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RESUMO 

Dinâmica do uso e da cobertura do solo na fronteira agrícola da Amazônia brasileira: 

forçantes de mudanças e futuros cenários 

A fronteira agrícola da Amazônia está localizada em zona de ecótono entre a Floresta 
Amazônica e o Cerrado. A região apresenta alta biodiversidade, e uma paisagem heterogênea, 
composta por diferentes tipos de fitofisionomias e usos da terra. Nesta região de fronteira, o Alto da 
Bacia do Rio Xingu (UXRB), com aproximadamente 170.000km2 no estado do Mato Grosso, produz 
2% da soja mundial e 0,2% do gado consumido no mundo. No entanto, devido a suas paisagens 
heterogêneas, essa fronteira não é bem representada por modelos gerais que retratam a detecção e a 
mudança do uso da terra, ou a perda de vegetação nativa. Nosso objetivo nesta pesquisa foi mapear as 
mudanças no uso da terra na Bacia do Alto Xingu e modelar a perda de vegetação na região. No 
primeiro capítulo apresentamos uma visão geral dos diferentes conceitos que foram utilizados ao 
longo desta pesquisa. No segundo capítulo, construímos um esquema de classificação hierárquica com 
três níveis de informação, melhorando como os mapas de cobertura e uso da terra capturam a 
heterogeneidade da região. Observamos que a intensificação agrícola ocorreu principalmente na 
Amazônia, enquanto o Cerrado sofreu uma expansão na área agrícola. Nas últimas décadas, a região 
vive uma transição de estágio pioneiro de desenvolvimento para uma fronteira agrícola consolidada, 
com desenvolvimento orientado para commodities. Desta maneira, o aumento na área agrícola está 
atrelado a mercados internacionais e à relação dólar americano/real brasileiro. No terceiro capítulo, 
comparamos diferentes fontes de dados para identificar dois processos distintos de perda de árvores: 
desmatamento e perturbação. Observamos uma diferença impressionante entre os conjuntos de dados 
construídos para detectar tanto a perturbação quanto o desmatamento. Este padrão está relacionado 
ao tipo de vegetação dominante e especificidades nos diferentes modelos. No quarto capítulo, 
analisamos diferentes variáveis espaciais relacionadas às características biofísicas, infra-estrutura, 
desenvolvimento econômico e composição e configuração da paisagem para selecionar um modelo 
que modelasse adequadamente o desmatamento futuro, a perturbação florestal e a perda geral de 
vegetação nativa (incluindo fisionomias não florestais). Nosso trabalho mostra que variáveis 
influenciam esses processos de diferentes maneiras, levando-nos a concluir que, para lidar com a perda 
de vegetação, pesquisadores e formuladores de políticas precisam se concentrar em outros processos 
além do desmatamento da floresta tropical, o qual é o foco tradicional. 

Palavras-chave: Mudança do uso da terra; Desmatamento; Distúrbio; Ecótono; Cerrado; Amazônia 
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ABSTRACT 

Dynamics of land use and land cover in the agricultural frontier of the Brazilian Amazon: 

driving forces of changes and future scenarios 

The Amazon`s agriculture frontier is located in the ecotone zone between the Amazon rain 
forest and the Cerrado (Brazilian savanic formations). The region presents high biodiversity 
concentrations along with a heterogeneous landscape, comprised of different types of vegetational 
physiognomies and land uses. In this frontier region, the Upper Xingu River Basin (UXRB), draining 
approximately 170,000 km2 in Mato Grosso state produces 2% of the world's soybeans and 0.2% of 
the world’s consumed cattle meat. However, due to their heterogeneous landscapes, these frontiers are 
usually poorly represented by general models portraying land use and land cover detection and change, 
or native vegetation loss. Our goal in this research was to map land use change in the Upper Xingu 
River Basin and to model vegetation loss in the region. In the first chapter we present an overall 
overview of different concepts that were applied throughout this research. In the second chapter, we 
show the results of a hierarchical classification scheme built with three levels of information for 
improving how land cover and land use maps capture the region’s heterogeneity. We observed that 
agricultural intensification occurred mainly in the Amazon while the Cerrado has undergone an 
expansion in agricultural area. In the last decades, the region has been experiencing a transition from a 
pioneer stage of development to a consolidated frontier, with commodity-oriented development. 
Thus, increases in agricultural areas are tied to both international markets and the American 
dollar/Brazilian real ratio value. In the third chapter, we compare different data sources to identify 
two distinct tree loss processes: deforestation and disturbance. We observed an impressive difference 
between datasets built to detect both disturbance and deforestation. This pattern is related to the 
dominant vegetation type and specificities in the different models. In the fourth chapter, we analyzed 
different spatial variables related to biophysical characteristics, infrastructure, economic development, 
and landscape composition and configuration to select a model which would adequately represent 
future deforestation, forest disturbance, and general native vegetation loss (including physiognomies 
other than forest). Our work shows that variables influence these processes in different ways, leading 
us to conclude that to tackle vegetation loss, both researchers and policy makers have to focus on 
processes other than the rain forest deforestation, which has been the traditional focus.       

Keywords: Land use change; Deforestation; Disturbance; Ecotone; Cerrado; Amazon  
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1. INTRODUCTION 

This thesis is a product derived from a researched project supported by FAPESP and inserted in a 

Belmont Forum international collaboration research initiative on fresh water security intitled “XINGU Project - 

Integrating land use planning and water governance in Amazonia: towards improved freshwater security in the 

agricultural frontier of Mato Grosso” hosted at the Center for Nuclear Energy in Agriculture (CENA/USP) by the 

Geoprocessing and Environmental Analysis Lab. Additionally, it was developed partly in an internship with the 

Landscape Initiative team in the Institute on the Environment at the University of Minnesota (USA).  

In this chapter presents a briefly introduction of the main subjects of this thesis: land change science, land 

use and land cover change, land change detection and modelling, tropical agricultural frontier (area of study), and the 

goals of this goals. In the following three chapters we present research projects developed in order to explore the 

land use change dynamics the Upper Xingu River Basin, one of the Amazon`s agriculture frontiers. The last chapter 

presents the general conclusions of this work. 

1.1. Land change sciences 

Changes in the landscape are observed at a range of spatial and temporal scales – from local to global and 

from daily to millennial frequencies. Such changes are caused by natural forces (glaciation, earthquakes, flooding, and 

drought) and by anthropogenic forces (urban expansion, forest conversion into agriculture). Since the 18th century, 

anthropogenic actions have been driven changes on Earth’s surface faster than these changes would naturally occur. 

Crutzen (2002) have described this period as a new geological era - the Anthropocene. Such rapid changes are 

associated with the humans increasing capacity to exploit ecosystem good and service (e.g.: food and fibre 

production, mineral extraction, etc) in order to sustain population growth and new consumption patterns. Currently, 

12% of the land surfaces on Earth are used for cropping systems and 30% are used as pasturelands (FAO, 2011). 

The conversion of natural areas into productive regions, and the increasingly intensified use of these areas, has led to 

a range of impacts, e.g.: about 25 % of the land managed in the world is already highly degraded; increased 

biogeochemistry cycles alteration such as the higher global concentrations of carbon dioxide and methane in the 

atmosphere; nutrient pollution such as by excessive nitrogen application; and freshwater discharge alterations (Coe et 

al., 2011; Don et al., 2011; FAO, 2011; Mueller et al., 2014). 

Land change science (also known as land system science or land use science) is an interdisciplinary area of 

knowledge which aims to understand how land changes, mainly in response to social-ecological interactions (Müller 

and Munroe, 2014). Human environmental sciences and geographical information/remote sensing sciences are the 

main disciplines contributing to this field (Verburg et al., 2015). As land use science aims to describe and explain 

transition processes, the clarification of pattern and process concepts assists in analysis interpretation and evaluation 

(Garcia and Ballester, 2016). As demonstrated by Turner and colleagues (2007), land change observations consist of 

patterns of land cover and land use observed through time or space. Processes are measured by the patterns they 

produce; thus, these processes are indirectly observed. Different land cover change processes generate distinct spatial 

and temporal patterns according to their nature – for instance, Garcia and Ballester (2016) observed distinct 

temporal and spatial patterns produced by deforestation in comparison with forest degradation at a Cerrado region 

(Brazil).  

Land use science terminology is commonly imprecise which is disadvantageous when describing 

processes. To address this issue, Meyfroidt (2016) reviewed and systematised land use science terminologies, which is 
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adopted as the terminology used in this thesis. According to Meyfroidt (2016), proximate causes of land use change 

are those direct changes such as agricultural expansion, urbanization, and reforestation. Underlying (or indirect) 

causes are fundamental forces that are inherently more diffused and that constitute systemic conditions in human-

environment relations, such as regulations. A combinatory cause (or INUS) is a term derived from Boolean logic and 

represents an insufficient but necessary part of a combination of causes which is itself unnecessary but sufficient for 

the outcome (when combined with other causes). For example, demand for agricultural products related to 

population growth is a necessary cause for agriculture expansion but not a sufficient one, since expansion patterns 

can be correlated to other factors as biophysical conditions (Garcia et al., 2017). Any event, fact, or variable 

employed in an explanation is a “factor”. Causes enrolled in an INUS cause are divided into either “contextual” or 

“trigger” causes: “contextual” if the cause is a slowly changing factor, explaining changes prevalence; “trigger” if the 

cause is a rapidly changing factor, explaining the precise location or timing of an event. The processes through which 

a factor produces its effect is termed a “causal mechanism”, and a series of causal mechanisms which links an 

underlying cause is termed a “causal chain”. “Driving force” is a factor that is a typical or hypothetical cause of 

environmental change, but for which the evidence is not sufficient to firmly establish causal effects. When the factor 

contributes to statistical explanation of an outcome (or other spatial characteristics such as spatial pattern or 

structure), it is a “(spatial) determinant factor”.   

Land cover (LC) is considered the observed biophysical component on the Earth’s surface while land use 

(LU) is defined by the activities undertaken in a certain area, representing a direct link between land cover and the 

actions of people in their environment (FAO, 2016; Turner et al., 2007). LC change can be the result of natural 

disturbances or human-induced modifications through the direct or indirect change in LU. Aside from pristine land 

cover conversion, LU changes also include livestock replacement by crops or silviculture, modification of land 

management practices and inputs, and the resulting interaction of both agricultural cover and management practices, 

as for instance land degradation or secondary vegetation growth (Garcia and Ballester, 2016). Identifying causative 

factors requires an understanding of how decisions are made to drive land use change. LCLU patterns both affect 

and are affected by processes operating at multiple scales. Decision making from land owners to national policies or 

global agreements influence LCLU change (Rounsevell et al., 2012). Local decision-making depends mainly on 

production costs, output prices, taxes, subsidies, credit access and regulations that directly cause land use change 

(Geist et al., 2006). Government’s programs, regulations, and market strategies represent the underlining causes of 

changes. Additionally, processes of LC and LU change are modelled according to landscape characteristics that 

determine the spatial distribution of LC and LU change dynamics. For example, in the Cerrado biome, pasturelands 

are preferably located near streams, in areas that are easily accessible by cattle herds, and croplands areas primarily 

occur near more fertile soil (Garcia et al., 2017; Garcia and Ballester, 2016).  

Land use science has increasing importance in societal and scientific agendas, due to looming 

sustainability problems world-wide. Land use change and its consequences are at the core of many science agendas 

such as the Belmont Forum (https://www.belmontforum.org/), the National Ecological Observatory Network 

(NEON) Grand Challenge framework (http://www.neonscience.org/), and the Nexus Network 

(http://www.thenexusnetwork.org/). Despite large advances the field has achieved, there are still many challenges to 

meet. Deforestation associated with agricultural expansion has received much attention throught single and meta-

studies which mainly address impacts on biodiversity and biogeochemical cycles. However, less attention has been 

given to factors driving urbanization, wetland, savanna and grassland conversion, forest degradation, and land use 

intensification (van Vliet et al., 2016). Additionally, standard approaches and terminology, socio-economic dynamics, 
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trajectory changes and feedback loops in causal chains are rarely addressed in sysnthesis and outcomes assessment 

(Meyfroidt, 2016; Müller and Munroe, 2014; van Vliet et al., 2016). 

1.2. Land use and land cover change 

Classically, land use and land cover (LULC) change is defined as a consequence of the demand for food, 

water, fiber, and energy (Lambin et al., 2001). More recently, different studies have also described the relationship 

between LCLU change and other direct and indirect factors such as socioeconomic changes and consumers 

preference (Lambin and Meyfroidt, 2011), land market (Richards, 2015), and ecosystem services depreciation (Kust 

et al., 2017). Figure 1 shows how different factors can influence LULC change and possible feedbacks mainly 

considering rural areas and agriculture frontiers.   

 

 

Figure 1. Flow chart of driving forces of land use and land cover change. Dotted arrows represent possible feedbacks. 

 
LCLU also affects a large range of processes shaping ecosystem services and socio-economic dynamics 

and, thus, plays an important role in meeting demand for food and water (Foley et al., 2005). Deforestation is 

considered the primary causal mechanism of soil degradation and decreases in soil organic carbon (Chhabra et al., 

2006; Don et al., 2011). The conversion of woody cerrado into pasturelands increases soil degradation through 

superficial erosion, silting streams, and threating water resources (Garcia and Ballester, 2016). While per capita food 

production increases, agricultural area expansion degrades food security for vulnerable populations in Malawi 

(Johnson et al., 2013). Such outcomes are a result of lower vitamin A-rich food consumption and water quality 

depreciation associated with deforestation (Brown, 2016).  

Land use change is commonly considered to provide social and economic benefits (Foley et al., 2005). 

This notion is based on findings of increases in local income; however, this assumption is controversial. Rodrigues 

and colleagues (2009) found that at the Brazilian Arc of Deforestation, relative standards of living, literacy, and life 

expectancy increased as deforestation begun but then declined as deforestation frontiers expand. Rather than 
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increasing income, such pattern may indicate income concentration and no local benefits. Still, vulnerable 

populations are exploited at short and long-term land use change due its highly dependence on wild food, water and 

soil quality (Brown, 2016). Working with different scenarios in the US, Polasky and colleagues (2011) estimated that 

returns to landowners are highest in a scenario with large-scale agricultural expansion. However, such a scnerio also 

generates the lowest net social benefits across all scenarios considered because of large losses in stored carbon and 

negative impacts on water quality. Such findings are compatible with several studies in tropical regions in which large 

agricultural expansion and intensification increases socio-economic benefits for those related to the activity, but at 

the cost of ecosystem services which mostly affects vulnerable populations.  

In recent years changes in land tenure, privatization, and internationalization of agricultural commodity 

chains make causal factors and drivers of land use change more complex and interconnected (Gasparri and de 

Waroux, 2015; Verburg et al., 2015). In such recent context, analytical concepts of teleconnection and telecoupling 

were proposed in order to gain knowledge on drivers of land use change. The former refers to distal environmental 

and socio-economic drivers of land change while the latter also incorporates feedbacks and multidirectional flows 

between land systems (Friis et al., 2016; Liu et al., 2013). The assessment of such dynamics is important in guiding 

land governance. Other emerged challenges related to land governance are to quantify impacts and their potential 

feedbacks, taking into consideration small and large scales, as well as short- and longer-term time series (Verburg et 

al., 2015).  

With the ending of governmental colonization programs and the lack of state in tropical forest regions, 

land owners and heads of agribusiness enterprises are assuming an increasingly prominent role in agricultural 

expansion (Rudel, 2007). Dense supply chains result in more effective lobbying which supports agricultural 

expansion by encourage infrastructure building, information flow, and flexible environmental regulations (Garrett et 

al., 2013). Different theories support that on this stage, the pioneer frontier turn into a market-oriented and 

technified frontier (Meyfroidt et al., 2018). Concurrently, in the Amazon Basin, deforestation was reduced by the 

implementation of the “Zero Deforestation” campaign and other schemes (Ferreira et al., 2007), as well as by the 

Brazil's Soy Moratorium (Gibbs et al., 2015).  A large expansion of agriculture due to supply chain agglomeration was 

found in counties with more flexible environmental regulations and outside the moratorium scope than in the 

counties inside the Amazon biome which are under more protective environmental regulations estabilished by 

governament and market regulations (Garrett et al., 2013). Nevertheless, governmental regulations such as the 

Brazilian Forest Code are reported to be ineffective on their own. Conservation initiatives are only secuessful when 

areas are inspected and when agencies are able to create management plans in junction with landowners (Garcia and 

Ballester, 2016). 

1.3. Land change detection and modelling 

Land change detection is the process of identifying differences in the state of a target surface by observing 

it at different times (Lu et al., 2004). Land use science relies on spatial and temporal data sets, which are extensively 

derived from remote sensing data. Remote sensing is the process of acquiring data or images of an object distant 

from the sensor such as aerial photographs, satellite images and radars (Paranhos Filho et al., 2008). In general, aerial 

photographs and satellite images are representative of spectral intensity, which quantifies the electromagnetic energy 

reflected from a target surface. All matter above absolute zero (0ºK) emits electromagnetic energy, absorbing a 

specific portion of the electromagnetic spectrum while reflecting the remaining portions of the spectrum. The result 

is a distinct spectral signature for each type of land cover. The basic premise in using remotely sensed data for 
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change detection is that changes in the objects of interest will result in changes in reflectance values or local textures 

- changes in values of some pixels that constitute an object (Lu et al., 2004).  

Currently, Landsat is the longest continuously acquired collection of space-based medium-high resolution 

remote sensing data. Such characteristics makes Landsat images the most commonly used product in landscape 

change research (Hansen and Loveland, 2012). Studies based on Landsat images frequently employ a two or three-

year anniversary window, with an interval between imagery generation depending on the calendar acquisition dates 

and the change in interval length (temporal resolution). Anniversary windows are used to minimize discrepancies in 

reflectance caused by seasonal variation in vegetation and Sun angle. However, for several studies, the availability of 

satellite sensor data of acceptable quality is a limiting factor which defines acquisition date (Coppin et al., 2004). To 

detect seasonal change, satellites that return to the same target in shorter intervals (lower temporal resolution) are 

preferable. In this context, MODIS has been extensively used due to its lower temporal resolution and its higher 

spectral resolution (a larger wavelength range of the electromagnetic spectrum is sampled). A slight disadvantage is 

that MODIS presents a moderate resolution with the smallest pixel size being 250 m (https://modis.gsfc.nasa.gov/). 

Besides Landsat and MODIS, the two most extensively used imagery sets, there are also other sources of imagery 

available, both freely (SPOT, CBERS, etc) and commercially (Quickbird, IKONOS, etc). Each imagery source has its 

advantages and disadvantages, thus, each one is recommended for a given application.   

There has been much research devoted to evaluating change detection methodologies and the best 

approach depends on the context and goals (Chen et al., 2012; Coppin et al., 2004; Hansen and Loveland, 2012; 

Hussain et al., 2013; Lu et al., 2004; Tewkesbury et al., 2015). Change detection can be conducted at different units 

of analysis (Tewkesbury et al., 2015), been the  most common ones pixel-based, object-based, subpixel, kernel and 

hybrid units. The pixel is the fundamental unit of information in an image and, thus, the fundamental unit of 

analysis. However, a subpixel analysis is still possible through calculation of fractions of different land covers within 

a pixel. An object is a group of similarly clustered pixels, which together define a target such as a forest fragment, a 

building, and so on. Objects are obtained through image segmentation according to the spatial distribution and 

similarity among pixels (Chen et al., 2012). A kernel (or moving window) is a systematic approach to considering 

contextual information; it analyses pixels inside of a window of a given size and calculates statistical indices among 

those pixels (Canty, 2014). Hybrid approaches utilize the combining of more than one approach together 

(Tewkesbury et al., 2015).  

Analysis techniques can be divided into two distinct groups: no-classification (or pre-classification) and 

post-classification approaches (Canty, 2014). Techniques which do not use classification to detect land change 

examine differences in two images based on radiance values (Canty, 2014; Lu et al., 2004). Layer arithmetic is a 

straightforward method which compares the radiance of two images to identify change. Transformation methods use 

mathematical transformations to highlight variance between images. These methods include, but are not limited to, 

Fourier analysis, discrete wavelet, Principal Component Analysis (PCA) and Canonical Correlation Analysis (CCA). 

Another method of no classification change detection is spectral change vector analysis, which detects changes by 

using chosen thresholds (Canty, 2014). The drawback of most no classification approaches is that they do not offer a 

complete matrix of change information (Lu et al., 2004). Different from these methods, post-classification change 

detection defines changes by comparing pixels in a pair of classified images, in which pixels have already been 

assigned to classes. Post-classification change detection typically reports changes as a summary of the “from-to” 

changes of categories between two dates. Post-classification change detection is most commonly employed 

methodology. It minimizes radiometric errors, phenological differences between multi-temporal images, and 
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provides a complete matrix of change information (Lu et al., 2004). A disadvantage of this method is error 

propagation, that is errors in any of the input maps are directly translated to the changing results (Tewkesbury et al., 

2015). 

Image classification is the process of sorting pixels into a finite number of individual classes, or categories, 

of data based on their pixel values. If a pixel satisfies a certain set of criteria, then the pixel is assigned to the class 

that corresponds to that criterion. Due to differences among images, classifying multiple images requires operational 

geoprocessing planning. Hansen and Loveland (2012) offer a review of large area classification methods using 

Landsat images. In summary, image classification has been traditionally divided according to the minimum area of 

analysis (pixel-based or object-oriented), and according to the need of providing samples a priori (supervised and 

unsupervised methods). The LCLU map is composed of a legend of groups obtained throughout a classification 

scheme adapted to a certain geographical area. As classification schemes are normally built for a specific area of 

interest, the harmonization and comparability of the resulting data derived from different study regions is an issue in 

land use science. Such incompatibility is a result of the concepts and methodologies normally used in the 

geoprocessing flow, which build the legends based only on local biophysical characteristics and sensor characteristics 

(Di Gregorio and O’Brien, 2012). 

Simulation models of land use predict or describe land-use change over space and time and constitute one 

of the methods available to unravel the dynamics of the land use system. Recent overviews of land-use simulation 

models show an overwhelming amount of different types of models and applications (van Schrojenstein Lantman et 

al., 2011). The wide variety of models may be explained by the different scales, research areas and policy questions 

that land use science addresses and the different disciplines it is originated from (Verburg et al., 2015). Theoretical 

foundations of land-use simulation models relate to the core principles that are used to explain land-use change and 

the concepts that are applied to translate these principles into a functioning model of land-use change (Verburg et al., 

2004). Thus, a modelling algorithm is a translation of a land use change concept into mathematical rules by use of a 

computer simulation. Land use models are based on at least one of the following four core principles of land-use 

change (Lantman et al., 2011): (1) Continuation of historical development - future land use can be predicted by 

means of historical changes; (2) Suitability of land – based on profit maximization; (3) Result of neighborhood 

interaction - transition from one use of land to another is dependent on the land use of its surrounding cells; and (4) 

Result of actor interaction - land-use change is the result of interaction between actors. Given the variety of models, 

there is no singular superior method for modelling land use change. The choice of which model to use depends 

research questions and data availability.  

Model types present some important distinctions (Verburg et al., 2006). The first distinction is between 

spatial and non-spatial models. The former aims to achieve spatially explicit representations of land-use change, 

while the latter focuses on modelling the rate and magnitude of land-use change without specific attention to its 

spatial distribution. Considering temporal characteristics, dynamic models represent the evolution of land use 

systems, making them useful for projections of future land-use change. Static models do not account for feedbacks 

and path dependencies, and are useful to explain the spatial distribution of land use changes as a function of a set of 

factors. Most land-use change models rely on the inductive approach in which the model specification is based on 

statistical correlations between land change and a suite of explanatory variables. As with land use change detection, 

their analytical unit can also differentiate land use change models: an area (a polygon representing either a field, a plot 

or census track) or a pixel as part of a raster-based representation. Land-use changes are calculated for these spatial 

objects, directly resulting in maps that show changes in land use patterns. Another group of models use individual 
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agents as units of simulation. Several characteristics define agents: they are autonomous, they share an environment 

through agent communication and interaction, and they make decisions that tie behaviour to the environment. Such 

multi-agent systems give emphasis to agent’s decision-making process and to the social organization and landscape in 

which these individuals are embedded. 

1.4. The Upper Xingu River Basin - a tropical agricultural frontier 

Agriculture expansion can be linked to the occupation of new areas through deforestation or the 

occupation of unproductive areas with the potential of expansion/intensification. Expansion on new areas in a 

consistent pattern characterize agricultural frontier expansion. The Upper Xingu River Basin (hereafter denoted as 

“UXRB”), is located in Mato Grosso state in Brazil, and in the ecotone between the Amazon rainforest and the 

neotropical savannas, or Cerrado biome. The main economic activities in the study area during the late 1970’s to 

1990’s were timber and beef. Forests were degraded or cleared due to livestock expansion and logging activities. In 

the early 2000’s, soybean production emerged as another deforestation driver (Brando et al., 2013; Nepstad et al., 

2006).  

Xingu River is one of the main Amazon River tributaries. Its headwater region encompasses one-third of 

the Xingu River Basin, draining ~170,000 km2. The UXRB exhibits a wide array of natural physiognomies, ranging 

from Amazon rainforest to savanna grasslands (Ivanauskas et al., 2008; Velasquez, C.; Alves, H. Q.; Bernasconi, 

2010). The Amazon rainforest and Cerrado are the first and second largest biomes in South America. The Amazon 

rainforest contains enormous biodiversity and one-third of the world's tropical tree species used for timber (Brazil, 

2018). The Cerrado is a global biodiversity hotspot and contains the highest land use change rates in Brazil (Brazil, 

2018; Klink and Machado, 2005). Due to its position in an ecotone, the basin contains a range of natural vegetational 

physiognomies, varying from rain forest to savanic formations. The majority of the region is composed of Floresta 

Estacional Perenifólia – a unique transitional forest with characteristics of both Cerrado and Amazon Biomes 

(Ivanauskas et al., 2008; Velasquez, C.; Alves, H. Q.; Bernasconi, 2010). 

