UNIVERSIDADE DE SÃO PAULO

FACULDADE DE CIÊNCIAS FARMACÊUTICAS Programa de Pós-Graduação em Tecnologia Bioquímico-Farmacêutica Área de Tecnologia Químico- Farmacêutica

Degradação de Cloridrato de Doxiciclina pelo Processo Fenton

Alexandre Augusto Borghi

Dissertação para obtenção do grau de MESTRE

Orientador: Prof. Dr. Mauri Sergio Alves Palma

São Paulo 2013

UNIVERSIDADE DE SÃO PAULO

FACULDADE DE CIÊNCIAS FARMACÊUTICAS Programa de Pós-Graduação em Tecnologia Bioquímico-Farmacêutica Área de Tecnologia Químico- Farmacêutica

Degradação de Cloridrato de Doxiciclina pelo Processo Fenton

Versão original encontra-se disponível no Serviço de Pós-Graduação da FCF/USP

Alexandre Augusto Borghi

Dissertação para obtenção do grau de MESTRE

Orientador: Prof. Dr. Mauri Sergio Alves Palma

São Paulo 2013 Ficha Catalográfica Elaborada pela Divisão de Biblioteca e Documentação do Conjunto das Químicas da USP.

Borghi, Alexandre Augusto
B732d Degradação de cloridrato de doxiciclina pelo processo fenton / Alexandre Augusto Borghi. -- São Paulo, 2013. 169p.
Dissertação (mestrado) - Faculdade de Ciências Farmacêuticas da Universidade de São Paulo. Departamento de Tecnologia Bioquímico-Farmacêutica. Orientador: Palma, Mauri Sergio Alves
1. Tecnologia químico-farmacêutica 2. Efluentes : Tratamento 3. Antibióticos I. T. II. Palma, Mauri Sergio Alves, orientador.

660 CDD

Alexandre Augusto Borghi

Degradação de Cloridrato de Doxiciclina pelo Processo Fenton

Comissão Julgadora

da

Dissertação para obtenção do grau de Mestre

Prof. Dr. Mauri Sergio Alves Palma Orientador/Presidente

1º Examinador

.

2º Examinador

Agradecimentos

Agradeço a CAPES-DS pelo apoio financeiro.

Agradeço ao Prof. Dr. Mauri Sérgio Alves Palma, responsável pelo Laboratório de Tratamento e Valorização de Efluentes–LTVE, orientador deste trabalho e amigo, que me ajudou muito na realização deste estudo e no meu crescimento profissional e intelectual.

Agradeço ao Departamento de Tecnologia Bioquímico-Farmacêutica da Faculdade de Ciências Farmacêuticas da USP, pelo uso das instalações e infraestrutura para realização deste trabalho de pesquisa.

Agradeço ao CESQ-EPUSP (Centro de Engenharia de Sistemas Químicos) do Departamento de Engenharia Química da Escola Politécnica da USP, pelo uso dos equipamentos de análise de carbono e cromatografia líquida de alto desempenho.

Agradeço ao Prof. Dr. Antonio Carlos Silva Costa Teixeira pela disponibilidade de esclarecimentos mais aprofundados dos processos oxidativos avançados, através da disciplina PQI-5861 (Tratamento de Efluentes Industriais: Processos Avançados da EPUSP), que contribuiu para o desenvolvimento deste trabalho.

Agradeço ao Prof. Dr. Marco Antonio Stephano, pelo pronto atendimento ao disponibilizar o uso das instalações e materiais do Laboratório de Imunobiológicos e Biofármacos da Faculdade de Ciências Farmacêuticas da USP no desenvolvimento dos testes de toxicidade dos efluentes gerados.

Agradeço a Prof.^a Dra. Gisele Monteiro de Souza, pelo uso do equipamento concentrador rotativo a vácuo para a análise de citotoxicidade.

Agradeço a colega de laboratório e amiga mestranda Verônica Maria Fadário Frade, pelo trabalho em conjunto tanto nas análises experimentais quanto estatísticas do trabalho.

Agradeço a Dra. e amiga Laura de Oliveira Nascimento, pelo trabalho em conjunto nos testes realizados no Laboratório de Imunobiológicos e Biofármacos da Faculdade de Ciências Farmacêuticas da USP.

Agradeço aos alunos e coorientados de iniciação científica Mariana Inoue Nakagawa e João Victor Costa Siqueira de Oliveira pela ajuda na realização dos ensaios experimentais. Agradeço aos pesquisadores Mestre Jahn Pierre Vargas Garcia e Dra. Kátia Ribeiro e aos técnicos Rodrigo Ricardo Ramos e Maryane Machado Bertelli pela ajuda valiosa na realização deste trabalho e pela amizade.

Agradeço a todos os amigos que conheci durante minha trajetória na Pós-Graduação, que não foram citados, mas que cada um sabe o quanto contribuiu para o meu crescimento como pessoa e profissional.

Agradeço à minha família, minha mãe Teresa Rafacho Borghi, minha avó Hilda Clara Rafacho, minhas irmãs Karen Elisa Borghi e Ana Claudia Borghi Mendes e cunhados Luiz Henrique Pereira Mendes e Rodrigo de Jesus Guerra, por estarem comigo em todos os momentos da minha vida e por me darem suporte para ser quem sou hoje.

Resumo

BORGHI, A. A. **Degradação de cloridrato de doxiciclina por processo Fenton.** 2013. 109f. Dissertação (Mestrado) – Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, 2013.

O aumento no consumo de antibióticos por seres humanos e animais tem elevado a sua concentração na sua forma inalterada ou de seus metabólitos, que chegam às estações de tratamento de efluentes, onde os tratamentos convencionais são incapazes de degradar estas moléculas, sendo liberadas diretamente nos corpos d'água receptores. A liberação destas moléculas no meio ambiente tem proporcionado a seleção de organismos patogênicos resistentes, capazes de transmitir geneticamente esta característica a seus descendentes. Este trabalho tem como objetivo o estudo da degradação da molécula de cloridrato de doxiciclina, por ser um antibiótico de largo espectro da família das tetraciclinas, através do processo Fenton. Foram determinados neste trabalho as influências da temperatura, concentração inicial de peróxido de hidrogênio, concentração inicial de íon ferroso e do pH sobre a concentração residual de cloridrato de doxiciclina, concentração residual de peróxido de hidrogênio, concentração de íon ferroso e de carbono orgânico total (COT) em função do tempo de reação. Os métodos analíticos empregados foram baseados em espectrofotometria, análise instrumental para a determinação do carbono orgânico total (COT), titulometria e cromatografia líquida (CLAE) com detectores de UV e de massa. Testes preliminares mostraram que as melhores condições operacionais de temperatura, concentrações de íon ferroso e de peróxido de hidrogênio estariam ao redor de C_{Fe}^{2+} = 62,5 mg/L, $C_{H_{2}O_{2}}$ = 500 mg/L e T = 20°C. Estas condições foram utilizadas como ponto central do planejamento fatorial do tipo Delineamento Composto Central Rotacional (DCCR). Os resultados do planejamento tratados com o software Statistica[®] mostraram que as condições operacionais para a menor concentração residual de fármaco (0 mg/L) e redução de 40,9% da carga orgânica em solução deveriam estar ao redor de concentração de ion ferroso, C_{Fe}^{2+} = 25 mg/L, concentração de peróxido de hidrogênio, $C_{H_2O_2}$ = 611 mg/L e temperatura = 35° C, das quais a variável C_{H2O2} apresentou a maior importância estatística. Ao redor destas condições foi feita uma análise paramétrica para se verificar as influências individuais da temperatura, C_{Fe²⁺}, C_{H₂O₂ e da relação} $C_{Fe}^{2+}/C_{H_2O_2}$. Também foi testada a citotoxicidade dos resíduos gerados. Este estudo mostrou que a variável de maior importância sobre o processo foi a concentração de peróxido de hidrogênio, que tem relação direta com a razão C_{Fe}^{2+}/C_{H2O2} apresentado melhores resultados quando esta é mantida igual a 0,16. Houve melhora acentuada na mineralização da matéria orgânica com a inserção de microbolhas de ar, obtendo assim redução de até 44% da matéria orgânica em relação à concentração inicial de carbono orgânico de 55 mg/L. Apesar da baixa mineralização obtida pelo estudo, o processo Fenton se mostrou promissor na degradação do cloridrato de doxiciclina, devido principalmente ao fato de os resíduos de degradação não possuírem ação inibitória sobre o organismo teste Escherichia coli e nem citotoxicidade sobre as células L-929, evidenciando que as propriedades antibióticas da molécula foram inativadas, inibindo a capacidade de promover a resistência bacteriana a este antibiótico.

