UNIVERSIDADE DE SÃO PAULO

FACULDADE DE CIÊNCIAS FARMACÊUTICAS

Programa de Pós-Graduação em Toxicologia e Análises Toxicológicas

EFEITOS CITOTÓXICOS, GENOTÓXICOS E EPIGENÉTICOS DO BISFENOL A EM CÉLULAS HL-60, MCF-7 E EM RATOS

André Luiz Teroso Ribeiro

Orientador: Prof^a. Dr^a. Ana Paula de Melo Loureiro

São Paulo 2015

UNIVERSIDADE DE SÃO PAULO

FACULDADE DE CIÊNCIAS FARMACÊUTICAS

Programa de Pós-Graduação em Toxicologia e Análises Toxicológicas

EFEITOS CITOTÓXICOS, GENOTÓXICOS E EPIGENÉTICOS DO BISFENOL A EM CÉLULAS HL-60, MCF-7 E EM RATOS

André Luiz Teroso Ribeiro

Versão Corrigida

Tese para obtenção do Título de DOUTOR

Orientador: Prof^a. Dr^a. Ana Paula de Melo Loureiro

São Paulo 2015

Ficha Catalográfica Elaborada pela Divisão de Biblioteca e Documentação do Conjunto das Químicas da USP.

R484e	Ribeiro, André Luiz Teroso Efeitos citotóxicos, genotóxicos e epigenéticos do bisfenol A em cálulas HI 60 MCE 7 a em ratos / Andrá Luiz Teroso Bibeiro
	São Paulo, 2015. 165p.
	Tese (doutorado) – Faculdade de Ciências Farmacêuticas da Universidade de São Paulo. Departamento de Análises Clínicas
	e Toxicológicas. Orientador: Loureiro, Ana Paula de Melo
	1. Toxicologia ambiental 2. DNA 3. Diabetes I. T. II. Loureiro, Ana Paula de Melo, orientador.
	615.9 CDD

André Luiz Teroso Ribeiro

EFEITOS CITOTÓXICOS, GENOTÓXICOS E EPIGENÉTICOS DO BISFENOL A EM CÉLULAS HL-60, MCF-7 E EM RATOS

Comissão Julgadora da Tese para obtenção do Título de DOUTOR

Profa. Dra. Ana Paula de Melo Loureiro orientador/presidente

1°. examinador

2°. examinador

3°. examinador

4°. examinador

São Paulo, _____ de _____ de 2015.

APOIO FINANCEIRO

CAPES: COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR

FAPESP: FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO

CNPq: CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO

PRÓ-REITORIA DE PESQUISA DA UNIVERSIDADE DE SÃO PAULO

Dedicatória

Dedico este trabalho

...A Yeshua

Pela vida, pela força para enfrentar os obstáculos da caminhada,e firmar meus passos de maneira justa e perfeita.

...A minha mãe, Clarisse

Por ser suporte, por aconselhar, Pelas orações, Por ser minha mãe sem seu amor e esforço eu não seria ninguém.

...A minha noiva, Laís

Dedico cada página deste trabalho Pela ajuda, pelo suporte, pela parceria Pela paciência e por literalmente me encher de esperança.

AGRADECIMENTOS

Agradeço...

... A prof^a Dr^a Ana Paula de Melo Loureiro, pelos ensinamentos, pela orientação, por insitar a expansão do meu conhecimento e por me fazer sentir capaz de alcançar mais conhecimento, por dividir seus conhecimentos, pela ajuda nos experimentos e pela compreensão..... Obrigado !!!

... Aos Amigos do Laboratório: Tiago, Anax, Fabiana, Felipe, Larissa, Mariana, Jéssica e João agradeço pela a amizade durante todo o tempo do doutorado, pelos cafés na copa do bloco 13B, pelos memomento de descontração dentro e fora do laboratório, pelas conversas, pelas piadas e pelas risadas, agradeço pela ajuda técnica e intelectual, mesmo nos dias difíceis e pelo companheirismo, vocês ajudaram muito !!! ...Obrigado !!!!!

... Aos amigos da Toxicologia-USP: agradeço as conversas nos corredores, pela ajudar em "emprestar" algum reagente, agradeço a conversa com os professores, que sem duvida ajudaram e demaneira técnica e intelectual ao desenvolvimento deste trabalho... Obrigado !!!!

... Aos amigos do Solar, Daniel (Ted), Hildebrando (Prefeito), Evandro (Somália), Paulo (Masterchef), Fabiano (Pirulito), Douglas (Boleta), Rodrigo (o cara que vai embora de quinta), Daniel (Curió), André (Grilo), aos agregados, e claro a velha guarda (os fundadores) agradeço por serem minha segunda família, por proporcionarem momentos de descontração, pelo "churras" pelos jantares em família, pelo respeito, pela ajuda com o Thor, pela compreensão, pela parceria e por serem amigos. Acredito que meus dias seriam muito monótonos sem vocês... Obrigado !!!!

... Aos Amigos do Jockey Club, Mirtes, Márcia, Regis, Carla, Guilherme, Claudia, Ahsley, Karen, Talita, André, Camila, Wellington, Geisa, Batista, Francisco agradeço pela amizade, pelo conhecimento compartilhado, arrisco a dizer que foi um dos lugares que eu mais ganhei conhecimento até agora, em todos os sentidos, agradeço pelo carinho, pelo respeito, pelos momentos de alegria e de incertezas que compartilhei com cada um de vocês, pelas conversas no "cafezinho" e pelo incentivo, vocês foram muito importantes.... Obrigado !!!!

.... **Aos Amigos**, Rafael Menck de Almeida e Marcelo Macedo, pela amizade e ajuda em inúmeros assuntos, pelo apadrinhamento, pelo apoio, pelos conhecimentos compartilhados, pela parceria Justa e Perfeita... Obrigado!!!!

... Aos Colaboradores deste trabalho, Prof. Dr. Paolo de Mascio, Prof. Dr. Ricardo Ambrosio Fock, Prof^a. Dr^a. Marisa Helena Gennari de Medeiros, Agradeço pela colaboração em experimento e por ceder seus laboratórios para este trabalho pudesse ser desenvolvido.... Muito Obrigado !!!

... A Todos que de uma maneira ou de outra me auxiliaram na conclusão deste trabalho.... Muito Obrigado !!!!

"A ciência consiste em substituir o saber que parecia seguro por uma teoria, ou seja, por algo problemático".

José Ortega y Gasset

"Talvez não tenha conseguido fazer o melhor, mas lutei para que o melhor fosse feito. Não sou o que deveria ser, mas Graças a Deus, não sou o que era antes".

Marthin Luther King

ÍNDICE DE TABELAS

TABELA 1 - VALORES DE COEFICIENTE DE EXTINÇÃO MOLAR CALCULADOS PARA O

 ADUTO BPA-GUA.
 83

ÍNDICE DE FIGURAS

FIGURA 1 - ESTRUTURAS QUÍMICAS DO BISFENOL A (BPA) E DO DIETILESTILBESTROL (DES)
FIGURA 2 - CICLO REDOX ENVOLVENDO QUINONA, SEMI-QUINONA E CATECOL DO BPA
FIGURA 3 - ADUTOS RESULTANTES DA REAÇÃO DE BPA-3,4-QUINONA COM DGUO E DADO
FIGURA 4 - CICLO PEROXIDÁSICO DA MPO. ADAPTADO DE HAMPTON ET AL., 1998
FIGURA 5 - CROMATOGRAMAS OBTIDOS POR HPLC-ESI-MS/MS DE AMOSTRA DE DNA PARA QUANTIFICAÇÃO DE DC, 5-MDC E 5-HMDC
FIGURA 6 - CROMATOGRAMA OBTIDO POR HPLC – PDA (Λ = 260 NM) DA REAÇÃO DE BPA COM NITRITO DE SÓDIO EM MEIO ÁCIDO. FOI
UTILIZADO O SISTEMA CROMATOGRÁFICO 1
M/Z 317) DOS PRODUTOS IV E V DA REAÇÃO DE BPA COM NITRITO DE SÓDIO, SENDO INDICADOS OS PRODUTOS IDENTIFICADOS78
FIGURA 8 - (A) CROMATOGRAMA OBTIDO POR HPLC–PDA (Λ = 385 NM) DA REAÇÃO DE BPA COM SAL DE FREMY E ESPECTRO DE ABSORBÂNCIA DO PRODUTO INDICADO (BPA-3,4-QUINONA). (B) ESPECTRO DE MASSAS NO MODO NEGATIVO DO PRODUTO BPA- 3,4-QUINONA OBTIDO (ESI-MS/MS, ÍONS FRAGMENTOS DE <i>M</i> /Z 241).
FIGURA 9 - (A) CROMATOGRAMA OBTIDO POR HPLC–DAD (λ = 275 NM) DA REAÇÃO DE BPA-3,4-QUINONA COM DGUO, SENDO INDICADO O ADUTO (BPA-GUA) E SEU ESPECTRO DE ABSORBÂNCIA. O PICO INDICADO NÃO APARECEU NAS INCUBAÇÕES CONTROLES; (B) ESPECTRO DE MASSAS DO PRODUTO ISOLADO OBTIDO NO MODO POSITIVO (ESI-MS/MS, ÍONS FRAGMENTOS DE <i>M/Z</i> 394)
FIGURA 10 - ESPECTRO DE 1H RMN DO ADUTO BPA-GUA. ESPECTROS DE RESSONÂNCIA MAGNÉTICA NUCLEAR OBTIDOS DO ADUTO BPA- GUA. ESPECTRO DE RMN COM 0,2 MG DE DSS EM 650 µL DE
FIGURA 11 - CROMATOGRAMAS OBTIDOS POR HPLC-ESI-MS/MS DE AMOSTRAS DE DNA DE TIMO DE BEZERRO INCUBADO <i>IN VITRO</i> COM BPA-3,4-QUINONA PARA ANÁLISE DO ADUTO BPA-GUA. A) DNA SUBMETIDO AO PROCEDIMENTO DE HIDRÓLISE NEUTRA-TÉRMICA SEM O PERÍODO DE 1 H DE AQUECIMENTO A 70 ^O C. B) DNA

FIGURA 15 - VIABILIDADE DAS CÉLULAS HL-60 AVALIADA PELO ENSAIO DO XTT APÓS 24 H DE INCUBAÇÃO COM AS CONCENTRAÇÕES INDICADAS DE BPA E BPANO₂, COM E SEM H₂O₂ (40 NMOL/5 X 10⁴ CÉLULAS). , MÉDIA ± DESVIO PADRÃO, , KRUSKAL WALLIS COM PÓS TESTE DE DUNN, DIFERENÇAS EM RELAÇÃO AO RESPECTIVO

FIGURA 17 - GERAÇÃO DE NITRITO PELAS CÉLULAS HL-60 APÓS: (A) 2 H DE INCUBAÇÃO COM AS CONCENTRAÇÕES INDICADAS DE BPA,

- FIGURA 21 FRAGMENTAÇÃO DO DNA DAS CÉLULAS HL-60 AVALIADA POR CITOMETRIA DE FLUXO APÓS 24 H DE INCUBAÇÃO COM AS CONCENTRAÇÕES INDICADAS DE BPA (A) E BPANO₂ (B), COM E SEM H_2O_2 (40 NMOL/5 X 10⁴ CÉLULAS). N = 4, MÉDIA ± DESVIO PADRÃO, KRUSKAL WALLIS COM PÓS TESTE DE DUNN, DIFERENÇAS EM RELAÇÃO AO RESPECTIVO CONTROLE.*P<0.05; **P<0.01......99
- FIGURA 22 FRAGMENTAÇÃO DO DNA DAS CÉLULAS HL-60 AVALIADA POR CITOMETRIA DE FLUXO APÓS 24 H DE INCUBAÇÃO COM AS CONCENTRAÇÕES INDICADAS DE BPA (A) E BPANO₂ (B), COM E SEM H_2O_2 (40 NMOL/5 X 10⁴ CÉLULAS). N = 4, MÉDIA ± DESVIO PADRÃO, KRUSKAL WALLIS COM PÓS TESTE DE DUNN, DIFERENÇAS EM RELAÇÃO AO RESPECTIVO CONTROLE.*P<0.05; **P<0.01......100
- FIGURA 24 NÍVEIS DE CEDG E 8-OXODG EM DNA DE CÉLULAS HL-60 INCUBADAS COM BPA COM OU SEM H₂O₂ (40 NMOL/5X10⁴ CÉLULAS), NAS CONCENTRAÇÕES INDICADAS POR 24 HORAS. ANÁLISE ESTATÍSTICA UTILIZANDO O TESTE DE KRUSKAL WALLIS COM PÓS

TESTE DE DUNN NÃO MOSTROU DIFERENÇA ENTRE OS GRUPOS.

FIGURA 25 - NÍVEIS DE CEDG E 8-OXODG NO MEIO DE CULTURA (MEIO RPMI SUPLEMENTADO COM 10% DE SFB) DE CÉLULAS HL-60 INCUBADAS COM BPA, COM E SEM H₂O₂ (40 NMOL/5X10⁴ CÉLULAS), NAS CONCENTRAÇÕES INDICADAS POR 24 HORAS. ANÁLISE ESTATÍSTICA UTILIZANDO O TESTE DE KRUSKAL WALLIS COM PÓS TESTE DE DUNN NÃO MOSTROU DIFERENCA ENTRE GRUPOS. 106 FIGURA 26 - NÍVEIS DE CEDG E 8-OXODG EM DNA DE CÉLULAS HL-60 INCUBADAS COM BPANO₂, COM E SEM H₂O₂ (40 NMOL/5X10⁴ CÉLULAS), NAS CONCENTRAÇÕES INDICADAS PELO PERÍODO DE 24 HORAS. *P<0,05 EM COMPARAÇÃO COM O CONTROLE, DE ACORDO COM O TESTE DE KRUSKAL WALLIS COM PÓS TESTE DE DUNN...108 FIGURA 27 - NÍVEIS DE 5-MDC E 5-HMDC EM DNA DE CÉLULAS HL-60 INCUBADAS COM BPA, SEM E COM H₂O₂ (40 NMOL/5 X 10⁴ CÉLULAS), NAS CONCENTRAÇÕES INDICADAS POR 24 H. *P < 0,05, ** P < 0,01 COMPARANDO-SE OS DIFERENTES GRUPOS COM O CONTROLE, DE ACORDO COM TESTE DE KRUSKAL WALLIS COM PÓS TESTE DE FIGURA 28 - VIABILIDADE DAS CÉLULAS MCF-7 AVALIADA POR

CITOMETRIA DE FLUXO APÓS: A) 1 H DE INCUBAÇÃO COM AS CONCENTRAÇÕES INDICADAS DE BPA; B) 24 H DE INCUBAÇÃO COM AS CONCENTRAÇÕES INDICADAS DE BPA, MÉDIA ± DESVIO PADRÃO, KRUSKAL WALLIS COM PÓS TESTE DE DUNN, DIFERENÇAS EM RELAÇÃO AO CONTROLE......116

FIGURA 29 - VIABILIDADE DAS CÉLULAS MCF-7 AVALIADA POR CITOMETRIA DE FLUXO APÓS: A) 1 H DE INCUBAÇÃO COM AS CONCENTRAÇÕES INDICADAS DE BPANO₂; B) 24 H DE INCUBAÇÃO COM AS CONCENTRAÇÕES INDICADAS DE BPANO₂. N = 4, MÉDIA ± DESVIO PADRÃO, TESTE DE KRUSKAL WALLIS COM PÓS TESTE DE DUNN, DIFERENÇAS EM RELAÇÃO AO CONTROLE. *P<0.05; **P<0.01.</p>

FIGURA 33 - (A) ATIVIDADE ETOXIRRESORUFINA-O-DEETILASE DAS CÉLULAS MCF-7 INCUBADAS COM AS CONCENTRAÇÕES INDICADAS DE PCB POR 24 H; B) CONSUMO DE BPA PELAS CÉLULAS MCF-7. AS CÉLULAS FORAM CULTIVADAS NA DENSIDADE DE 2,4 X 106 CÉLULAS POR POCO, INCUBADAS COM 300 NM DE PCB POR 24 H E, APÓS TROCA DO MEIO DE CULTURA, INCUBADAS COM BPA NAS CONCENTRACÕES INDICADAS. ALÍQUOTAS DO MEIO DE CULTURA RETIRADAS TEMPOS INDICADOS FORAM NOS PARA QUANTIFICAÇÃO DE BPA POR HPLC-DAD (λ = 277 NM)......120 FIGURA 34 - (A) NÍVEIS DE CEDG E 8-OXODG EM DNA DE CÉLULAS MCF-7 INCUBADAS COM BPA NAS CONCENTRAÇÕES INDICADAS POR 24 H. (B) NÍVEIS DE CEDG E 8-OXODG EM DNA DE CÉLULAS MCF-7

FIGURA 37 - (A) NÍVEIS DE 5-MDC E 5-HMDC EM DNA DE CÉLULAS MCF-7
INCUBADAS COM BPA NAS CONCENTRAÇÕES INDICADAS POR 24 H.
(B) NÍVEIS DE 5-MDC E 5-HMDC EM DNA DE CÉLULAS MCF-7
INCUBADAS COM 300 NM DE PCB POR 24 H PARA AUMENTO DA
ATIVIDADE ETOXIRRESORUFINA-O-DEETILASE E, APÓS TROCA DO
MEIO DE CULTURA, INCUBADAS COM BPA NAS CONCENTRAÇÕES

FIGURA 41 - MIELOGRAMA DE RATOS SPRAGUE-DAWLEY EXPOSTOS A BPA (50 MG/KG P.C.) NA VIGÊNCIA OU AUSÊNCIA (SADIOS) DE DIABETES. (A) NÚMERO TOTAL DE CÉLULAS DO LAVADO MEDULAR DO FÊMUR; (B) EOSINÓFILOS; (C) LINFÓCITOS; (D) PROMIELÓCITOS; (E) BLASTOS; (F) BASTONETES; (G) SEGMENTADOS; (H) BASÓFILOS; (I) PLASMÓCITOS; (J) MONÓCITOS; (K) ERITROBLASTOS JOVENS; (L) ERITROBLASTOS POLICROMÁTICOS; (M) ERITROBLASTOS ORTOCROMÁTICOS. GRUPOS SADIOS (N = 5), GRUPOS DIABÉTICOS (N = 10), MÉDIA ± DESVIO PADRÃO, TESTE *T DE STUNDENT*, DIFERENÇAS EM RELAÇÃO AO RESPECTIVO CONTROLE (VEÍCULO). *P<0.05, **P<0.01......134

- FIGURA 47 NÍVEIS DE 5-MDC E 5-HMDC EM DNA DE RIM DOS RATOS DOS DIFERENTES GRUPOS EXPERIMENTAIS. ANÁLISE ESTATÍSTICA UTILIZANDO O TESTE DE KRUSKAL WALLIS COM PÓS TESTE DE DUNN NÃO MOSTROU DIFERENÇA ENTRE OS GRUPOS.......142

SUMÁRIO

RESUMO	21
ABSTRACT	23
1. INTRODUÇÃO	26
1.1 Bisfenol A	26
1.2 Exposição ao BPA	28
1.3 Ação estrogênica do BPA	31
1.4 Biotransformação do BPA	33
1.5 Genotoxicidade do BPA	36
2 OBJETIVOS	45
3 MATERIAL E MÉTODOS	47
 3.1. Equipamentos Utilizados 3.1.1. Citômetro de Fluxo 3.1.2. Espectrofotômetro 3.1.3. Concentrador a Vácuo 3.1.4. HPLC - PDA 3.1.5. Espectrometria de massas 	47 47 47 47 48 48
3.2. Condições Cromatográficas	49
3.3. Síntese de 3-nitro-bisfenol A (BPANO ₂) e 3,3'-dinitro-bisfenol A (BPA(NO ₂) ₂)	53
3.4. Síntese de bisfenol A-3,4-quinona (BPA-3,4-quinona)	53
3.5. Síntese do aduto de BPA-3,4-quinona com 2´-desoxiguanosina (dGu	0) 54
3.6 . Quantificação do aduto BPA-Gua em DNA	55
3.7. Curva de crescimento das linhagens celulares HL-60 e MCF-7	56
3.8. Viabilidade celular	56
3.9. Ensaio do XTT	58

3.10. Determinação da geração intracelular de espécies reativas de oxigênio (ERO) e nitrogênio (ERN)58
3.11. Determinação de NO ₂ - no meio de cultura das células HL-6060
3.12. Análise de fragmentação do DNA e ciclo celular60
3.13. Determinação da atividade de MPO em células HL-6061
3.14. Ensaio EROD para verificação da atividade de CYP1A1 em células MCF-762
3.15. Análises da concentração de BPA no meio de cultura das células63
3.16. Quantificação de malonaldeído no meio de cultura por HPLC-PDA.63
3.17. Adutos de DNA no meio de cultura64
3.18. Adutos de DNA em urina66
3.19. Extração de DNA das células66
3.20. Extração de DNA de fígado e rim dos animais67
3.21. Quantificação de 8-oxodG e CEdG em amostras de DNA68
3.22. Quantificação de 5-metil-2'-desoxicitidina (5-metildC) e 5- hidroximetil-2'-desoxicitidina (5-hmdC) em DNA69
3.23. Exposição de ratos ao BPA na vigência e ausência de doença
Inflamatoria sistemica
3.23.1 Animais
3.23.2 Indução de diabetes
3.23.3 Exposição ao BPA
3.23.4. Eutanasia e obtenção de amostras
3.23.5. Hemograma
3.24. ANÁLISE ESTATÍSTICA75
4. RESULTADOS DISCUSSÃO77
4.1. SÍNTESE E CARACTERIZAÇÃO DAS MOLÉCULAS UTILIZADAS NESTE ESTUDO77
4 1 1 Síntese de BPANO ₂ 77
4.1.2 Síntese de DDA 2.4 guinene (DDAO) 70

4.1.3. Síntese do aduto de BPA-3,4-quinona com guanina (Gua) 4.2. Padronização do método de hidrólise do DNA para quantificação do	80
aduto BPA-Guanina	84
4.3.1. Avaliação da citotoxicidade em células HL-60	86
4.3.2. Avaliação de efeitos genotóxicos em células HL-60	.103
4.3.3. Avaliação de efeitos epigenéticos em células HL-60	.109
4.4.1. Avaliação da citotoxicidade em células MCF-7	.115
4.4.2. Avaliação de efeitos genotóxicos em células MCF-7	.121
4.4.3. Avaliação de efeitos epigenéticos em células MCF-7	.125
4.5.1. Caracterização do modelo experimental	.128
4.5.2. Alterações no hemograma e mielograma	.130
4.5.3. Níveis de adutos de DNA na urina	.134
4.5.4. Efeitos genotóxicos e epigenéticos em fígado e rim	.138
6. CONCLUSÃO	.144
7. REFERÊNCIAS	.146
8. ANEXOS	.154
8.1 Ficha do Aluno	.154
8.2 Currículo Lattes	.156
8.3 Intrusções para os membros da banca	.164
8.4. Certificado da Comissão de Ética no Uso de Animais (CEUA) da FCFUSP	.165

Resumo

RIBEIRO, A. L. T. Efeitos Citotóxicos, Genotóxicos e Epigenéticos do Bisfenol A em Células HL-60, MCF-7 e em Ratos. 2015. 162f. Tese (Doutorado) – Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, 2015.

Bisfenol A (BPA) é um insumo largamente utilizado na produção de plástico policarbonato e amplamente difundido no meio ambiente, levando o ser humano à exposição crônica desde o período intrauterino. A literatura aponta a possibilidade de BPA aumentar o risco de diversos tipos de câncer, mas são necessários estudos que possibilitem o entendimento de mecanismos pelos quais isso pode ocorrer. Neste trabalho foram investigados os efeitos do BPA ou nitro-BPA em células HL-60, MCF-7 e tecidos de ratos.

Células HL-60 foram expostas ao BPA ou nitro-BPA nas concentrações de 25, 100 e 250 μ M (0,1 % DMSO v/v) por 2, 24 ou 48 horas na presença ou ausência de H₂O₂ (40 nmol/5 x 10⁴ células). Células MCF-7 foram expostas da mesma forma, sem o uso de H₂O₂, mas na presença e ausência de agonista (PCB) de receptor Ah. Ratos Sprague-Dawley machos receberam BPA diariamente ao longo de 4 semanas (50 mg/kg de peso corpóreo) por gavagem, na vigência e ausência de diabetes, com subsequente coleta de urina, fígado, rins, medula óssea e sangue. Nos experimentos com as células, a viabilidade, ciclo celular, fragmentação do DNA e a produção intracelular de espécies reativas de oxigênio (ROs) foram avaliadas por citometria de fluxo, a atividade da cadeia respiratória mitocondrial pelo ensaio do XTT, e a atividade de MPO de células HL-60 por ensaio de fluorescência, bem como a produção de [•]NO. A metilação e hidroximetilação global do DNA e os adutos 8-oxodG, CEdG, 1,*N*⁶-εdA, 1,*N*²-εdG e BPA-Gua no DNA das células, tecidos, meio de cultura e urina foram analisados por HPLC-ESI-MS/MS. O hemograma e mielograma dos animais foram obtidos no Laboratório de Hematologia Experimental da FCF USP.

Observou-se que tanto BPA quanto nitro-BPA induziram a geração de ROS em células HL-60 logo após 2h de incubação. BPA levou subsequentemente à perda de atividade da cadeia respiratória mitocondrial, aumento da permeabilidade da membrana plasmática, fragmentação do DNA, parada na fase G2/M do ciclo celular e hipermetilação acompanhada de hipohidroximetilação global do DNA. A citotoxicidade induzida pelas mesmas concentrações de nitro-BPA em células HL-60 foi menos pronunciada, sem perda de atividade da cadeia respiratória mitocondrial, com pouca fragmentação do DNA, mas com parada na fase G0/G1 do ciclo celular e indução de hipohidroximetilação global do DNA na presença de H₂O₂. Não foi observada a indução de adutos de DNA nas células HL-60 incubadas com BPA, mas sim de CEdG nas células incubadas com nitro-BPA.

Os dados obtidos a partir da exposição das células HL-60 a BPA e nitro-BPA nos indicam que as duas moléculas provocam alterações metabólicas distintas nesse tipo celular, independentes da via estrogênica, que levam a alterações predominantemente epigenéticas (BPA) ou genéticas e epigenéticas (nitro-BPA), que

podem ter consequências fenotípicas, como progressão maligna, que precisam ser investigadas.

Foi observado que as células MCF-7 são mais resistentes que as células HL-60 à citotoxicidade induzida por BPA e nitro-BPA. Como resultado da exposição das células MCF-7 a BPA, houve pequeno aumento da permeabilidade da membrana plasmática (250 μM), indução dos níveis de ROS após 24 h (25 μM) e aumento da população de células em sub G1, ou seja, com DNA fragmentado (100 µM e 250 µM), mas sem alteração do ciclo celular. No caso de nitro-BPA, foi observada parada do ciclo celular em G2/M (25 µM, 100 µM e 250 µM), assim como aumento de permeabilidade da membrana plasmática após 24 h de incubação (25 µM, 250 µM), sem indução de ROS ou aumento de células em sub G1. Entretanto, observou-se aumento dos níveis de CEdG e 8-oxodG no DNA das células incubadas com BPA (100 µM, 250 µM) sem a ativação prévia de receptores Ah. A ativação dos receptores Ah com PCB levou a menor aumento do nível das lesões após as incubações com BPA. A maior resistência das células MCF-7 aos efeitos citotóxicos do BPA está provavelmente relacionada à ação estrogênica desse xenobiótico. A sinalização estrogênica juntamente com o aumento dos níveis de lesões no DNA aumenta a chance de mutações e de transformação maligna. Nas células com ativação do receptor Ah, BPA levou ainda ao aumento da hidroximetilação global, sem alteração da metilação global do DNA.

Os animais não diabéticos expostos ao BPA apresentaram quantidades diminuídas de promielócitos, blastos e bastonetes na medula óssea (aplasia medular), sem alteração no hemograma. Houve aumento dos níveis de CEdG no fígado, da metilação e hidroximetilação global do DNA hepático, e não foi observada alteração das marcas epigenéticas e adutos de DNA no rim ou na urina. Os animais diabéticos expostos ao BPA apresentaram aumento do número de eosinófilos e linfócitos na medula óssea, podendo-se sugerir a indução de um estado inflamatório alérgico, e aumento do número total de hemácias circulantes e do hematócrito. Houve aumento dos níveis de CEdG, da metilação e hidroximetilação global do DNA hepático, aumento dos níveis de 8-oxodG no DNA renal, sem alteração das marcas epigenéticas no rim, e não foi observada alteração dos adutos de DNA na urina.

Os dados obtidos apontam para a geração de ROS como uma importante via de cito- e genotoxicidade induzidas por BPA. Sua biotransformação para BPA-3,4quinona nos modelos utilizados parece ter menor importância para os efeitos, uma vez que não foi detectada a lesão BPA-Gua em nenhuma amostra de DNA, meio de cultura das células ou urina dos animais. Alterações metabólicas induzidas por BPA e ROS podem favorecer as alterações das marcas epigenéticas observadas no DNA das células HL-60, MCF-7 e fígado dos animais. Todas essas alterações podem contribuir para a transformação maligna de células expostas ao BPA.

Palavras-chaves: Bisfenol A, HL-60, MCF-7, Adutos de DNA, Diabetes.

Abstract

RIBEIRO, A. L. T. **Cytotoxic, Genotoxic and Epigenetics Effects of Bisphenol A on HL-60, MCF-7 cells and Rats 2015.** 162f. Tese (Doutorado) – Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, 2015.

Bisphenol A (BPA) is a compound widely used in polycarbonate plastic production and widespread in the environment, humans are chronic exposed to BPA in intrauterine period and entire life. The literature suggests the possibility of BPA increase the risk of developing cancers, but studies are required to enable the understanding of mechanisms by which this can occur.

HL -60 cells were exposed to BPA or nitro-BPA at concentrations of 25, 100 and 250 uM (0.1% DMSO v/v) for 2, 24 or 48 hours in presence or absence of H_2O_2 (40 nmol/5x10⁴ cells), MCF-7 cells followed a similar profile of exposure without the use of H_2O_2 , but in presence or absence of Ah agonist receptor (PCB126). Male Sprague-Dawley rats received BPA daily over 4 weeks (50 mg/kg body weight) by gavage in presence and absence of diabetes, with subsequent collection of urine, liver, kidney, bone marrow and circulating blood.

The viability, cell cycle, DNA fragmentation and the intracellular production of reactive oxygen species (ROS) was evaluated by flow cytometry, MPO activity and NO production was evaluated by fluorescence assay for HL-60 cells, mitochondrial activity by XTT assay, and the global DNA methylation was checked by HPLC-PDA. DNA adducts 8-oxodG, CEdG, $1,N^6$ -ɛdA, $1,N^6$ -ɛdG and BPA-Gua were quantified by HPLC- ESI-MS/MS in DNA of cells, culture medium, urine and tissue collected from Sprague-Dawley rats. Blood count and bone marrow examination were obtained in collaboration with Experimental Hematology Laboratory of University of Sao Paulo

We observed that both BPA and BPANO₂ induced ROS generation in HL- 60 cells after 2 hours of incubation. BPA subsequently led to failure of mitochondrial respiratory chain activity, increased permeability of the plasma membrane, DNA fragmentation, arrest in G2/M phase of cell cycle, DNA hypermethylation with global hipohydroxymethylation.

We saw low cytotoxicity in HL-60 cells induced by nitro-bpa n the same concentration, without loss of mitochondrial respiratory chain activity, discrete DNA fragmentation, but leading cell cycle to stopping at G0/G1 phase, and induction of DNA global hypermethylation. No lesions were observed in the DNA of HL-60 cells. The results obtained from the exposure of HL-60 cells to BPA and nitro-BPA indicate that these two molecules induce different metabolic abnormalities in this cell line, independent of estrogen pathway, leading to changes in epigenetic (BPA) or genetic and epigenetic (nitro-BPA) profile, that can induce phenotypic consequences such as malignant progression.

It was observed along the study that MCF-7 cells are more resistant than HL-60 cells to cell damage induced by BPA and nitro-BPA. As a result of MCF-7 cells exposure to BPA, we saw a slight increase in membrane permeability (250 mM), ROS generation after 24h (25 mM) and increase in cell population in sub G1, so we had DNA fragmentation (100 uM and 250 uM), but with no effect on cell cycle. However, we observed increased levels of CEdG and 8-oxodG on DNA of cells incubated with BPA (100 uM, 250 mM) without prior activation of Ah receptors. The activation of Ah receptors with PCB took a small increase in the level of DNA lesions after incubations with BPA. MCF-7 cells resistance to the cytotoxic effects of BPA is probably related to estrogen action of this compound. Estrogen signaling in addition with the increased levels of DNA damage increases the chance of mutations and malignant transformation. In cells with Ah receptor activation, BPA also led to increased DNA global hydroxymethylation, without changing the global DNA methylation.

Nondiabetic animals exposed to BPA had decreased amounts of promyelocytes, blasts and rods in the bone marrow, with any change in blood count. There were an increase of CEdG levels in liver, methylation and global hydroxymethylation on hepatic DNA, and was observed any alteration on epigenetic markers and DNA adducts in kidney or urine. On the other hand diabetic animals exposed to BPA showed increased numbers of eosinophils and lymphocytes in bone marrow, suggesting the induction of an allergic inflammatory state. There were increased levels of CEdG, methylation and global hydroxymethylation on hepatic DNA, increased 8-oxodG levels on kidney DNA without changing epigenetic markers, was not observed DNA adducts in urine. The data obtained indicate that the generation of ROS could be the major route of cytotoxic and genotoxic induced by BPA exposure.

BPA biotransformation to BPA-3,4-quinone used in the models seem to have poor effects, since we was not detected BPA-Gua lesion in any DNA sample, culture medium of cells or urine of the animals. Metabolic changes induced by BPA and ROS can enable changes in epigenetic markers observed in the DNA of HL-60 cells, MCF-7 and liver tissue. All these changes may contribute to malignant transformation of cells that were exposed to BPA.

Keywords: Biphenol A, HI-60, MCF-7, DNA Adducts, Diabetes

Introdução

1. Introdução

1.1 Bisfenol A

O Bisfenol A (BPA), 2,2'-bis[4-hidroxifenil]propano (Figura 1), foi sintetizado pela primeira vez em 1891, tornando-se em 1957 um insumo largamente utilizado no ramo industrial. O BPA é uma das principais substâncias utilizadas na síntese do plástico policarbonato, conferindo-lhe resistência térmica e mecânica, além de proporcionar transparência ao plástico. O policarbonato é utilizado para produzir uma variedade de produtos de uso comum, incluindo mamadeiras infantis, garrafas de água, potes para acondicionamento de alimentos, equipamentos esportivos, dispositivos médicos e dentários, cimentos e selantes dentais, lentes de óculos, CDs, DVDs e eletrodomésticos (Herath, Jin et al. 2004; Alonso-Magdalena, Vieira et al. 2010; Galloway, Cipelli et al. 2010; American Dental Association Council on Scientific 2014). Outras aplicações do BPA no ramo industrial são atribuídas à produção de PVC, fabricação de papel termo sensível, poliuretano, poliamida e retardantes/inibidores de chama, sendo utilizados para este ramo de aplicação cerca de 10% da produção anual de BPA (EURAR, 2003; E/E, 2003; EFSA, 2006(Zhang, Xu et al. 2014).