Besides the importance of the region for its natural resources (including biodiversity), the UXRB also 

encompasses large sociocultural diversity and economic prominence. It is estimated that 16 indigenous ethnic groups 

and other traditional communities live in the basin (Velasquez, C.; Alves, H. Q.; Bernasconi, 2010). The UXRB 

exhibits a seasonal tropical climate. The annual mean precipitation is 2000 mm and the annual mean temperature 24 

ºC. Seasons are characterized by a dry winter and rainy summer, with a flood season occurring from November to 

April. The extended and defined rainy season, associated with a flat terrain and being dominated by Oxisol soils 

(Velasquez, C.; Alves, H. Q.; Bernasconi, 2010), make this region ideal for agribusiness expansion. The main 

economic activities in the study area are linked to the wood, beef, and soybean industries. Currently, approximately 

2% of world’s and 9% of Brazil’s soybeans are produced in the UXRB, as well as 0.2% of the world's and 13% of 

Brazil’s cattle (FAOSTAT, 2016; IBGE, 2019).  

The rapid change in the land use and socioeconomic dynamics in UXRB in the last few decades, and 

mainly since 2000, make of it an agriculture frontier in development. Combining these intense dynamics with the 

conditions in the ecotone zone it is located at, the UXRB presents an impressive biophysical, social, and economic 

diversity. Such characteristics make of this region an ideal study case for land change science which we explore in 

this thesis.   
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1.5. OBJECTIVES 

To support sustainable development, natural resource management should meet multi-level interests by 

using reliable information about intervening factors that affect soil, water, and climatic conditions which are directly 

influenced by patterns of land use. In such context, we aimed to elucidate processes of LCLU change in the Upper 

Xingu river basin and its relations to the quantitative and qualitative loss of native vegetation, as well as the trends 

and driving forces of this change; then, design potential future scenarios for the region. We answered the following 

research questions: 

• Question I: How has the landscape changed over the last 30 years? 

• Question II: What is the temporal and spatial distribution of these changes in the landscape, especially 

regarding the quantitative and qualitative loss of native forests? 

• Question III: What are the most important factors when predicting future scenarios for the Upper 

Xingu River Basin and what are these future scenarios?  

To answer to these questions, we developed three main research manuscripts presented here in three 

different chapters. The second chapter of this thesis assessed land use and land cover dynamics in the study area. 

The third chapter presents the patterns of deforestation and forest degradation as well as compared different 

indicators which detects both processes. The fourth chapter explore drivers of deforestation, forest degradation, and 

general vegetation loss (including non-forest vegetation), comparing how variables influence these three different 

processes. 
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2. ASSESSING LAND USE/COVER DYNAMICS AND EXPLORING DRIVERS IN THE 

AMAZON’S ARC OF DEFORESTATION THROUGH A HIERARCHICAL, MULTI-

SCALE AND MULTI-TEMPORAL CLASSIFICATION APPROACH 

ABSTRACT 

Land use and land cover (LULC) are intrinsically tied to ecological and social dynamics. Still, 
classifying LULC in ecotones, where landscapes are commonly heterogeneous and have a wide range 
of physiognomies, remains a challenge. Here we present a three-level hierarchical classification 
approach, using both Landsat and MODIS images, and both pixels and objects as units of 
information. We applied this multi-temporal and -spatial approach to classify land use in the Upper 
Xingu River Basin (~170,000 km2), located in the arc of deforestation of the Brazilian Amazon. The 
first level includes five classes and differentiates managed land from native vegetation with high 
overall accuracy (93%). The second level has 11 classes (overall accuracy = 86%) and separates main 
land uses and native vegetation domains. The third level has 16 classes (overall accuracy = 83%) and 
addresses productivity of both managed and natural systems. We find that this new method presented 
here is more efficient than existing regional and global land cover products. Applying this approach to 
assess land cover transitions in the basin from 1985-2015, we find that agricultural production 
increased, yet manifested itself differently in the northern (Amazon biome) and southern (Cerrado 
biome) portions of the basin. Analyzing land use change in different levels, we identify that 
agricultural intensification occurred mainly in the Amazon while the Cerrado has undergone an 
expansion in agricultural area. The method presented here can be adapted to other regions, improving 
efficiency and accuracy of classifying land cover in heterogeneous landscapes. 

Keywords: Land use change; Amazon; Cerrado; Ecotone; Physiognomies 

 

2.1. Introduction 

Land cover refers to the observed biophysical component on the Earth’s surface, while land use is defined 

by the activities undertaken in a certain area (Di Gregorio, 2016; Turner et al., 2007). Land use and land cover 

(LULC) changes are key components of biological, physical, and socioeconomic processes taking place on the Earth 

surface (de Chazal and Rounsevell, 2009; Don et al., 2011; Foley et al., 2005; Lathuillière et al., 2017; Macedo et al., 

2013). Therefore, LULC is a fundamental input for several models in many research areas and can help inform 

decision making processes (Bondeau et al., 2007; Döll et al., 2003; FAO, 2011, 1993; Ge et al., 2007). Remotely 

sensed products are the main data source for LULC mapping, and much research has been devoted to evaluating 

methodologies with a specific emphasis on classification techniques (Coppin et al., 2004; Gómez et al., 2016; Hansen 

and Loveland, 2012; Hussain et al., 2013; Tewkesbury et al., 2015; Wang et al., 2017). Despite the large efforts and 

achievements in improving LULC classification, accurately transforming remotely sensed data into thematic maps 

remains a challenge when modelling complex landscapes (Gómez et al., 2016), limiting our ability to address patterns 

and processes of LULC change, especially in tropical regions (Müller et al., 2015; Pendrill and Persson, 2017; Toniol 

et al., 2017). 

Ecotones, agriculture frontiers and biomes with multiple physiognomies present large disagreement in 

global and continental datasets (Giri et al., 2005; Herold et al., 2008; Pendrill and Persson, 2017). For example, 

Herold and colleagues (2008) identified that at least three out of four global data sets disagree on LULC classes 
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attributed to large portions of the Amazon’s Arc of Deforestation and neotropical savanna biomes. Factors that 

contribute to this disagreement are associated with the large biophysical variability observed in diverse landscapes. 

Inadequately assessing the spatial and temporal variability of these areas precludes the possibility of adequately 

capturing their LULC classes. Additionally, accuracy of LULC maps generally decreases with increasing class 

complexity (Lu and Weng, 2007), which is very often important for decision-making. Still, improving LULC 

monitoring is critical to evaluating impacts on the extent, condition, and productivity of both managed and natural 

systems. Such dynamics are directly linked to several social or ecosystem services, including food, water and energy 

security, and biodiversity conservation (Endo et al., 2015; Lal, 2016; Ozturk, 2015). This information is essential 

when planning land use in regions such as the neotropical savannas (Cerrado) or the tropical rainforest at the 

Amazon’s arc of deforestation. These regions are not only hotspots for biodiversity conservation, but are also 

undergoing rapid LULC change due to agriculture expansion (Klink and Machado, 2005; Power, 2010). Aside from 

the importance of these regions in terms of natural resources and agricultural production, spatially explicit LULC 

information that considers landscape diversity is rarely available.  

Classification techniques refer to the process of sorting pixels into a finite number of individual classes, 

based on their surface reflectance values at a certain time (Lu et al., 2004), or the reflectance behavior of pixels 

through time (e.g.: MODIS Land Cover products (Friedl et al., 2010)). Use of both high spatial and temporal 

resolution data is an approach that increases both the amount of data and the modelling complexity, while enabling 

the study of different native vegetation physiognomies or agriculture productivity (Brown et al., 2007; Ferreira et al., 

2003). Due to increases in modelling complexity, current products address either spatial or temporal resolution when 

classifying LULC. The computational challenge of modelling large satellite imagery data sets can be made more 

efficient using an object-based approach (Blaschke, 2010). But this approach is not appropriate for landscape 

formations which are not expected to present a spectral pattern of an object (a group of pixels presenting a similar 

response). Still, for small scale study areas, approaches that integrate pixel-based and object-based methods out-

perform approaches that employ only one of these methods on their own (Aguirre-Gutiérrez et al., 2012; Chen et al., 

2018). Recently, the combination of machine (or deep) learning, cloud processing, and big data is shifting 

classification processing by enabling users to address more complex models of classification (Azzari and Lobell, 

2017); mainly when the physical processes resulting in the remotely sensed imagery are not understood, or are not 

the main focus of the study (Zhu et al., 2017). Such data-driven classifications rely on many redundant explanatory 

variables (Lebourgeois et al., 2017), and results often are not easily translated into a conceptual model. In this regard, 

Zhu and colleagues (2017) argue that uniting process-based modeling and machine learning is a promising direction. 

Here we present a hierarchical classification approach which applies a multi-temporal/multi-scale and 

combined object and pixel-based approach in order to contribute to diverse landscape LULC mapping. We 

demonstrate that through this approach we improve the assessment of LULC change patterns and their causation 

chains. Moreover, this study is intended to improve classification processes by presenting a workflow which (i) 

generates a classification allowing the analysis of LULC change in modern agricultural frontiers and ecotone zones, 

(ii) facilitates the comparison of results with those generated by other studies and/or for other regions, (iii) uses 

freely available remote sensing data, and (iv) employs a straightforward approach that can be implemented in 

software commonly used and/or available at no cost to researchers, NGOs, and governmental agencies (R, GRASS, 

or Orpheum toolbox). We tested this approach by creating a series of multi-temporal LULC maps for the Upper 

Xingu River Basin, located at the border of the Amazon rainforest and neo-tropical savannas (Cerrado), and 

describing the changes over three decades. We then explore patterns, trajectories, and causes of LULC change for 
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this study area. This chapter was published in the journal Remote Sensing Applications: Society and Environment 

(Garcia et al., 2019). 

2.2. Study area and data  

2.2.1. Study area 

The Upper Xingu River Basin (hereafter denoted as “UXRB”), is located in Mato Grosso state in Brazil, 

and in the ecotone between the Amazon rainforest and the neotropical savannas, or Cerrado biome. The Xingu 

River is one of the main Amazon River tributaries. Its headwater region encompasses one-third of the Xingu River 

Basin, draining ~170,000 km2. The area spreads from about 9.5ºS to 15ºS and from 51ºW to 55.5ºW (Figure 2). The 

UXRB exhibits a wide array of natural physiognomies, ranging from Amazon rainforest to savanna grasslands 

(Ivanauskas et al., 2008; Velasquez, C.; Alves, H. Q.; Bernasconi, 2010). The Amazon rainforest and Cerrado are the 

first and second largest biomes in South America. The Amazon rainforest contains enormous biodiversity and one-

third of the world's tropical tree species used for timber (Brazil, 2018). The Cerrado is a global biodiversity hotspot 

and contains the highest land use change rates in Brazil (Brazil, 2018; Klink and Machado, 2005).  

Besides the importance of the region for its natural resources (including biodiversity), the UXRB also 

encompasses large sociocultural diversity and economic prominence. It is estimated that 16 indigenous ethnic groups 

and other traditional communities live in the basin (Velasquez, C.; Alves, H. Q.; Bernasconi, 2010). The main 

economic activities in the study area during the late 1970’s to 1990’s were timber and beef. Forests were degraded or 

cleared due to livestock expansion and logging activities. In the early 2000’s, soybean production emerged as another 

deforestation driver (Brando et al., 2013; Nepstad et al., 2006). The defined rainy season, flat terrain, and dominance 

of good physical structured Oxisol soils (Velasquez, C.; Alves, H. Q.; Bernasconi, 2010), make the UXRB ideal for 

agricultural expansion and intensification. Currently, approximately 2% of world’s and 9% of Brazil’s soybeans are 

produced in the UXRB, as well as 0.2% of the world's and 13% of Brazil’s cattle (FAOSTAT, 2016; IBGE, 2016).  
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Figure 2. Upper Xingu River Basin (UXRB) is located in the Brazilian Legal Amazon, state of Mato Grosso. 
It drains an area of ~170,000 km2 into the Xingu River, one of the main tributaries of the Amazonas River. The 
area is in the ecotone between the Amazon and Cerrado biome (also known as neotropical savannas). The image 
on the left is a mosaic of Landsat 8 images acquired in July and August of 2015. The mosaic is shown in a true-
color composition (RGB 432). 

 

2.2.2. Data acquisition and pre-processing 

LULC maps for 1985, 1990, 1995, 2000, 2005, 2010, and 2015 of the UXRB were derived from a 

combination of Landsat (L5, L7 or L8, level 2) and MODIS (Aqua and Terra, collection 6) products. These images 

were processed based on information gathered through the Brazilian vegetation map (IBGE, 2004), ground 

reference points, and fine resolution images (Rapideye). 

2.2.2.1. Landsat data 

Landsat surface reflectance images were obtained from the USGS/Landsat Higher Level Science Data 

products (http://espa.cr.usgs.gov/). The path/row and acquisition date of all 120 Landsat scenes used in this study 

are presented in Appendix A - Supplementary Material 1. Landsat Higher Level Science Data products are delivered 

pre-corrected for geometrically and radiometrically by a homogenous correction chain (Masek et al., 2006; 

http://espa.cr.usgs.gov/). Although previously corrected, we registered mosaicked and resampled (30 m pixel 

resolution) images by using autosync workstation (ERDAS, 2014a) in order to guarantee a pixel by pixel overlap 

between years. As the UXRB presents a flat relief, we implemented a 2D polynomial model of third order based on 

the green band of each image. We considered 15 m, half pixel resolution, as the maximum acceptable error value 

(Root Mean Square Error < 0.5 pixel) and resampled the images through cubic convolutions. This process was 
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particularly important for earlier years, as shown in Appendix A - Supplementary Material 1. A histogram matching 

procedure was applied when necessary during mosaicking processes based on central path (225 in the WRS-2 

system) overlapping areas. Since all raster in the time series share a similar histogram shape, this technique changes 

each of the pixel's values according to the target histogram but does not change the histogram shape. 

No radiometric correction was applied with the exception of Landsat 7 images for 2005 and 2010 which 

were striped - images collected after 2003, when the Scan Line Corrector (SLC) failed. To correct this error, we 

applied a gap filling technique, which consists on acquiring a second image (also from Landsat 7 and for same year as 

the original one) to fill the gaps in the first scene (Scaramuzza et al., 2004). Rather than using these corrected images 

as primary sources of data to build LULC maps, we used them to visually verify Landsat 5 image consistency. Since 

Landsat 5 was launched in 1984, and old sensors can present degradation problems in more recent acquisitions. We 

did not use any image with signs of degradation. 

2.2.2.2. MODIS and derived indices 

MODIS Enhanced Vegetation Index (EVI), with a 250 m spatial resolution and 8 day temporal resolution 

were acquired on demand from the University of Natural Resources and Life Sciences, Vienna - BOKU (Vuolo et 

al., 2012). This database is based on MODIS Level-3, 16-day composite EVI from both Terra and Aqua satellites. 

The combination of 16-day composites from both satellites allowed us to derive a time series of 8-day temporal 

resolution. EVI time-series are delivered mosaicked, smoothed, and gap-filled. Such processing steps are based on 

the “MODIS package” (Mattiuzzi et al., 2016) developed in R (R Development Core Team, 2011), and the Whittaker 

filter (Vuolo et al., 2012). We tested EVI images against our Landsat mosaic using the previously described process, 

but no geometric correction was needed. An annual EVI series beginning in August of each analyzed year and 

ending in August of the following one was built for 2000, 2005, 2010 and 2015. In total, we used 832 MODIS 

scenes, or ~210 for each year. 

2.2.3. Ground reference 

We carried out field work to collect ~2000 ground reference points in two independent campaigns. The 

first campaign, carried out in June 2015, was used to improve systematic comprehension of the study area's LULC 

composition and to create thresholds for LULC class separability criteria. This dataset is composed of ~400 ground 

reference points collected on the ground. In addition, ancillary reference data points (~100 points) were collected by 

comparing Landsat 8 images obtained in 2015 with high spatial resolution RapidEye images acquired in 2012/13 

(http://geocatalogo.mma.gov.br/). Hereafter this dataset is called “training data” and its overview is presented in 

Appendix A - Supplementary Material 2. The field work to develop the training data was mostly concentrated at the 

contact zone between tropical rainforest and savannas, as well as at areas with more intense land use change.  

During a second campaign (October 2016), we acquired 1500 ground reference points throughout the 

entire basin for accuracy analyses. The points were as distributed in the basin as practical, but concentration around 

the main roads was inevitable due to access constrains and study area size. In addition, an ancillary set of data points 

(~500 points) collected by an independent researcher though a comparison of Landsat 8 images of the year 2016 

with RapidEye images was also used. This complementary approach was necessary in order to sample large areas 

which are difficult to assess. This dataset, hereafter called “validation data”, was used to verify the quality of the final 

classification. 

  



26 
 

 

2.3. Methods 

To derive LULC maps in highly dynamic tropical ecotone zones, we developed an assessment approach 

through a hierarchical classification model which allows us (i) to assess relevant information for regional landscape 

evaluation, (ii) to have different levels of information and accuracy for a diverse range of applications, (iii) to 

harmonize our thematic mapping with LULC schemes produced for other tropical regions or globally, and (iv) to 

apply the same classification methodology in other study areas. The hierarchical classification model was built in 

ERDAS Imagine Expert Classifier workstation (ERDAS, 2014b). We applied a hierarchical rule-based approach (a 

decision tree based on expert knowledge) to integrate variables of different sources and formats. Each branch 

describes the conditions under which constituent information (variables) gets abstracted into a set of higher-level 

informational classes. The rules were set based on literature and expert information, and field work observation. This 

approach focuses on expected reflectance signals based on knowledge of LULC behavior though space and time. It 

differs from currently popular machine learning algorithms, which fish a signal from data through multiple variable 

interactions (Maxwell et al., 2018). The development of classifications we applied here advances variable selection 

based on patterns and process behavior concepts, and can be used in any kind of classification, including machine 

learning. It is also important to note that learning algorithms demand a large and well distributed field sample to train 

the algorithms, which still is not always the case for extensive tropical areas. Still, a preliminary classification as we 

apply here could contribute with sample allocation to develop even more powerful classification processes.   

Legend can be defined as the application of a classification scheme in a specific study area. Here we used 

three levels of information to address LULC legend, each level composed for both land cover classes and land use 

classes. We considered representative LULC classes for the ecotone zone between Amazon rainforest and Cerrado 

both in area and in meaning of LULC change. The border between both biomes extends for about 6,300 km and 

overlaps with the Amazon`s arc of deforestation. The developed LULC legend follows hierarchical concepts 

presented by FAO’s Land Cover Classification System (Di Gregorio and Jansen, 2000). First, we adopted a general 

level of information on LULC, followed by a differentiation of the main land use and native vegetation domains. The 

third level of classification is linked to productivity and addresses land use intensity as well different native 

physiognomies. It is important to point out that we do not differentiate all 11 savanna vegetation physiognomies, 

which range from forest to grassland fields with no trees (see Oliveira and Marquis (2002) for further description). 

Instead, we aggregated them into three different classes according to tree density. Previous  global (GLC2000 

(Bartholomé and Belward, 2005) and MODIS Global land cover (Friedl et al., 2010)), and regional (TerraClass 

Cerrado (Scaramuzza et al., 2017) and TerraClass Amazonia (Almeida et al., 2016)) efforts produced legends 

compatible with our intermediate classification level, but no more detailed information on productivity systems or 

physiognomies are provided. 

The spatial-temporal resolution of the final classification products is also of high interest when assessing 

LULC change. Here we took advantage of Landsat spatial resolution (30 x 30 m) and EVI MODIS temporal 

resolution (7 days) by combining both products and addressing LULC change in terms of cover and management. 

EVI MODIS time series presents a 250 m spatial resolution, moreover to overcome this problem, we segmented 

Landsat images and used the derived objects (larger than 250m) to extract data from EVI MODIS layers by 

calculating the modal (discrete variables) or mean value (continuous variables) of pixels contained in each object. 

This approach is referred to as “zonal” in following sections. Level 1 and level 2 products are made available for 
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each 5-year period from 1985 to 2015. Level 3 was only developed for 2000 - 2015 due to MODIS availability. 

Nevertheless, the employment of both Landsat and MODIS sensors allows us to rely on the spatial resolution of the 

former and the temporal resolution of the latter to address mainly the Level 3 of our classification. 

 

2.3.1. Decision tree and classification rules 

Our hierarchical classification model consisted of three levels as presented in Table 1. Level 1 (L1) 

classifies the region of interest into five major LULC types: (1) natural and semi-natural vegetation, (2) cultivated and 

managed terrestrial areas, (3) burned areas, (4) surface water, and (5) unclassified (see Figure 3 for decision tree 

overview). This legend is fairly comprehensive and can be harmonized with a broad range of other researches, 

reducing conversion uncertainties among different products. L1 assesses native vegetation conversion and, thus, 

supplies information for policies and laws, such as the Brazilian Forest Code (Soares-Filho et al., 2014). To develop 

this level, first, we applied an unsupervised classification method using ISODATA algorithm to classify Landsat 

mosaicked images. In this process, each pixel is assigned to a class based on its spectral profile. There is no need for 

prior knowledge of the number or identification of the different classes present in the imaged area. We set the 

ISODATA algorithm to cluster pixels in up to 40 classes based on up to 20 iterations, with a minimum size of 0.01% 

of the study area for each class, a maximum standard deviation of 5, a maximum of 2 merges, and a convergence 

threshold of 0.95. Finally, we visually aggregated each of the output classes into one of the five legend classes 

mentioned before. 
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Table 1. Description of the land cover and land use classes used in this study. Level refers to the hierarchical level in the 
classification scheme. 

Level Class Description 

1 

Natural and semi-natural 
vegetation 

Natural or semi-natural vegetation cover, including forest, savannas, and 
floodplains 

Cultivated and managed 
terrestrial areas 

Any area under management which modifies the physiognomy of a natural 
system 

1 
2 
3 

Burned areas Either natural or managed areas that have recently being burned 
Surface water Area covered by water 
Unclassified Any pixel that did not fit in any of the other categories 

2 

Forest 
Forest formations, including rain forest, semi-deciduous, deciduous, riverine, 
cerradão (cerrado woodland with closed canopy) 

Savanna formation Wood-grassland ecosystem with open canopy 
Croplands Cultivated areas 
Pasturelands Areas with planted grassland for cattle ranching 

2 
3 

Wetlands 
Flooded area, either permanently or seasonally with high proportion of 
vegetation.  

Secondary complex Vegetation in regeneration or disturbed through natural processes or removal 
Bare soils Exposed bare soil lacking any vegetation 
Urban Concentrated built-up structures 

3 

Forest Forest formations in the Amazon domain such as rain and deciduous forests 
Forest cerrado Forest formations in the Cerrado domain such riparian forest and woodland 
Woody Cerrado Woody formation with open canopy and at least 40% of tree cover 
Shrub-grassland cerrado Grassland formation with no trees to formations with up to 40% of tree cover  
Single crop Cultivated areas with one harvest per year, rain fed 
Double crop Cultivated areas with two harvests per year, rain fed 
Irrigated crop Cultivated areas which are artificially irrigated 
Pasturelands Areas with regular planted grassland for cattle ranching 

Degraded pasturelands 
Areas with planted grassland for cattle ranching with presence of bare ground 
and poor greenness recovery 

 

Level 2 (L2) encompasses a more specific set of LULC classes, but is broad enough to be adapted or 

compared to similar regions throughout the tropics. This legend level assesses biophysical characteristics related to 

LULC of the target landscape. For example, L2 is useful as an input for biogeochemical and hydrological models as 

it differentiates vegetation types. LULC information and user`s knowledge acquired in field work was necessary to 

map LULC at the second level of detail (see Figure 3 for decision tree overview). LULC legend for the L2 included: 

(1) forest (2) savanna formation (3) wetlands (4) secondary complex, (5) croplands, (6) pasturelands, (7) bare soils, (8) 

urban, (9) burned areas, (10) surface water, and (11) unclassified. L1 unsupervised classification output was 

disaggregated into forest (closed canopy), savanna formation (open canopy), wetlands, and secondary complex. We 

disaggregated these classes by overlapping the Brazilian Institute of Geography and Statistics vegetation map as a 

masking conditional variable, with the classes resulting from the unsupervised classification (described above) being 

classified as Natural/Semi-natural (L1). Areas where both maps did not match were considered secondary 

complexes. Urban, burned areas and surface water were imported from L1 without any modification. Forest, 

savanna, urban, burned areas and surface water formation were inputted in L2 classification based on pixel since we 

do not expect them to necessarily present object patterns. 

 We segmented Landsat images to reclassify managed areas. Segmentation was conducted in ArcGIS 10.3 using 

bands 5, 6, and 4 of mosaicked Landsat 8 images (bands 4, 5, and 3 for years using Landsat 5 or Landsat 7) based on 

the spectral similarity and spatial proximity among neighbor pixels, with a minimal area of 9 ha. This approach 

assumes a minimal aggregated number of pixels or a specific shape in crops and pasturelands. We arbitrary chose a 

minimum area of 9 ha with the goal of adding variance to the analyses but also allowing the algorithm to capture the 

smallest area as possible. We chose 9 ha so we could evaluate more than one Modis’ pixel (pixel resolution equal to 
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250m, resampled into 30m, and resulting in ~70 pixels), and 100 Landsat pixels (pixel resolution equal to 30m). We 

classified each object according to L1 classes by defining the major class inside each object and identified Managed 

Areas which were then reclassified in crops, pasturelands or bare soils. To differentiate these three classes based on 

MODIS EVI, we calculated three indexes based in relation to the agriculture calendar for Mato Grosso state 

(Appendix A - Supplementary Material 3). We used the objects created with Landsat images to calculate the mean 

value for each object (referred to in Figure 3 as zonal approach) and each index. Indexes based on MODIS EVI are 

as follow: 

(Index i) Minimum EVI during soil preparation/sowing season (EVImin): 

𝐸𝑉𝐼𝑚𝑖𝑛= MIN ( 𝐸𝑉𝐼𝑠𝑜(𝑑𝑜𝑦 𝑥), 𝐸𝑉𝐼𝑠𝑜(𝑑𝑜𝑦 𝑥+7), … , 𝐸𝑉𝐼𝑠𝑜(𝑑𝑎𝑦 𝑦) ) 

where, EVIso series represents a sequence with 7-day interval from the first day (doy x) of the soil 

preparation/sowing season to the last one (doy y), doy corresponds to day of the year in the julian calendar; 

(Index ii) Maximum EVI in the growing season (EVImax): 

𝐸𝑉𝐼𝑚𝑎𝑥= MAX ( 𝐸𝑉𝐼𝑔𝑟𝑜(𝑑𝑜𝑦 𝑥), 𝐸𝑉𝐼𝑔𝑟𝑜(𝑑𝑜𝑦 𝑥+7), … , 𝐸𝑉𝐼𝑔𝑟𝑜(𝑑𝑜𝑦 𝑦) ) 

where, EVIgro series represents a sequence with 7-day interval from the first day (doy x) of the growing season to the 

last one (doy y); 

(Index iii) Differential greenness enhancement index (Rizzi et al., 2009): 

DGEI = 
𝐸𝑉𝐼𝑚𝑎𝑥 − 𝐸𝑉𝐼𝑚𝑖𝑛

𝐸𝑉𝐼𝑚𝑎𝑥 + 𝐸𝑉𝐼𝑚𝑖𝑛
 . 