Palavras-chave: doxiciclina, Fenton, degradação, DCCR.

Abstract

BORGHI, A. A. **Degradation of doxycycline hydrochloride by the Fenton process.** 2013. 109f. Dissertação (Mestrado) – Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, 2013.

The increasing consumption of antibiotics by humans and animals have increased their concentrations in the environment in their unchanged form or of their metabolites, that reach public wastewater treatment plants, which are unable to degrade these molecules, and are released into surface waters. The release of these molecules in the environment has caused the selection of resistant pathogenic organisms, genetically capable of transmitting this feature to their descendants. This work has as objective the study of the degradation of doxycycline hydrochloride, which is a common broad-spectrum antibiotic of the tetracycline family, by the Fenton process.

In this work were determined the influences of temperature, initial hydrogen peroxide concentration, initial ferrous ion concentration and of pH on the final residual concentration of doxycycline, residual concentration of hydrogen peroxide, residual concentration of ferrous ion and total organic carbon (TOC) along the reaction time, using titrations and instrumental analytical techniques as spectrophotometry, TOC analyzer and high performance liquid chromatography (HPLC) with UV and mass detectors. Preliminary tests showed that the best operating conditions of temperature, concentrations of ferrous ion and hydrogen peroxide would be around C_{Fe}^{2+} = 62.5 mg/L, C_{H2O2} = 500 mg/L and T = 20°C. These conditions were used as the central point of the Central Composite Rotational Design (DCCR). The results of the experimental planning were treated with the Statistica[®] software and it was showed that the operational conditions for the smallest residual drug concentration (0 mg/L) and 40.9% TOC reduction should be around ferrous ion concentration, C_{Fe}^{2+} = 25 mg/L, concentration of hydrogen peroxide, $C_{H2O2} = 611$ mg/L and temperature = 35°C. The hydrogen peroxide exhibited the highest statistical importance of the studied variables. It was accomplished a parametric study around the best operational conditions inferred from the statistical analysis to check the individual influences of temperature, C_{Fe}^{2+} , $C_{H_{2}O_{2}}$ and the ratio $C_{Fe}^{2+}/C_{H_{2}O_{2}}$. It was also verified the cytotoxicity of the reaction mediums after the end of the experiments. This study showed that the process is highly dependent of the hydrogen peroxide concentration, directly related to the ratio $C_{Fe}^{2+}/C_{H_2O_2}$ and presented the best results when this ratio was kept equal to 0.16. It was observed a marked improvement in the mineralization of the organic matter, up to 44% reduction of the initial TOC value of 55 mg/L, when air was pumped to the reaction medium. Despite the low mineralization obtained in this study, the Fenton process proved to be promising in the degradation of doxycycline hydrochloride, due mainly to the low cytotoxicity of the residues. It was observed neither inhibitory action on the test organism Escherichia coli nor cytotoxicity on L-929 cells, indicating that the antibiotic properties of the molecule had been inactivated and also its ability to stimulate bacterial resistance to this antibiotic.

Keywords: doxycycline, Fenton, degradation, DCCR.

Lista de Figuras

Figura 01- Fórmulas estruturais das tetraciclinas20
Figura 02 – Grupos ionizáveis da doxiciclina21
Figura 03 – Fração Molar do CO₂ dissolvido em função do pH do meio (Jacob, 1999)30
Figura 04 – Produtos de degradação e de reação propostos para a doxiciclina (Jeong, 2009)
Figura 05 – Produtos de degradação fotocatalítica da tetraciclina (Adaptado de Mboula <i>et al.</i> , 2012)
Figura 06 – Equipamento experimental para os ensaios de oxidação pelo processo Fenton41
Figura 07 – Fluxograma para realização dos ensaios46
Figura 08 – Reação de formação de complexo doxiciclina-molibdato (Adaptado de Cunha e Sakai, 1985; Stankov <i>et al.</i> , 1991)49
Figura 09 – Fluxograma da remoção do Fe ²⁺ e do H ₂ O ₂ residuais50
Figura 10 – Fluxograma da quantificação do cloridrato de doxiciclina50
Figura 11 – Fluxograma da análise de peróxido de hidrogênio residual53
Figura 12 – Equipamento TOC 5000A (CESQ-EPUSP)54
Figura 13 – Fluxograma da análise para a determinação de Carbono Orgânico Total54
Figura 14 – Formação do complexo Ferroína (Fe ²⁺ -ortofenantrolina)55
Figura 15 – Fluxograma da análise da concentração de íon ferroso em solução. 56
Figura 16 – Esquema de montagem da placa de CIM60
Figura 17 – Gráfico da curva de calibração obtida por CLAE-UV (350 nm), — 0 mg/L; — 10 mg/L; — 20 mg/L; — 40 mg/L; — 60 mg/L; — 80 mg/L e — 100 mg/L. 65
Figura 18 – Gráfico de correlação entre a concentração de C _{Doxi.HCI} e a área dos picos em 350nm65
Figura 19 – Determinação do limite de quantificação e de detecção da concentração de cloridrato de doxiciclina através da barras de erro para cada concentração do fármaco em solução68

Figura 21 – Concentração de peróxido de hidrogênio em função da temperatura (C_{H2O2} = 10.000 mg/L), \triangle 20°C; \Box 30°C; + 40°C; \circ 50°C; \Diamond 60°C; x 70°C.

Figura 28 – Concentração de cloridrato de doxiciclina residual em meios contendo diferentes concentrações de íon Fe^{2+} (T=20°, $C_{Doxi.HCl inicial} = 100 mg/L$ e $C_{H2O2}=500 mg/L$), $\triangle 1 mg/L$; $\Box 5 mg/L$; + 10 mg/L; $\circ 20 mg/L$; $\diamond 35 mg/L$; x 50 mg/L; $\bullet 70 mg/L$; - 90 mg/L; $\blacktriangle 120 mg/L$; $\bullet 250 mg/L$; $\equiv 500 mg/L$78

Figura 29 – Concentração de cloridrato de doxiciclina residual em meios com diferentes temperaturas, \triangle 0°C; \Box 10°C; \circ 20°C; + 30°C; \diamond 40°C e x 40°C (análise a partir de 5 min), (C_{Doxi.HCl inicial} = 100 mg/L; C_{H2O2}=500 mg/L e C_{Fe}²⁺ = 120 mg/L).

