that

conventional HAC estimators have a bias in the variance. Although this bias converges to

zero when T →∞, in finite samples it is relevant.

To circumvent this deficiency Kiefer and Vogelsang (2002b) propose a new HAC

class of robust tests that have bandwidth equal to sample size. Under this approach, the

tests have pivotal asymptotic distributions, i.e., free from any parameter to be estimated.

This estimator class is known as fixed-b estimators. According to the authors, although it

is common to use a consistent estimator for the variance, this feature is not necessary to

provide a pivotal asymptotic test. As a result, a weaker condition for valid tests is that

the variance estimator should be asymptotically proportional to the unknown variance.

For this, suppose we use a bandwidth equal the sample size, i.e., M = T in

Ω̂HAC(θ0) from equation (3.23). Denoting by Ω̂M=T(θ0) this situation, it is clear that

this estimator is inconsistent, because M violates the rule M/T → 0 when M,T → ∞.

Defining Wp(r) as p-vector of independent standard Wiener processes, where r ∈ [0, 1],

and Bp(r) = Wp(r)− rWp(1) as a p× 1 vector of standard Brownian bridges. Then, under

a pair of sufficient assumptions about the DGP (for details, see Kiefer and Vogelsang

(2002b)) and assuming that k′′(x) exist for x ∈ [−1, 1] and it is continuous. So, when

T →∞,

Ω̂M=T(θ0)⇒∗ Λ
∫ 1

0

∫ 1

0
−k′′(r − s)Bp(r)Bp(s)′drdsΛ′ (3.24)

where ⇒∗ denotes weak convergence. Thus, pivotal asymptotically tests for the null

hypothesis may be derived, because Ω̂M=T(θ0) is asymptotically proportional to Ω̂HAC(θ0)
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through ΛΛ′. When using the Bartlett kernel and a bandwidth equal to the sample size,

Kiefer and Vogelsang (2002a) show that:

Ω̂M=T(θ0) = Γ̂0 +
T−1∑
j=1

k(j/T )(Γ̂j + Γ̂′j)⇒∗ Λ
∫ 1

0

∫ 1

0
−k′′(r − s)Bp(r)Bp(s)′drdsΛ′ (3.25)

which can be written as:

Ω̂M=T(θ0) = T−1
T∑
i=1

T∑
j=1

ν̂i

(
1− |1− j|

T

)
ν̂ ′j (3.26)

where ν̂t = xtut, being ût the sample counterpart of the error term possibly exhibiting

autocorrelation and conditional heteroskedasticity. In spite of Ω̂M=T(θ0) be inconsistent,

Kiefer and Vogelsang (2002b) conclude that (i) the asymptotic approaches for the size

tests derived from this approach often are better in finite sample than those based on

tests via conventional HAC estimations, and (ii) the power is also better compared to

conventional statistics for the Bartlett kernel.

3.3 Tests of Efficiency

To test portfolios efficiency within the mean-variance framework, we need to

predefine the asset pricing model in use. This study chose to use two linear pricing factors

models which are the most commonly used: the CAPM from Sharpe (1964) and Lintner

(1965), in addition to the Fama-French model with three factors from Fama and French

(1993). At this point, a note is valid. This work has no interest to assess whether any

asset pricing model correctly price assets; but, as different estimation methodologies may

impact on inference regarding efficiency for each model.

It should also be noted that the market efficiency hypothesis is what motivates the

construction of the null hypothesis to be tested. Fama (1970) defines the model of efficient

markets such as the hypothesis on which the security prices “completely reflect” all or a

particular subset of the information available at any point of time.
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In his article , Fama (1970) also classifies in three groups the coverage of this model:

(1) the weak form in which the information subset of interest only represents historical past

prices (or returns); (2) the semi-strong form concerns to the speed of price adjustments

related to other publicly available information; and finally (3) the strong form in which the

concern is whether any investor or groups (e.g., mutual funds or institutional investors)

have monopolistic access to any relevant information for pricing. Therefore, within this

classification, the interest for this research is to use the information matrix in a consistent

way to the semi-strong form of market efficiency.

For the CAPM model, the SDF can be defined as:

mt+1 = a+ bRW
t+1 (3.27)

where a and b are constants. The RW is defined as the wealth portfolio, where generally is

used a proxy that reflects the market behavior for empirical works. For the Fama-French

three-factors model the SDF is defined as:

mt+1 = a+ b1Mktt+1 + +b2SMBt+1 + +b3HMLt+1 (3.28)

where a and bs are constants, Mkt defines the return of a market proxy, SMB small minus

big factor, and HML high minus low factor. Both models, CAPM and Fama-French, may

also be derived in beta approach. To see this fact, before it is necessary to demonstrate that

there is a connection between the stochastic discount factor representation in (3.1) and the

beta representation. More precisely, one can say that both formats are equivalent and carry

the same information, so that it is possible to move from one representation to another with

no loss. At this point, we want to show that pt = Et(mt+1xt+1) ⇒ E(Ri,t+1) = α+βi,mλm.

For simplicity, take equation (3.2) without incorporating conditional information and apply

the decomposition of covariance,

1 = E(mt+1Ri,t+1)

⇒ 1 = E(mt+1)E(Ri,t+1) + Cov(mt+1, Ri,t+1)
(3.29)
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Thus,

E(Ri,t+1) = 1
E(mt+1) −

Cov(mt+1, Ri,t+1)
E(mt+1)

⇒ E(Ri,t+1) = 1
E(mt+1) +

(
Cov(mt+1, Ri,t+1)

V ar(mt+1)

)(
−V ar(mt+1)

E(mt+1)

)

⇒ E(Ri,t+1) = Rf + βi,mλm

(3.30)

so that we get the beta representation, where Rf = 1
E(mt+1) denotes a risk-free rate (or

zero-beta rate) if present, βi,m = Cov(mt+1, Ri,t+1)
V ar(mt+1) , i.e., the regression coefficient of the

return Ri,t+1 on m (SDF), and λm = −V ar(mt+1)
E(mt+1) . The pricing model in beta format

seeks to explain the variation in average returns across assets to express that expected

return should be proportional to the regression coefficient βi,m. Note that, in this format

betas βi,m are explanatory variables varying for each asset i, while Rf and λm represent,

respectively, the intercept and the common slop for all assets i in a cross-section regression.

In this approach, assets with higher betas should get higher average returns. Thus, βi,π is

interpreted as the amount of risk that the asset i is exposed to the risk factor π, and the

term λπ is interpreted as the price of such risk exposure.

For simplicity, define ft as a vector with dimension K × 1 for the factors that

compose each of the models, and assume that now on we are working with excess returns

(Re
i,t+1 = Ri,t+1 −Rf

t+1), where it will not be used anymore the superscript notation e. For

Fama-French model, the vector ft has dimension 3× 1, while for the CAPM it is a scalar.

Then, one can write:

Ri,t = α + βift + εt, t = 1, . . . , T ; and i = 1, . . . , N (3.31)

where, for practicality Ri,t and ft already represent, respectively, excess returns for the N

securities and for the K factors in both models in a sample size T . For a system with N



38 Chapter 3. Methodology

assets we have the following statistical structure for these models:

Rt = α+ βft + εt

E[εt] = 0

E[εε′t] = Σ

Cov[ft, ε′t] = 0

(3.32)

where Rt, α e εt have N × 1 dimension; while ft has K × 1 dimension, and β is a N ×K

matrix. Defining Σ as the Variance-Covariance of the disturbances εt. The theoretical

framework for these asset pricing models imply that the vector α = 0. In this case, under

the correct pricing assumption, these models can be written as:

E(R) = βE(f) (3.33)

Therefore, the portfolio defined by K factors derived from a linear pricing model

is said to be efficient only when the N estimated intercepts are not jointly statistically

significant. One can even say that the N intercepts of regressions must be equal to ut, i.e.,

the pricing errors.

The test of efficiency to assess whether all pricing errors ut are jointly equal to zero

can be done through a Wald test. The null and alternative hypotheses are given by:

H0 : α = 0

HA : α 6= 0
(3.34)

whereas the test statistic is given by:

JWald = α̂′[Cov(α̂)]−1α̂ (3.35)

so that under the null hypothesis JWald must have distribution χ2 with N degrees of freedom.

However, one should remember of the limitation from the Wald test that underlies in the

large samples distribution theory. According to Cochrane (2009), the test remains valid
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asymptotically even if the factor is stochastic and the Var-Cov matrix of the disturbances

Σ is estimated. If, on the one hand there is no need to assume that the errors are normally

distributed; on the other, this test ignores the sources of variation in finite samples.

Bolstered on the Central Limit Theorem, the test is based primarily on the fact that α̂

has normal distribution.

Gibbons, Ross and Shanken (1989) derive the finite sample distribution of the null

hypothesis in which the alphas are jointly equal to zero. In contrast to the JWald test, this

test recognizes sample variation in the estimated Var-Cov matrix of the disturbances Σ̂.

However, the test requires that the errors are normally distributed, homoskedastic and

uncorrelated. This test is defined by:

JGRS = T −N −K
N

(
1 + ET (f)′Ω̂−1ET (f)

)−1
α̂′Σ̂−1α̂ (3.36)

where it is used the same notation from Hansen and Singleton (1982) in which ET (·)

represents the sample mean, and

Ω̂ = 1
T

∑T
t=1[ft − ET (f)][ft − ET (f)]′

Σ̂ = 1
T

∑T
t=1 ε̂tε̂

′
t

Therefore, under i.i.d. and normally distributed errors, the statistic test JGRS has

a non-conditional distribution as a F with N degrees of freedom in the numerator, and

T − N − K degrees of freedom in the denominator. Note that, assuming εt ∼ N.I.D.

effortlessly one can shown that α̂ has normal distribution, and Σ̂ has Wishart distribution,

more precisely:

α̂ ∼ N
(
α,

1
T

[
1 + ET (f)′Ω̂−1ET (f)

]
Σ
)

T Σ̂ ∼ WN (T − 2,Σ)

(3.37)
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which, being the Wishart distribution a multivariate χ2, implies that α̂′[Cov(α̂)]−1α̂

should result in a F distribution.

The authors also demonstrated a test variation that can be expressed as the distance

between the returns of factors f and the ex-post mean-variance frontier:

JGRS−SR = T −N −K
N

(µq/σq)2 − ET (f)′Ω̂−1ET (f)
1 + ET (f)′Ω̂−1ET (f)

(3.38)

where (µq/σq)2 is the squared Sharpe ratio of the ex-post tangency portfolio, that conse-

quently, must be the maximum ex-post Sharpe ratio. Notice that the term ET (f)′Ω̂−1ET (f)

found both in the numerator and in the denominator, can be seen to the CAPM model

as the squared Sharpe ratio of the factor. For the CAPM, we can write this test in the

following format:

JGRS−SR = T −N −K
N

(µq/σq)2 − (ET (f)/σ̂(f))2

1 + (ET (f)/σ̂(f))2 (3.39)

note that in the numerator of the second term are the difference of two Sharpe ratios:

(
µq
σq

)2

−
(
ET (f)
σ̂(f)

)2

= sr2
q − sr2

m (3.40)

that is, the difference between the Sharpe ratio of the tangency portfolio q, i.e., sr2
q ; and

the portfolio’s market factor m, i.e., sr2
m. It should be mentioned that the tangent portfolio

must be computed considering all N assets, including the market factor. From (3.36) one

can easily note that the term sr2
q − sr2

m must be equal to α̂′Σ̂−1α̂.

Jobson and Korkie (1982) also studied portfolios efficiency tests using Sharpe ratios.

Following the derivation from Ferson and Siegel (2009) the “JK” test can be written as:

JJK = T
(µq/σq)2 − ET (f)′Ω̂−1ET (f)

1 + ET (f)′Ω̂−1ET (f)
(3.41)

in this case should be distributed according to a χ2 with N degrees of freedom. Note

that the JJK test assume only that errors have no autocorrelation or heteroskedasticity.
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Moreover, unlike the finite sample counterpart JGRS−SR test, this test is based on the

asymptotic distribution theory of the parameters.

3.4 Empirical Strategy

Following the unconditional mean variance efficiency with respect to information

that this work intends to study, we seek to compare the approach without conditional

information with the case which makes use of the information matrix. To evaluate the

GEL estimators performance in efficiency tests of portfolios, this research aims to evaluate

this family under each of the previously discussed approaches.

For the situation without the conditional information, it is conducted the estimation

of the pricing equation given in (3.7). Now, in the case of including information about the

state of the economy, it is used the managed portfolios structure presented in section 3.1, in

which the moment conditions are derived from equation (3.4). Notice that in this situation

the instruments used, which are lagged variables, are only used in a multiplicative form in

the sample moments.

For each of these approaches, estimations are made by GMM and GEL, for the

same sample and period of time. It is assessed portfolios with different amounts of assets.

The same applies to sample size T of the time series, in which it is considered various time

intervals. In addition, the analysis is done for both asset pricing models already mentioned:

the CAPM and the Fama-French three-factors. Having calculated the estimations for each

scenario, it is conducted efficiency tests according to section 3.3.

Firstly, the performance is evaluated when a HAC estimated matrix via kernel is

used according to section 3.2.2. After that, the tests performance are assessed under both

the GMM and GEL when fixed-b estimators are used, as presented in section 3.2.3.