We assumed that crop areas presented both states: bare soil or haystacks due to soil preparation and 

sowing period (very low EVI values), and also at least one green period during a year due to the growing season 

(highest EVI values). Moreover, they presented a higher DGEI when compared to pasturelands. As DGEI is the 

contrast between the peak high and low values of EVI in a season (defined as a few months), it is not sensitive to 

normal seasonality and precipitation shifts. Still, it can potentially be affected by drastic droughts which negatively 

impact both crop and pasture growth. Additionally, cropland abandonments can potentially impact this index. Such 

dynamics prevent land covers from reaching their expected maximum or minimum EVI values. Optimal DGEI 

thresholds values were identified based on training sampled data. However, since EVI time-series from MODIS are 

available after 2000, we applied other methods to separate crops from pastures for 1985, 1990 and 1995. For these 

years, we identified cropland polygons by selecting objects which presented Landsat EVI values lower than 0.3 (bare 

soil or stover – based on visual selection of sample fields which remained unchanged between 1995 and 2000, and 

were classified as croplands in 2000) and minimum field size of 40 ha. Cropland area is certainly under estimated for 

those dates. However, as croplands account for a maximum of 1% of the UXRB basin before 1995 (IBGE, 2016), 

we trust this procedure did not compromise our results.  

The main goal of Level 3 (L3) is to cope with ecological characteristics related to LULC such as regional 

agriculture greenness or ecological intensification (Arvor et al., 2012). It is also useful, for example, when analyzing 

socio-economic characteristics associated with crop and cattle ranching intensification or to analyze which natural 

physiognomies are more likely to be replaced by certain agricultural activity (see Figure 3 for decision tree overview). 

LULC legend for L3 included: (1) forest, (2) forest cerrado, (3) woody Cerrado, (4) shrub-grassland cerrado, (5) 

wetland, (6) secondary complex, (7) single crop, (8) double crop, (9) irrigated crop, (10) pasturelands, (11) degraded 

pasturelands, (12) bare soils, (13) urban, (14) burned areas, (15) surface water, and (16) unclassified. L3 maps include 

classes that rely on high resolution temporal images, available only from 2000 forwards due to MODIS availability. 

We identified low productivity pasturelands (or degraded pasturelands) by using a combination of two indices 

derived from MODIS EVI: annual EVIsum and annual DGEI. 
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(Index iv) Sum of EVI in a certain year (EVIsum): 

𝐸𝑉𝐼𝑠𝑢𝑚= ∑ ( 𝐸𝑉𝐼𝑔𝑟𝑜(𝑑𝑜𝑦 𝑥), 𝐸𝑉𝐼𝑔𝑟𝑜(𝑑𝑜𝑦 𝑥+7), … , 𝐸𝑉𝐼𝑔𝑟𝑜(𝑑𝑜𝑦 𝑦) ) 

where EVIsum series represents a sequence with 7-day interval from the first day (doy x) of the analyzed period 

through the last one (doy y). 

The applied analysis adopts the hysteresis principle, which means that degraded pasturelands present a 

lower resilience and, thus, they are not able to recover their original state after a disturbance period (Searle et al., 

2009; Yengoh et al., 2015). Grazing, fire, and water shortages are forms of disturbance, and the lack of recovery 

implies a loss of pasture productivity. This loss is liked to biological degradation (decrease in carbon accumulation) 

but also with some agricultural degradation processes such as loss of productivity in the form of insect attacks, for 

example (Dias-Filho, 2001). DGEI calculated as shown previously based on the whole analyzed year was used to 

estimate how recovering photosynthetic capacity varied within a year. The cumulative vegetation index (EVIsum) 

was used as a proxy for net primary productivity (Ferreira et al., 2013). We considered the combination of low 

greenness and low annual variation as indicative of pasturelands in degradation. Both DGEI and EVIsum were used 

to include the temporal EVI variation associated to rainfall (Yengoh et al., 2015). Although this approach does not 

addresses the complexities of the pasture degradation process, it is a fair indicator of pasture resilience through 

different seasons (Yengoh et al., 2015). Croplands were reclassified according to a conditional model of double 

cropping detection. Whenever croplands presented a large number of days with high vegetative response, we 

consider them as double cropping areas as shown in the following formula: 

(v) Count of days with EVI > 0.5 in a certain year (EVIcount): 

𝐸𝑉𝐼𝑐𝑜𝑢𝑛𝑡= ∑ (𝐸𝑉𝐼𝑣𝑒𝑔,𝑑𝑜𝑦 𝑥, … , 𝐸𝑉𝐼𝑣𝑒𝑔,𝑑𝑜𝑦 𝑦) 

𝐸𝑉𝐼𝑣𝑒𝑔,𝑑𝑜𝑦 𝑥 = 1 → 𝐸𝑉𝐼𝑑𝑜𝑦 > 0.5 

𝐸𝑉𝐼𝑣𝑒𝑔,𝑑𝑜𝑦 𝑥 = 0 → 𝐸𝑉𝐼𝑑𝑜𝑦 ≤ 0.5 

where EVIveg represents a sequence with 7-day interval from the first day (doy x) of the analyzed period through the 

last one (doy y).  Each EVIveg is assigned the value 1 if the correspondent EVI value at certain day is higher than 0.5, 

otherwise it is zero. Irrigated areas were manually extracted based on spatial arrangement and higher EVI reflectance 

in the dry season. The optimal thresholds were calculated based on the training sample data. 

We used the Brazilian vegetation map (IBGE, 2004) to first break forest areas into forest (L2-forest inside 

the rain forest domain) and forest cerrado (L2-forest inside the savanic domain). We also relied on NDVI values 

calculated from Landsat images in the dry season (NDVIL), and EVImin, and EVIsum values to reclassify forest and 

savanic formations into forest, forest cerrado, woody Cerrado, and shrub-grassland cerrado. The optimal thresholds 

were also calculated based on the training sample data - they are shown in Figure 3. 
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Figure 3. Workflow of the three-level hierarchical classification system developed and applied to derive a 30-year time series of 
land use and land cover maps of the UXRB, Brazil. Grey boxes indicate the data used in each decision rule designed to obtain a 
certain class. Solid line boxes represent land use and land cover classes. Land use and land cover classes boxes highlighted in light 
grey are classes that are carried over to next level of classification without modification. Whenever a class is derived based on an 
object approach, the arrow defining the respective workflow pass by a “zonal” box delimited by dotted lines. All thresholds 
presented here were developed for the study area only and can be used as approximate values for similar regions. 
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2.3.2. Accuracy assessment  

We produced a confusion matrix based on (i) reference points collected in 2016 on the ground (total of 

1460 ground reference points), and (ii) reference points collected through very high-resolution Rapid Eye images 

from 2012 and 2013 (total of 489). We transformed the observed sample confusion matrix into an estimated 

population matrix, as recommended by Pontius and Millones (2011). Then, we calculated overall (dis)agreement, 

overall quantity disagreement (amount of disagreement due to the quantity of each class), and overall allocation 

disagreement (amount of disagreement due to the miss-overlap of classes in space). Disagreement and its 

decomposition were also calculated for classes. Further details on accuracy assessment are available in Appendix A - 

Supplementary Material 4. As accuracy metrics calculated directly from the observed sample confusion matrix are 

still very common in the literature, we also present these metrics in Appendix A - Supplementary Material 4. 

Once the classification process for the 2015 images returned a satisfactory output, we assumed that the 

analyst acquired the “know how” of the classification process, and could classify previous years using the same rules. 

In the process, we visually checked whether different thresholds would improve the classification of sample points 

with a marked land cover, but no improvement was observed. We did not collected data to estimate accuracy for 

previous year. But we assumed the 2015 accuracy assessment would also apply for previous year. It’s important to 

point out that burned lands were not considered in such analysis. Burned lands class is present in a short temporal 

window, which makes it almost impossible to collect ground reference points. Thus, it was omitted from analyses. 

Still, such class presents a very distinct spectral profile and, then, it would not significantly change the accuracy 

results. A detailed explanation of reference data collection and analyses is showed in Appendix A - Supplementary 

Material 4.  

In addition to the validation database collected in our field surveys, we used LULC information from 

Amazon Environmental Research Institute (IPAM, http://ipam.org.br), Socio-Environmental Institute (ISA, 

https://www.socioambiental.org) and The Brazilian Institute of Geography and Statistics (IBGE, 2016) to evaluate 

our results in separate analysis. The IPAM database includes LULC ground reference points obtained in 2017 for 

Querência municipality. ISA database contains maps for multiple years of LULC for Querência, Canarana, São José 

do Xingu, and Santa Cruz do Xingu municipalities, which in turn represent together about 25% of the UXRB. We 

randomly sampled these maps and compared each point with the ones from our output maps for the 2010 and 2015 

years. ISA’s and IPAM’s LULC information were not as detailed as our L3 classification for cropping systems. Thus, 

to analyze L3 we compared IBGE (Brazilian Institute of Geography and Statistics) census data for each municipality 

in the basin with our maps. 

2.3.3. LULC change  

Rates of LULC change were calculated based on the continuous rate of change proposed by Puyravaud 

(2003): 

𝐿𝐶𝐿𝑈𝑐 (%) =  
 ln (𝐴2/𝐴1)

 𝑡2 − 𝑡1

 

where A indicates the total area occupied by a certain class in time t. The subscripts 1 and 2 represent the earlier and 

the subsequent year in an analyzed period. LULCc is the rate of change per year expressed in percentage. We 

analyzed LULC change trajectories in order to address proximate (direct) causes of change. We built transition 

matrices produced by a pixel-by-pixel identification of the LULC class in an earlier and the subsequent year time. 

The number of pixels is transformed in area by multiplying the former by the pixel resolution. We explore underlying 
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causes of LULC change in the UXRB by comparing agricultural expansion to market prices of agricultural products 

and currency exchange rate (the value ratio between Brazilian Real (R$) and America Dollar (US$)) using the 

Spearman correlation index. The agricultural products incorporated in the analysis were chosen due their 

representativeness in the area: (1) cattle herd and beef price, (2) soybean production output and price, (3) maize 

production output and price. Two sets of prices were used, (1) commodity real prices (corrected by inflation) 

published by the World Bank (http://www.worldbank.org), and (2) prices received by farmers corrected by inflation 

(IPCA index for February 2018) and published by the Institute of Applied Economic Research 

(http://www.ipea.gov.br). Agriculture production was acquired from the Brazilian Institute of Geography and 

Statistics (https://sidra.ibge.gov.br). All calculations were conducted in R (R Development Core Team, 2011). 

2.4. Results 

2.4.1. Classification approach 

We created a classification scheme based on simple classification routines, remotely sensed information 

available at no cost, and algorithms that can be implemented in any common and/or free software that offers the 

possibility of spatial analyses (E.g.: R, GRASS, among others). For this approach, we created a set of rules, classified 

image mosaics and product accuracy checks based on ground reference points. We expanded the classification 

scheme to the years 2010, 2005, 2000, 1995, 1990, and 1985 to identify the main changes in LULC. All derived maps 

are presented in Appendix A - Supplementary material 5. To apply this classification approach in the UXRB, we 

processed 12 Landsat (1 mosaic) and ~182 MODIS images (~45 mosaics) for each year. Some critical years required 

more images to double check spectral quality and to replace cloud covered scenes.  

2.4.2. Accuracy and class separability 

We built a three-level hierarchical model (Figure 3) for image classification with increasing output detail at 

each level which, thus, presents increasing input and computational demand, and an overall decrease in accuracy 

(Table 2, Appendix A - Supplementary material 4 for full error matrices). The comparison of our validation database 

with the produced maps shows that the fraction of correctly classified sample points (overall agreement), considering 

the proportion of each LULC class in the UXRB, ranged from 84% to 93%. When decomposing the disagreement, 

all levels presented higher disagreement in quantity than in allocation (Table 2).   

Table 2. Overall agreement, quantity disagreement, allocation disagreement, and number 
of classes relative to the proposed land use and land cover classification workflow in the 
Upper Xingu River Basin (Mato Grosso, Brazil) in 3 levels of information. Calculation was 
based on comparison with 1500 ground reference points collected in 2016. Complete error 
matrix can be assessed in Appendix A - Supplementary Material 4. 

Reference database (2016) 

 Level 1 Level 2 Level 3 

Overall agreement (%) 93.21 86.49 83.64 

Quantity disagreement (%) 4.43 8.84 10.19 

Allocation disagreement (%) 2.35 4.67 6.17 

Nº of classes 5 11 16 

 

All classes presented satisfactory agreement when considering their extension in the area - equal to or 

lower than 7%, independent of the level of classification. The highest disagreement percentages were observed in 
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cultivated areas in L1 (6%), forest and pasturelands in L2 (7% each), and in forest and pasturelands in L3 (7% each). 

Forest class error was composed mostly of commission error and quantity disagreement, indicating they were 

overestimated. Pasturelands in both L1 and L2 presented a balanced error between omission and commission, as 

well as for quantity and allocation disagreement, indicating both overestimation and spatial dislocation.  

When not considering class extension and calculating accuracy directly from observed matrix values, few 

classes present lower accuracy than expected. In L2, secondary complex and bare land present commission errors of 

52% and 54%, respectively. In L3, woody Cerrado (39%), shrub-grassland Cerrado (76%), secondary complex (59%), 

degraded pasturelands (57%), and bare soil (44%) presented higher omission and commission error percentages. Still, 

L1 presented great accuracy for all classes. This result was expected, since L1 class separability based on Landsat 

bands is highly reliable (See Appendix A - Supplementary material 5 – Figure 1 for spectral profile). L2 classification 

is dependent on Level 1, and requires the use of the spectral indexes DGEI and NDVI to separate croplands from 

pasturelands, and pasturelands from bare soil (Figure 4). Natural covers could still be separated from Landsat band 

data (Figure 2 in Appendix A - Supplementary material 5).  L3 classification was dependent on previous levels and 

thus represents the most complex model, requiring multiple indices to separate classes. Classes with higher 

separability, such as dense forest, and double cropping systems, presented the highest accuracy (Figure 5). Degraded 

pasturelands were mostly confused with pastureland, indicating that we set a conservative rule when separating those 

classes. 

 

Figure 4. Separability between (a) croplands and pasturelands derived from the differential greenness enhancement index (DGEI) 
calculated from MODIS; and (b) pasturelands and bare soil derived from NDVI calculated from Landsat. Values were extracted 
based in ground reference points collected to assess classification accuracy.  
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Figure 5. Separability between classes proposed for classification at level 3. Pasturelands and degraded pasturelands are compared 
derived from the differential greenness enhancement index – DGEI (a) and the sum of EVI values through a year – SUM (b). 
Single and double cropping systems are compared based on how many days along the year an EVI > 0.5 is present – COUNT(c). 
Forest, woody and shrub-grassland, all different savanna physiognomies, are compared based on SUM (d), NDVI values (e), and 
the minimal EVI value through a year (f). Values were extracted based on ground reference points collected to assess 
classification accuracy. 

 
When we compare our mapping results to those obtained by other institutions using different mapping 

schemas of remote sensing classification (Table 3), we also achieved high values of overall agreement, indicating a 

high correspondence among them. However, it is important to highlight that LULC validation analyses based on 

databases created for other purposes should not be considered as accurate as the analysis produced from our 

validation dataset. Data from other sources contain their own errors, inherent in their production, in addition to 

errors which may arise from legend adaptation. Furthermore, IBGE data for planted cropland area also supports our 

methodology, as we found 99% correspondence between this survey and our classified maps through time (see 

Figure 6 and the Appendix A - Supplementary material 4 for graphic by municipality). 
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Table 3. Overall agreement, quantity disagreement, and allocation 
disagreement calculated when compared to different databases collected in 
different years. The information corresponds to the LULC classification of 
the UXRB (Brazil) in 3 levels of information. Databases were developed by 
Instituto de Pesquisa Ambiental da Amazônia (IPAM) and Instituto Socioambiental  
(ISA). 

IPAM database (2017) 

 L1 L2 L3 

Agreement (%) 79.96 75.38 64.49 

Quantity disagreement (%) 13.41 20.41 15.18 

Allocation disagreement (%) 6.63 4.21 20.33 

ISA database (2010) 

 L1 L2 L3 

Agreement (%) 88.97 90.54 - 

Quantity disagreement (%) 9.43 5.69 - 

Allocation disagreement (%) 1.60 3.77 - 

ISA database (2015) 

 L1 L2 L3 

Agreement (%) 95.85 94.22 - 

Quantity disagreement (%) 2.07 2.99 - 

Allocation disagreement (%) 2.08 2.78 - 

2.4.1. LULC change in the UXRB 

The period with the highest natural vegetation loss rate in the UXRB was observed to be between 2000 

and 2005 (- 5% . year-1), while the average rate was about – 2% . year-1. According to L2 mapping, before 1995, most 

land use change occurred in the savanna formations (9,500 km² of ~17,000 km²), and resulted primarily from pasture 

expansion (Figure 7; See Appendix A - Supplementary material 7 for transition and area tables). From 1995 to 2010, 

expansion grew mainly over forested areas, while from 2010 to 2015, savanna formations have again been the main 

target of agricultural expansion. The observed rates of deforestation between 1995 and 2005 can be spatially divided 

into two main expansion axes. Until 2000, land use change was most intense at the east and southeast bounds of the 

UXRB, with large areas of tropical forest converted into pasturelands (~30,000 km²). From 2000 to 2005, when the 

highest rates of deforestation were observed, forest clearing occurred mainly in the western portion of the basin and 

represented both crop and pastureland expansion.   

While the highest rates of pasture and crop expansion occurred, respectively, between 1990-1995 and 

1995-2005, rates dropped to among the lowest between 2005-2010. This last period was also marked by the largest 

spread of intensification according to L3 mappings - 15% of pasturelands became croplands, and 25% of single crop 

systems became double cropping systems (Figure 8; See Appendix A - Supplementary material 7 for transition and 

area tables). Additionally, pastureland decreased in size during this period, as did the rate of improvement of 

degraded pasturelands. In this period, cropland expansion rate slightly decreased. With the exception of double crop 

system, cropland expansion rates increased again between 2010-2015. From 2010 to 2015, we observed the largest 

conversion of pastureland into single or double cropping agricultural systems (~9000 km²), while conversion of 

native vegetation, mainly Cerrado formations, increased again (~6,500 km² of cerrado and ~2,500 km² of forest 

were converted into crop systems and pastureland). Additionally, degraded pastureland area also increased during 

this period.  
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Figure 6. Correlation between the LULC maps produced for UXRB for croplands and the census data made available by IBGE 
for the top four crops (rice, soybean, maize and cotton). (A) Lines show the evolution of cropland according to L2 classification 
while bars show planted area data according to IBGE for rice, soybean discounting secondary maize area (double cropping), main 
crop maize, and cotton. (B) Lines show the evolution of cropland (accounting twice for double cropping areas) according to L3 
classification while bars show planted area data according to IBGE for rice, soybean, maize, and cotton. Data is available by 
municipality in Appendix A - Supplementary material 4 – figure 2. 

 

As expected, the expansion of harvested area and cattle herd is positively correlated with prices and the 

exchange rate between American Dollar and Brazilian Real (Table 4). For example, the observed peak in the rate of 

change for cropland (2000-2005) overlaps with the highest prices received by producers in the analyzed period (see 

Appendix A - Supplementary material 7 for figures). Still, the exchange rate presented a significantly higher 

correlation to the expansion of agriculture production than commodity prices.  

Table 4. Spearman correlation and the corresponding significance at 95% (*) and 99% (**) confidence level between main 
agriculture products (cattle herd, harvested area of soybean and maize accounting for double crop systems), commodities prices 
(World Bank), price received by the producers (IPEA), and exchange rate between American Dollar and Brazilian Real (Central 
Bank of Brazil). One year lagged tests presented very similar results. 

 Cattle herd Soybeans area Maize area 

Commodity price (US$) - 0.56* 0.56** 
Price received by producers (R$) 0.51* 0.62** - 
Exchange rate (US$:R$) 0.77** 0.84** 0.81** 
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Figure 7. Land use and land cover transition for all pixels that have changed through time and in non-protected areas in the 
Upper Xingu River Basin from 1985 to 2015, according to level 2 of classification. The vertical boxes represent the proportion of 
the Upper Xingu River Basin which each land use occupies in a certain year. The flux lines represent the land use and land cover 
change. The width of each line represents the proportional amount of land being converted into another use, while each color 
represents the use it was turned into. The color scheme follows the legend of the map which shows the land use and land cover 
distribution in 2015. 

 

 

Figure 8. Land use and land cover transition for all pixels that have changed through time and in non-protected areas in the 
Upper Xingu River Basin from 2000 to 2015, according to level 3 of classification. The vertical boxes represent the proportion of 
the Upper Xingu River Basin which each land use occupies in a certain year. The flux lines represent the land use and land cover 
change. The width of each line represents the proportional amount of land being converted into another use, while each color 
represents the use it was turned into. The color scheme follows the legend of the map which shows the land use and land cover 
distribution in 2015.  
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2.5. Discussion 

2.5.1. LULC classification and legend 

The proposed classification scheme and legend produced spatially explicit information on LULC for the 

UXRB with more accuracy than we would expect if using global or national products. Besides presenting an overall 

accuracy between 69-78%, global land cover products achieve poor agreement among themselves in tropical 

ecotones and diverse landscapes (Herold et al., 2008). By design, regional LULC maps derived from satellite images 

generally present higher levels of accuracy than global mapping schemas because of their intrinsic variability. Our 

corresponding product (L2) produced an overall accuracy of 86% for the UXRB. Recently produced regional LULC 

datasets that encompass the UXRB at least partially, also offer information on the study area. The TerraClass 

Cerrado has an ~80% overall accuracy (Scaramuzza et al., 2017), while TerraClass Amazonia’s accuracy is ~77% 

(Almeida et al., 2016). Still, these mapping schemes present a simpler legend assessment when compared to our 

hierarchical approach proposed here at L3, and a poorer performance than both L2 (86% accuracy) and L3 (83% 

accuracy). Additionally, both datasets together do not provide information for the whole studied area, since no 

mapping data exists for a large portion of the ecotone zone between the Amazon and Cerrado biomes located inside 

the TerraClass Amazonia study area. 

Also, our accuracy analyses showed similar or higher indexes than others studies applied to similar regions 

and scale. Sawakushi et al. (2013) applied classification schemes at the Middle Araguaia River Basin, reaching an 

overall accuracy of 85%, based on 287 ground reference points and delivering a legend which fits in-between our L1 

and L2 classifications. Walker (2010) also proposed a hierarchical and multi-level classification approach and applied 

it to the UXRB. Using a random forest algorithm, and PALSAR- and Landsat-based data, they obtained an overall 

accuracy from 58% (15 classes) to 92% (2 classes), depending on the classification level. However, all three studies, 

including ours, achieved poorer results for separating (i) Cerrado land covers, and (ii) pasturelands and degraded 

pasturelands. Degraded pastureland is an especially important land cover type due to its link to food security and 

conservation. Even though some studies show an intensification pattern related to improvement in the Brazilian 

pasturelands since 2005 (Parente and Ferreira, 2018), we believe that degraded pasture is underestimated in our 

study. The thresholds we implemented linked to the hysteresis principle were likely too conservative. 

Few studies have been carried out to improve separability among Cerrado vegetation physiognomies 

based on remote sensing products. Vegetation indices (VIs) derived from MODIS and calculated indices based on 

VIs have shown a capacity to separate major physiognomies (Ratana et al., 2005); however, Landsat-simulated VIs 

presented a better discrimination capability when compared to these methods (Ferreira et al., 2003). In our study at 

the UXRB, even when employing MODIS and Landsat EVI data together, the overall accuracy for Cerrado 

physiognomy separability was 61% (L3) when not weighting the full class extension, and even lower values were 

found for shrub-grassland formations. Since shrub-grassland encompasses only 1% of the landscape, and due to the 

few samples obtained in field surveys, these results are possibly associated with a poor set of rules in the 

classification process leading to low accuracy values. Still, the results suggest that further attention should be given to 

studying the temporal pattern of spectral responses in different Cerrado formations. Toniol and colleagues (2017) 

evaluated four classifiers for discriminating Cerrado physiognomies in the rainy and dry seasons, and obtained overall 

accuracies from 26% to 84%, depending on the classifier, season, and metrics used. 

MODIS derived VI temporal profiles have also been applied to classify managed land, specifically to 

extract croplands and to derive crop-specific classes (Brown et al., 2007, 2013). Most of these studies have been 
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based on modelling annual VI records instead of single indices (Rizzi et al., 2009). Aside from the simplicity of using 

indices such as DGEI or COUNT, one advantage of such method compared to other approaches is that there is no 

need to define a time period. In other words, these indices can be applied to other regions that do not necessarily 

present the same agricultural calendar, allowing their use at regional and global mapping scales. In DGEI calculation, 

the period of time used can be much broader than the sowing-growth window (as applied here), avoiding seasonal 

changes.  

