• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
Document
Author
Full name
Matheus Anthony de Melo
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
Ribeirão Preto, 2017
Supervisor
Committee
Bertolai, Jefferson Donizeti Pereira (President)
Barros Júnior, Fernando Antônio de
Gomes, Fabio Augusto Reis
Morales, Eduardo Alex Hernandez
Title in Portuguese
Instabilidade financeira com (e sem) serviço sequencial
Keywords in Portuguese
Corrida bancária
Instabilidade financeira
Teoria monetária
Abstract in Portuguese
A teoria econômica mostra que instabilidade financeira é um problema que atinge as economias nos períodos de recessão causando desemprego, queda nos níveis de consumo e poupança, surgimento de corridas bancárias e, consequentemente, a redução do bemestar da sociedade. A literatura que estuda instabilidade financeira divide-se em duas vertentes as quais importantes referências nas áreas de estudo sem serviço sequencial e com serviço sequencial são Allen e Gale (2000) e Bertolai, Cavalcanti, e Monteiro (2016), respectivamente. A contribuição deste trabalho consiste em apresentar os modelos e principais resultados de Allen e Gale (2000) e Bertolai et al. (2016) como casos limites de um mesmo problema de escolha do sistema bancário ótimo para estabelecer, em seguida, resultados complementares à essas referências. A primeira contribuição, no ambiente em que não existe serviço sequencial, é propor uma nova forma de divisão do choque inesperado de liquidez no modelo de Allen e Gale (2000) de modo que esse mecanismo de cooperação no interbancário consiga evitar contágio e o colapso generalizado entre os bancos. Já no ambiente com serviço sequencial, uma segunda contribuição é estender Bertolai et al. (2016) ao estabelecer novos equilíbrios de corrida bancária, em que os três últimos depositantes de cada um dos bancos da economia não participam da corrida bancária.
Title in English
Financial instability with (and without) sequential service
Keywords in English
Bank run
Financial instability
Monetary theory
Abstract in English
Economic theory shows that financial instability is a problem that affects economies in times of recession, causing unemployment, falling consumption and saving levels, the emergence of bank-run , and consequently the reduction of the welfare of society. The literature that studies financial instability is divided into two strands where important references in the study areas without sequential and sequential service are Allen e Gale (2000) and Bertolai et al. (2016), respectively. The contribution of this work is to present the models and main results of Allen e Gale (2000) and Bertolai et al. (2016) as limiting cases of the same problem of choosing the optimal banking system, in order to establish subsequent results complementary to these references. The first contribution, in the environment in which there is no sequential service, is to propose a new way of dividing the unexpected liquidity shock in the Allen e Gale (2000) model so that this mechanism of interbank cooperation can avoid contagion and the generalized collapse between the banks. In the sequential service environment, a second contribution is to extend Bertolai et al. (2016) by establishing new banking run balances in which the last three depositors of each of the banks of the economy do not participate in the bank run.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2017-09-14
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2014. All rights reserved.