After this analysis, it is assessed the statistical properties of the efficiency tests

using GMM and GEL estimations in a finite sample context. To this end, four Monte

Carlo experiments are performed in order to examine the tests robustness to disturbances

in the data when both estimators are used. In particular, we analyze the presence of heavy
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tails and outliers.
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4 Data

Since the goal of this study is to evaluate an alternative econometric methodology

to test portfolios efficiency with the use of conditional information, there is no interest to

examine any particularity or features of a particular market. Thus, it was decided to use

the US financial market data for obvious reasons.

4.1 Instruments and Factors

Following previous studies, we selected a limited number of instruments from those

commonly used to measure the state of the economy. One can say that the lagged variables

chosen are part of a standard set of instruments for this purpose.

The set of lagged variables consists of 5 instruments. The first is the lagged value of a

3-month Treasury-bill yield (see Ferson and Qian (2004)). The second is the spread between

corporate bond yields with different ratings. This spread is derived from the difference

between the Moody’s Baa and Aaa corporate bond yields (see Keim and Stambaugh

(1986); Ferson and Siegel (2009)). Another instrument is the spread between the 10-year

and 1-year Treasury-bill yield with constant maturity (see Fama and French (1989); Ferson

and Siegel (2009)). Following Ferson and Qian (2004), it was also included the percentage

change in the U.S. inflation, measured by the Consumer Price Index (CPI). Finally, the

monthly growth rate of the seasonally adjusted industrial production is also used, measured

by the Industrial Production Index (see Ferson and Qian (2004)). All data were extracted

from the historical time series provided by the Federal Reserve.

Regarding the factors that compose the asset pricing models, in view of that will

be used the CAPM and Fama-French three-factors model, it was extracted the factors

from both approaches. The market portfolio used, also known as the wealth portfolio from

CAPM and Fama-French, consists of the weighted return of the value of all companies
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Figure 1 – Historical series of the instruments for 720 months (from jan-1955 to dec-2014)
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Figure 2 – Historical series of the factors for 720 months (from jan-1955 to dec-2014)
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listed on the NYSE, AMEX and NASDAQ 1. The SMB and HML factors are computed in

accordance with Fama and French (1993), i.e., the first is the average return of 3 smaller

portfolios subtracted by the average return of the three largest portfolios; while the second

is the average return of the two portfolios with high book-to-market subtracted from the

average return of the two portfolios with low book-to-market. Data from all the factors

were extracted from the database provided by Kenneth R. French2.

Figures 1 and 2 respectively present the complete historical series of lagged state

variables and factors used. The common maximum time span to all instruments is 720

months (60 years) prior to December 2014.

1 Specifically, the market portfolio consists of the value-weight return of all CRSP firms incorporated in
the US and listed on the NYSE, AMEX, or NASDAQ that have a CRSP share code of 10 or 11 at the
beginning of month t, good shares and price data at the beginning of t, and good return data for t.

2 http : //mba.tuck.dartmouth.edu/pages/faculty/ken.french/datalibrary.html
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Table 1 – Descriptive statistics of the lagged variables and factors for a period of 720
months (60 years) from jan-1955 to dec-2014

Mean Std. Dev. Min Max ρ1
Lagged Variables

3 month - Treasury-bill Yield 0.047 0.030 0.000 0.163 0.99
Industrial Production Growth 0.002 0.009 -0.042 0.062 0.37
Spread Corporate Bonds 0.010 0.004 0.003 0.034 0.97
Spread Treasury-bills - 10-year/1-year 0.010 0.011 -0.031 0.034 0.97
U.S. Inflation - Consumer Price Index (CPI) 0.003 0.003 -0.018 0.018 0.61

Factors
Market (Mkt) 0.005 0.044 -0.232 0.161 0.08
Small minus Big (SMB) -0.002 0.030 -0.169 0.216 0.06
High minus Low (HML) -0.000 0.027 -0.130 0.135 0.16

Monthly returns of the 5 lagged variables and the 3 factors from asset pricing models. First column
presents the sample mean, the second shows the sample standard deviation, the third and fourth column
present minimum and maximum returns, and the last column presents the first-order autocorrelation.
The sample period is January 1955 through December 2014 (720 observations).

In the graphs from the five instruments, important events that shook the economy

in this 60-year range are easily noted through peaks and valleys. The oil crisis and the

2008 financial crisis are examples that impacted the state lagged variables of the economy.

In the table 1 it is presented the most common descriptive statistics of instruments

and factors for the maximum period of 720 months. Observing the first order autocorrela-

tion, we can see that instruments are highly persistent series, while this characteristic is not

true for factors. Note that most of the five instruments, the first order autocorrelation is

97% or higher. The only instrument that can not be considered persistent is the Industrial

Production Index, which has the first order autocorrelation of 37%. The three factors have

first order autocorrelation lower than 20%.

4.2 Portfolios

In order to examine the estimations behavior for various sample sizes, we selected

four portfolios with increasing number of assets. It sought not to be limited solely on a

single portfolio composition methodology. Among the selected portfolios, three of them

have their composition based on size and book-to-market, while one is composed with
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Table 2 – Descriptive statistics of the monthly returns for the portfolio with 6 assets for a
period of 720 months (60 years) from jan-1955 to dec-2014

Mean Std. Dev. Min Max ρ1 R2

Small - 1 (Low) 0.005 0.072 -0.329 0.434 0.19 0.02
Small - 2 0.010 0.056 -0.286 0.316 0.22 0.02
Small - 3 (High) 0.012 0.057 -0.273 0.359 0.26 0.02
Big - 1 (Low) 0.006 0.053 -0.265 0.205 0.12 0.02
Big - 2 0.007 0.047 -0.242 0.218 0.13 0.02
Big - 3 (High) 0.009 0.049 -0.209 0.264 0.12 0.02

Monthly returns of the 6 portfolios formed on size and book-to market (2x3). The portfolios are based
on equal-weighted returns extracted from the database provided by Kenneth R. French. First column
presents the sample mean, the second shows the sample standard deviation, the third and fourth column
present minimum and maximum returns, ρ1 is the first-order autocorrelation, and the R2 is the adjusted
coefficient of determination from the regression of the returns on the lagged instruments. The sample
period is January 1955 through December 2014 (720 observations).

categories derived from industries classification according to the business segment. All

observations of the 4 portfolios used was taken from the historical data series provided by

French with data extracted from the Center for Research in Security Prices (CRSP), and

compiled in various types of portfolios composition.

As for the amount of assets, it was used increasing time intervals for all portfolios.

The evaluated periods begin with 120 months prior December 2014. Each of the remaining

periods extend another 120 months (10 years) up to the limit of the dataset, which is 1020

months (85 years).

One of the portfolio has six assets selected with equal weights by size book-to-

market3. Following the methodology from Fama and French (1993), this portfolio is

constructed from the intersection of two portfolios composed by market cap with portfolios

composed by the ratio of book equity with market cap. Table 2 reports the descriptive

statistics of the 6 monthly returns. The table presents the 720 months period prior to

December 2014, because this is the longest period of data for all instruments. The lagged

variables are used to compute the R2 statistic. Note that the mean ranges from 0.5% to

1.2% and the standard deviation from 4.7% to 7.2%. In the same table also can be seen the

first order autocorrelation, which is generally low and between 12% and 26%; as well as

the R2 from the regression of the 5 instruments on the returns. Note that the adjustment

3 6 Portfolios Formed on Size and Book-to-Market (2 x 3)
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coefficient is very low for all 6 assets, being of the order of 2%.

Figure 3 – Descriptive statistics of the monthly returns for the portfolio with 25 assets for
a period of 720 months (60 years) from jan-1955 to dec-2014
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The top panel shows the sample mean statistics (represented by “X”), Max (represented by a blue triangle),
Min (represented by an upside down red triangle), and the distance between the two horizontal bars
represent the range of ±σ for a 720 months period. The bottom panel shows the first-order autocorrelation
ρ1 (bar) and R2 (square point), which is the adjusted coefficient of determination in percent from the
regression of the returns on the 5 instruments. In both panels, the x-axis represents the 25 assets, and the
y-axis is expressed in percentage.

A second portfolio composed with 25 assets selected with equal weights by size and

book-to-market 4 was chosen. Given the amount of observations, we decided to present in

the figure 3 the main common descriptive statistics. For this portfolio, the statistics are

similar to the portfolio with six assets, except that it can be observed portfolios with first

order autocorrelation less than 10%.

Another chosen portfolio consists of 49 assets representing industrial portfolios

selected with equal weights 5. Finally, the last portfolio of 100 assets consists of 100

portfolios selected with equal weights by size and book-to-market 6. Again, it was decided

to present the descriptive statistics for portfolios with charts. Figures 4 and 5 present for

portfolios with 49 and 100 assets respectively, the descriptive statistics of the 720 monthly

returns. Notice that both mean and standard deviation are similar to previous portfolios,

while the maximum and minimum returns are magnified. Note that most of the first order
4 25 Portfolios Formed on Size and Book-to-Market (5 x 5)
5 49 Industry Portfolios
6 100 Portfolios Formed on Size and Book-to-Market (10 x 10)
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Figure 4 – Descriptive statistics of the monthly returns for the portfolio with 49 assets for
a period of 720 months (60 years) from jan-1955 to dec-2014
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The top panel shows the sample mean statistics (represented by “X”), Max (represented by a blue triangle),
Min (represented by an upside down red triangle), and the distance between the two horizontal bars
represent the range of ±σ for a 720 months period. The bottom panel shows the first-order autocorrelation
ρ1 (bar) and R2 (square point), which is the adjusted coefficient of determination in percent from the
regression of the returns on the 5 instruments. In both panels, the x-axis represents the 49 assets, and the
y-axis is expressed in percentage.

autocorrelation is lower than 20% and there is only one asset with negative value for both

portfolios. Only for the portfolio with 100 assets we can find five of them with first order

autocorrelation higher than 20%. The R2 keeps low values, with adjustments coefficients

no higher than 5%.
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Figure 5 – Descriptive statistics of the monthly returns for the portfolio with 100 assets
for a period of 720 months (60 years) from jan-1955 to dec-2014

Index

10
0 

* 
su

m
m

ar
y_

Y
[, 

1]

−
40

−
20

0
20

40
60

80
10

0
P

er
ce

nt

____________________________________________________________________________________________________

____________________________________________________________________________________________________

Mean Max Min +/− σ

10
0 

* 
su

m
m

ar
y_

Y
[, 

5]

0
5

10
15

20
25

30
P

er
ce

nt

R2

ρ1

The top panel shows the sample mean statistics (represented by “X”), Max (represented by a blue triangle),
Min (represented by an upside down red triangle), and the distance between the two horizontal bars
represent the range of ±σ for a 720 months period. The bottom panel shows the first-order autocorrelation
ρ1 (bar) and R2 (square point), which is the adjusted coefficient of determination in percent from the
regression of the returns on the 5 instruments. In both panels, the x-axis represents the 100 assets, and
the y-axis is expressed in percentage.
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5 Results

In short, we are interested to know how efficiency tests based on GEL and GMM

estimations can lead to different decisions. Under the unconditional mean variance efficiency

with respect to information, in this section we compare both methods when (i) no

conditional information is used, and when (ii) the managed portfolios structure is used.

In order to better fulfill this analysis, the assessment is made by comparing the test

results for different sample sizes and portfolios types, as well as for two asset pricing models

(CAPM and the Fama-French three-factors). The first part of this section presents the

results when the standard long-run covariance HAC matrix is used during the parameters

estimations.

In the second part we assess the efficiency tests when fixed-b estimators are used.

At this point, as the recent literature indicates, we want to circumvent the problems caused

by serial correlation, heteroskedasticity and observation or measurement errors. In order

to prevent problems of over-rejection, we used the Vogelsang-Kiefer method in which one

would expect more robust tests for finite samples.

Finally, the last part of this section performs Monte Carlo experiments to evaluate

the tests robustness when GEL and GMM estimators are used in a finite sample context.

Here, we want to study the effects that data contaminations, as outliers and the presence

of heavy tails in the innovation structure, may cause on the results of efficiency tests.

5.1 Conventional HAC Estimation

5.1.1 6 Portfolios Formed on Size and Book-to-Market

First we start analyzing the portfolio consisting of the six portfolios formed on size

and book-to-market. For these assets, we seek to test whether the factors from each of the

asset pricing models explain the portfolios average returns. For CAPM, we are interested to
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evaluate the efficiency of the market portfolio discussed in the previous section. Remember

that this portfolio is composed of a value-weight return of all companies listed on the

NYSE, AMEX and NASDAQ.

5.1.1.1 No Conditional Information

Table 3 presents the estimation results by GMM and GEL for an increasing sequence

of months, starting with the last 120 months and adding 120 months up to the limit of

sample, i.e., 1020 months (85 years). Each sample begins in January of a given year, and

ends in December 2014. In the same table is also presented for each time interval, the

estimation of both asset pricing models of interest, CAPM and Fama-French.

Initially examining test results when using the estimation by GMM, we note that

both CAPM and Fama-French models show strong evidence to reject the hypothesis of

efficiency for each model, especially for periods of 240 months or higher. This happens

due to the p-values of Wald and GRS tests are practically zero.

For the period of 10 years and the CAPM model, the p-value of the Wald statistic

is 0.02, while the p-value of the F distribution under the assumption of normality which

is given by GRS test is 0.03. For the same period and Fama-French model, the p-values

are very similar: 0.02 and 0.04 for the Wald test and GRS respectively. So, just for the

period of January 2005 to December 2014 we have not negligible p-values.