We achieved a more realistic and representative approach using a segmentation-based approach to turn 

managed areas into objects, and turning those objects into analysis units (Blaschke, 2010). Through this approach we, 

avoided problems such as pixel heterogeneity, mixed pixels, and spectral similarity due to crop or pastureland spatial 

variability (Peña-Barragán et al., 2011; Yu et al., 2016). Additionally, while classification approaches often present a 

larger allocation disagreement than quantity disagreement, our results shows the opposite (E.g.: Pontius et al (2011)). 

It suggests that the combined pixel and object approach represents the land configuration better than automatic per-

pixel classification methods. Still, the techniques used in this research may not favor mapping of small producers and 

permanent crops. Such analysis is out of the scope of this research, but it is encouraged for future studies. Indices 

other than the ones used in this study, such as a clumping index, were not reported to significantly improve 

separability in neotropical savannas and are highly correlated with VI (Hill et al., 2011). We encourage the application 

of object-oriented approaches and indices derived from temporal composition in other classification methods, such 

as machine learning. 

The proposed classification approach allowed us to analyze a more complex and realistic scenario of 

LULC change in the UXRB, and thus address issues related to expansion and intensification, biome specific dynamic 

changes, and cropland and pastureland roles in native vegetation loss. The high accuracy values attributed to L1 and 

the applied legend make this level of classification suitable for studies on law and policy enforcement (Goetz et al., 

2015). L2 addresses general differences in land use and land cover, offering a reliable product to model ecosystem 

dynamics such as regional hydrological balance (Dwarakish and Ganasri, 2015). The third level of classification offers 

further information on regional LULC by addressing vegetative productivity. It allows users to address issues related 

to habitat suitability and priority areas for conservation by separating native vegetation physiognomies. Such 

separability issues are even more important and challenging for the Cerrado biome. Although it is recognized as the 

richest savanna in the world and a hotspot for conservation (Klink and Machado, 2005; Myers et al., 2000), it is still 

not a major focus of policies and research, nationally or internationally (Nolte et al., 2017). This pattern is related to 

the lack of monitoring techniques and knowledge of ecological dynamics taking place in the biome. Our proposed 

methodology offers insights into monitoring techniques and encourages further research. The third level of 

classification also makes it possible to address food production, land management, and the relationship between 

productive systems and socioeconomic dynamics. The intensified use of agricultural lands is a key discussion topic 

related to both land sparing for conservation (Ewers et al., 2009) and socioeconomic development (Martinelli et al., 

2017). Still, a clear drawback of the hierarchical approach used in this study is the nested dependency between levels 

of classification since L3 is dependent on L2, and L2 is dependent on L1. Possible ways of mitigating this problem 

include assigning a smaller weight to classified maps when using them as source of information in another level of 

classification, or even avoiding altogether the use of one classified map in the modelling of another level of 

classification. 
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2.5.2. LULC changes in the UXRB 

Until 2000, LULC change in UXRB was primarily driven by pastureland expansion following patterns 

observed in Amazon and Cerrado biomes (Ferreira et al., 2012; INPE, 2018). In 1990s and 2000s, the region 

transitioned from a pioneer landscape to a consolidated frontier, in which agro-production moved from a labor-

intensive system to one based on financial capital and integration into market. The consolidation of cattle production 

in the 90s occurred in all states on the southern frontier of the Amazon (Margulis, 2004). From 2000 to 2015, land 

use transitions in the UXRB indicated an intensification process, which was manifested through an increase in 

cultivated area over pastureland, accompanied by a large reduction in deforestation. Intensification processes are a 

result of environmental regulations, technological changes, economic disincentives for deforestation, and/or market 

regulations (Gasparri and de Waroux, 2015). By the end of the study period, the UXRB became a frontier which 

supplies both international and regional markets.  

Reductions in deforestation, combined with crop expansion, have been described for the Brazilian biomes 

in the last decades (Dias et al., 2016; Macedo et al., 2012). Brando (2013) shed light on how the actions of different 

stakeholders (e.g.: government – zero deforestation act, private sector – soy moratorium, and non-profit 

organizations through multiple campaigns) helped to reduce deforestation in the UXRB during the 2000s. With 

available technology, producers were able to increase yields in order to increase profits. However, our analysis shows 

that intensification is biome-dependent. We observed an increase in agricultural intensification mainly in the Amazon 

region of the UXRB, between 2000-2005, and 2010-2015. This temporal pattern is correlated with peaks in the 

exchange rate, and secondarily with commodity prices. Expansion is still the dominant LULC change process in the 

Cerrado portion of the UXRB, as it is for the Cerrado biome as whole (Lapola et al., 2013). This expansion can be 

confirmed as we observe a reduction of 20% in savanic formation from 2010 to 2015, a value 10 times higher than 

the one found for the amazon forest over the same period. The conversion from woody Cerrado to pastureland 

accounts for the majority of these changes. This process is correlated with an increase in beef prices. But the low 

number of conservation areas, as well as the lack of market regulation and effective deforestation control programs, 

are the main differences between protection schemes in the Cerrado and the Amazon biomes (Gibbs et al., 2015; 

Sparovek et al., 2010). According to intensification theories, without those mechanisms of incentive or control, 

intensification will not be encouraged (Meyfroidt et al., 2018). 

Cash crops primarily replace pasturelands in the UXRB, followed by cerrado formations and Amazonian 

forest - mainly between 2000-2005 and 2010-2015. Those results are partially in accordance with Macedo (Macedo et 

al., 2012), which underestimated native vegetation loss at the cerrado region in the UXRB due to cash crop 

expansion. Rather than intensification and regulation effects, the lower conversion of native vegetation into 

croplands observed between 2005-2010 is a result of market and currency exchange effects pushing soybean prices 

down (Richards et al., 2012). The increase in native vegetation loss again from 2010-2015 supports this idea, together 

with the hypothesis that intensification does not necessarily lead to decreases in the expansion of agricultural 

frontiers (Barretto et al., 2013; Rudel et al., 2009). Although our goal was not to analyze indirect frontier 

development through land use change, the displacement of cattle production by cash crops has been observed in the 

UXRB and elsewhere (Barona et al., 2010; Fehlenberg et al., 2017; Macedo et al., 2012). Aditionally, increased land 

market values in areas of soybean expansion have been shown to drive migration-based development (Richards, 

2015). The increase in deforestation in the Cerrado compared to the Amazon portion of the basin can be considered 

evidence of a rebound effect. Theories concerning this effect state that technology, policies, and market-drive the 

intensification of land use as observed in the Amazon portion of the UXRB (Meyfroidt et al., 2018). Land sparing is 
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observed in a region when land use is restricted by regulations and, as a consequence, production price per area 

increases due to a required disaggregation of production area. Conversely, expansion is observed elsewhere as a 

rebound effect when land with limited regulations is available – such as in the Cerrado biome (Soares-Filho et al., 

2014); and the production is focused on products for which the prices are elastic based on demand - such as soybean 

(Heien and Pick, 1991; Meyfroidt et al., 2018). 

2.6. Conclusions 

Tropical ecotone zones and agricultural frontiers, such as the UXRB, are important for Neotropical 

biosociodiversity and for agricultural production. However, their inherent complexity poses challenges for LULC 

change analyses and LULC planning. The combination of multiple classification techniques, as well as the 

combination of remote sensing and GIS-based information which assesses temporal variability, have been reported 

as superior approaches compared to traditional techniques. Our proposed classification scheme uses an unsupervised 

classification approach to initially group pixels into few classes. These classes are then reclassified through decision 

trees by the integration of multi-sensor and GIS data into an object and pixel context. The multi-data, -temporal and 

-spatial scale characteristics of the analyses were crucial to maintaining high spatial resolution and the high amount of 

information throughout the hierarchal classification. Furthermore, the approaches applied here can give insights into 

continental and global mapping processes such as the use of metrics based on flexible time series with no need to 

define fixed starting and ending dates. Still, to transfer the methodology to other study areas, thresholds and 

information should be adapted.  

Because of their ability to discriminate between different LULC in complex environments, the LULC 

products created in this research enabled us to differentiate between different processes that drive agricultural 

production increases in the UXRB. Beside our observation that the increase in agricultural production in the UXRB 

being generally correlated with commodity prices and monetary exchange rates, we were also able to map different 

processes affecting production (expansion, intensification, and degradation). For instance, the area in the basin which 

overlaps with the Amazon biome experiences intensification, while the Cerrado biome experiences expansion. This 

result is mainly linked to government and market regulations, which are focused in the Amazon but are lacking in the 

Cerrado biome.  
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3. DEFORESTATION AND DEGRADATION IN AN ECOTONE ZONE BETWEEN 

AMAZON AND CERRADO BIOMES: COMPARING INDICATORS 

ABSTRACT 

Both deforestation and forest degradation are important processes shaping biodiversity and 
ecosystem service patterns in the tropics. Nevertheless, few datasets and automated models have been 
built to improve both deforestation and forest degradation, and each of the existent dataset capture 
different patterns of these processes. In this chapter, we evaluate how well three popular forest loss 
datasets match, and how they are affected by predominant vegetation type. We calculated quantity and 
allocation disagreement, as well as the Jaccard’s index, for a modified version of the Global Forest 
Change (GFC) dataset, as well as for the output of the highly automated software CLASlite, and both 
INPE`s PRODES and DEGRAD programs. We found that the area mapped under deforestation by 
CLASlite is the largest when compared to the modified GFC or PRODES. The largest degraded area 
was captured by DEGRAD. Transforming these datasets from raw data into hotspots did not 
improve the similarity among them. We observed that disagreement was mostly due to misallocation, 
while the degree of agreement was related to vegetation type. Regions dominated by cerrado forest 
and semi-deciduous forests presented a higher level of disagreement while evergreen forests presented 
the lowest. We argue that researchers and decision-makers should pay careful attention when choosing 
forest loss indicators to represent a process, and clearly justify their choice. 

Keywords: Vegetation type; Global forest change; CLASlite; PRODES; DEGRAD 

 

3.1. Introduction 

Vegetation loss monitoring through remotely sensed images has been conducted by research institutes 

and governmental entities since the 1980’s. In Brazil, a well-known example is PRODES (Amazon Deforestation 

Monitoring Project) which estimates deforested areas in the Legal Amazon annually since the 1990’s based on 

Landsat images (KINTISCH, 2007; INPE, 2019). More recently, significant advancements have been made in 

vegetation loss detection, mainly by including degradation as a process of forest loss along with deforestation, 

improving the minimum mapped unit, and extending detection beyond pristine dense forest areas. Two products 

which show the advances in monitoring loss of native vegetation are the Carnegie Landsat Analysis System – Lite 

(CLASlite), which maps canopy degradation and deforestation (Alves et al., 2009; Asner et al., 2009), and the Tree 

Cover Loss mapping under the Global Forest Change model (GLAD, 2018; Hansen et al., 2013), which maps the 

percentage of tree loss. Still, performance comparisons among these different indicators of vegetation loss are not 

common in the literature and this lack of performance analysis in diverse highly landscapes represent a noticeable 

research gap. Diverse landscapes are areas that contain a variety of physiognomies such as ecotone zones. Due to its 

diversity in biophysical characteristics and ecological relevance, ecotone zones can be used to demonstrate 

differences among indicators of deforestation and degradation. 

Choosing a dataset or automated model to map deforestation and degradation is not a simple task, and is 

made more difficult by the complexity of different available methodologies and many nuances of any given research 

project. Michaelsen and colleagues (2017) compared four deforestation datasets modelled with Automated Monte 

Carlo Unmixing (CLASlite), Tasseled Cap (ERDAS), Bhattacharya classification (SPRING), and Spectral Angle 

Mapper (ENVI). The authors found a difference between two groups of techniques, CLASlite/Tasseled Cap and 
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Bhattacharya/Spectral Angle Mapper, which was attributed to the limited ability of CLASlite/Tasseled Cap to 

recognize mixed forests under hydric stress. Hansen and colleagues (2008) compared deforestation mapped by 

PRODES and MODIS Land Products. They concluded that because PRODES does not consider non-pristine areas 

nor vegetation types other than rain forest, MODIS captured 120% more deforestation than the official PRODES 

estimate, even though MODIS spatial resolution is lower than the Landsat image used by PRODES. Global Forest 

Change, CLASlite and classification methodologies such as random forest were compared to map deforestation in 

Indonesia at a local scale, with Global Forest Change and CLASlite presenting higher degrees of accuracy for 

monitoring vegetation cover change (Arjasakusuma et al., 2018). 

Inaccurate vegetation loss mapping can also have impacts on models and decision-making processes 

which use these types of data as an input. For example, most predictive models of land use change in the Amazon 

present higher degrees of uncertainty for predictions in the arc of deforestation, which is also an ecotone zone 

between the amazon forest and the Cerrado, the Brazilian savannas (Rosa et al., 2014). Most of these models use 

deforestation datasets generated by PRODES, which do not cover the entirety of the biome as suggested by Hassen 

(2008). Consequently, a broader dataset could be beneficial for improving vegetation loss modelling. In this study, we 

tested whether three widely used datasets would produce different indications of native vegetation loss - including 

both degradation and clearcutting deforestation. We analyzed a modified version of the Global Forest Change data 

(Hansen et al., 2013), PRODES and DEGRAD datasets, and the output of CLASlite models (Asner et al., 2009) for 

both degradation and clearcutting dynamics by comparing the raw data, the calculated density kernel, and significant 

hotspot occurance. Our hypothesis was that the three indicators would produce different results due their inherent 

differences in concepts and methods. 

3.2. Data 

Two major sources of spatial information on global vegetation loss are the CLASlite software and the 

Global Forest Change yearly model. Both products offer the possibility to easily monitor deforestation and forest 

degradation. Aside from using different methodologies to generate their products, both products map forest change 

based on temporal profiles of spectral metrics processed at the same spatial scale using Landsat images and subpixel 

information. Another source of data on vegetation loss exclusively for Brazilian biomes is the Monitoramento do 

Desmatamento da Floresta Amazônica Brasileira por Satélite (PRODES) and the Mapeamento da Degradação 

Florestal na Amazônia Brasileira (DEGRAD). PRODES produces yearly reports on deforestation, while DEGRAD 

produced yearly reports on vegetation degradation (project discontinued in 2016 and replaced by DETER). Both 

mainly rely on visual interpretation of Landsat, CBERS, and IRS-2 data. We present a full comparative table in 

Appendix B - Supplementary Material 1. 

CLASlite is a highly automated and stand-alone image processing software for converting raw satellite 

imagery into deforestation and forest degradation indicators (Asner et al., 2019, 2009). It is built based on the 

Automated Monte Carlo Unmixing approach, calculating fractional cover of vegetation canopies, dead vegetation, 

and bare surface. According to differences in estimated fractional covers between time steps, the software classifies 

pixels as either deforestation, degradation, or no change. The software can be used to analyze Landsat, Modis, and 

Sentinel images. CLASlite has been used in a variety of studies to map vegetation loss, including peatlands in 

Indonesia (Carlson et al., 2012), bamboo-dominated forests in the Amazon (Carvalho et al., 2013), rain forests in 

Madagascar (Allnutt et al., 2013) and in the Brazilian Amazon (Alves et al., 2009; Hasan et al., 2017), different 

physiognomies in Belize (Chicas et al., 2016), savanna woodlands in Swaziland (Dlamini, 2017), the entire country of 
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Madagascar (Yesuf et al., 2019), and even to map urban green cover (Kanniah, 2017) and island areas in the Funafuti 

Atoll - southwestern Pacific Ocean (Hisabayashi et al., 2018).  

 The Global Forest Change (hereafter referred to as GFC) dataset is an end-product developed by the 

University of Maryland (HANSEN et al., 2013; GLAD, 2018). It is calculated based on per-band metrics, using 

bands 3, 4, 5, and 7 of the LANDSAT satellites, starting in 2000, which are processed by learning algorithms in 

decision trees. GFC is available in platforms such as Google Earth Engine and makes available information on forest 

loss, forest gain, and year of gain or loss. Although the model methodology is not based on a complete unmixed 

approach as in CLASlite, the GFC model also applies subpixel detection. GFC also has been used in a variety of 

studies, including the detection of degraded forests in the state of Mato Grosso, Brazil (Shimabukuro et al., 2017), 

identifying global forest loss drivers (Curtis et al., 2018), estimating primary loss in rain forests in Brazil, Democratic 

Republic of the Congo, and Indonesia (Turubanova et al., 2018), and quantifying small scale forest degradation in 

the(?) Congo (Tyukavina et al., 2018). 

3.3.  Material and methods 

3.3.1. Study area 

We tested both datasets in the Upper Xingu River Basin (UXRB), Mato Grosso State, Brazil (Figure 9), 

which contains around 170,000 km2 and drains into the Amazon River. The study area is located in the ecotone zone 

in-between the Amazon Rain Forest and Brazilian Savannas - the Cerrado, thus, it is formed by a diverse landscape, 

from dense forests to grasslands (Garcia et al. 2019). From the 1980s to the year 2000, timber and pasture for cattle 

raising were the main land use activities. Starting around 2000, grain production became an increasingly prominent 

activity in the region (FAOSTAT, 2016; IBGE, 2019).  

3.3.2. Image processing 

In order to model change through CLASlite from 2010 to 2015, we processed images sensed by Landsat 8 

and Landsat 5, made available by the USGS at the Landsat Higher Level Science Data products 

(http://espa.cr.usgs.gov/). On this platform, the USGS delivers images which are geometrically and radiometrically 

corrected by a homogenous correction chain (Masek et al., 2006). Still, in order to guarantee a pixel-by-pixel overlap 

between years and datasets, we registered all images to a Landsat 8 image sensed in 2015. As recommended by the 

CLASlite team (Asner et al., 2019), we mosaicked the images from the same year into one image to compose the 

whole study area. We matched the images’ histogram when necessary, based on central path overlapping areas. This 

technique changes each of the pixel's values according to the target histogram but does not change the overall 

histogram shape. 
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Figure 9. Map showing the Upper Xingu River Basin and the phytophysiognomies found in the basin.  

 

We used the built-in tools in CLASlite to calibrate and transform raw data into surface reflectance values. 

Then, we implemented the Automated Monte Carlo Unmixing approach (AutoMCU) to model the surface 

reflectance into subpixel indicators of bare substrate, photosynthetic vegetation, and non‐photosynthetic vegetation 

– all expressed as a percentage (0 - 100%) along with uncertainty estimates. The AutoMCU relies on reference 

spectra for pure samples of all indicators, which through linear equations calculates the likely percentage of each 

indicator in a pixel. This approach was first developed for savanna physiognomies, but then was redesigned for 

tropical forests (Alves et al., 2009; Asner, 1998). Lastly, we compared all mapped years to detect forest change. We 

used Equation 1 (deforestation) and 2 (degradation) to classify changes as either deforestation or degradation. 

Additionally, we did not consider any pixels contaminated by shadow or clouds, and removed isolated pixels which 

were classified as changed. We used land use and land cover maps made available by Garcia and colleagues (2019), 

along with visual interpretation of Landsat images, to verify CLASlite models output.  

Deforestation =  (((𝑃𝑉1 –  𝑃𝑉2) ≥  20) OR 

                                   ((𝑆1 ≤  5) 𝐴𝑁𝐷 ((𝑆2 –  𝑆1)  ≥  15))) 𝑂𝑅  

                ((𝑃𝑉2 <  80) 𝐴𝑁𝐷 ((𝑁𝑃𝑉2 –  𝑁𝑃𝑉1)  ≥  20)))    Eq (1) 

Disturbance =   ((((𝑁𝑃𝑉2‐ 𝑁𝑃𝑉1)  ≥  10) 𝐴𝑁𝐷 ((𝑃𝑉1‐ 𝑃𝑉2)  >  10)) OR 

             ((𝑆1 ≤  5) 𝐴𝑁𝐷 ((𝑆2‐ 𝑆1)  >  10) 𝐴𝑁𝐷 (𝑆2 ≤  15)))  Eq (2) 
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where, PV is the photosynthetic vegetation fraction, NPV is the non‐photosynthetic vegetation fraction, S 

is the bare substrate fraction, numbers 1 and 2 represent the first and second time series images, respectively. 

Both PRODES and DEGRAD datasets were obtained at the TerraBrasilis online platform developed by 

INPE (http://terrabrasilis.dpi.inpe.br/). We obtained datasets for the Amazon Rain Forest and Cerrado biome in 

shapefile format, and merged both biomes to build a unique dataset for each process (deforestation | degradation) in 

each year. Then, we merged the yearly datasets in five-year composition (2010-2015). Differently from CLASlite and 

GFC, both PRODES and DEGRAD products are identified by visual interpretation of satellite images (mainly 

Landsat), restricted to analysis of pristine areas, and presenting a minimum mapped area of 6.25 ha.  

We obtained GFC from the Google Earth Engine Platform (earthengine.google.com) from 2010 to 2015. 

The GFC does not differentiate deforestation from degradation. Instead, it retrieves tree loss in a certain year by 

comparing it with a previous time-step up to the base map produced for the year 2000. Forest cover is considered 

vegetation 5 m tall or higher (Hansen et al., 2013). We have also used land use and land cover data made available by 

Garcia and colleagues (2019) to reclassify forest loss as either deforestation or degradation. We used the Level 1 of a 

classification dataset, which separates (semi) native vegetation from managed areas (overall accuracy of ~ 93%). In 

other words, when forest loss overlapped with managed areas, we observed that the result of deforestation was a 

clear-cut area turned into a managed field, and classified these pixels as deforestation. In all other cases these areas 

were classified as degraded.  

Both GFC and CLASlite outputs, as well as the available land use dataset, present a 30 m pixel resolution. 

PRODES/DEGRAD dataset were transformed into raster and resampled to the same resolution as the other 

datasets. Every layer used was tested for overlapping with Landsat 8 images from 2015 obtained from 

USGS/Landsat Higher Level Science Data products (http://espa.cr.usgs.gov/). All layers presented a spatial overlap 

error value (Root Mean Square Error) lower than a half pixel resolution (15 m). 

 

3.3.3. Comparisons  

Often researches do not use raw forest change data to draw conclusions but instead to transform raw data 

into, for example, hotspot maps (Finer et al., 2018). We compared the datasets in three different popular formats: 

raw data, kernel density estimation, and hotspot estimation (Figure 10). Thus, we have a spatially explicit dataset for 

degradation and deforestation, derived from both CLASlite, PRODES/DEGRAD and GFC, and in three different 

formats. We considered raw data the CLASlite model output, PRODES and DEGRAD products, and the product 

of the overlapping operation between GFC dataset with land use information - in total six layers. Thus, each layer 

presents two categories: (1) change, and (2) no change. Kernel density is a surface representing a magnitude-per-unit 

area. We modeled kernel density by searching for either deforested or degraded pixels in a 3 km radius, allocating the 

density (occurrences per km2) in a central 30 m2 cell of this search radius. The result is a continuous surface 

representing the density of change during a time period. 
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Figure 10. Methodological flow chart. Dashed boxes represent products and solid outlined boxes represent a 
process/analysis. 

 

We used a fishnet with 1 km2 cell to model hotspots of deforestation and degradation. We counted the 

number of pixels which were either disturbed or deforested in a radius of 3 km and allocated the value in a 1 km2 

cell. Then, we applied Spatial Getis-Ord Gi* statistic (Getis, 1992; Ord and Getis, 1995) together with Bonferroni 

and False Discovery Rate correction, obtaining a z-score and p-value for each cell in the fishnet. We selected the 

right tail of the z-score distribution as hotspots for deforestation and degradation, representing confidence levels 

equal to or larger than 90% (z-score > 1.65). The Gi* statistic is used to analyze local patterns in spatial data, 

measuring the degree of association between a certain value and its neighboring values, up to a defined distance 

(Getis & Ord, 1992). We reclassified each analyzed layer according either deforestation or degradation as hotspot 

(identified with at least 90% of confidence) and no hotspot.  

It is important to point out that we choose a 3 km search radius to estimate density kernels and hotspots 

based on regional farm profiles and tests with larger radii. We assumed that deforestation and degradation, when 

induced by man, would be the result of a decision made at the property level. Even though property size varies so 

much that one cannot be consistent using a specific radius, we used this as a starting point. According to information 

made available by the Rural Environmental Registry – CAR (Roitman et al., 2018), farms in the region present a 

mean area of 9.2k m2 ± 31km2 and median equal to 2.4 km2. Thus, the search radius representing the variance of 

regional farm size would be ~1.7 km ± 3.14km. We observed peaks of clustering for radius values of 3 and 5 km, 

with clustering decreasing for 10 km radius.  

We calculated the quantity, exchange and shift components of difference, as well as the overall difference, 

between three data layers (GFL, PRODES/DEGRAD and CLASlite) representing either deforestation or 
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degradation. We calculated the difference between layers based on quantity and allocation disagreement as proposed 

by Pontius and Santacruz (2014). Quantity difference is the amount of difference between two maps regarding 

proportions of the categories. Exchange is part of allocation disagreement and represents the transition from 

category i to category j in some pixels and the opposite (from j to i) in an identical number of other pixels. Shift is 

also part of allocation disagreement when categories are greater than 2, and it consists of the remaining difference in 

allocation disagreement which is not due to exchange. Overall difference is the sum of the different difference types.  

We also used the Jaccard’s index to gain insight into the similarity of the raw dataset and hotspot dataset 

(Bonham-Carter, 1994).  Jaccard's index is calculated for binary data as the intersection of two layers for a class of 

interest (in this case, change) divided by the union of the compared layers. Its value ranges from 0 (complete 

dissimilarity) to 1 (complete similarity – when both data being compared present full overlapping). We used 

correlation analysis to compare kernel density layers. Correlation is not a similarity index per se. Still, correlation 

analysis between two kernel density maps allows for a comparison of the spatial association strength (Bonham-

Carter, 1994). 