Figura 30 – Concentração de peróxido de hidrogênio em meios com diferentes temperaturas, Δ 0°C; \Box 10°C; \circ 20°C; + 30°C; \diamond 40°C e x 40°C (análise a partir de 5 min)), (C_{Doxi.HCl inicial} = 100 mg/L; C_{H2O2}=500 mg/L e C_{Fe}²⁺ = 120 mg/L).....80

Figura 31 – Influência da temperatura (a) $C_{H2O2} = 262 \text{ mg/L e } C_{Fe}^{2+} = 28,3 \text{ mg/L}, \Delta$ 8,1°C, \Box 31,9°C; (b) $C_{H2O2} = 500 \text{ mg/L e } C_{Fe}^{2+} = 62,5 \text{ mg/L}, \Delta$ 0°C, \Box 40°C; +20°C; (c) $C_{H2O2} = 262 \text{ mg/L e } C_{Fe}^{2+} = 96,7 \text{ mg/L}, \Delta$ 8,1°C, \Box 31,9°C; (d) $C_{H2O2} = 738 \text{ mg/L}$ e $C_{Fe}^{2+} = 28,3 \text{ mg/L}, \Delta$ 8,1°C, \Box 31,9°C; (e) $C_{H2O2} = 738 \text{ mg/L}, \Delta$ 8,1°C, \Box 31,9°C; (d) $C_{H2O2} = 738 \text{ mg/L}, \Delta$

Figura 32 – Influência da temperatura (a) $C_{H2O2} = 262 \text{ mg/L e } C_{Fe}^{2+} = 28,3 \text{ mg/L}, \Delta$ 8,1°C, \Box 31,9°C; (b) $C_{H2O2} = 500 \text{ mg/L e } C_{Fe}^{2+} = 62,5 \text{ mg/L}, \Delta$ 0°C, \Box 40°C, +20°C; (c) $C_{H2O2} = 262 \text{ mg/L e } C_{Fe}^{2+} = 96,7 \text{ mg/L}, \Delta$ 8,1°C, \Box 31,9°C; (d) $C_{H2O2} = 738 \text{ mg/L e } C_{Fe}^{2+} = 28,3 \text{ mg/L}, \Delta$ 8,1°C, \Box 31,9°C; (e) $C_{H2O2} = 738 \text{ mg/L}$ e $C_{Fe}^{2+} = 96,7 \text{ mg/L}, \Delta$ 8,1°C, \Box 31,9°C; (e) $C_{H2O2} = 738 \text{ mg/L}, \Delta$ 8,1°C, \Box 31,9°C, sobre o consumo de peróxido de hidrogênio através do processo Fenton.

Figura 33 – Influência da temperatura (a) $C_{H2O2} = 262 \text{ mg/L e } C_{Fe}^{2+} = 28,3 \text{ mg/L}, \Delta$ 8,1°C, \Box 31,9°C; (b) $C_{H2O2} = 500 \text{ mg/L e } C_{Fe}^{2+} = 62,5 \text{ mg/L}, \Delta$ 0°C, \Box 40°C; +20°C; (c) $C_{H2O2} = 262 \text{ mg/L e } C_{Fe}^{2+} = 96,7 \text{ mg/L}, \Delta$ 8,1°C, \Box 31,9°C; (d) $C_{H2O2} = 738 \text{ mg/L}$ e $C_{Fe}^{2+} = 28,3 \text{ mg/L}, \Delta$ 8,1°C, \Box 31,9°C; (e) $C_{H2O2} = 738 \text{ mg/L}, \Delta$ 8,1°C, \Box 31,9°C; obre a concentração de Carbono Orgânico Total (COT) através do processo Fenton.

Figura 34 – Influência da concentração de peróxido de hidrogênio (a) $C_{Fe}^{2+} = 28,3 \text{ mg/L} e T = 8,1^{\circ}C, \Delta 262 \text{ mg/L}, \Box 738 \text{ mg/L};$ (b) $C_{Fe}^{2+} = 62,5 \text{ mg/L} e T = 20^{\circ}C, \Delta 100 \text{ mg/L}, \Box 900 \text{ mg/L}; +500 \text{ mg/L};$ (c) $C_{Fe}^{2+} = 96,7 \text{ mg/L} e T = 8,1^{\circ}C, \Delta 262 \text{ mg/L}, \Box 738 \text{ mg/L};$ (d) $C_{Fe}^{2+} = 96,7 \text{ mg/L} e T = 31,9^{\circ}C, \Delta 262 \text{ mg/L}, \Box 738 \text{ mg/L};$ (e) $C_{Fe}^{2+} = 28,3 \text{ mg/L} e T = 31,9^{\circ}C, \Delta 262 \text{ mg/L}, \Box 738 \text{ mg/L};$ (e) $C_{Fe}^{2+} = 28,3 \text{ mg/L} e T = 31,9^{\circ}C, \Delta 262 \text{ mg/L}, \Box 738 \text{ mg/L};$ (e) $C_{Fe}^{2+} = 28,3 \text{ mg/L} e T = 31,9^{\circ}C, \Delta 262 \text{ mg/L}, \Box 738 \text{ mg/L};$ (e) $C_{Fe}^{2+} = 28,3 \text{ mg/L} e T = 31,9^{\circ}C, \Delta 262 \text{ mg/L}, \Box 738 \text{ mg/L};$ (e) $C_{Fe}^{2+} = 28,3 \text{ mg/L} e T = 31,9^{\circ}C, \Delta 262 \text{ mg/L}, \Box 738 \text{ mg/L};$ (e) $C_{Fe}^{2+} = 28,3 \text{ mg/L} e T = 31,9^{\circ}C, \Delta 262 \text{ mg/L}, \Box 738 \text{ mg/L};$ (e) $C_{Fe}^{2+} = 28,3 \text{ mg/L} e T = 31,9^{\circ}C, \Delta 262 \text{ mg/L}, \Box 738 \text{ mg/L};$ (f) $C_{Fe}^{2+} = 28,3 \text{ mg/L} e T = 31,9^{\circ}C, \Delta 262 \text{ mg/L}, \Box 738 \text{ mg/L};$ (f) $C_{Fe}^{2+} = 28,3 \text{ mg/L} e T = 31,9^{\circ}C, \Delta 262 \text{ mg/L}, \Box 738 \text{ mg/L};$ (g) $C_{Fe}^{2+} = 28,3 \text{ mg/L} e T = 31,9^{\circ}C, \Delta 262 \text{ mg/L}, \Box 738 \text{ mg/L};$ (h) $C_{Fe}^{2+} = 28,3 \text{ mg/L} e T = 31,9^{\circ}C, \Delta 262 \text{ mg/L};$ (h) $C_{Fe}^{2+} = 28,3 \text{ mg/L} e T = 31,9^{\circ}C, \Delta 262 \text{ mg/L};$ (h) $C_{Fe}^{2+} = 28,3 \text{ mg/L} e T = 31,9^{\circ}C, \Delta 262 \text{ mg/L};$ (h) $C_{Fe}^{2+} = 28,3 \text{ mg/L};$ (h) C_{Fe}