Analyzing results of the tests using GEL, we have very similar results to the

estimations by GMM for almost all periods. However, for the shorter time period, i.e., 120

months, the test using the GEL estimations lead to divergent conclusions. Note that the

p-values for Wald and GRS tests are 0.30 and 0.35, respectively for the CAPM model. So,

with these results we do not have evidence to reject the market portfolio efficiency. For

the Fama-French model, the absence of such evidence in rejecting is more tenuous. The

results are very close to the significance limit, the p-value for the Wald test is 0.05 and for

the GRS is 0.08.

If we examine the complete table for both estimation methods, and take into

account all periods of time, we may have some evidence for the fact that the DGP may
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Table 3 – Tests of portfolio efficiency using 6 portfolios formed on size and book-to-market
for selected periods of time

Months Wald Test GRS Test Wald Test GRS Test
Statistic p-value Statistic p-value Statistic p-value Statistic p-value

CAPM FF
GMM 120 15.0 0.020 2.4 0.035 14.6 0.023 2.3 0.043

240 28.4 0.000 4.6 0.000 64.4 0.000 10.3 0.000
360 60.6 0.000 9.9 0.000 137.7 0.000 22.4 0.000
480 73.0 0.000 12.0 0.000 219.3 0.000 35.9 0.000
600 74.2 0.000 12.2 0.000 274.8 0.000 45.1 0.000
720 78.5 0.000 13.0 0.000 285.8 0.000 47.0 0.000
840 81.6 0.000 13.5 0.000 277.6 0.000 45.8 0.000
960 83.2 0.000 13.8 0.000 268.5 0.000 44.3 0.000
1020 70.2 0.000 11.6 0.000 242.7 0.000 40.1 0.000

GEL 120 7.2 0.304 1.1 0.351 12.5 0.052 1.9 0.083
240 26.0 0.000 4.2 0.000 51.6 0.000 8.3 0.000
360 54.0 0.000 8.8 0.000 109.6 0.000 17.8 0.000
480 61.0 0.000 10.0 0.000 185.6 0.000 30.4 0.000
600 51.5 0.000 8.5 0.000 221.6 0.000 36.4 0.000
720 56.8 0.000 9.4 0.000 236.6 0.000 38.9 0.000
840 56.6 0.000 9.4 0.000 227.4 0.000 37.5 0.000
960 72.7 0.000 12.0 0.000 176.6 0.000 29.2 0.000
1020 47.6 0.000 7.9 0.000 171.9 0.000 28.4 0.000

Tests of portfolio efficiency using 6 portfolios formed on size and book-to-market (2x3) for 9 selected
periods of time: T=120 (10 years), T=240 (20 years), T=360 (30 years), T=480 (40 years), T=600 (50
years), T=720 (60 years), T=840 (70 years), T=960 (80 years) and T=1020 (85 years). The tests are
conducted based on both estimations methodology: via GMM are on top, while via GEL are on the bottom.
Tests of efficiency under the CAPM asset pricing model are on the left, while tests under Fama-French
three-factors model (represented as “FF”) are on the right. Table presents the statistic and the p-values
of the Wald and the GRS tests for each case.

have changed over time. This explains why for the shortest and most recent period of time,

both methodologies point to the same direction, suggesting no evidence to reject efficiency.

However, as we expand the period of time, aggregating more information from older data,

we start to have stronger evidences to reject efficiency. One possible explanation for these

results is that the DGP changed over time.

5.1.1.2 Managed Portfolios

Table 4 presents the results of the market portfolio efficiency tests for the scaled

returns approach. Here, we use the managed portfolios perspective that can be understood

when investing according to a sign. To this end, the five instruments previously described

are used.
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Table 4 – Tests of portfolio efficiency using 6 portfolios formed on size and book-to-market
under scaled returns for selected periods of time

Months Wald Test GRS Test Wald Test GRS Test
Statistic p-value Statistic p-value Statistic p-value Statistic p-value

CAPM FF
GMM 120 128.0 0.000 20.1 0.000 15.7 0.015 2.4 0.031

240 32.1 0.000 5.2 0.000 97.5 0.000 15.6 0.000
360 79.0 0.000 12.9 0.000 209.7 0.000 34.1 0.000
480 111.5 0.000 18.3 0.000 310.4 0.000 50.8 0.000
600 111.1 0.000 18.3 0.000 398.1 0.000 65.3 0.000
720 102.4 0.000 16.9 0.000 380.0 0.000 62.5 0.000

GEL 120 5.6 0.466 0.9 0.509 16.3 0.012 2.5 0.025
240 31.6 0.000 5.1 0.000 82.3 0.000 13.2 0.000
360 63.3 0.000 10.3 0.000 174.9 0.000 28.4 0.000
480 78.9 0.000 13.0 0.000 275.2 0.000 45.0 0.000
600 72.2 0.000 11.9 0.000 241.8 0.000 39.7 0.000
720 76.0 0.000 12.5 0.000 332.5 0.000 54.7 0.000

Tests of portfolio efficiency using 6 portfolios formed on size and book-to-market (2x3) for 6 selected
periods of time: T=120 (10 years), T=240 (20 years), T=360 (30 years), T=480 (40 years), T=600 (50
years) and T=720 (60 years). The tests are evaluated using conditioning information when instruments
are incorporated to the pricing equation. The lagged variables consisting the conditioning information
are: (i) 3 month Treasury-bill yield, (ii) industrial production growth, (iii) yield spreads of low-grade over
high-grade corporate bonds, (iv) yield spreads of long-term over short-term Treasury-bills (10-year/1-year)
and (v) U.S. inflation (CPI). The tests are conducted based on both estimations methodology: via GMM
are on top, while via GEL are on the bottom. Tests of efficiency under the CAPM asset pricing model are
on the left, while tests under Fama-French three-factors model (represented as “FF”) are on the right.
Table presents the statistic and the p-values of the Wald and the GRS tests for each case.

Again we have compelling evidence to reject efficiency for all intervals above 120

months. This result is true for the estimates using either GMM or GEL; and for both

models under analysis, CAPM and Fama-French. Note that the longest period in which

we can perform the tests is 720 months due to possess data from all five instruments up to

this limit.

While for longer periods p-values were virtually zero, to 120 months estimation

by GEL again shows no indication to reject efficiency for the CAPM. When we use fixed

weights in the table 3, the estimations by GEL were also pointing to this direction. However,

with the use of instruments, the p-values increase to 0.47 (Wald) and 0.51 (GRS) for

CAPM; and decrease for Fama-French model 0.01 (Wald) and 0.03 (GRS). Again, if we

analyze the whole results from table 4, we also have evidence that the DGP may have

changed over time.

As it was possible to perform the estimation under both methodologies, for both
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Figure 6 – Boxplots for comparison of estimations by GMM and GEL using 6 portfolios
formed on size and book-to-market under scaled returns for selected periods of
time
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In all 4 panels, the x-axis represents the time intervals, starting with 120 months before December 2014
to 720 months (60 years) prior to this date. The y-axis are the estimated coefficients values by GMM and
GEL. Estimation by GMM is represented by gray boxplots, while GEL estimation is represented by white
boxplots.
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models, and all periods of time; figure 6 summarizes the estimated coefficients of α and

βMkt with the use of instruments for CAPM and Fama-French models. As for every T and

model there are 6 estimated alphas and betas (Mkt), we decided to present the estimated

coefficients for each methodology (GMM and GEL) using boxplots. The graphs of β̂SMB

and β̂HML for Fama-French model can be seen in appendix A.

Notice that as the boxplots distributions are not identical, GMM and GEL produce

different coefficients estimates, i.e., not only the Var-Cov matrix from these estimates. For

CAPM, which is located in the top two panels, note that for shorter periods differences are

evident between both methodologies. Regarding the α̂, note that the biggest differences are

for T equal to 120, 240 and 360. For β̂Mkt, this is more clear for T = 120. For Fama-French

model, differences between estimates by GMM and GEL are more subtle. However, the α̂

for very short samples, as for 120 months, differences in estimates are not negligible.

From asset pricing theory it is known that the returns of any asset should be higher

if this asset have higher betas. Figure 7 graphically displays for CAPM the estimated

betas (β̂Mkt) against the sample mean of monthly excess returns (Ê(Ri)) of each of the six

assets. The model states that the average returns should be proportional to betas. Each

panel represents one of the 6 time periods, and the GMM estimates are located on the

left, while GEL estimates are on the right.

The distance between the points and the straight line must represent the pricing

errors, i.e., estimated alphas. With this figure it is clear the difference in estimation between

these methodologies, being the most symptomatic divergence for shorter T . Note that in

the top two panels, while the estimates by GMM are more dispersed, those with GEL are

more grouped and closer with slope line equal Ê(RMkt).

5.1.2 25 Portfolios Formed on Size and Book-to-Market

5.1.2.1 No Conditional Information

In this section we move to a portfolio with higher amount of assets. Here, we use the

25 portfolios formed on size and book-to-market. Table 5 shows the results of estimations
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Figure 7 – CAPM Model - Comparison of GMM and GEL estimated betas under scaled
returns against the sample mean of monthly excess returns for the portfolio
with 6 assets
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In all panels, the estimated betas (β̂Mkt) are in the x-axis, and the sample mean of the monthly excess
returns for each of the n = 6 assets in the portfolio are in the y-axis. Estimations via GMM are on the
left, while via GEL are on the right. Each panel represents one of the time intervals, starting with 120
months before December 2014 to 720 months (60 years) prior to this date.
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by GMM and GEL for the 9 months periods previously defined.

When we compare the estimated tests by GMM and GEL for CAPM, there is no

doubt that both provide us with compelling evidence to reject the market portfolio efficiency

hypothesis under consideration, remembering that this market portfolio is composed with

companies listed on NYSE, AMEX and NASDAQ, as it was done in the previous section.

When analyzing the Wald or even GRS statistics we see that estimates by GEL consistently

have lower values compared with GMM. The p-values for both approaches are practically

zero for every T , except for 120 months with GEL estimation. One could conclude, in

general, for the efficiency rejection of the market proxy in use. If we compare these results

with other studies regarding the efficiency of a market index, many studies come to similar

conclusions (FERSON; SIEGEL, 2009; FAMA; FRENCH, 1992)1.

From the formulas in (3.35) and (3.36), inverting the Var-Cov matrix of the alphas

can become an impediment to the estimation of the tests, given the fact that singular

matrices can arise. The cases presented by “NA” in table 5 stem primarily this problem.

However, it may also occur that even estimations could not be performed for a certain

methodology. This situation is also represented by “NA” in the table. The first point to

note is that almost all the tests were able to be calculated.

Analyzing the tests for the Fama-French model, the conclusions regarding the

efficiency do not change: all periods in which the test calculation was possible lead us to

reject the null hypothesis. Here, we had the only case (120 months by GMM) where it was

not possible to invert the Var-Cov matrix of the alphas. Similarly, for the CAPM, both

statistics, in general have lower values when the estimation is calculated using GEL, when

compared to those obtained by GMM (except for 240 months in Fama-French model).

This difference seems to become more relevant as the analysis period increases, i.e., we

have an evidence of increasing difference relationship when the sample expands.

In Figure 8 can be seen the boxplots of the estimated coefficients of α and βMkt for

CAPM and Fama-French models. Each boxplot summarizes the 25 estimated values using

1 One should just be cautious because the portfolio from these works and the exact time intervals have
a strong resemblance, but are not exactly the same.
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Table 5 – Tests of portfolio efficiency using 25 portfolios formed on size and book-to-market
for selected periods of time

Months Wald Test GRS Test Wald Test GRS Test
Statistic p-value Statistic p-value Statistic p-value Statistic p-value

CAPM FF
GMM 120 98.5 0.000 3.1 0.000 NA NA NA NA

240 93.0 0.000 3.3 0.000 114.9 0.000 4.1 0.000
360 168.7 0.000 6.3 0.000 257.5 0.000 9.5 0.000
480 123.4 0.000 4.7 0.000 335.7 0.000 12.6 0.000
600 133.4 0.000 5.1 0.000 465.2 0.000 17.7 0.000
720 125.5 0.000 4.8 0.000 459.7 0.000 17.7 0.000
840 122.5 0.000 4.8 0.000 413.2 0.000 16.0 0.000
960 131.9 0.000 5.1 0.000 398.2 0.000 15.5 0.000
1020 129.2 0.000 5.0 0.000 403.8 0.000 15.7 0.000

GEL 120 53.6 0.001 1.7 0.039 92.1 0.000 2.8 0.000
240 85.4 0.000 3.0 0.000 138.9 0.000 4.9 0.000
360 135.0 0.000 5.0 0.000 253.8 0.000 9.4 0.000
480 90.6 0.000 3.4 0.000 329.0 0.000 12.4 0.000
600 85.1 0.000 3.3 0.000 362.4 0.000 13.8 0.000
720 83.2 0.000 3.2 0.000 374.1 0.000 14.4 0.000
840 80.6 0.000 3.1 0.000 300.4 0.000 11.6 0.000
960 90.3 0.000 3.5 0.000 300.5 0.000 11.7 0.000
1020 84.1 0.000 3.3 0.000 310.5 0.000 12.1 0.000

Tests of portfolio efficiency using 25 portfolios formed on size and book-to-market (5x5) for 9 selected
periods of time: T=120 (10 years), T=240 (20 years), T=360 (30 years), T=480 (40 years), T=600 (50
years), T=720 (60 years), T=840 (70 years), T=960 (80 years) and T=1020 (85 years). The tests are
conducted based on both estimations methodology: via GMM are on top, while via GEL are on the bottom.
Tests of efficiency under the CAPM asset pricing model are on the left, while tests under Fama-French
three-factors model (represented as “FF”) are on the right. Table presents the statistic and the p-values of
the Wald and the GRS tests for each case. “NA” denotes not applicable, situations in which singularities
problems occur impeding the inversion of the Var-Cov matrix.