Além da presença nos produtos plásticos, o BPA é utilizado para a produção da resina epóxi, largamente utilizada na produção de tintas, adesivos, revestimentos de latas de alumínio comumente utilizadas para acondicionar bebidas e alimentos. A literatura ainda aponta a utilização desta resina na construção civil, como selante para estruturas de mármore e granito, utilizadas principalmente nos estágios de acabamento de construções (2008; Groff 2010;

Schecter, Malik et al. 2010; Manfo, Jubendradass et al. 2014; Zhang, Xu et al. 2014).

Por fazer parte de tantos processos industriais a literatura aponta que a produção anual de BPA chega a 2,2 milhões de toneladas, o que ainda não é suficiente para suprir a demanda de mercado, contudo o dado mais alarmante é que cerca de 25% deste montante é liberado no meio ambiente (Ranciere, Lyons et al. 2015)

A estrutura do BPA é semelhante à do carcinógeno dietilestilbestrol (DES) (Figura 1), um estrógeno sintético não-esteroidal utilizado durante muitos anos para o tratamento de problemas relacionados a próstata e ainda para diminuir o risco de aborto espontâneo (Fenichel, Chevalier et al. 2013). Alguns anos depois do seu uso o DES foi considerado um agente cancerígeno por aumentar o risco de câncer de mama e vagina, além do risco de câncer de testículo em homens, quando a exposição ocorre durante o desenvolvimento fetal (Keri, Ho et al. 2007; Reed and Fenton 2013; Bhan, Hussain et al. 2014; Nomura, Matoda et al. 2015). A semelhança do BPA com esse hormônio sintético fez surgir dúvidas quanto à sua segurança, o que levou ao estudo da possível atividade estrogênica do BPA, que em pouco tempo gerou resultados suficientes para considerá-lo um composto xenoestrogênico (Masuda, Terashima et al. 2005; Cavalieri and Rogan 2010; Renz, Volz et al. 2013; Thigpen, Setchell et al. 2013; Bhan, Hussain et al. 2014;

Figura 1 - Estruturas químicas do Bisfenol A (BPA) e do dietilestilbestrol (DES)

No Brasil a importação, fabricação e venda de mamadeiras contendo BPA foram proibidas pela ANVISA a partir de Janeiro de 2012, decisão alinhada às medidas já adotadas em outros países, como Canadá e Estados da União Europeia, para reduzir a exposição de crianças a esse xenoestrógeno. Essa proibição foi realizada pela RDC 41/2011.

1.2 Exposição ao BPA

A grande utilização unida às suas características físico-químicas faz do BPA um composto largamente distribuído no meio ambiente e disponível para exposição do ser humano no meio ocupacional, ambiental e pelo consumo de alimentos (Geens, Aerts et al. 2012; Park, Koduru et al. 2014).

Ocupacionalmente os humanos estão expostos ao BPA em fábricas de tintas, em centros de funilaria automotiva ou em indústrias produtoras de adesivos, além de trabalhadores que utilizam uniformes com revestimento antichama e, sobretudo, nas indústrias de síntese e manipulação do BPA ou da resina epóxi (Jolanki, Kanerva et al. 1995; Vandenberg, Hauser et al. 2007; Wetherill, Akingbemi et al. 2007; Groff 2010). Evidências literárias citam a exposição humana ao BPA em concentrações variadas no meio ambiente, partindo principalmente de fontes como água ou poeira contaminada pelo uso rotineiro do BPA, além da atividade de reciclagem por incineração do plástico ou papel termo sensível que permite a liberação do BPA no ar (Staples, Dorn et al. 1998; West, Goodwin et al. 2001; Goodwin, Mynar et al. 2005; Kang, Katayama et al. 2006).

A exposição por via oral não inclui somente alimentos que de alguma forma entraram em contato com o BPA durante o cultivo ou preparação, mas contaminação originada também pela pelo processo de lixiviação (transferência) do BPA dos acondicionantes de alimentos. A literatura mostra que o BPA pode lixiviar do acondicionante plástico (potes, garrafas, copos) para o acondicionado (água ou produtos alimentícios), ou ainda pelo uso da resina epóxi como revestimento interno de latas metálicas que acondicionam alimentos e bebidas (Fasano, Esposito et al. 2015). A partir do revestimento das latas de alimentos, foi detectada liberação de BPA em concentrações que variaram de 0,004 a 0,023 mg/Kg de alimento (Ehlert, Beumer et al. 2008; Fasano, Esposito et al. 2015). O processo de lixiviação pode acontecer pela polimerização incompleta, ou ainda por hidrólise favorecida por temperatura, facilitando a liberação do BPA para o meio. Esse processo pode ser aumentado quando o acondicionado apresenta em sua composição compostos químicos como cafeína, taurina ou glicose em concentrações elevadas, o que favorece a hidrólise das ligações de BPA mal polimerizado (Ehlert, Beumer et al. 2008; Mendiola, Jorgensen et al. 2010; Rogers, Metz et al. 2013; Thigpen, Setchell et al. 2013).

Dentre as vias de exposição do ser humano ao BPA, a via oral é a mais preocupante, pois essa exposição atinge uma gama de indivíduos com faixa etária variada e diferentes atividades laborais. As agências regulamentadoras Environmental Protection Agency (EPA) americana e a European Food Safety Authority (EFSA) preconizaram que em humanos a quantidade de ingestão diária tolerável (TDI) para o BPA é de 50 e 25 µg/Kg/dia, respectivamente. Esse limite foi calculado pela redução da dose em 1000 vezes a partir de estudos realizados pelo National Toxicology Program (NTP) na década de 1980, em que a ação carcinogênica foi avaliada em ratos e camundongos alimentados cronicamente com BPA, apresentando resultados que apontavam a Menor Dose com Efeito Adverso Observável (LOAEL) de 50 mg/Kg/dia . A administração de BPA foi iniciada na quinta semana de vida e ocorreu por 103 semanas, não tendo sido evidenciada uma ação carcinogênica, apesar de ter sido verificado leve aumento da incidência de câncer testicular e do sistema hematopoiético (NTP, 1982). Entretanto, limitações do estudo do NTP, tais como exposição dos animais somente na fase adulta, uso de altas concentrações de BPA sem considerar que interferentes endócrinos em baixas concentrações podem provocar efeitos não evidenciados nas concentrações mais altas, uso de apenas uma linhagem de ratos e camundongos com susceptibilidades desconhecidas ao desenvolvimento de câncer por exposição ao BPA, e falta de avaliação da susceptibilidade para desenvolvimento de câncer quando da exposição concomitante a outros carcinógenos, não permitem concluir que o BPA não seja carcinogênico (Keri, Ho et al. 2007). Com base no conhecimento atual dos modos de ação do BPA, o limite recomendado pela EPA pode não ser seguro.

Um humano pode ingerir de 1,7 a 2,7 µg de BPA por dia, procedente de alimentos contaminados por acondicionamento ou cultivo, sem considerar o BPA presente na poeira que o indivíduo pode deglutir juntamente com os alimentos, em níveis que variam de 0,008 a 0,014 µg por dia. A esses valores podem ser somadas as concentrações de BPA em refrigerantes enlatados e em água engarrafada, variando de 0,0045 a 4,5 µg por litro e 0,1 a 0,7 µg por litro, respectivamente (Dekant and Volkel 2008; Ehlert, Beumer et al. 2008; Cao, Corriveau et al. 2009; Groff 2010; Loganathan and Kannan 2011). A estimativa da União Européia é de que os seres humanos estejam expostos a BPA no intervalo de 10 a 600 µg/dia ou 0,7 a 9 µg BPA/Kg/dia, considerando todas as fontes (Naik and Vijayalaxmi 2009).

1.3 Ação estrogênica do BPA

A ação do BPA sobre o sistema endócrino é conhecida, com vários estudos comprovando a influência do BPA sobre a função hormonal de roedores, o que o levou a ser classificado como um interferente endócrino (Rogers, Metz et al. 2013; Bittner, Denison et al. 2015; Patterson, Mo et al. 2015; Vrooman, Oatley et al. 2015).

Os interferentes endócrinos podem se ligar a receptores hormonais e desempenhar atividade agonista ou antagonista. Podem bloquear a ligação de outros hormônios que naturalmente se ligariam ao receptor em questão ou ainda aumentar a concentração hormonal, levando a uma alteração na ação desses hormônios (Schug, Janesick et al. 2011; Geens, Aerts et al. 2012).

O BPA pode se ligar aos receptores β estrogênicos e atuar como agonista, e aos receptores α estrogênicos e atuar como agonista ou

antagonista, desencadeando efeitos que dependem da concentração e tempo. Tal característica faz com que o BPA apresente efeitos tanto em concentrações baixas quanto altas, havendo uma resposta não-monotônica a doses. Esse fenômeno conhecido como hormese faz com que haja discrepância entre dados de diferentes estudos envolvendo o BPA e dificulta o estabelecimento de uma concentração limite para exposição humana (Hiroi, Tsutsumi et al. 1999; Schug, Janesick et al. 2011; Rogers, Metz et al. 2013; Thigpen, Setchell et al. 2013).

Em diversos estudos, fetos de roedores expostos a baixas doses de BPA (20 – 400 µg/Kg/dia) apresentaram efeitos estrogênicos após o nascimento (Calafat, Kuklenyik et al. 2005). Os efeitos são diversos, como antecipação da puberdade, hiperplasia de próstata, diminuição do número de espermatozoides, diminuição dos níveis de testosterona, alteração do desenvolvimento e organização tecidual da glândula mamária, e diminuição da resposta celular induzida por hormônios, além de carcinoma mamário, diabetes, doenças cardiovasculares, alterações das funções de enzimas hepáticas, efeitos sobre o desenvolvimento cognitivo e a reprodução (Zoeller, Bansal et al. 2005; Galloway, Cipelli et al. 2010; Groff 2010; Melzer, Rice et al. 2010; Loganathan and Kannan 2011). Camundongos expostos oralmente ao BPA (20 – 100 µg/kg/dia) apresentaram alteração na meiose, com ocorrência de gametas aneuplóides, alteração que é conhecida como a principal causa de retardo mental e também responsável pela interrupção da gravidez em humanos (Hassold and Hunt 2001; Hunt, Koehler et al. 2003; Popovic, Martinez-Garcia et al. 2014).

É possível que produtos resultantes da biotransformação de BPA por citocromo P450, mais especificamente as isoformas CYP 1A1 e 1A2, possuam maior afinidade pelos receptores de estrógeno que a molécula original, explicando o fato de a ação estrogênica observada *in vivo* ser muito maior que nos estudos *in vitro* (Ben-Jonathan and Steinmetz 1998). Essa hipótese foi investigada por Yoshihara e colaboradores, tendo sido constatado que a biotransformação de BPA por fração S9 de fígado humano e de ratos Wistar resulta em pelo menos um metabólito com atividade estrogênica muitas vezes aumentada em relação ao BPA, em modelos *in vitro*. A atividade estrogênica foi parcialmente inibida ao ser utilizado um inibidor de P450 (Yoshihara, Makishima et al. 2001).

Ainda que a literatura apresente muitos efeitos do BPA sobre o sistema endócrino, conhece-se muito pouco a respeito da toxicidade deste xenoestrógeno sobre os demais sistemas do organismo. A falta de concordância entre diferentes estudos ainda deixa uma lacuna no conhecimento sobre sua toxicidade e levanta questões sobre sua biotransformação e geração de intermediários reativos, que poderiam ajudar a esclarecer vias pelas quais BPA exerce seus efeitos tóxicos.

1.4 Biotransformação do BPA

O BPA pode ser biotransformado por humanos e roedores ao nível intestinal e hepático, durante o metabolismo de primeira passagem, formando vários metabólitos. Alguns trabalhos mostram que roedores tem capacidade de metabolizar o BPA, administrado por via oral, transformando-o em um metabólito conjugado com o acido glicurônico (GLcA), formando um complexo

GLcA-BPA, sendo o metabólito encontrado em maior quantidade na urina desses animais. Contudo, outro metabólito, em menor quantidade, foi encontrado nessa mesma matriz, sendo um produto da conjugação do BPA com sulfato, formando um complexo S-BPA (Yoshihara, Mizutare et al. 2004).

Além do GLcA-BPA e do S-BPA, a literatura mostra a formação de metabólitos gerados via citocromo P450, onde o BPA sofre reações oxidativas formando produtos altamente reativos (Yoshihara, Makishima et al. 2001; Jaeg, Perdu et al. 2004). Vários metabólitos são formados por esta via, por exemplo, metabólitos hidroxilados do BPA, como o 3-OH-BPA, metabólito este que pode ser oxidado formando um composto altamente reativo, denominado de BPA-3,4-quinona. Este metabólito tem sido relacionado com atividade genotóxica, como formação do aduto de DNA BPAQ-*N*⁷Gua e formação de sítios apurínicos (Bindhumol, Chitra et al. 2003; Edmonds, Nomachi et al. 2004).

A compreensão das vias de biotransformação do BPA em mamíferos é um passo necessário para que se possam estimar riscos à saúde decorrentes da exposição frequente a esse xenobiótico. Estudos *in vivo* vêm sendo desenvolvidos com esse intuito, principalmente considerando a exposição a baixas doses, sendo possível verificar que apesar de o conjugado BPA-glicuronídeo ser o principal metabólito excretado, vários outros metabólitos, incluindo conjugados de glicose, glicuronídeos desidratados, duplos conjugados, compostos metoxilados conjugados e dissacarídeos são detectados em tecidos e fetos de camundongos fêmeas expostos a BPA (25 µg/Kg, s.c.) (Zalko, Soto et al. 2003). A partir da caracterização de vários metabólitos formados *in vivo* é possível inferir que intermediários reativos sejam gerados, os quais podem contribuir para a toxicidade. De fato, uma

fração de BPA não passível de extração foi detectada após 24 h em fetos das fêmeas que receberam BPA. Tal fração pode ser decorrente da ligação de intermediários reativos a biomoléculas, dentre eles metabólitos hidroxilados, como BPA-catecol (Zalko, Soto et al. 2003). É possível que tecidos capazes de reter xenoestrógenos durante a organogênese estejam mais sujeitos a instabilidade genética, mutações e aberrações celulares que podem permanecer latentes e se manifestar na fase adulta (Ben-Jonathan and Steinmetz 1998).

Em um estudo de farmacocinética em humanos, seis voluntários adultos que receberam D₁₆-BPA (5 mg) oralmente apresentaram rápida absorção no trato gastrointestinal, com quase completa recuperação da dose administrada na forma conjugada D₁₆-BPA glicuronídeo na urina após 24 h (meia-vida de excreção urinária de 5,4 h) (Volkel, Colnot et al. 2002). Outros estudos, no entanto, mostram que a forma não conjugada do BPA é frequentemente detectada em humanos e que sua eliminação não é tão rápida, sugerindo meiavida mais longa, bioacumulação ou exposições não orais mais significativas (Stahlhut, Welshons et al. 2009; Vandenberg, Colborn et al. 2012). Concentrações reportadas de BPA na urina de humanos em condições normais de exposição estão na faixa de 0,2 a 20 µg/L, havendo diferenças geográficas e temporais (Calafat, Kuklenyik et al. 2005; Lang, Galloway et al. 2008). As maiores concentrações urinárias de BPA foram associadas à ocorrência de doença cardiovascular, diabetes e concentrações anormais das enzimas hepáticas γ-glutamiltransferase, lactato desidrogenase e fosfatase alcalina em um estudo transversal que envolveu 1455 participantes entre 18 e 74 anos de idade nos Estados Unidos (Lang, Galloway et al. 2008). Níveis circulantes de

BPA não conjugado reportados em soro humano estão na faixa de 0,2 a 20 µg/L (Welshons, Nagel et al. 2006). Não há relatos na literatura sobre níveis de BPA em soro e urina da população brasileira.

1.5 Genotoxicidade do BPA

BPA, ao ser metabolizado via citocromo P450, gera quinonas, moléculas reativas capazes de se ligarem covalentemente ao DNA, RNA e proteínas. Além disso, quinonas podem ser reduzidas a catecóis e entrar em um ciclo redox, via semi-quinonas, favorecendo a geração de espécies reativas de oxigênio (ROS) (Figura 2). O esteroide sintético DES, que apresenta estrutura semelhante ao BPA (Figura 1), sofre esse tipo de biotransformação, sendo detectada a formação de adutos de DNA in vivo (Liehr 1990; Ben-Jonathan and Steinmetz 1998). Da mesma forma, BPA é biotransformado para o-quinona, gerando adutos de DNA in vitro e in vivo que foram detectados por ³²Ppostlabeling (Atkinson and Roy 1995; Atkinson and Roy 1995; Izzotti, Kanitz et al. 2009; De Flora, Micale et al. 2011). Pelo menos 7 adutos foram gerados na reação de DNA e dGMP (desoxiguanosina monofosfato) com BPA-3,4-quinona com BPA ativado enzimaticamente por fração microssomal ou е peroxidase/H₂O₂. Linhagens de células de próstata humana apresentaram níveis aumentados de adutos de DNA quando expostas a altas concentrações (200 µM, 24 h) ou baixas concentrações (1 nM, 2 meses) de BPA. Nos estudos in vivo foi detectada a formação de adutos de DNA no fígado e células mamárias de ratos e camundongos. Entretanto, em nenhum desses estudos as estruturas dos adutos foram elucidadas (Atkinson and Roy 1995; Izzotti, Kanitz et al. 2009; De Flora, Micale et al. 2011).
Nos dois estudos realizados até o momento para caracterização estrutural dos adutos de DNA gerados por BPA, foi verificado que o metabólito BPA-3,4-quinona origina os adutos 3-OH-BPA-*N*⁷dGuo, 3-OH-BPA-*N*⁷dAdo e 3-OH-BPA-*N*³dAdo e os respectivos produtos de depurinação ao reagir com os nucleosídeos/nucleotídeos isoladamente ou com DNA *in vitro* (Figura 3) (Edmonds, Nomachi et al. 2004; Qiu, Yang et al. 2004). A reação ocorre preferencialmente com a base guanina, sendo que o aduto de adenina não foi observado nas reações com DNA (QIU *et al.*, 2004). Sítios apurínicos no DNA são reconhecidamente mutagênicos e a indução dessas lesões por BPA pode fazer parte do seu mecanismo de carcinogênese (QIU *et al.*, 2004). Estrógenos sofrem o mesmo processo de biotransformação mencionado acima, gerando adutos de DNA que também depurinam. Tais adutos são apontados como potenciais biomarcadores para predizer o risco de câncer de próstata (Yang, Hong et al. 2009).

Figura 2 - Ciclo redox envolvendo quinona, semi-quinona e catecol do BPA

Figura 3 - Adutos resultantes da reação de BPA-3,4-quinona com dGuo e dAdo.

Ao ser avaliada a genotoxicidade do BPA em células da medula óssea de camundongos Swiss, *in vivo*, não foi observada a indução de efeitos clastogênicos, mas sim de lesões/intervalos acromáticos ao nível cromossômico que podem afetar a condensação dos cromossomos e o aparato mitótico. Tais lesões representam grande amplificação de danos moleculares iniciais no DNA. O mecanismo molecular subjacente a essas lesões induzidas por BPA é desconhecido, mas a formação de adutos de DNA é apontada como possível explicação para essas observações. Além disso, foram observados efeitos c-mitóticos, que representam uma forma indireta de testar o potencial aneugênico devido a danos nas fibras do fuso (Naik and Vijayalaxmi 2009). É conhecido há algum tempo que tanto BPA quanto outros xenoestrógenos interferem na organização de microtúbulos, o que pode levar a aneuploidia e aberrações cromossômicas (Liehr 1990). Uma vez que os efeitos mencionados acima nas células da medula óssea dos camundongos foram observados no período de 48 a 72 h após a administração de BPA (50 e 100 mg/kg, em doses orais únicas), existe a possibilidade de que produtos da biotransformação de BPA e/ou ROS geradas no processo estejam envolvidos (Naik and Vijayalaxmi 2009).

A administração oral de baixas doses de BPA (0,2 – 20 µg/Kg/dia) a ratos Wistar por 30 dias resultou em estresse oxidativo hepático em todas as doses testadas, com redução das atividades das enzimas antioxidantes superóxido dismutase, catalase, glutationa redutase e glutationa peroxidase e aumento dos níveis de H₂O₂ e peroxidação lipídica de forma dose dependente. Essas alterações não ocorreram com a administração concomitante de vitamina C, confirmando o efeito oxidante do BPA (BINDHUMOL *et al.*, 2003). Ao ser feita a administração de doses mais elevadas de BPA (25 mg/Kg/dia, 3 dias por semana) em ratos por 50 dias, efeitos oxidantes mais drásticos foram observados no fígado dos animais, os quais foram agravados pela administração concomitante de vitamina C (Korkmaz, Ahbab et al. 2010). Foi

ainda observada, em outros estudos, a indução de estresse oxidativo por BPA em cérebro, rim, testículos e esperma de camundongos e ratos (Chitra, Latchoumycandane et al. 2002; Chitra, Rao et al. 2003; Kabuto, Hasuike et al. 2003; Kabuto, Amakawa et al. 2004; De Flora, Micale et al. 2011). Estresse oxidativo é apontado como o principal mecanismo de indução de danos em DNA na linhagem germinativa. Tais danos são correlacionados a prejuízo na fertilização, baixas taxas de implantação embrionária, aumento da incidência de abortos, alta taxa de morbidade na descendência e diminuição da fertilidade. Substâncias estrogênicas que possuem o grupo catecol em suas estruturas mostraram-se indutoras de estresse oxidativo e de danos em DNA

Como mencionado anteriormente, foi verificado que BPA induz danos à medula óssea e possivelmente o câncer no sistema hematopoiético de roedores (Naik and Vijayalaxmi 2009). No estudo realizado por Korkmaz e colaboradores foi verificado que, além do dano hepático, BPA induziu anemia macrocítica hipercrômica nos ratos quando administrado em conjunto com vitamina C, podendo representar uma interferência na eritropoiese ou aumento da destruição de eritrócitos (Korkmaz, Ahbab et al. 2010). O mesmo efeito foi observado por Ulutas e colaboradores, acompanhado por indução de fragmentação do DNA em células do sangue (Ulutas, Yildiz et al. 2011).

A literatura traz poucos dados sobre biotransformação do BPA por mieloperoxidase (MPO), apesar de a peroxidase de rábano (HRP) ser utilizada experimentalmente para a remoção de BPA de água através da catálise de formação de polímeros insolúveis de BPA via oxidação (Davis and Burns 1990). MPO, no entanto, oxida fenóis, além de ser uma enzima de grande

importância para a metabolização de diversos xenobióticos no organismo humano (Xu, Chi et al. 2013).

MPO utiliza H₂O₂ para catalisar a biotransformação de uma série de compostos orgânicos. A princípio, MPO se encontra em uma forma inativa, a forma férrica (Fe⁺³), que reage com H₂O₂ e gera o composto I (MPO + H₂O₂ \rightarrow composto I + H₂O), que é a forma cataliticamente ativa da MPO (Furtmuller, Zederbauer et al. 2006; Hansson, Olsson et al. 2006). Por sua vez, o composto I oxida o ânion cloreto para HCIO (composto I + Cl⁻ + H⁺ \rightarrow MPO + HCIO) (Hampton, Kettle et al. 1998).

Com a formação do composto I, inicia-se um ciclo peroxidásico clássico envolvendo o composto I, composto II e a forma férrica. Nesse ciclo, os compostos I e II oxidam substratos orgânicos (RH). A produção de HCIO pode ser diminuída caso moléculas de RH ou ânion superóxido estejam presentes no meio para reagir com o composto II e converter a MPO para a forma férrica, iniciando um novo ciclo (composto II + RH/ $O_2^{\bullet} \rightarrow MPO$ + radical (R[•]) + H⁺). Existe também a possibilidade de formação do composto III a partir da reação da MPO na forma férrica com excesso do ânion superóxido ou H₂O₂ (MPO + H₂O₂/ O₂[•] \rightarrow composto III + H⁺) (Hampton, Kettle et al. 1998). A figura abaixo ilustra as reações de MPO no ciclo peroxidásico clássico.

Figura 4 - Ciclo peroxidásico da MPO. Adaptado de HAMPTON et al., 1998

Dados da literatura mostram ainda que BPA pode ser nitrado ao reagir com nitrito, formando os produtos 3-nitro-BPA ou 3,3'-dinitro-BPA altamente mutagênicos. Não há informações quanto à reatividade dessas moléculas com DNA ou sobre a geração de ROS pelas mesmas. Uma vez que nitrito está presente em alimentos e a nitração de moléculas pode ocorrer no trato digestivo e em condições inflamatórias, é importante investigar a possibilidade de BPA nitrado levar a danos em biomoléculas, visto que a literatura o destaca como uma molécula mutagênica (Schrader, Langlois et al. 2002; Masuda, Terashima et al. 2005).

Atualmente são considerados quatro modos de ação do BPA que podem contribuir conjuntamente para o aumento do risco de câncer: interferência endócrina estrogênica, indução de progressão tumoral, genotoxicidade, e reprogramação do desenvolvimento com aumento da susceptibilidade a outros eventos carcinogênicos (Keri, Ho et al. 2007). Apesar de muitos estudos *in vitro* e *in vivo* evidenciarem esses modos de ação, são necessários atualmente estudos que possibilitem o entendimento de mecanismos pelos quais os

diversos efeitos são gerados. Além disso, a realização de estudos epidemiológicos moleculares para avaliar a relação causal entre exposição a BPA e efeitos adversos em humanos depende de avanços na pesquisa de novos marcadores e do desenvolvimento de métodos sensíveis para sua detecção/quantificação (Keri, Ho et al. 2007).

Objetivos

2 Objetivos

Avaliar efeitos citotóxicos, genotóxicos e epigenéticos do BPA e BPANO₂ em modelos *in vitro*, utilizando duas linhagens celulares com características distintas: células HL-60 derivadas de leucemia promielocítica humana e células MCF-7 derivadas de adenocarcinoma mamário humano, buscando entender mecanismos pelos quais os efeitos são gerados.

Avaliar efeitos citotóxicos, genotóxicos e epigenéticos do BPA *in vivo* em ratos Sprague Dawley sadios ou na vigência de diabetes.

Objetivos específicos:

- Avaliar efeitos citotóxicos, genotóxicos e epigenéticos do BPA em dois modelos celulares distintos: células HL-60 com ou sem ativação de MPO; e células MCF-7 com ou sem ativação de CYP450.
- Avaliar, comparativamente, efeitos citotóxicos, genotóxicos e epigenéticos do BPANO₂ nas células HL-60 e MCF-7.
- 3- Avaliar efeitos tóxicos do BPA *in vivo*, avaliando o hemograma, mielograma e efeitos genotóxicos e epigenéticos no fígado e rim dos animais.

Material e Métodos

3 Material e Métodos

3.1. Equipamentos Utilizados

3.1.1. Citômetro de Fluxo

Todos os ensaios relacionados com citometria de fluxo foram realizados em um citômetro de fluxo FACS Canto II (Becton Dickinson, Mountains View, CA, USA) disponibilizado pelo Prof. Sandro R. Almeida (FCF-USP) e analisados usando o software *Flow Jo[®]* (versão 9.1). Os dados de 10.000 células foram obtidos e somente as células morfologicamente viáveis foram consideradas para análise.

3.1.2. Espectrofotômetro

Todos os ensaios que utilizaram leitura de absorbância foram realizados no leitor de microplacas com ajuste de comprimento de onda 190 a 880nm *SpectraMAx 190*® (Molecular Devices – Chicago, IL, USA) e os dados gerados foram analisados pelo software *SoftMax Pro* versão 5.4.

Para leitura de fluorescência foi utilizado o leitor de microplacas multicanal *Synergy H1*[®] (Biotek – Winooski, VM, USA). Os dados foram analisados pelo software *Gen 5 data analysis* versão 5.

3.1.3. Concentrador a Vácuo

Para a eliminação de solventes e concentração de solutos presentes nas soluções obtidas durante a realização dos ensaios deste trabalho, foi utilizado um concentrador a vácuo da marca *miVAC* (Ipswich, UK) do tipo modular, composto por uma câmara de concentração (*quattro concentrator*), um condensador de solvente (*speed trap*), um módulo de controle de pressão e uma bomba de vácuo.

3.1.4. HPLC - PDA

As análises e purificações realizadas com UV/VIS foram efetuadas em um equipamento da Shimadzu Corporation (Kyoto, Japão) equipado com duas bombas LC-20AT, um detector de arranjo de fotodiodos PDA-20AV, um autoinjetor (Proeminence SIL-20AC) e um forno para colunas (CTO-10AS/VP) controlado por um módulo de comunicação CBM-20A. Os dados foram processados pelo software LC-Solution 1.21 (Shimadzu, Japão). Os sistemas com as condições cromatográficas estão descritos em seção específica.

3.1.5. Espectrometria de massas

As análises por ESI-MS/MS foram realizadas utilizando-se os espectrômetros de massas disponibilizados pelo Prof. Paolo Di Mascio e Profa. Marisa H. G. Medeiros (Instituto de Química da USP - IQUSP). A ionização das moléculas de interesse ocorreu em modo positivo ou negativo, dependendo da análise. A otimização do sistema e as condições de eluição empregadas estão descritas no decorrer do texto. Abaixo seguem as descrições dos equipamentos utilizados.

ESI-MS/MS 1 - Sistema de HPLC da Shimadzu (Kyoto, Japão) equipado com um injetor automático (SIL– 10AD/VP), um injector Rheodyne (Cotati, CA), uma válvula automática de comutação de fluxo (FCV-12AH), duas bombas (Class LC 10AD) e um detector de absorbância SPD-10AV/VP, controlados por um módulo de comunicação (SCL-10A/VP-CBM 10A) e pelo software Class-VP (Shimadzu, Japão), acoplado a um espectrômetro de massas Quattro II da empresa Micromass (Manchester, Reino Unido). Os dados foram processados utilizando-se o software MassLynx 3.2 (Micromass, Reino Unido).

ESI-MS/MS 2 – Sistema de HPLC da Agilent série 1200 (Wilmington, EUA) equipado com uma bomba binária (Agilent 1200 G1312B), uma bomba isocrática (Agilent 1200 G1310A), um forno para coluna (Agilent 1200 G1316B), um detector de absorbância de arranjo de diodos (Agilent 1200 DAD G1315C) e um injetor automático (G1367C Agilent 1200). O sistema de HPLC é integrado a um espectrômetro de massas Linear Quadrupole Ion Trap modelo 4000 QTRAP da empresa Applied Biosystems/MDS Sciex Instruments (Foster City, EUA). Os dados foram processados utilizando o *software* Analyst 1.6 (Applied Biosystems, EUA).

Ion trap ESI-MS_n - Sistema de HPLC da Shimadzu acoplado ao espectrômetro de massas modelo AmaZon Speed (Bruker Daltonics), com fonte ESI, duplo funil de íons e analisador tipo Ion Trap.

3.2. Condições Cromatográficas

Neste item estão descritas as condições cromatográficas utilizadas no decorrer deste trabalho.

Condição Cromatográfica 1 – Coluna Luna C18 (2) 250 mm x 4,6 mm ID, 5 μ m (Phenomenex, Torrance, CA) utilizada com uma pré-coluna C18 4,0 x 3,0 mm (Phenomenex, Torrance, CA) a qual foi eluída com um gradiente de água e metanol (iniciado em 10%; 0 – 25 min até 100%; 25 a 35 min permaneceu em 100%; 35 - 36 min até 10%; 36 – 46 min permaneceu em 10%), a 40°C, com um fluxo de 1 mL/min. A absorbância foi monitorada no intervalo de 200 a 700 nm.

Condição Cromatográfica 2 – Coluna Luna C18 (2) 250 mm x 4,6 mm ID, 5 μ m (Phenomenex, Torrance, CA) utilizada com uma pré-coluna C18 4,0 x 3,0 mm (Phenomenex, Torrance, CA) a qual foi eluída com um gradiente de água e acetonitrila (iniciado em 10%; 0 – 25 min até 100%; 25 a 35 min permaneceu em 100%; 35 - 36 min até 10%; 36 – 46 min permaneceu em 10%), a 40°C, com um fluxo de 1 mL/min. A absorbância foi monitorada no intervalo de 200 a 700 nm.

Condição Cromatográfica 3 – Coluna Luna C18 (2) 250 mm x 4,6 mm ID, 5 μ m (Phenomenex, Torrance, CA) utilizada com uma pré-coluna C18 4,0 x 3,0 mm (Phenomenex, Torrance, CA) a qual foi eluída com um gradiente de água e acetonitrila (iniciado em 3%; 0 – 25 min até 50%; 25 a 35 min até 100%; 35 - 36 min até 3%; 36 – 46 min permaneceu em 3%), a 40°C, com um fluxo de 1 mL/min. A absorbância foi monitorada no intervalo de 200 a 700 nm.

Condição Cromatográfica 4. Coluna Luna C18 (2) (50 mm x 2 mm id, 2,5 μ m, Phenomenex, Torrance, CA) com uma pré-coluna C18 4,0 x 3,0 mm (Phenomenex, Torrance, CA) a qual foi eluída com um gradiente de água com 0,1% de ácido acético e metanol (iniciado em 10%; 0 – 25 min até 100%; 25 a 35 min permaneceu em 100%; 35 - 36 min até 10%; 36 – 46 min permaneceu em 10%), a 40 °C, com fluxo de 0,12 mL/min. A temperatura da fonte do espectrômetro de massas foi mantida em 100 °C. Espectros de massas em MS₁ e MS₂ de fragmentos de íons selecionados foram adquiridos no intervalo de 50 – 350 *m*/*z* com diferentes voltagens de cone (20 e 40 V).

Condição Cromatográfica 5. Coluna Luna C18 (2) 250 mm x 4,6 mm ID, 5 μ m, (Phenomenex, Torrance, CA) com uma pré-coluna C18 4,0 x 3,0 mm (Phenomenex, Torrance, CA) a qual foi eluída com um gradiente de água com 0,1% de ácido fórmico e uma solução de metanol:H₂O (V/V) com 0,1% de acido fórmico (0 – 25 min, 0 – 36% de metanol), a 30°C, com um fluxo *de* 1 mL/min. O detector de PDA foi fixado em 260 nm para a quantificação dos desoxinucleosídeos. Curvas de calibração foram feitas no intervalo de 0,1 – 8 nmol de dG.