Figura 36 – Influência da concentração de peróxido de hidrogênio (a) $C_{Fe}^{2+} = 28,3 \text{ mg/L e T} = 8,1^{\circ}C, \Delta 262 \text{ mg/L}, \Box 738 \text{ mg/L};$ (b) $C_{Fe}^{2+} = 62,5 \text{ mg/L e T} = 20^{\circ}C, \Delta 100 \text{ mg/L}, \Box 900 \text{ mg/L}, +500 \text{ mg/L};$ (c) $C_{Fe}^{2+} = 96,7 \text{ mg/L e T} = 8,1^{\circ}C, \Delta 262 \text{ mg/L}, \Box 738 \text{ mg/L};$ (d) $C_{Fe}^{2+} = 96,7 \text{ mg/L e T} = 31,9^{\circ}C, \Delta 262 \text{ mg/L};$ (e) $C_{Fe}^{2+} = 28,3 \text{ mg/L e T} = 31,9^{\circ}C, \Delta 262 \text{ mg/L};$ (e) $C_{Fe}^{2+} = 28,3 \text{ mg/L e T} = 31,9^{\circ}C, \Delta 262 \text{ mg/L};$ (o) $C_{Fe}^{2+} = 28,3 \text{ mg/L e T} = 31,9^{\circ}C, \Delta 262 \text{ mg/L};$ (c) $C_{Fe}^{2+} = 28,3 \text{ mg/L e T} = 31,9^{\circ}C, \Delta 262 \text{ mg/L};$ (c) $C_{Fe}^{2+} = 28,3 \text{ mg/L e T} = 31,9^{\circ}C, \Delta 262 \text{ mg/L};$ (c) $C_{Fe}^{2+} = 28,3 \text{ mg/L e T} = 31,9^{\circ}C, \Delta 262 \text{ mg/L};$ (c) $C_{Fe}^{2+} = 28,3 \text{ mg/L e T} = 31,9^{\circ}C, \Delta 262 \text{ mg/L};$ (c) $C_{Fe}^{2+} = 28,3 \text{ mg/L e T} = 31,9^{\circ}C, \Delta 262 \text{ mg/L};$ (e) $C_{Fe}^{2+} = 28,3 \text{ mg/L e T} = 31,9^{\circ}C, \Delta 262 \text{ mg/L};$ (c) $C_{Fe}^{2+} = 28,3 \text{ mg/L e T} = 31,9^{\circ}C, \Delta 262 \text{ mg/L};$ (c) $C_{Fe}^{2+} = 28,3 \text{ mg/L e T} = 31,9^{\circ}C, \Delta 262 \text{ mg/L};$ (c) $C_{Fe}^{2+} = 28,3 \text{ mg/L e T} = 31,9^{\circ}C, \Delta 262 \text{ mg/L};$ (c) $C_{Fe}^{2+} = 28,3 \text{ mg/L e T} = 31,9^{\circ}C, \Delta 262 \text{ mg/L};$ (c) $C_{Fe}^{2+} = 28,3 \text{ mg/L};$ (c) $C_{Fe}^$

Figura 40 – Verificação da reprodutibilidade no ponto central do planejamento fatorial do processo Fenton (C_{H2O2} = 500 mg/L, C_{Fe}^{2+} = 62,5 mg/L e T = 20°C) \triangle Ensaio 15; \Box Ensaio 16; + Ensaio 17; \circ Ensaio 18; \diamond Ensaio 19 e x Ensaio 20..92

Figura 41 – Verificação da reprodutibilidade contendo as barras de desvio padrão dos ensaios obtidos no ponto central do planejamento do processo Fenton ($C_{H2O2} = 500 \text{ mg/L}$, $C_{Fe}^{2+} = 62,5 \text{ mg/L} \text{ e T} = 20^{\circ}\text{C}$)......92

Figura 42 – Valores experimentais versus valores previstos de C_{Doxi, Residual}....94

Figura 43 – Superfícies de resposta e curvas de contorno para concentração de cloridrato de doxiciclina em função da C_{Fe}^{2+} e C_{H2O2} (a) e (b); da temperatura e C_{H2O2} (c) e (d) e da temperatura e C_{Fe}^{2+} (e) e (f)......95

Figura 47 – Influência da temperatura sobre (a) $C_{Doxi,HCl,Residual,Final}$, (b) $C_{H2O2,Residual,Final}$ e (c) COT_{Final} para a condição de concentração mínima de cloridrato de doxiciclina obtida pelo planejamento fatorial DCCR (C_{H2O2} = 611 mg/L e C_{Fe}^{2+} = 25 mg/L). \circ 20°C, Δ 31,9°C, + 35°C, \Box 40°C e \diamond 50°C......102

Figura 49 – Influência da concentração de íon Fe²⁺ inicial sobre (a) $C_{Doxi,Residual,Final}$, (b) $C_{H2O2,Residual,Final}$ e (c) COT_{Final} para concentração mínima de cloridrato de doxiciclina obtida pelo planejamento fatorial DCCR (C_{H2O2} = 611 mg/L e T = 35°C). \circ 1mg/L, Δ 5mg/L, + 25mg/L, \Box 62,5mg/L e \diamond 96,7mg/L......104

Figura 51 – Influência da razão molar constante, $[Fe^{2+}/H_2O_2] = 0,025$, sobre (a) $C_{Doxi,Residual}$, (b) $C_{H2O2,Residual}$ e (c) COT para condição de condição de concentração mínima de cloridrato de doxiciclina obtida pelo planejamento fatorial DCCR (T = 35°C). $\Delta C_{H2O2} = 305,5 \text{ mg/L}$, $C_{Fe}^{2+} = 12,5 \text{ mg/L}$; $\Box C_{H2O2} = 611 \text{ mg/L}$, $C_{Fe}^{2+} = 25 \text{ mg/L}$; $+ C_{H2O2} = 1222 \text{ mg/L}$, $C_{Fe}^{2+} = 50 \text{ mg/L}$109

Figura 52 – Ensaio de longa duração (9 dias, adição diária de Fe^{2+} e H₂O₂ para restabelecer a condição inicial: C_{H2O2} = 611mg/L, C_{Fe2+} = 25mg/L). T = 35°C. (a) C_{Doxi,Residual}; (b) C_{H2O2,Residual} primeiro dia; (c) COT primeiro dia; (d) C_{H2O2,Residual}; (e) COT.

Figura 54 – Representação do teste CIM por microdiluição em placa de 96 poços, região cinza: turvação após 24 horas (crescimento microbiano). Região preta: sem turvação (inibição do crescimento)......114

Figura 57 – Estruturas moleculares para os produtos de degradação da doxiciclina através da ação do radical hidroxila (Jeong *et al.*, 2010, Yuan *et al.*, 2011 e Mboula *et al.*, 2012)......119

Figura 58 – Sugestão de estruturas moleculares dos produtos de degradação da doxiciclina obtidas pelo processo Fenton......121

Lista de Tabelas

Tabela 1 – Espécie de ferro predominante de acordo com o pH do meio26
Tabela 2 - Concentrações médias de tetraciclinas e os seus subprodutosdetectados em ETEs e rios33
Tabela 3 – Valores reais e codificados das variáveis estudadas42
Tabela 4 – Dados extraídos da literatura para a montagem do planejamento fatorial tipo DCCR18
Tabela 5 – Planejamento experimental44
Tabela 6 – Soluções padrão de íon ferroso56
Tabela 7 - Classificação dos testes, segundo sua finalidade63
Tabela 8 – Comparação entre as concentrações de cloridrato de doxiciclina obtidas por espectrofotometria e por CLAE-UV (T= 35° C, C _{Fe²⁺} = 25 mg/L, C _{H2O2} = 611 mg/L)
Tabela 9 – Limite de quantificação e de detecção de cloridrato de doxiciclina.66
Tabela 10 – Exatidão do método espectrofotométrico para determinação de concentração de cloridrato de doxiciclina em solução
Tabela 11 – Condições experimentais do planejamento fatorial DCCR, variáveis codificadas e não codificadas e resultados de concentração residual final de doxiciclina, C _{Doxi.HCI-Residual.}
Tabela 12 – Coeficientes de regressão93
Tabela 13 – ANOVA94
Tabela 14 – Condições experimentais ao redor da condição de mínimo residual do planejamento fatorial DCCR101
Tabela 15 – CIM de cloridrato de doxicilina ^ª 113
Tabela 16 – Produtos de degradação em relação ao tempo de amostragem117

