• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
10.11606/T.95.2018.tde-03052018-095932
Document
Auteur
Nom complet
José Geraldo de Carvalho Pereira
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2018
Directeur
Jury
Oliveira, Paulo Sérgio Lopes de (Président)
Ambrósio, André Luís Berteli
Carvalho, André Carlos Ponce de Leon Ferreira de
Silva, Fernando Luis Barroso da
Titre en portugais
Redes neurais residuais profundas e autômatos celulares como modelos para predição que fornecem informação sobre a formação de estruturas secundárias proteicas
Mots-clés en portugais
Aprendizado profundo
Atribuição estrutura secundária
Autômatos celulares
Bioinformática
Biologia computacional
Deep learning
Enovelamento
Estrutura proteica
Folding
Predição estrutura secundária
Redes neurais
Resumé en portugais
O processo de auto-organização da estrutura proteica a partir da cadeia de aminoácidos é conhecido como enovelamento. Apesar de conhecermos a estrutura tridimencional de muitas proteínas, para a maioria delas, não possuímos uma compreensão suficiente para descrever em detalhes como a estrutura se organiza a partir da sequência de aminoácidos. É bem conhecido que a formação de núcleos de estruturas locais, conhecida como estrutura secundária, apresenta papel fundamental no enovelamento final da proteína. Desta forma, o desenvolvimento de métodos que permitam não somente predizer a estrutura secundária adotada por um dado resíduo, mas também, a maneira como esse processo deve ocorrer ao longo do tempo é muito relevante em várias áreas da biologia estrutural. Neste trabalho, desenvolvemos dois métodos de predição de estruturas secundárias utilizando modelos com o potencial de fornecer informações mais detalhadas sobre o processo de predição. Um desses modelos foi construído utilizando autômatos celulares, um tipo de modelo dinâmico onde é possível obtermos informações espaciais e temporais. O outro modelo foi desenvolvido utilizando redes neurais residuais profundas. Com este modelo é possível extrair informações espaciais e probabilísticas de suas múltiplas camadas internas de convolução, o que parece refletir, em algum sentido, os estados de formação da estrutura secundária durante o enovelamento. A acurácia da predição obtida por esse modelo foi de ~78% para os resíduos que apresentaram consenso na estrutura atribuída pelos métodos DSSP, STRIDE, KAKSI e PROSS. Tal acurácia, apesar de inferior à obtida pelo PSIPRED, o qual utiliza matrizes PSSM como entrada, é superior à obtida por outros métodos que realizam a predição de estruturas secundárias diretamente a partir da sequência de aminoácidos.
Titre en anglais
Residual neural networks and cellular automata as protein secondary structure prediction models with information about folding
Mots-clés en anglais
Bioinformatics
Cellular automata
Computational biology
Deep learning
Folding
Protein secondary structure prediction
Residual neural networks
Resumé en anglais
The process of self-organization of the protein structure is known as folding. Although we know the structure of many proteins, for a majority of them, we do not have enough understanding to describe in details how the structure is organized from its amino acid sequence. In this work, we developed two methods for secondary structure prediction using models that have the potential to provide detailed information about the prediction process. One of these models was constructed using cellular automata, a type of dynamic model where it is possible to obtain spatial and temporal information. The other model was developed using deep residual neural networks. With this model it is possible to extract spatial and probabilistic information from its multiple internal layers of convolution. The accuracy of the prediction obtained by this model was ~ 78% for residues that showed consensus in the structure assigned by the DSSP, STRIDE, KAKSI and PROSS methods. Such value is higher than that obtained by other methods which perform the prediction of secondary structures from the amino acid sequence only.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2018-06-05
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2019. Tous droits réservés.