Condição Cromatográfica 6. Coluna Luna C18(2) (150 x 2.0 mm i.d., 3.0 µm, Phenomenex) com uma pré–coluna C18 4,0 x 3,0 mm (Phenomenex, Torrance, CA) foi eluída com gradiente de ácido fórmico 0,1% em H₂O (Solução A) e ácido fórmico 0,1% em metanol (Solução B), a 35 °C, com fluxo de 130 µL/min (0 - 30 min, 0 - 50 % de B; 30 - 31 min, 50 - 80% de B; 31 - 36 min, 80% de B; 36 - 38 min, 80 - 0 % de B; 38 - 48 min, 0 % de B). A válvula de comutação de fluxo foi configurada para permitir a entrada de eluentes no espectrômetro de massas (Sistema ESI-MS/MS 2) no intervalo de 8 – 43 min.

Condição Cromatográfica 7. Foi utilizado um sistema com duas colunas conforme o descrito a seguir. *Válvula posição 0*: Coluna Luna C18 (2) 50 mm x 4,6 mm, ID, 2.6 µm, (Phenomenex, Torrance, CA) com uma pré–coluna C18 4,0 x 3,0 mm (Phenomenex, Torrance, CA) eluída com um gradiente de ácido fórmico 0,1% em água (Solução A) e 0,1% de ácido fórmico em metanol (Solução B), a um fluxo de 130 µL/min, 25 °C, nas seguintes condições: 0 – 5

min, 0 – 4 % de B; 5 – 6 min, 4% de B; 6 – 11 min, 4 – 7 % de B; 11 – 12 min, 7 - 8 % de B; 12 - 16 min, 8 - 10 % de B; 16 - 25 min, 10 - 60 % de B; 25 - 26 min, 60 - 80 % de B; 26 - 33 min, 80 % de B; 33 - 35 min, 80 - 0 % de B; 35 -50 min, 0 % de B (Linha 1). Concomitantemente uma coluna Luna C18 (2) 150 mm x 2,0 mm, ID, 3 µm, (Phenomenex, Torrance, CA) foi eluída em modo isocrático por uma solução constituída por 15% de metanol em água com 0,1% de ácido fórmico, a um fluxo de 130 µL/min, 25 °C. O sistema é integrado ao espectrômetro de massas (Sistema ESI-MS/MS 2) (Linha 2). Válvula posição 1: Com a alteração do posicionamento da válvula, as duas linhas descritas acima passam a ser eluidas pelo gradiente da bomba binária e as duas colunas analíticas passam a integrar a mesma linha do sistema cromatográfico (Linha 3). As seguintes condições de posicionamento para a válvula de comutação de fluxo são empregadas: 0 – 13 min, posição 0; 13 – 35 min, posição 1; 35 – 50 min, posição 0. Para as quantificações foram injetadas curvas de calibração no intervalo de 250 a 2000 fmol de 8-oxodG (1000 fmol de [¹⁵N₅]8-oxodG) e 2 a 100 fmol de CEdG (200 fmol de [¹⁵N₅]CEdG).

Condição Cromatográfica 8. Coluna *Syncronis* HILIC (2) 150 mm x 4,6 mm, ID, 5 µm, (Thermo Scientific, USA) com uma pré–coluna HILIC 4,0 x 3,0 mm (Thermo Scientific, USA) foi eluída com um gradiente de acetonitrila (Solução A) e tampão acetato de amônio 5 mM com 0.05% de hidróxido de amônio (Solução B), a um fluxo de 300 µL/min, 35 °C, nas seguintes condições: 0 – 35 min, 0 – 40 % B; 35 – 36 min, 40 – 0 % B; 36 – 56 min, 0 % B. A válvula de comutação de fluxo foi configurada para permitir a entrada de eluentes no espectrômetro de massas (Sistema ESI-MS/MS 2) no intervalo de 16 – 27 min.

Condição Cromatográfica 9. Coluna Luna C18 (2) 250 mm x 4,6 mm, ID, 5 μ m, (Phenomenex, Torrance, CA) com uma pré–coluna C18 4,0 x 3,0 mm (Phenomenex, Torrance, CA) eluída com um gradiente de água (Solução A) e acetonitrila (Solução B), ambas suplementadas com ácido acético (0,2%; v/v), a 30 °C, com fluxo de 1 mL/min (0 – 28 min, 20 – 100% de B; 28 – 30 min, 100 – 20% de B; 30 – 40 min, 20% de B). O detector PDA foi fixado em 306 nm para o monitoramento do produto MDA–DNPH. Curvas de calibração foram feitas no intervalo de 25 – 1200 pmol de MDA.

3.3. Síntese de 3-nitro-bisfenol A (BPANO₂) e 3,3'-dinitro-bisfenol A (BPA(NO₂)₂)

Para a síntese de BPANO₂ e BPA(NO₂)₂ foi utilizado o método descrito por Schrader *et al.*, 2002. BPA (5 mg/mL em DMSO, 1 mL) foi adicionado a 2 mL de tampão acetato de sódio 0,2 M, pH 4 e 1 mL de nitrito de sódio 0,9 M preparado no mesmo tampão. A solução foi incubada por 1 h a 37 °C, sob agitação. Em seguida, alíquotas foram analisadas por HPLC-PDA, utilizando a condição cromatográfica 1. Os produtos correspondentes ao BPANO₂ e BPA(NO₂)₂ foram coletados, liofilizados e ressuspensos em 200 µl de água/metanol (1:1) para análises por espectrometria de massas (Sistema ESI-MS/MS 1 e 3, item 3.1.5).

3.4. Síntese de bisfenol A-3,4-quinona (BPA-3,4-quinona)

Para a síntese de BPA-3,4-quinona foi utilizado o método descrito por Qiu, Yang et al. (2004). BPA (10 mg) dissolvido em 600 µl de éter que foi adicionado a uma solução de nitrosodissulfonato de potássio (sal de *Fremy*, 30 mg em 10 mL de tampão fosfato de sódio 50 mM, pH 7) e a solução resultante agitada por 20 min à temperatura ambiente. O produto da incubação foi submetido a extração com 5 ml de clorofórmio por 3 vezes, a solução resultante foi submetida a lavagem com 5 ml de água por 3 vezes. A fase orgânica foi coletada e concentrada em *speedy vac*. O produto resultante foi ressuspenso em acetona e uma alíquota submetida à análise por HPLC-PDA (condição cromatográfica 2). O produto correspondente ao BPA-3,4-quinona ($\lambda_{máx.}$ = 386 nm) foi coletado, liofilizado e ressuspenso em água/metanol (1:1) para análise por HPLC-ESI-MS/MS no modo negativo (condição cromatográfica 4).

3.5. Síntese do aduto de BPA-3,4-quinona com 2´-desoxiguanosina (dGuo)

Para a síntese do aduto 3-OH-BPA-*N*⁷dGuo, foi utilizado o método descrito por Qiu *et al.*, 2004. Uma alíquota (200 µL) do produto bruto obtido em acetona após oxidação do BPA com sal de *Fremy* foi adicionada a uma solução de dGuo (2 mg em 800 µL de água/acetona 1:1) e a solução resultante foi incubada sob agitação a 37 °C por 6 h. A solução foi então liofilizada e ressuspensa em água/acetonitrila (1:1) para análises por HPLC-PDA, utilizando a condição cromatográfica 3.

O mesmo procedimento foi utilizado nas incubações com [¹⁵N₅]dGuo, obtendo-se o padrão isotópico do aduto.

O produto correspondente ao aduto de BPAQ com dGuo, com λ_{max} . em 284 nm, foi coletado, liofilizado e ressuspenso em 200 µL de uma solução de

água/acetonitrila (v/v). A identidade do aduto foi confirmada por espectrometria de massas no modo positivo, por infusão direta no sistema lon trap ESI-MS_n descrito no item 3.1.5.

3.6. Quantificação do aduto BPA-Gua em DNA

Uma alíquota (200 µL) do produto bruto obtido em acetona após oxidação do BPA com sal de *Fremy* (item 3.4) foi adicionada a uma solução de DNA de timo de bezerro obtido da Sigma (4 mg em 1600 µL de água) e a solução resultante foi incubada sob agitação a 37 °C por 6 h. Ao final foram realizadas 2 extrações com clorofórmio e o DNA precipitado utilizando-se NaCl 3 M e etanol. O DNA recuperado foi lavado duas vezes com etanol 70%, solubilizado em água e congelado até a realização da hidrólise neutra-térmica, como descrito abaixo. Para comparação, uma alíquota da mesma amostra de DNA foi submetida ao procedimento de hidrólise sem a incubação por 1 h a 70 °C, a fim de se verificar a possibilidade de o aduto ser liberado do DNA em condições brandas de manipulação.

Para a hidrólise neutra-térmica, o DNA (300 µg) dissolvido em água (V_f = 500 µL) foi aquecido a 70 °C por 1 h na presença de 1600 fmol do padrão interno [¹⁵N₅]BPA-Gua. Após esse período foi retirada uma alíquota de 25 µL para a realização de hidrólise ácida e quantificação de Gua. O restante do volume foi seco sob vácuo, ressuspenso em metanol (500 µL), centrifugado, e o sobrenadante novamente seco sob vácuo. Ao final, o precipitado foi ressuspenso em 76 µL de água e o volume de 50 µL (contendo 1000 fmol de [¹⁵N₅]BPA-Gua) foi injetado no sistema de HPLC-ESI-MS/MS (Condição cromatográfica 6, Sistema ESI-MS/MS 2)

3.7. Curva de crescimento das linhagens celulares HL-60 e MCF-7

Inicialmente as duas linhagens celulares (5 x 10^5 células por poço) em placas de 24 poços foram cultivadas em estufa umidificada a 37° C e 5% de CO₂, pelos períodos de 0, 24, 48 e 72 horas em meio RPMI suplementado com 10% de soro fetal bovino (FBS) ou DMEM suplementado com 10% de FBS para as linhagens HL-60 e MCF-7, respectivamente. Após cada período de 24 horas as células foram retiradas de cultivo e levadas a centrifugação (600 x g/37°C/10 min), o sobrenadante foi descartado e o *pellet* de células foi ressuspenso em 10 mL de um novo meio de cultura. Uma alíquota de 10 µL da suspenção celular foi retirada e diluída em 90 µL de azul de tripam 0,4% (Sigma-Aldrich, St. Louis, MO). Dessa diluição, 10 µL foram utilizados para contagem das células e construção da curva de crescimento celular.

3.8. Viabilidade celular

Células da linhagem MCF-7 foram plaqueadas na densidade de 5 x 10^4 células por poço (200 µL) em placas de cultura de 96 poços. Após o período de adesão (24 horas), o meio de cultura foi substituído por um novo meio DMEM livre de fenol suplementado com 10% FBS contendo 25 µM, 100 µM ou 250 µM de BPA ou BPANO₂, dissolvido em DMSO (0,1%, v/v). Incubações controle foram feitas com 0,1% de DMSO (controle veículo). As células foram expostas pelo período de 1 ou 24 horas.

Após o término do período de exposição, o meio de cultura foi removido e as células foram cuidadosamente lavadas com PBS a temperatura de 37°C, por duas vezes.

Células HL-60, cultivadas em suspensão, foram plaqueadas na densidade de 5 x 10^4 células por poço (200 µL) em placa de cultura de 96 poços, diluídas em meio RPMI suplementado com 10% de FBS contendo 25 µM, 100 µM ou 250 µM de BPA ou BPANO₂, dissolvido em DMSO (0,1%, v/v), na presença ou ausência de H₂O₂ (40 nmol / 5 x 10^4 células). Incubações controle foram feitas com 0,1% de DMSO (controle veículo). As células foram expostas pelo período de 2 ou 24 horas. A quantidade utilizada de H₂O₂ foi definida com base no trabalho de Cuddihy *et al.*, 2008, tendo sido feita a adição à suspensão de células 1 h após o início das incubações.

Após o período de exposição, células MCF-7 e HL-60 foram lavadas com PBS, transferidas para tubos de citometria e submetidas à centrifugação (600 x g/4°C/10 min). O sobrenadante foi descartado e o *pellet* de células foi ressuspenso em 200 µL de uma solução de PBS contendo iodeto de propídeo (PI – Sigma-Aldrich, St. Louis, MO) na concentração de 50 µg/mL. Após a ressuspensão, as células foram imediatamente levadas para leitura em citômetro de fluxo.

Foi avaliada a intensidade de fluorescência do iodeto de propídio ligado ao DNA de 10.000 eventos por amostra, monitorados no canal PerCP-Cy 5.5 ($\lambda_{exc.}$ = 488 nm; $\lambda_{emi.}$ = 695 nm). Apenas as células com alteração da permeabilidade da membrana plasmática apresentam fluorescência.

3.9. Ensaio do XTT

Com o intuito de verificar se BPA e BPANO₂ interferem na cadeia de transporte de elétrons mitocondrial, alterando a atividade da succinato desidrogenase e, assim, levando à perda de viabilidade celular, as células HL-60 foram expostas a BPA ou BPANO₂ como descrito anteriormente por 24 h e em seguida submetidas ao ensaio do XTT utilizando o *kit* da empresa Xenometrix. Após o término do período de exposição, o meio de cultura foi removido, as células foram cuidadosamente lavadas com solução salina fosfato tamponada (PBS) pH 7,0 e um novo meio de cultura com 5% de SFB (200 μ L/poço) foi adicionado à placa. Uma solução pré-formulada de 50 μ L do reagente XTT (reagente XTT: tampão = 100:1) foi então adicionada a cada poço e a placa de cultura foi incubada por 1 h a 37 °C, 5% de CO₂. Os valores da absorbância (OD = OD450nm-OD690nm) foram aferidos fazendo a leitura no comprimento de onda de 450 nm, com a leitura de referência no comprimento de onda de 690 nm. Os resultados foram expressos em porcentagem relativa ao grupo controle.

3.10. Determinação da geração intracelular de espécies reativas de oxigênio (ERO) e nitrogênio (ERN)

Sondas fluorogênicas são ferramentas convenientes e sensíveis para a detecção de oxidantes intracelulares. A indução de estresse oxidativo foi monitorada quantitativamente por análise de fluorescência do produto 2',7'- diclorofluoresceína (DCF) resultante da oxidação de 2',7'- diclorodihidrofluoresceína (DCFH) intracelularmente. Para tanto, células HL-60

foram incubadas com BPA ou BPANO₂ (25 µM, 100 µM, 250 µM) pelo período de 1 hora. Em seguida, as células foram transferidas para tubos de citometria e submetidas à centrifugação (600 x g / 10 min / 4°C). O sobrenadante foi descartado e o pellet de células foi lavado duas vezes com 1 mL de PBS. Após a última lavagem, o sobrenadante foi descartado e o pellet de células foi ressuspenso em 200 µL de 2',7'-diclorofluorescina-diacetato (DCFH-DA, 3 mM), o qual se acumula no citosol e é desacetilado por esterases para 2',7'diclorodihidrofluoresceína que pode ser, então, oxidado por radicais livres gerados intracelularmente, como RO2[•], RO[•], NO2[•], CO3[•] e HO[•]. O volume final das amostras foi completado para 1100 µL com PBS. As células foram incubadas a 37 °C por 30 minutos e, ao fim da incubação, 2 mL de EDTA (3 mM) a 4°C foram adicionados. As soluções foram centrifugadas (600 g/ 10 min/ 4°C), os sobrenadantes descartados e os *pellets* ressuspensos em 100 µL de PBS. Para verificar se a estimulação de MPO por H₂O₂ teria efeito sobre a geração de EROs/ERNs, parte das amostras foi incubada por 5 min com H₂O₂ (40 nmol / 5 x 10⁴ células) antes das análises por citometria de fluxo. Foi avaliada a intensidade de *fluorescência* (λ_{emi} = 530 nm com λ_{exc} = 488 nm) de 10.000 eventos por amostra.

O mesmo procedimento de exposição foi aplicado às células MCF-7. Após o período de exposição, o meio de cultura (DMEM com 10% FBS, livre de fenol) contendo BPA ou BPANO₂ foi removido e as células lavadas com PBS. Uma solução de PBS contendo 10 µM de DCFH foi adicionada às células e levadas a incubação por 30 minutos a temperatura ambiente e ao abrigo de luz. Em seguida, as células foram levadas para leitura, segundo descrito por Renz, Volz et al. (2013). A intensidade de emissão de fluorescência foi mensurada a $\lambda_{emi.} = 530 \text{ nm com } \lambda_{exc.} = 488 \text{ nm}$, no leitor de ELISA.

3.11. Determinação de NO_{2⁻} no meio de cultura das células HL-60

A concentração de NO₂⁻ foi determinada no sobrenadante da cultura de células HL-60 utilizando a reação de GRIESS. Para tanto, 100 μ L do sobrenadante da cultura celular foram adicionados a 100 μ L do reagente de GRIESS (1% sulfanilamida com 0,1% de α -naftil etilenodiamina) em microplaca de 96 poços e a solução resultante incubada por 10 minutos à temperatura ambiente. Após esse período foi feita a leitura de absorbância em 550 nm. A concentração de NO₂ foi determinada a partir de uma curva padrão de nitrito de sódio (NaNO₂) na faixa de 0,2 – 200 μ M.

3.12. Análise de fragmentação do DNA e ciclo celular

Para a análise concomitante de fragmentação do DNA e ciclo celular das células HL-60 e MCF-7, 25 x 10^5 células foram plaqueadas em placas de 24 poços com meio de cultura RPMI ou DMEM suplementado com 10% FBS. Após o período de adesão celular (24 horas), pertinente às células MCF-7, o meio de cultura das duas linhagens foi substituído por um novo meio de cultura livre de fenol contendo 25 μ M, 100 μ M ou 250 μ M de BPA ou BPANO₂, dissolvido em DMSO (0,1%, v/v) com ou sem H₂O₂ (40 nmol / 5 x 10^4 células) quando se tratar da linhagem HL-60.

Ao término de 24 horas de exposição, o meio de cultura das células MCF-7 foi removido, as células foram lavadas duas vezes com PBS e

tripsinizadas (300 μ L/poço). Após 1 minuto de contato, foram adicionados 1000 μ L de meio de cultura DMEM livre de fenol suplementado com 10% FBS.

As células MCF-7 e HL-60 foram homogeneizadas, transferidas para tubos de citometria e centrifugadas (600 x g /10 min/ 4 °C). O sobrenadante foi desprezado e o *pellet* de células foi lavado duas vezes com PBS. Após as lavagens foram adicionados a cada tubo 50 µL de uma solução contendo a enzima RNAse A (15 mg/mL) e 150 µL do tampão hipotônico fluorescente (PBS, 0,05 % Triton X-100, 0,1% de citrato de sódio, 25 µg/mL de iodeto de propídio). As amostras foram incubadas por 30 minutos à temperatura ambiente e as análises foram realizadas por citometria de fluxo. Foi avaliada a intensidade de fluorescência do iodeto de propídio ligado ao DNA de 10.000 eventos por amostra, monitorados no canal PerCP– Cy 5.5 ($\lambda_{exc.}$ = 488 nm; $\lambda_{emi.}$ = 695 nm).

3.13. Determinação da atividade de MPO em células HL-60

Para a análise da atividade de MPO, 25 x 10^5 células HL-60 foram plaqueadas em placa de 24 poços (1000 µL) e expostas ao meio de cultura RPMI suplementado com 10% FBS, contendo 25 µM, 100 µM ou 250 µM de BPA ou BPANO₂, dissolvido em DMSO (0,1%, v/v), na presença ou ausência de H₂O₂ (40 nmol / 5 x 10^4 células) durante 2 ou 24 horas, como explicado anteriormente. Ao término do período de exposição, a suspensão de células foi transferida para tubos de 1,5 mL. Subsequentemente, as amostras foram centrifugadas (600 x g/ 10min / 37° C) e as células lavadas duas vezes com PBS.

Após a última centrifugação, o sobrenadante foi descartado e o *pellet* de células ressuspenso em 500 µL de brometo de hexadeciltrimetilamonio (HTAB 0,5% em água – Sigma-Aldrich, St. Louis, MO). As células foram imediatamente congeladas em nitrogênio líquido e descongeladas em água a 37°C e posteriormente vortexadas vigorosamente durante 20 segundos. Este procedimento foi repetido por três vezes para a lise das células e liberação da MPO.

A suspensão de células resultante foi levada à estufa a 60°C por 2 horas para inativação da catalase. Em seguida, as amostras foram centrifugadas a 10.000 rpm durante 2 min. O sobrenadante foi utilizado para determinação da atividade de MPO e o precipitado proteico utilizado para determinação da quantidade de proteínas por ensaio de *Bradford*.

Para realização do ensaio cinético empregado na determinação da atividade da enzima, foram acrescentados 10 µL do sobrenadante a 200 µL da solução reagente (*o*-dianisidina, H₂O₂ a 0,0005%, em tampão fosfato 5 mM, pH 6,0) em uma microplaca. As amostras foram levadas ao espectrofotômetro (Spectra Max Plus[®] – Molecular Devices, Chicago, IL, USA) para a monitorização da velocidade de formação do produto de oxidação da *o*-dianisidina, através do registro do aumento da absorbância a 460 nm.

3.14. Ensaio EROD para verificação da atividade de CYP1A1 em células MCF-7

Para a determinação da atividade de CYP1A1 em células MCF-7 foi utilizado um método adaptado de Barbara e colaboradores (Spink, Hussain et al. 2003).

Para tanto células MCF-7 (1x10⁴) foram cultivadas em meio DMEM com 10% SFB em placa de 96 poços. Após atingirem a confluência o meio foi substituído por um novo, contendo BPA na concentrações de 25, 100, 250 µM e incubados em estufa por 24 horas. Ao final do período de exposição o meio foi removido e um novo meio contendo 4µM de ethoxyresorufina (sigma) e 10 µM de dicumarol (3,3'-Metileno-bis(4-hidroxicoumarina)). A placa contendo o novo meio foi incubada em estufa por mais 30 minutos. Em seguida a fluorescência foi medida em $\lambda_{emissão}$ =590 nm e $\lambda_{excitação}$ =535 nm (em ponto final). Controles adotados 10 nM PCB126 positivos foram com de (3,3',4,4',5-Pentachlorobiphenyl) como ativador do CYP.

3.15. Análises da concentração de BPA no meio de cultura das células

Alíquotas de 50 µL do meio de cultura das células, após diferentes períodos de incubação com BPA, foram injetadas no sistema de HPLC-PDA, utilizando-se a condição cromatográfica 1. O BPA eluiu da coluna em ~21,5 min nas condições utilizadas, sendo monitorado em 277 nm.

3.16. Quantificação de malonaldeído no meio de cultura por HPLC-PDA

Para a quantificação de MDA no meio de cultura, as células HL-60 foram plaqueadas na densidade de 5 x 10^5 células/poço em placas de cultura de 6 poços. Após 24 h, iniciou-se a exposição ao BPA (25 µM, 100 µM ou 250 µM) dissolvido em DMSO (0,1%, v/v), na presença ou ausência de H₂O₂ (40 nmol / 5×10^4 células). Incubações controle foram feitas com 0,1% de DMSO (controle veículo). As células foram expostas pelo período de 24 horas. Alíquotas do

meio de cultura (100 µL) foram hidrolisadas para obtenção do MDA livre de proteínas pela adição de 10 µL de NaOH 4 M com subsequente incubação a 60 °C por 30 min sob agitação de 100 rpm. Ao término da incubação, 150 µL de H_2SO_4 1% (v/v) foram adicionados e as amostras foram submetidas à vigorosa agitação por 20 segundos com posterior centrifugação a 9.300 *g* por 10 min. Após a centrifugação, 175 µL do sobrenadante foram coletados e incubados com 25 µL de uma solução de 2,4–dinitrofenilhidrazina (DNPH, 1 mg/mL em HCI 2M). A reação de derivatização ocorreu em temperatura ambiente, ao abrigo da luz, durante 30 min. Alíquotas de 100 µL foram injetadas no sistema de HPLC-PDA (condição cromatográfica 9).

O padrão de MDA foi preparado pela adição de 22 µL de uma solução de 1,1,3,3–tetrametoxipropano a 10 mL de H₂SO₄ 1% (v/v). Após a incubação (2 h, temperatura ambiente, no escuro) a concentração da solução foi calculada através da determinação da absorbância em H₂SO₄ 1% (v/v), utilizando o respectivo coeficiente de extinção molar (ϵ): MDA, ϵ = 13700 M⁻¹ cm⁻¹ em 245 nm.

3.17. Adutos de DNA no meio de cultura

As células cultivadas em placas de cultura de 15 cm de diâmetro (densidade aproximada de 1 x 10⁷ células) foram expostas ao BPA ou BPANO₂ (25 μ M, 100 μ M ou 250 μ M), dissolvidos em DMSO (0,1%, v/v), na presença ou ausência de H₂O₂ (40 nmol / 5 x 10⁴ células), como descrito anteriormente. Ao final, foram adicionados às alíquotas do meio de cultura, 2 μ L da solução contendo 75 fmol/ μ L de [¹⁵N₅]CEdG, [¹⁵N₅]1, N^6 –εdA e [¹⁵N₅]1, N^2 –εdG, e 1,5 μ L da solução contendo 1000 fmol/ μ L de [¹⁵N₅]8–oxodG. As amostras foram então

homogeneizadas em vórtex e secas completamente a vácuo. Posteriormente, adicionou-se 1 mL de metanol às amostras, que foram novamente homogeneizadas em vórtex e centrifugadas por 10 min a 16.000 g. O sobrenadante foi então transferido para outro tubo para nova secagem completa a vácuo. As amostras foram então ressuspensas em 75 µL de H₂O e centrifugadas por 5 min a 16.000 g. Por fim, foram injetados 50 µL no sistema HPLC-ESI-MS/MS 2, condição cromatográfica 6. As análises foram conduzidas com ionização por *electrospray* em modo positivo (ESI⁺, [M+H]⁺), utilizando-se os seguintes parâmetros otimizados: gás de interface (CUR), 15 psi; gás de nebulização (GS1), 45 psi; gás na fonte de íons (GS2), 50 psi; gás de dissociação induzida por colisão (CAD), LOW; temperatura da fonte do ESI (TEM), 650 °C; potencial de entrada (EP), 10 V e tensão do spray de íons (IS), 5500 V. Foi utilizado o modo de monitoramento de reação múltipla (MRM) para detecção e quantificação das lesões, sendo utilizadas as seguintes fragmentações: m/z 276 $[M+H]^+ \rightarrow m/z$ 160 [M - 2]-desoxirribose + H]⁺ e m/z281 $[M+H]^+ \rightarrow m/z$ 165 [M - 2] desoxirribose + H]⁺ para detecção de 1, N^6 - ϵ dAdo e respectivo padrão interno [¹⁵N₅]1, N^6 - ϵ dAdo; m/z 292 [M+H]⁺ $\rightarrow m/z$ 176 $[M - 2' - \text{desoxirribose} + H]^+ \text{ e } m/z \text{ 297 } [M+H]^+ \rightarrow m/z \text{ 181 } [M - 2' - \text{desoxirribose}$ + H]⁺ para detecção de $1, N^2$ -ɛdGuo e respectivo padrão interno [¹⁵N₅] $1, N^2$ - ϵ dGuo; *m/z* 284 [M+H]⁺ \rightarrow *m/z* 168 [M – 2'- desoxirribose + H]⁺ e *m/z* 289 $[M+H]^+ \rightarrow m/z$ 173 [M - 2] desoxirribose + H]⁺ para detecção de 8-oxodGuo e respectivo padrão interno [¹⁵N₅]8-oxodGuo; m/z 340 [M+H]⁺ $\rightarrow m/z$ 224 [M – 2'desoxirribose + H]⁺ e m/z 345 [M+H]⁺ $\rightarrow m/z$ 229 [M – 2'- desoxirribose + H]⁺ para detecção de CEdG e respectivo padrão interno [¹⁵N₅]CEdG; *m*/z 282 $[M+H]^+ \rightarrow m/z$ 166 [M - 2'-desoxirribose + H]⁺ e m/z 297 $[M+H]^+ \rightarrow m/z$ 181 $[M - 1]^+$ 2'- desoxirribose + H]⁺ para detecção de *O*⁶-mdG e respectivo padrão interno [¹⁵N₅]1,*N*²-εdGuo; *m/z* 394 [M+H]⁺ → *m/z* 260 [M – 2'-desoxirribose + H]⁺ e *m/z* 399 [M+H]⁺ → *m/z* 265 [M – 2'- desoxirribose + H]⁺ para detecção de BPA-Gua e respectivo padrão interno [¹⁵N₅]BPA-Gua. As razões entre as áreas (aduto/padrão interno) foram utilizadas para quantificação. Para as quantificações foram injetadas curvas de calibração no intervalo de 50 a 1000 fmol de 8-oxodG (1000 fmol de [¹⁵N₅]8-oxodG); 5 a 80 fmol de CEdG; 1 a 20 fmol de 1,*N*⁶-εdA; 1 a 40 fmol de 1,*N*²-εdG; 1 a 100 fmol de *O*⁶-mdG (100 fmol de [¹⁵N₅]CEdG, [¹⁵N₅]1,*N*⁶-εdA e de [¹⁵N₅]1,*N*²-εdG); e 10 a 1000 fmol de BPA-Gua (1000 fmol de [¹⁵N₅]BPA-Gua.

3.18. Adutos de DNA em urina

O mesmo método descrito no item 3.17 foi aplicado para as análises dos adutos de DNA em amostras de urina, sendo apenas modificado o volume inicial de amostra utilizado, que foi de 100 µL. Para a coleta de urina, os animais (modelo experimental descrito abaixo) permaneceram em gaiolas metabólicas pelo período de 10 h.

3.19. Extração de DNA das células

Após o período de incubação, as células foram transferidas para um tubo de 15 mL e levadas à centrifugação (600 x g / 10 min / 37°C). O sobrenadante foi desprezado e o *pellet* de células foi utilizado para extração do DNA de acordo com o protocolo de extração da Gentra Puregene® (QIAGEN

Sciences, USA), acrescentando-se 0,5 mM de desferoxamina/10 mM de Dpenicilamina às soluções do kit.

3.20. Extração de DNA de fígado e rim dos animais

Foi utilizada uma etapa de lise das células e precipitação dos núcleos utilizando tampão A (320 mM sacarose, 5 mM MgCl₂, 10 mM Tris, 0,1 mM desferoxamina, 1% Triton X-100 em pH final de 7,5), sendo incluído 10 mM da solução de D-penicilamina em dois momentos do protocolo: na solução de lise das células e na solução de estocagem com desferoxamina a fim de evitar formação artefatual de lesões. Portanto, para 300 mg de tecido foram adicionados 6 mL de tampão A. Após homogeneização, centrifugou-se a amostra a 1500 x g por 10 minutos e o sobrenadante foi descartado. Repetiuse o procedimento. Então, adicionou-se ao pellet formado, 3 mL da solução de lise de células (GentraPuregene[®] Kit) contendo 0,5 mM de desferoxamina/10 mM de D-penicilamina. Após completa dissolução do precipitado adicionou-se 105 µL de SDS 10% e os tubos foram invertidos por 20 vezes. Em seguida foram adicionados 42 µL de proteinase K (20 mg/mL), inverteu-se os tubos 25 vezes e as amostras foram incubadas a 37°C por 1 hora. Foram então adicionados 12 µL de RNAse A e as amostras foram incubadas por 2 horas à temperatura ambiente ao abrigo de luz. Posteriormente foram adicionados 1,5 mL da solução de precipitação de proteínas (GentraPuregene[®] Kit), agitou-se a amostra vigorosamente e centrifugou-se por 10 minutos a 2000 x g. Em seguida o sobrenadante foi vertido sobre 10 mL de isopropanol gelado para precipitação do DNA. O DNA precipitado foi então lavado com 10 mL de etanol

70% e mais uma vez centrifugado por 10 minutos a 2000 x *g*, sendo essa etapa repetida por mais uma vez. Descartou-se o sobrenadante e o precipitado de DNA foi seco ao ar. Em seguida adicionou-se 400 μ L de desferroxamina 0,1 mM, contendo 10 mM de D-penicilamina e os tubos foram mantidos sob refrigeração por 1 noite.

Após completa solubilização do DNA, aferiu-se a concentração da amostra com leitura de absorbância em 260 nm e a pureza foi obtida pela razão das absorbâncias em 260 e 280 nm. As amostras de DNA foram congeladas a –20 °C para posterior hidrólise imediatamente antes das análises.

3.21. Quantificação de 8-oxodG e CEdG em amostras de DNA

Para a reação de hidrólise enzimática, alíquotas contendo 80 µg de DNA foram adicionadas a 3,8 µL de tampão Tris-HCl/MgCl₂ 200 mM (pH 7,4), 3,2 unidades de DNAse 1 (3,2 µL), 5,3 µL da solução contendo 75 fmol/µL do padrão [¹⁵N₅]CEdG e 2 µL da solução contendo 1000 fmol/µL do padrão [¹⁵N₅]8–oxodG. As amostras foram incubadas a 37 °C por 1 h. Após a incubação foram adicionadas 0,0016 unidade da enzima PDE1 (3,2 µL) e 4,8 unidades da enzima fosfatase alcalina (4 µL). As amostras foram novamente incubadas a 37 °C por 1 h com agitação de 1000 rpm. Ao término da segunda hora, o volume final da incubação (100 µL) foi centrifugado por 10 min a 9300 *g* e uma alíquota de 10 µL do sobrenadante foi coletada para injeção de 5 µL no sistema de HPLC-PDA, condição cromatográfica 5, utilizado para quantificação dos desoxinucleosídeos normais (dC, dG e dA). Alíquotas de 50 µL foram injetadas paralelamente no sistema de HPLC-ESI-MS/MS (condição cromatográfica 7) para a quantificação das lesões.

As análises foram realizadas em modo positivo (ESI+, [M+H]+), utilizando os parâmetros otimizados: CUR, 15 psi; GS1, 45 psi; GS2, 50 psi; CAD, LOW; TEM, 650 °C; EP, 10 V e IS, 5500 V. Foi utilizado o modo de monitoramento de reação múltipla (MRM) para detecção e quantificação das lesões, sendo utilizadas as seguintes fragmentações: m/z 284 [M+H]⁺ $\rightarrow m/z$ 168 [M – 2'- desoxirribose + H]⁺ e m/z 289 [M+H]⁺ $\rightarrow m/z$ 173 [M – 2'desoxirribose + H]⁺ para detecção de 8-oxodGuo e respectivo padrão interno [¹⁵N₅]8-oxodGuo; m/z 340 [M+H]⁺ $\rightarrow m/z$ 224 [M – 2'-desoxirribose + H]⁺ e m/z345 [M+H]⁺ $\rightarrow m/z$ 229 [M – 2'- desoxirribose + H]⁺ para detecção de CEdG e respectivo padrão interno [¹⁵N₅]CEdG.