Lista de Abreviaturas e Siglas

ABS	Absorbância a 390 nm
ANVISA	Agencia Nacional de Vigilância Sanitária
C ₀	Concentração inicial
C _{Doxi.HCl}	Concentração de cloridrato de doxiciclina
CESQ-EPUSP	Centro de Engenharia de Sistemas Químicos – Escola
	Politécnica da Universidade de São Paulo
CETESB	Companhia Ambiental do Estado de São Paulo
C _{Fe} ²⁺	Concentração de íons ferrosos
C _{H2O2}	Concentração de peróxido de hidrogênio
CIM	Concentração Inibitória Mínima
CLAE	Cromatografia Líquida de Alta Eficiência
СОТ	Carbono Orgânico Total
COT ₀	Concentração de Carbono Orgânico Total inicial
DCCR	Delineamento Composto Central Rotacional
DMEM	Dubecco's Modified Eagle Medium
Doxiciclina HCI	Cloridrato de Doxiciclina
fc	Fator de correção da solução
FDA	Food and Drug Administration
HPLC	High Performance/Pressure Liquide Chromatography
IC	Concentração de carbono inorgânico
ISO	International Standardization Organization
LB	Meio de cultura Luria Bertani
LC	Liquid Chromatography
[M + H] ⁺	Molécula Protonada
MTT	3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
PA	Reagente com Pureza Analítica
POA	Processo Oxidativo Avançado
RH	Representação genérica de molécula orgânica
SFB	Soro fetal bovino
тс	Concentração de carbono total
UFC	Unidades Formadoras de Colônia
UV	Ultra Violeta

SUMÁRIO

1. Introdução18	3
2. Revisão Bibliográfica20)
2.1. Cloridrato de Doxiciclina20)
2.2. Processo Fenton	2
2.3. Influência de Íons Inorgânicos no Processo Fenton27	7
2.4. Estudos da Degradação de Tetraciclinas em Efluentes	ł
3. Objetivos	7
3.1. Objetivos Gerais	7
3.2. Objetivos Específicos	7
4. Materiais e Métodos	3
4.1. Materiais	3
4.1.1. Equipamentos	3
4.1.2. Reagentes	3
4.1.2.1. Meios Reacionais	3
4.1.2.2. Análise da Concentração de Cloridrato de Doxiciclina	3
4.1.2.3. Análise da Concentração de Peróxido de Hidrogênio)
4.1.2.4. Análise da Concentração de Carbono Orgânico Total	•
4.1.2.5. Análise da Concentração de Íon Ferroso)
4.1.2.6. Análise em CLAE – UV)
4.1.2.7. Análise em CLAE – Massa	J
4.1.2.8. Análise de CIM40)
4.1.2.9. Análise de Citotoxicidade40)
4.2. Métodos41	ł
4.2.1. Equipamento41	ł
4.2.2. Planeiamento Experimental	2

4.3. Ensaios
4.3.1. Solução de Cloridrato de Doxiciclina 100mg/L45
4.3.2. Meio Reacional Contendo Cloridrato de Doxiciclina, H_2O_2 e Fe ²⁺ 45
4.3.3. Meio Reacional Contendo Cloridrato de Doxiciclina e Fe ²⁺ 45
4.3.4. Meio Reacional Contendo H ₂ O ₂ e Fe ²⁺ 46
4.4. Métodos Analíticos47
4.4.1. Quantificação da Doxiciclina47
4.4.1.1. Preparo de Soluções e Reagente47
4.4.1.2. Análise da Doxiciclina47
4.4.2. Quantificação do Peróxido de Hidrogênio51
4.4.2.1. Preparo de Soluções e Reagente51
4.4.2.2. Padronização do KMnO₄ 0,002 mol/L51
4.4.2.3. Análise de Peróxido de Hidrogênio52
4.4.3. Carbono Orgânico Total53
4.4.4. Quantificação de Íon Ferroso54
4.4.4.1. Preparo de Soluções e Reagente54
4.4.4.2. Análise de Íon Ferroso55
4.4.5. Determinação de Doxiciclina por CLAE – Detector UV56
4.4.5.1. Condições Analíticas56
4.4.5.2. Preparo das Curvas de Calibração57
4.4.5.3. Preparo das Amostras57
4.4.6. Determinação de Doxiciclina com CLAE - Espectrômetro de Massa57
4.4.6.1. Condições Analíticas57
4.4.6.2. Preparo das Amostras58
4.5. Ensaios de Toxicidade58
4.5.1. Preparo da Solução Estoque de Cloridrato de Doxiciclina, Branco Reacional e Amostra58
4.5.2. Teste de Concentração Inibitória Mínima (CIM)59

4.5.2.1. Preparo de Soluções e Reagente59
4.5.2.2. Preparação do Inóculo e Suspensão Direta59
4.5.2.3. Teste de Susceptibilidade ao Antibiótico60
4.5.3. Teste de Citotoxicidade61
4.5.3.1. Cultura Celular61
4.5.3.2. Viabilidade Celular por MTT61
5. Resultados e Discussões63
5.1. Validação do Método Espectrofotométrico para Determinação da Concentração Residual Final de Cloridrato de Doxiciclina63
5.2. Influência da Temperatura sobre a Oxidação do Cloridrato de Doxiciclina e do Peróxido de Hidrogênio sem Adição de Íons Fe ²⁺ e com Incidência de Luz
5.3. Degradação do Cloridrato de Doxiciclina por Peróxido de Hidrogênio com e sem Adição de Íons Fe ²⁺ , com e sem Incidência de Luz Natural74
5.4. Degradação do Cloridrato de Doxiciclina por Peróxido de Hidrogênio em Diferentes Concentrações, com Adição de Íons Fe ²⁺ , sem Incidência de Luz.77
 5.5. Degradação do Cloridrato de Doxiciclina por Peróxido de Hidrogênio, com Adição de Diferentes Concentrações de Íon Fe²⁺, sem Incidência de Luz. 77
5.6. Oxidação do Cloridrato de Doxiciclina no Processo Fenton, Influência da Temperatura, sem Incidência de Luz79
5.7. Planejamento Fatorial81
5.8. Comparação dos Resultados do Ponto Central do Planejamento DCCR com os Resultados da Melhor Condição Operacional Determinada pelo Planejamento Fatorial
5.9. Concentração do Íon Fe ²⁺ durante o Processo Fenton
5.10. Influência do pH na Concentração Residual Final de Doxiciclina, C _{Doxi.HCl,Residual,Final} , Concentração Residual Final de Peróxido de Hidrogênio, C _{H2O2,Residual,Final} , e Carbono Orgânico Total final, COT _{Final} 98
 5.11. Influência da Temperatura, Concentração Inicial de Fe²⁺, C_{Fe}²⁺, e Concentração Inicial de Peróxido de Hidrogênio, C_{H2O2,0}, na Concentração Residual Final de Doxiciclina, C_{Doxi.HCl,Residual,Final}, Concentração Residual Final de Peróxido de Hidrogênio, C_{H2O2,Residual,Final}, e Carbono Orgânico Total final, COT_{Final}

5.12. Influência da Razão Molar [Fe ²⁺ /H ₂ O ₂] sobre a C _{Doxi,Residual} , C _{H2O2,Residual} e COT105
5.13. Influência da Razão Molar Constante [Fe ²⁺ /H ₂ O ₂] sobre a C _{Doxi,Residual} , C _{H2O2,Residual} e COT108
5.14. Ensaio de Longa Duração110
5.15. Influência do Bombeamento de Ar no Processo Fenton
5.16. Avaliação da Concentração Inibitória Mínima Exercida pelo Resíduo da Degradação do Cloridrato de Doxiciclina113
5.17. Avaliação da Citotoxicidade do Resíduo da Degradação do Cloridrato de Doxiciclina114
5.18. Produtos de Degradação da Doxiciclina116
6. Conclusões121
7. Sugestões para o Prosseguimento do Trabalho125
8. Publicações dos Resultados126
9. Referências Bibliográficas126
APÊNDICES134
Apêndice A135
Apêndice B153
Apêndice C160
Apêndice D167

1. Introdução

A principal rota de entrada de resíduos de fármacos no ambiente é o lançamento de esgotos domésticos, tratados ou não, em cursos de água. No entanto, também devem ser considerados os efluentes de indústrias farmacêuticas, efluentes rurais, a presença de fármacos no esterco animal utilizado para adubação de solos e a disposição inadequada de fármacos após expiração do prazo de validade.