GMM or GEL for each time interval. Note that for every T estimation was possible to be

performed. Even if the test for 120 months for the Fama-French could not be computed,

the estimation of the coefficients was feasible. For the graphs of βSMB and βHML with

Fama-French model, see appendix A.

Regarding the alphas and betas, from the boxplots distribution it can be inferred

that GMM and GEL showed identical values. The GRS and Wald tests have different values

between GMM and GEL because the Var-Cov matrix of the estimates diverge. Anyway,

from the panels it is possible to infer that for both models, the CAPM and Fama-French,

the estimated alphas are low for the shortest period (T = 120) and increasing their values

as t grows; and from 720 months the alphas return to decrease their estimates. The betas

have similar characteristics; however, in opposite direction: starting with high values, then
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Figure 8 – Boxplots for comparison of estimations by GMM and GEL using 25 portfolios
formed on size and book-to-market for selected periods of time
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(d) Fama-French Model: BetasMkt estimated by
GMM and GEL

In all 4 panels, the x-axis represents the time intervals, starting with 120 months before December 2014
to 1020 months prior to this date. The y-axis are the estimated coefficients values by GMM and GEL.
Estimation by GMM is represented by gray boxplots, while GEL estimation is represented by white
boxplots.

they decrease, and finally, increase again.

In Appendix A is the figure 16 plotting for CAPM the sample mean of the monthly

excess returns (Ê(Ri)) against the estimated betas (β̂Mkt) for the 25 assets.

5.1.2.2 Managed Portfolios

The results of the efficiency tests for the market proxy when using the multiplicative

approach with 5 instruments can be seen in table 6. A quick inspection of the table show

that in many cases it was not possible to compute the tests. In this case, all “NA” occur

due to the impossibility of the methods to estimate even the parameters. This fact occurs
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Table 6 – Tests of portfolio efficiency using 25 portfolios formed on size and book-to-market
under scaled returns for selected periods of time

Months Wald Test GRS Test Wald Test GRS Test
Statistic p-value Statistic p-value Statistic p-value Statistic p-value

CAPM FF
GMM 120 NA NA NA NA NA NA NA NA

240 NA NA NA NA NA NA NA NA
360 NA NA NA NA NA NA NA NA
480 802.7 0.000 30.4 0.000 849.3 0.000 32.0 0.000
600 480.7 0.000 18.4 0.000 967.6 0.000 36.9 0.000
720 320.5 0.000 12.4 0.000 851.1 0.000 32.7 0.000

GEL 120 NA NA NA NA NA NA NA NA
240 NA NA NA NA NA NA NA NA
360 NA NA NA NA NA NA NA NA
480 NA NA NA NA NA NA NA NA
600 NA NA NA NA NA NA NA NA
720 NA NA NA NA NA NA NA NA

Tests of portfolio efficiency using 25 portfolios formed on size and book-to-market (5x5) for 6 selected
periods of time: T=120 (10 years), T=240 (20 years), T=360 (30 years), T=480 (40 years), T=600 (50
years) and T=720 (60 years). The tests are evaluated using conditioning information when instruments
are incorporated to the pricing equation. The lagged variables consisting the conditioning information
are: (i) 3 month Treasury-bill yield, (ii) industrial production growth, (iii) yield spreads of low-grade over
high-grade corporate bonds, (iv) yield spreads of long-term over short-term Treasury-bills (10-year/1-year)
and (v) U.S. inflation (CPI). The tests are conducted based on both estimations methodology: via GMM
are on top, while via GEL are on the bottom. Tests of efficiency under the CAPM asset pricing model are
on the left, while tests under Fama-French three-factors model (represented as “FF”) are on the right.
Table presents the statistic and the p-values of the Wald and the GRS tests for each case. “NA” denotes
not applicable, situations in which singularities problems occur impeding the inversion of the Var-Cov
matrix.

due to singularity problems, and it is a fairly common issue, especially with portfolios with

high amount of assets and under the multiplicative approach with instruments. Ferson

and Siegel (2009) also had to deal with this issue (see e.g. Peñaranda and Sentana (2012)

for advanced treatment). Since we have for this case 25 portfolios formed on size and

book-to-market, and five instruments, it is possible to notice that the optimal long-run

covariance matrix Ω̂(θ0) from the estimator may turn out to be singular. In these cases, it

is not possible to construct any of the efficiency tests.

Note that only for T = 480, 600 and 720 it was possible to perform the tests using

GMM. The GEL estimators class were not able to estimate coefficients when n = 25 for

any T . Whichever is the model in use, with instruments the efficiency of the models are

rejected. Note that the tests generated considerably higher estimates, mainly for the Wald

test, when compared with the fixed weights approach, leading to very strong evidences to
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reject the null hypothesis.

5.1.3 49 Industry Portfolios

5.1.3.1 No Conditional Information

In this section we move to a portfolio with 49 assets. In this case, we use the

portfolio composed with the 49 industrial categories previously described. We keep the

structure of the tests, i.e., we seek to test the efficiency of the models. In table 7 are

presented the estimation results by GMM and GEL for the 9 periods of time and both

models.

Examining the results by GMM, it is clear that for the CAPM model, from a

sample with 600 months or higher, it is not possible to invert the matrix. The same is

true for 120 months. For three periods of time it was possible to estimate both the Wald

test, as well as the finite sample counterpart GRS test, in which they point to the same

direction: both have high p-values, showing that it is not possible to reject the efficiency

hypothesis of the market proxy. Note that for these cases, the p-values decrease as the

amount of months analyzed increases .

Regarding the Fama-French model, the results were similar to the CAPM, but with

higher p-values. Only for 360 and 480 months scenarios we obtained results: the p-values

of the Wald test is 0.98 and 0.69 for 360 and 480 months, respectively. But, the GRS test

for finite sample, which assumes distribution F , obtained 0.99 and 0.84 p-values for the

same periods.

From these results we note some evidences that the Wald test, based on large

sample distribution, tends to reject the null hypothesis more often compared to tests that

rely on finite sample distributions, like the GRS test. This characteristic from these tests

is in line with the analysis of the size and power of efficiency tests in Campbell et al.

(1997). However, for the GRS test, one should remember its limitation by requiring that

errors are normally distributed, in addition to assume homoskedasticity and absence of

autocorrelation.
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Table 7 – Tests of portfolio efficiency using 49 industry portfolios for selected periods of
time

Months Wald Test GRS Test Wald Test GRS Test
Statistic p-value Statistic p-value Statistic p-value Statistic p-value

CAPM FF
GMM 120 NA NA NA NA NA NA NA NA

240 41.9 0.753 0.7 0.946 NA NA NA NA
360 50.6 0.411 0.9 0.685 31.3 0.977 0.5 0.994
480 60.7 0.123 1.1 0.292 43.7 0.689 0.8 0.838
600 NA NA NA NA NA NA NA NA
720 NA NA NA NA NA NA NA NA
840 NA NA NA NA NA NA NA NA
960 NA NA NA NA NA NA NA NA
1020 NA NA NA NA NA NA NA NA

GEL 120 108.7 0.000 1.3 0.160 NA NA NA NA
240 48.0 0.514 0.8 0.852 NA NA NA NA
360 44.1 0.672 0.8 0.860 NA NA NA NA
480 52.4 0.344 1.0 0.557 NA NA NA NA
600 81.9 0.002 1.5 0.014 NA NA NA NA
720 142.8 0.000 2.7 0.000 NA NA NA NA
840 206.4 0.000 4.0 0.000 NA NA NA NA
960 212.8 0.000 4.1 0.000 NA NA NA NA
1020 231.9 0.000 4.5 0.000 NA NA NA NA

Tests of portfolio efficiency using 49 industry portfolios for 9 selected periods of time: T=120 (10 years),
T=240 (20 years), T=360 (30 years), T=480 (40 years), T=600 (50 years), T=720 (60 years), T=840
(70 years), T=960 (80 years) and T=1020 (85 years). The tests are conducted based on both estimations
methodology: via GMM are on top, while via GEL are on the bottom. Tests of efficiency under the CAPM
asset pricing model are on the left, while tests under Fama-French three-factors model (represented as
“FF”) are on the right. Table presents the statistic and the p-values of the Wald and the GRS tests for
each case. “NA” denotes not applicable, situations in which singularities problems occur impeding the
inversion of the Var-Cov matrix.

When we analyze the results with the use of GEL class estimators, the first obvious

observation is that the estimates for all periods with Fama-French model were not able

to be computed. This fact occurred because with GEL methodology was not feasible to

estimate the coefficients when n = 49, for any time period in use.

Focusing on the CAPM, there is strong evidence to reject the null hypothesis

of market portfolio efficiency for long periods starting with 600 months, which includes

intervals of 50, 60, 70, 80 and 85 years. This finding holds for both tests, either Wald,

or GRS that do not have to support in asymptotic characteristics. Note that these five

scenarios were not able to be calculated when using the GMM estimation.

Examining specifically 360 and 480 months periods, and comparing to the GMM

estimation, we see that the results are in line: both provide evidence to reject the null
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hypothesis. However, one can note that the p-values from GEL are higher for both tests.

For instance, the GRS test using GEL obtained p-values of 0.86 and 0.56, for 360 and 480

months, respectively; while, with GMM the p-values were relatively small, i.e., 0.69 and

0.29 for the same periods. For 240 months, the estimation by GEL also conforms to the

one held by GMM. However, in this scenario, the p-values were lower by GEL.

Finally, for 120 months was possible to calculate both statistics, something that

was not possible when using the GMM. For this case, we can see a significant difference

between both tests. Here, while the Wald test strongly rejects the efficiency, the finite

sample counterpart GRS test showed no evidence of that with a p-value of 0.16.

As only the estimation of CAPM model was possible using both GMM and GEL,

in figure 9 is presented the boxplots graphics of the alphas and betas estimates from this

model. For Fama-French model, the GEL estimation was not possible to be performed

in any of the nine time scenarios. Note that the coefficients estimates showed exactly

the same statistics. More precisely, the estimates of α̂ and β̂mkt were identical. What

caused differences in tests were the coefficient estimates of Var-Cov matrix which presented

different values.

A point that worth a note is the existence of outliers in alpha estimates, occurring

mainly for longer periods, from 600 months or higher. In addition, notice also that the

estimates for both, α̂, as well as for β̂mkt in CAPM model change marginally as time

intervals increases.

In appendix A can be found the figure 17 plotting for CAPM the sample mean of

the monthly excess returns (Ê(Ri)) against the estimated betas (β̂Mkt) for the 49 assets.

Regarding the estimates of the multiplicative approach or managed portfolios, by

neither method it was possible to even compute the parameters estimates. Thus, it was not

feasible to evaluate the tests of efficiency using the five instruments previously described

under scaled returns approach.



5.2. Tests of Efficiency in Squared Sharpe ratio Form 65

Figure 9 – Boxplots for comparison of estimations by GMM and GEL for CAPM model
using 49 industry portfolios for selected periods of time
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(a) CAPM Model: Alphas estimated by GMM and
GEL
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(b) CAPM Model: BetasMkt estimated by GMM
and GEL

In both panels, the x-axis represents the time intervals, starting with 120 months before December 2014
to 1020 months prior to this date. The y-axis are the estimated coefficients values by GMM and GEL.
Estimation by GMM is represented by gray boxplots, while GEL estimation is represented by white
boxplots.

5.1.4 100 Portfolios Formed on Size and Book-to-Market

We attempted to test the efficiency of the market proxy using the 100 portfolios

formed on size and book-to-market, which was presented in section 4.2. However, for any

period and model, tests using GMM or GEL were not possible to be computed, either with

or without the instruments approach. When the analysis is done with fixed weights without

instruments, the estimation via GMM was possible to be performed. However, singularities

problems occur impeding the inversion of the Var-Cov matrix. GEL estimations were not

possible to be performed. When using managed portfolios, GMM and GEL were not able

to estimate given the high n.

5.2 Tests of Efficiency in Squared Sharpe ratio Form

Jobson and Korkie (1982) and Gibbons, Ross and Shanken (1989) derived efficiency

tests using squared Sharpe ratio. In this section are conducted efficiency tests for the

models using equations (3.39) and (3.41) that make use of the tangent portfolios.