3.22. Quantificação de 5-metil-2'-desoxicitidina (5-metildC) e 5hidroximetil-2'-desoxicitidina (5-hmdC) em DNA

Alíquotas contendo 6 μ g de DNA em desferroxamina (0,1 mM) foram adicionadas a 2,5 μ L de tampão Tris-HCl/MgCl₂ 200 mM (pH 7,4) e 1,2 unidade de DNAse 1. As amostras foram incubadas a 37 °C por 1 h. Após a incubação foram adicionados 0,0005 unidade de fosfodiesterase 1 (PDE1) e 1,2 unidade de fosfatase alcalina. As amostras foram novamente incubadas a 37 °C por 1 h com agitação de 1000 rpm. Ao término da segunda hora ao volume final da incubação (60 μ L) foram adicionados 140 μ L de acetonitrila. As amostras foram submetidas à vigorosa agitação por 20 segundos com posterior centrifugação a 9300 *g* por 10 min. Após a centrifugação, alíquotas de 50 μ L foram injetadas no sistema HPLC-ESI-MS/MS (condição cromatográfica 8). As análises foram utilizando os seguintes parâmetros otimizados: CUR, 15 psi; GS1, 45 psi; GS2, 50 psi; CAD, LOW; TEM, 650 °C; EP, 10 V e IS, 5500 V. As fragmentações utilizadas no MRM encontram-se na figura a seguir. Curvas de quantificação foram feitas pela injeção de DNA de timo de bezerro contendo 2 – 1200 pmol de dC, 0,1 - 116 pmol de 5-mdC e 0,0005 - 0,010 pmol de 5-hmdC.

Figura 5 - Cromatogramas obtidos por HPLC-ESI-MS/MS de amostra de DNA para quantificação de dC, 5-mdC e 5-hmdC

3.23. Exposição de ratos ao BPA na vigência e ausência de doença inflamatória sistêmica

3.23.1 Animais

Para avaliação dos efeitos da exposição *in vivo* ao BPA foram utilizados ratos da linhagem Sprague-Dawley, machos, com peso de 200-250g, fornecidos pelo Biotério da Faculdade de Ciências Farmacêuticas e do Instituto de Química da Universidade de São Paulo. Os animais foram mantidos em

condições normais de biotério até o início do experimento. Todos os procedimentos adotados estão em conformidade com as normas do Conselho Nacional de Controle de Experimentação Animal (CONCEA), como certificado pela Comissão de Ética no Uso de Animais da Faculdade de Ciências Farmacêuticas da Universidade de São Paulo (Protocolo CEUA/FCF/369 de 06/08/12).

3.23.2 Indução de diabetes

Para a indução do diabetes, os animais permaneceram em jejum por um período de 12 horas. Após esse período os mesmos foram anestesiados com Isoflurano 4% (Isoforine® - Crystália, São Paulo) por via inalatória, utilizando-se um equipamento de anestesia inalatória (Morya®). Uma solução recémpreparada de estreptozotocina (STZ-Sigma-Aldrich, St. Louis, MO) em solução salina (50 mg/mL) foi administrada por via intravenosa, através de punção da veia peniana, em volume correspondente à dose de 40 mg de STZ por Kg de peso corpóreo. Os animais do grupo controle não diabético foram submetidos aos mesmos procedimentos, tendo recebido apenas o veículo por via intravenosa. A condição de diabetes foi confirmada após acompanhamento glicêmico 24, 48 e 72 horas após a administração de STZ. A glicemia foi mensurada no sangue coletado da veia caudal, utilizando-se glicosímetro Breeze[™] 2· (Bayer HealthCare, Mishawaka, USA), sendo que os animais que apresentaram glicemia igual ou superior a 250 mg/dL nas três medições foram considerados diabéticos e incluídos no estudo.

3.23.3 Exposição ao BPA

O esquema de exposição dos animais ao BPA compreendeu a administração diária de uma solução recém-preparada de BPA (50 mg/Kg)

diluído em óleo com 0,1% de DMSO por via intra-estomacal (gavagem), durante 4 semanas. Animais controles receberam óleo com 0,1% de DMSO pela mesma via e nas mesmas condições supracitadas. Os grupos estudados foram: Grupo Sadio com e sem BPA, ambos com 5 animais e Grupo Diabético com e sem BPA, ambos com 10 animais.

Os animais foram pesados diariamente para o ajuste da dose e concomitantemente a glicemia foi monitorada uma vez por semana durante todo o período de exposição.

3.23.4. Eutanásia e obtenção de amostras

Decorridas as 4 semanas de exposição, os animais foram anestesiados com uma solução de cloridrato de quetamina e xilazina 2:1 (100 µL), por via intra-peritoneal. A cavidade peritoneal foi aberta e a artéria aorta abdominal foi exposta, a qual foi puncionada para coleta de sangue e consequente sacrifício por exsanguinação.

O sangue foi coletado em tubo heparinizado em quantidade de 8 mL. O tubo foi então homogeneizado cuidadosamente e mantido em banho de gelo para posterior contagem total e diferencial de leucócitos. Em seguida o fígado e os rins foram coletados, lavados em PBS, pesados e armazenados em freezer – 80°C para posterior extração de DNA.

Para análise dos efeitos do BPA na medula óssea, células foram obtidas da cavidade femoral, imediatamente após os animais serem anestesiados e exsanguinados. As células da medula óssea foram obtidas pela lavagem da cavidade femoral com meio RPMI (Cultilab do Brasil® Campinas, SP), pH 7,4, estéril, suplementado com 10% de soro bovino fetal (Cultilab do Brasil® Campinas, SP) e com 100 Ul/mL de penicilina G sódica e 100 µg/mL de
estreptomicina (Sigma® Chemical Company, USA), contendo 5% de heparina sódica. A suspensão celular foi colocada em tubos *Falcon*, cuidadosamente homogeneizada e mantida em banho de gelo.

3.23.5. Hemograma

Para determinação do número total e diferencial de células circulantes, foi realizado o hemograma a partir de sangue total heparinizado. A dosagem de hemoglobina, a determinação do volume do hematócrito e a contagem global de hemácias e leucócitos foram feitas pelo analisador automático de células sanguíneas ABC Vet (ABX DIAGNOSTICS).

As contagens diferenciais dos leucócitos foram feitas em extensões sanguíneas preparadas imediatamente após a coleta e coradas pelo corante de May-Grunwald-Giemsa. As lâminas foram analisadas em microscópio óptico comum, contando-se, no mínimo, 100 leucócitos por lâmina.

3.23.6 Mielograma

Para determinação dos efeitos da exposição ao BPA sobre o número total e diferencial de células da medula óssea, foi realizada contagem em lâminas coradas pelo método de May-Grünwald-Giemsa (ROSENFELD, 1947).

A contagem total de células foi realizada em hemocitômetro de Neubauer, após diluição das amostras da suspensão celular com meio de cultura Iscove's (Sigma-Aldrich*, Chemical Company, USA).

A classificação das células da linhagem granulocítica foi baseada na relação núcleo-citoplasma, na afinidade tintorial do citoplasma, na presença ou não de granulações primária e secundária no citoplasma, no padrão de cromatina nuclear, na presença ou não de nucléolos, no diâmetro e segmentação ou não do nucléolo. Na série granulocítica, foram consideradas

quatro etapas maturativas: *(i)* blastos envolvendo o hemocitoblasto e o mieloblasto; *(ii)* formas jovens englobando o promielócito e o mielócito; *(iii)* formas em anel correspondentes ao metamielócito e ao bastonete; *(iv)* segmentados envolvendo as formas segmentadas a partir de dois lóbulos nucleares (BORELLI, P *et al.* 1995).

Os precursores eritroides foram classificados em: (*i*) eritroblastos jovens envolvendo proeritroblastos e eritroblastos basófilos; (*ii*) eritroblastos policromáticos englobando todas as etapas em que as células apresentaram cromatina condensada e citoplasma policromático; (*iii*) eritroblastos ortocromáticos incluindo células com núcleo apresentando cromatina picnótica e citoplasma eosinofílico. Quando as células apresentaram assincronismo maturativo, prevaleceu aspecto da cromatina nuclear para identificação da etapa maturativa.

A identificação dos monoblastos e dos plasmoblastos seguiu os critérios morfológicos do padrão de cromatina nuclear e basofilia do citoplasma.

Promonócitos, monócitos e macrófagos foram reunidos em um grupo de células denominadas de monomacrofágicas.

As células da linhagem linfoide envolvendo prolinfócitos, linfócitos típicos ou atípicos foram agrupadas como linfócitos. As células da linhagem plasmocitária foram agrupadas como plasmócitos.

Todas as análises do hemograma e do mielograma foram realizadas com a colaboração do Prof. Dr. Ricardo Ambrósio Fock do Laboratório de Hematologia Experimental vinculado ao Departamento de Análises Clínicas e Toxicológicas da Faculdade de Ciências Farmacêuticas - USP.

3.24. Análise Estatística

Os resultados aqui apresentados foram expressos como média \pm desvio padrão (S.D). Foram analisados estatisticamente pelo teste de Kruskal Wallis com pós teste de Dunn ou teste *t* de *student*. Foi utilizado o programa de análise estatística *GraphPad Prism* versão 5.0 e os valores foram considerados estatisticamente significativos quando p < 0.05.

Resultados e Discussão

4. Resultados Discussão

4.1. Síntese e caracterização das moléculas utilizadas neste estudo

4.1.1. Síntese de BPANO₂

A síntese de BPANO₂ para ser utilizado nas incubações com as células foi realizada como descrito por Schrader *et al.*, 2002. A solução final obtida foi injetada no sistema de HPLC-PDA. Os produtos resultantes podem ser observados na figura a seguir.

Figura 6 - Cromatograma obtido por HPLC – PDA (λ = 260 nm) da reação de BPA com nitrito de sódio em meio ácido. Foi utilizado o sistema cromatográfico 1.

Os picos de maior intensidade foram numerados de I a V, coletados, liofilizados e submetidos a análise por ESI-MS/MS. Na figura a seguir estão apresentados os espectros de massas e de absorbância obtidos para os produtos IV e V, correspondendo, respectivamente, a BPANO₂ e BPA(NO₂)₂. Os espectros de massas obtidos correspondem aos reportados por Schrader, Langlois et al. (2002) e Babu, Vellore et al. (2012). O pico III corresponde ao BPA que não reagiu, apresentando relação massa/carga (*m/z*) 227 e absorção máxima em λ_{max} = 275 nm, em modo negativo. Os produtos I e II não foram identificados. O produto BPANO₂ foi purificado em quantidade suficiente (15 mg) para as incubações subsequentes com as células.

Figura 7 - Espectros de absorbância e espectros de massas no modo negativo (ESI-MS/MS, íons fragmentos de m/z 272 e m/z 317) dos produtos IV e V da reação de BPA com nitrito de sódio, sendo indicados os produtos identificados.

4.1.2. Síntese de BPA-3,4-quinona (BPAQ)

O produto formado após a reação de síntese de BPAQ pode ser observado na figura a seguir. O pico com maior intensidade foi coletado para identificação por espectrometria de massas, apresentando *m/z* 241 no modo negativo e os fragmentos indicados. O espectro de absorbância e espectro de massas obtidos correspondem ao produto BPAQ, como reportado por Qiu, Yang et al. (2004) e ATKINSON e ROY (1995).

Figura 8 - (A) Cromatograma obtido por HPLC–PDA (λ = 385 nm) da reação de BPA com sal de Fremy e espectro de absorbância do produto indicado (BPA-3,4-quinona). (B) Espectro de massas no modo negativo do produto BPA-3,4-quinona obtido (ESI-MS/MS, íons fragmentos de *m/z* 241).

4.1.3. Síntese do aduto de BPA-3,4-quinona com guanina (Gua)

Para a síntese do aduto BPAQ-Gua foi utilizado o método descrito por Qiu *et al.*, 2004. Primeiramente foi realizada a síntese de BPA-3,4-quinona como descrito acima. O produto bruto obtido em acetona após oxidação do BPA com sal de *Fremy*, contendo BPAQ, foi então incubado com 2'desoxiguanosina (dGuo). Quando o produto BPAQ purificado foi incubado com dGuo, não foi possível observar a formação do aduto. Dessa forma, optou-se por fazer a reação do desoxinucleosídeo com a mistura de oxidação de BPA contendo BPAQ. Na figura a seguir estão apresentados o cromatograma com indicação do pico correspondente ao aduto (ausente nas incubações controles) e o espectro de massas obtido após purificação do produto indicado e análises por ESI-MS/MS. O mesmo procedimento foi realizado para as incubações com [¹⁵N₆]dGuo, obtendo-se o respectivo aduto com a adição de 5 unidades de massa.

Como reportado por (Qiu, Yang et al. 2004), observou-se que o aduto obtido a partir da reação de dGuo com BPA oxidado não possui o açúcar em sua estrutura, tendo ocorrido a perda do açúcar durante a reação. A posição de ligação do BPA-3,4-quinona à guanina desestabiliza a ligação desta ao açúcar.

Figura 9 - (A) Cromatograma obtido por HPLC–DAD (λ = 275 nm) da reação de BPA-3,4-quinona com dGuo, sendo indicado o aduto (BPA-Gua) e seu espectro de absorbância. O pico indicado não apareceu nas incubações controles; (B) Espectro de massas do produto isolado obtido no modo positivo (ESI-MS/MS, íons fragmentos de *m/z* 394)

Para quantificação do aduto BPA-Gua em amostras de DNA, meio de cultura das células e urina dos animais, foi necessário determinar o seu coeficiente de extinção molar (ϵ), uma vez que esse dado não está disponível na literatura. A dificuldade para a determinação do ϵ deve-se ao fato de não ser possível a síntese e purificação de grandes quantidades (pelo menos 5 mg) do aduto para adequada aferição da massa em balança analítica e obtenção de uma solução de concentração conhecida para leitura da absorbância. Assim, a

determinação da concentração da solução do aduto purificado foi feita por meio de análises de espectros de ¹H RMN. Para obtenção dos espectros, foi necessário realizar purificações do aduto de modo a obter soluções em concentração suficiente para a obtenção dos sinais dos prótons. Como o rendimento da reação é baixo, diversas incubações e purificações foram realizadas. O produto final (aduto puro) foi liofilizado, solubilizado em DMSO-*d*₆ e alíquotas foram utilizadas para o preparo das soluções contendo 3- (trimetilsilil)-1-propanosulfonato de sódio (DSS) como padrão interno para a determinação das concentrações. Dois tubos de RMN com concentrações diferentes de DSS e do aduto foram preparados como descrito abaixo:

Tubo 1: 0,2 mg DSS + 400 μ L da solução do aduto (V_{final} = 650 μ L) **Tubo 2:** 0,5 mg DSS + 600 μ L da solução do aduto (V_{final} = 850 μ L)

A partir da relação entre a média das áreas dos prótons do DSS e a média das áreas dos prótons do aduto em cada solução, foi possível determinar as concentrações do aduto nos diferentes tubos, uma vez que eram conhecidas as concentrações de DSS. Posteriormente, alíquotas de cada uma das amostras dos tubos de RMN foram diluídas com volumes apropriados das soluções para determinação de absorbância em pH 1 (tampão HCI-KCI, 50 mM), pH 7 (tampão fosfato de sódio, 50 mM) e pH 11 (tampão bicarbonato-carbonato, 50 mM). Após as medidas de absorbância das soluções em diferentes comprimentos de onda, os valores de ϵ foram determinados pelas razões entre os valores de absorbância e concentração molar (**Tabela 1**).

Figura 10 - Espectro de 1H RMN do aduto BPA-Gua. Espectros de Ressonância Magnética Nuclear obtidos do aduto BPA-Gua. Espectro de RMN com 0,2 mg de DSS em 650 μ l de volume final.

 Tabela 1 - Valores de coeficiente de extinção molar calculados para o aduto BPA-Gua.

Aduto BPA-Gua	
pH 1	$\epsilon_{248 \text{ nm}} = 39287 \text{ M}^{-1} \text{ cm}^{-1}$
	$\epsilon_{278 \text{ nm}} = 36687 \text{ M}^{-1} \text{ cm}^{-1}$
pH 7	$\epsilon_{242 \text{ nm}} = 49388 \text{ M}^{-1} \text{ cm}^{-1}$
	$\epsilon_{286 \text{ nm}} = 45982 \text{ M}^{-1} \text{ cm}^{-1}$
pH 11	$\epsilon_{244 \text{ nm}} = 51863 \text{ M}^{-1} \text{ cm}^{-1}$
	$\epsilon_{286 \text{ nm}} = 24466 \text{ M}^{-1} \text{ cm}^{-1}$

Assim, as concentrações das soluções do aduto BPA-Gua e do padrão isotópico [¹⁵N₅]BPA-Gua disponíveis no laboratório puderam ser determinadas.

4.2. Padronização do método de hidrólise do DNA para quantificação do aduto BPA-Guanina

Para a quantificação do aduto BPA-Gua nas amostras de DNA foi necessário realizar alguns testes envolvendo a hidrólise neutra-térmica do DNA. Os testes foram baseados no trabalho de Loureiro e colaboradores (Loureiro, Zhang et al. 2009), substituindo-se o tampão cacodilato por tampão Tris-HCI (10 mM, pH 7,0). Entretanto, nessas condições verificou-se degradação do aduto. Após uma série de testes, foi possível chegar à condição de hidrólise que possibilitou a liberação do aduto BPA-Gua do DNA, sem degradação.

Na figura a seguir estão apresentados os cromatogramas obtidos a partir de uma amostra de DNA de timo de bezerro incubado *in vitro* com a mistura resultante da reação de oxidação de BPA com sal de *Fremy*. O DNA recuperado foi lavado duas vezes com etanol 70%, solubilizado em água e congelado até a realização da hidrólise neutra-térmica. Para comparação, uma alíquota da mesma amostra de DNA foi submetida ao procedimento de hidrólise sem a incubação por 1 h a 70 °C, a fim de se verificar a possibilidade de o aduto ser liberado do DNA em condições brandas de manipulação. Como apresentado na **Figura 11A**, verificamos liberação do aduto BPA-Gua do DNA mesmo sem a incubação por 1 h a 70 °C. A liberação é aumentada quando o aquecimento é realizado ao longo de 1 h (**Figura 11B**).

Figura 11 - Cromatogramas obtidos por HPLC-ESI-MS/MS de amostras de DNA de timo de bezerro incubado *in vitro* com BPA-3,4-quinona para análise do aduto BPA-Gua. A) DNA submetido ao procedimento de hidrólise neutra-térmica sem o período de 1 h de aquecimento a 70 °C. B) DNA submetido ao procedimento completo de hidrólise neutra-térmica.

4.3. Efeitos citotóxicos, genotóxicos e epigenéticos em células HL-60 expostas a BPA e BPANO₂

Células HL-60 são derivadas de leucemia promielocítica humana, contem MPO e são utilizadas como modelos em diversos estudos nos quais a adição de H₂O₂ ativa MPO, que oxida substratos tais como fenol ou etoposídeo para os respectivos radicais, levando a dano oxidativo (TYURINA *et al.*, 1995; GOLDMAN *et al.*, 1999; BORISENKO *et al.*, 2004; CUDDIHY *et al.*, 2008). Assim, utilizou-se esse modelo para avaliação de danos que pudessem ser devidos à biotransformação de BPA por MPO.

4.3.1. Avaliação da citotoxicidade em células HL-60

As células HL-60 foram expostas por 2 h, 24 h ou 48 h a BPA (25 μ M, 100 μ M, 250 μ M) ou BPANO₂ (25 μ M, 100 μ M, 250 μ M), na presença e ausência de H₂O₂ (40 nmol/5 x 10⁴ células). A citotoxicidade foi avaliada pela análise da permeabilidade da membrana plasmática ao iodeto de propídeo, por citometria de fluxo. Nas figuras a seguir são apresentados os dados obtidos para as incubações com BPA e BPANO₂, respectivamente.

Foi observado aumento da permeabilidade da membrana das células após 24 h de incubação com BPA (25 μ M, 100 μ M, 250 μ M) ou BPANO₂ (250 μ M), na presença ou ausência de H₂O₂. Observou-se, ainda, aumento crescente da permeabilidade da membrana plasmática após 48 h de incubação das células com 250 μ M de BPA. Entretanto, nas concentrações de 25 μ M e 100 μ M de BPA não houve aumento adicional da permeabilidade da membrana plasmática após o período de 48 h. Nas incubações com BPANO₂ não foi observada perda da viabilidade celular após 48 h. Uma vez que as células HL-60 apresentaram resistência à perda de viabilidade com o passar do tempo de incubação, avaliou-se o consumo de BPA ao longo do tempo. Observa-se, que após um período inicial (12 h) de absorção do BPA pelas células, o consumo atingiu um platô. Após 84 h de incubação com 250 µM de BPA, apenas 15% da quantidade disponível inicialmente havia sido absorvida pelas células. As análises do meio de cultura foram feitas por HPLC-DAD, não tendo sido possível a detecção de produtos de biotransformação do BPA.

Figura 12 - Viabilidade das células HL-60 avaliada por citometria de fluxo após: (A) 2 h de incubação com as concentrações indicadas de BPA, com e sem H_2O_2 (40 nmol/5 x 10⁴ células); (B) 24 h de incubação com as concentrações indicadas de BPA, com e sem H_2O_2 (40 nmol/5 x 10⁴ células); (C) 48 h de incubação com as concentrações indicadas de BPA, com e sem H_2O_2 (40 nmol/5 x 10⁴ células); (C) 48 h de incubação com as concentrações indicadas de BPA, com e sem H_2O_2 (40 nmol/5 x 10⁴ células); (C) 48 h de incubação com as concentrações indicadas de BPA, com e sem H_2O_2 (40 nmol/5 x 10⁴ células). média ± desvio padrão Kruskal Wallis com pós teste de Dunn, diferenças em relação ao respectivo controle. *P<0.05; **P<0.01; ***P<0.001.

Figura 13 - Viabilidade das células HL-60 avaliada por citometria de fluxo após: (A) 2 h de incubação com as concentrações indicadas de BPANO₂, com e sem H₂O₂ (40 nmol/5 x 10⁴ células); (B) 24 h de incubação com as concentrações indicadas de BPANO₂, com e sem H₂O₂ (40 nmol/5 x 10⁴ células). (C) 48 h de incubação com as concentrações indicadas de BPANO₂, com e sem H₂O₂ (40 nmol/5 x 10⁴ células). (C) 48 h de incubação com as concentrações indicadas de BPANO₂, com e sem H₂O₂ (40 nmol/5 x 10⁴ células). (C) 48 h de incubação com as concentrações indicadas de BPANO₂, com e sem H₂O₂ (40 nmol/5 x 10⁴ células). (C) 48 h de incubação com as concentrações indicadas de BPANO₂, com e sem H₂O₂ (40 nmol/5 x 10⁴ células). N = 4, média ± desvio padrão, Kruskal Wallis com pós teste de Dunn, diferenças em relação ao respectivo controle. *P<0.05; **P<0.01.

Figura 14 - Consumo de BPA pelas células HL-60. As células foram cultivadas na densidade de 2,4 x 10^{6} (A) ou 1 x 10^{7} (B) células por poço e expostas a 250 µM de BPA. Alíquotas do meio de cultura foram retiradas nos períodos indicados para quantificação de BPA por HPLC-DAD (λ = 277 nm).

Considerando-se a fração de BPA absorvida, o número de células e o volume de meio de cultura nas incubações, estimou-se um nível intracelular médio de BPA na ordem de poucos pg/célula. É reportado que a absorção de BPA pelo trato gastrointestinal humano é rápida e a recuperação na urina após 24 h é quase completa na forma conjugada com glicuronídeo (meia-vida de excreção urinária de 5,4 h) (Volkel, Colnot et al. 2002). A rápida e quase completa excreção de BPA na urina sugerem que, ao contrário do que ocorre no trato gastrointestinal e fígado, BPA seja pouco absorvido pelas células de outros tecidos. Concentrações de BPA no soro e urina humanos estão na faixa de 0,2 a 20 µg/L (Calafat, Kuklenyik et al. 2005; Welshons, Nagel et al. 2006; Lang, Galloway et al. 2008), sendo muito inferiores às utilizadas no meio de cultura de células nos estudos *in vitro*. Entretanto, nos estudos *in vitro* observam-se efeitos decorrentes das concentrações intracelulares atingidas no intervalo de poucas horas, enquanto que *in vivo* a exposição ocorre de forma

crônica e, dependendo da velocidade de biotransformação e excreção celular da substância, pode haver, ao longo do tempo, incremento das concentrações intracelulares para os níveis correspondentes aos dos estudos *in vitro*. A concentração de 20 µg/L (ou 20 pg/µL) de BPA no soro humano permite que células mais permeáveis estejam sujeitas a níveis de BPA na ordem de poucos picogramas ao longo do tempo.

Com o intuito de verificar se BPA e BPANO₂ interferem na cadeia de transporte de elétrons mitocondrial, alterando a atividade da succinato desidrogenase e, assim, levando à perda de viabilidade celular, as células foram expostas por 24 h e em seguida submetidas ao ensaio do XTT. Na figura a seguir são apresentados os dados obtidos, sendo observada inibição da atividade desidrogenase da cadeia respiratória nas incubações com BPA por 24 h, na ausência e presença de H₂O₂, o mesmo não ocorrendo nas incubações com BPANO₂. A perda da atividade respiratória mitocondrial observada nas incubações com BPA parece preceder a perda da integridade da membrana plasmática, podendo haver a participação de ROS/RNS no processo.

Figura 15 - Viabilidade das células HL-60 avaliada pelo ensaio do XTT após 24 h de incubação com as concentrações indicadas de BPA e BPANO₂, com e sem H_2O_2 (40 nmol/5 x 10⁴ células). , média ± desvio padrão, , Kruskal Wallis com pós teste de Dunn, diferenças em relação ao respectivo controle. *P<0.05; ***P<0.001.

A literatura traz informações sobre a indução de estresse oxidativo por BPA (Hassan, Elobeid et al. 2012; Hulak, Gazo et al. 2013; Wu, Liu et al. 2013). Dessa forma, a avaliação da geração intracelular de ROS/RNS é necessária para a compreensão dos efeitos tóxicos desse xenobiótico.

A indução de estresse oxidativo foi monitorada quantitativamente por análise de fluorescência do produto 2',7'-diclorofluoresceína (DCF) resultante da oxidação de 2',7'-diclorodihidrofluoresceína (DCFH) por radicais livres gerados intracelularmente, como RO₂', RO', NO₂', CO₃⁻⁻ e HO' (HELD, P.; 2010). Os dados obtidos estão apresentados na **figura 16**. Observa-se que a geração de ROS/RNS é um evento precoce nas incubações de células HL-60 com BPA e BPANO₂. No caso de BPA, a indução foi observada após 1 h de incubação com 100 μ M e 250 μ M, não havendo efeito da adição de H₂O₂. Quanto ao BPANO₂, a indução de ROS/RNS ocorreu em todas as concentrações testadas, principalmente na ausência de H₂O₂. Como apresentado nas **figuras 12 e 13**, nesse período de incubação não foi observado aumento da permeabilidade da membrana plasmática das células expostas a essas concentrações de BPA e BPANO₂.

Figura 16 - Fluorescência relativa (%) do produto DCF nas células HL-60 após 1 h de incubação (A) com as concentrações indicadas de BPA com e sem H_2O_2 (40 nmol/5 x 10^4 células). (B) com as concentrações indicadas de BPANO₂ com e sem H_2O_2 (40 nmol/5 x 10^4 células). N = 4, média ± desvio padrão, Kruskal Wallis com pós-teste de Dunn, diferenças em relação ao respectivo controle. *P<0.05; **P<0.01.

Sabe-se que vias de redução de grupos nitro levam à formação de diversos intermediários radicalares e não radicalares. No processo de biotransformação pode haver também a geração de ROS a partir da redução de O₂ pelos radicais intermediários (Toyoizumi, Deguchi et al. 2008). Assim, era esperada indução de ROS/RNS nas células expostas a BPANO₂.

Entretanto, essas alterações iniciais não levaram à perda da viabilidade celular após 24 h de incubação, ao contrário do que ocorreu com o BPA.

BPA, ao longo do período de 24 h de incubação, pode levar a alterações mitocondriais que agravam o estado de estresse oxidativo das células, levando à perda de viabilidade. A possibilidade de formação de BPA-3,4-quinona intracelularmente pode também aumentar a geração de ROS, via formação do radical semiquinona e entrada da molécula em um ciclo redox. Adicionalmente, pode haver a indução de óxido nítrico sintase (NOS), com síntese de grandes quantidades (μ M) de ·NO que, na presença de O₂⁻⁻, leva à formação de peroxinitrito e radicais livres reativos resultantes de sua clivagem (NO₂⁻, ·OH, CO₃⁻⁻), que contribuem para os danos celulares (Oh and Lim 2008; Gu, Nakamura et al. 2010).

Para avaliar a possibilidade de aumento da geração de \cdot NO, foi realizada a quantificação de NO₂- no meio de cultura das células HL-60 expostas ao BPA nas concentrações de 25 µM, 100 µM ou 250 µM, na presença ou ausência de H₂O₂, utilizando a reação de Griess. Os dados obtidos estão apresentados na **figura 17.**

Observa-se que H_2O_2 estimulou a geração de nitrito pelas células HL-60 (2 h e 24 h). Entretanto, na presença de BPA + H_2O_2 a geração de nitrito foi diminuída. Por outro lado, na ausência de H_2O_2 observou-se a indução de geração de nitrito por BPA. Na presença de H_2O_2 é possível que BPA seja alvo para o ataque dos radicais livres gerados, incluindo NO_2 , o que poderia contribuir para a queda da geração de nitrito (Kim and Jeong 2003; Terasaka, Kadoma et al. 2005; Moon, Kim et al. 2012). Entretanto, não foram detectados produtos de biotransformação do BPA no meio de cultura das células.

Na **figura 18** são apresentados os dados de atividade de mieloperoxidase (MPO) das células HL-60 expostas ao BPA, mostrando que as incubações pelos períodos de 2 h e 24 h não alteraram a atividade da enzima.

Figura 17 - Geração de nitrito pelas células HL-60 após: (A) 2 h de incubação com as concentrações indicadas de BPA, sem e com H_2O_2 (40 nmol/5 x 10^4 células); (B) 24 h de incubação com as concentrações indicadas de BPA, sem e com H_2O_2 (40 nmol/5 x 10^4 células), média ± desvio padrão, Kruskal Wallis com pós teste de Dunn, diferenças em relação ao respectivo controle. *P<0.05; **P<0.01.

Figura 18 - Atividade de MPO das células HL-60 após: **(A)** 2 h de incubação com as concentrações indicadas de BPA, com e sem H_2O_2 (40 nmol/5 x 10^4 células); **(B)** 24 h de incubação com as concentrações indicadas de BPA, com e sem H_2O_2 (40 nmol/5 x 10^4 células), média ± desvio padrão, Kruskal Wallis com pós teste de Dunn, diferenças em relação ao respectivo controle.

Uma vez observada a indução de ROS/RNS nas células incubadas com BPA, avaliou-se a ocorrência de peroxidação lipídica por meio da quantificação de malonaldeído (MDA) no meio de cultura das células. Um cromatograma representativo encontra-se na **Figura 19**. Observa-se na **Figura 20** que não houve alteração da concentração de MDA no meio de cultura das células expostas ao BPA por 24 h, na presença ou ausência de H₂O₂, indicando que o aumento observado dos níveis de ROS/RNS não foi suficiente para induzir peroxidação lipídica.

Figura 19 - Cromatograma respresentativo da análise de MDA em meio de cultura. O pico indicado é o produto de reação do MDA presente na amostra com dinitrofenilhidrazina (DNPH), empregado como agente derivatizante.

Figura 20 - Concentração de MDA no meio de cultura das células HL-60 após 24 h de incubação com as concentrações indicadas de BPA, sem e com H_2O_2 (40 nmol/5 x 10^4 células). N = 4, média ± desvio padrão, Kruskal Wallis com pós-teste de Dunn.

Fragmentação do DNA e alterações do ciclo celular podem ocorrer como resultado da geração excessiva de ROS e ocorrência de danos celulares. Nas **figuras 21 e 22** são apresentados os dados obtidos por citometria de fluxo após incubação das células por 24 h com BPA ou BPANO₂, na presença ou ausência de H_2O_2 .

Figura 21 - Fragmentação do DNA das células HL-60 avaliada por citometria de fluxo após 24 h de incubação com as concentrações indicadas de BPA (A) e BPANO₂ (B), com e sem H_2O_2 (40 nmol/5 x 10⁴ células). N = 4, média ± desvio padrão, Kruskal Wallis com pós teste de Dunn, diferenças em relação ao respectivo controle.*P<0.05; **P<0.01.

Figura 22 - Fragmentação do DNA das células HL-60 avaliada por citometria de fluxo após 24 h de incubação com as concentrações indicadas de BPA (A) e BPANO₂ (B), com e sem H_2O_2 (40 nmol/5 x 10⁴ células). N = 4, média ± desvio padrão, Kruskal Wallis com pós teste de Dunn, diferenças em relação ao respectivo controle.*P<0.05; **P<0.01.

BPA provocou fragmentação do DNA das células HL-60 na concentração de 250 μ M, independentemente da adição de H₂O₂. Na maior concentração testada houve parada do ciclo celular na fase G2/M. Por outro lado, BPANO₂ levou à parada do ciclo na fase G0/G1 na maior concentração testada, induzindo discretamente a fragmentação do DNA na presença de H₂O₂.

Resumidamente, nesta etapa verificou-se que, apesar da baixa absorção de BPA pelas células HL-60 (**Figura 14**), na primeira hora de incubação com BPA (100 µM e 250 µM) houve indução da geração de ROS (**Figura 16**). Esse efeito foi acompanhado por perda da viabilidade celular (inibição da atividade

desidrogenase da cadeia respiratória mitocondrial e aumento da permeabilidade da membrana plasmática, principalmente nas incubações com 100 μ M e 250 μ M, **Figuras 12 e 15**), aumento da população de células em sub G1, ou seja, com DNA fragmentado (250 μ M, **Figura 21**) e parada do ciclo celular na fase G2/M (250 μ M, **Figura 22**) no período de 24 h.

Em outro estudo, células de leucemia mielóide humana (NB4, K562 e HL-60) incubadas com BPA por 48 h nas concentrações de 10, 30, 60 e 100 µM sofreram parada do ciclo celular nas fases G1 ou G2/M, dependendo do tipo celular e da concentração de BPA, e aumento de fragmentação do DNA (fase sub G1) (Bontempo, Mita et al. 2009). Nas células NB4 incubadas com 60 µM de BPA foi verificada indução de apoptose pela ativação das caspases 8, 9 e 37, além de aumento da expressão de p21, p27 e p16, diminuição da expressão de ciclina D1, aumento da fosforilação de BAD e diminuição da fosforilação de ERK, Rb e AKT, alterações moleculares que explicam a parada no ciclo celular e apoptose pelas vias extrínseca e intrínseca. Foi ainda observado aumento da acetilação de histona H3 nas células NB4 incubadas com BPA, um efeito epigenético que altera a expressão gênica. Como as células não expressam receptor de estrógeno, os efeitos são independentes da via estrogênica (Bontempo, Mita et al. 2009).