In addition to calculating disagreement, similarity, and correlation for the whole study area, we also 

calculated these metrics by vegetation physiognomy to compare how vegetation density can contribute to 

(dis)similarities. Vegetation types present in the UXRB are grassland cerrado (open grassland with few or no shrubs), 

cerrado stricto sensu (typical cerrado with tree cover between 20 – 70% and up to 8m high), forest cerrado (woody 

savanna dominated by trees up to 15 m high), semi-deciduous forest (trees up to 25 m high which lose their leaves 

during the dry season), and evergreen forest (rain forest) (IBGE, 2012; Ribeiro and Walter, 2019). 

3.4. Results 

CLASlite modelling approach detected the largest area of deforestation, 103% more than the Global 

Forest Change dataset (GFC) and 76% more than PRODES/INPE (Table 5). When calculating hotspots of 

deforestation, the difference between datasets decrease - CLASlite detected 11% more than GFC and 13% more 

than PRODES/INPE. The difference among datasets when analyzing degradation was even larger, with 

DEGRAD/INPE detecting the largest area. It represented 481% (63% comparing hotspots) more than the area 

detected by CLASlite and 260% (61% comparing hotspots) more than the area detected by GFC. Nevertheless, 

INPE`s dataset presented the lowest correlation with other calculated density kernels for both deforestation and 

degradation (Table 6).  

The Jaccard`s index and the disagreement metrics are complementary metrics to understand differences 

among datasets. Jaccard’s index does not consider areas not undergoing any change and, thus, it is a straight-forward 

measure of overlapping between datasets. The disagreement metrics, on the other hand, break the disagreement into 

subtypes and are more informative. As expected, the disagreement and Jaccard’s index showed a larger disagreement 

for these datasets which detected a much larger area of either deforestation or degradation. Still, contrary to our 

expectation, we observed a smaller level of agreement among the datasets when analyzing hotspots than when 

analyzing the raw datasets. This indicates that hotspot modelling may play a role in extrapolating inconsistencies 

among datasets (Table 5).  We show how datasets overlap for raw data in figure 11 and 12, and for hotspots in 

figures 13 and 14. In our comparison, disagreement was more due to misallocation of the categories than to 

quantities of the categories. A marked exception was observed when comparing DEGRAD/INPE with other 

degradation datasets, which presented a much larger disagreement due to the allocated quantities. 
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Table 5. Quantity disagreement, allocation disagreement (exchange and shift), overall disagreement, Jaccard’s index 
of agreement calculated for GFC, PRODES/DEGRAD (INPE), and CLASlite outputs, and the size of detected 
deforestation and degradation processes mapped in the Upper Xingu River Basin, Brazil. Analysis are presented for 
raw data, showing hotspots mapped with at least 95% of confidence. 

DEFORESTATION Raw data 

 Disagreement Agreement Area (km²) 

 Quantity Exchange Shift Overall Jaccard Data 1 Data 2 

CL - GFW 1.19 1.29 0.00 2.49 0.98 3,986 1,960 

CL - INPE 1.02 1.69 0.00 2.71 0.97 3,986 2,264 

GFW - INPE 0.18 1.54 0.00 1.72 0.99 1,960 2,264 

DEGRADATION Raw data 

 
Disagreement Agreement Area (km²) 

 
Quantity Exchange Shift Overall Jaccard Data 1 Data 2 

CL - GFW 0.67 1.81 0.00 2.48 0.98 1,858 2,995 

CL - INPE 5.27 1.36 0.00 6.63 0.93 1,858 10,798 

GFW - INPE 4.60 1.72 0.00 6.32 0.94 2,995 10,798 

DEFORESTATION Hotspot 

 
Disagreement Agreement Area (km²) 

 
Quantity Exchange Shift Overall Jaccard Data 1 Data 2 

CL - GFW 0.75 5.46 0.00 6.21 0.94 12,798 11,528 

CL - INPE 0.89 6.42 0.00 7.31 0.92 12,798 11,285 

GFW - INPE 0.14 7.22 0.00 7.36 0.92 11,528 11,285 

DEGRADATION Hotspot 

 
Disagreement Agreement Area (km²) 

 
Quantity Exchange Shift Overall Jaccard Data 1 Data 2 

CL - GFW 0.25 6.96 0.00 7.22 0.92 13,776 13,347 

CL - INPE 5.15 5.62 0.00 10.76 0.89 13,776 22,504 

GFW - INPE 5.40 5.38 0.00 10.78 0.89 13,347 22,504 

 

Table 6. Correlation between density kernels derived from GFC, 
PRODESDEGRAD (INPE) and CLASlite outputs for the Upper Xingu River 
Basin, Brazil. 

DEFORESTATION Kernel density 

 
Correlation Significance 

CL - GFW 0.60 p < 0.05 

CL - INPE 0.52 p < 0.05 

GFW - INPE 0.52 p < 0.05 

DEGRADATION Kernel density 

 
Correlation Significance 

CL - GFW 0.57 p < 0.05 

CL - INPE 0.48 p < 0.05 

GFW - INPE 0.49 p < 0.05 
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Figure 11. Map showing intersection of GFC, INPE-PRODES, and CLASlite output for deforestation in the Upper 
Xingu River Basin between 2010 and 2015. Data is shown in raw format. Images from 2010 (Landsat 7 ETM+) and 2015 
(Landsat 8 OPI) are shown in false-color composition RGB 543 and RGB 654, respectively. 
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Figure 12. Map showing intersection of GFC, INPE-PRODES, and CLASlite output for degradation in the Upper 
Xingu River Basin between 2010 and 2015. Data is shown in raw format. Images from 2010 (Landsat 7 ETM+) and 2015 
(Landsat 8 OPI) are show in false-color composition RGB 543 and RGB 654, respectively. 
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Figure 13. Map showing intersection of GFC, INPE-PRODES, and CLASlite output for deforestation in the Upper 
Xingu River Basin between 2010 and 2015. Data is shown as hotspot areas with significance ≥ 0.95. Images from 2010 (Landsat 7 
ETM+) and 2015 (Landsat 8 OPI) are show in false-color composition RGB 543 and RGB 654, respectively. 
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Figure 14. Map showing intersection of GFC, INPE-PRODES, and CLASlite output for degradation in the Upper 
Xingu River Basin between 2010 and 2015. Data is shown as hotspot areas with significance ≥ 0.95. Images from 2010 (Landsat 7 
ETM+) and 2015 (Landsat 8 OPI) are show in false-color composition RGB 543 and RGB 654, respectively. 

 

One important aspect when modelling vegetation change in diverse landscapes is how different models 

interact with different vegetation types or physiognomies. To shed light on this issue, we calculated similarity and 

disagreement metrics for each of the vegetation physiognomies in the Upper Xingu River Basin. Figures 15 and 16 

show overall disagreement index and the detected area (as a proportion of the vegetation type in which it was 

detected) for either deforestation or degradation in raw data format. These figures show that, as expected, grassland 

cerrado and cerrado stricto sensu presented the smallest detected area of both deforestation and degradation. These 

vegetation types have much smaller number of trees when compared to the other types of vegetation. The trees 

observed in these vegetation types are scattered around the landscape or can densely clustered as riparian forest 

formations. When considering more representative vegetation types, forest cerrado and semi-deciduous forest 

present the largest disagreements. The same pattern was observed in the hotspot analysis, with the exception of the 

deforestation comparison, in which larger hotspot areas were created for the INPE dataset. All calculated values and 

the additional plots for hotspot analyses are shown in the supplementary material section (Appendix B). 
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Figure 15. Overall disagreement (left) among indicators and their area as a proportion (right) of the vegetation type in 
which they are observed. The graphs show a comparison of the Global Forest Change (GFC), CLASlite (CL) and PRODES 
(INPE) datasets for deforestation detected between 2010 and 2015, and are calculated based on a raw data format. 
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Figure 16. Overall disagreement (left) among indicators and their area as a proportion (right) of the vegetation type in 
which they are observed. The graphs show a comparison of the Global Forest Change (GFC), CLASlite (CL) and DEGRAD 
(INPE) datasets for degradation detected between 2010 and 2015, and are calculated based on a raw data format. 

 

3.5. Discussion 

Both GFC and CLASlite have been employed to map deforestation and general disturbance 

(deforestation and degradation considered together) in tropical regions such as Indonesia (Arjasakusuma et al., 2018), 

Africa (Dlamini, 2017; Lui and Coomes, 2015), and, in conjunction with PRODES/INPE in the Amazonia (Cabral 

et al., 2018; Hansen et al., 2008; Milodowski et al., 2017). These studies indicate that GFC can overestimate 

(Arjasakusuma et al., 2018) or underestimate (Dlamini, 2017; Milodowski et al., 2017) deforestation detection 

(Tropek et al., 2014). But overall, when compared to other methods, GFC delivers a satisfactory result, mainly when 

considering the cost-benefit of having a ready-to-use dataset (Burivalova et al., 2015). CLASlite outputs have been 

considered more accurate than GFC, mainly when studying areas with high densities of mature forest (Dlamini, 

2017; Lui and Coomes, 2015). Still, both approaches have been regarded as more accurate to detect degradation in 

general than classification techniques even when they are applied on the local/regional scale (Arjasakusuma et al., 

2018; Lui and Coomes, 2015; Milodowski et al., 2017). Still, authors have cited the INPE’s PRODES program as 

very reliable dataset on deforestation, but they have also expressed that PRODES underestimates deforestation due 
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to its minimum mapped area and the conception of deforestation used in the program. PRODES only maps the 

deforested “pristine” areas in the Legal Amazon region. 

Degradation is a result of any action which degrades tree density, resulting in a thinner canopy. It can be 

driven by forces such as selective logging or natural dynamics (Alves et al., 2009). As the contrast between degraded 

areas and their surroundings is not as evident as the contrast in the case of clear-cut deforestation, we expected that 

degradation detection would be more problematic, presenting a larger disagreement between approaches. Although 

we observed a larger disagreement for degradation than for deforestation, this pattern as mostly due to the 

DEGRAD/INPE dataset. When comparing GFC and CLASlite, the disagreement was similar to deforestation. 

These datasets employ a subpixel approach and Wang and colleagues (2005) have argued that subpixel methods 

retrieve better results when dealing with degradation than any other method because this approach can capture more 

than the no green/green tree canopy. Nevertheless, employing multiple approaches on larger scales to investigate 

degradation may be important to capture patterns in different vegetation types (Wang et al., 2005). The efforts are 

necessary since degradation can be as wide-ranging as deforestation in certain regions (Alves et al., 2009).   

The performance by different remotely sensed products on the detection of deforestation and 

degradation according to vegetation types or phytophysiognomies is poorly discussed in the literature. The definition 

of forest is a singular concept when building models to detect deforestation or forest degradation. In the GFC 

dataset, forest is defined as all vegetation taller than 5 m and typically with > 50% canopy closure (Hansen et al., 

2013). The CLASlite dataset does not explicitly use a forest definition, but states that although initially created to 

map savannas, it is now developed to analyze dense forest and that using it for other physiognomies will not 

necessarily be well-suited (Asner et al., 2019). In the PRODES and DEGRAD program, INPE also does not use a 

clear definition of forest, but states that the detection is developed for “pristine” areas.  

Here, we observed that the better match between datasets was observed for evergreen forest when 

comparing the raw data format or hotspots, followed by semi-deciduous and cerrado forest. It is likely that both 

semi-deciduous and cerrado forests present more noise due to a thinner canopy, thus remotely sensed images 

capture both canopy and other components. This was also studied in African savannas, where mixtures of bare soil 

and healthy vegetation tend to create noise in deforestation detection using CLASlite (Dlamini, 2017). Still, as we 

could observe in the maps shown in figures 11-14, we believe that the GFC, INPE and CLASlite datasets may be 

capturing different parts of the disturbance effects. Thus, these different datasets are complementary to each other.  

 

3.6. Conclusion 

We recommend that attention be given to selecting appropriate datasets when analyzing both 

deforestation and degradation of native vegetation, and mainly when they will be used as inputs in any modeling 

approach as it can magnify patterns that are not useful. The analyzed datasets can have great impacts on the amount 

and specific location of deforestation and degradation mapped, including hotspot modeling. Rather than classifying 

different datasets and data formats as more or less accurate, we have shown that different datasets describing the 

same subject do not necessarily overlap. Rather, they may be capturing different spectrums of the same process 

depending on the landscape they are applied to and the concepts behind each dataset building. Thus, users should 

choose their data based on the methods applied in the vegetation loss mapping and their goals when manipulating 

such data, and should also justify their choice accordingly.   
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4. MODEL SELECTION FOR DEFORESTATION, DEGRADATION, AND 

VEGETATION LOSS SUGGESTS DIFFERENT CAUSATIONS AND FUTURE 

SCENARIOS  

ABSTRACT 

Besides deforestation, degradation and non-forest vegetation loss can greatly depreciate 
carbon stocks, biodiversity, and alter biogeochemistry dynamics. Still, these processes combined are 
rarely addressed when modelling and predicting vegetation loss. In this study we fitted logistic 
regressions to model each of these processes using variables related to land use and land cover, land 
tenure, climatic indicators, and landscape characteristics. We observed that biophysical characteristics, 
land use, and land tenure presented great contributions in fitting the models. Besides the importance 
of these variables in all models, deforestation, degradation, and general native vegetation (both forest 
and non-forest) were influenced differently by each of them. We show that when tackling each of 
these three processes, decision makers and researchers should address each of the processes 
differently. Through a policy perspective it means that limiting one of these processes will not 
necessarily limits another. As an example, in the studied Amazon`s agricultural frontier, deforestation 
is likely to happen in the Cerrado biome portion rather than Amazon biome, but degradation and 
general vegetation loss is likely to occur in both biomes. Such pattern is probably a reflection of 
policies which focus on avoiding deforestation in rain forest in the Amazon biome region, but do not 
addresses other processes or biomes.  

Keywords: Deforestation; Disturbance; Vegetation loss; Agriculture frontier 

 

4.1. Introduction 

Causes of deforestation have been successfully addressed by researchers and policy makers (Boucher et 

al., 2013; Geist, H and Lambin, E, 2002; Gibbs et al., 2015; Hansen et al., 2013; Lawrence and Vandecar, 2015; 

Soares-Filho et al., 2006; WRI - World Resources Institute, 2014). However, forest degradation has been rarely 

considered although it can double biodiversity loss from deforestation and plays an important role in the carbon 

balance dynamics (Barlow et al., 2016; Espírito-Santo et al., 2014). Degradation is the result of disturbances defined 

as the loss of trees which does not imply in land cover change, and it can be caused by logging, wildfires, 

blowdowns, and other processes (Asner et al., 2013; Cochrane, 2003; Nelson et al., 1994; Peres et al., 2006). Still, 

mapping degradation is not as straight forward as mapping deforestation, and the lack of quality, ready-to-use data is 

likely related to the lack of models explaining its patterns and predicting future scenarios.   

While deforestation is the clearcutting of forested areas, turning it into another type of land use, native 

vegetation loss is the conversion of any type of native vegetation, e.g. conversion of grasslands into a managed land 

such as croplands or pasturelands. In the neotropics, efforts to understand, model, and predict native vegetation 

loss, including deforestation, have been mainly concentrated in the Amazon Rain Forest (Laurance et al., 2002; Rosa 

et al., 2013; Soares-Filho et al., 2006), with fewer instances looking into the Cerrado (Ferreira et al., 2012). Although 

the Cerrado is a biodiversity hotspot presenting higher rates of deforestation than the Amazon (Strassburg et al., 

2017), studies modelling the expansion of either general native vegetation loss, deforestation or degradation are 

rather few.  
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Nevertheless, the ecotone zone between the Amazon and the Cerrado biomes overlaps with the 

Amazon’s agricultural frontier which, in turn, is the region under the highest land use change pressure in the basin 

(Rosa et al., 2013). This region is composed of a diverse landscape of both Cerrado and Rain Forest physionomies 

(Garcia et al., 2019, 2017) with high biodiversity rates (Kunz et al., 2009; Smith et al., 2001). Agricultural frontiers can 

present a significant and distinct pattern of land use change compared to other parts of the same biome. As the 

frontier develops, it moves from a pioneer stage supported by state policies and infrastructure to a consolidated 

stage, which is dominated by large-scale capitalized agriculture (Meyfroidt et al., 2018). In practice, it means that 

different patterns of land use change can be expected compared to those modelled for a whole biome. For example, 

instead of low productivity pastureland expansion into native vegetation, we may expect to observe cropland 

expansion directly replacing native vegetation (Maeda et al., 2011). Thus, the Amazon’s agricultural frontier presents 

two challenges when modelling change of native vegetation: to cope with both a diverse landscape and with a unique 

land use dynamic.  

In this study, we analyzed which variables are influencing both general native vegetation loss (any 

vegetation type), clearcutting deforestation (tree loss resulting in a different land use), and forest degradation (tree 

loss not resulting in a different land use) in the Amazon’s agricultural frontier. Our goal was to test whether these 

processes are similarly influenced by structural, economic and biophysical factors. We hypothesized that each of the 

three processes will be influenced by different variables. Additionally, we compared our results with models reported 

in the literature for the Amazon and Cerrado to check whether our model identified the same most important 

drivers. The next step of this research is to build future scenarios for general vegetation loss, deforestation and 

degradation in the Upper Xingu River Basin.  

4.2. Material and methods 

4.2.1. Study area 

The Upper Xingu River Basin (hereafter referred to as UXRB), located in Mato Grosso State, in the 

southern portion of the Brazilian Amazon Basin, encompasses one-third of the whole Xingu River Basin, which 

totals ~17 million hectares. As shown in Figure 17, the UXRB is in the transition zone between the Amazon and 

Cerrado biomes. Due to its position in an ecotone, the basin contains a range of natural vegetational physiognomies, 

varying from rain forest to savanic formations. The majority of the region is composed of Floresta Estacional 

Perenifólia – a unique transitional forest with characteristics of both Cerrado and Amazon Biomes (Ivanauskas et al., 

2008; Velasquez, C.; Alves, H. Q.; Bernasconi, 2010). Figure 17 shows the location of the UXRB in the ecotone zone 

and the variety of land covers and land uses that occur throughout the basin. The broad forest cover surrounding the 

river main stream at the centre of the image represents the Xingu Park, one of the largest indigenous land in Brazil. 

A large indigenous population, composed by about 20000 inhabitants (IBGE, 2010) from a variety of etnic groups 

(13) lives in the Upper Xingu basin. Despite the long indigenous occupation of the region, landscape changing began 

in the late 70’s, as the process of non-indigenous occupation of the region expanded. Currently, about 25% of the 

UXRB is located inside protected areas, of which indigenous reservations make up about 24% (Velasquez, C.; Alves, 

H. Q.; Bernasconi, 2010).  
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Figure 17. The Upper Xingu River Basin, located in-between the Amazon and Cerrado Biomes. The basin contains a 
huge variety of land cover and land use types. 

 

The UXRB exhibits a seasonal tropical climate. The annual mean precipitation is 2000 mm and the annual 

mean temperature 24 ºC. Seasons are characterized by a dry winter and rainy summer, with a flood season occurring 

from November to April. The extended and defined rainy season, associated with a flat terrain and being dominated 

by Oxisol soils (Velasquez, C.; Alves, H. Q.; Bernasconi, 2010), make this region ideal for agribusiness expansion. 

The main economic activities in the study area are linked to the wood, beef, and soybean industries. Until the 2000s, 

forests were degraded or cleared due to livestock expansion and logging activities. Following this, soybean 

production emerged as another driver of deforestation (Brando et al., 2013; Garcia et al., 2019; Nepstad et al., 2006). 

Figure 18 show the evolution of agricultural production in the 25 main municipalities in the UXRB.   
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Figure 18. Evolution of agricultural production in the Upper Xingu River Basin. Panel A shows livestock production 
from 1985 to 2015. Panel B shows planted area in cultivation for the main agricultural products. The data is a compilation for 
municipalities with at least 20% of their area located inside the UXRB - 25 municipalities in total. The data was obtained from 
SIDRA/IBGE. 

 

Currently, ~ 9 % of Brazil’s soybean harvest and ~13% of Brazil’s cattle are produced in the UXRB 

(FAOSTAT, 2016; IBGE, 2016). Interestingly, wood extraction is not reported as a primary activity according to the 

Brazilian Institute of Geography and Statistics (IBGE), but is still observed in the basin as discussed in the previous 

chapter of this thesis. By the end of 2015, the UXRB became a frontier which supplied both international and 

regional markets with different commodities. A large portion of the study region is in the Cerrado biome and, thus, is 

not subject to public and market policies toward rain forest protection such as the Brazilian Amazon Moratorium 

and the Zero Deforestation agenda (Garrett et al., 2013). Accordingly, such areas have exhibited deforestation rates 

10-times higher than those in the Amazon Biome, possibly a rebound effect caused by policies developed exclusively 

for the Amazon (Garcia et al., 2019).  

4.2.2. Dataset 

We used the land use and land cover maps created by Garcia and colleagues (2019) to obtain general 

natural vegetation loss data, including forest, shrubland and grasslands loss.  Deforestation and degradation patterns 

were derived from the Global Forest Change (GFC) dataset (Hansen et al., 2013). Trees at least 5 meters tall are 

classified as forest, regardless of density. Tthis dataset is likely to be overestimating these processes in some areas of 

the basin, mainly by overestimating the initial area of forest (Tropek et al., 2014). To address this issue, we filtered 

the dataset using the land use and land cover maps presented (Garcia el a., 2019). We used the first level of 

information, which presents 93% overall accuracy, to conditionally selected pixels undergoing change in the GFC 

dataset if they were classified as (semi) natural vegetation in LCLU-L1 in the first time step. To classify tree cover 

loss as deforestation and degradation, we also conditionally filtered pixels according to the second time step in the 

change analyses. The pixels which were still considered (semi) natural vegetation after undergoing tree loss were 

considered degradation, and the ones which became managed areas were considered deforestation. Figure 19 shows 

the change in natural vegetation cover, and the expansion of deforestation and degradation (disturbance) from 2010 

to 2015. 
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Figure 19. Natural vegetation cover retraction (35,000 km2), deforestation (12,000 km2) and disturbance (11,000 km2) 
expansion from 2000 to 2015. Black color indicates the change in each of these processes from 2000 to 2015. 

 

Our dataset also comprised biophysical, economic, infrastructure, and land tenure indicators (Table 7). 

Biophysical indicators consist of variables representing precipitation, temperature, proximity to rivers, biomes, 

vegetation types and land covers. Economic variables are gross domestic product (GDP) by municipality, the 

agriculture portion of municipalities’ GDP, cattle production, and grain production. Infrastructure is defined as 

assess to roads and cities. Land tenure is defined by property ownership, which is categorized as private, settlement 

(public but used for family farms), or public (either protected areas or indigenous land). The whole dataset was 

transformed into grids on the same projection (South America Albers Equal Area Conic) and spatial scale (300m). 

 

Table 7. Variables tested in land use change models. This table shows the source, description, unit of measurement, the original data 
format and resolution. Variables for which the source is listed as LAAG (Laboratorio de Analises Ambientais e Geoprocessamento) 
were produced by the authors. 

Variables Source Description Unit Data format 

Land cover and land 
use (L1) 

LAAG 
Land use maps for UXRB at Level 1 of 
classification 

Categorical 
Raster 
(30m) 

Land cover and land 
use (L2) 

LAAG 
Land use maps for UXRB at Level 2 of 
classification 

Categorical 
Raster 
(30m) 

Neighborhood 
cropland 

LAAG 
Number of pixels classified as cropland (in L2) 
in a radius of 3km 

Nº of pixels 
Raster 
(30m) 

Neighborhood 
pastureland 

LAAG 
Number of pixels classified as pastureland (in 
L2) in a radius of 3km 

Nº of pixels 
Raster 
(30m) 

Variability of the 
neighborhood 

LAAG 
Number of unique LULC classes (in L2) 
detected in a radius of 3km 

Nº of classes 
Raster 
(30m) 

Distance from 
pasturelands 

LAAG 
Distance from any pixels classified as 
pastureland (L2) 

Meters (m) 
Raster 
(30m) 

Distance from 
croplands 

LAAG 
Distance from any pixels classified as cropland 
(L2) 

Meters (m) 
Raster 
(30m) 

Distance from 
deforestation 

LAAG 
Distance from any pixels classified as 
deforested in the previous period 

Meters (m) 
Raster 
(30m) 
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Distance from 
disturbance 

LAAG 
Distance from any pixels classified as disturbed 
in the previous period 

Meters (m) 
Raster 
(30m) 

Precipitation 
Seasonality 

WorldClim 

Variation in monthly precipitation totals over 
the course of the year. This index is the ratio of 
the standard deviation of the monthly total 
precipitation to the mean monthly total 
precipitation 

Percentage 
(%) 

Raster (10") 

Precipitation of driest 
quarter 

WorldClim 
Total precipitation that prevails during the 
driestest month 

Millimeters 
(mm) 

Raster (10") 

Precipitation of 
wettest quarter 

WorldClim 
Total precipitation that prevails during the 
wettest month 

Millimeters 
(mm) 

Raster (10") 

Annual precipitation ANA 
Interpolation of precipitation registered in 
station over 30 years 

Millimeters 
(mm) 

Raster 
(500m) 

Slope Aster GDEM Slope derived from Aster GDEM 
Percentage 
(%) 

Raster 
(30m) 

Soil suitability 
EMBRAPA 
Solos 

Soil classified from 1 to 4 according to their 
suitability to agriculture in mechanized scenario 

Discrete Polygon 

GDP IBGE 
Contrast of gross primary production by 
municipality between 2010 and 2015 

R$ Polygon 

GDPag IBGE 
Contrast of gross primary production in the 
agriculture sector by municipality between 2010 
and 2015 

R$ Polygon 

Cattle IBGE 
Contrast of cattle herd by municipality between 
2010 and 2015 

Heads Polygon 

Grains (corn + 
soybean) 

IBGE 
Contrast of main grain production area (corn + 
soy) by municipality between 2010 and 2015 

Planted 
hectares 

Polygon 

Farm size 
CAR/ 
IMAFLORA 

Private owned proprieties size Hectares Polygon 

Land tenure 
CAR/ 
IMAFLORA 

Either public, private or settlements Categorical Polygon 

Protected areas MMA 
Protected areas (SNUC). All areas are state 
units under maximum protection 

Categorical Polygon 

Indigenous land MMA Indigenous land Categorical Polygon 

Mines MMA Plots with mining (licensed or not) Categorical Polygon 

Vegetation types IBGE 
Vegetation physiognomies ordered by tree 
density 

Discrete Polygon 

Biomes MMA Biomes Categorical Polygon 

Rivers ANA 
Distance from rivers derived from shapefiles 
from ANA 

Meters 
Raster 
(30m) 

Main roads SEPLAN-MT 
Distance from state and federal roads derived 
from shapefile from SEPLAN 

Meters 
Raster 
(30m) 

Roads 
SEPLAN-MT 
and CAR 

Distance from all roads derived from shapefile 
from SEPLAN and CAR 

Meters 
Raster 
(30m) 

Slaughterhouses Vale et al., 2019 Distance from all slaughterhouses Meters 
Raster 
(30m) 

Silos CONAB Distance from all grain silos Meters 
Raster 
(30m) 

Cities LAAG Distance from cities Meters 
Raster 
(30m) 

WorldClim (Global Climate Data: www.worldclim.org/bioclim); ANA (National Water Agency of Brazil: 
metadados.ana.gov.br/geonetwork), Aster GDEM (asterweb.jpl.nasa.gov/gdem.asp), EMBRAPA Solos 
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(www.embrapa.br/solos/sibcs/bases-de-dados-de-solos), IBGE (Brazilian Institute of Geography and Statistics: 
sidra.ibge.gov.br/home/ipca15/brasil), CAR/IMAFLORA (Brazil's National Registry of Rural Properties validated by 
the Instituto de Manejo e Certificação Florestal e Agrícola: atlasagropecuario.imaflora.org/);  MMA (The Ministry of 
Environment: www.mma.gov.br/governanca-ambiental/geoprocessamento), SEPLAN-MT (Secretary of Planing and 
Coordination of the Mato Grosso state: http://www.seplan.mt.gov.br/); CONAB (The Brazilian National Company of 
Supply: https://www.conab.gov.br/) 

4.2.3. Model fitting and selection   

In order to prevent multicollinearity in our models, we performed correlation tests (Pearson) among all 

pairs of continuous variables and association tests (Tau-Goodman and Kruskal) among all pairs of categorical 

variables. Correlation among observational variables is common, but it indicates that two or more variables are not 

independent. It causes false estimation of the relationship between each independent variable with the dependent 

variable. For categorical variables, we applied chi-squared tests to verify if the distribution of categories was 

independent. The calculation was performed in R (https://www.r-project.org/), using the package ‘raster’ (Hijmans 

et al., 2011). Once correlation was found between a pair of variables, we chose which variable would be included in 

or eliminated from a model based on its theoretical meaning and performance when fitting it into the models.  