For the portfolio with 6 assets, from table 8 we note very similar results to those
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Table 8 – Portfolio efficiency tests in terms of maximum Sharpe ratios for all 4 portfolios
to selected periods of time

Portfolio Months JK Test GRS Test JK Test GRS Test
Statistic p-value Statistic p-value Statistic p-value Statistic p-value

CAPM FF
Portfolio N = 6 120 3.3 0.767 0.5 0.790 9.3 0.159 1.4 0.210

240 23.9 0.001 3.9 0.001 33.9 0.000 5.4 0.000
360 29.2 0.000 4.8 0.000 55.4 0.000 9.0 0.000
480 55.7 0.000 9.1 0.000 70.8 0.000 11.6 0.000
600 52.3 0.000 8.6 0.000 64.7 0.000 10.6 0.000
720 59.8 0.000 9.9 0.000 70.7 0.000 11.6 0.000
840 66.3 0.000 11.0 0.000 71.7 0.000 11.8 0.000
960 69.7 0.000 11.5 0.000 64.1 0.000 10.6 0.000
1020 50.9 0.000 8.4 0.000 51.3 0.000 8.5 0.000

Portfolio N = 25 120 16.4 0.903 0.5 0.970 71.8 0.000 2.2 0.004
240 50.7 0.002 1.8 0.013 88.6 0.000 3.1 0.000
360 60.2 0.000 2.2 0.001 127.2 0.000 4.7 0.000
480 97.7 0.000 3.7 0.000 117.8 0.000 4.4 0.000
600 87.9 0.000 3.4 0.000 107.5 0.000 4.1 0.000
720 93.2 0.000 3.6 0.000 103.0 0.000 4.0 0.000
840 97.1 0.000 3.8 0.000 97.6 0.000 3.8 0.000
960 115.6 0.000 4.5 0.000 108.8 0.000 4.2 0.000
1020 93.6 0.000 3.7 0.000 94.2 0.000 3.7 0.000

Portfolio N = 49 120 64.2 0.072 0.8 0.840 82.0 0.002 0.9 0.574
240 47.4 0.540 0.8 0.865 57.3 0.194 0.9 0.631
360 40.5 0.802 0.7 0.926 49.9 0.439 0.9 0.717
480 47.0 0.554 0.9 0.739 50.9 0.398 0.9 0.616
600 49.7 0.446 0.9 0.612 97.3 0.000 1.8 0.001
720 63.2 0.083 1.2 0.169 280.5 0.000 5.3 0.000
840 63.7 0.077 1.2 0.146 494.8 0.000 9.5 0.000
960 80.6 0.003 1.6 0.009 766.2 0.000 14.8 0.000
1020 83.5 0.002 1.6 0.005 944.7 0.000 18.3 0.000

Portfolio N = 100 120 302.5 0.000 0.5 0.990 531.1 0.000 0.8 0.809
240 118.3 0.103 0.7 0.977 338.2 0.000 1.9 0.000
360 122.8 0.060 0.9 0.761 430.7 0.000 3.1 0.000
480 169.2 0.000 1.3 0.029 376.4 0.000 3.0 0.000
600 144.6 0.002 1.2 0.106 415.1 0.000 3.4 0.000
720 140.3 0.005 1.2 0.098 492.1 0.000 4.2 0.000
840 158.2 0.000 1.4 0.010 587.8 0.000 5.2 0.000
960 219.2 0.000 2.0 0.000 639.3 0.000 5.7 0.000
1020 228.6 0.000 2.1 0.000 709.7 0.000 6.4 0.000

Tests of portfolio efficiency using all 4 portfolios samples (N = 6, N = 25, N = 49 and N = 100) for
9 selected periods of time: T=120 (10 years), T=240 (20 years), T=360 (30 years), T=480 (40 years),
T=600 (50 years), T=720 (60 years), T=840 (70 years), T=960 (80 years) and T=1020 (85 years). The
tests are performed using squared Sharpe ratio. Tests of efficiency under the CAPM asset pricing model
are on the left, while tests under Fama-French three-factors model are on the right. Table presents the
statistic and the p-values of the Wald and the GRS tests for each case.
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obtained using Wald and GRS tests via GMM and GEL. For T = 240 or higher, it is

strongly rejected the hypothesis of efficiency for CAPM and Fama-French models. Just

for the CAPM and T = 120, when GMM is rejected (under fixed weights and managed

portfolios), and GEL shows no evidence in this direction (under fixed weights and managed

portfolios), through tests with squared Sharpe ratio we can conclude that, in line with

GEL estimations, there is no evidence for rejection.

Now, for the portfolio with 25 assets, succinctly, when it was possible to conduct

the tests, the efficiency hypothesis was rejected. In the table 8 results are in conformity

with the tests via GMM and GEL for T = 240 or higher. For T = 120, the efficiency is

rejected under the Fama-French model, but not for the CAPM.

For the portfolio with 49 assets from the industrial categories, the table results

are partially in accordance. For the Fama-French model, when T = 600 or higher, it is

possible to conclude for the rejection of efficiency. Using GMM, compared to results from

previous section, only for 360 and 480 months was possible to carry out the tests, being

clear that the results are in harmony. Regarding the CAPM, the tests under GEL shows

rejection evidence for intervals above 600 months. Table 8 reveals that when T = 960 or

T = 1020 there are no evidences to reject the market proxy.

Finally, for the 100 portfolios formed on size and book-to-market, with Fama-French

model the efficiency is rejected except for 120 months (GRS). However, for the CAPM,

focusing on GRS test there are no evidence in this direction for 120, 240, 360, 600 and 720

months. But the JK test practically rejects the null hypothesis for all scenarios, except

when T = 240.

5.3 Fixed-b HAC Estimators Methodology

As presented in section 3.2.3 asymptotic estimators based on a long-run covariance

matrix estimated with the conventional use of kernels presents deficiencies in finite samples.

So, if we stick the statistical inference only in those estimators, there is reason to argue

that the performance can be compromised due to the existence of serial correlation,
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measurement errors and moving average contamination or outliers. In such cases, it is

expected that the estimators based on the methodology from Kiefer and Vogelsang (2002b)

have better performance.

In this section we use the estimator of Ω̂M=T from the equation (3.26) using the

Bartlett kernel with a bandwidth equal to the sample size, according to the methodology

of Vogelsang-Kiefer (henceforth VK). The empirical strategy is the same as the previous

sections, wherein is evaluated the test results for CAPM and Fama-French models, for

selected monthly windows, and both approaches, without conditional information, as well

as for managed portfolios. It is expected that in finite samples these tests have better size

and power properties than conventional asymptotic tests.

5.3.1 6 Portfolios Formed on Size and Book-to-Market

5.3.1.1 No Conditional Information

Table 9 shows the estimation results by GMM and GEL for the 9 periods of

months previously defined. The first point to note is that the tests were not possible to be

conducted with GEL. This fact was due that with the VK method it was not feasible to

estimate a nonsingular variance matrix Ω̂M=T for any of the samples in this study. So, it

is not possible any assessment about the efficiency tests using the VK method in GEL

approach. Since this fact is a common result for all other portfolios cases, we decided to

present only the GMM panel for all tables in this section.

If we compare the results from this table with the results using standard asymptotic

HAC estimator in table 3, there are some interesting results. Note that in general the

estimates for both tests (Wald and GRS) are substantially higher than the usual HAC

case. This is valid for any time period analyzed. The p-values are virtually zero for all

scenarios, indicating strong evidence to reject the null hypothesis of efficiency.

Note that for the shortest period, i.e., 120 months, we have slightly different results

in the table 3. While for the latter we have 2% and 4% for Wald and GRS test, respectively;

the p-values for tests based on VK are negligible. It is possible that, indeed, in samples
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Table 9 – Tests of portfolio efficiency (VK method) using 6 portfolios formed on size and
book-to-market for selected periods of time

Months Wald Test GRS Test Wald Test GRS Test
Statistic p-value Statistic p-value Statistic p-value Statistic p-value

CAPM FF
GMM 120 139.4 0.000 21.9 0.000 125.7 0.000 19.4 0.000

240 262.2 0.000 42.4 0.000 256.5 0.000 41.1 0.000
360 332.8 0.000 54.4 0.000 470.2 0.000 76.4 0.000
480 417.6 0.000 68.6 0.000 532.5 0.000 87.1 0.000
600 528.6 0.000 87.1 0.000 994.4 0.000 163.2 0.000
720 233.7 0.000 38.6 0.000 390.5 0.000 64.3 0.000
840 276.1 0.000 45.6 0.000 665.4 0.000 109.7 0.000
960 302.6 0.000 50.1 0.000 699.0 0.000 115.4 0.000
1020 294.6 0.000 48.8 0.000 497.3 0.000 82.2 0.000

Tests of portfolio efficiency using 6 portfolios formed on size and book-to-market (2x3) for 9 selected
periods of time: T=120 (10 years), T=240 (20 years), T=360 (30 years), T=480 (40 years), T=600 (50
years), T=720 (60 years), T=840 (70 years), T=960 (80 years) and T=1020 (85 years). Estimations
are performed following the methodology of Vogelsang-Kiefer. The tests are conducted based on both
estimations methodology: via GMM are on top, while via GEL are on the bottom. Tests of efficiency
under the CAPM asset pricing model are on the left, while tests under Fama-French three-factors model
(represented as “FF”) are on the right. Table presents the statistic and the p-values of the Wald and the
GRS tests for each case. “NA” denotes not applicable, situations in which singularities problems occur
impeding the inversion of the Var-Cov matrix.

with finite characteristics the VK method has a different estimation performance via

standard HAC. If we make a correction so that VK method uses an optimal weighting

matrix extracted from a previous estimation by standard GMM, we get the same tests

results reported in table 9.

5.3.1.2 Managed Portfolios

The table 10 presents the tests results for the approach with the use of instruments.

Compared with results from the standard HAC estimation presented in table 4, the tests

based on GMM estimations with VK methodology strongly indicate rejection of the null

hypothesis for time periods ranging from 120 to 720 months. If we analyze, for example,

the 120 months period, the rejection of efficiency in Fama-French model is questionable

depending on the significance level in use for results obtained via standard HAC (with 1%

it is not possible to reject the efficiency for Wald and GRS tests). On the other hand, using

VK the evidences to reject are more robust. Not only for the case with 120 observations.

Note that the difference in statistics for both tests between tables are considerable. For 360

months the CAPM model has a Wald test of 79 when estimation is done via conventional
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HAC. For the same case, using VK the statistic is 4902. These results show evidence that

there is a difference in power and size when the test makes use of the VK method.

Table 10 – Tests of portfolio efficiency (VK method) using 6 portfolios formed on size and
book-to-market under scaled returns for selected periods of time

Months Wald Test GRS Test Wald Test GRS Test
Statistic p-value Statistic p-value Statistic p-value Statistic p-value

CAPM FF
GMM 120 610.9 0.000 95.9 0.000 783.7 0.000 120.8 0.000

240 917.8 0.000 148.5 0.000 4,184.1 0.000 671.2 0.000
360 4,902.3 0.000 801.2 0.000 6,532.9 0.000 1,061.6 0.000
480 3,258.6 0.000 535.2 0.000 10,250.2 0.000 1,676.3 0.000
600 4,021.4 0.000 662.4 0.000 16,048.9 0.000 2,634.7 0.000
720 5,396.1 0.000 890.6 0.000 10,124.1 0.000 1,666.3 0.000

Tests of portfolio efficiency using 6 portfolios formed on size and book-to-market (2x3) for 6 selected
periods of time: T=120 (10 years), T=240 (20 years), T=360 (30 years), T=480 (40 years), T=600 (50
years) and T=720 (60 years). Estimations are performed following the methodology of Vogelsang-Kiefer.
The tests are evaluated using conditioning information when instruments are incorporated to the pricing
equation. The lagged variables consisting the conditioning information are: (i) 3 month Treasury-bill yield,
(ii) industrial production growth, (iii) yield spreads of low-grade over high-grade corporate bonds, (iv)
yield spreads of long-term over short-term Treasury-bills (10-year/1-year) and (v) U.S. inflation (CPI).
The tests are conducted based on both estimations methodology: via GMM are on top, while via GEL are
on the bottom. Tests of efficiency under the CAPM asset pricing model are on the left, while tests under
Fama-French three-factors model (represented as “FF”) are on the right. Table presents the statistic and
the p-values of the Wald and the GRS tests for each case. “NA” denotes not applicable, situations in
which singularities problems occur impeding the inversion of the Var-Cov matrix.

The table 15 in appendix B presents the test results for GMM in the case where it

is used an optimal weighting matrix extracted from a previous estimation by standard

GMM. Note that the results are very similar to those reported in table 10.

5.3.2 25 Portfolios Formed on Size and Book-to-Market

5.3.2.1 No Conditional Information

Table 11 presents the estimations results from the portfolio with 25 assets. As the

tests with the use of estimates were not feasible to be conducted via GEL, we focus only

on GMM. Compared with the table 5 which uses the standard HAC, the results are in line

with the previous portfolio with 6 assets: the test statistics are substantially larger and

p-values are all virtually zero for any period. One difference is that in table 5 the GRS

and Wald tests were not performed for Fama-French model. With the VK method, it was

possible to get tests estimates that indicate a strong rejection of the null hypothesis.
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Table 11 – Tests of portfolio efficiency (VK method) using 25 portfolios formed on size
and book-to-market for selected periods of time

Months Wald Test GRS Test Wald Test GRS Test
Statistic p-value Statistic p-value Statistic p-value Statistic p-value

CAPM FF
GMM 120 2,120.7 0.000 66.4 0.000 787.9 0.000 24.2 0.000

240 4,206.3 0.000 150.0 0.000 4,022.6 0.000 142.1 0.000
360 7,141.5 0.000 265.0 0.000 7,423.2 0.000 273.8 0.000
480 2,498.5 0.000 94.5 0.000 7,267.7 0.000 273.7 0.000
600 3,437.0 0.000 131.5 0.000 11,034.2 0.000 420.8 0.000
720 3,563.1 0.000 137.4 0.000 5,877.6 0.000 226.0 0.000
840 3,453.8 0.000 133.9 0.000 5,568.0 0.000 215.3 0.000
960 3,537.9 0.000 137.7 0.000 5,985.3 0.000 232.4 0.000
1020 3,463.4 0.000 135.0 0.000 4,973.2 0.000 193.5 0.000

Tests of portfolio efficiency using 25 portfolios formed on size and book-to-market (5x5) for 9 selected
periods of time: T=120 (10 years), T=240 (20 years), T=360 (30 years), T=480 (40 years), T=600 (50
years), T=720 (60 years), T=840 (70 years), T=960 (80 years) and T=1020 (85 years). Estimations
are performed following the methodology of Vogelsang-Kiefer. The tests are conducted based on both
estimations methodology: via GMM are on top, while via GEL are on the bottom. Tests of efficiency
under the CAPM asset pricing model are on the left, while tests under Fama-French three-factors model
(represented as “FF”) are on the right. Table presents the statistic and the p-values of the Wald and the
GRS tests for each case. “NA” denotes not applicable, situations in which singularities problems occur
impeding the inversion of the Var-Cov matrix.