O consumo mundial de antibióticos vem aumentando vertiginosamente, consequentemente, aumentando também a sua excreção na forma de metabólitos corpóreos e na sua forma original. A maioria dos antibióticos são pouco metabolizados por seres humanos e animais após a ingestão, proporcionando que uma fração de antibióticos de 25% até 75% possa deixar os organismos em sua forma inalterada após o consumo (Watkinson *et al.*, 2009; Rivas *et al.*, 2011).

As tetraciclinas são uma família de antibióticos muito empregada, apresentando uma parcela considerável de representantes de moléculas que chegam às estações de tratamento de esgoto. Estas moléculas já foram encontradas em efluentes domésticos nas faixas de 0,010 µg/L em águas superficiais da Itália (Calamari *et al.*, 2003) e de 0,11µg/L em águas superficiais dos Estados Unidos (Kolpin et .al., 2002), ambos utilizando o método de CLAE acoplado a espectrômetro de massa quadrupolo.

Os tratamentos convencionais não são capazes de eliminar, através dos processos de adsorção e biodegradação, estas moléculas dos efluentes, sendo estas introduzidas nos corpos d'água receptores.

A introdução de antibióticos no meio promove gradativamente a seleção de bactérias naturais resistentes, capazes de se multiplicar e de transferir seu material genético. Já em estudos como os de Bartlett *et al.* (1975) notavam-se uma seleção de *Escherichia coli* resistentes na flora intestinal a moléculas de tetraciclinas, inclusive a doxiciclina.

Vários estudos estão sendo feitos com a finalidade de eliminar estas moléculas contidas em efluentes domésticos, industriais e provenientes da criação de animais, (Jeong *et al.*, 2009; Rivas *et al.*, 2011; Yuan *et al.*, 2011).

Processos não-destrutivos dependem da utilização de membranas (nanofiltração e osmose reversa) ou adsorção em carvão ativado. No entanto, na

adsorção ou na filtração a capacidade de retenção de ambas as tecnologias diminui com o tempo de operação devido à exaustão de carvão ativado ou ao entupimento das membranas. Além disso, este material retido e o carvão saturado têm de ser tratados ou estocados daí em diante.

Os processos que têm mostrado maior eficiência de remoção, porém com degradação, são os chamados Processos Oxidativos Avançados (POAs). Nestes processos as reações de degradação envolvem espécies transitórias oxidantes, como os radicais hidroxila (Martins *et al.*, 2011) que dependendo das condições operacionais e das moléculas a serem degradadas, podem ocasionar a mineralização completa ou parcial das moléculas orgânicas que compõem os antibióticos, gerando uma carga de resíduos muito menor ou nula em relação aos processos não destrutivos.

O processo Fenton é um POA que consiste na degradação de produtos através da dissociação do peróxido de hidrogênio através da reação de oxirredução do íon ferroso em meio ácido na ausência de luz (radiação UV), promovendo a formação do radical hidroxila (•OH), responsável pela quebra de moléculas orgânicas na tentativa de gerar compostos inativos biologicamente (Coelho *et al.*, 2006; Bianco *et al.*, 2010).

O presente trabalho busca estudar a degradação do antibiótico cloridrato de doxiciclina, pertencente à família das tetraciclinas, através da oxidação química exercida pelo processo Fenton, otimizando-se a condição experimental através de Planejamento Fatorial empregando-se o Delineamento Composto Central Rotacional (DCCR).

2. Revisão Bibliográfica

2.1. Cloridrato de Doxiciclina

O cloridrato de doxiciclina é um antibiótico da classe das tetraciclinas com ação de largo espectro e aplicável a uma ampla gama de bactérias gram-positivas e gram-negativas, sendo bastante utilizado na medicina humana e medicina veterinária. Sendo obtida sinteticamente a partir da oxitetraciclina ou metaciclina, sendo isolada como cloridrato com massa molar de 462,46g/mol (Hardman *et al.*, 2001). Segundo Wittenau *et al.* (1962) a doxiciclina é um isômero estrutural da tetraciclina, diferindo apenas quanto à posição do grupo hidroxila situado no carbono 3 na tetraciclina e no carbono 14 na doxiciclina. Esta característica lhe confere maior estabilidade do que as tetraciclinas. A Figura 01 mostra alguns representantes da família das tetraciclinas e a fórmula estrutural do cloridrato de doxiciclina.

	R1	R2	R3	R4
Tetraciclina	——Н	——СН ₃	——Н	——ОН
Oxitetraciclina	——он	——СН ₃	——Н	——ОН
Doxiciclina	——ОН	CH ₃	——Н	——Н
Clortetraciclina	——Н	CH ₃	—CI	——ОН
Sanciclina	——н	——Н	——Н	——-Н
Demeclociclina	——Н	——Н	—CI	——ОН
Metaciclina	——ОН		——Н	
Minociclina	——Н	——Н	 Z	——ОН
			н ₃ С СН3	

Figura 01- Fórmulas estruturais das tetraciclinas.

Apresenta-se na forma de pó cristalino, amarelo, higroscópico, com odor levemente alcoólico e sabor amargo. É muito solúvel em água, em metanol e em soluções de hidróxidos alcalinos e ligeiramente solúvel em etanol. (ANVISA, 2011).

Como todas as moléculas da família das tetraciclinas apresentam-se como uma molécula anfótera formando sais hidrossolúveis com ácidos e bases fortes. A protonação do grupo dimetilamino forma sais ácidos estáveis, enquanto os sais básicos são formados por reações com hidróxidos de cálcio, sódio ou potássio e são instáveis em soluções aquosas. Cada molécula possui três grupos ionizáveis, cujos pKas são 3,5, 7,7 e 9,5, respectivamente (Rufino, 2009), como mostrado na Figura 02.

Figura 02 – Grupos ionizáveis da doxiciclina

A doxiciclina é muito utilizada para o tratamento de doenças infecciosas causadas por rickettsias, clamídias e micoplasmas (Hardman *et al.*, 2001). No entanto, novas aplicações para este fármaco foram descobertas e têm contribuído para o aumento de seu uso nos últimos anos. Entre essas novas aplicações estão o tratamento de antraz, doença de Lyme, *P. falciparum* (malária), pneumonia causada por <u>Staphylococcus aureus</u> resistentes à meticilina e inibição de enzima metaloprotease de matriz (processos inflamatórios) (Skúlason *et al.*, 2003; Burke e Cunha, 2006).

Devido a sua rápida assimilação fisiológica pelo tecido da boca, tais como dentina, esmalte dos dentes não irrompidos e da gengiva (Skúlason *et al.*, 2003), está sendo empregada em dispositivos de liberação local visando à preservação destes tecidos mostrando-se eficiente mesmo em pequenas concentrações para inibir a ação dos patógenos periodontais e contra processos inflamatórios (Horbylon, 2008).

Devido a sua ampla utilização, está presente em efluentes industriais, domésticos e provenientes da área rural, apresentando no meio liquido concentrações de até 6,7 µg/L e em lodos de estações de tratamento de efluentes domésticos até 1,5 mg/kg (Aga, 2008). Assim, torna-se necessária a criação de técnicas eficientes e baratas para o tratamento destes efluentes, haja vista o

aumento da resistência bacteriana a este antibiótico. Como agravante a este aumento de resistência está à transferência de plasmídeos R através do fator F, o qual transmite a resistência através do material genético contido, podendo ser transmitido até mesmo para bactérias de espécies não aparentadas geneticamente (Martins *et al.*, 2011).