We built a different model for the reduction of natural land cover (L1 maps), expansion of deforestation 

(GFC), and expansion of degradation (GFC) between 2010 and 2015. For each model selection, we fitted both 

individual variable models and multivariable models. We used the Stochastic Modelling of Land Cover Change 

(StocModLCC - ROSA et al., 2013) to fit our models and to generate simulations of future patterns. StocModLCC is 

a probabilistic modelling approach, focused on local-scale and contagious processes. The probability of a pixel to 

become disturbed or deforested was based in the logistic regression: 

𝑃𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑥,𝑡 =  
1

(1 + 𝑒𝑥𝑝−𝑘𝑥,𝑡)
 

where, kx,t represents how variables affect location x at time t, varying from minus infinity to plus infinity. The 

probability of a pixel to undergo either degradation or deforestation (Pprocess) in location x at time t varies from 0 

to 1. 

Whenever fitting multiple variables, we refine each model fitting through forward stepwise regression. 

Through stepwise we chose the model with the lower Akaike Information Criterion (AIC), which represents the 

smaller number of parameters given a likelihood of the fitted model. Model calibration was evaluated trough pseudo-

R2, which compare the likelihood of the model with a null-model (Hosmer and Lemeshow, 2000). We applied cross-

validation on 50 % of the samples to allow for selecting models that have higher predictive power. We tested the 

performance based on the Area Under the Curve of Receiver Operating Characteristics curve (AUC – ROC curve). 

ROC is a probability curve between false and true positive rates of classification. An AUC equal to 0.5 (half of its 

potential) means the model has no separability power, while an AUC equal to 1 means the model has full separability 

power. After fitting testing models to represent each process, the posterior mean and credible interval of each 

parameter were calculated based on Markov Chain Monte Carlo sampling technique. It allows for the quantification 

of uncertainty around predictions. The best model was the one with the higher log-likelihood and fewer parameters, 

but also with all variables showing significant impact on the process being predicted. All details regarding the 

processing scheme of the StocModLCC are available at Rosa and colleagues (2013, 2014). 
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4.3. Results 

We found notable correlations between few variables such as climate, distance from main roads and 

pasturelands, main roads and all roads, silos and croplands. We present all variables plotted in maps and the 

correlation among all pairs of variables in the supplementary material (Appendix C). The final models for natural 

cover retraction, deforestation expansion, and degradation expansion presented good calibration and discrimination. 

For natural cover retraction, deforestation expansion, and degradation expansion the AUC values were 0.82, 0.84, 

and 0.85, respectively (Appendix C). These values indicate that each model had a likelihood value significantly larger 

than a null-model, and that they can discriminate well between true and false positives. 

 From all the tested variables, one group significantly contributed to adequately model all three 

processes (natural cover retraction, deforestation expansion, and degradation expansion). But they did not necessarily 

have the same influence (Table 8). Among the categorical variables, land cover (forest, savanic formations, managed 

land), land tenure (private, public-settlements, public-protected areas, public-indigenous land), and biome (Amazon, 

and Cerrado) contributed to all three model processes. Native vegetation loss was 10-fold more likely in savanic 

formations than forest, and deforestation almost 2-fold. Contrarily, degradation was 4-fold larger in forest than 

savanic formations. Protected areas were the most protective type of land. It was 5-fold more protective than private 

lands for vegetation loss, 293607-fold for deforestation, and 10-fold for degradation. Indigenous land showed to be 

protective against deforestation only. All processes are more likely to occur in settlements from 1.5 to 2-fold. We 

observed a diverse response for biome. Native vegetation loss was more likely in the Amazon, but deforestation was 

more likely in Cerrado, and non-significant difference was observed between biomes for degradation. This can be a 

reflection of public and market policies which focus on preventing deforestation in the Amazon only and the 

specifically monitoring of rain forest. 

 

Table 8. Mean coefficient estimation and the 95% confidence intervals for each variable in multiple predictor variables models. 
The estimates represent the expected change in the odds of P(process) = 1 for a unit increase in the corresponding predictor 
variable holding the other predictor variables constant. For categorical variables, the coefficient indicates the odds of a pixel 
classified as such undergo the analyzed process when compared to a pixel classified as a reference. Odds values lower than 1 indicate 
a protective character as the probabilities tend towards zero. 

Variables 

Natural cover 
retraction 

Deforestation 
expansion 

Disturbance 
expansion 

Odds ratio (95% CI) 

(Intercept) 0.003 (0.002 0.005) 0.002 (0.001 0.004) 0.026 (0.012 0.059) 

Neighborhood 1.003 (1.003 1.003) 0.993 (0.992 0.994) 1.001 (1.000 1.002) 

Biome Amazon 1.000 (1.000 1.000) 1.000 (1.000 1.000) ns (ns ns) 

Biome Cerrado 0.753 (0.732 0.774) 1.401 (1.309 1.498) ns (ns ns) 

Land tenure - IL 1.290 (1.247 1.334) 0.266 (0.224 0.314) 1.017 (0.947 1.091) 

Land tenure - Private 1.000 (1.000 1.000) 1.000 (1.000 1.000) 1.000 (1.000 1.000) 

Land tenure - Settlement 1.433 (1.386 1.482) 1.879 (1.757 2.009) 1.520 (1.406 1.642) 

Land tenure - UC 0.195 (0.138 0.267) 0.000 (0.000 0.000) 0.097 (0.042 0.188) 

LC - Forest 0.582 (0.567 0.597) 3.881 (3.651 4.128) 7.523 (6.968 8.126) 

LC - Managed 1.000 (1.000 1.000) 1.000 (1.000 1.000) 1.000 (1.000 1.000) 

LC - Savanic formations 6.025 (5.882 6.167) 6.392 (5.949 6.866) 1.855 (1.660 2.072) 

Amount of cropland in 3km 1.000 (1.000 1.000) 1.000 (1.000 1.000) 1.000 (1.000 1.000) 

Amount of pastureland in 3km ns (ns ns) ns (ns ns) 1.000 (1.000 1.000) 

Distance from cropland 1.000 (1.000 1.000) ns (ns ns) ns (ns ns) 
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Distance from disturbance 1.000 (1.000 1.000) 0.999 (0.999 0.999) 0.999 (0.999 0.999) 

Distance from pastureland 1.000 (1.000 1.000) 1.000 (0.999 1.000) 1.000 (1.000 1.000) 

Distance from rivers 1.000 (1.000 1.000) 1.001 (1.000 1.001) 1.000 (1.000 1.000) 

Distance from roads 1.000 (1.000 1.000) 1.000 (1.000 1.000) 1.000 (1.000 1.000) 

Distance from settlements 1.000 (1.000 1.000) 1.000 (1.000 1.000) 1.000 (1.000 1.000) 

Distance from slaughterhouse 1.000 (1.000 1.000) 1.000 (1.000 1.000) ns (ns ns) 

Distance main roads 1.000 (1.000 1.000) ns (ns ns) ns (ns ns) 

Distance silos ns (ns ns) ns (ns ns) 1.000 (1.000 1.000) 

Precipitation mean 1.001 (1.001 1.001) 1.001 (1.001 1.001) 0.998 (0.998 0.998) 

Precipitation seasonality 1.016 (1.012 1.020) ns (ns ns) 1.043 (1.035 1.051) 

Property size 1.000 (1.000 1.000) 1.000 (1.000 1.000) 1.000 (1.000 1.000) 

Slope 0.978 (0.976 0.981) 0.932 (0.924 0.941) 0.982 (0.975 0.988) 

Soil suitability 1.102 (1.090 1.114) 0.616 (0.587 0.645) 0.750 (0.728 0.772) 

Variability in LU in 3km 1.030 (1.023 1.038) ns (ns ns) 0.953 (0.938 0.968) 

Vegetation type 0.972 (0.963 0.980) 1.198 (1.163 1.234) 1.123 (1.101 1.145) 

Δ Cattle  ns (ns ns) 1.000 (1.000 1.000) ns (ns ns) 

Δ GDPag 1.000 (1.000 1.000) ns (ns ns) 1.000 (1.000 1.000) 

Δ Grain 1.000 (1.000 1.000) ns (ns ns) ns (ns ns) 

 

While deforestation and degradation were both more likely to take place in more suitable soil for 

agriculture, native vegetation loss was more likely in less suitable ones. Following this pattern, a larger variability in 

local (3 km radius) land cover and land use promoted native vegetation loss, while prevented degradation. 

Additionally, all three process were more likely to be observed in lands with low slopes, but larger precipitation 

seasonality. The odds related to distance variables seems not impactful enough to influence the model. Still, it is 

important to note that the reported odds are related to the scale of each variable, and in the case of distance it is one 

meter. In a landscape the odds became impactful. All processes were more likely near to pasturelands and disturbed 

areas, but away from rivers. Distance from pasturelands and distance from deforested pixels were 80 % correlated. 

Distance from roads slightly contributed to all models. Native vegetation loss and deforestation were more 

promoted near roads, but not degradation. Interestingly, process in the neighborhood were positively related to 

natural vegetation loss and degradation, but not with deforestation. 

The combined probability for all processes is shown in Figure 20, ranging from 0 (no probable future 

loss) to 1 (high probability of loss). A large portion of the basin presents a medium probability of vegetation loss. 

Indigenous land presents both areas of very low and very high probability. High probabilities are linked to general 

vegetation loss due to natural dynamics in wetlands in the Xingu National Park as well as fires in cerrado vegetation 

inside indigenous land on the southern and eastern portion of the basin. Nevertheless, spots with high probabilities 

are observed in cerrado vegetation in the Amazon biome (northern portion of the basin), and in a middle latitude 

between 12ºS and 13ºS which are hotspot areas of land use change into more intensified agriculture productions. 
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Figure 20. Spatial distribution of the probability of all three processes combined indicating regions with larger 
probability (brown color) of vegetation loss in the Upper Xingu River Basin in the future.  

4.4. Discussion 

We expected to select different variables when fitting each of the models for general natural vegetation 

loss, deforestation, and degradation. We observed that all three models present similarities and distinctions among 

them, and it is not possible to say that one process is more similar to another. Therefore, such pattern is a reflection 

of the different implicitly definitions in each process.  

 The variables we tested in this research were also used to model deforestation by other authors and in the 

same two biomes. Land cover, slope, soil fertility, distance from river and roads, precipitation, and human 

attractiveness (population size of municipalities ranked by their respective Human Development Index) were shown 

to be related to deforestation in the Cerrado biome (Ferreira et al., 2012). Unfortunately, variable importance rank is 

not reported. Land cover, distance from roads, rivers, and settlements, as well as topography, protected areas, soil 

fertility, dry season length, and agricultural development (increase or decrease in planted area, cattle head or GDP) 

were all used to model deforestation in the Amazon basin (Rosa et al., 2013). The authors showed that roads, 

neighborhood, and protected areas were the most important variables to predict deforestation. Protected areas also 

showed high importance on our models, but roads or neighborhood do not show great importance. Proximity to 

roads is observed to be a very strong factor in promoting deforestation in the Amazon basin (Geist, H and Lambin, 

E, 2002). As the Upper Xingu River Basin is a consolidated agricultural frontier, accessing roads is no longer an 
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impactful issue when expanding agricultural production (Perz et al., 2009). Thus, access to roads became a weaker 

factor when modelling deforestation or degradation. Although the impact of road quality may contrast with that of 

road availability, we have not tested this due to the lack of data on road quality. Additionally, factor the colonization 

process is different in this region and roads network was not developed following the usual pattern found in 

Amazonia. The fishbone pattern resulting from road opening by governmental initiatives is less common and 

medium to large farms are predominant. Therefore, deforestation is less concentrated along roads. Our study shows 

the same protective effect of publicly owned areas (protected areas and indigenous lands) as has also been show in 

other works (Rosa et al., 2013; Soares-Filho et al., 2006). In our assessment, protected areas were shown to be more 

effective than indigenous land. 

In a review of land use modelling for tropical basins, Rosa and others (2014) demonstrated that distance 

from roads, land covers, soil factors, and urban locations were the most commonly used variables in modelling 

deforestation in South America, Africa and Asia. Land cover and soil factors were important variables in our models, 

but not distance from settlements or cities. Datasets on land use change and deforestation are made available for 

both the Cerrado and Amazon biomes (MMA-EMBRAPA-INPE, 2015; ACHARD; HANSEN, 2018; INPE, 2019). 

Still, more studies are concentrated in the Amazon due to its elevated public profile and high quality annual datasets 

describing vegetation loss (MISSING-VALUE, 2018; I. M. D. D. Rosa et al., 2014). Similarly, deforestation is more 

commonly addressed than degradation or general native vegetation loss, due to its detection being more straight-

forward than that of degradation. As we expected, degradation was influenced by different factors than deforestation 

or general native vegetation loss. Degradation represents the loss of trees, but do not imply in a change in land cover. 

This process can be caused by factors such as logging, fires, blowdown, and others (Asner et al., 2013; Cochrane, 

2003; Nelson et al., 1994; Peres et al., 2006). Land use, land tenure, precipitation seasonality, slope, and soil suitability 

for agriculture showed to be strong variables when modelling degradation. Lower slopes, larger precipitation 

seasonality, soil suitability for agriculture, land cover and land tenure were the most important characteristics of 

degradation expansion. 

4.5. Conclusion 

We have shown that different conditions influence native vegetation loss, deforestation, and degradation 

patterns. Only four variables significantly influenced the three processes: rural settlement and savanic formations 

increased the probability of the three processes to occur, while protected areas and slope decreased the probability. 

Other variables influenced the probability of these processes differently. For example, the presence of indigenous 

land and low suitability of the land for agriculture increased the probability only of general vegetation loss. 

Vegetation density increased the probability of deforestation and degradation. Thus, we show that to cope with 

losses for either carbon or biodiversity though these different processes, stake holders should look into others 

factors than those influencing only deforestation. Additionally, we have shown that loss in agricultural frontiers may 

not be positively influenced by the same factors that play an important role in relatively more preserved regions such 

as proximity to roads. Still, conservation units and indigenous land present a protective pattern as in more conserved 

regions.   
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5. GENERAL CONCLUSION 

The most rapidly changing landscape in the Brazilian Legal Amazon is located in the ecotone zone 

between the Cerrado and the Amazon Rain Forest. This tropical ecotone zone and agricultural frontier is highly 

valued for its biosociodiversity, natural resources (e.g.: water and timber), and agricultural production. In this study, 

we intended to investigate the temporal and spatial dynamics of land use change in one of the Amazon`s Agricultural 

Frontier by focusing on the Upper Xingu River Basin, and by answering the following questions: (i) How has the 

landscape changed over the last 30 years?; (ii) What is the temporal and spatial distribution of these changes in the 

landscape, especially regarding the quantitative and qualitative loss of native forests?; (iii) What are the most 

important factors when predicting future scenarios for the Upper Xingu River Basin and what are these future 

scenarios? 

The Upper Xingu River Basin landscape complexities, due to its natural heterogeneity and highly dynamic 

land use change, impose challenges for land cover and land use mapping. Different datasets showed dissimilar 

profiles for the region regarding both land use and cover as well as change dynamics such as deforestation. Using a 

combination of multiple remote sensing products and techniques, as well as GIS-based information proved to be 

essential when modelling land cover and land use in the studied region. In particular, utilizing flexible time series and 

spatial units of analysis were found to be important characteristics in our mapping approach. The LULC maps 

created in this thesis allowed us to differentiate among processes that drive agriculture expansion in the region. This 

expansion occurs in different ways - currently areas of the basin that overlaps the Amazon biome experience 

prominent intensification, while the Cerrado biome experiences comparatively greater expansion. In general, 

expansion is correlated with prices and currency exchange rates. Expansion/intensification preferences are linked to 

government and market regulations. These regulations are focused on the Amazon, generating intensification in the 

region, but these same regulations are scarce in the Cerrado biome. The increase in agriculture production in the 

Upper Xingu River Basin was correlated with commodity prices and monetary exchange rates. However, this 

increase was not spatially homogeneous. The area in the basin which overlaps with the Amazon biome experiences 

intensification, while the Cerrado biome experiences expansion. This pattern reflects market demands and public 

policies, which focus on preventing loss of rain forest in the Amazon Biome.  

Similarly, the influence of such policies was observed when modelling native vegetation loss. 

Deforestation was more likely to be observed in the Cerrado biome, while loss of native vegetation (including other 

than forest) and forest degradation was not. Only few variables significantly influenced deforestation, forest 

degradation, and vegetation loss in the same way. Other variables had different influences according to the process, 

indicating that not the three processes can be tackled in the same way. Although disturbance also causes tremendous 

impacts to biodiversity, carbon stocks, and other ecosystem functions, discussion about the role of policies in 

preventing disturbance is not substantial.  

Nevertheless, we observed that transition areas such as the UXRB, with diverse phytophysiognomies, 

present particular challenges for remote sensing. Still, different data sources offer different perspectives on loss of 

natural areas and their processes. These differences are linked to each workgroup's framework and their objectives, 

but it is important to note that the divergences are not evenly distributed in the landscape. It is recommended that 

users of this data be cautious in choosing which data to use, taking into account the framework under which the data 

to be used was generated, the process of interest, and the vegetation types to be studied. 
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Based on our results and the discussion in the literature, we conclude that general models and framework 

interpretations of land use change should not be applied in areas as diverse as the Upper Xingu River Basin. 

Additionally, policies towards specific regions and dynamics such as deforestation in the Amazon Rain Forest will 

impact both positively and negatively other dynamics. As we have shown, these policies can promote agriculture 

intensification in target areas, but a leakage in non-target areas and processes is also likely to be observed. 
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APPENDICES 

Appendix A 

Supplementary material to support Chapter 2: Assessing land use/cover dynamics and exploring 

drivers in the Amazon’s Arc of Deforestation through a hierarchical, multi-scale and multi-

temporal classification approach 

 

Supplementary material 1. Here we present the list of Landsat images used in the classification process and the 

geometric distortion found on Landsat images.  

 

SM 1 - Table 1. List of the 108 Landsat images used to compose the mosaics 
and to map LCLU. First column indicates the image position (paths and rows).  
First line and second lines indicate satellite and image acquisition year, 
respectively. Specified dates represents the dates each image (path/row) was 
acquired for a given year. All images we obtained at the dry season in order to 
avoid clouds. 

 
Landsat 5 TM 

Path/row 1985 1990 1995 2005 2010 

224/67 3/Jun 1/Jun 2/Aug 12/Jul 26/Jul 

224/68 3/Jun 1/Jun 2/Aug 12/Jul 26/Jul 

224/69 3/Jun 1/Jun 1/Jul 12/Jul 26/Jul 

224/70 3/Jun 1/Jun 1/Jul 12/Jul 26/Jul 

225/67 10/Jun 8/Jun 8/Jul 3/Jul 15/Jun 

225/68 10/Jun 8/Jun 8/Jul 15/Jun 15/Jun 

225/69 10/Jun 8/Jun 6/Jun 3/Jul 15/Jun 

225/70 10/Jun 8/Jun 6/Jun 3/Jul 15/Jun 

226/67 17/Jun 15/Jun 13/Jun 10/Jul 24/Jul 

226/68 17/Jun 2/Aug 13/Jun 10/Jul 24/Jul 

226/69 20/Ago 2/Aug 13/Jun 10/Jul 24/Jul 

226/70 17/Jun 2/Aug 13/Jun 10/Jul 24/Jul 

 Landsat 7 ETM+ Landsat 8 OLI 

Path/row 2000 2005* 2010* 2014 2015 

224/67 7/Aug 6/Sep 3/Aug 5/Jul 9/Aug 

224/68 7/Aug 20/Jul 3/Aug 5/Jul 9/Aug 

224/69 7/Aug 20/Jul 3/Aug 5/Jul 9/Aug 

224/70 7/Aug 20/Jul 3/Aug 5/Jul 9/Aug 

225/67 29/Jul 27/Jul 7/Jun 12/Jul 31/Jul 

225/68 29/Jul 27/Jul 7/Jun 12/Jul 31/Jul 

225/69 29/Jul 27/Jul 7/Jun 12/Jul 31/Jul 

225/70 29/Jul 27/Jul 7/Jun 12/Jul 31/Jul 

226/67 18/Jun 18/Jul 1/Aug 3/Jul 7/Aug 

226/68 5/Aug 18/Jul 1/Aug 3/Jul 7/Aug 

226/69 5/Aug 18/Jul 1/Aug 3/Jul 7/Aug 

226/70 5/Aug 18/Jul 1/Aug 3/Jul 7/Aug 

*SLC-off Products. 
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SM 1 - Figure 1. Landsat image acquired with USGS/Landsat Higher Level Science Data products 
(http://espa.cr.usgs.gov/) from year 1985.  Left panel shows path 225 and 224, which are spatially unallied. Right 
panel shows both images after corrections. 
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Supplementary material 2. Land use covers in the Upper Xingu River Basin. Photos are taken at the signed point 

(red triangles) in each image by pointing the camera to the circles near triangles. First column shows Landsat 8 (OLI 

sensor) images in true colour composition, second column shows a false colour composition using near infrared to 

enhance vegetation. Both photos and satellite images were acquired in June 2015. 
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Supplementary material 3. Main agriculture crops in Mato Grosso and their temporal cultivation stages according 

to agriculture calendar and temporal profiles produced by Arvor et al. (2012), Gusso et al. (2014), and Zhu et al. 

(2016). Note that the main crop is primarily soybean. 
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Supplementary material 4. This section presents in further detail methods and results for accuracy assessment.  

 

We assessed the accuracy of the modelled land cover maps comparing them with reference data collected 

in field work and obtained from very high-resolution Rapid Eye images collected in 2012 and 2013. Reference data 

collected from Rapid Eye images were only used for classes ‘water’, ‘wetlands’ and ‘urban’ because these classes are 

assumed to be more stable through time. Thus, land use changes would not disrupt comparisons between modelled 

and reference. To offer more insights into the quality of our land cover and land use maps, we also built confusion 

matrices by comparing our maps with (1) reference data collected to build land cover maps by IPAM for the 

municipality of Querência, (2) land cover maps produced by ISA for the municipalities of Canarana, Querência, 

Santa Cruz do Xingu, e São José do Xingu, (3) comparing cropland area reported in municipal census. Such 

comparisons are considered secondary as the legend developed for these products had to be adapted to match the 

legend of the maps we produced, and therefore, adding extra error.  

To build the reference dataset based on field work, we performed a systematic and non-equidistributed 

sampling of information in the basin in 2016. As shown in Figure 1, the largest biophysical variation in the area is 

consistent with a latitudinal pattern; then, we designed our fieldwork in order to sample the largest amount of points 

following main roads from north to south, in the east and west portion of the basin. We drove 3500 km inside the 

UXRB and collected 1460 points of reference. The routine consisted in follow main roads and collect data every ~2 

km for every land cover immediately around the stop point. We registered all information by date, geographic 

location (GPS Garmin Montana 600, WAAS-enabled, interpolating the minimum of 5 satellites), land cover and land 

use class, brief description, and photographic record.  

An ideal reference data should be randomized and equidistributed (stratified or not), which means that 

every pixel has the same (or almost the same) chance of integrate the sample population (Olofsson et al., 2013; 

Stehman, 2001). Still, it is recognized that depending on the study area, such sample design is not feasible to 

implement (Congalton, 2008). According to Stehman (2001), the main process of making sampling design practical is 

to allocate efforts where collecting data is more likely. Although different strategies can be applied, the increase 

complexity a study area imposes difficulties in the calculation of the probability of inclusion of pixel in the sample. 