Em estudo realizado por Watanabe e colaboradores (2003), BPA na concentração de 1 nM aumentou, por via independente de receptores de estrógeno, a geração de radical O_2 ⁻⁻ estimulada por *zymosan* opsonizado em células HL-60 submetidas à diferenciação neutrofílica. Aumento da expressão gênica de p47phox e p67phox, componentes do sistema NADPH oxidase, foi também observado. Entretanto, em concentrações no intervalo de 1 - 10 μ M,

BPA não apresentou efeito no *burst* respiratório (Watanabe, Adachi et al. 2003).

Sabe-se que diferentes vias de sinalização celular e fatores de transcrição podem ser modulados por ROS, levando as células ao crescimento e replicação ou à parada no ciclo celular e morte. O destino da célula possivelmente depende da fonte de ROS, sua localização e concentração. Assim, baixas concentrações de ROS (nM) estão relacionadas à indução de crescimento, replicação e diferenciação, enquanto maiores concentrações (µM) estão relacionadas à indução de morte celular (Chiu and Dawes 2012).

As incubações com BPANO₂ por 1 hora levaram a maior geração intracelular de ROS (**Figura 17**) em comparação às incubações com BPA, sem, no entanto, ser observada perda equivalente da viabilidade celular após 24 h (foi observado pequeno aumento de permeabilidade da membrana plasmática nas incubações com 250 μ M, revertido após 48 h, sem alteração da atividade desidrogenase da cadeia respiratória mitocondrial, **Figuras 14 e 16**). Pequeno aumento da população de células em sub G1 (DNA fragmentado) foi observado nas incubações com 250 μ M na presença de H₂O₂ (**Figura 22**) e parada do ciclo na fase G0/G1 foi observada na maior concentração testada na ausência e presença de H₂O₂ (**Figura 22**). Nas incubações com 25 μ M de BPANO₂ na presença de H₂O₂ foi observado aumento da população de células na fase S e diminuição em G2/M (**Figura 22**).

Assim, ao compararmos as incubações das células HL-60 com BPA e BPANO₂ fica claro que o nível total intracelular de ROS não explica o destino distinto das células nas duas condições. Apesar de as duas moléculas elevarem os níveis celulares de ROS (BPANO₂ mais do que BPA), BPA inibe a

cadeia de transporte de elétrons mitocondrial, o que não foi observado para BPANO₂. As alterações em diferentes compartimentos celulares e diferenças na composição das espécies reativas geradas devem ativar vias distintas de sinalização, culminando nos diferentes efeitos no ciclo celular e morte.

4.3.2. Avaliação de efeitos genotóxicos em células HL-60

O aumento da geração de ROS/RNS nas células HL-60 incubadas com BPA poderia resultar em aumento das lesões 8-oxo-7,8-dihidro-2'desoxiguanosina (8-oxodG), $1,N^2$ -eteno-2'-desoxiguanosina $(1,N^2-\varepsilon dG)$, $1,N^6$ etheno-2'-deoxyadenosina $(1,N^6-\varepsilon dA)$ e N^2 -carboxietil-2'-desoxiguanosina (CEdG) no DNA que, sendo reparadas, seriam excretadas para o meio de cultur. Avaliou-se, portanto, os níveis dessas lesões no DNA e/ou meio de cultura das células. Adicionalmente, foi avaliado um marcador de alquilação do DNA, O^6 -metil-2'-desoxiguanosina (O^6 -mdG), que pode ser formado por íons metila resultantes do metabolismo de compostos *N*-nitroso (Dederer, Sokolova et al. 1995); (Gottschalg, Scott et al. 2007). A possibilidade de formação de metabólitos reativos de BPA levando a lesões no DNA também foi investigada pela análise do aduto BPA-Gua tanto no DNA das células, como no meio de cultura. A indução de lesões no DNA pode levar à parada no ciclo celular e morte, além de aumentar a chance de mutações que favorecem a progressão maligna (Roos and Kaina 2013; Yager 2015)

Os métodos de HPLC-ESI-MS/MS para quantificação das lesões em DNA e no meio de cultura foram validados pelo grupo. Dentre as lesões analisadas no DNA das células (8-oxodG, CEdG, O^6 -mdG e BPA-Gua) e no meio de cultura (8-oxodG, 1, N^2 -ɛdG, 1, N^6 -ɛdA, CEdG, O^6 -mdG e BPA-Gua), foi

possível quantificar CEdG e 8-oxodG. As demais lesões, se presentes, estavam abaixo dos limites de detecção dos métodos (exemplos de cromatogramas nos quais não há a detecção da lesão são apresentados na figura a seguir, no caso referentes a análises do aduto BPA-Gua em amostras de DNA de fígado. Todas as amostras de DNA de células e tecidos analisadas neste trabalho não apresentaram níveis detectáveis do aduto BPA-Gua).

Figura 23 - Cromatogramas obtidos por HPLC-ESI-MS/MS de amostras de DNA de fígado de ratos Sprague-Dawley para análise do aduto BPA-Gua. **A)** Controle; **B)** BPA, gavagem, 50 mg/kg/dia, 4 semanas; **C)** Diabéticos + BPA (gavagem, 50 mg/kg/dia, 4 semanas).

Nas **Figuras 24 e 25** são apresentados os níveis de CEdG e 8-oxodG no DNA das células HL-60 incubadas com BPA na presença e ausência de H_2O_2 e nas respectivas amostras de meio de cultura.

Figura 24 - Níveis de CEdG e 8-oxodG em DNA de células HL-60 incubadas com BPA com ou sem H_2O_2 (40 nmol/5x10⁴ células), nas concentrações indicadas por 24 horas. Análise estatística utilizando o teste de Kruskal Wallis com pós teste de Dunn não mostrou diferença entre os grupos.

Figura 25 - Níveis de CEdG e 8-oxodG no meio de cultura (meio RPMI suplementado com 10% de SFB) de células HL-60 incubadas com BPA, com e sem H_2O_2 (40 nmol/5x10⁴ células), nas concentrações indicadas por 24 horas. Análise estatística utilizando o teste de Kruskal Wallis com pós teste de Dunn não mostrou diferença entre grupos.

Observa-se que as incubações com BPA não levaram ao aumento dos níveis das lesões no DNA ou ao aumento da excreção das lesões para o meio de cultura. Como apresentado anteriormente, também não foi observado aumento dos níveis de malonaldeído, um outro marcador de dano oxidativo, no meio de cultura das células. Assim, é possível que em resposta ao aumento da geração de ROS na presença de BPA, as células tenham aumento da expressão de enzimas antioxidantes, que acabam protegendo contra a indução de lesões em biomoléculas por radicais livres. O fator de transcrição Nrf2 é ativado na presença de ROS e induz a expressão de genes que estão sob controle do elemento responsivo a antioxidantes (ARE), tais como glutationa-S-transferase, γ-glutamilcisteína sintetase, glutationa redutase, glutationa peroxidase, peroxirredoxina, tiorredoxina, tiorredoxina redutase, catalase, SOD, sulfirredoxina e enzimas de biotransformação de fase II (Chiu and Dawes 2012). Essa resposta ao estresse inicial pode também explicar a resistência das células à perda de viabilidade com o passar do tempo de incubação (**Figura 12**).

De fato, em estudo com células renais embrionárias humanas (HEK 293) foi verificado que BPA nas concentrações de 100 – 200 µM ativa os fatores de transcrição Nrf1 e Nrf2 e aumenta a transcrição de genes sob controle de ARE, como heme oxigenase-1 (*ho-1*) e NADPH quinona desidrogenase 1 (*Nqo1*). Aumento da razão GSH/GSSG foi também observado. Nessas células, quantidades de BPA na ordem de 50 – 200 ng foram encontradas em frações subcelulares, principalmente na mitocôndria e citoplasma. Não houve indução de ROS ou perda de viabilidade celular no período de 24 h (Chepelev, Enikanolaiye et al. 2013).

As análises no meio de cultura das células nos permitiram, adicionalmente, detectar concentrações altas das lesões CEdG ($21,1 \pm 3,3$ pg/mL) e 8-oxodG (6829 ± 855 pg/mL) mesmo na ausência de células, tendo como provável fonte o soro fetal bovino utilizado na composição do meio. Na presença das células, as concentrações de CEdG no meio de cultura diminuiram, enquanto que as de 8-oxodG aumentaram (**Figura 25**).

As células HL-60 foram também incubadas com BPANO₂, na ausência e presença de H_2O_2 , e o DNA extraído para análise das lesões 8-oxodG, CEdG,

 O^6 -mdG e BPA-Gua. Da mesma forma, foi possível quantificar as lesões 8oxodG e CEdG, não tendo sido detectadas as demais. Os dados estão apresentados na figura a seguir, observando-se aumento dos níveis de CEdG nas células incubadas com 100 µM de BPANO₂ na presença de H₂O₂.

Figura 26 - Níveis de CEdG e 8-oxodG em DNA de células HL-60 incubadas com BPANO₂, com e sem H_2O_2 (40 nmol/5x10⁴ células), nas concentrações indicadas pelo período de 24 horas. *P<0,05 em comparação com o controle, de acordo com o teste de Kruskal Wallis com pós teste de Dunn.

O aduto CEdG observado em nível aumentado no DNA das células incubadas com BPANO₂ (100 μM), mas não com BPA, pode resultar da reação de metilglioxal com o grupo amino exocíclico da guanina (Chepelev, Enikanolaiye et al. 2013). Algumas fontes de metilglioxal são o processo de
peroxidação lipídica, degradação enzimática ou não enzimática de dihidroxiacetona fosfato (intermediário da via glicolítica), metabolismo de acetona, glicerol, glicina e treonina (Vistoli, De Maddis et al. 2013). O acúmulo de CEdG no DNA pode levar a alterações da expressão gênica, da atividade de proteínas (Breyer, Frischmann et al. 2008) e aumento de mutações (Cao, Jiang et al. 2007; Tamae, Lim et al. 2011), eventos relacionados ao desenvolvimento de doenças. A indução de formação de CEdG nas células incubadas com BPANO₂, mas não com BPA, pode ser reflexo de alterações induzidas por essas moléculas em diferentes compartimentos celulares, como discutido no item anterior.

4.3.3. Avaliação de efeitos epigenéticos em células HL-60

Alterações epigenéticas podem contribuir para a expressão diferencial de genes, levando a diversas consequências, tais como alterações no sistema de reparo, no ciclo celular e em vias metabólicas. Uma importante modificação epigenética em genoma de mamíferos é a metilação na posição C-5 da citosina (5-metilcitosina ou 5-mdC), cujo padrão é mantido no genoma ao longo das gerações celulares. A metilação do DNA é um evento regulado pela ação de DNA metil-transferases (DNMTs). O processo de desmetilação do DNA, por sua vez, envolve a oxidação de 5-mdC para 5-hidroximetilcitosina (5-hmdC) por uma família de dioxigenases dependentes de α -cetoglutarato e Fe(II), denominadas proteínas *Ten-Eleven-Translocation* (TET1, TET2 e TET3). As marcas epigenéticas 5-mdC e 5-hmdC são importantes para a regulação da expressão gênica (Valinluck and Sowers 2007; Tahiliani, Koh et al. 2009; Ito,

D'Alessio et al. 2010; Jin, Kadam et al. 2010; Dahl, Gronbaek et al. 2011; Williams, Christensen et al. 2012).

Um método de HPLC-ESI-MS/MS foi padronizado pelo grupo para quantificação simultânea de 5-mdC e 5-hmdC no DNA. A espectrometria de massas permite especificidade para a quantificação dos analitos e o uso de pequenas quantidades de DNA. Para a quantificação de 5-mdC por HPLC-UV são necessários pelo menos 5 µg de DNA, enquanto que a quantificação por HPLC-ESI-MS/MS é possível com o uso de 100 vezes menos DNA. No caso de 5-hmdC, devido às baixas concentrações no DNA, não é possível sua quantificação por HPLC-UV.

Células HL-60 foram incubadas com BPA e BPANO₂, na ausência e presença de H_2O_2 , e o DNA extraído para quantificação de 5-mdC e 5-hmdC. Os dados estão apresentados nas figuras a seguir.

Foi observada hipermetilação (5-mdC) do DNA das células HL-60 incubadas com BPA e simultânea queda dos níveis de 5-hmdC. A hipermetilação foi atenuada e não houve alteração dos níveis de 5-hmdC quando as incubações ocorreram na presença de H₂O₂ (**Figura 27**). Essas alterações no período de 24 h de incubação evidenciam a possível ação do BPA na modulação da atividade de enzimas responsáveis pela manutenção do padrão de metilação do DNA. A ação pode ser direta ou mediada por alterações metabólicas que acabam levando, por exemplo, à inibição de TET. É sugerido que a perda de função das proteínas TET pode levar à hipermetilação da transcrição e diferenciação celular (Williams, Christensen et al. 2012). Vale ressaltar que TET2 é frequentemente mutada em neoplasmas mieloides e que

TET1 e TET2 são frequentemente mutadas em gliomas (Chia, Wang et al. 2011). Uma vez que as proteínas TET são dependentes de α -cetoglutarato para sua atividade catalítica, alterações no ciclo do ácido tricarboxílico podem levar a alterações dos níveis de 5-mdC e 5-hmdC no DNA (Chia, Wang et al. 2011).

Figura 27 - Níveis de 5-mdC e 5-hmdC em DNA de células HL-60 incubadas com BPA, sem e com H₂O₂ (40 nmol/5 x 10⁴ células), nas concentrações indicadas por 24 h. *P < 0,05, ** P < 0,01 comparando-se os diferentes grupos com o controle, de acordo com teste de Kruskal Wallis com pós teste de Dunn.

Nas incubações com 25 µM de BPA não foi observado aumento dos níveis intracelulares de ROS e alteração do ciclo celular (incluindo células em sub G1). Foi observado pequeno aumento da permeabilidade da membrana plasmática após 24 h, mas não após 48 h de incubação, e pouca inibição da

atividade desidrogenase da cadeia respiratória mitocondrial após 24 h. Assim, o efeito epigenético observado na **Figura 27** ocorreu na ausência de citotoxicidade e é possível que se manifeste em concentrações inferiores de BPA, o que merece ser investigado.

Em análise metabolômica utilizando urina de ratos expostos a BPA (administração oral, 0,5 µg/kg/dia e 50 mg/kg/dia, 8 semanas), Chen e colaboradores (2014) revelaram que BPA aumentou a excreção de biotina e riboflavina, a síntese de produtos metilados, o catabolismo de purinas e o fluxo pela via do metabolismo da colina, que leva à geração de metionina. No fígado dos ratos expostos mesmo à menor dose de BPA foram observados níveis aumentados de *S*-adenosilmetionina (SAMe) e das enzimas que catalizam a síntese de SAMe a partir de metionina. SAMe é o principal doador biológico de grupo metila para reações de metilação endógena, incluindo a metilação da citosina no DNA (Chen *et al.*, 2014). Esse tipo de alteração metabólica induzida por BPA levaria ao aumento dos níveis de 5-mdC no DNA. Foi verificada atividade aumentada de DNMT3 em fígado de ratos expostos a BPA (Ma, Xia et al. 2013).

Muitos estudos tem sido conduzidos visando esclarecer se e como a exposição perinatal ao BPA pode levar a maior suscetibilidade a doenças cardiovasculares, diabetes, câncer, síndrome metabólica na idade adulta. Alterações do padrão de metilação do DNA tem sido reveladas em diferentes tecidos de ratos e camundongos no intervalo de dias, semanas e meses após a exposição no período perinatal, o que pode justificar a modulação da

susceptibilidade a doenças (van Esterik *et al.*, 2015). Embora a variedade de métodos existentes para as análises de metilação do DNA dificulte a observação de um padrão comum de alteração, o conjunto dos trabalhos mostra que a exposição ao BPA leva a alterações da metilação do DNA durante o desenvolvimento fetal, o que pode favorecer a ocorrência de doenças na idade adulta. Entretanto, é importante considerar também que BPA pode alterar o padrão de metilação do DNA de células somáticas de indivíduos jovens/adultos, também favorecendo o desenvolvimento de doenças. Assim, é importante entender como as alterações metabólicas induzidas por BPA estão relacionadas com alterações epigenéticas e o risco de doenças.

Não há dados na literatura sobre alterações dos níveis de 5-mdC e 5hmdC no DNA de células HL-60 expostas a BPA.

Quanto à exposição das células HL-60 a BPANO₂, verificou-se queda dos níveis de 5-hmdC no DNA das incubações na presença de H₂O₂, não acompanhada de aumento dos níveis de 5-mdC. Uma vez que as alterações metabólicas induzidas por BPANO₂ são diferentes das induzidas por BPA, é possível que os efeitos na maquinaria epigenética também sejam diferentes. É importante notar que nessas células foi observado aumento dos níveis de CEdG no DNA, o que pode afetar a atividade de DNMTs ou favorecer a desmetilação do DNA por vias de reparo de lesões (Franchini *et al.*, 2014).

Figura 28 - Níveis de 5-mC e 5-hmC em DNA de células HL-60 incubadas com BPANO2 com ou sem H_2O_2 (40 nmol/5x10⁴ células), nas concentrações indicadas por 24 horas. *P<0,05; **P<0,01 comparando-se os diferentes grupos com o controle, de acordo com teste de Kruskal Wallis com pós teste de Dunn.

4.4. Efeitos citotóxicos, genotóxicos e epigenéticos em células MCF-7 expostas a BPA e BPANO₂

4.4.1. Avaliação da citotoxicidade em células MCF-7

As células MCF-7 são derivadas de adenocarcinoma mamário humano e apresentam receptores de estrógeno, podendo sofrer a ação estrogênica do BPA (Dong, Terasaka et al. 2011). Além disso, células MCF-7 apresentam atividade de citocromo P450 1A1 e 1B1 quando estimuladas com agonistas do receptor de hidrocarboneto aromático (receptor Ah), por exemplo 2,3,7,8tetraclorodibenzo-*p*-dioxina (TCDD) e bifenilas policloradas (PCB). Permitem, então, a investigação de como outras possíveis vias de ação do BPA modulam os efeitos tóxicos. As células cresceram aderidas à placa de cultura, utilizandose meio DMEM com 10% de SFB e sem fenol vermelho para evitar a interferência estrogênica. Todos os procedimentos foram realizados como descrito para as células HL-60, com exceção da adição de H₂O₂.

Nas **figuras 28 a 32** são apresentados os dados de viabilidade celular (citometria de fluxo), geração de ROS/RNS, fragmentação do DNA e ciclo celular nas diferentes condições de incubação.

As células MCF-7 apresentaram aumento da permeabilidade da membrana plasmática quando expostas por 1 h (4% de morte) ou 24 h (12% de morte) ao BPA na concentração de 250 µM (**Figura 28**).

A exposição ao BPANO₂ por 1 hora não induziu morte celular nas concentrações de 25, 100 ou 250 µM, (Figura 29A). Contudo, quando o período de exposição foi estendido para 24 horas, os resultados obtidos

mostraram que houve morte celular nas concentrações de 25 μ M (13,2% de morte) e 250 μ M (19,8% de morte) (**Figura 29B**).

Figura 29 - Viabilidade das células MCF-7 avaliada por citometria de fluxo após: **A**) 1 h de incubação com as concentrações indicadas de BPA; **B**) 24 h de incubação com as concentrações indicadas de BPA, média ± desvio padrão, Kruskal Wallis com pós teste de Dunn, diferenças em relação ao controle.

Figura 30 - Viabilidade das células MCF-7 avaliada por citometria de fluxo após: A) 1 h de incubação com as concentrações indicadas de BPANO₂; B) 24 h de incubação com as concentrações indicadas de BPANO₂. N = 4, média ± desvio padrão, teste de Kruskal Wallis com pós teste de Dunn, diferenças em relação ao controle. *P<0.05; **P<0.01.

Células MCF-7 expostas ao BPA por 1 hora não sofreram alteração da produção intracelular de ROS/RNS, contudo a exposição ao BPANO₂ levou à diminuição significativa de ROS/RNS na concentração de 100 µM (**Figura 30A**). Estendendo-se a exposição a BPA para 24 h, foi observado aumento

significativo da produção de ROS/RNS nas células expostas a 25 µM, seguido por diminuição significativa na concentração de 250 µM. Tais alterações não foram observadas na exposição ao BPANO₂ (**Figura 30B**).

Houve aumento da fragmentação do DNA de células MCF-7 expostas ao BPA na concentração de 250 µM por 24 horas (**Figura 31A**). Quando as células foram expostas ao BPANO₂ por 24 horas, não houve fragmentação do DNA (**Figura 31B**).

A exposição ao BPA não induziu alterações no ciclo celular. Contudo, a exposição ao BPANO₂ provocou diminuição da porcentagem de células na fase G0/G1 e aumento na fase G2/M. Esse efeito foi observado em todas as concentrações de BPANO₂, como apresentado na **figura 32**.

Figura 31 - Fluorescência relativa (%) do produto DCF nas células MCF-7 após **A**) 1 h de incubação com as concentrações indicadas de BPA e BPANO₂; **B**) 24 h de incubação com as concentrações indicadas de BPA e BPANO₂. N = 4, média ± desvio padrão, Kruskal Wallis com pós teste de Dunn, diferenças em relação ao controle.*P<0,05.

Figura 32 - Fragmentação do DNA das células MCF-7 avaliada por citometria de fluxo após 24 h de incubação com as concentrações indicadas de BPA (A) e BPANO₂ (B). N = 4, média \pm desvio padrão, Kruskal Wallis com pós teste de Dunn, diferenças em relação ao controle.**P<0.01

Figura 33 - Ciclo das células MCF-7 avaliado por citometria de fluxo após 24 h de incubação com as concentrações indicadas de BPA (A) e BPANO₂ (B). N = 4, média \pm desvio padrão, Kruskal Wallis com pós teste de Dunn, diferenças em relação ao controle.*P<0.05; **P<0.01; ***P<0.001.

O procedimento de análise do consumo de BPA foi realizado com as células MCF-7 previamente incubadas com 300 nM de bifenila policlorada (PCB126) para indução da atividade de CYP450 1A1. Na **Figura 33A** são apresentados os dados referentes à análise de atividade de CYP450 1A1 em células MCF-7 incubadas com diferentes concentrações de PCB126 por 24 h, realizando-se o ensaio da etoxirresorufina-O-deetilase (EROD) segundo descrito por Donato e colaboradoresdonato (Donato, Gomez-Lechon et al. 1993). A concentração de 300 nM de PCB126 levou ao aumento da atividade enzimática e foi escolhida para as incubações subsequentes com BPA. **Na Figura 33B** são apresentados os dados de consumo de BPA pelas células MCF-7. As células foram incubadas com 300 nM de PCB126 por 24 h, o meio

de cultura foi trocado, e as células incubadas com BPA nas concentrações de 25 μ M, 100 μ M e 250 μ M por mais 24 h.

Figura 34 – (A) Atividade etoxirresorufina-O-deetilase das células MCF-7 incubadas com as concentrações indicadas de PCB por 24 h; **B)** Consumo de BPA pelas células MCF-7. As células foram cultivadas na densidade de 2,4 x 10^6 células por poço, incubadas com 300 nM de PCB por 24 h e, após troca do meio de cultura, incubadas com BPA nas concentrações indicadas. Alíquotas do meio de cultura foram retiradas nos tempos indicados para quantificação de BPA por HPLC-DAD (λ = 277 nm).

Assim como para as células HL-60, observou-se que a absorção de BPA pelas células MCF-7 é bastante lenta. A quantificação de BPA no meio de cultura das células permitiu verificar que após 72 h de incubação, apenas 5 a 8% da quantidade de BPA disponível inicialmente havia sido consumida. Não foi possível observar a formação de produtos de biotransformação, mesmo nas células com atividade etoxirresorufina-*O*-deetilase aumentada após exposição a PCB126.

Foi observada maior resistência das células MCF-7, em comparação com as células HL-60, à citotoxicidade induzida por BPA e BPANO₂. Resumidamente, como resultado da exposição das células MCF-7 a BPA,

houve pequeno aumento da permeabilidade da membrana plasmática (250 μ M), indução dos níveis de ROS após 24 h (25 μ M) e aumento da população de células em sub G1, ou seja, com DNA fragmentado (250 μ M), mas sem alteração do ciclo celular. No caso de BPANO₂, foi observada parada do ciclo celular em G2/M (25 μ M, 100 μ M e 250 μ M), assim como aumento de permeabilidade da membrana plasmática após 24 h de incubação (25 μ M, 250 μ M), sem indução de ROS ou aumento de células em sub G1.

A maior resistência das células MCF-7 aos efeitos citotóxicos do BPA está provavelmente relacionada à ação estrogênica desse xenobiótico. BPA se liga aos receptores nucleares de estrógeno α e β (Er α e Er β), modulando a expressão de genes que favorecem a sobrevivência e proliferação celular. Liga-se também ao receptor 30 acoplado à proteína G (GPR30) na membrana plasmática, induzindo rápida sinalização estrogênica via ativação de Erk1/2, que também favorece a expressão de genes (por exemplo, c-*fos*, genes sob controle do fator AP-1) relacionados a sobrevivência e proliferação (Dong, Terasaka et al. 2011). Não há informação sobre ação estrogênica do BPANO₂, mas as células incubadas com 25, 100 e 250 µM dessa molécula apresentaram parada do ciclo em G2/M, o que indica modulação diferente de vias de sinalização em comparação ao BPA.

4.4.2. Avaliação de efeitos genotóxicos em células MCF-7

As células MCF-7 foram incubadas com BPA na ausência (**Figura 34A**) e presença de agonista de receptor Ah (**Figura 34B**) e o DNA foi extraído para análise das lesões 8-oxodG, CEdG, *O*⁶-mdG e BPA-Gua. Foi possível quantificar as lesões 8-oxodG e CEdG, não tendo sido detectadas as demais.

Foi observado aumento dos níveis de CEdG e 8-oxodG nas células incubadas com BPA (100 µM, 250 µM) sem a ativação prévia de receptores Ah (**Figura 34A**). A ativação dos receptores Ah com PCB126 levou a menor aumento do nível das lesões após as incubações com BPA (**Figura 34B**). Apesar da resistência à morte nas incubações com BPA, provavelmente por ativação de vias de sinalização que levam à sobrevivência e replicação em detrimento de parada no ciclo e morte, há um estresse oxidativo evidenciado pela indução de lesões no DNA. A sinalização estrogênica juntamente com o aumento dos níveis de lesões no DNA aumenta a chance de mutações e de transformação maligna. O estresse oxidativo não parece estar relacionado à biotransformação do BPA via citocromo P450, podendo ser devido à sua ação direta em receptores celulares e ativação de vias de sinalização.

É reportado que o estresse oxidativo tem papel importante na patogênese do câncer de mama induzido por estrógeno. O receptor Era tem papel proliferativo importante, favorecendo o crescimento tumoral e o estresse oxidativo, enquanto Er β parece reduzir a proliferação induzida por Era e favorecer a diferenciação da glândula mamária (Nadal-Serrano, Sastre-Serra et al. 2012). Células MCF-7 apresentam razão Era/Er β em torno de 1, sendo considerada alta. Na presença de estrógeno (17 β -estradiol, E2), essas células apresentam aumento da produção de ROS e estresse oxidativo, provavelmente devido a uma resposta inadequada do sistema antioxidante e à indução de disfunção mitocondrial relacionada à razão Era/Er β . Células com razão Era/Er β menor (T47D, em torno de 0,1) ou sem Era (MDA-MB-231) apresentam menos ROS e estresse oxidativo na presença de E2 (Nadal-Serrano, Sastre-Serra et al. 2012).

Figura 35 - (A) Níveis de CEdG e 8-oxodG em DNA de células MCF-7 incubadas com BPA nas concentrações indicadas por 24 h. **(B)** Níveis de CEdG e 8-oxodG em DNA de células MCF-7 incubadas com 300 nM de PCB por 24 h para aumento da atividade etoxirresorufina-O-deetilase e, após troca do meio de cultura, incubadas com BPA nas concentrações indicadas por 24 h. *P < 0,05, ** P < 0,01 comparando-se os diferentes grupos com o controle, de acordo com teste de Kruskal Wallis com pós teste de Dunn.

Dentre as lesões analisadas no meio de cultura das células (8-oxodG, $1,N^2$ -ɛdG, $1,N^6$ -ɛdA, CEdG, O^6 -mdG e BPA-Gua), foi novamente possível quantificar CEdG e 8-oxodG, sem detecção das demais. Como apresentado na **Figura 35**, não houve alteração das concentrações das lesões no meio de cultura. Na ausência de células, o meio de cultura apresentou CEdG na concentração média de 21,3 ± 7,3 pg/mL e 8-oxodG na concentração média de

10517 ± 737 pg/mL. Na presença das células, as concentrações de CEdG no meio de cultura aumentaram, enquanto que as de 8-oxodG diminuiram.

Figura 36 - (A) Níveis de CEdG e 8-oxodG no meio de cultura de células MCF-7 incubadas com BPA. (B) Níveis de CEdG e 8-oxodG no meio de cultura de células MCF-7 incubadas com 300 nM de PCB 126 por 24 h para aumento da atividade etoxirresorufina-O-deetilase e, após troca do meio de cultura, incubadas com BPA nas concentrações indicadas por 24 h. Análise estatística utilizando o teste de Kruskal Wallis com pós teste de Dunn não mostrou diferença entre os grupos.

No caso das células MCF-7 incubadas com BPANO₂, não foi observada indução das lesões CEdG e 8-oxodG no DNA (**Figura 36**), o que está de acordo com a não observação de aumento dos níveis de ROS nessas incubações.

Figura 37 - Níveis de CEdG e 8-oxodG em DNA de células MCF-7 incubadas com BPANO₂ nas concentrações indicadas por 24 h. Análise estatística utilizando o teste de Kruskal Wallis com pós teste de Dunn não mostrou diferença entre os grupos

4.4.3. Avaliação de efeitos epigenéticos em células MCF-7

Amostras de DNA das células incubadas com BPA, sem e com ativação de citocromo P450 1A1, foram analisadas por HPLC-ESI-MS/MS para quantificação de 5-mdC e 5-hmdC. Os dados apresentados na **Figura 37A** mostram que no período de 24 h de incubação não houve alteração dos níveis dessas marcas epigenéticas nas células incubadas com BPA sem ativação de citocromo P450, apesar de ser visível uma tendência de aumento dos níveis de 5-mdC.

Entretanto, nas células com ativação de citocromo P450 pelo agonista do receptor Ah (PCB126), foi observado aumento dos níveis de 5-hmdC, sem alteração dos níveis de 5-mdC (**Figura 37B**). É possível que esse aumento inicial dos níveis de 5-hmdC resulte em queda da metilação do DNA em gerações subsequentes, o que teria que ser avaliado após 48 e 72 h de incubação. Caso a atividade de DNMTs esteja aumentada nas células expostas a BPA, como sugerido anteriormente com base no trabalho de Chen e

colaboradores (2014), o aumento dos níveis de 5-hmdC pode ser uma resposta celular na tentativa de manter o padrão de metilação do DNA. Não há dados na literatura sobre alteração do padrão de metilação do DNA de células MCF-7 por BPA e o significado dessas alterações sob exposição a BPA precisa ser melhor avalido.

Observou-se também que as células MCF-7 pré-incubadas com PCB126 apresentaram aumento de aproximadamente 10 vezes nos níveis de 5-hmdC e níveis ligeiramente mais baixos de 5-mdC em relação às que não foram préincubadas com PCB (comparar níveis dos controles na **Figura 37A** e **B**). A influência do PCB nos níveis de 5-hmdC também precisa ser melhor investigada.

Quanto à exposição das células MCF-7 a BPANO₂, verificou-se aumento dos níveis de 5-mdC, sem alteração dos níveis de 5-hmdC (**Figura 37C**).

Figura 38 - (A) Níveis de 5-mdC e 5-hmdC em DNA de células MCF-7 incubadas com BPA nas concentrações indicadas por 24 h. **(B)** Níveis de 5-mdC e 5-hmdC em DNA de células MCF-7 incubadas com 300 nM de PCB por 24 h para aumento da atividade etoxirresorufina-O-deetilase e, após troca do meio de cultura, incubadas com BPA nas concentrações indicadas por 24 h. **(C)** Níveis de 5-mdC e 5-hmdC em DNA de células MCF-7 incubadas com BPA nas concentrações indicadas por 24 h. **(C)** Níveis de 5-mdC e 5-hmdC em DNA de células MCF-7 incubadas com BPANO₂ nas concentrações indicadas por 24 h * P < 0,05 comparando-se os diferentes grupos com o controle, de acordo com teste de Kruskal Wallis com pós teste de Dunn.

4.5. Efeitos tóxicos do BPA em ratos Sprague-Dawley: hemograma, mielograma, adutos de DNA na urina, efeitos genotóxicos e epigenéticos em fígado e rim

4.5.1. Caracterização do modelo experimental

Para obtenção de dados *in vivo*, ratos Sprague-Dawley machos, com 250 g de peso, receberam BPA diariamente ao longo de 4 semanas (50 mg/kg de peso corpóreo, diluído em óleo com 0,1% de DMSO) por via intra-gástrica (gavagem), na vigência e ausência de diabetes. Na vigência de um processo inflamatório, no caso diabetes, esperava-se que BPA fosse mais facilmente ativado para metabólitos reativos, levando à ocorrência de mais lesões no DNA dos tecidos analisados.

A indução do diabetes foi feita por injeção intravenosa (punção da veia peniana) de estreptozotocina (40 mg/kg p.c.), conforme já padronizado no laboratório. Decorridas 72 horas da injeção de estrepetozotocina, a glicemia dos animais foi aferida e foram considerados diabéticos todos os animais que apresentaram glicemia acima de 250 mg/dL. A glicemia dos animais foi monitorada durante as 4 semanas de estudo, uma vez por semana, no mesmo horário.

Observa-se na **figura 38** que os animais que receberam estreptozotocina permaneceram diabéticos durante todo o período de experimentação e que a exposição ao BPA na dose de 50 mg/Kg de peso corpóreo não alterou a glicemia dos animais sadios nem dos animais diabéticos.

Há relato de que a exposição de camundongos ao BPA (50 µg/kg de peso corpóreo), por via oral, pelo período de 12 semanas induziu resistência à insulina e intolerância à glicose, além de elevar o nível de interleucinas pró-

inflamatórias e o peso dos animais (Moon, Jeong et al. 2015), o que não foi observado aqui, apesar da dose maior utilizada. Falência das ilhotas pancreáticas devido a sobrecarga mitocondrial também é descrita no caso da exposição a BPA (Aekplakorn, Chailurkit et al. 2014; Shapiro, Dodds et al. 2015; Song, Chou et al. 2015).

Figura 39 - Perfil glicêmico dos animais expostos ao BPA durante 4 semanas. A glicemia foi verificada a cada semana. Os animais foram considerados diabéticos com glicemia acima de 250 mg/dL. Os resultados expressam a média ± desvio padrão; os grupos diabéticos com ou sem BPA apresentaram P<0,001, peto teste one way ANOVA, com relação aos animais sadios com e sem BPA.

Quanto ao ganho de peso, observa-se na **figura 39** uma tendência a maior ganho de peso dos animais sadios expostos ao BPA, embora sem diferença estatística. É relatado que a exposição ao BPA aumenta a concentração de adiponectina no soro, o que está relacionado ao aumento de peso e à adipogênese (Marmugi, Lasserre et al. 2014; Moon, Jeong et al. 2015).