O método estabelecido pela Farmacopéia Brasileira para a quantificação do cloridrato de doxiciclina é através da utilização de cromatografia líquida de alta eficiência, utilizando-se cromatógrafo provido de detector ultravioleta a 270 nm; coluna de 250 mm de comprimento e 4,6 mm de diâmetro interno, empacotada com copolímero esférico estireno divinilbenzeno (5 μ m), mantida a 60°C ± 1°C; fluxo da fase móvel de 1,0 mL/min (ANVISA, 2010).

Estão sendo desenvolvidos métodos mais acessíveis economicamente, que possam ser empregados mesmo em laboratórios químicos de pequeno porte e seus resultados estão sendo comparados aos obtidos pelo método oficial proposto pela farmacopéia. Baseando-se na formação de complexo da molécula com Cloramina-T (Rufino, 2009) ou com íons metálicos, molibdato (Stankov e Veselinovic, 1988); Európio III (Kaczmarek e Lis, 2009).

Estes métodos poderiam ser empregados em estações de tratamento de efluentes, com equipamentos mais robustos, como o espectrofotômetro UV-Visível, apresentando resultados confiáveis e de menor custo.

2.2. Processo Fenton

O peróxido de hidrogênio (H₂O₂) é um excelente oxidante que pode ser empregado com grande eficiência na degradação de grande número de poluentes (Albuquerque, 2005; Matos *et al.*, 2003).

O poder oxidante do processo Fenton foi primeiramente relatado em Fenton (1894), quando foi observado que o sistema composto por uma solução de peróxido de hidrogênio com o íon ferroso oxidava o ácido tartárico (Pignatello *et al.*, 2006). Quarenta anos depois, Haber e Weiss (1932), propuseram que o radical hidroxila era o real oxidante deste sistema (Coelho *et al.*, 2005; Pignatello *et al.*, 2006).

O processo Fenton consiste na degradação de produtos através da ação do peróxido de hidrogênio associado à ação catalítica do íon ferroso na ausência de luz

(radiação UV), formando radical hidroxila (•OH) que são capazes de destruir a maior parte dos compostos orgânicos (RH) (Coelho *et al.*, 2005; Homem, 2011).

Outros radicais formados também podem estar envolvidos na oxidação dos contaminantes, como os radicais perhidroxila (HO₂•), superóxido (O₂•⁻) e ânions hidroperóxido (HO₂⁻) (Yap *et al.*, 2011).

Por ser um sistema complexo as equações que descrevem as principais etapas deste processo são apresentadas pelas eqs. (1) a (16) (Homem, 2011).

Iniciação radicalar

$Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + OH^- + OH^-$	$K_1 = 63 - 76 M^{-1}.s^{-1}$	(1)
--	-------------------------------	-----

Propagação

 $OH^{\bullet} + RH \rightarrow produto de oxidação \rightarrow CO_2 + H_2O \quad K_2 = 10^7 - 10^{10} \text{ M}^{-1}.\text{s}^{-1}$ (2)

-	-		~
- 1	orn	nini	2020
	en	111110	1
	~		AQCA C

Reações secundárias

$OH^{\bullet} + H_2O_2 \rightarrow HO_2^{\bullet} + H_2O$	$K_3 = (2,7 - 3,3)^* 10^7 \text{ M}^{-1}.\text{s}^{-1}$	(3)
$OH^{\bullet} + Fe^{2+} \rightarrow Fe^{3+} + HO^{-}$	$K_4 = (3,2-4,3)^* 10^8 \text{ M}^{-1}.\text{s}^{-1}$	(4)
$2OH^{\bullet} \rightarrow H_2O_2$	K ₅ = 4,2*10 ⁹ M ⁻¹ .s ⁻¹	(5)

$K_6 = (1 - 2)^* 10^{-2} M^{-1} . s^{-1}$	(6)
$K_7 = (1,2-1,3)^* 10^6 \text{ M}^{-1}.\text{s}^{-1}$	(7)
$K_8 = (0, 1 - 3, 1)^* 10^5 \text{ M}^{-1} \cdot \text{s}^{-1}$	(8)
$K_9 = (1,6-8,0)^*10^5 \text{ M}^{-1}.\text{s}^{-1}$	(9)
$K_{10} = 10^7 \text{ M}^{-1}.\text{s}^{-1}$	(10)
$K_{11} = (0,5 - 1,5)^* 10^8 \text{ M}^{-1}.\text{s}^{-1}$	(11)
$K_{12} = 9,7^{*}10^{7} M^{-1}.s^{-1}$	(12)
$K_{13} = 10^{-3} M^{-1}.s^{-1}$	(13)
$K_{14} = 10^{10} \text{ M}^{-1}.\text{s}^{-1}$	(14)
$K_{15} = 10^{10} \text{ M}^{-1}.\text{s}^{-1}$	(15)
	(16)
	$K_{6} = (1 - 2)^{*}10^{-2} \text{ M}^{-1}.\text{s}^{-1}$ $K_{7} = (1, 2 - 1, 3)^{*}10^{6} \text{ M}^{-1}.\text{s}^{-1}$ $K_{8} = (0, 1 - 3, 1)^{*}10^{5} \text{ M}^{-1}.\text{s}^{-1}$ $K_{9} = (1, 6 - 8, 0)^{*}10^{5} \text{ M}^{-1}.\text{s}^{-1}$ $K_{10} = 10^{7} \text{ M}^{-1}.\text{s}^{-1}$ $K_{11} = (0, 5 - 1, 5)^{*}10^{8} \text{ M}^{-1}.\text{s}^{-1}$ $K_{12} = 9, 7^{*}10^{7} \text{ M}^{-1}.\text{s}^{-1}$ $K_{13} = 10^{-3} \text{ M}^{-1}.\text{s}^{-1}$ $K_{14} = 10^{10} \text{ M}^{-1}.\text{s}^{-1}$ $K_{15} = 10^{10} \text{ M}^{-1}.\text{s}^{-1}$

A reação que inicia o processo Fenton é reação (1), promovendo a formação do radical hidroxila, sendo a limitante da velocidade inicial do processo.

O radical hidroxila é consumido do meio reacional com constante da taxa, K, variando de 10^7 a 10^{10} M⁻¹.s⁻¹, sendo a principal reação de consumo deste as reações (14) e (15) que possuem K = 10^{10} M⁻¹.s⁻¹ competindo com a reação de propagação que possui K de $10^7 - 10^{10}$ M⁻¹.s⁻¹ dependendo da concentração que

está presente no meio. Outras reações responsáveis pelo consumo do radical são as reações (5), (4) e (3) que possuem constantes 10, 10^{-2} e 10^{-3} vezes menores, respectivamente, que as constantes apresentadas pelas reações (2), (14) e (15).

O consumo do Fe²⁺ com formação de Fe³⁺ ocorre pelas reações (1), (4), (7) e (10), sendo a reação (1) a que apresenta menor K, consequentemente sendo a limitante inicial do processo, mas após iniciado, esta será a que menos influenciará na conversão Fe²⁺ para Fe³⁺, pois as reações (7), (10) e (14) possuem constantes de reação 10^5 , 10^6 e 10^7 vezes, respectivamente, maiores que a da reação (1).

As reações de consumo do Fe³⁺ para formação do Fe²⁺ são (6), (8) e (11). A reação com menor K é a (6), responsável pela regeneração direta do catalisador do processo, com K = 10^{-2} M⁻¹.s⁻¹ sendo insuficiente para promover o processo com eficiência. As reações (8) e (11) necessitam da formação do radical HO₂[•], possuindo K de 10^7 e 10^{10} vezes maiores, respectivamente, que o da reação (6).