In table 16 in appendix B we have the test results with GMM where a correction

is done so that VK method uses an optimal weighting matrix extracted from a previous

estimation by standard GMM. This way we have a consistent estimator at this stage.

Basically, we get the same results reported in table 11, and only for T = 120 the Fama-

French model tests were not feasible.

5.3.2.2 Managed Portfolios

In table 12 we can see the test results for the approach with instruments using

the same portfolio with 25 assets. For GMM the results point to the same direction. But

there are two points that need further comment. First, compared to table 6, both tests

for CAPM and Fama-French model show extremely high statistics, even if we take into

account that this fact also occurred in tables above. Second, while it was not possible to

obtain estimates for 240 and 360 months periods when we used non-parametric consistent

estimators, with VK method tests were estimable for both models. For these periods, not

surprisingly, there is a overwhelming evidence to reject the efficiency in both models.
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Table 12 – Tests of portfolio efficiency (VK method) using 25 portfolios formed on size
and book-to-market under scaled returns for selected periods of time

Months Wald Test GRS Test Wald Test GRS Test
Statistic p-value Statistic p-value Statistic p-value Statistic p-value

CAPM FF
GMM 120 NA NA NA NA NA NA NA NA

240 36,739.5 0.000 1,310.4 0.000 7,349.8 0.000 259.7 0.000
360 55,742.8 0.000 2,068.7 0.000 47,493.6 0.000 1,752.0 0.000
480 45,916.7 0.000 1,737.2 0.000 65,673.5 0.000 2,473.7 0.000
600 40,339.6 0.000 1,543.7 0.000 100,450.1 0.000 3,830.5 0.000
720 37,845.3 0.000 1,459.1 0.000 98,475.3 0.000 3,785.8 0.000

Tests of portfolio efficiency using 25 portfolios formed on size and book-to-market (5x5) for 6 selected
periods of time: T=120 (10 years), T=240 (20 years), T=360 (30 years), T=480 (40 years), T=600 (50
years) and T=720 (60 years). Estimations are performed following the methodology of Vogelsang-Kiefer.
The tests are evaluated using conditioning information when instruments are incorporated to the pricing
equation. The lagged variables consisting the conditioning information are: (i) 3 month Treasury-bill yield,
(ii) industrial production growth, (iii) yield spreads of low-grade over high-grade corporate bonds, (iv)
yield spreads of long-term over short-term Treasury-bills (10-year/1-year) and (v) U.S. inflation (CPI).
The tests are conducted based on both estimations methodology: via GMM are on top, while via GEL are
on the bottom. Tests of efficiency under the CAPM asset pricing model are on the left, while tests under
Fama-French three-factors model (represented as “FF”) are on the right. Table presents the statistic and
the p-values of the Wald and the GRS tests for each case. “NA” denotes not applicable, situations in
which singularities problems occur impeding the inversion of the Var-Cov matrix.

The test results for the case in which the VK method uses an optimal weighting

matrix extracted from a prior estimation by standard GMM can be found in table 17

(appendix B). Basically, the results are in the same direction of the tests in table 12, and,

in general, the test statistics are slightly higher. Moreover, for T equal to 240 and 360, the

tests could not be calculated.

5.3.3 49 Industry Portfolios

5.3.3.1 No Conditional Information

In table 13 we can see the test results for the portfolio formed with 49 industry

categories. Here, we have the most interesting results compared with previous portfolios.

Without the use of instruments we can summarize that, although GMM generally has

substantially higher statistics and p-values for both tests, being all practically zero for both

models (CAPM and Fama-French), what indicates the rejection of efficiency. However,

note that compared to the table 7 we have different results.

First, note that the tests were not able to be calculated only for 120 months period
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Table 13 – Tests of portfolio efficiency (VK method) using 49 industry portfolios for
selected periods of time

Months Wald Test GRS Test Wald Test GRS Test
Statistic p-value Statistic p-value Statistic p-value Statistic p-value

CAPM FF
GMM 120 1,796.7 0.000 21.4 0.000 NA NA NA NA

240 2,140.4 0.000 34.6 0.000 908.2 0.000 14.5 0.000
360 2,815.1 0.000 49.5 0.000 2,011.7 0.000 35.1 0.000
480 4,723.6 0.000 86.4 0.000 3,340.9 0.000 60.8 0.000
600 7,349.5 0.000 137.5 0.000 5,609.1 0.000 104.6 0.000
720 10,214.4 0.000 194.0 0.000 7,932.5 0.000 150.2 0.000
840 13,464.8 0.000 258.4 0.000 10,397.1 0.000 199.0 0.000
960 13,823.3 0.000 267.4 0.000 11,094.8 0.000 214.2 0.000
1020 14,080.1 0.000 273.3 0.000 9,840.7 0.000 190.6 0.000

Tests of portfolio efficiency using 49 industry portfolios for 9 selected periods of time: T=120 (10 years),
T=240 (20 years), T=360 (30 years), T=480 (40 years), T=600 (50 years), T=720 (60 years), T=840 (70
years), T=960 (80 years) and T=1020 (85 years). Estimations are performed following the methodology
of Vogelsang-Kiefer. The tests are conducted based on both estimations methodology: via GMM are on
top, while via GEL are on the bottom. Tests of efficiency under the CAPM asset pricing model are on the
left, while tests under Fama-French three-factors model (represented as “FF”) are on the right. Table
presents the statistic and the p-values of the Wald and the GRS tests for each case. “NA” denotes not
applicable, situations in which singularities problems occur impeding the inversion of the Var-Cov matrix.

with the Fama-French model. Without the use of VK method, only periods of 240, 360 and

480 months were estimable (where for 240 months, this was only possible with CAPM).

Second, for the same three periods, VK method points to the opposite direction compared

to the common HAC. Using VK there are strong evidences against the null hypothesis.

On the other hand, for the conventional test based on the asymptotic theory, we found

high p-values indicating the opposite.

The table 18 in appendix B shows the tests results when in VK method a correction

is done in the weighting matrix. The test results are the same as those reported in table

13. But, for T = 120 and periods above 600 months, the tests could not be performed.

5.3.3.2 Managed Portfolios

Finally, the table 14 presents the test results for the multiplicative approach. For

the case where the standard HAC was used, tests could not be realized for GMM and

GEL, both models, and all periods of time. Therefore, there is no possibility to compare

these results with the conventional asymptotic tests.

Solely for GMM, in table 14, the tests were not estimable for samples with finite
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Table 14 – Tests of portfolio efficiency (VK method) using 49 industry portfolios under
scaled returns for selected periods of time

Months Wald Test GRS Test Wald Test GRS Test
Statistic p-value Statistic p-value Statistic p-value Statistic p-value

CAPM FF
GMM 120 NA NA NA NA NA NA NA NA

240 NA NA NA NA NA NA NA NA
360 17,841.7 0.000 313.5 0.000 NA NA NA NA
480 49,600.7 0.000 906.8 0.000 10,822.6 0.000 196.9 0.000
600 122,819.1 0.000 2,297.6 0.000 55,048.6 0.000 1,026.1 0.000
720 262,905.2 0.000 4,992.8 0.000 154,114.2 0.000 2,918.0 0.000

Tests of portfolio efficiency using 49 industry portfolios for 6 selected periods of time: T=120 (10 years),
T=240 (20 years), T=360 (30 years), T=480 (40 years), T=600 (50 years) and T=720 (60 years).
Estimations are performed following the methodology of Vogelsang-Kiefer. The tests are evaluated using
conditioning information when instruments are incorporated to the pricing equation. The lagged variables
consisting the conditioning information are: (i) 3 month Treasury-bill yield, (ii) industrial production
growth, (iii) yield spreads of low-grade over high-grade corporate bonds, (iv) yield spreads of long-term
over short-term Treasury-bills (10-year/1-year) and (v) U.S. inflation (CPI). The tests are conducted
based on both estimations methodology: via GMM are on top, while via GEL are on the bottom. Tests of
efficiency under the CAPM asset pricing model are on the left, while tests under Fama-French three-factors
model (represented as “FF”) are on the right. Table presents the statistic and the p-values of the Wald
and the GRS tests for each case. “NA” denotes not applicable, situations in which singularities problems
occur impeding the inversion of the Var-Cov matrix.

characteristics (120 and 240 months). For other periods, the conclusion is in the same

direction of the case without the use of instruments: we have extremely high statistics

indicating rejection of the efficiency for each of the models in any period of time.

In summary, analyzing all the results presented in this fixed-b estimators section,

for GMM all portfolios with 6, 25 and 49 assets show evidences that when the sample

size tends to have finite characteristics, especially for 120 months, we note that the VK

method may present distinct evidence regarding efficiency than the results from estimators

based on a long-run covariance matrix conventionally estimated with the use of kernels.

As the performance of the tests for conventional HAC estimators may be com-

promised due to the existence of serial correlation, measurement errors, moving average

contamination and outliers; thus, it is possible that these diverging results can be explained

by the presence of some (or all) of these distortions. In this case, as the HAC estimators

performs poorly in the presence of moving average contamination and outliers, for instance,

while VK estimators have better performance in finite samples under those situations.

Therefore, if we find evidence of the existence of such characteristics, we should take as
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more reliable the test results using VK due to its robustness.

For GEL nothing can be concluded. As in all cases the VK method did not provide

results to be analyzed, we can not extract any information if the estimators from GEL class

would have a gain in performance, or even would show results in line with or without the use

of fixed-b estimators. One possible explanation for this inability in GEL estimations with

VK method, may be the use of smoothing that might cause difficulties in the estimation

process. For the case in which is used a correction in the weighting matrix in VK method,

all tests for all periods were not estimable.

5.4 Evaluating Robustness with Monte Carlo Simulations

In this section we are interested in evaluating the properties of the test statistics

using GMM and GEL estimators in a finite sample context. The goal here is to analyze the

size and power of the Wald and GRS tests under different situations. Therefore, we seek to

analyze the robustness of the tests on each of the two different estimation methodologies.

The previous section showed evidence that characteristics such as measurement

errors, moving average contamination, heavy tail and outliers may be present in the

data. The exercises performed in this section seek to specifically assess the tests under (i)

heavy-tailed distributions and (ii) outliers.

To generate data consistent with the null hypothesis that a portfolio is efficient,

we restricted the DGP so that this portfolio must be efficient. Then, it is analyzed the

tests simulating four different scenarios for the portfolio with six assets under the managed

portfolios approach, for 120 months period (N = 6, T = 120), and the Fama-French model.

To construct the dataset of artificial returns we used the following model:

Ri,t = βi,1Mktt + +βi,2SMBt + βi,3HMLt + εi,t, t = 1, . . . , T ; i = 1, . . . , N (5.1)

For each of the six assets in the portfolio we obtained the 3 estimated coefficients

of the parameters βi,1, βi,2, βi,3 from OLS. It was decided to carry out 500 artificial returns
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datasets simulations for each of the four scenarios, mainly because that during estimations

of the parameters for the efficiency tests, especially GEL method has a high computational

cost. Thus, it is possible to obtain a new artificial dataset for each of the 500 simulations,

assuming the following data generating process:

RSim*
i,t = β̂OLSi,1 Mktt + +β̂OLSi,2 SMBt + β̂OLSi,3 HMLt + ε̂Sim*

i,t , t = 1, . . . , 120 ; i = 1, . . . , 6

(5.2)

All four scenarios have this generating process, where just the shock term construc-

tion ε̂Sim*
i,t is what differentiates each one of them.

Scenario 1 - Gaussian Shocks: The first scenario seeks to assess the two tests

with the presence of Gaussian innovations. The shock generating process is defined by:

ε̂Sim*
i,t = ξ̂Sim1

i,t , t = 1, . . . , 120 ; i = 1, . . . , 6

ξ̂Sim1
i,t ∼ N(0, σ̂2 OLS

i )
(5.3)

Scenario 2 - Shocks from a t distribution: In the second simulated scenario

the aim is to evaluate the efficiency tests under the presence of heavy tails. The construction

of the artificial dataset is similar to the previous scenario. However, as heavy tails are

characterized by more extreme values in shocks; then, the most appropriate way to model

this phenomenon is to use innovations drawn from a t-Student distribution. All three beta

coefficients for each of the six assets in the portfolio are estimated from original data using

OLS. With this estimation it is possible to construct 500 artificial dataset simulations

following the shock generator process below.