Figura 40 - Perfil do ganho de peso de ratos Sprague-Dawley expostos ao BPA por via intragastrica. Os animais foram expostos durante 4 semanas ao BPA na concentração de 50 mg/kg de peso corpóreo. Os resultados expressam a média ± desvio padrão.

4.5.2. Alterações no hemograma e mielograma

Com a colaboração do Prof. Dr. Ricardo Ambrósio Fock, Laboratório de Hematologia Experimental da FCF USP, foram obtidos o hemograma e o mielograma dos animais.

Observa-se no hemograma (**Figura 40**) o aumento do número total de hemácias circulantes e do hematócrito nos animais diabéticos expostos ao BPA. Entretanto, não houve alteração significativa das quantidades dos outros tipos celulares.

Na medula óssea (**Figura 41**) observa-se aumento do número de eosinófilos e linfócitos nos animais diabéticos expostos ao BPA, podendo-se sugerir a indução de um estado inflamatório alérgico. Dados da literatura mostram que o BPA induz liberação de histamina, um mediador alérgico, além de aumentar a liberação de interleucinas pró-inflamatórias, como IL-6, que favorece a proliferação celular (Bonds and Midoro-Horiuti 2013; Marmugi, Lasserre et al. 2014; Moon, Jeong et al. 2015).

Os animais não diabéticos expostos ao BPA apresentaram quantidades diminuídas de promielócitos, blastos e bastonetes. Tal efeito do BPA nos

animais não diabéticos pode ser entendido como precursor de um estado de aplasia de medula, uma vez que há diminuição do número de células mais jovens que, mais tarde, pode resultar em diminuição do número total de células. A não observação do mesmo efeito no sangue deve-se justamente ao fato de a diminuição ocorrer em cascata e não ter havido tempo, no período de 4 semanas, para que a alteração fosse detectada nesse compartimento. Nos animais diabéticos expostos ao BPA esse efeito não foi observado, podendo estar mascarado pelo aumento da produção de células induzido pelo diabetes (Shill, Feinglos et al. 2007; Chao, Song et al. 2010; Wang, Bao et al. 2013; O'Brien, Dolinoy et al. 2014).

Figura 40 – Legenda na próxima página

Figura 41 - Hemograma de ratos Sprague-Dawley expostos a BPA (50 mg/kg p.c.) na vigência ou ausência (sadios) de diabetes. (A) eritrócitos circulantes; (B) hemoglobina; (C) leucócitos circulantes; (D) porcentagem do hematócritos. Grupos sadios (N = 5), grupos diabéticos (N = 10), média \pm desvio padrão, teste *t de stundent*, diferenças em relação ao respectivo controle (veículo). *P<0,05

Figura 41 - Legenda na próxima página

Figura 42 - Mielograma de ratos Sprague-Dawley expostos a BPA (50 mg/kg p.c.) na vigência ou ausência (sadios) de diabetes. (A) número total de células do lavado medular do fêmur; (B) eosinófilos; (C) linfócitos; (D) promielócitos; (E) blastos; (F) bastonetes; (G) segmentados; (H) basófilos; (I) plasmócitos; (J) monócitos; (K) eritroblastos jovens; (L) eritroblastos policromáticos; (M) eritroblastos ortocromáticos. Grupos sadios (N = 5), grupos diabéticos (N = 10), média ± desvio padrão, teste *t de stundent*, diferenças em relação ao respectivo controle (veículo). *P<0,05, **P<0,01

4.5.3. Níveis de adutos de DNA na urina

Uma grande variedade de moléculas de baixo peso molecular excretadas das células de um organismo pode ser encontrada na urina. Lesões reparadas do DNA possuem esse destino, sendo a urina uma matriz importante para a quantificação do conjunto de lesões removidas do DNA de todas as células do organismo em um determinado período (Broedbaek, Siersma et al. 2011). Para a coleta de urina, os animais permaneceram em gaiolas metabólicas pelo período de 10 h. Os dados estão expressos como concentração dos adutos (pg/mL) e quantidade total (pg) no volume coletado de urina ao longo de 10 h. Observa-se na **Figura 42** que BPA na dose administrada não induziu estresse oxidativo a ponto de possibilitar a detecção aumentada das diferentes lesões na urina. Em nenhuma amostra de urina foi possível detectar a presença do aduto BPA-Gua, apesar de ser detectado seu padrão interno como indicado na **Figura 43**.

O estado de diabetes levou ao aumento de excreção das lesões 8oxodG, CEdG e O^6 -mdG na urina. A excreção aumentada de 8-oxodG e CEdG na urina dos animais diabéticos era esperada, devido ao estresse oxidativo e glicação. No caso da O^6 -mdG, é importante considerar que a condição de diabetes foi induzida pela injeção intravenosa de estreptozotocina, que é um agente indutor de O^6 -mdG no DNA.

Figura 43 - Níveis de 8-oxodG, CEdG, O^6 -mdG e 1, N^6 ɛdA em urina dos ratos dos diferentes grupos experimentais. **A)** Concentração na urina de 10 h (pg/mL). **B)** Níveis totais excretados em 10 h (pg/10 h). *P<0,05, **P<0,01 comparando-se os diferentes grupos com o controle, de acordo com teste de Kruskal Wallis com pós teste de Dunn.

Figura 44 - Cromatogramas obtidos por HPLC-ESI-MS/MS de amostra de urina de rato para quantificação dos adutos indicados.

4.5.4. Efeitos genotóxicos e epigenéticos em fígado e rim

As lesões 8-oxodG, CEdG, O^6 -mdG e BPA-Gua foram analisadas em amostras de DNA de fígado e rim dos animais. Mais uma vez, o aduto BPA-Gua não apareceu em nenhuma amostra, mostrando que a via de biotransformação de BPA para BPA-3,4-quinona não deve ser relevante *in vivo*. As lesões 8-oxodG, CEdG, O^6 -mdG foram quantificadas e os dados estão apresentados nas Figuras 44 e 45.

Figura 45 - Níveis de CEdG, 8-oxodG e O^6 -mdG em DNA de fígado dos ratos dos diferentes grupos experimentais. *P<0,05 comparando-se os diferentes grupos com o controle, de acordo com teste de Kruskal Wallis com pós teste de Dunn

Figura 46 - Níveis de CEdG, 8-oxodG e O^6 -mdG em DNA de rim dos ratos dos diferentes grupos experimentais. *P < 0,05 em comparação com o grupo BPA, **P<0,01, ***P<0,001 em comparação com o grupo controle, de acordo com teste de Kruskal Wallis com pós teste de Dunn.

Observa-se que a exposição ao BPA levou ao aumento dos níveis de CEdG no fígado dos animais, o que não havia sido ainda verificado na literatura.

Alguns animais diabéticos expostos ao BPA também apresentaram níveis mais elevados de O^6 -mdG nesse tecido, mas não houve diferença estatística entre os grupos. É reportada diminuição da atividade da enzima de reparo O^6 -metilguanina DNA metiltransferase em leucócitos de indivíduos diabéticos (Akcay, Dincer et al. 2003), o que favorece a permanência dessa

lesão mutagênica no DNA. Como citado anteriormente, BPA provoca alterações metabólicas hepáticas que favorecem a metilação de biomoléculas (Chen, Zhou et al. 2014), podendo justificar essa tendência de aumento dos níveis de O^6 -mdG no DNA hepático dos animais diabéticos expostos ao BPA. É importante considerar também que a condição de diabetes foi induzida pela injeção intravenosa de estreptozotocina, que é um agente indutor de O^6 -mdG no DNA. Entretanto, foi decorrido o período de 4 semanas entre a indução de diabetes e a eutanásia dos animais e é descrito que estreptozotocina é seletivamente absorvida pelas células β pancreáticas, onde induz toxicidade e leva ao diabetes (Reusser 1971; Baluchnejadmojarad and Roghani 2008)

No caso de 8-oxodG no fígado, as diferenças entre os grupos não devem ser consideradas, uma vez que o nível no grupo controle está anormalmente alto.

Os níveis aumentados de CEdG estão de acordo com o descrito na literatura de que a exposição a BPA leva a estresse oxidativo em diferentes tecidos, como fígado, cérebro, rim, testículos e esperma de camundongos e ratos (Bindhumol *et al.*, 2003; Korkmaz *et al.*, 2010; Chitra *et al.*, 2002; Chitra *et al.*, 2003; Kabuto *et al.*, 2003; Kabuto *et al.*, 2004; De Flora *et al.*, 2011). É possível que as lesões em DNA induzidas por BPA sejam predominantemente devidas a estresse oxidativo, uma vez que não foi detectado o aduto BPA-Gua mesmo na alta dose de BPA administrada.

Nas amostras de DNA de rim foi observado aumento dos níveis de 8oxodG nos animais diabéticos expostos a BPA em comparação com os animais não diabéticos expostos a BPA, além de aumento dos níveis de *O*⁶-mdG nos animais diabéticos, expostos ou não expostos a BPA, em comparação com os

respectivos controles (grupo controle e grupo BPA). Não há dados na literatura sobre detecção e quantificação de *O*⁶-mdG em tecidos na condição de diabetes. Esses níveis aumentados podem estar implicados em complicações do diabetes, como maior risco de câncer.

Na **Figura 46** são apresentados os níveis de 5-mdC e 5-hmdC em DNA de fígado dos animais.

Observa-se que os ratos que receberam a dose diária de BPA ao longo de 4 semanas apresentaram aumento dos níveis de 5-mdC e 5-hmdC no DNA. Os dados nos permitem sugerir que a hipermetilação global do DNA observada na exposição ao BPA seja devida à maior atividade de DNMTs e não à inibição do processo de desmetilação (atividade de TET). Alterações dos níveis de metilação e hidroximetilação levam a alterações da expressão gênica que podem culminar em transformação maligna.

Figura 47 - Níveis de 5-mdC e 5-hmdC em DNA de fígado de ratos dos diferentes grupos experimentais *P < 0,05 comparando-se os diferentes grupos com o controle, de acordo com teste de Kruskal Wallis com pós teste de Dunn.

As mesmas análises em DNA de rim nos mostraram que BPA não provocou alterações dessas marcas epigenéticas nesse tecido (**Figura 47**).

Figura 48 - Níveis de 5-mdC e 5-hmdC em DNA de rim dos ratos dos diferentes grupos experimentais. Análise estatística utilizando o teste de Kruskal Wallis com pós teste de Dunn não mostrou diferença entre os grupos.

Conclusão

6. Conclusão

- Os dados obtidos a partir da exposição das células HL-60 a BPA e BPANO₂ nos indicam que as duas moléculas provocam alterações metabólicas distintas nesse tipo celular, independentes da via estrogênica, que levam a alterações epigenéticas (BPA) ou genéticas e epigenéticas (BPANO₂), que podem ter consequências fenotípicas, como progressão maligna, que precisam ser investigadas.
- As células MCF-7 foram mais resistentes que as células HL-60 à citotoxicidade induzida por BPA e BPANO₂. Entretanto, observou-se aumento dos níveis de CEdG e 8-oxodG no DNA das células MCF-7 incubadas com BPA sem a ativação prévia de receptores Ah. A ativação dos receptores Ah com PCB126 levou a menor aumento do nível das lesões após as incubações com BPA. A maior resistência das células MCF-7 aos efeitos citotóxicos do BPA está provavelmente relacionada à ação estrogênica desse xenobiótico. A sinalização estrogênica juntamente com o aumento dos níveis de lesões no DNA aumenta a chance de mutações e de transformação maligna. Nas células com ativação do receptor Ah, BPA levou ainda ao aumento da hidroximetilação global, sem alteração da metilação global do DNA.
- Os animais não diabéticos expostos ao BPA apresentaram quantidades diminuídas de promielócitos, blastos e bastonetes na medula óssea (aplasia medular), sem alteração no hemograma. Houve aumento dos níveis de CEdG no fígado, da metilação e hidroximetilação global do DNA hepático, e não foi observada alteração das marcas epigenéticas e adutos de DNA no rim ou na urina.
- Os animais diabéticos expostos ao BPA apresentaram aumento do número de eosinófilos e linfócitos na medula óssea, podendo-se sugerir a indução de um estado inflamatório alérgico, e aumento do número total de hemácias circulantes e do hematócrito. Houve aumento dos níveis de CEdG, da metilação e hidroximetilação global do DNA hepático, aumento dos níveis de 8-oxodG no DNA renal, sem alteração das marcas epigenéticas no rim, e não foi observada alteração dos adutos de DNA na urina.
- Os dados obtidos apontam para a geração de ROS como uma importante via de cito- e genotoxicidade induzidas por BPA. Sua biotransformação para BPA-3,4-quinona nos modelos utilizados parece ter menor importância para os efeitos, uma vez que não foi detectada a lesão BPA-Gua em nenhuma amostra de DNA, meio de cultura das células ou urina dos animais. Alterações metabólicas induzidas por BPA e ROS podem favorecer as alterações das marcas epigenéticas observadas no DNA das células HL-60, MCF-7 e fígado dos animais. Todas essas alterações podem contribuir para a transformação maligna de células expostas ao BPA.

7. Referências

(2008). "Bisphenol A (BPA) in plastic bottles and metal cans--how dangerous?" <u>Child Health</u> <u>Alert</u> **26**: 1-2.

Aekplakorn, W., L. O. Chailurkit and B. Ongphiphadhanakul (2014). "Relationship of serum bisphenol A with diabetes in the Thai population, National Health Examination Survey IV, 2009." J Diabetes.

Akcay, T., Y. Dincer, N. Celebi and H. Ilkova (2003). "O(6)-methylguanine DNA methyltransferase activity in diabetic patients." <u>Diabetes Res Clin Pract</u> **61**(1): 1-6. Alonso-Magdalena, P., E. Vieira, S. Soriano, L. Menes, D. Burks, I. Quesada and A. Nadal (2010). "Bisphenol A exposure during pregnancy disrupts glucose homeostasis in mothers and adult male offspring." Environ Health Perspect **118**(9): 1243-1250.

American Dental Association Council on Scientific, A. (2014). "Determination of bisphenol a released from resin-based composite dental restoratives." J Am Dent Assoc **145**(7): 763-765. Atkinson, A. and D. Roy (1995). "In vitro conversion of environmental estrogenic chemical bisphenol A to DNA binding metabolite(s)." <u>Biochem Biophys Res Commun</u> **210**(2): 424-433. Atkinson, A. and D. Roy (1995). "In vivo DNA adduct formation by bisphenol A." <u>Environmental and Molecular Mutagenesis</u> **26**(1): 60-66.

Babu, S., N. A. Vellore, A. V. Kasibotla, H. J. Dwayne, M. A. Stubblefield and R. M. Uppu (2012). "Molecular docking of bisphenol A and its nitrated and chlorinated metabolites onto human estrogen-related receptor-gamma." Biochem Biophys Res Commun **426**(2): 215-220.

Baluchnejadmojarad, T. and M. Roghani (2008). "Chronic administration of genistein improves aortic reactivity of streptozotocin-diabetic rats: mode of action." <u>Vascul Pharmacol</u> **49**(1): 1-5. Ben-Jonathan, N. and R. Steinmetz (1998). "Xenoestrogens: the emerging story of bisphenol a." Trends Endocrinol Metab **9**(3): 124-128.

Bennetts, L. E., G. N. De Iuliis, B. Nixon, M. Kime, K. Zelski, C. M. McVicar, S. E. Lewis and R. J. Aitken (2008). "Impact of estrogenic compounds on DNA integrity in human spermatozoa: evidence for cross-linking and redox cycling activities." <u>Mutat Res</u> **641**(1-2): 1-11.

Bhan, A., I. Hussain, K. I. Ansari, S. A. Bobzean, L. I. Perrotti and S. S. Mandal (2014). "Histone methyltransferase EZH2 is transcriptionally induced by estradiol as well as estrogenic endocrine disruptors bisphenol-A and diethylstilbestrol." J Mol Biol **426**(20): 3426-3441. Bindhumol, V., K. C. Chitra and P. P. Mathur (2003). "Bisphenol A induces reactive oxygen species generation in the liver of male rats." Toxicology **188**(2-3): 117-124.

Bittner, G. D., M. S. Denison, C. Z. Yang, M. A. Stoner and G. He (2015). "Chemicals having estrogenic activity can be released from some bisphenol a-free, hard and clear, thermoplastic resins." <u>Environ Health</u> **14**(1): 103.

Bonds, R. S. and T. Midoro-Horiuti (2013). "Estrogen effects in allergy and asthma." <u>Current</u> Opinion in Allergy and Clinical Immunology **13**(1): 92-99.

Bontempo, P., L. Mita, A. Doto, M. Miceli, A. Nebbioso, I. Lepore, G. Franci, R. Menafra, V. Carafa, M. Conte, F. De Bellis, F. Manzo, V. Di Cerbo, R. Benedetti, L. D'Amato, M. Marino, A. Bolli, G. Del Pozzo, N. Diano, M. Portaccio, G. D. Mita, M. T. Vietri, M. Cioffi, E. Nola, C. Dell'aversana, V. Sica, A. M. Molinari and L. Altucci (2009). "Molecular analysis of the apoptotic effects of BPA in acute myeloid leukemia cells." J Transl Med **7**: 48.

Breyer, V., M. Frischmann, C. Bidmon, A. Schemm, K. Schiebel and M. Pischetsrieder (2008). "Analysis and biological relevance of advanced glycation end-products of DNA in eukaryotic cells." <u>FEBS J **275**(5): 914-925</u>.

Broedbaek, K., V. Siersma, T. Henriksen, A. Weimann, M. Petersen, J. T. Andersen, E. Jimenez-Solem, E. S. Stovgaard, L. J. Hansen, J. E. Henriksen, S. J. Bonnema, F. Olivarius Nde and H. E. Poulsen (2011). "Urinary markers of nucleic acid oxidation and long-term mortality of newly diagnosed type 2 diabetic patients." <u>Diabetes Care</u> **34**(12): 2594-2596.

Calafat, A. M., Z. Kuklenyik, J. A. Reidy, S. P. Caudill, J. Ekong and L. L. Needham (2005). "Urinary concentrations of bisphenol A and 4-nonylphenol in a human reference population." <u>Environ Health Perspect</u> **113**(4): 391-395.

Cao, H., Y. Jiang and Y. Wang (2007). "Stereospecific synthesis and characterization of oligodeoxyribonucleotides containing an N2-(1-carboxyethyl)-2'-deoxyguanosine." J Am Chem Soc **129**(40): 12123-12130.

Cao, X. L., J. Corriveau and S. Popovic (2009). "Levels of bisphenol A in canned soft drink products in Canadian markets." J Agric Food Chem **57**(4): 1307-1311.

Cavalieri, E. L. and E. G. Rogan (2010). "Is bisphenol A a weak carcinogen like the natural estrogens and diethylstilbestrol?" <u>IUBMB Life</u> **62**(10): 746-751.

Chao, C., Y. Song, N. Cook, C. H. Tseng, J. E. Manson, C. Eaton, K. L. Margolis, B. Rodriguez, L. S. Phillips, L. F. Tinker and S. Liu (2010). "The lack of utility of circulating biomarkers of inflammation and endothelial dysfunction for type 2 diabetes risk prediction among postmenopausal women: the Women's Health Initiative Observational Study." <u>Archives of Internal Medicine</u> **170**(17): 1557-1565.

Chen, M., K. Zhou, X. Chen, S. Qiao, Y. Hu, B. Xu, B. Xu, X. Han, R. Tang, Z. Mao, C. Dong, D. Wu, Y. Wang, S. Wang, Z. Zhou, Y. Xia and X. Wang (2014). "Metabolomic analysis reveals metabolic changes caused by bisphenol A in rats." <u>Toxicol Sci</u> **138**(2): 256-267.

Chepelev, N. L., M. I. Enikanolaiye, L. L. Chepelev, A. Almohaisen, Q. Chen, K. A. Scoggan, M. C. Coughlan, X. L. Cao, X. Jin and W. G. Willmore (2013). "Bisphenol A activates the Nrf1/2antioxidant response element pathway in HEK 293 cells." <u>Chem Res Toxicol</u> **26**(3): 498-506. Chia, N., L. Wang, X. Lu, M. C. Senut, C. Brenner and D. M. Ruden (2011). "Hypothesis: environmental regulation of 5-hydroxymethylcytosine by oxidative stress." <u>Epigenetics</u> **6**(7): 853-856.

Chitra, K. C., C. Latchoumycandane and P. P. Mathur (2002). "Effect of nonylphenol on the antioxidant system in epididymal sperm of rats." <u>Arch Toxicol</u> **76**(9): 545-551.

Chitra, K. C., K. R. Rao and P. P. Mathur (2003). "Effect of bisphenol A and co-administration of bisphenol A and vitamin C on epididymis of adult rats: a histological and biochemical study." <u>Asian J Androl</u> **5**(3): 203-208.

Chiu, J. and I. W. Dawes (2012). "Redox control of cell proliferation." <u>Trends Cell Biol</u> **22**(11): 592-601.

Dahl, C., K. Gronbaek and P. Guldberg (2011). "Advances in DNA methylation: 5-

hydroxymethylcytosine revisited." <u>Clin Chim Acta</u> **412**(11-12): 831-836.

Davis, S. and R. G. Burns (1990). "Decolorization of Phenolic Effluents by Soluble and Immobilized Phenol Oxidases." <u>Applied Microbiology and Biotechnology</u> **32**(6): 721-726.

De Flora, S., R. T. Micale, S. La Maestra, A. Izzotti, F. D'Agostini, A. Camoirano, S. A. Davoli, M. G. Troglio, F. Rizzi, P. Davalli and S. Bettuzzi (2011). "Upregulation of clusterin in prostate and DNA damage in spermatozoa from bisphenol A-treated rats and formation of DNA adducts in cultured human prostatic cells." <u>Toxicol Sci</u> **122**(1): 45-51.

De Flora, S., R. T. Micale, S. La Maestra, A. Izzotti, F. D'Agostini, A. Camoirano, S. A. Davoli, M. G. Troglio, F. Rizzi, P. Davalli and S. Bettuzzi (2011). "Upregulation of Clusterin in Prostate and DNA Damage in Spermatozoa from Bisphenol A-Treated Rats, and Formation of DNA Adducts in Cultured Human Prostatic Cells." <u>Toxicol Sci</u>.

Dederer, L., I. S. Sokolova, A. A. Bakhmedova, T. D. Miniker, S. Mel'nik and L. B. Gorbacheva (1995). "[Modulation of the antitumor activity of 1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-(2-chloroethyl)-3-nitrosoure a by O(6)-methyl-2'-deoxyguanosine--a new inhibitor of O(6)-alkylguanine-DNA-alkyltransferase]." <u>Biokhimiia</u> **60**(9): 1521-1529.

Dekant, W. and W. Volkel (2008). "Human exposure to bisphenol A by biomonitoring: methods, results and assessment of environmental exposures." <u>Toxicol Appl Pharmacol</u> **228**(1): 114-134.

Donato, M. T., M. J. Gomez-Lechon and J. V. Castell (1993). "A microassay for measuring cytochrome P450IA1 and P450IIB1 activities in intact human and rat hepatocytes cultured on 96-well plates." <u>Anal Biochem</u> **213**(1): 29-33.

Dong, S., S. Terasaka and R. Kiyama (2011). "Bisphenol A induces a rapid activation of Erk1/2 through GPR30 in human breast cancer cells." <u>Environ Pollut</u> **159**(1): 212-218.

Edmonds, J. S., M. Nomachi, M. Terasaki, M. Morita, B. W. Skelton and A. H. White (2004). "The reaction of bisphenol A 3,4-quinone with DNA." <u>Biochem Biophys Res Commun</u> **319**(2): 556-561.

Ehlert, K. A., C. W. E. Beumer and M. C. E. Groot (2008). "Migration of bisphenol A into water from polycarbonate baby bottles during microwave heating." <u>Food Additives and</u> <u>Contaminants</u> **25**(7): 904-910.

Fasano, E., F. Esposito, G. Scognamiglio, F. Di Francesco, P. Montuori, R. Amodio Cocchieri and T. Cirillo (2015). "Bisphenol A contamination in soft drinks as a risk for children's health in Italy." <u>Food Addit Contam Part A Chem Anal Control Expo Risk Assess</u> **32**(7): 1207-1214. Fenichel, P., N. Chevalier and F. Brucker-Davis (2013). "Bisphenol A: an endocrine and metabolic disruptor." Ann Endocrinol (Paris) **74**(3): 211-220.

Furtmuller, P. G., M. Zederbauer, W. Jantschko, J. Helm, M. Bogner, C. Jakopitsch and C. Obinger (2006). "Active site structure and catalytic mechanisms of human peroxidases." <u>Archives of Biochemistry and Biophysics</u> **445**(2): 199-213.

Galloway, T., R. Cipelli, J. Guralnik, L. Ferrucci, S. Bandinelli, A. M. Corsi, C. Money, P. McCormack and D. Melzer (2010). "Daily Bisphenol A Excretion and Associations with Sex Hormone Concentrations: Results from the InCHIANTI Adult Population Study." <u>Environmental Health Perspectives</u> **118**(11): 1603-1608.

Geens, T., D. Aerts, C. Berthot, J. P. Bourguignon, L. Goeyens, P. Lecomte, G. Maghuin-Rogister, A. M. Pironnet, L. Pussemier, M. L. Scippo, J. Van Loco and A. Covaci (2012). "A review of dietary and non-dietary exposure to bisphenol-A." <u>Food Chem Toxicol</u> **50**(10): 3725-3740. Goodwin, A. P., J. L. Mynar, Y. Ma, G. R. Fleming and J. M. Frechet (2005). "Synthetic micelle sensitive to IR light via a two-photon process." <u>J Am Chem Soc</u> **127**(28): 9952-9953. Gottschalg, E., G. B. Scott, P. A. Burns and D. E. Shuker (2007). "Potassium diazoacetateinduced p53 mutations in vitro in relation to formation of O6-carboxymethyl- and O6-methyl-2'-deoxyguanosine DNA adducts: relevance for gastrointestinal cancer." <u>Carcinogenesis</u> **28**(2): 356-362.

Groff, T. (2010). "Bisphenol A: invisible pollution." <u>Curr Opin Pediatr</u> **22**(4): 524-529. Gu, Z., T. Nakamura and S. A. Lipton (2010). "Redox reactions induced by nitrosative stress mediate protein misfolding and mitochondrial dysfunction in neurodegenerative diseases." <u>Mol Neurobiol</u> **41**(2-3): 55-72.

Hampton, M. B., A. J. Kettle and C. C. Winterbourn (1998). "Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing." <u>Blood</u> **92**(9): 3007-3017.

Hansson, M., I. Olsson and W. M. Nauseef (2006). "Biosynthesis, processing, and sorting of human myeloperoxidase." <u>Arch Biochem Biophys</u> **445**(2): 214-224.

Hassan, Z. K., M. A. Elobeid, P. Virk, S. A. Omer, M. ElAmin, M. H. Daghestani and E. M. AlOlayan (2012). "Bisphenol A Induces Hepatotoxicity through Oxidative Stress in Rat Model." Oxidative Medicine and Cellular Longevity.

Hassold, T. and P. Hunt (2001). "To ERR (meiotically) is human: The genesis of human aneuploidy." <u>Nature Reviews Genetics</u> **2**(4): 280-291.

Herath, C. B., W. Jin, G. Watanabe, K. Arai, A. K. Suzuki and K. Taya (2004). "Adverse effects of environmental toxicants, octylphenol and bisphenol A, on male reproductive functions in pubertal rats." <u>Endocrine</u> **25**(2): 163-172.

Hiroi, H., O. Tsutsumi, M. Momoeda, Y. Takai, Y. Osuga and Y. Taketani (1999). "Differential interactions of bisphenol A and 17beta-estradiol with estrogen receptor alpha (ERalpha) and ERbeta." <u>Endocrine Journal</u> **46**(6): 773-778.

Hulak, M., I. Gazo, A. Shaliutina and P. Linhartova (2013). "In vitro effects of bisphenol A on the quality parameters, oxidative stress, DNA integrity and adenosine triphosphate content in sterlet (Acipenser ruthenus) spermatozoa." <u>Comp Biochem Physiol C Toxicol Pharmacol</u> **158**(2): 64-71.

Hunt, P. A., K. E. Koehler, M. Susiarjo, C. A. Hodges, A. Ilagan, R. C. Voigt, S. Thomas, B. F. Thomas and T. J. Hassold (2003). "Bisphenol a exposure causes meiotic aneuploidy in the female mouse." <u>Curr Biol</u> **13**(7): 546-553.

Ito, S., A. C. D'Alessio, O. V. Taranova, K. Hong, L. C. Sowers and Y. Zhang (2010). "Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification." <u>Nature</u> **466**(7310): 1129-1133.

Izzotti, A., S. Kanitz, F. D'Agostini, A. Camoirano and S. De Flora (2009). "Formation of adducts by bisphenol A, an endocrine disruptor, in DNA in vitro and in liver and mammary tissue of mice." <u>Mutat Res</u> **679**(1-2): 28-32.

Jaeg, J. P., E. Perdu, L. Dolo, L. Debrauwer, J. P. Cravedi and D. Zalko (2004). "Characterization of new bisphenol a metabolites produced by CD1 mice liver microsomes and S9 fractions." J Agric Food Chem **52**(15): 4935-4942.

Jin, S. G., S. Kadam and G. P. Pfeifer (2010). "Examination of the specificity of DNA methylation profiling techniques towards 5-methylcytosine and 5-hydroxymethylcytosine." <u>Nucleic Acids</u> <u>Res</u> **38**(11): e125.

Jolanki, R., L. Kanerva and T. Estlander (1995). "Occupational allergic contact dermatitis caused by epoxy diacrylate in ultraviolet-light-cured paint, and bisphenol A in dental composite resin." <u>Contact Dermatitis</u> **33**(2): 94-99.

Kabuto, H., M. Amakawa and T. Shishibori (2004). "Exposure to bisphenol A during embryonic/fetal life and infancy increases oxidative injury and causes underdevelopment of the brain and testis in mice." Life Sci **74**(24): 2931-2940.

Kabuto, H., S. Hasuike, N. Minagawa and T. Shishibori (2003). "Effects of bisphenol A on the metabolisms of active oxygen species in mouse tissues." <u>Environ Res</u> **93**(1): 31-35.

Kang, J. H., Y. Katayama and F. Kondo (2006). "Biodegradation or metabolism of bisphenol A: from microorganisms to mammals." <u>Toxicology</u> **217**(2-3): 81-90.

Keri, R. A., S. M. Ho, P. A. Hunt, K. E. Knudsen, A. M. Soto and G. S. Prins (2007). "An evaluation of evidence for the carcinogenic activity of bisphenol A." <u>Reprod Toxicol</u> **24**(2): 240-252. Kim, J. Y. and H. G. Jeong (2003). "Down-regulation of inducible nitric oxide synthase and

tumor necrosis factor-alpha expression by bisphenol A via nuclear factor-kappa B inactivation in macrophages." <u>Cancer Letters</u> **196**(1): 69-76.

Korkmaz, A., M. A. Ahbab, D. Kolankaya and N. Barlas (2010). "Influence of vitamin C on bisphenol A, nonylphenol and octylphenol induced oxidative damages in liver of male rats." <u>Food Chem Toxicol</u> **48**(10): 2865-2871.

Lang, I. A., T. S. Galloway, A. Scarlett, W. E. Henley, M. Depledge, R. B. Wallace and D. Melzer (2008). "Association of urinary bisphenol A concentration with medical disorders and laboratory abnormalities in adults." JAMA **300**(11): 1303-1310.

Liehr, J. G. (1990). "Genotoxic effects of estrogens." <u>Mutat Res</u> **238**(3): 269-276. Loganathan, S. N. and K. Kannan (2011). "Occurrence of Bisphenol A in Indoor Dust from Two Locations in the Eastern United States and Implications for Human Exposures." Arch Environ

Contam Toxicol.

Loureiro, A. P., W. Zhang, F. Kassie, S. Zhang, P. W. Villalta, M. Wang and S. S. Hecht (2009). "Mass spectrometric analysis of a cyclic 7,8-butanoguanine adduct of N-nitrosopyrrolidine: comparison to other N-nitrosopyrrolidine adducts in rat hepatic DNA." <u>Chem Res Toxicol</u> **22**(10): 1728-1735.

Ma, Y., W. Xia, D. Q. Wang, Y. J. Wan, B. Xu, X. Chen, Y. Y. Li and S. Q. Xu (2013). "Hepatic DNA methylation modifications in early development of rats resulting from perinatal BPA exposure contribute to insulin resistance in adulthood." <u>Diabetologia</u>.

Manfo, F. P., R. Jubendradass, E. A. Nantia, P. F. Moundipa and P. P. Mathur (2014). "Adverse effects of bisphenol A on male reproductive function." <u>Rev Environ Contam Toxicol</u> **228**: 57-82. Marmugi, A., F. Lasserre, D. Beuzelin, S. Ducheix, L. Huc, A. Polizzi, M. Chetivaux, T. Pineau, P. Martin, H. Guillou and L. Mselli-Lakhal (2014). "Adverse effects of long-term exposure to bisphenol A during adulthood leading to hyperglycaemia and hypercholesterolemia in mice." <u>Toxicology</u> **325**: 133-143.

Masuda, S., Y. Terashima, A. Sano, R. Kuruto, Y. Sugiyama, K. Shimoi, K. Tanji, H. Yoshioka, Y. Terao and N. Kinae (2005). "Changes in the mutagenic and estrogenic activities of bisphenol A upon treatment with nitrite." <u>Mutation Research-Genetic Toxicology and Environmental</u> <u>Mutagenesis</u> **585**(1-2): 137-146.

Melzer, D., N. E. Rice, C. Lewis, W. E. Henley and T. S. Galloway (2010). "Association of Urinary Bisphenol A Concentration with Heart Disease: Evidence from NHANES 2003/06." <u>PLoS One</u> **5**(1): -.

Mendiola, J., N. Jorgensen, A. M. Andersson, A. M. Calafat, X. Ye, J. B. Redmon, E. Z. Drobnis, C. Wang, A. Sparks, S. W. Thurston, F. Liu and S. H. Swan (2010). "Are environmental levels of bisphenol a associated with reproductive function in fertile men?" <u>Environ Health Perspect</u> **118**(9): 1286-1291.

Moon, M. K., I. K. Jeong, T. Jung Oh, H. Y. Ahn, H. H. Kim, Y. J. Park, H. C. Jang and K. S. Park (2015). "Long-term oral exposure to bisphenol A induces glucose intolerance and insulin resistance." J Endocrinol **226**(1): 35-42.

Moon, M. K., M. J. Kim, I. K. Jung, Y. D. Koo, H. Y. Ann, K. J. Lee, S. H. Kim, Y. C. Yoon, B. J. Cho, K. S. Park, H. C. Jang and Y. J. Park (2012). "Bisphenol A Impairs Mitochondrial Function in the Liver at Doses below the No Observed Adverse Effect Level." Journal of Korean Medical Science **27**(6): 644-652.