The UXRB, located in the north portion of the state of Mato Grosso and in the border with Pará, is a difficult area 

to be assessed in order to collect information for random located or equidistributed points. The access to the region 

is limited due to (i) violent conflicts related to land tenure, logging, poaching, mining, illegal drug trade, among other 

issues connected or not with environmental regulation, (ii) the absence of the State as a regulatory institution, 

resulting in violence and impunity in daily bases, (iii) private landowners rarely allow access to their lands for 

different reasons, (iv) and the authors had no federal authorization to go inside conservation units and/or indigenous 

reserves. With the access restriction in the UXRB, each unit (pixel) in the area does not have an equal chance of 

being included in the sample and, therefore, we did not calculate statistical measures within the confusion matrix and 

area as demonstrated by Olofsson and colleagues (2014). Systematic and non-equidistributed sampling presents no 

randomness and, thus, it is statistically weak. Still, theoretically, the overall number of samples can mitigates the lack 

of randomness by introducing more variability, even though such mitigation could deprecate within each classes 

(Congalton, 2008; Stehman, 2001).  
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SM 4 - Figure 1.  Distribution of (A) protected areas (both indigenous land and conservation units - MMA), 
Amazon and Cerrado biomes (IBGE) and reference sample points (SR) collected in field work and collected in very 
high-resolution image (Rapid Eye); (B) rivers (ANA), public roads (DNIT) and slope (INPE); (C) soil types (IBGE); 
(D) Annual precipitation (ANA). 
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Here, we used the method presented by Pontius and Millones (2011), which assumes that sampling 

intensity may differ between classes. As recommended by the authors, we calculated disagreement and decomposed 

such metric in quantity disagreement and allocation disagreement – overall and per class. Refer to Pontius and 

Millones (2011) to calculation of estimated population matrix and metrics. From Table 1 to 10, we show all results.  

SM 4 - Table 1. Accuracy metrics for the Upper Xingu River Basin, Brazil. Metrics calculated from 
estimated population matrix. Reference was composed of field work points collected in 2016, and 
Rapid Eye images collected from 2012/13. The matrix represents the accuracy results for Level 1 of 
classification. 

      Disagreement 

 
Agreement Disagreement Quantity Allocation 

Overall  0.93 0.07 0.04 0.02 

      Disagreement 

 
Omission Commission Quantity Allocation 

Natural and Semi-Natural Vegetation 0.03 0.01 0.02 0.02 

Cultivated and Managed Terrestrial Areas 0.01 0.06 0.04 0.02 

Surface water 0.03 0 0.03 0 

 

SM 4 - Table 2. Accuracy metrics for the Upper Xingu River Basin, Brazil. Metrics calculated from 
estimated population matrix. Reference was composed of field work points collected in 2016, and 
Rapid Eye images collected from 2012/13. The matrix represents the accuracy results for Level 2 of 
classification. 

      Disagreement 

 
Agreement Disagreement Quantity Allocation 

Overall  0.87 0.13 0.09 0.05 

      Disagreement 

 
Omission Commission Quantity Allocation 

Forest 0 0.06 0.06 0.01 

Savanic formations 0.03 0.01 0.02 0.02 

Wetlands 0.03 0 0.03 0 

Secondary complex 0 0 0 0 

Agriculture 0.03 0.01 0.02 0.03 

Pasturelands 0.02 0.05 0.03 0.04 

Bare land 0.01 0 0.01 0 

Urban 0 0 0 0 

Water 0.01 0 0.01 0 
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SM 4 - Table 3. Accuracy metrics for the Upper Xingu River Basin, Brazil. Metrics calculated from 
estimated population matrix. Reference was composed of field work points collected in 2016, and 
Rapid Eye images collected from 2012/13. The matrix represents the accuracy results for Level 3 of 
classification. 

      Disagreement 

 
Agreement Disagreement Quantity Allocation 

Overall  0.84 0.16 0.10 0.06 

      Disagreement 

 
Omission Commission Quantity Allocation 

Forest 0 0.07 0.07 0 

Forest cerrado 0.03 0.01 0.02 0.01 

Woody cerrado 0.01 0.01 0 0.02 

Shrub-grassland cerrado 0.01 0 0.01 0 

Wetland 0.03 0 0.03 0 

Secondary complex 0.01 0 0 0 

Single crop 0.01 0.01 0 0.02 

Double crop 0.01 0.01 0 0.01 

Irrigated crop 0 0 0 0 

Pastureland 0.02 0.05 0.03 0.04 

Degraded pastureland 0.02 0 0.02 0.01 

Urban 0 0 0 0 

Bare soil 0.01 0 0.01 0 

Water 0.01 0 0.01 0 

 

SM 4 - Table 4. Accuracy metrics for the Upper Xingu River Basin, Brazil. Metrics calculated from 
estimated population matrix. Maps produced by IPAM for the municipality of Querencia in 2017 was 
used as reference. The matrix represents the accuracy results for Level 1 of classification. 

      Disagreement 

 
Agreement Disagreement Quantity Allocation 

Overall  0.80 0.20 0.13 0.07 

      Disagreement 

 
Omission Commission Quantity Allocation 

Natural and Semi-Natural Vegetation 0.05 0.14 0.09 0.10 

Cultivated and Managed Terrestrial Areas 0.02 0.06 0.04 0.04 

Surface water 0.13 0 0.13 0 
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SM 4 - Table 5. Accuracy metrics for the Upper Xingu River Basin, Brazil. Metrics calculated from 
estimated population matrix. Maps produced by IPAM for the municipality of Querencia in 2017 was 
used as reference. The matrix represents the accuracy results for Level 2 of classification. 

      Disagreement 

 
Agreement Disagreement Quantity Allocation 

Overall  0.75 0.25 0.20 0.04 

      Disagreement 

 
Omission Commission Quantity Allocation 

Forest 0.01 0.17 0.16 0.02 

Wetlands 0.02 0.01 0.01 0.01 

Secondary complex 0.15 0 0.15 0 

Agriculture 0.01 0.05 0.03 0.02 

Pasturelands 0.02 0.03 0.01 0.03 

Urban 0 0 0 0 

Water 0.04 0 0.04 0 

 

SM 4 - Table 6. Accuracy metrics for the Upper Xingu River Basin, Brazil. Metrics calculated from 
estimated population matrix. Maps produced by IPAM for the municipality of Querencia in 2017 was 
used as reference. The matrix represents the accuracy results for Level 3 of classification. 

      Disagreement 

 
Agreement Disagreement Quantity Allocation 

Overall  0.64 0.35 0.15 0.20 

      Disagreement 

 
Omission Commission Quantity Allocation 

Wetland 0.02 0.04 0.01 0.05 

Secondary complex 0.08 0 0.08 0 

Single crop 0.07 0.18 0.10 0.15 

Double crop 0.02 0.06 0.04 0.05 

Irrigated crop 0 0 0 0 

Pastureland 0.08 0.08 0 0.16 

Urban 0.01 0 0.01 0 

Water 0.06 0 0.06 0 

 

SM 4 - Table 7. Accuracy metrics for the Upper Xingu River Basin, Brazil. Metrics calculated from 
estimated population matrix. Maps produced by ISA for the municipality of Canarana, Querencia, 
Santa Cruz do Xingu, and São José do Xingu in 2010 was used as reference. The matrix represents the 
accuracy results for Level 1 of classification. 

      Disagreement 

 
Agreement Disagreement Quantity Allocation 

Overall  0.89 0.11 0.09 0.02 

      Disagreement 

 
Omission Commission Quantity Allocation 

Natural and Semi-Natural Vegetation 0.01 0.1 0.09 0.02 

Cultivated and Managed Terrestrial Areas 0.1 0.01 0.09 0.02 

Surface water 0 0 0 0 

 

 



93 
 

SM 4 - Table 8. Accuracy metrics for the Upper Xingu River Basin, Brazil. Metrics calculated from 
estimated population matrix. Maps produced by ISA for the municipality of Canarana, Querencia, 
Santa Cruz do Xingu, and São José do Xingu in 2010 was used as reference. The matrix represents the 
accuracy results for Level 2 of classification. 

      Disagreement 

 
Agreement Disagreement Quantity Allocation 

Overall  0.90 0.09 0.06 0.04 

      Disagreement 

 
Omission Commission Quantity Allocation 

Forest 0.01 0.05 0.04 0.02 

Savanic formations 0 0.02 0.02 0 

Wetlands 0.02 0 0.02 0 

Agriculture 0.02 0 0.02 0 

Pasturelands 0.04 0.02 0.02 0.04 

Water 0 0 0 0 

 

SM 4 - Table 9. Accuracy metrics for the Upper Xingu River Basin, Brazil. Metrics calculated from 
estimated population matrix. Maps produced by IPAM for the municipalities of Canarana and 
Querencia in 2015 was used as reference. was used as reference. The matrix represents the accuracy 
results for Level 1 of classification. 

      Disagreement 

 
Agreement Disagreement Quantity Allocation 

Overall  0.96 0.04 0.03 0.02 

      Disagreement 

 
Omission Commission Quantity Allocation 

Natural and Semi-Natural Vegetation 0.01 0.03 0.02 0.02 

Cultivated and Managed Terrestrial Areas 0.03 0.01 0.02 0.02 

Surface water 0 0 0 0 

 

SM 4 - Table 10. Accuracy metrics for the Upper Xingu River Basin, Brazil. Metrics calculated from 
estimated population matrix. Maps produced by IPAM for the municipalities of Canarana and 
Querencia in 2015 was used as reference. The matrix represents the accuracy results for Level 2 of 
classification. 

      Disagreement 

 
Agreement Disagreement Quantity Allocation 

Overall  0.94 0.06 0.03 0.03 

      Disagreement 

 
Omission Commission Quantity Allocation 

Forest 0.01 0.01 0.01 0.02 

Wetlands 0 0 0 0 

Agriculture 0.04 0.01 0.03 0.02 

Pasturelands 0.01 0.03 0.02 0.02 

Water 0 0 0 0 

 

As other metrics are still used by a large amount of researches, we also present the observed confusion 

matrix for each level of classification along with overall accuracy, overall accuracy’ two-tailed binomial test and its 

upper and lower level, user’s accuracy, producer’s accuracy, balanced accuracy, and kappa coefficient of agreement.  
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SM 4 - Table 11. Accuracy measurements employed in this study. 

Accuracy measurement Computation 

Overall accuracy: proportion of 
points mapped correctly 𝑂𝑎𝑐 =

𝑛𝑠

𝑛𝑡

 

Oac Overall accuracy 

𝑛𝑠 Number of success  

= ∑ 𝑥𝑖𝑖  , where  
𝑥𝑖𝑖  is the success for 
each class 

𝑛𝑡 Total number of 
samples  

Standard deviation of overall 
accuracy 𝑆 =  √

𝑂𝑎𝑐 ×  (1 − 𝑂𝑎𝑐)

𝑛𝑡

 

S Standard deviation 

Oac Overall accuracy 

𝑛𝑡 Total number of 
samples  

User’s accuracy: proportion of 
points which were mapped in a 
certain class that is actually in that 
class based on ground reference 

𝑈 =
𝑥𝑖𝑖

𝑥𝑖+

 

U User’s accuracy 

𝑥𝑖𝑖  
 

Number of successes 
when comparing 
modelled and reference  

𝑥𝑖+ Marginal sum of a 
modelled class (row) 

Producer’s accuracy: 
proportion of reference points in 
a certain class which is mapped as 
the same certain class 

𝑃 =
𝑥𝑖𝑖

𝑥+𝑖

 

P Producer’s accuracy 

𝑥𝑖𝑖  
 

Number of successes 
when comparing 
modelled and reference  

𝑥+𝑗 Marginal sum of a 
reference class (column) 

Balanced accuracy: average of 
sensitivity (rate of true positives 
or producer’s accuracy) and 
specificity (rate of true negatives) 

𝐵 =
𝑃 +

𝑛𝑡 −  𝑥+𝑖 − 𝑥𝑖+ 
∑ 𝑥+𝑖 −  𝑥+𝑖

2
 

B Balanced accuracy 

P Producer’s accuracy 

𝑛𝑡 Total number of 
samples  

𝑥+𝑗 Marginal sum of a 
reference class (column) 

𝑥𝑖+ Marginal sum of a 
modelled class (row) 
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SM 4 - Table 12. Full error matrix comparing modelled land cover and land use information with reference points collected in Upper 
Xingu River Basin, Brazil, in 2016, and Rapid Eye images collected from 2012/13. The matrix represents the accuracy results for Level 1 
of classification. 

    Reference 

  
Natural Managed Water Total 

User's 
accuracy 

Balanced 
accuracy 

M
o

d
e
l 

Natural and Semi-Natural Vegetation 644 57 7 708 91% 95% 

Cultivated and Managed Terrestrial Areas 30 858 29 917 94% 94% 

Surface water 1 0 323 324 100% 95% 

Total 675 915 359 1825 
 

 Producer’s accuracy 95% 94% 90%     1949 

 
Overall accuracy 94% (92%; 95%) 

  

 

Average user's accuracy 95%   
  

 

Average producer’s accuracy 96% 
  

 
   Accuracy p-value 0.00         
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SM 4 - Table 13.  Full error matrix comparing modelled land cover and land use information with reference points collected in Upper Xingu River Basin 
Brazil, in 2016, and Rapid Eye images collected from 2012/13. The matrix represents the accuracy results for Level 2 of classification. 

    Reference 

    
For Sav Wet Sec Agr Pas Bar Urb Wat Total 

User's 
accuracy 

Balanced 
accuracy 

M
o

d
e
l 

Forest 352 16 13 0 1 4 1 0 2 389 90% 96% 

Savanic formations 8 130 12 7 2 12 2 0 0 173 75% 89% 

Wetlands 5 5 99 0 0 0 0 0 3 112 88% 85% 

Secondary complex 2 1 4 14 0 4 4 0 0 29 48% 80% 

Agriculture 1 1 2 1 382 25 2 0 5 419 91% 89% 

Pasturelands 2 10 7 1 65 271 13 2 7 378 72% 88% 

Bare land 1 0 1 0 23 11 46 0 19 101 46% 82% 

Urban 0 0 0 0 0 0 0 32 0 32 100% 97% 

Water 0 0 1 0 0 0 0 0 316 317 100% 95% 

Total 371 163 139 23 473 327 68 34 352 1642 
  Producer’s accuracy 95% 80% 71% 61% 81% 83% 68% 94% 90%     1950 

 
Overall accuracy 

 
84% (83%; 86%) 

       

 

Average user's accuracy 

 
79% 

         

 

Average producer’s accuracy 

 
89%   

          Accuracy p-value   0.00                   
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SM 4 - Table 14. Full error matrix comparing modelled land cover and land use information with reference points collected in Upper Xingu River Basin, Brazil, in 2016, 
and Rapid Eye images collected from 2012/13. The matrix represents the accuracy results for Level 3 of classification. 

    Reference       

    
For Fce Wce SGc Wet Sec SCr DCr Icr Pas Dpa Urb Bar Wat Total 

User's 
accuracy 

Balanced 
accuracy 

M
o

d
e
l 

Forest 279 11 2 0 10 2 0 0 0 3 0 0 1 3 312 90% 97% 

Forest cerrado 0 49 13 0 3 0 0 0 0 0 0 0 0 0 66 75% 83% 

Woody cerrado 3 7 82 16 10 4 0 0 0 5 5 0 2 0 135 61% 81% 

Shrub-grassland cerrado 0 4 22 10 2 1 0 0 0 2 0 0 0 0 42 24% 65% 

Wetland 3 1 3 0 104 1 0 0 0 0 0 0 0 3 116 90% 86% 

Secondary complex 3 0 1 0 4 12 0 0 0 4 1 0 4 0 30 41% 77% 

Single crop 0 0 0 0 1 0 76 11 0 23 1 0 2 4 119 64% 85% 

Double crop 0 1 1 0 1 1 17 71 3 1 0 0 0 1 98 73% 89% 

Irrigated crop 0 0 0 0 0 0 0 0 8 0 0 0 0 0 9 100% 86% 

 
Pastureland 0 0 0 4 5 1 7 4 0 177 27 0 15 4 245 73% 84% 

 
Degraded pastureland 0 0 2 2 0 0 1 0 0 22 25 2 1 3 59 43% 69% 

 
Urban 0 0 0 0 0 0 0 0 0 0 0 32 0 0 33 100% 97% 

 
Bare soil 1 0 0 0 1 0 3 4 0 5 3 0 43 17 78 56% 81% 

 
Water 0 0 0 0 1 0 0 0 0 0 0 0 0 323 325 100% 95% 

 
Total 290 74 127 32 143 23 105 91 12 243 62 35 69 359 1291 

    Producer’s accuracy 97% 67% 65% 31% 73% 55% 73% 79% 73% 73% 40% 94% 63% 90%     1664 

 
Overall accuracy 78% (76%; 80%) 

            

 

Average user's accuracy 71% 
               

 

Average producer’s accuracy 70%   
                Accuracy p-value 0.00                               
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SM 4 - Table 15.  Full error matrix comparing modelled land cover and land use information with land use maps produced by 
IPAM for the municipality of Querencia in 2017. The matrix represents the accuracy results for Level 1 of classification. 

    Reference   

  
Natural Managed Water Total 

User's 
accuracy 

Balanced 
accuracy 

M
o

d
e
l 

Natural and Semi-Natural Vegetation 55 2 14 71 77% 82% 

Cultivated and Managed Terrestrial Areas 15 96 3 114 84% 90% 

Surface water 1 0 11 12 92% 69% 

Total 71 98 28 162 
 

 Producer’s accuracy 77% 98% 39%   

 

197 

  Overall accuracy 82% (76%; 87%)   

 

 

Average user's accuracy 84% 
  

 
 

 

Average producer’s accuracy 72%   
 

 
   Accuracy p-value 0.00         
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SM 4 - Table 16.  Full error matrix comparing modelled land cover and land use information with land use maps produced by IPAM for the 
municipality of Querencia in 2017. The matrix represents the accuracy results for Level 2 of classification. 

    Reference     
 

    
Forest Wetlands Secondary Agriculture Pasturelands Urban Water Total 

User's 
accuracy 

Balanced 
accuracy 

M
o

d
e
l 

Forest 39 1 9 0 0 0 2 51 76% 90% 

Wetlands 0 6 0 0 0 0 10 16 38% 77% 

Secondary 0 0 1 0 0 0 0 1 100% 53% 

Agriculture 1 1 6 41 4 0 0 53 77% 88% 

Pasturelands 4 2 2 8 36 1 3 56 64% 88% 

Urban 0 0 0 0 0 4 0 4 100% 90% 

Water 0 0 1 0 0 0 11 12 92% 71% 

 
Total 44 10 19 49 40 5 26 138 

    Producer’s accuracy 89% 60% 5% 84% 90% 80% 42%     193 

 
Overall accuracy 72% (65%; 78%) 

      

 

Average user's accuracy 78% 
        

 

Average producer’s accuracy 64%   
         Accuracy p-value 0.00                 

 
  



100 
 

SM 4 - Table 17.  Full error matrix comparing modelled land cover and land use information with land use maps produced by IPAM for the municipality of 
Querencia in 2017. The matrix represents the accuracy results for Level 3 of classification. 

    Reference 
 

    
Wetland 

Secondary 
complex 

Single 
crop 

Double 
crop 

Irrigated 
crop 

Pastureland Urban Water Total 
User's 

accuracy 
Balanced 
accuracy 

M
o

d
e
l 

Wetland 6 2 0 0 0 0 0 8 16 38% 79% 

Secondary complex 0 2 0 0 0 0 0 0 2 100% 58% 

Single crop 1 3 24 2 0 7 0 2 39 62% 78% 

Double crop 0 3 4 12 0 0 0 0 19 63% 90% 

Irrigated crop 0 0 0 0 1 0 0 0 1 100% 100% 

Pastureland 2 2 6 0 0 33 1 1 45 73% 85% 

Urban 0 0 0 0 0 0 4 0 4 100% 90% 

Water 0 1 0 0 0 0 0 11 12 92% 75% 

Total 9 13 34 14 1 40 5 22 93 
    Producer’s accuracy 67% 15% 71% 86% 100% 83% 80% 50%     138 

 
Overall accuracy 67% (59%; 75%) 

       

 

Average user's accuracy 78% 
         

 

Average producer’s accuracy 69%   
          Accuracy p-value 0.00                   
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SM 4 - Table 18. Full error matrix comparing modelled land cover and land use information with land use maps produced by ISA 
for the municipalities of Canarana, Querencia, Santa Cruz do Xingu, and São José do Xingu in 2010. The matrix represents the 
accuracy results for Level 1 of classification. 

    Reference 
 

    Natural Managed Water Total 
User's 

accuracy 
Balanced 
accuracy 

M
o

d
e
l 

Natural and Semi-Natural Vegetation 1250 173 6 1429 87% 88% 

Cultivated and Managed Terrestrial Areas 31 683 0 714 96% 89% 

Surface water 6 0 6 12 50% 75% 

Total 1287 856 12 1939 

  Producer’s accuracy 97% 80% 50%     2155  

Overall accuracy 90% (89%; 91%) 
 

  Average user's accuracy 78% 
 

 
 

  Average producer’s accuracy 76%   

 
 

   Accuracy p-value 0.00         
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SM 4 - Table 19. Full error matrix comparing modelled land cover and land use information with land use maps produced by ISA for the 
municipalities of Canarana, Querencia, Santa Cruz do Xingu, and São José do Xingu in 2010. The matrix represents the accuracy results for 
Level 2 of classification. 

    Reference 
 

    
Forest Savanic Wetlands Agriculture Pasturelands Water Total 

User's 
accuracy 

Balanced 
accuracy 

M
o

d
e
l 

Forest 792 1 19 7 22 2 843 94% 92% 

Savanic formations 54 1 0 9 103 2 169 1% 70% 

Wetlands 15 0 4 0 1 1 21 19% 58% 

Agriculture 0 0 0 33 17 0 50 66% 66% 

Pasturelands 13 0 0 49 444 0 506 88% 85% 

Water 0 0 0 0 0 4 4 100% 72% 

Total 874 2 23 98 587 9 1278 
  Producer’s accuracy 91% 50% 17% 34% 76% 44%     1593  

Overall accuracy 80% (78%; 82%) 
      Average user's accuracy 61% 

        Average producer’s accuracy 52%   
        Accuracy p-value 0.00               
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SM 4 - Table 20. Full error matrix comparing modelled land cover and land use information with land use maps produced by 
ISA for the municipalities of Canarana and Querencia in 2015. The matrix represents the accuracy results for Level 1 of 
classification. 

    Reference 
 

    Natural Managed Water Total 
User's 

accuracy 
Balanced 
accuracy 

M
o

d
e
l 

Natural and Semi-Natural Vegetation 575 24 2 601 96% 95% 

Cultivated and Managed Terrestrial Areas 16 421 0 437 96% 96% 

Surface water 6 0 2 8 25% 75% 

Total 597 445 4 998 

  Producer’s accuracy 96% 95% 50% 

 
 

1046 

  Overall accuracy 95% (94%; 97%)   

 

 

Average user's accuracy 72% 
 

 
 

 

 

Average producer’s accuracy 80%   

 
 

   Accuracy p-value 0.00         
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SM 4 - Table 21. Full error matrix comparing modelled land cover and land use information with land use maps produced by ISA for 
the municipalities of Canarana and Querencia in 2015. The matrix represents the accuracy results for Level 2 of classification. 

    Reference   

    
Forest Wetlands Agriculture Pasturelands Water Total 

User's 
accuracy 

Balanced 
accuracy 

M
o

d
e
l 

Forest 512 1 4 3 1 521 98% 95% 

Wetlands 17 0 0 0 0 17 0% 49% 

Agriculture 5 0 181 11 0 197 92% 85% 

Pasturelands 11 0 69 160 0 240 67% 91% 

Water 6 0 0 0 2 8 25% 83% 

Total 551 1 254 174 3 855 
  Producer’s accuracy 93% 0% 71% 92% 67%     983  

Overall accuracy 87% (85%; 89%) 
     Average user's accuracy 56% 

       Average producer’s accuracy 65%   
       Accuracy p-value 0.00             
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SM 4 - Figure 2. Correlation between the LCLU maps produced for Upper Xingu River Basin for croplands and 
the census data made available by IBGE for soybean, maize and cotton – those crops made up the great majority of 
cropland in the studied basin. (A) L2 cropland area and IBGE planted area data for soybean discounting maize 
(secondary crop or “safrinha”), main crop maize, and cotton. (B) L3 cropland defined by single crop area and twice 
the double crop area and IBGE planted area data for soybean, maize, and cotton. 
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Supplementary material 5. This section presents spectral profiles of land cover and land use classes proposed for 

Upper Xingu River Basin according to Landsat bands and EVI MODIS yearly variation. See each figure’s legend for 

details. 

 
SM 5 - Figure 1. Spectral profile based on Landsat 8 bands. The classes shown in the graph were used to classify the 
land cover and land use in the Upper Xingu River Basin at Level 1 according to the methods presented in the 
manuscript. Profile was drwan based on the calculated mean value of each Landsat 8 band sampled with ground true 
points colected for accuracy assessesment. 
 
 
 

 
SM 5 - Figure 2. Spectral profile based on Landsat bands. The classes shown in the graph were used to classify the 
land cover and land use in the Upper Xingu River Basin at Level 2 according to the methods presented in the 
manuscript. Profile was drwan based on the calculated mean value of each Landsat 8 band sampled with ground true 
points colected for accuracy assessesment. 
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SM 5 - Figure 3. Spectral profile based on year EVI MODIS composition. The classes shown in the graph were 
used to classify the land cover and land use in the Upper Xingu River Basin at Level 2 according to the methods 
presented in the manuscript. Profile was drwan based on the calculated mean value of EVI band (MODIS Aqua and 
Terra) sampled with ground true points colected for accuracy assessesment. 
 