ε̂Sim*
i,t = ν̂Sim2

i,t , t = 1, . . . , 120 ; i = 1, . . . , 6

ν̂Sim2
i,t ∼ t(4)

(5.4)

Scenario 3 - Outlier on a fixed date: The third and fourth simulation scenarios

seek to evaluate the Wald and GRS tests when outliers are present in data. In the third

case, we model the generating process to insert a large magnitude shock on a fixed date in
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our the sample. Arbitrarily, we chose to include an error in the middle of the sample, i.e.,

when t = 60. Following the structure of the previous scenarios, the beta coefficients of each

asset in the portfolio are estimated by OLS, and when t = T/2 = 60 there is a negative

shock of 5 standard deviations randomly drawn from a Normal distribution with variance

estimated with the original data. So, it is possible to obtain 500 simulated returns datasets

for the six assets of the portfolio with the following generating process for innovation ε̂i,t:

ε̂Sim*
i,t = 1t=T/2(κ̂Sim3

i,t ), t = 1, . . . , 120 ; i = 1, . . . , 6

1t=T/2(κSim3
i,t ) =


−κ̂Sim3

i,t , if t = T/2

0 , if t 6= T/2

κ̂Sim3
i,t ∼ N(0, 5σ̂2 OLS

i )

(5.5)

Scenario 4 - Outlier with 5% probability: The fourth scenario takes another

direction to simulate outliers. We used a probability process of extreme events, arbitrarily

assuming that there is a probability of 5% that an outlier exists. Thus, we drawn a random

value from a Uniform distribution from 0 to 1 for each observation. In case of success, it is

added an outlier with 5 standard deviations randomly drawn from a Normal distribution

with variance estimated with the original data. In this case, the DGP innovation is given

by:

ε̂Sim*
i,t = ξ̂Sim4

i,t − 1p̂i,t<0.05(κ̂Sim4
i,t ), t = 1, . . . , 120 ; i = 1, . . . , 6

1p̂i,t<0.05(κSim4
i,t ) =


κ̂Sim4
i,t , if p̂Sim4

i,t < 0.05

0 , if p̂Sim4
i,t ≥ 0.05

p̂Sim4
i,t ∼ unif(0, 1)

ξ̂Sim4
i,t ∼ N(0, σ̂2 OLS

i )

κ̂Sim4
i,t ∼ N(0, 5σ̂2 OLS

i )

(5.6)

5.4.1 Sampling Distributions of the Test Statistics

To analyze the results of the Monte Carlo experiments, we chose to use the graphical

method proposed by Davidson and MacKinnon (1998). The authors advocate in favor of
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this method, as opposed to present the Monte Carlo simulations results in tables, primarily

because of the amplitude in transmitting information that these graphics possess in an

easily assimilated format.

The graphs to study the test size are based on the empirical distribution function

(EDF) of p-values from Wald and GRS tests, i.e., JWald and JGRS. Recalling that EDF is

defined by:

F̂ (xi) ≡ 1
N

∑N
j=1 1pj≤xi

1pj≤xi
=


1 , if pj ≤ xi

0 , if pj > xi

(5.7)

where p∗j , for the purpose of this study, is the p-value of the J tests, i.e., p∗j ≡ p(J∗)

Davidson and MacKinnon (1998) propose as first and simplest graphic what they

called P-value plot. This graph plots F̂ (xi) against xi, and if the distributions of the tests

JWald and JGRS used to calculate p-values p∗j are correct; then, each p∗j must be distributed

as a Uniform (0, 1). This implies that the F̂ (xi) chart against xi should be as close as

possible to a 45° line. Therefore, one can say that with P-value plot it is possible to quickly

evaluate statistical tests that systematically over-reject, under-reject or those that reject

about the right proportion of the time.

For situations where the tests statistics being studied behave close to the way they

should, i.e., with graphs being close to the 45° line, the authors proposed the P-value

discrepancy plot. This chart plots F̂ (xi)−xi against xi. According to the authors, there are

advantages and disadvantages in this representation. Among the advantages of this chart,

we have that it presents more information than P-value plot when statistics of the tests

are well behaved. However, this information may be spurious, being just a result of the

experiment randomness conducted. Furthermore, there is no natural scale for the vertical

axis, which could cause some difficulty in interpretation. For the P-value discrepancy plot,

if the distribution is correct, then each p∗j must be distributed as a Uniform (0, 1) and the

graph of F̂ (xi)− xi against xi should be near the horizontal axis.
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Figure 10 – Simulated scenario 1 with Gaussian innovations (ε̂Sim*
i,t = ξ̂Sim1

i,t ) in Wald and
GRS tests (Model=Fama-French, N=6, T=120, 500 simulations)
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All three left panels are simulations for JW ald test, while the three right panels are simulations for JGRS

test. The two top panels are the EDF graphics of the p-values obtained via GMM and GEL for both tests.
The two central panels are the P-value plot, while the two bottom panels are the P-value discrepancy
plot. In order to facilitate visualization, it is included in the EDF and P-value plot charts a dashed line
representing a 45◦ line. For the P-value discrepancy plot the dashed line represents the x-axis.
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The results for the first simulated scenario derived from a Normal shock can be

seen in figure 10. The panels which are in the left column, represents the Wald test, while

the right ones refer to the GRS test. The panels in the first line are the EDF of the tests

p-values, the panels on the center are the P-value plot, while those on the bottom are the

P-value discrepancy plot. In the first two types of charts, the straight 45◦ line is represented

by a dashed line. For P-value discrepancy plot the dashed line represents the abscissa axis.

Analyzing the P-value plot we note that GEL provides better p-values than GMM,

for both, Wald and GRS tests under the null hypothesis. It can be seen that both, GEL

and GMM over-reject for any nominal size. For instance, taking 5% nominal size, for Wald

test, GMM shows an actual size test of 40.36%, while GEL has less than half of that

(15.8%). For the same 5% nominal size, the GRS test derived for finite samples actually has

better performance for both GMM and GEL. However, GEL still has a better performance.

Regarding the P-value discrepancy plot, one can see similar results. Based on these graphs,

it is possible to notice a superiority by GEL compared to GMM for estimating parameters,

for JWald and JGRS tests when Gaussian shocks exists.

In Appendix B can be found the table 19 presenting tabulated rejection proportions

for the most common nominal sizes, both tests and all four Monte Carlo experiments

scenarios.

The results for the second scenario with shocks from a t distribution are presented

in figure 11. The structure of the panels remained constant. In this scenario, by inserting a

shock from a t, we investigate the tests robustness for data with distribution having heavy

tail characteristics. Easily one can note that tests based on GMM estimations performs

badly in finite samples for distributions with long tail. For 5% nominal size, the Wald

test using the GMM has an actual size of 43.68%, while GEL has slightly more than

half of it (23.2%). For GRS test, both estimators have performance improved. For the

same 5% nominal size, GMM has actual size of 36.47 and GEL 17.8. However, while one

can say that GMM has poor performance in finite samples with heavy tails compared to

GEL, this result can not hide the fact that both estimators generally over-reject under

these circumstances. Even if we consider that GEL performs better, having an actual
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Figure 11 – Simulated scenario 2 with shocks from a t distribution (ε̂Sim*
i,t = ν̂Sim2

i,t ) in Wald
and GRS tests (Model=Fama-French, N=6, T=120, 500 simulations)
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All three left panels are simulations for JW ald test, while the three right panels are simulations for JGRS

test. The two top panels are the EDF graphics of the p-values obtained via GMM and GEL for both tests.
The two central panels are the P-value plot, while the two bottom panels are the P-value discrepancy
plot. In order to facilitate visualization, it is included in the EDF and P-value plot charts a dashed line
representing a 45◦ line. For the P-value discrepancy plot the dashed line represents the x-axis.
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size of nearly 5 times the 5% nominal size for the Wald test, and an actual size of more

than 3 times the 5% nominal size for GRS test, one can not necessarily conclude that its

performance is satisfactory.

In figure 12 can be found the results for the third scenario, with great magnitudes

shocks in the middle of the sample. The aim is to check robustness in the presence of

outliers. Here, again the evidences are in the same direction, demonstrating that the GMM

has worse performance compared to GEL under the efficiency null hypothesis imposed.

Note that both estimators always over-reject when we insert a random shock with 5

standard deviations in middle of the sample.

Finally, in figure 13 we have the results for the fourth scenario, in which we also

seek to evaluate robustness to outliers. In this scenario, innovation comes from a Gaussian

distribution, being added a shock with 5 standard deviations from a Normal, when it is

drawn from a Uniform (0, 1) a value lower than 0.05. Here we have interesting results that

differ from earlier ones. The JWald and JGRS tests based on GMM estimations show better

results than via GEL for any nominal size we take. However, note that this superiority is

tenuous, being more discernible for nominal values below 10%. Taking 5% nominal size,

the Wald test with GMM has an actual size of 90.34%, while GEL has 95.6%. For GRS

test, assuming the same 5% nominal size, GMM has 86.5% and GEL 93%. Analyzing the

P-value discrepancy plot we can note similar pattern with an important feature: for both

tests, both GMM and GEL estimations tend to consistently improve performance after

reaching a peak of discrepancy around nominal size of 5%.

In summary, analyzing all the results presented in this section, it was possible to

observe evidences that efficiency tests in finite samples with GEL estimations tend to have

better performance compared to estimations via GMM. Furthermore, tests using GEL are

more robust to the presence of heavy tails. To assess the robustness for outliers, depending

on the generating process we assume, both GMM and GEL can be advantageously compared

with each other. However, these results also demonstrate that, whichever the estimator and

the test we evaluate, in general, the Wald and GRS tests have a tendency to over-reject.
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Figure 12 – Simulated scenario 3 with shocks at t=T/2 defined by ε̂Sim*
i,t = 1t=T/2(κ̂Sim3

i,t )
in Wald and GRS tests (Model=Fama-French, N=6, T=120, 500 simulations)
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All three left panels are simulations for JW ald test, while the three right panels are simulations for JGRS

test. The two top panels are the EDF graphics of the p-values obtained via GMM and GEL for both tests.
The two central panels are the P-value plot, while the two bottom panels are the P-value discrepancy
plot. In order to facilitate visualization, it is included in the EDF and P-value plot charts a dashed line
representing a 45◦ line. For the P-value discrepancy plot the dashed line represents the x-axis.
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Figure 13 – Simulated scenario 4 with shocks defined by ε̂Sim*
i,t = ξ̂Sim4

i,t − 1p̂i,t<0.05(κ̂Sim4
i,t )

in Wald and GRS tests (Model=Fama-French, N=6, T=120, 500 simulations)
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All three left panels are simulations for JW ald test, while the three right panels are simulations for JGRS

test. The two top panels are the EDF graphics of the p-values obtained via GMM and GEL for both tests.
The two central panels are the P-value plot, while the two bottom panels are the P-value discrepancy
plot. In order to facilitate visualization, it is included in the EDF and P-value plot charts a dashed line
representing a 45◦ line. For the P-value discrepancy plot the dashed line represents the x-axis.
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6 Conclusions

The purpose of this study was to evaluate the behavior of the estimators from

GEL class in tests of portfolios efficiency. Comparing the results for (a) different portfolios

sizes, (b) different composition methods, as well as (c) increasing periods of time, it can

be seen from the analysis that (i) in general, efficiency tests using GEL generate lower

estimates compared to tests using the standard approach with GMM; and (ii) when the

sample may be characterized as finite, with low n and T , we note that the results are

conflicting among the methodologies. These results are significant when the hypothesis

of efficiency is evaluated for both models, the CAPM and the Fama-French. Under the

unconditional efficiency structure these findings also apply for either fixed weights, or

conditional information with instruments in the multiplicative approach.

These results may be an evidence that estimators from GEL class really performs

differently in small samples. In addition, they may show that tests based on GMM, or even

by maximum likelihood estimation, have a tendency to over-reject the null hypothesis.

On the other hand, if we use the Vogelsang-Kiefer method in which one would

expect more robust tests for finite samples, in order to circumvent problems of over-

rejection, we obtained results for Wald and GRS tests very similar with the case of the

standard long-run covariance HAC matrix estimation via GMM. However, for T low, in

particular for T = 120, decisions based on tests of efficiency may differ between using

conventional HAC and VK method, wherein with the latter there is a strong evidence in

favor of rejecting the null hypothesis of efficiency. For GEL, the Vogelsang-Kiefer correction

provided no evidence and nothing can be concluded about the use of this method for GEL

estimators in efficiency tests.

Finally, in order to assess the robustness of the tests with the use of GMM and GEL

estimators in a finite sample context, this study sought through Monte Carlo experiments

to examine the effects that distortions in the data series may cause on tests of efficiency,

and consequently, in decisions based on these results. In general, it was noted that GEL



86 Chapter 6. Conclusions

has better performance when heavy tails are present. Depending on the DGP we choose to

use, both GMM and GEL may have better robustness to outliers compared among them.

However, under the null hypothesis, the Wald and GRS tests using both estimators have

a tendency to over-reject the hypothesis of efficiency in finite samples.
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APPENDIX A – Additional Graphics

Figure 14 – Boxplots for comparison of estimations by GMM and GEL for Fama-French
model using 6 portfolios formed on size and book-to-market under scaled
returns for selected periods of time
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In both panels, the x-axis represents the time intervals, starting with 120 months before December 2014
to 720 months prior to this date. The y-axis are the estimated coefficients values by GMM and GEL.
Estimation by GMM is represented by gray boxplots, while GEL estimation is represented by white
boxplots.