Nadal-Serrano, M., J. Sastre-Serra, D. G. Pons, A. M. Miro, J. Oliver and P. Roca (2012). "The ERalpha/ERbeta ratio determines oxidative stress in breast cancer cell lines in response to 17beta-estradiol." J Cell Biochem **113**(10): 3178-3185.

Naik, P. and K. K. Vijayalaxmi (2009). "Cytogenetic evaluation for genotoxicity of bisphenol-A in bone marrow cells of Swiss albino mice." <u>Mutat Res</u> **676**(1-2): 106-112.

Nomura, H., M. Matoda, S. Okamoto, K. Omatsu, E. Kondo, K. Kato, K. Umayahara and N. Takeshima (2015). "Clinical Characteristics of Non-Squamous Cell Carcinoma of the Vagina." <u>Int J Gynecol Cancer</u>.

O'Brien, E., D. C. Dolinoy and P. Mancuso (2014). "Perinatal bisphenol A exposures increase production of pro-inflammatory mediators in bone marrow-derived mast cells of adult mice." J Immunotoxicol **11**(3): 205-212.

Oh, P. S. and K. T. Lim (2008). "Blocking of intracellular ROS production by phytoglycoprotein (30 kDa) causes anti-proliferation in bisphenol A-stimulated Chang liver cells." <u>Journal of Applied Toxicology</u> **28**(6): 749-758.

Park, H. S., J. R. Koduru, K. H. Choo and B. Lee (2014). "Activated carbons impregnated with iron oxide nanoparticles for enhanced removal of bisphenol A and natural organic matter." J <u>Hazard Mater **286C**</u>: 315-324.

Patterson, A. R., X. Mo, A. Shapiro, K. E. Wernke, T. K. Archer and C. J. Burd (2015). "Sustained Reprogramming of the Estrogen Response Following Chronic Exposure to Endocrine Disruptors." <u>Mol Endocrinol</u>: me20141237.

Popovic, R., E. Martinez-Garcia, E. G. Giannopoulou, Q. Zhang, Q. Zhang, T. Ezponda, M. Y. Shah, Y. Zheng, C. M. Will, E. C. Small, Y. Hua, M. Bulic, Y. Jiang, M. Carrara, R. A. Calogero, W. L. Kath, N. L. Kelleher, J. P. Wang, O. Elemento and J. D. Licht (2014). "Histone

methyltransferase MMSET/NSD2 alters EZH2 binding and reprograms the myeloma epigenome through global and focal changes in H3K36 and H3K27 methylation." <u>PLoS Genet</u> **10**(9): e1004566.

Qiu, S. X., R. Z. Yang and M. L. Gross (2004). "Synthesis and liquid chromatography/tandem mass spectrometric characterization of the adducts of bisphenol A o-quinone with glutathione and nucleotide monophosphates." <u>Chem Res Toxicol</u> **17**(8): 1038-1046.

Ranciere, F., J. G. Lyons, V. H. Loh, J. Botton, T. Galloway, T. Wang, J. E. Shaw and D. J. Magliano (2015). "Bisphenol A and the risk of cardiometabolic disorders: a systematic review with meta-analysis of the epidemiological evidence." <u>Environ Health</u> **14**: 46.

Reed, C. E. and S. E. Fenton (2013). "Exposure to diethylstilbestrol during sensitive life stages: a legacy of heritable health effects." <u>Birth Defects Res C Embryo Today</u> **99**(2): 134-146.

Renz, L., C. Volz, D. Michanowicz, K. Ferrar, C. Christian, D. Lenzner and T. El-Hefnawy (2013). "A study of parabens and bisphenol A in surface water and fish brain tissue from the Greater Pittsburgh Area." <u>Ecotoxicology</u> **22**(4): 632-641.

Reusser, F. (1971). "Mode of action of streptozotocin." <u>J Bacteriol</u> **105**(2): 580-588. Rogers, J. A., L. Metz and V. W. Yong (2013). "Review: Endocrine disrupting chemicals and immune responses: a focus on bisphenol-A and its potential mechanisms." <u>Mol Immunol</u> **53**(4): 421-430.

Roos, W. P. and B. Kaina (2013). "DNA damage-induced cell death: from specific DNA lesions to the DNA damage response and apoptosis." <u>Cancer Lett</u> **332**(2): 237-248.

Schecter, A., N. Malik, D. Haffner, S. Smith, T. R. Harris, O. Paepke and L. Birnbaum (2010). "Bisphenol A (BPA) in U.S. food." <u>Environ Sci Technol</u> **44**(24): 9425-9430.

Schrader, T. J., I. Langlois, K. Soper and W. Cherry (2002). "Mutagenicity of bisphenol A (4,4'isopropylidenediphenol) in vitro: effects of nitrosylation." <u>Teratog Carcinog Mutagen</u> **22**(6): 425-441.

Schug, T. T., A. Janesick, B. Blumberg and J. J. Heindel (2011). "Endocrine disrupting chemicals and disease susceptibility." J Steroid Biochem Mol Biol **127**(3-5): 204-215.

Shapiro, G. D., L. Dodds, T. E. Arbuckle, J. Ashley-Martin, W. Fraser, M. Fisher, S. Taback, E. Keely, M. F. Bouchard, P. Monnier, R. Dallaire, A. Morisset and A. S. Ettinger (2015). "Exposure to phthalates, bisphenol A and metals in pregnancy and the association with impaired glucose tolerance and gestational diabetes mellitus: The MIREC study." <u>Environ Int</u> **83**: 63-71. Shill, J. E., M. N. Feinglos and E. C. Suarez (2007). "Gender as moderator of inflammatory markers and risk of type 2 diabetes in apparently healthy subjects." <u>Diabetes</u> **56**: A630-A631. Song, Y., E. L. Chou, A. Baecker, N. Y. You, Y. Song, Q. Sun and S. Liu (2015). "Endocrine-Disrupting Chemicals, Risk of Type 2 Diabetes, and Diabetes-Related Metabolic Traits: A Systematic Review and Meta-analysis." J Diabetes.

Spink, B. C., M. M. Hussain, B. H. Katz, L. Eisele and D. C. Spink (2003). "Transient induction of cytochromes P450 1A1 and 1B1 in MCF-7 human breast cancer cells by indirubin." <u>Biochem</u> <u>Pharmacol</u> **66**(12): 2313-2321.

Stahlhut, R. W., W. V. Welshons and S. H. Swan (2009). "Bisphenol A data in NHANES suggest longer than expected half-life, substantial nonfood exposure, or both." <u>Environ Health</u> <u>Perspect</u> **117**(5): 784-789.

Staples, C. A., P. B. Dorn, G. M. Klecka, S. T. O'Block and L. R. Harris (1998). "A review of the environmental fate, effects, and exposures of bisphenol A." <u>Chemosphere</u> **36**(10): 2149-2173. Tahiliani, M., K. P. Koh, Y. Shen, W. A. Pastor, H. Bandukwala, Y. Brudno, S. Agarwal, L. M. Iyer, D. R. Liu, L. Aravind and A. Rao (2009). "Conversion of 5-methylcytosine to 5-

hydroxymethylcytosine in mammalian DNA by MLL partner TET1." <u>Science</u> **324**(5929): 930-935. Tamae, D., P. Lim, G. E. Wuenschell and J. Termini (2011). "Mutagenesis and repair induced by the DNA advanced glycation end product N2-1-(carboxyethyl)-2'-deoxyguanosine in human cells." <u>Biochemistry</u> **50**(12): 2321-2329.

Terasaka, H., Y. Kadoma, H. Sakagami and S. Fujisawa (2005). "Cytotoxicity and apoptosisinducing activity of bisphenol A and hydroquinone in HL-60 cells." <u>Anticancer Res</u> **25**(3B): 2241-2247.

Thigpen, J. E., K. D. Setchell, G. E. Kissling, J. Locklear, G. F. Caviness, T. Whiteside, S. M. Belcher, N. M. Brown, B. J. Collins, F. B. Lih, K. B. Tomer, E. Padilla-Banks, L. Camacho, F. G.

Adsit and M. Grant (2013). "The estrogenic content of rodent diets, bedding, cages, and water bottles and its effect on bisphenol a studies." J Am Assoc Lab Anim Sci **52**(2): 130-141.

Toyoizumi, T., Y. Deguchi, S. Masuda and N. Kinae (2008). "Genotoxicity and estrogenic activity of 3,3'-dinitrobisphenol A in goldfish." <u>Biosci Biotechnol Biochem</u> **72**(8): 2118-2123.

Ulutas, O. K., N. Yildiz, E. Durmaz, M. A. Ahbab, N. Barlas and I. Cok (2011). "An in vivo assessment of the genotoxic potential of bisphenol A and 4-tert-octylphenol in rats." <u>Arch</u> <u>Toxicol</u> **85**(8): 995-1001.

Valinluck, V. and L. C. Sowers (2007). "Endogenous cytosine damage products alter the site selectivity of human DNA maintenance methyltransferase DNMT1." <u>Cancer Res</u> **67**(3): 946-950. Vandenberg, L. N., T. Colborn, T. B. Hayes, J. J. Heindel, D. R. Jacobs, Jr., D. H. Lee, T. Shioda, A. M. Soto, F. S. Vom Saal, W. V. Welshons, R. T. Zoeller and J. P. Myers (2012). "Hormones and Endocrine-Disrupting Chemicals: Low-Dose Effects and Nonmonotonic Dose Responses." <u>Endocrine Reviews</u>.

Vandenberg, L. N., R. Hauser, M. Marcus, N. Olea and W. V. Welshons (2007). "Human exposure to bisphenol A (BPA)." <u>Reprod Toxicol</u> **24**(2): 139-177.

Vistoli, G., D. De Maddis, A. Cipak, N. Zarkovic, M. Carini and G. Aldini (2013). "Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation." <u>Free Radic Res</u> **47 Suppl 1**: 3-27.

Volkel, W., T. Colnot, G. A. Csanady, J. G. Filser and W. Dekant (2002). "Metabolism and kinetics of bisphenol a in humans at low doses following oral administration." <u>Chem Res</u> <u>Toxicol</u> **15**(10): 1281-1287.

Vrooman, L. A., J. M. Oatley, J. E. Griswold, T. J. Hassold and P. A. Hunt (2015). "Estrogenic exposure alters the spermatogonial stem cells in the developing testis, permanently reducing crossover levels in the adult." <u>PLoS Genet</u> **11**(1): e1004949.

Wang, X., W. Bao, J. Liu, Y. Y. OuYang, D. Wang, S. Rong, X. Xiao, Z. L. Shan, Y. Zhang, P. Yao and L. G. Liu (2013). "Inflammatory Markers and Risk of Type 2 Diabetes A systematic review and meta-analysis." <u>Diabetes Care</u> **36**(1): 166-175.

Watanabe, H., R. Adachi, K. Kusui, A. Hirayama, T. Kasahara and K. Suzuki (2003). "Bisphenol A significantly enhances the neutrophilic differentiation of promyelocytic HL-60 cells." International Immunopharmacology **3**(12): 1601-1608.

Welshons, W. V., S. C. Nagel and F. S. vom Saal (2006). "Large effects from small exposures. III. Endocrine mechanisms mediating effects of bisphenol A at levels of human exposure." <u>Endocrinology</u> **147**(6 Suppl): S56-69.

West, R. J., P. A. Goodwin and G. M. Klecka (2001). "Assessment of the ready biodegradability of Bisphenol A." <u>Bull Environ Contam Toxicol</u> **67**(1): 106-112.

Wetherill, Y. B., B. T. Akingbemi, J. Kanno, J. A. McLachlan, A. Nadal, C. Sonnenschein, C. S. Watson, R. T. Zoeller and S. M. Belcher (2007). "In vitro molecular mechanisms of bisphenol A action." <u>Reprod Toxicol</u> **24**(2): 178-198.

Williams, K., J. Christensen and K. Helin (2012). "DNA methylation: TET proteins-guardians of CpG islands?" <u>EMBO Rep</u> **13**(1): 28-35.

Wu, H. J., C. Liu, W. X. Duan, S. C. Xu, M. D. He, C. H. Chen, Y. Wang, Z. Zhou, Z. P. Yu, L. Zhang and Y. Chen (2013). "Melatonin ameliorates bisphenol A-induced DNA damage in the germ cells of adult male rats." <u>Mutat Res</u> **752**(1-2): 57-67.

Xu, R., C. Chi, F. Li and B. Zhang (2013). "Immobilization of horseradish peroxidase on electrospun microfibrous membranes for biodegradation and adsorption of bisphenol A." Bioresour Technol **149**: 111-116.

Yager, J. D. (2015). "Mechanisms of estrogen carcinogenesis: The role of E2/E1-quinone metabolites suggests new approaches to preventive intervention--A review." <u>Steroids</u> **99**(Pt A): 56-60.

Yang, Y. J., Y. C. Hong, S. Y. Oh, M. S. Park, H. Kim, J. H. Leem and E. H. Ha (2009). "Bisphenol A exposure is associated with oxidative stress and inflammation in postmenopausal women." Environmental Research **109**(6): 797-801.

Yoshihara, S., M. Makishima, N. Suzuki and S. Ohta (2001). "Metabolic activation of bisphenol A by rat liver S9 fraction." <u>Toxicol Sci</u> **62**(2): 221-227.

Yoshihara, S., T. Mizutare, M. Makishima, N. Suzuki, N. Fujimoto, K. Igarashi and S. Ohta (2004). "Potent estrogenic metabolites of bisphenol A and bisphenol B formed by rat liver S9 fraction: their structures and estrogenic potency." <u>Toxicol Sci</u> **78**(1): 50-59.

Zalko, D., A. M. Soto, L. Dolo, C. Dorio, E. Rathahao, L. Debrauwer, R. Faure and J. P. Cravedi (2003). "Biotransformations of bisphenol A in a mammalian model: answers and new questions raised by low-dose metabolic fate studies in pregnant CD1 mice." <u>Environ Health</u> <u>Perspect</u> **111**(3): 309-319.

Zhang, Q., X. Xu, T. Li, Y. Lu, Q. Ruan, Y. Lu, Q. Wang, F. Dong, Y. Yang and G. Zhang (2014). "Exposure to bisphenol-A affects fear memory and histone acetylation of the hippocampus in adult mice." <u>Horm Behav</u> **65**(2): 106-113.

Zoeller, R. T., R. Bansal and C. Parris (2005). "Bisphenol-A, an environmental contaminant that acts as a thyroid hormone receptor antagonist in vitro, increases serum thyroxine, and alters RC3/neurogranin expression in the developing rat brain." <u>Endocrinology</u> **146**(2): 607-612.

8. Anexos

8.1 Ficha do Aluno

Janus - Sistema Administrativo da Pós-Graduação

AND DE DE Se on DE DE DE SE ON DE	Universidade de São Paulo Faculdade de Ciências Farmacêuticas Documento sem validade oficial FICHA DO ALUNO
9141 - 6726185/2 - André Luiz Tero	so Ribeiro
Email:	altribeiro@usp.br
Data de Nascimento:	27/12/1985
Cédula de Identidade:	RG - 40.611.127-3 - SP
Local de Nascimento:	Estado de São Paulo
Nacionalidade:	Brasileira
Graduação:	Farmacêutico-Bioquímico - Universidade Paulista - São Paulo - Brasil - 2009
Mestrado:	Mestre em Ciências - Área: Toxicologia e Análises Toxicológicas - Faculdade de Ciências Farmacêuticas - Universidade de São Paulo - São Paulo - Brasil - 2011
Curso:	Doutorado
Programa:	Toxicologia e Análises Toxicológicas
Data de Matrícula:	10/06/2011
Início da Contagem de Prazo:	10/06/2011
Data Limite:	10/06/2015
Orientador:	Prof(a). Dr(a). Ana Paula de Melo Loureiro - 10/06/2011 até o presente. E.Mail: apmlou@usp.br
Proficiência em Línguas:	Inglês, Aprovado em 10/06/2011
Prazo para Realização do Exame de Qualificação:	04/09/2013
Data de Aprovação no Exame de Qualificação:	
Data do Depósito do Trabalho: Título do Trabalho:	
Data Máxima para Aprovação da Banca:	
Data de Aprovação da Banca:	
Data Máxima para Defesa:	
Data da Defesa:	
Resultado da Defesa:	
Histórico de Ocorrências:	Ingressou no Doutorado em 10/06/2011
	Matrícula de Acompanhamento em 18/02/2013

Aluno matriculado nas normas vigentes a partir de 01/07/2009

Última ocorrência: Matrícula de Acompanhamento em 18/02/2013

Fanus - Sistema Administrativo da Pós-Graduação

Universidade de São Paulo Faculdade de Ciências Farmacêuticas Documento sem validade oficial FICHA DO ALUNO

9141 - 6726185/2 - André Luiz Teroso Ribeiro

Sigla	Nome da Disciplina	Início	Término	Carga Horária	Cred.	Freq.	Conc	Exc.	Situação
FBC5803- 1/4	Sistemas da Garantia da Qualidade em Laboratórios Analíticos	09/08/2011	22/08/2011	30	2	75	A	Ν	Concluída
FBC5784- 2/6	Tópicos Avançados em Toxicologia II	09/08/2011	29/11/2011	30	0	0	-	Ν	Matrícula cancelada
TNM5791- 2/2	Metodologia da Pesquisa Científica (Instituto de Pesquisas Energéticas e Nucleares - Universidade de São Paulo)	13/09/2011	05/12/2011	60	4	75	В	Ν	Concluída
FBC5800- 4/1	Temas Avançados em Ciências e Tecnologia Farmacêutica I	17/10/2011	23/10/2011	30	2	100	А	Ν	Concluída
FBC5813- 3/1	Aplicações de Cromatografia em Análises Toxicológicas	27/02/2012	2 04/04/2012	60	4	80	А	Ν	Concluída
FBC5784- 2/7	Tópicos Avançados em Toxicologia II	06/03/2012	2 26/06/2012	30	2	90	A	Ν	Concluída
FBC5748- 3/3	Trabalhos Científicos: da Elaboração à Publicação	24/04/2012	2 05/06/2012	60	4	90	А	Ν	Concluída
Atividade do Programa	Participou da Etapa de Estágio Supervisionado em Docência do Programa de Aperfeiçoamento de Ensino junto à Disciplina FBC0425 Toxicologia Geral I, ministrada aos alunos de graduação do curso de Farmácia-Bioquímica da Faculdade de Ciências Farmacêuticas da Universidade de São Paulo (1)	01/07/2012	2 30/11/2012	! -	3	0			-

	Créditos mínimo	Créditos mínimos exigidos		
	Para exame de qualificação	Para depósito de tese		
Disciplinas:	10	20	21	
Estágios:				
Total:	10	20	21	

Créditos Atribuídos à Tese: 167

Observações:

1) Créditos atribuídos de acordo com o disposto na Portaria GR-3588 e GR-4391 - PAE, de 31.08.09 e aprovados pela Comissão de Pós-Graduação, em Sessão de 15/05/2013.

Conceito a partir de 02/01/1997:

A - Excelente, com direito a crédito; B - Bom, com direito a crédito; C - Regular, com direito a crédito; R - Reprovado; T -Transferência.

Um(1) crédito equivale a 15 horas de atividade programada.

8.2 Currículo Lattes

S Curriculo Lattes

André Luiz Teroso Ribeiro Endereço para acessar este CV: http://lattes.cnpq.br/4163660610117459 Última atualização do currículo em 29/09/2015

Resumo informado pelo autor

Possui graduação em Farmácia e Bioquímica pela Universidade Paulista (2008) e mestrado em Toxicologia e Análises Toxicológicas pela Universidade de São Paulo (2011), atuou principalmente nos seguintes temas: imunotoxicologia, toxicologia ambiental e inflamação pulmonar. Atualmente é doutorando no departamento de Análises Clínicas e Toxicológicas da Universidade de São Paulo, atuando principalmente com avaliação de parâmetros relacionados a genotoxicidade condicionada a exposição à xenobióticos presentes no meio ambiente, identificação e quantificação de lesões em DNA por LC-MS/MS. Atua também como analista antidoping no Departamento de Controle e Pesquisa Antidopagem do Jockey Club de São Paulo. (Texto informado pelo autor)

Dados pesso	ais
Nome	André Luiz Teroso Ribeiro
Filiação	Luiz Carlos Ribeiro e Clarisse Teroso Ribeiro
Nascimento	27/12/1985 - Cândido Mota/SP - Brasil
Carteira de Identidade	
CPF	
Endereçc residencial	
Endereço profissional	Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Departamento de Análtses Clínicas e Toxicológicas Av. Por Lineu Prestes, 580 - Bloco 138 Butarial - Gao Paulo 05506-90, SP - Brado Télefone, 11 3001 1182
Endereço eletrônico	E-mail para contato: almbeiro@usp.br E-mail alternativo almbeiro@gmail.com
2011 2009 - 2011	Doutorado em 1 or caloga e Anales E roucológicas. Universidade de São Paulo, USP, São Paulo, Baro Horison Martine São Paulo, USP, São Paulo, Baro Horison Martine São Paulo, USP, São Paulo, Baro Paulo Caracterização de Melo Loureiro Martine da marterização de selever a seconda de Melo Loureiro Martine da marterização de selever a seconda de marterização de las de la
2004 - 2008	Areas do contracimento : Análise Toxicológia a Toxicológia Graduação em Farmácia e Boquimica: Universidade Paulista, UNIP, Sao Paulo, Brasil Titulo: nenhum
Formação co	mplementar
2011 - 2011	Curso de curta duração em Avaliação de Risco. Sociedade Brasteira de Toxicologia, SBTOX, Sao Paulo, Brasil
2011 - 2011	Curso de curta duração em Manuseio transporte e descarte de residuo químico. Universidade de São Paulo, USP, São Paulo, Brasil
2011 - 2011	Curso de curta duração em Epigenética. Universidade de São Paulo, USP, Sao Paulo, Brasil
2011 - 2011	Curso de curta duração em LC-MS/MS - Fundamentos e Quantificação. Sociedade Brasileira de Espectrometria de Massas, BR MASS, Brasil
2009 - 2009	Escola de Altos Estudos em Toxicología. Universidade de São Paulo, USP, São Paulo, Brasil
2007 - 2007	Curso de curta duração em Atuação do Farmacêútico na Indústria Farmacêútica. Universidade Paulista, UNIP, Sao Paulo, Brasil

2006 - 2006	Curso de curta duração em Técnicas de Administração de Farmacos. Universidade Paulista, UNIP, Sao Paulo, Brasil
2005 - 2005	Curso de curta duração em Diagnostico de Parasitoses. Universidade Estadual Paulista Júlio de Mesquita Filho, UNESP, Sao Paulo, Brasil
2004 - 2004	Curso de curta duração em Diabetes - Diagnóstico, Tratamento e Complicações. Universidade Paulista, UNIP, Sao Paulo, Brasil

Atuação profissional

1. Departamento de Pesquisa e Controle Antidopagem - Jockey Club de São Paulo - DCPA

Vinculo institucional

2014 - Atual Vinculo: Celetista , Enquadramento funcional: Analista Antidoping, Regime: Dedicação exclusiva

2. Grupo Educacional HOTEC - HOTEC

Vinculo institucional

2010 - Atual Vinculo: Celetista , Enquadramento funcional: Professor , Carga horária: 8, Regime: Parcial 3. Universidade de São Paulo - USP

Vinculo institucional

2009 - 2011 Vinculo: Livre , Enquadramento funcional: Aluno, Regime: Dedicação exclusiva

Atividades

06/2009 - 12/2009 Extensão Universitária, Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas e Toxicológicas Especificação: Programa de Aperle içoamento de Ensino (PAE) Montoria na disciplina Analises Toxicológicas (FBC0520) sob supervisão do Prof. Erran l'Anto Jr., 02/2009 - Atual Outra atividade técnico-científica, Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas e Toxicológicas Especificação: Participação no projeto caracterização dos efetos da exposição à hidroquinona sobre o recrutamento leucoctário para o pulmão inflamado

4. Universidade Paulista - UNIP

Vínculo institucional

2004 - 2008 Vinculo: Livre , Enquadramento funcional: Acadêmico, Regime: Dedicação exclusiva

Atividades

08/2005 - 08/2006 Estágio, Campus Assis Estápio Montoria na disciplina de Anatomia dos Sistemas nos cursos de Nutrição, Farmácia e Bioquímica, Enformagem, Fisicterapia

Idiomas

Inglês Compreende Bem , Fala Bem , Escreve Bem , Lê Bem

Prêmios e títulos

2011 Melhor Apresentação Oral da Area de Toxicologia Experimental, Congresso Brasileiro de Toxicologia -Sociedade Brasileira de Toxicologia SBTOX

Producão

Produção bibliográfica

Artigos completos publicados em periódicos

IdD Shimada, Ana Lúcia Borges; RIBERO, A. L. T., Bdonheis, Simone Marques, Ferraz-de-Paula, Vivlane, Hebeda, Cristina Bichels, Farsky, Sandra Helena Polseti In vivo hydroquinone exposure impairs MCP-1 secretion and monocyte recruitment into the inflamed lung. Toxicology (Amsterdam). (BEB). v269, p.20-26, 2012. Referências adicionais : Inglês.

SANTOS, Carlos E. Matos dos, RIBEIRO, A. L. T. Julgamento de evidências em Toxicologia e Estratégias integradas de Testes. Revinter. , v.5, p.48 - 62, 2012.

Palavras-chave: Weight of evidence., Evidence-based Toxicology, Bisphenol A, Integrated Testing Strategies Areas do conhecimento : Análise Toxicológica Referências adiconas : Português, Meio de divulgação. Meio digital, Home page: [ftp://www.ittenc.com.br/phocadownibaddRevitter/V5rt/tev-05-rd1-02.pdf]

Laving, K. M., RIBEIRO, A. L. T., CONTE, A. C., DECLEVA, D.Y. L., RIBEIRO, J. T. D.
 Laving, K. M., RIBEIRO, A. L. T., CONTE, A. C., DECLEVA, D.Y. L., RIBEIRO, J. T. D.
 Doomfroad, et anter garassitise in an popular side due unbitro to adiade de Cânddo Nota-SP. Revista do Instituto de Cândato de cândato adostidos Candono Natural SP. Revista do Instituto de Cândato internativa activativa de la canada de Cândato Nota-SP. Revista do Instituto de Cândato o Canados de la cânda de cânde que se contractivativa de la canada de la Cândato Nota-SP. Revista do Instituto de Cândato Internativa de la canada de de Valgado: Impresso. Home page: [http://www.um.ph.tr/commission.edu/bialcaceosis/s/edicoae2012/03.asp.]
 Orativa- Toxving the inclence of treating paratosas in the population on antighbourhood in the cly to provide a canada de la public health problem, especially in areas where basis cantation contitions, personal hygiene and educatorial level of the individual are precanous, which may favour transmission. Methods - The collections were made in resciones and the fousehold. Results - A total of 177 samples were analysed introly for description for any settion of the socie of paratiles, and the socie and the socie and canada and 25% of them were positive for era or mere types of paratiles, and the population to have or have were like intervisite truthurs which may function theorem and the socie of population of the population of the population of the socie of paratiles, and the socie of the socie of paratiles, and the population termination and analysed introlytic truthurs where were the socie and the socie of paratiles, and the socie of paratiles, and the socie of paratiles, and the socie of through the socie of paratiles. The calcelocin term socie and the population of the voringes age range was the most affected of the studed populati

 EDE RIBEIRO, A. L. T., SHMADA, A. L. B., HEBEDA, C. B., Oliveira, Tiago Franco de, Loureiro, Ana Paula de Melo, Filho, Walter dos Reis Pereira, Santos, Akinéa Mégikos dos Anjos, TAVARES DE LIMA, W., FARSKY, S.H. Mines. T axicology (Amsterdam). Búlos, v.288, p.1–17, 2011. Palavras-chave: Lung Leukcoyte, Hydroquinone, LPS Areas do confrontemento. Taxoclogia, Imunidoga, Farmacologia Referências adcornas: Inglis, Meio de divulgação. Neio digital. Home page: (do:10.0166) (uzo 2011.650.00) 4.

Trabalhos publicados em anais de eventos (resumo)

- 1. RIBERO, A. L. T., SANTOS, F. A., OLIVEIRA, A. A. F., de OLIVEIRA, T. F., LOUREIRO, A.P.M. BPA EXPOSURE DISKUPTS BONE MARROW CELL COUNT IN VIVO AND INDUCES OXIDATIVE STRESS AND PERGENETIC ALTERATIONS IN VITRO In: XVII Congresso Brasilerio de Toxicogia, 2013, RIBEIRO, A. A. ... BRA EXPOSITIC ALTERATIONS IN STRESS AND EPIGENETIC ALTERATIONS IN Porto Alegre Anais do XVIII CBTOX., 2013. Palavras-chus: Bishend A. DNA Adducts, Hi-60 Palavras-chus: Bishend Adducts, Bishend A. DNA Adducts, Hi-60 Palavras-chus: Bishend Adducts, Hi-60 Palavras-chus: Bishend Adducts, Bishend Adducts, Hi-60 Palavras-chus: Bishend Adducts, Bishend Adducts, Hi-60 Palavras-chus: Bishend Adducts, Bishend Adducts,
- RIBERO, A. L. T., de OLIVEIRA, T. F., LOURERO, A.P.M. CYTOTOXIC AND EPEGENETIC ALTERATIONS INDUCED BY BISPHENOL A In: VIII International Congress, Society for Free Radical Biology and Medicine, South American Group, 2013, 2013, Buenos Aires.
 Program and Abstracts SFRM-SAG, 2013., 2013. v 1, p.26 26 Referências adcionais. *BrasilPortugulas. Meio de divulgação. Impresso*
- RIBERO, A. L. T., de OLIVEIRA, T. F., LOURERO, A.P.M. EPIGENETIC ALTERATIONS AND TOXICITY INDUCED BY BISPHENOL A ON HL-60AND MCF-7 CELLS LINES in: A individants and Redox Process in Health, 2013, 360 Faulo. Program and Abstracts ARPH 2013, 2013, v.1, p.67 67 Palavras-chave: Bisphenol A, DNA Adducts, MCF-7 Cells Referências adioonals : Brasil/Portugules. Neto de divulgação: Impresso
- SANTOS, F. A., DURAO, A. C. S., SLVA, A. M. O., **RIBERO**, A. L. T., OLIVEIRA, A. A. F., de OLIVERA, T. F., LOUREIRO, A.P.M. EVALUATION OF MALONALDEHYDE IN PLASMA AND DNA LESIONS OF DIABETICS RATS in: XLVIII Semana Universitäria Paulista de Farmataia e Bioquímica, Simpósio Anual de Pesquisa em Ciências Farmacêtricas 2013, São Paulis Brazilian Journal of Pharmaceutica Sciences, 2013, v49, p43 43 Referências as documas is Basafiortaugués. Impresso 4.
- SANTOS, F. A., LOIOLA, J. F., OLIVEIRA, A. A. F., DURAO, A. C. S., MARCOURAKIS, T., SILVA, A. M. O., de OLIVEIRA, T. F., RIBERO, A. L. T., LOUREIRO, A. P.M. EVALUATION OF OXIDATIVE AND GLYCARTION DAMAGE IN A MODEL OF DIABETIC RATS in: Antioxidants and Redox Process in Health. 2013. 380 Paulo. Program and Abstrates ARPH 2013. 3. 2013. v 1, p. 69-69 Referências adicionais : Brasil/Portugués. Meio de divulgação: Impresso
- SANTOS, F. A., DURAO, A. C. S., MARCOURAKIS, T., SILVA, A. M. O., OLIVEIRA, A. A. F., de OLIVEIRA, T. F., RIBBIRO, A. L. T., LOUREIRO, A.P.M. OXIDATVE AND ADVANCED GLIVCATION DAMAGE IN A MODEL OF DIABETIC RATS in: XVII Congresso Brasilero de Toxicodoja, 2013, Parto Alegre. Anas do XVIII CBTOX. 2013. Referêncies addomais. Brasil/Portugués. Melo de divulgação: Melo digital. Home page: fittp://www.cbtox2013.com.bf/
- 7. SANTOS, F. A., OLIVEIRA, A. A. F., RIBEIRO, A. L. T., DURAO, A. C. S., SILVA, A. M. O., MARCOURAKIS, T., de OLIVEIRA, T. F., LOUREIRO, A. P. M. OXIDATVESTRESS, INFLAMMATION AND ADVANCED GLYCATION AS DAMAGE PATHWAYS IN A MODEL OF EXPERIMENTAL DIABETES IN: VIII International Congress, Society for Free Radical Biology and Medicine, South American Group, 2013, 2013, Buenos AF 49, 61 Herlerines addonsis. Biosel Biofendia: Neo Job Artugel. Impresso
- RIBERO, A.L. T., LOUREIRO, A.P.M. TOXICTY OF BISHHENOL A (BPA) AND 3-NITROBISHENOL A (NITRO-BPA) TO HL-60 AND MCF-7 CELLS IN: XUVII Semaa Universitativa Paulatala de Farmácia e Bioquímica, Simpósio Anual de Pesquisa en Ciências Farmaceuticas 2013, São Paulo. Brazilina Journal of Pharmaceutical Sciences., 2013. Referências adicionais : Brasilingés. Meio de divulgação: Meio digital
- RIBERO, A. L. T., Lourero, Ana Paula de Melo EVIDENCES OF TOXICITY INDUCED BY BISPHENOL A EXPORSURE AT LOW CONCENTRATION ON HL-60 CELIS In XII ECOTX, 2012, Protode Galinhas. Journal of the Brazilian Boclety of Ecotoxicology., 2012. Palevras-characteristic: Analise Toxicologica References addocnias. Janasilingis. Neo de divulgação: Impresso References addocnias. Janasilingis. Neo de divulgação: Impresso
- SHIMADA, A. L. B., RIBEIRO, A. L. T., HEBEDA, C. B., BOLONHEIS, S. M., Lino dos Santos Franco, A., TAVARES DE LIMA, W., FARSKY, S. H. P. TAVARES DE LIMA, W. FARSKY, S. H. P. Effects of hydrogunone inhalismon on functions of tracheal tissue in XVS Semana Farmacéutica de Cléncia e Tendra Jong Vargunone inhalismon on functions of tracheal tissue in XVS Semana Farmacéutica de Cléncia e Terzilian Journal of Pharmaceutical Sciences. São Paulo. Faculdade de Cléncias Farmacéuticas da USP, 2010. v. 40. p. 43. - 43. Palviras-chave. Alveolar, Phagoclic, Macrophages Areas do conferemento: imunología Toxicología/Farmacólogía Referências a docimais. Enes de divulgação. Melo de digital. Home page: [http://www.bjps.br]

- SHIMADA, A. L. B., RIBEIRO, A. L. T., HEBEDA, C. B., TAVARES DE LIMA, W., FARSKY, S. H. P. Effects of hydrogulange inhalation on secretion of traches cells in: XII International Congress of Toxicology Effects o triyurogram e sessence 2010, Barcelong Toxicology Latterg, 2010, 0.534 Areas do corhectmento : Immodulta Toxicologi Armacologi Referências adicionais : Espanha/inglés. Meio de divulgação: Impresso Referências adicionais : Espanha/inglés. Meio de divulgação: Impresso
- 12. RIBEIRO, A. L. T., SHIMADA, A. L. B., HEBEDA, C. B., BOLONHEIS, S. M., TAVARES DE LIMA, W., FARSKY, S. H. P.