 
 

 
SM 5 - Figure 4. Spectral profile based on Landsat bands. The classes shown in the graph were used to classify the 
land cover and land use in the Upper Xingu River Basin at Level 3 according to the methods presented in the 
manuscript. Profile was drwan based on the calculated mean value of each Landsat 8 band sampled with ground true 
points colected for accuracy assessesment. 
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SM 5 - Figure 5. Spectral profile based on year EVI MODIS composition. The classes shown in the graph were 
used to classify the land cover and land use in the Upper Xingu River Basin at Level 3 according to the methods 
presented in the manuscript. Profile was drwan based on the calculated mean value of EVI band (MODIS Aqua and 
Terra) sampled with ground true points colected for accuracy assessesment.  
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Supplementary material 6. Land cover and land use maps of Upper Xingu River Basin in three different levels and 

seven different years: L1 (1985, 1990, 1995, 2000, 2005, 2010, 2015), L2 (1985, 1990, 1995, 2000, 2005, 2010, 2015), 

and L3 (2000, 2005, 2010, 2015). 

 

 

SM 6 - Figure 1. Level 1 of land cover and land use classification scheme for the Upper Xingu River Basin in 1985. 
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SM 6 - Figure 2. Level 1 of land cover and land use classification scheme for the Upper Xingu River Basin in 1990. 

 
SM 6 - Figure 3. Level 1 of land cover and land use classification scheme for the Upper Xingu River Basin in 1995. 
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SM 6 - Figure 4. Level 1 of land cover and land use classification scheme for the Upper Xingu River Basin in 2000. 

 
SM 6 - Figure 5. Level 1 of land cover and land use classification scheme for the Upper Xingu River Basin in 2005. 
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SM 6 - Figure 6. Level 1 of land cover and land use classification scheme for the Upper Xingu River Basin in 2010. 

 
SM 6 - Figure 7. Level 1 of land cover and land use classification scheme for the Upper Xingu River Basin in 2015. 
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SM 6 - Figure 8. Level 2 of land cover and land use classification scheme for the Upper Xingu River Basin in 1985. 

 
SM 6 - Figure 9. Level 2 of land cover and land use classification scheme for the Upper Xingu River Basin in 1990. 
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SM 6 - Figure 10. Level 2 of land cover and land use classification scheme for the Upper Xingu River Basin in 1995. 

 
SM 6 - Figure 11. Level 2 of land cover and land use classification scheme for the Upper Xingu River Basin in 2000. 
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SM 6 - Figure 12. Level 2 of land cover and land use classification scheme for the Upper Xingu River Basin in 2005. 

 
SM 6 - Figure 13. Level 2 of land cover and land use classification scheme for the Upper Xingu River Basin in 2010. 
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SM 6 - Figure 14. Level 2 of land cover and land use classification scheme for the Upper Xingu River Basin in 2015. 

 
SM 6 - Figure 15. Level 3 of land cover and land use classification scheme for the Upper Xingu River Basin in 2000. 
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SM 6 - Figure 16. Level 3 of land cover and land use classification scheme for the Upper Xingu River Basin in 2005. 

 

SM 6 - Figure 17. Level 3 of land cover and land use classification scheme for the Upper Xingu River Basin in 2010. 
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SM 6 - Figure 18. Level 3 of land cover and land use classification scheme for the Upper Xingu River Basin in 2015. 



120 
 

Supplementary material 7. Land cover and land use transition tables and rates of change. 

SM7 - Table 1. Land cover change matrix according to Level 1 of classification for 
the Upper Xingu River Basin, MT, Brazil. Indexes equal to the percentage of a class 
(rows) that changes to another class in the next 5 years period (columns). Grey 
shadings represent no change. Land cover classes representing less than 1% of the 
basin area are not shown. 

  
1990 

  

  
Natural Managed TOTAL (km²) TOTAL (%) 

19
8
5
 

Natural 94 5 160,228 93 

Managed 49 51 7,423 4 

  
1995 

  

  
Natural Managed TOTAL (km²) TOTAL (%) 

19
9
0
 

Natural 93 7 155,314 91 

Managed 27 73 12,622 7 

  
2000 

  

  
Natural Managed TOTAL (km²) TOTAL (%) 

19
9
5
 

Natural 92 8 147,539 84 

Managed 15 85 20,500 12 

  
2005 

  

  
Natural Managed TOTAL (km²) TOTAL (%) 

2
0
0
0
 

Natural 88 11 123,883 78 

Managed 13 86 28,466 17 

  
2010 

  

  
Natural Managed TOTAL (km²) TOTAL (%) 

2
0
0
5
 

Natural 92 8 113,020 69 

Managed 13 87 39,073 23 

  
2015 

  

  
Natural Managed TOTAL (km²) TOTAL (%) 

2
0
10

 

Natural 91 8 124,110 68 

Managed 6 93 43,720 31 

TOTAL 2015 (km²) 145 143 
  

TOTAL 2015 (%) 65 0.1 
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SM 7 - Table 2. Land cover change matrix according to Level 2 of classification for the Upper 
Xingu River Basin, MT, Brazil. Indexes equal to the percentage of a class (rows) that changes to 
another class in the next 5 years period (columns). Grey shadings represent no change. Land cover 
classes representing less than 1% of the basin area are not shown. 

  
1990 

  

  
For Sav Wet Crop Past 

TOTAL 
(km²) 

TOTAL 
(%) 

19
8
5
 

Forest (For) 93 4 1 0 2 122,148 72 

Savanna formations 
(Sav) 

30 54 1 1 12 34,818 21 

Wetlands (Wet) 33 7 46 0 3 2,932 2 

Croplands (Crop) 0 0 0 0 0 - 0 

Pasturelands (Past) 15 32 1 0 42 7,430 4 

  
1995 

  

  
For Sav Wet Crop Past 

TOTAL 
(km²) 

TOTAL 
(%) 

19
9
0
 

Forest (For) 91 4 1 0 3 126,195 75 

Savanna formations 
(Sav) 

10 60 1 1 26 26,646 16 

Wetlands (Wet) 36 3 44 0 3 2,761 2 

Croplands (Crop) 0 15 0 4 72 319 0 

Pasturelands (Past) 8 17 1 1 71 10,482 6 

  
2000 

  

  
For Sav Wet Crop Past 

TOTAL 
(km²) 

TOTAL 
(%) 

19
9
5
 

Forest (For) 87 5 1 0 4 120,153 71 

Savanna formations 
(Sav) 

10 68 0 2 17 22,813 13 

Wetlands (Wet) 32 4 59 0 5 2,802 2 

Croplands (Crop) 0 11 0 41 45 282 0 

Pasturelands (Past) 1 11 0 3 81 20,732 12 

  
2005 

  

  
For Sav Wet Crop Past 

TOTAL 
(km²) 

TOTAL 
(%) 

2
0
0
0
 

Forest (For) 87 3 1 2 6 107,717 64 

Savanna formations 
(Sav) 

16 51 1 4 24 23,509 14 

Wetlands (Wet) 25 1 62 0 3 3,108 2 

Croplands (Crop) 0 2 0 75 23 1,712 1 

Pasturelands (Past) 1 5 0 9 82 25,861 15 

  
2010 

  

  
For Sav Wet Crop Past 

TOTAL 
(km²) 

TOTAL 
(%) 

2
0
0
5
 

Forest (For) 93 1 2 0 2 99,141 59 

Savanna formations 
(Sav) 

19 62 1 3 11 16,748 10 

Wetlands (Wet) 28 6 60 1 3 2,905 2 

Croplands (Crop) 1 2 0 77 19 6,924 4 

Pasturelands (Past) 4 12 0 15 67 34,914 21 

  
2015 

  

  
For Sav Wet Crop Past 

TOTAL 
(km²) 

TOTAL 
(%) 

2
0
1

0
 

Forest (For) 92 3 1 1 2 98,820 58 
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Savanna formations 
(Sav) 

10 52 0 5 28 17,257 10 

Wetlands (Wet) 45 6 41 0 3 4,111 2 

Croplands (Crop) 1 0 0 82 14 12,453 7 

Pasturelands (Past) 4 2 0 25 63 31,034 18 

 
TOTAL 2015 (km²)  96,479 12,747 2,742 20,115 29,275 

  

 
TOTAL 2015 (%) 57 8 2 12 17 
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SM 7 - Table 3. Land cover change matrix according to Level 3 of classification for the Upper Xingu River Basin, MT, Brazil. Indexes equal 
to the percentage of a class (rows) that changes to another class in the next 5 years period (columns). Grey shadings represent no change. Land 
cover classes representing less than 1% of the basin area are not shown. 

 

  
2005  

 

 

  
For Fce Wcer Wet Sec Scr Dcr Pas Dpas 

TOTAL 
(km²) 

TOTAL 
(%) 

 

2
0
0
0
 

Forest (For) 88 0 2 1 2 1 1 5 1 92,097 54.5  

Forest cerrado (Fce) 0 81 7 1 3 0 2 6 0 15,619 9.2  

Woody cerrado (Wcer) 7 10 49 1 5 1 2 22 1 21,288 12.6  

Wetlands (Wet) 23 2 1 62 0 0 0 3 0 3,108 1.8  

Sing crop (Scr) 0 0 2 0 0 14 60 24 0 1,088 0.6  

Double crop (Dcr) 0 0 2 0 0 11 66 20 0 613 0.4  

Pasturelands (Pas) 1 0 5 0 2 4 6 81 1 23,445 13.9  

Degraded pasturelands 
(Dpas) 0 0 6 1 0 4 4 65 14 

2,416 
1.4 

 

  
2010  

 

 

  
For Fce Wcer Wet Sec Scr Dcr Pas Dpas 

TOTAL 
(km²) 

TOTAL 
(%) 

 

2
0
0
5
 

Forest (For) 94 0 1 2 1 0 0 2 0 83,855 49.6  

Forest cerrado (Fce) 0 84 6 3 2 0 0 4 0 15,286 9.0  

Woody cerrado (Wcer) 7 13 59 1 2 1 1 11 0 15,646 9.3  

Wetlands (Wet) 26 3 5 60 0 0 0 3 0 2,905 1.7  

Sing crop (Scr) 1 0 3 0 0 22 45 27 0 2,437 1.4  

Double crop (Dcr) 1 0 2 0 0 10 72 14 0 4,457 2.6  

Pasturelands (Pas) 3 1 11 0 2 8 8 67 0 33,376 19.7  

Degraded pasturelands 
(Dpas) 4 0 7 0 2 7 9 62 2 

1,538 
0.9 

 

  
2015  

 

 

  
For Fce Wcer Wet Sec Scr Dcr Pas Dpas 

TOTAL 
(km²) 

TOTAL 
(%) 

 

2
0
10

 

Forest (For) 93 0 1 1 1 0 0 2 0 83,478 49.4  

Forest cerrado (Fce) 0 83 10 1 1 0 0 3 0 15,073 8.9  

Woody cerrado (Wcer) 3 5 46 0 2 3 2 22 6 15,102 8.9  

Wetlands (Wet) 36 9 6 42 0 0 0 2 1 4,073 2.4  
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Sing crop (Scr) 1 0 0 0 0 46 26 22 1 4,389 2.6  

Double crop (Dcr) 1 1 0 0 0 32 55 9 0 8,017 4.7  

Pasturelands (Pas) 2 1 2 0 1 17 9 54 9 30,762 18.2  

Degraded pasturelands 
(Dpas) 0 0 1 1 0 15 4 31 29 

162 
0.1 

 

 

TOTAL 2015 (km²) 81,144 14,312 10,565 2,742 2,575 11,084 8,956 24,628 4,647  
 

 

 

TOTAL 2015 (%) 48 8 6 2 2 7 5 15 3  
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SM7 – Figure 1. Top plots present the change rate of different LULC in UXRB. Intermediate and bottom plots show 
the price and rate exchange fluctuations along with agriculture production in the UXRB. Worth noting, soybean and 
maize harvested area accounts for main and secondaries harvest. 
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Appendix B 

Supplementary material to support Chapter 3: Deforestation and degradation in an ecotone zone 

between Amazon and Cerrado biomes: comparing indicators 

 

Supplementary material 1. General description of each dataset. 
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SM1 - Table 1. Description and comparison among datasets on deforestation and degradation. 

Dataset Reference Type Methods Product/ Output MMA/ 

Temporal 

resolution 

Year released/ 

Availability 

Global Forest 

Change (GFC) 

Hansen et 

al., 2013 

End-

product  

Calculated based on per-band 

metrics (reflectance value, mean, 

percentiles and slope of linear 

regressions considering 

reflectance), of bands 3, 4, 5, 

and 7 of the LANDSAT 

satellites which are processed by 

learning algorithms in decision 

trees 

Raster in which each of the cells 

indicates the annual percent 

vegetation cover with height > 5m, 

and annual loss or annual gain.  

Landsat cell 

(900m²) / 

Yearly 

2013/ 2000 - 

today 

Carnegie 

Landsat 

Analysis 

System 

(CLASlite) 

Asner et 

al., 2009 

Software Calculates fractional cover of 

vegetation canopies, dead 

vegetation, and bare surface 

based on the Automated Monte 

Carlo Unmixing approach. The 

differences between time steps 

are used to classify pixels 

according to a set of rules that 

can be modified 

Raster with bands representing the 

fractional cover and uncertainty, 

and a raster in which each of the 

cells indicates a high probability of 

deforestation 

Satellite cell 

(either 

Landsat, 

Modis, 

Sentinel) / 

Custom 

2009/ Custom 

Raster with bands representing the 

fractional cover and uncertainty, 

and a raster in which each of the 

cells indicates a high probability of 

degradation 

Monitoramento 

do 

Desmatamento 

da Floresta 

Amazônica 

Brasileira por 

Satélite 

(PRODES)* 

INPE, 

2019 

End-

product  

Satellite images are prepared by 

applying contrast enhancements 

to highlight evidence of 

deforestation/degradation. 

Them, areas are mapped 

individually 

Raster/shapefile in which each of 

the objects represents the 

occurrence of observed 

deforestation in “pristine” areas 

6.25ha / 

Yearly 

1988/ 1988 - 

today 

Mapeamento 

da Degradação 

Florestal na 

Amazônia 

Brasileira 

Raster/shapefile in which each of 

the objects represents the 

occurrence of observed degradation 

6.25ha / 

Yearly 

2008/ 2007 - 

2016 
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(DEGRAD) 

Amazon Near 

Real-Time 

Deforestation 

Detection 

System 

(DETER-B)** 

INPE, 

2019; 

Diniz, 

2015 

Visual interpretation based on 

five main elements (color, hue, 

texture, shape and context) 

followed by the application of 

Spectral Mixing Linear Model 

(MLME) to pixel classification 

Raster/shapefile in which each of 

the objects represents the 

occurrence of observed disturbance 

that is classified as an indication of 

either (i) deforestation with exposed 

soil, (ii) deforestation with 

remaining vegetation, (iii) mining, 

(iv) degradation, (v) fire scar, (vi) 

disordered selective logging, or 

(vii) geometric selective logging 

1ha 

(publicly 

available at 

6.25ha) / 

near real-

time 

2016/ 2016 - 

today 

*Recently the monitoring program is also available for other Brazilian Biomes; ** Not include in the comparative analysis; MMA = Minimum 

mapped area; Pristine = areas which have not been deforested in recent decades 

 

Asner, G.P., Knapp, D.E., Balaji, A., Paez-Acosta, G., 2009b. Automated mapping of tropical deforestation and forest degradation: CLASlite. J. Appl. 

Remote Sens. 3, 033543. https://doi.org/10.1117/1.3223675 

Diniz, C.G., Souza, A.A.D.A., Santos, D.C., Dias, M.C., Luz, N.C. Da, Moraes, D.R.V. De, Maia, J.S.A., Gomes, A.R., Narvaes, I.D.S., Valeriano, 

D.M., Maurano, L.E.P., Adami, M., 2015. DETER-B: The New Amazon Near Real-Time Deforestation Detection System. IEEE J. Sel. Top. Appl. 

Earth Obs. Remote Sens. https://doi.org/10.1109/JSTARS.2015.2437075 

Hansen, M., Potapov, P., Moore, R., Hancher, M., Turubanova, S., Tyukavina, A., Thau, D., Stehman, S., Goetz, S., Loveland, T., Kommareddy, A., 

Egorov, A., Chini, L., Justice, C., Townshend, J., 2013. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science. 342, 850–853. 

https://doi.org/10.1126/science.1244693 

INPE - Instituto Nacional de Pesquisas Espaciais, 2019. Monitoramento da Floresta Amazônica Brasileira por Satélite [WWW Document]. 

http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes 
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Supplementary material 2. Comparison among datasets. 

SM 2 - Table 1. Area occupied by each vegetation type in Upper Xingu River Basin and the deforested or degraded area 

capture by each indicator. 

DEFORESTATION 

 Area (km
2
) Proportion (%) 

 

Total CLASlite GFW INPE CLASlite GFW INPE 

Grassland cerrado 7,748  55  32  221  0.71 0.42 0.99 

Cerrado stricto sensu 27,097  293  218  454  1.08 0.80 0.99 

Forest cerrado 14,460  345  215  377  2.39 1.49 2.61 

Semi-deciduous forest  102,376  3,055  1,418  1,131  2.98 1.39 1.10 

Evergreen forest 7,275  98   57  63  1.35 0.79 0.87 

DEGRADATION 

 Area (km
2
) Proportion (%) 

 

Total CLASlite GFW INPE CLASlite GFW INPE 

Grassland cerrado 7,748  48  15  7  0.62 0.20 0.09 

Cerrado stricto sensu 27,097  182  145  106  0.67 0.53 0.39 

Forest cerrado 14,460  160  269  767  1.11 1.86 5.30 

Semi-deciduous forest 102,376  1,242  2,394  9,062  1.21 2.34 8.85 

Evergreen forest 7,275  92  47  457  1.26 0.65 6.28 
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SM 2 - Table 2. Agreement among dataset in raw data format for both deforestation and degradation in each 

phytophysiognomy or vegetation type in Upper Xingu River Basin. 

DEFORESTATION 

 

DEGRADATION 

Grassland cerrado 

 

Quantity Exchange Shift Overall Jaccard 

 

Quantity Exchange Shift Overall Jaccard 

CL - GFW 0.29 0.64 0.00 0.94 0.99 

 

0.43 0.38 0.00 0.81 0.99 

CL - INPE 2.10 1.37 0.00 3.47 0.97 

 

0.55 0.17 0.00 0.71 0.99 

GFW - INPE 2.39 0.65 0.00 3.04 0.97 

 

0.11 0.16 0.00 0.28 1.00 

Cerrado stricto sensu 

 

Quantity Exchange Shift Overall Jaccard 

 

Quantity Exchange Shift Overall Jaccard 

CL - GFW 0.31 1.27 0.00 1.58 0.98 

 

0.15 1.02 0.00 1.18 0.99 

CL - INPE 0.57 1.87 0.00 2.44 0.98 

 

0.30 0.73 0.00 1.04 0.99 

GFW - INPE 0.88 0.80 0.00 1.68 0.98 

 

0.15 0.70 0.00 0.85 0.99 

Forest cerrado 

 

Quantity Exchange Shift Overall Jaccard 

 

Quantity Exchange Shift Overall Jaccard 

CL - GFW 1.04 1.84 0.00 2.88 0.97 

 

0.75 2.14 0.00 2.89 0.97 

CL - INPE 0.14 3.72 0.00 3.86 0.96 

 

4.43 1.82 0.00 6.25 0.94 

GFW - INPE 1.17 1.76 0.00 2.93 0.97 

 

3.68 3.25 0.00 6.93 0.93 

Semi-deciduous forest 

 

Quantity Exchange Shift Overall Jaccard 

 

Quantity Exchange Shift Overall Jaccard 

CL - GFW 1.58 1.42 0.00 3.00 0.97 

 

1.11 1.87 0.00 2.98 0.97 

CL - INPE 1.87 0.95 0.00 2.81 0.97 

 

7.59 1.22 0.00 8.81 0.91 

GFW - INPE 0.28 1.40 0.00 1.68 0.98 

 

6.48 1.89 0.00 8.37 0.92 

Evergreen forest 

 

Quantity Exchange Shift Overall Jaccard 

 

Quantity Exchange Shift Overall Jaccard 

CL - GFW 0.54 0.56 0.00 1.10 0.99 

 

0.72 1.07 0.00 1.79 0.98 

CL - INPE 0.46 0.65 0.00 1.11 0.99 

 

4.51 2.12 0.00 6.63 0.93 

GFW - INPE 0.08 0.60 0.00 0.68 0.99 

 

5.23 0.79 0.00 6.02 0.94 
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SM 2 - Table 3. Agreement among dataset in hotspot (p ≥ 0.95) format for both deforestation and degradation 

in each phytophysiognomy or vegetation type in Upper Xingu River Basin. 

DEFORESTATION 

 

DEGRADATION 

Grassland cerrado 

 

Quantity Exchange Shift Overall Jaccard 

 

Quantity Exchange Shift Overall Jaccard 

CL - GFW 1.27 0.40 0.00 1.66 0.98 

 

1.21 0.00 0.00 1.21 0.99 

CL - INPE 14.85 1.16 0.00 16.01 0.84 

 

1.06 0.31 0.00 1.37 0.99 

GFW - INPE 13.59 3.11 0.00 16.70 0.83 

 

0.15 0.00 0.00 0.15 1.00 

Cerrado stricto sensu 

 

Quantity Exchange Shift Overall Jaccard 

 

Quantity Exchange Shift Overall Jaccard 

CL - GFW 2.18 0.71 0.00 2.89 0.97 

 

0.73 2.07 0.00 2.80 0.97 

CL - INPE 7.23 0.79 0.00 8.02 0.92 

 

1.36 1.07 0.00 2.43 0.98 

GFW - INPE 5.05 2.74 0.00 7.79 0.92 

 

0.64 1.29 0.00 1.93 0.84 

Forest cerrado 

 

Quantity Exchange Shift Overall Jaccard 

 

Quantity Exchange Shift Overall Jaccard 

CL - GFW 1.93 4.56 0.00 6.49 0.94 

 

0.81 9.02 0.00 9.83 0.90 

CL - INPE 5.19 3.96 0.00 9.15 0.91 

 

5.65 6.05 0.00 11.70 0.88 

GFW - INPE 3.26 6.45 0.00 9.71 0.90 

 

6.46 9.83 0.00 16.29 0.98 

Semi-deciduous forest 

 

Quantity Exchange Shift Overall Jaccard 

 

Quantity Exchange Shift Overall Jaccard 

CL - GFW 1.95 5.92 0.00 7.87 0.92 

 

0.45 7.87 0.00 8.32 0.92 

CL - INPE 5.04 1.96 0.00 7.00 0.93 

 

7.13 5.94 0.00 13.07 0.87 

GFW - INPE 3.10 3.99 0.00 7.09 0.93 

 

6.68 6.11 0.00 12.79 0.87 

Evergreen forest 

 

Quantity Exchange Shift Overall Jaccard 

 

Quantity Exchange Shift Overall Jaccard 

CL - GFW 0.06 3.05 0.00 3.11 0.97 

 

6.88 1.40 0.00 8.28 0.92 

CL - INPE 0.08 1.70 0.00 1.78 0.98 

 

3.16 7.61 0.00 10.77 0.89 

GFW - INPE 0.02 3.00 0.00 3.02 0.97 

 

10.04 1.74 0.00 11.78 0.88 
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SM 2 - Figure 1. Overall disagreement (left) among indicators and their area as a proportion (right) of the vegetation 

type in which they are observed. The graphs show a comparison among the Global Forest Change (GFC), CLASlite 

(CL) and PRODES (INPE) datasets for deforestation detected between 2010 and 2015, and are calculated based in 

the hotspot format. 
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SM 2 - Figure 2. Overall disagreement (left) among indicators and their area as a proportion (right) of the vegetation 

type in which they are observed. The graphs show a comparison among the Global Forest Change (GFC), CLASlite 

(CL) and DEGRAD (INPE) datasets for degradation detected between 2010 and 2015, and are calculated based on a 

hotspot data format. 
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Appendix C 

Supplementary material to support Chapter 4: Model selection for deforestation, degradation, and 

vegetation loss suggests different causations and future scenarios 

 

Supplementary material 1. Plot of all datasets analyzed in this chapter. Variables are separated in sets just to facilitate 

the plotting process and text flow. 

 
SM 1 - Figure 1. Categorical variables. 
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SM 1 - Figure 2. Continuous variables (set a). 
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SM 1 - Figure 3. Continuous variables (set b). 
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Supplementary material 2. Correlation and association among variables. 

 
SM 2 - Figure 1. Correlation among variables. Indexes closer to 1 or -1 indicate large correlation. 
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SM 2 - Figure 2. Correlation among variables. Indexes closer to 1 or -1 indicate large correlation. 
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SM 2 - Figure 3. Correlation among variables. Indexes closer to 1 or -1 indicate large correlation. 
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SM 2 - Figure 4. Correlation among variables. Indexes closer to 1 or -1 indicate large correlation. 
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Supplementary material 3. Measure of fattiness for selected models. 

 

 
SM 3 - Figure 1. Receiver Operating Characteristics curve (ROC) for native vegetation loss - a probability curve 

between false and true positive rates of classification. The calculated Area Under the Curve (AUC) indicates the 

separability power of the model. AUC equal to 0.5 (half of its potential) means the model has no separability power, 

while an AUC equal to 1 means the model has full separability power. 
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SM 3 - Figure 2. Receiver Operating Characteristics curve (ROC) for deforestation - a probability curve between 

false and true positive rates of classification. The calculated Area Under the Curve (AUC) indicates the separability 

power of the model. AUC equal to 0.5 (half of its potential) means the model has no separability power, while an 

AUC equal to 1 means the model has full separability power. 
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SM 3 - Figure 3. Receiver Operating Characteristics curve (ROC) for degradation - a probability curve between 

false and true positive rates of classification. The calculated Area Under the Curve (AUC) indicates the separability 

power of the model. AUC equal to 0.5 (half of its potential) means the model has no separability power, while an 

AUC equal to 1 means the model has full separability power. 

 
 

 

 

 