Figure 15 – Boxplots for comparison of estimations by GMM and GEL for Fama-French
model using 25 portfolios formed on size and book-to-market for selected
periods of time
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to 1020 months prior to this date. The y-axis are the estimated coefficients values by GMM and GEL.
Estimation by GMM is represented by gray boxplots, while GEL estimation is represented by white
boxplots.
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Figure 16 – CAPM Model - Comparison of GMM and GEL estimated betas against the
sample mean of monthly excess returns for the portfolio with 25 assets

●

●
●

●

● ●
●

●

● ●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

GMM − 120 months

My.list.betas[[i]][[1]]

0.0 0.5 1.0 1.5

0.
00

0
0.

00
6

0.
01

2

●

●
●

●

● ●
●

●

● ●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

GEL − 120 months

Betas

E
xp

.R
.e

i

0.0 0.5 1.0 1.5

0.
00

0
0.

00
6

0.
01

2

●

●

●●

●

●

●

●
● ●

●

●●●

●

●●●●
●

●

●●● ●

GMM − 240 months

My.list.betas[[i]][[1]]

0.0 0.5 1.0 1.5

0.
00

0
0.

01
0

●

●

●●

●

●

●

●
● ●

●

●●●

●

●●●●
●

●

●●● ●

GEL − 240 months

Betas

E
xp

.R
.e

i

0.0 0.5 1.0 1.5

0.
00

0
0.

01
0

●

●
●●

●

●

●

●
● ●

●

●●
●

●

●●●
● ●

●
●●

●
●

GMM − 360 months

My.list.betas[[i]][[1]]

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.
00

0
0.

01
0

●

●
●●

●

●

●

●
● ●

●

●●
●

●

●●●
● ●

●
●●

●
●

GEL − 360 months

Betas

E
xp

.R
.e

i

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.
00

0
0.

01
0

●

●
●

●

●

●

●

●● ●

●

●●●

●

●●●●
●

●

●●●
●

GMM − 480 months

My.list.betas[[i]][[1]]

0.0 0.5 1.0 1.5

0.
00

0
0.

01
0

0.
02

0

●

●
●

●

●

●

●

●● ●

●

●●●

●

●●●●
●

●

●●●
●

GEL − 480 months

Betas

E
xp

.R
.e

i

0.0 0.5 1.0 1.5

0.
00

0
0.

01
0

0.
02

0

●

●
●

●

●

●

●

●● ●

●

●●
●

●

●●
●

●
●

●
●●●

●

GMM − 600 months

My.list.betas[[i]][[1]]

0.0 0.5 1.0 1.5

0.
00

0
0.

01
0

●

●
●

●

●

●

●

●● ●

●

●●
●

●

●●
●

●
●

●
●●●

●

GEL − 600 months

Betas

E
xp

.R
.e

i

0.0 0.5 1.0 1.5

0.
00

0
0.

01
0

●

●
●

●

●

●

●

●●
●

●

●●
●

●

●●
●

● ●

●
●●●

●

GMM − 720 months

My.list.betas[[i]][[1]]

0.0 0.5 1.0 1.5

0.
00

0
0.

01
0

●

●
●

●

●

●

●

●●
●

●

●●
●

●

●●
●

● ●

●
●●●

●

GEL − 720 months

Betas

E
xp

.R
.e

i

0.0 0.5 1.0 1.5

0.
00

0
0.

01
0

●

●●
●

●

●

●

●●
●

●

●●
●

●

●●

●●
●

●
●●●

●

GMM − 840 months

My.list.betas[[i]][[1]]

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.
00

0
0.

01
0

●

●●
●

●

●

●

●●
●

●

●●
●

●

●●

●●
●

●
●●●

●

GEL − 840 months

Betas

E
xp

.R
.e

i

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.
00

0
0.

01
0

●

●

●
●

●

●

●
●●

●

●

●●
●

●

●●
●●

●

●
●

●●
●

GMM − 960 months

My.list.betas[[i]][[1]]

0.0 0.5 1.0 1.5

0.
00

0
0.

01
0

0.
02

0

●

●

●
●

●

●

●
●●

●

●

●●
●

●

●●
●●

●

●
●

●●
●

GEL − 960 months

Betas

E
xp

.R
.e

i

0.0 0.5 1.0 1.5

0.
00

0
0.

01
0

0.
02

0

●

●

●
●

●

●

●
●●

●

●

●●
●

●

●●
●

●
●

●
● ● ●

●

GMM − 1020 months

0.0 0.5 1.0 1.5

0.
00

0
0.

01
0

0.
02

0

●

●

●
●

●

●

●
●●

●

●

●●
●

●

●●
●

●
●

●
● ● ●

●

GEL − 1020 months

E
xp

.R
.e

i

0.0 0.5 1.0 1.5

0.
00

0
0.

01
0

0.
02

0

In all panels, the estimated betas (β̂Mkt) are in the x-axis, and the sample mean of the monthly excess
returns for each of the n = 25 assets in the portfolio are in the y-axis. Estimations via GMM are on the
left, while via GEL are on the right. Each panel represents one of the time intervals, starting with 120
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Figure 17 – CAPM Model - Comparison of GMM and GEL estimated betas against the
sample mean of monthly excess returns for the portfolio with 49 assets
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In all panels, the estimated betas (β̂Mkt) are in the x-axis, and the sample mean of the monthly excess
returns for each of the n = 49 assets in the portfolio are in the y-axis. Estimations via GMM are on the
left, while via GEL are on the right. Each panel represents one of the time intervals, starting with 120
months before December 2014 to 1020 months (85 years) prior to this date.



APPENDIX B – Additional Tables

Table 15 – Tests of portfolio efficiency (VK method - two-step) using 6 portfolios formed
on size and book-to-market under scaled returns for selected periods of time

Months Wald Test GRS Test Wald Test GRS Test
Statistic p-value Statistic p-value Statistic p-value Statistic p-value

CAPM FF
GMM 120 996.5 0.000 156.4 0.000 124.6 0.000 19.2 0.000

240 988.1 0.000 159.9 0.000 4,115.9 0.000 660.3 0.000
360 4,217.0 0.000 689.2 0.000 5,874.9 0.000 954.7 0.000
480 4,386.5 0.000 720.4 0.000 11,108.3 0.000 1,816.7 0.000
600 5,261.8 0.000 866.7 0.000 16,045.4 0.000 2,634.1 0.000
720 4,652.3 0.000 767.8 0.000 8,646.5 0.000 1,423.1 0.000

Tests of portfolio efficiency using 6 portfolios formed on size and book-to-market (2x3) for 9 selected
periods of time: T=120 (10 years), T=240 (20 years), T=360 (30 years), T=480 (40 years), T=600 (50
years), T=720 (60 years), T=840 (70 years), T=960 (80 years) and T=1020 (85 years). Estimations are
performed following the methodology of Vogelsang-Kiefer, in the case in which VK method uses an optimal
weighting matrix extracted from a prior estimation by standard GMM. The tests are evaluated using
conditioning information when instruments are incorporated to the pricing equation. The lagged variables
consisting the conditioning information are: (i) 3 month Treasury-bill yield, (ii) industrial production
growth, (iii) yield spreads of low-grade over high-grade corporate bonds, (iv) yield spreads of long-term
over short-term Treasury-bills (10-year/1-year) and (v) U.S. inflation (CPI). The tests are conducted
based on both estimations methodology: via GMM are on top, while via GEL are on the bottom. Tests of
efficiency under the CAPM asset pricing model are on the left, while tests under Fama-French three-factors
model (represented as “FF”) are on the right. Table presents the statistic and the p-values of the Wald
and the GRS tests for each case.



Table 16 – Tests of portfolio efficiency (VK method - two-step) using 25 portfolios formed
on size and book-to-market for selected periods of time

Months Wald Test GRS Test Wald Test GRS Test
Statistic p-value Statistic p-value Statistic p-value Statistic p-value

CAPM FF
GMM 120 2,120.7 0.000 66.4 0.000 NA NA NA NA

240 4,206.3 0.000 150.0 0.000 4,022.6 0.000 142.1 0.000
360 7,141.5 0.000 265.0 0.000 7,423.2 0.000 273.8 0.000
480 2,498.5 0.000 94.5 0.000 7,267.7 0.000 273.7 0.000
600 3,437.0 0.000 131.5 0.000 11,034.2 0.000 420.8 0.000
720 3,563.1 0.000 137.4 0.000 5,877.6 0.000 226.0 0.000
840 3,453.8 0.000 133.9 0.000 5,568.0 0.000 215.3 0.000
960 3,537.9 0.000 137.7 0.000 5,985.3 0.000 232.4 0.000
1020 3,463.4 0.000 135.0 0.000 4,973.2 0.000 193.5 0.000

Tests of portfolio efficiency using 25 portfolios formed on size and book-to-market (5x5) for 9 selected
periods of time: T=120 (10 years), T=240 (20 years), T=360 (30 years), T=480 (40 years), T=600 (50
years), T=720 (60 years), T=840 (70 years), T=960 (80 years) and T=1020 (85 years). Estimations are
performed following the methodology of Vogelsang-Kiefer, in the case in which VK method uses an optimal
weighting matrix extracted from a prior estimation by standard GMM. The tests are conducted based on
both estimations methodology: via GMM are on top, while via GEL are on the bottom. Tests of efficiency
under the CAPM asset pricing model are on the left, while tests under Fama-French three-factors model
(represented as “FF”) are on the right. Table presents the statistic and the p-values of the Wald and the
GRS tests for each case. “NA” denotes not applicable, situations in which singularities problems occur
impeding the inversion of the Var-Cov matrix.

Table 17 – Tests of portfolio efficiency (VK method - two-step) using 25 portfolios formed
on size and book-to-market under scaled returns for selected periods of time

Months Wald Test GRS Test Wald Test GRS Test
Statistic p-value Statistic p-value Statistic p-value Statistic p-value

CAPM FF
GMM 120 NA NA NA NA NA NA NA NA

240 NA NA NA NA NA NA NA NA
360 NA NA NA NA NA NA NA NA
480 45,470.8 0.000 1,720.3 0.000 81,208.6 0.000 3,058.9 0.000
600 42,184.5 0.000 1,614.3 0.000 108,302.0 0.000 4,129.9 0.000
720 38,143.0 0.000 1,470.6 0.000 97,003.1 0.000 3,729.2 0.000

Tests of portfolio efficiency using 25 portfolios formed on size and book-to-market (5x5) for 6 selected
periods of time: T=120 (10 years), T=240 (20 years), T=360 (30 years), T=480 (40 years), T=600 (50
years) and T=720 (60 years). Estimations are performed following the methodology of Vogelsang-Kiefer,
in the case in which VK method uses an optimal weighting matrix extracted from a prior estimation by
standard GMM. The tests are evaluated using conditioning information when instruments are incorporated
to the pricing equation. The lagged variables consisting the conditioning information are: (i) 3 month
Treasury-bill yield, (ii) industrial production growth, (iii) yield spreads of low-grade over high-grade
corporate bonds, (iv) yield spreads of long-term over short-term Treasury-bills (10-year/1-year) and (v)
U.S. inflation (CPI). The tests are conducted based on both estimations methodology: via GMM are on
top, while via GEL are on the bottom. Tests of efficiency under the CAPM asset pricing model are on the
left, while tests under Fama-French three-factors model (represented as “FF”) are on the right. Table
presents the statistic and the p-values of the Wald and the GRS tests for each case. “NA” denotes not
applicable, situations in which singularities problems occur impeding the inversion of the Var-Cov matrix.



Table 18 – Tests of portfolio efficiency (VK method - two-step) using 49 industry portfolios
for selected periods of time

Months Wald Test GRS Test Wald Test GRS Test
Statistic p-value Statistic p-value Statistic p-value Statistic p-value

CAPM FF
GMM 120 NA NA NA NA NA NA NA NA

240 2,140.4 0.000 34.6 0.000 NA NA NA NA
360 2,815.1 0.000 49.5 0.000 2,011.7 0.000 35.1 0.000
480 4,723.6 0.000 86.4 0.000 3,340.9 0.000 60.8 0.000
600 NA NA NA NA NA NA NA NA
720 NA NA NA NA NA NA NA NA
840 NA NA NA NA NA NA NA NA
960 NA NA NA NA NA NA NA NA
1020 NA NA NA NA NA NA NA NA

Tests of portfolio efficiency using 49 industry portfolios for 9 selected periods of time: T=120 (10 years),
T=240 (20 years), T=360 (30 years), T=480 (40 years), T=600 (50 years), T=720 (60 years), T=840 (70
years), T=960 (80 years) and T=1020 (85 years). Estimations are performed following the methodology
of Vogelsang-Kiefer, in the case in which VK method uses an optimal weighting matrix extracted from a
prior estimation by standard GMM. The tests are conducted based on both estimations methodology: via
GMM are on top, while via GEL are on the bottom. Tests of efficiency under the CAPM asset pricing
model are on the left, while tests under Fama-French three-factors model (represented as “FF”) are on
the right. Table presents the statistic and the p-values of the Wald and the GRS tests for each case. “NA”
denotes not applicable, situations in which singularities problems occur impeding the inversion of the
Var-Cov matrix.
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