FARSKY, S.H. P. In vivo hydroginone exposure affects leukocyte recruitment and adhesion molecules expression on LPS infamed lung in: XV Semana Farmacètica de Ciència e Tecnologia, 2010, São Paulo. Brazilian Journal of Hramaceutical Sciences. São Paulo: Faculdade de Cièncias Farmacêtuticas da USP, 2010, V.40, p.59-59 Palavras-cheux: Lung Leukocyte, Hydroquinone, LPS Areas do contecimento: Imunobiga Taxicoolgia farmacologia Referências adocornas : Brasilingilis. Nielo de divulgação. Nielo digital Home page: [http://www.bjos.br] Referências adocornas: Cirsallingilis. Nielo de divulgação. Nielo digital Home page: [http://www.bjos.br]

- RIBEIRO, A. L. T., SHIMADA, A. L. B., HEBEDA, C. B., TAVARES DE LIMA, W., FASKY, S. H. INHALED HYDROOUINONE AFFECTS LEUKICYT ERECRUITMENT INTO LUNG AND ADHESI MOLECULES EXPRESSION In: XII International Congress of Toxicology, 2010, Barcelona. Toxicology Letters, 2010, p.33–34 Palavras-chave: Lung Lackorghe, Hydropulnone, LPS Areas do contectmento: Imunobagia Toxicologia Farmacobagia Referências adocoma: Espanhafniglés. Medica de Avdüggés. Impresso ON
- 14. RIBEIRO, A. L. T., SHIMADA, A. L. B., SILVA, P. C. B., HEBEDA, C. B., TAVARES DE LIMA, W., FARSKY, S. H. P. S. H. P. Effects of Inhalation of Hydroquinone on Lung Leukocyte Recruitment Induced by LPS In: XIV Semana Farmacéutica de Ciência e Tecnologia, 2009, São Paulo. Brazilian Journal of Pharmaceutical Sciences. São Pauto: Faculdade de Ciências Farmacéticas da USP, 2009, v.45, p.25 - 25 Palavras-chare. Lung Laukocyte, Hydroquinone, LPS Aleava do contecimento: Imunobga, Toxicobgial Farmacobgia Referências adocimas: BrasilProguês. Nelos de Viulgeção: Meio digital
- RIBEIRO, A. L. T., SHIMADA, A. L. B., HEBEDA, C. B., TAVARES DE LIMA, W. FARSKY, S. H. P. Effects of Inhalation of Hydroquinone on Phagocitic and Fungicidal Activities on Alveolar Macrophages In: XVI Compress Drasiterio de Toxicología, 2009, Belo Horizonte. Revist a Brasileira de Toxicología, São Paulo: Sociedade Brasileira de Toxicología, 2009, v.22, p.220-200 220 Palavras-chave: Alveolar, Phagocitic, Macrophages, hydroquinone Areas do conhecimento: Imunologia,Toxicologia,Farmacologia Referências adicionais: Brasil/Inglés. Meio de divulgação: Impresso

16. SHIMADA, A. L. B., RIBEIRO, A. L. T., SILVA, P. C. B., HEBEDA, C. B., TAVARES DE LIMA, W., FARSKY, S. H. P. S. H. P. Inhialaino 17 Hydroquinone Imparis LPS-Induced Leukocyte Migration to the Lung Dr. Leukocyte Migration to the Lung Dr. At^a Congresso Brasilero de Farmacidogia e Terapikulca Experimental. 2009. Ribeirão Preto. 41º Congresso Brasileiro de Farmacologia le Terapicatica Experimental. Ribeirão Preto. Palavas-have: Lung Leukocyte, Hydroquinore, LPS Areas do contenento: Immundola Toxicologia Farmacologia Referências adicionais : Brasil/Inglês. Meio de divulgação: Meio digital

17. 😭 RIBEIRO, A. L. T.

Lef RibelRO, A. L. T. Estudo da Inicianda de Entereparasiloses na Cidade de Cândido Mota - Estado da Isão Paulo In: X Encontro de Iniciação Cientítica - UNIP, 2008, São Paulo. UIII Encontro de Iniciação Científica INIP/PIBIC - CNPq. São Paulo: Equipe Educação Digital - UNIP, 2008. Palavas-cheve enteroparastoas: incidêrina: Cândido Mota Areas do conhecimento : Parastoboja Farmácia Sectores de dividade: Saúde e Serviços Sociais Referências adicionais : Brassi/Portugués. Neio de divulgação: Meio digital

CONTE, A. C., RIBEIRO, A. L. T., ARAUJO, J., MONTEQUESE, A. PARASITOSES INTESTINAIS BEESCOLARES: Ocorrência e Campanhas Educativas In: EBBA VII Encontro de Biodencias e abidenciologi, a 2005, Asisis. O de divulgação de EBBA, 2005, Áreas do conhacimento: Famalhorituguás. Neio de divulgação: Vários Referências adiciomas: EmasilPortuguás. Neio de divulgação: Vários

Apresentação de trabalho e palestra

- RIBEIRO, A. L. T., ATALLAH, P. M. Antidoping e análises clinnicas, 2015. (Conferência ou palestra. Apresentação de Trabalho) Referências acidonais : Brasil/Português. Neio de divulgação: Outro. Home page: http://www.savsuniso.com/. Clidaé. Sorocaba. Evention II Semana Acadêmica de Medicina Veterinária de Sorocaba. Instromotoral/minacidaro: Universidade de Sorocaba.
- RIBEIRO, A. L. T., ATALIAH, P. M. Controle Antidopagem nos Esportes Equestres, 2015. (Conferência ou palestra Apresentação de 2. Controle Antidopagem nos Esportes Equestres, 2015. (Conferência ou palestra - paresenaey ao un Trabaho) Pala vas-chave. Articlopagem. Esporte Equestre Areas do contenente 7: Zoodogie Referências adiconas : Brasil/Português. Meio de divulgação: Meio digital. Home page: Infliz/Sacavet combriment. Local: Faculdade de Medicina Veterinária e Zootecnia, Cidade: São Paulo Evento: XVV Semana Academica Veterinaria; Inst. promotoral/Inarciadora: Universidade de São Paulo

RIBEIRO, A. L. T., SANTOS, F. A., OLIVEIRA, A. A. F., de OLIVEIRA, T. F., LOUREIRO, A.P.M. BPA EXPOSURE DISRUPTS BONE MARROW CELL COUNT IN VIVO AND INDUCES ON DATIVE STRESS AND PEOR ENTICA LITERATIONS IN VITRO, 2013. (Congresso, Apresentação de Trabalho) Palavras-chave: Bisphend A. H-60, DNA Adduds Areas do conhecimento: Análise Toxologica Referências adiconais : Brasil/Português. Meio de divulgação: Impresso; Cidade: Porto Alegre; Evento: Congresso Brasleiro de Toxicologia - CBTOX; Inst. promidora/financiadora: Sociedade Brasileira de Toxicologia 3.

RIBEIRO, A. L. T., SHIMADA, A. L. B., HEBEDA, C. B., Oliveira, Tiago Franco de, Loureiro, Ana Paula de Melo, Santos, Alcinéa Meigikos dos Anjos, Filho, Walter dos Reis Pereira, Lima, Wothan Tavares de, 4.

RIBERO, A. L.T., SHIMADA, A. L. B., HEBEDA, C. B., Oliveira, Tiago Franco de, Loureiro, Ana Paula de Méto, Sartos, Alcinéa Meiglicos dos Anjos, Fiho, Walter dos Reis Perera, Lima, Withan Tavares de, EFETOS D. A. EXPOSIÇÃO IN VIVO. A BAUNAS CONCENTRAÇÕES DE HIDPOCUINONAS SOBRE O ESTRESSE OXIDATIVO E SOBRE O RECRUTAMENTO LEUCOCITÁRIO PARA O FULMÃO INFLAMADO, 2011. (Contreindria ou palestra Apresentação de Trabaho) Palevras-chave: Lung Leukocyte, Hydroquinore, LPS Areas do conhecimento i: Toxicosofo fendico encontrado em alas acorcentrações em cigaros. Objetivo: Investigamos o efeto de exposição in tivo a DA 2000 Solis ander Solis em construitor de autoristanto de autoridos para o pumble inflamado. Camundrogos Suiss machos foram expostos so veículo 12,5gm, 25gm ou Súgm de HQ durarte 5 das, 1146a. Animais contrelas foram expostos ao veículo 12,5gm, 25gm ou Súgm de HQ durarte 5 das, 1146a. Animais controles foram expostos ao veículo 12,5gm, 25gm ou Súgm de HQ durarte 5 das, 1146a. Animais controles foram expostos ao veículo 12,5gm, 25gm ou Súgm de HQ durarte 5 das, 1146a. Animais controles foram expostos ao veículo 12,5gm, 25gm ou Súgm de HQ durarte 5 das, 1146a. Animais controles foram expostos ao veículo 12,5gm de abconnia) para evaliação da resposta militoria pulmonar (3 horas apos); quantificação do enturidos no talmos existencies (LBA); colmane de Nuelaure e estregaços condaço) e atividade de miloprostrutas en oterizó pulmonar (HPO); espectradotometria, Em neutrólicos plasma for quantificado por H2IC. A declorodhiroflutresceina-dacetalo (IC/H2-DA); ciclo celular e da fragmentação do 10A pão be amprego de celutor das de mainelos para evaleção de resposta fora quantidos dos de 2-7 dicionodhiroflutresceina-dacetalo (IC/H2-DA); ciclo celular e da fragmentação do DINA pão em DEVECA esposição à HA, C.J. A concertinção de HCA na caixa de esposição foi quantificado por HFIC. A exposição da HA, Súgmeno E, 1736, e malumento da concertinções plasmátiras de MDA (61,146), e high); e aumentou a MPO (164

expressão das moléculas de adesão β2 (296,12%) e β3 integrinas (111,59%) e PECAM-1 (252,2%). A concertração de HQ na caixa de exposição 1 hora aços a nebulitação de 25 pom de HQ foi de 0,044 pom A exposição a baixas concertrações de HQ nivo provoca alerações intracelulares em neturitõtas circularf, Locat Centro de Convenções de RB airão Preto, Cidade: Riberão Preto, Everto, Congresso Brastêrio de Toxicología, Inst.grundara/financiadar: Sociedade Brasilera de Toxicología - SBTOX

RIBEIRO, A. L. T., SHIMADA, A. L. B., HEBEDA, C. B., Oliveira, Tiago Franco de, Loureiro, Ana Paula de Melo, Filho, Walter dos Reis Pereira, Santos, Alcinéa Meigikos dos Anjos, Lima, Wothan Tavares de, RIBEIRO, A. L. I., OTHMON, M. Santos, Alchéa Meigkos dos Anjos, Maria, M. Med, Filho, Viller dos Reis Pereira, Santos, Alchéa Meigkos dos Anjos, Maria, M. FARSKY, S. H. P. FETTOS DA EXPOSIÇÃO IN VIVO A BAIXAS CONCENTRAÇÕES DE HIDROQUINONA SOBRE O ESTRESSE OXIDATIVO E SOBRE O RECRUTAMENTO LEUCOCITÁRIO PARA O PULMÃO INFLAMADO, 2011 (Congresso Apresentação de Trabalho) INFLANDAD, 2011. (Congress Apresentação de Trabalho) INFLANDAD, 2011. (Congresso Apresentação de Trabalho) Palavras-chave: Lung Laukocyte, Hydroquinore, LPS Areas do conhecimento : Toxicotogia, limunobiga Referências adcionas : Brasil·Portuguids. Neo de divulgação. Neio digital, Home page: Referências adcionas : Brasil·Portuguids. Neo de divulgação. Neio digital, Home page: Interp/Invivulcido: com br201 Internasegem asg. Local: Centro de Convenções de Ribertão Preto; Cidade: Roberta de Convenções de Ribertão Preto; Cidade: Sociedade Brasileira de Toxicologia - SB10X;

6. RIBEIRO, A. L. T. Cominhos da Pos-gno: Estanção Estanção de articulação no país, 2010. (Conferência ou palestra Apresentação de Trabaho) Astores de vindeão: Estanção Referências adicionas: BrasilPortugais. Neio de divulgação: Outro Palestra dirigida aos atunos do curso superor do bachareleão em Nutrção; Local: HOTEC; Cidade: São paulo: InoTEEC

Paulo - NO JEC
SHIMOA A, L.B., RIBEIRO, A.L.T., HEBEDA, C. B., BOLONHEIS, S.M., Lino dos Santos Franco, A., TAVARES DE LIMA, W., FARGKY, S. H. P. EFFECTS OF HYDRO-QUINONE INHALATION ON FUNCTIONS OF TRACHEAL TISSUE, 2010. (Congresso-Apresenlação de Trabalho). Palavras-chave: Trachea, Lung Leukocyte, Hydroquinone, LPS Areas do conte-cimento. Imundogia Toxicología Farmicologia Referências adiconas: Brasilhogis. Meo de viduação Impresso. Home page: http://www.surdabusp.com.br/. Local. FCF-USP. Citade: São Paulo; Evento: XLV SEMANA UNIVERSTARIA PAULISTA DE FARMACIA E BIOQUÍMICA. Inst.prom.dora/financiadora: FACULDADE DE CIÊNCIAS FARMACEUTICAS- USP.

8. SHMADA, A. L. B., RIBEIRO, A. L. T., HEBEDA, C. B., BOLONHEIS, S. M., Lino dos Santos Franco, A., TAVARED DE LIMA, W., FARSKY, S. H. P. Effects of Hydroquinnen linhalation on Functions of Tracheal Tissue, 2010. (Congresso Agresentação de Trabaho) Palávras-chave: Trachea. Lung Leukocyte, Hydroquinone, LPS Areas do contecimento: Imunología Toxicología Referências adiomas: IsrasiMnglés. Meb de divulgação. Impresso; Cidade: Ribeiño Preto; Evento: 42° Congresso Brasileiro de Farmacología e Terapéulca Experimental; Inst promotora/Inanciadora: SBFTE

9. SHIMADA, A. L. B., RIBEIRO, A. L. T., HEREDA, C. B. TAVARES DE LIMA, W., FARSKY, S. H. P., EFFECTS OF HYDROQUINONE INHALATION ON SECRETION OF TRACHEA CELLS, 2010. (Congress Apresentação de Trabaño). Palavras-chave: Lung Leukocyte, Hydroquinone, LPS, Trachea Arnesa do conhecimento: numologia formacologia formacologia Referências adicionais: Brasil/Portugués., Home page: http://gestion.pacifico-meetings.com/wwwit/au/2010/direds.html Cidade Barcebane Evento. XII International Congress of Taxicology; Inst.promotora/financiadora: INTERNATIONAL UNION OF TOXICOLOGY

Relevong, mis.geninau entrative bottom: in Lettiver Lovid Dr Der ToXICUEUGY
 Riberro, A. L. T., SHIMADA, A. L. B., HEBEDA, C. B., BOLONHEIS, S. M., TAVARES DE LIMA, W., FARSKY, S. H. P.
 IN VIVO HYDROQUINONE EXPOSURE AFFECTS LEUKOCYTE RECRUITMENT AND ADHESION IN VIVO HYDROQUINONE EXPOSURE AFFECTS LEUKOCYTE RECRUITMENT AND ADHESION MOLECULS EXPRESSION ON LP3 INFLAMED LEUKOCYTE RECRUITMENT AND ADHESION MOLECULS EXPRESSION ON LP3 INFLAMED LEUKOCYTE RECRUITMENT AND ADHESION MOLECULS EXPRESSION ON LP3 INFLAMED LEUKOCYTE RECRUITMENT AND ADHESION MOLECULS EXPRESSION ON LP3 INFLAMED LEUKOCYTE RECRUITMENT AND ADHESION MOLECULS EXPRESSION ON LP3 INFLAMED LEUKOCYTE RECRUITMENT AND ADHESION MOLECULS EXPRESSION ON LP3 INFLAMED LEUKOCYTE RECRUITMENT AND Advant da combicitational and antifysion and advantage Molecular advantasis and antifysis Molecular davantage Into *Xi* www.suptabusp.com.tbr/Local FC/F-USP/Cladae: São Paulo; Evento: XLV SEMANA UNIVERSTARIA PAULUST DOE FARMACIA E BIOQUIMICA Inst.promdora/financiadora: FACULDADE DE CIENCIAS FARMACEUTICAS - USP

- 11. DR RIBEIRO, A.L. T., SHIMADA, A.L. B., HEBEDA, C. B., TAVARES DE LIMA, W., FARGKY, S. H. P., INHAL ED HYDROQUINONE AFFECTS LEUKOCYTE RECRUITMENT INTO LUNG AND ADHESION MOLECULE SKYRESSION 2010. (Congress of presentagica de Trabaho) Palavras-chave. Lung Leukocyte. Hydroguinone. LPS Areas do conhecimeto: Immonologia Toxicologia Farmacologia Referências adicionais .: Espanhafinglis. Meio de divulgação. Impresso. Home page. www.ikox2010.org: Cidade. Barcehons. Event XII International Congress of Toxicology; Inst.promotora/financiadora: International Union of Toxicology (UITOX)
- 12. RIBEIRO, A. L. T., SHIMADA, A. L. B., LIMA, P. C. B., HEBEDA, C. B., TAVARES DE LIMA, W., FARSKY, S. H. P.

S. H. P. EFFECTS OF INHALATION OF HYDROQUINONE ON LUNG LEUKOCYTE RECRUITMENT INDUCED BY LPS, 2009. (Simpoiso Apresentação del Trabaho) Palavas-cheve: Lung Luckocyte, Hydroquinone, LPS Areas do contecimento: Farmaciogia Toxicologia Imundogia Referências as do contecimento: Farmaciogia Toxicologia Internotogia Referências as do contecimento: Samposio Anual de Pesquisas em Ciencias Farmaciultas, Cláde: São Paulo, Evento: Simposio Anual de Pesquisas em Ciencias Inst promotorar Harmancidoru, Inviensidade de São Paulo

- PRISEIRO, A. L. T., SHIMADA, A. L. B., HEBEDA, C. B., TAVARES DE LIMA, W., FARSKY, S. H. P. EFFECTS OF INHALATION OF HYDROQUINONE ON PHAGOCYTIC AND FUNGICIDAL ACTIVITIES ON ALVEDLAR MACROPHAGES, 2009. (Congress) Apresentação de Trabaho) nn ALVEDLAR MACROPHAGES, 2006. (Congress of renavous triC AND FUNGICIDAL ACTIVITIE Valovas-chave: Alveolar, Phagoch, Macrophages, Hidroquinone ineas do contecented : Farmacologia Toxicologia, immologia Peterénosas adoonas: Brasilingés: Meo de divulgação: Impresso, Local: Minas Centro; Cidade: Belos fortorde: Evento: xvi congresso brasileiro de loxicologia; Inst promotoral/inanciadora: Sociedade tradietra de Toxicologia
- 14. SHIMADA, A. L. B., RIBEIRO, A. L. T., LIMA, P. C. B., TAVARES DE LIMA, W., FARSKY, S. H. P. INHALATON OF HYDROQUINONE IMPARS LPS-INDUCED LEUKOCITE MIGRATION TO THE LUNG, 2009 (Congress) Apresentação de Trabaho) Paisvas-chave. Lung Leukocyte, Hydroquinore. LPS Areas do conhecimento: Toxicologia, Famaciógia Imunobigia Referências adicionais : Brasilingiis. Meio de divulgação. Meio digital, Local: Centro de Evertos de Referências adicionais : Brasilingiis. Meio de divulgação. Meio digital, Local: Centro de Evertos de Referências adicionais : Brasilingiis. Meio de divulgação. Meio digital, Local: Centro de Evertos de Referências adicionais : Brasilingiis. Meio de divulgação. Data Beiro de Parmacologia e Terapeutica Experimental, Inst promotoral/manciadona. SO CIEDADE BRASIL BRA DE FARMACOLOGIA E TERAFEVITOR A EVERTIMENTAL.
- RIBEIRO, A. L. T., CONTE, A. C., Ludwig, K. M. Estudo da Incidencia de Entereparasitoses na Cidade de Cândido Mota Estado de São Paulo, 2008. (Outra Apresentação de Trabaho) Palavras-chave: erteroparastoses; incidincia; Cândido Mota Areas do contremento: Parastología Satores de atividade : Sauíde e Sarviços Sociais Referências adromas : Brasilfortugués. Nelo de divulgação: Impreso: Local: Campus Indianópolos; Cidade: São Paulo; Evento; X Encontro de Inciação Científica UNIP; Inst.promotora/financiadora. Universidade Paulista 15.

16. W RIBEIRO, A. L. T., DECLEVA, D.V. L., CONTE, A. C., Ludwig, K. M. Estudo da Incidencia de Entereparasitoses na Cidade de Càndido Mota - Estado de São Paulo, 2008. (Conferência ou palestra Apresentação de Trabaho) Palavaras-toive: enteroparasitoses; incidenta: Cândido Mota Areas do conhecimento: Ferasitobigia Setores de atividade: Saude e Serviços Sociais Referências adicionais: Brasil/Português. Meio de divulgação: Meio digital; Local: Universidade Paulista;

Cidade: Assis; Evento: I Semana Científica da Area da Saúde; Inst.promotora/financiadora: Universidade Paulista Produção técnica Redes sociais, websites, blogs 1. RIBEIRO, A. L. T., OLIVEIRA, T. F. Escola de Inverno em Toxicologia, 2012 Palavras-chave: Toxicologia Áreas do conhecimento : Análise Toxicológica,Farmácia Referências adicionais : Brasil/Português. : Home page: www.escolatoxicologia.com Entrevistas, mesas redondas, programas e comentários na midia RIBEIRO, A. L. T. Mestre em analise toxicológica participa de pesquisa sobre a ligação do componente do Bisfenol e o cânere. 2013 Áreas do conhecimento : Análise Toxicológica, Genética Quantitativa Referências adicionais : Brasil/Português. . Home page: http://www.dlfusoraassis.com.br/ Demais produções técnicas RIBERO, A L T. SHIMADA, A L B. BAIRROS, A V. DREWES, C C. OLIVERA, C D R. ANDRESUETTI, D X et all Escola de Inverno em Toxicologia, 2012. (Extensão, Curso de curta dura gão ministrado) Referências adcionais : Brasil/Português. 30 horas. Meio de divulgação: Meio digital Educação e Popularização de C&T Apresentação de trabalho e palestra 1. RIBERO, A. L. T., ATALLAH, P. M. Controle Antidopagem nos Esportes Equestres, 2015. (Conferência ou palestra, Apresentação de Controle Artidopagem nos Esportes Equestres, 2015. (Conferência cu palestra Apresentação de Trabalho) Palevras-chave. Artidopagem. Esporte Equestre Areas do contremonto: Zoodga Referências adicionas: TansiPortuguês. Meio de divulgação: Meio digital. Home page: http://socavec.com.hr/more./Local. Faculdade de Medicina Veterinária e Zootecna; Cidade: São Paulo; Evento: XXV Semana Academica Veterinaria; Inst. promotora/financiadora: Universidade de São Paulo; RIBERO, A. L. T., SANTOS, F. A., CUVEIRA, A. A. F., de OLIVERA, T. F., LOUREIRO, A.P.M. BPA EXPOSURE DISRUPTS BONE MARROW CELL COUNTIN IVVO AND INDUCES OXDATIVE STRESS AND ERICENETIC ALTERATIONS IN VITRO, 2013. (Congresso Apresentação de Trabaho) Palvara-chare: Baptenol A.Heldo, DIA Adducts Areas do conhecimento: Análise Toxicológica Referências adocimas: TosafPortuguês. Meio de divulgação: Impresso; Cidade: Porto Alegre; Evento: Congresso Brasilerio de Toxicológica - CBTOX, Inst.promotoral/Inanceadora: Sociedade Brasileira de Toxicológica Redes sociais, websites e blogs RIBBRO, A. L. T., OLIVEIRA, T. F. Escola de Inverno em Toxicología, 2012. (Site, Midías sociais, webstes, blogs) Palevras-chave: Toxicología, 2012. (Site, Midías sociais, webstes, blogs) Areas do conhecimento. Análáe Toxicológica, Farmácia Referências adolomais: Brasil/Portugués, Home page: www.ascolatoxicologia.com Orientações e Supervisões Orientações e supervisões Orientações e supervisões concluídas

Trabalhos de conclusão de curso de graduação

1. Gisele Carmella Silva. Consumo Alimentar de Praticantes de Maratona. 2013. Curso (Nutrição) -Grupo Educacional HOTEC Areas do conhecimento : Boquímica da Nutrição, Nutrição Referências adcionais : Brasil/Português.

Eventos

Eventos

Participação em eventos

- Conferencista no(a) II Semana Acadêmica de Medicina Veterinária de Sorocaba, 2015. (Congresso) Antidoping e análises climicas.
- 2. Conferencista no(a) XXV Semana Academica Veterinaria, 2015. (Congresso) Controle Antidopagem nos Esportes Equestres.
- Avaliador no per Brasileira de Ciências e Engenharia FEBRACE, 2013. (Outra) Avalador.
- Aprasentação de Poster / Painel no(a) Congresso Brasileiro de Toxicologia CBTOX, 2013. (Congresso) BPA EXPOSURE DISRUPTS BONE MARROW CELL COUNT IN VIVO AND INDUCES OXIDATIVE STRESS AND EPIGENETIC ALTERATIONS IN VITRO. In: XVIII Congresso Brasileiro de Toxicologia.
- Avaliador no(a) Simpósio Internacional de Iniciação Científica da USP, 2012. (Simpósio) Avaliador.

- Avaliador no(a) Feira Brasileira de Ciência e Engenharia FEBRACE, 2012. (Congresso) Avaliador.
- 7. Apresentação de Poster / Painel no(a) XII ECOTOX, 2012. (Congresso) EVIDENCES OF TOXICITY INDUCED BY BISPHENOL A EXPORSURE AT LOW CONCENTRATION ON HLEGO CELLS.
- Apresentação Oral no(a) Congresso Brasileiro de Toxicologia, 2011. (Congresso) EFEITOS DA EXPOSIÇÃO IN VIVO A BRAIXAS CONCENTRAÇÕES DE HIDROQUINONA SOBRE O ESTRESSE OXIDATIVO E SOBRE O RECRUTAMENTO LEUCOCITARIO PARA O PULMÃO INFLAMADO.
- 9. XLVI Semana Universitária Paulista de Farmácia e Bioquímica, 2011. (Congresso)
- 10. Apreseniação de Poster / Painel no(a) XLV SUPFAB Semana universitária Paulista de farmácia e Bioquímica, 2010, (Congresso) IN VIVO HYDROQUINONE EXPOSURE AFFECTS LEUKOCYTE RECRUITMENT AND ADHESION MOLECULES EXPRESSION ON LPS INFLAMED LUNG.
- 11. Apresentação de Poster / Painel no(a) IUTOX XII International Congress of Toxicology, 2010. (Congresso) INNALED HYDROQUINONE EFFECTS ON LEUKOCYTE RECRUITMENT INTO THE LUNG AND ADHESION MOLECULES FROM CIRCULATING BLOOD.
- Apresentação de Poster / Painel no(a) Simpósio Anual de Pesquisas em Clências. 2009. (Smpósio) EFFECTS OF NHALATION OF HYDROQUINONE ON LUNG LEUKOCYTE RECRUITMENT INDUCED BY LPS.
- Apresentação de Poster / Painel no(a) XVI Congresso Brasileiro de Toxicología, 2009. (Congresso) EFFECTSOF INHALATION OF HYDROQUINONE ON PHAGOCYTIC AND FUNGICIDAL ACTIVITIES ON ALVEOLAR MACROPHAGES.
- 14. Apresentação de Poster / Painel no(a) 41 Congresso Brasileiro de Farmacologia e Terapeutica Experimental, 2009. (Congresso) INHLATION OF HYDROQUINONE IMPAIRS LPS-INDUCED LEUKOCYTE MIGRATION TO THE LUNG.
- 15. ESCOLA DE ALTOS ESTUDOS EM TOXICOLOGIA, 2009. (Outra)
- Apresentação Oral no(a) I Semana Científica da Area da Saúde, 2008. (Simpósio) Estudo da incidencia de Entereparasitoses na Cidade de Cândido Mota - Estado de São Paulo.
- Apresentação de Poster / Painel no(a) Semana da Saúde, 2007. (Outra) Parasitoses Intestinais em escolares: Ocorrência e Campanhas Educativas.
- XV Congresso Paulista de Farmacêuticos e VII Seminário Internacional de Farmacêuticos, 2007. (Congresso)
- 19. Apresentação de Poster / Painel no(a) PARASITOSES INTESTINAIS EM ESCOLARES: Ocorrência e Campanhas Educativas, 2005. (Congresso) EBBA VIII Encontro de Biocenciane a Biotencología.
- 20. Apresentação Oral no(a) I JORNADA INTEGRADA DA SAÚDE, 2005. (Encontro) PARASITOSES INTESTINAIS EM ESCOLARES: Ocorrência e Campanhas Educativas

Organização de evento

- 1. LOURERO, A.P.M., DREWES, C. C., Eler, S.C.W.S., Barioni, E.D., OLIVEIRA, A.A.F., DURAO, A.C.S., RIBBIRO, A.L. T., de Oliveira, Tiago Franco, TORRES, L.H.L. III Escola de Inverno em Toxicología - III ETox, 2014. (Outro, Organização de evento) Referências adicionas : Enssil/Portugués. Meio de divulgação. Impresso
- 2. RIBERO, A. L. T. Il Escola de Inverno em Toxicologia - Il EITox, 2013. (Outro, Organização de evento) Referências adicionais : Brasil/Português. Meio de divúgação: Impresso
- PINTO, E., SHIMADA, A. L. B., RIBERO, A. L. T., Torres, L. H. L. ALMEIDA, R. M., OLIVEIRA, C. D. R., FIGUEIREDO, N. G. I Escola de Invemo em Toxicologia - ElTox, 2012. (Outro, Organização de evento) Referências adicionais : Brasil/Portugués. Meio de divulgação. Meio digital

Totais de produção

Produção bibliográfica Artigos completos publicados em periódico 4 Trabalhos publicados em anais de eventos 18 Apresentações de trabalhos (Conferência ou palestra) 5 Apresentações de trabalhos (Congresso) 9 Apresentações de trabalhos (Simpósio) 1 Apresentações de trabalhos (Outra) 1 Produção técnica Curso de curta duração ministrado (extensão) 1

Programa de Rádio ou TV (entrevista)	1
Ste	1

Orientações

Orientação concluida (trabalho de conclusão de curso de graduação)	1
Eventos	
Participações em eventos (congresso)	13
Participações em eventos (simpósio)	3
Participações em eventos (encontro)	1
Participações em eventos (outra)	3

Organização de evento (outro)

Outras informações relevantes

1 1) Vice-Representante discente dos alunos de pós-graduacao do Programa de Análses Clinicas e Toxicológicas na Faculdade de Ciencias Farmaceuticas da Universidade de Sao Paulo. Periodo: Janeiro 2010 - Janeiro 2011.

Página gerada pelo sistema Currículo Lattes em 29/09/2015 às 20:15:08.

3

8.3 Intrusções para os membros da banca

UNIVERSIDADE DE SÃO PAULO

Faculdade de Ciências Farmacêuticas Secretaria de Pós-Graduação

I nformações para os Membros de Bancas Julgadoras de Mestrado/ Doutorado

1. O candidato fará uma apresentação oral do seu trabalho, com duração máxima de trinta minutos.

 Os membros da banca farão a argüição oral. Cada examinador disporá, no máximo, de trinta minutos para argüir o candidato, exclusivamente sobre o tema do trabalho apresentado, e o candidato disporá de trinta minutos para sua resposta.

2.1 Com a devida anuência das partes (examinador e candidato), é facultada a argüição na forma de diálogo em até sessenta minutos por examinador.

3. A sessão de defesa será aberta ao público.

4. Terminada a argüição por todos os membros da banca, a mesma se reunirá reservadamente e expressará na ata (relatório de defesa) a aprovação ou reprovação do candidato, baseando-se no trabalho escrito e na argüição.

4.1 Caso algum membro da banca reprove o candidato, a Comissão Julgadora deverá emitir um parecer a ser escrito em campo exclusivamente indicado na ata.

4.2 Será considerado aprovado o aluno que obtiver aprovação por unanimidade ou pela maioria da banca.

5. Dúvidas poderão ser esclarecidas junto à Secretaria de Pós-Graduação: pgfarma@usp.br, (11) 3091 3621.

São Paulo, 23 de maio de 2014.

Prof. Dr. Adalberto Pessoa Junior Presidente da CPG/FCF/USP

Av. Prof. Lineu Prestes, 580, Bloco 13 A - Cidade Universitária - CEP 05508-900 - São Paulo - SP Fone: (11) 3091 3621 - Fax (11) 3091 3141 - e-mail: pgfarma@usp.br

8.4. Certificado da Comissão de Ética no Uso de Animais (CEUA) da FCFUSP

O título desta Tese foi alterado ao final do desenvolvimento do projeto por motivo de clareza. Entretanto, o uso dos animais ocorreu exatamente como descrito no processo aprovado pela Comissão de Ética no Uso de Animais da Faculdade de Ciências Farmacêuticas da USP (certificado apresentado abaixo).

UNIVERSIDADE DE SÃO PAULO

FACULDADE DE CIÊNCIAS FARMACÊUTICAS Comissão de Ética no Uso de Animais - CEUA

Oficio CEUA/FCF/71/2012

CERTIFICADO

A Comissão de Ética no Uso de Animais da Faculdade de Ciências Farmacêuticas da Universidade de São Paulo Certifica que o Projeto "CARACTERIZAÇÃO DE UMA NOVA VIA DE BIOTRANSFORMAÇÃO DO BISFENOL A E QUANTIFICAÇÃO DE LESÕES EM DNA DE CÉLULAS HL-60 E MCF-7 E RATOS DIABÉTICOS" (Protocolo CEUA/FCF/369), de responsabilidade do pesquisador André Luiz Teroso Ribeiro, sob a orientação da Profa. Dra. Ana Paula de Melo Loureiro, está de acordo com as normas do Conselho Nacional de Controle de Experimentação Animal - CONCEA e foi APROVADO em reunião de 06 de agosto de 2012.

São Paulo, 06 de agosto de 2012.

110

Prof. Dr. Marco António Stephano Coordenador da Comissão de Ética no Uso de Animais CEUA/FCF/USP

Av. Prof. Lineu Prestes, 580 - Bloco 13 A - Cidade Universitária - CEP 05608-900 - São Paulo - SP Fone: (11) 3091-3622 / Fax: (11) 3091-3677 - e-mail: ceuafcf@usp.br