O consumo do H_2O_2 ocorre pelas reações (1), (3), (6) e (13), sendo a principal reação de consumo após o início do processo, a reação (3) com K de $10^7 \text{ M}^{-1}.\text{s}^{-1}$. As outras reações, (1), (6) e (13), têm pouca influência no consumo do peróxido de hidrogênio, pois possuem Ks 10^6 , 10^9 e 10^{10} vezes menores que o da reação (7), respectivamente.

As reações responsáveis pela formação do H_2O_2 são as reações (5) e (10), com constantes de 10^9 e 10^7 M⁻¹.s⁻¹, respectivamente, promovendo a diminuição da da taxa de decaimento deste, pois as constantes das taxas de formação são 10^2 e 10^0 vezes maiores que a constante da taxa da principal reação de consumo, reação (7).

Outros radicais formados no meio reacional são HO₂[•] e O[•], que possuem menor potencial oxidativo da molécula orgânica do que o radical HO[•].

Após o inicio do processo, o HO_2^{\bullet} é formado pelas reações (3) e (6), sendo o K da reação (3) 10^9 maior que o da reação (6). Este radical formado é consumido através das reações (7), (8), (9), (12) e (14) que possuem constantes de reação entre 10^{-2} e 10^3 maiores que a constante de formação, proporcionando que este radical seja rapidamente consumido.

O radical O[•] é formado pela reação (9) com K = $10^5 \text{ M}^{-1} \cdot \text{s}^{-1}$. As constantes de consumo deste radical indicam que este é rapidamente consumido, pois ele é utilizado como reagente das reações (10), (11), (12) e (15) com constantes de 10^7 , 10^8 , $10^7 \text{ e } 10^{10} \text{ M}^{-1} \cdot \text{s}^{-1}$, respectivamente.

Este processo pode ser dividido em duas etapas com velocidades distintas, a primeira com conhecida como reação Fe^{2+}/H_2O_2 onde ocorre a formação do radical hidroxila que reage instantaneamente com qualquer molécula orgânica próxima a ele. A segunda etapa é mais lenta devido à baixa velocidade de conversão de íons Fe^{3+} para Fe^{2+} em relação à velocidade de consumo de Fe^{2+} , o que se torna limitante na velocidade de degradação do processo pela baixa quantidade de radicais hidroxila formada (Homem, 2011).

De acordo com Souza (2004), o reagente de Fenton pode realizar reações auto catalíticas de duas formas:

- a) em pH inferior a três, o qual impede a formação de Fe(OH)₃. O Fe⁺³ forma um complexo em reação com o peróxido de hidrogênio (Fe(OOH)²⁺), o qual se decompõe regenerando o Fe²⁺ com a produção de radical hidroperóxido, como mostrado na eq. (6).
- b) o Fe⁺³ tende também a reagir com o radical hidroperóxido, o que também resulta na regeneração de Fe²⁺, como mostrado na eq. (8).

Os radicais HO₂• formados na segunda etapa são capazes de oxidar os contaminantes, mas possuem um potencial de oxidação bastante inferior aos OH•, o que também explica a diminuição da velocidade de oxidação nesta etapa. Além das etapas já mencionadas ocorrem reações secundárias, que muitas vezes interferem negativamente sobre o processo (Homem, 2011).

O pH do meio é um parâmetro operacional importante, uma vez que afeta diretamente não só o desempenho do processo, mas também a estabilidade dos íons ferrosos. Existe um consenso geral na literatura sobre o pH ótimo que deve estar próximo de 3. Para valores mais baixos de pH a eficiência do processo cai, devido à ação destruidora do íon H⁺ sobre o radical hidroxila, enquanto que para valores de pH mais elevados resultam em precipitação de oxihidróxidos de ferro(II), ambos afetando negativamente o desempenho do processo. Outro problema que é dependente do pH é a estabilidade do peróxido de hidrogênio, o que também explica porque há uma diminuição da eficiência muitas vezes encontrada para valores de pH inferiores a 3. Em tais circunstâncias, a formação de H₃O₂⁺ ocorre, aumentando a estabilidade do H₂O₂ e inibindo a geração de radicais hidroxila (Neyens e Baeyens, 2003; Pacheco, 2004; Herney-Ramirez *et al.*, 2010). A Tabela 1 mostra a relação entre a espécie química presente e o pH do meio.

Além disso, a eficiência de mineralização do processo de Fenton está relacionada com a formação de complexos estáveis entre moléculas orgânicas e o íon férrico, inibindo parte do ciclo catalítico (Dopar *et al.*, 2011).

Tabela 1 – Espécie de ferro predominante de acordo com o pH do meio.					
	pH Espécie química predominante				
	1,0	$[Fe(H_2O)_6]^{2+}$			
	2,0	$[Fe(H_2O)_5OH]^+$			
	4,0	$[Fe(H_2O)_4(OH)_2]$			
	(/	Adaptado de Neyens e Baeyens, 2003)			

Normalmente o aumento da temperatura afeta positivamente o processo de oxidação de Fenton, uma vez que a energia cinética aumenta e consequentemente, a velocidade da reação. Contudo, é possível que a elevadas temperaturas (acima dos 40-50°C) ocorra a decomposição do peróxido de hidrogênio, diminuindo assim a quantidade realmente disponível para a reação de oxidação, como mostrado pela eq. (13) (Homem, 2011).

O processo Fenton tem como vantagem a utilização de íons de ferro que são abundantes na natureza e que possuem baixa toxicidade e do peróxido de hidrogênio, que ao se decompor tem como produto água e oxigênio. Como desvantagem está o alto custo do processo, devido às concentrações de ferro em solução ser muitas vezes elevada, há o impedimento que estas águas residuais sejam descarregadas para o meio ambiente sem antes sofrerem um pré-tratamento. O artigo 18 do Decreto nº 8468/76 do estado de São Paulo estabelece o limite de 15 mg/L para a concentração de ferro solúvel em efluentes descarregados diretamente em corpos de água receptores. Outro fator limitante neste processo é a faixa de trabalho estreita para o pH entre 2,0 e 3,0 (Andreozzi *et al.*, 2000; BRASIL, 2009 e Homem, 2011).

Este POA tem sido estudado para a aplicação em efluentes industriais e domésticos (Mota *et al.*, 2005; Britto *et al.*, 2008; Beati *et al.*, 2009; Vlyssides *et al.*, 2010; Fan *et al.*, 2011 e Homem, 2011).

2.3. Influência de Íons Inorgânicos no Processo Fenton

Durante o processo de degradação, vários íons podem estar presentes principalmente na forma de ânions (Kumar, 2011).

O processo de oxidação de Fenton é extremamente sensível a ânions inorgânicos presentes na solução (Ratanatamskul *et al.*, 2010). De acordo com Pignatello *et al.* (2006), a oxidação promovida pelo processo Fenton pode ser inibida de várias formas por sulfatos, fosfatos, organosulfonados, fluoretos, brometos e cloretos, dependendo da concentração em que estes se encontram no meio reacional.

A presença destes íons no meio a ser tratado pode ser devido à presença natural em meio aquoso proveniente das fontes de água ou são incorporados ao meio por 3 formas durante o processo: (1) contra-íon do íon Fe^{2+} utilizado como catalisador no processo Fenton (por ex., ânion sulfato do $FeSO_4$), (2) contra-íon do íon H⁺ do ácido, que é geralmente adicionado para preparar as soluções de Fe^{2+} ou (3) são formados como produtos do processo de degradação (Kommineni *et al.*, 2000; Pignatello *et al.* 2006; Kumar, 2011).

Estes ânions presentes em solução podem interferir na reação de Fenton das seguintes formas: (1) complexação dos íons de ferro (Fe²⁺ e Fe³⁺) afetando a distribuição e a reatividade das espécies de ferro; (2) reações de precipitação, que conduzem a uma diminuição de Fe³⁺ solubilizado; (3) sequestro de radicais hidroxila com formação de radicais inorgânicos de menor reatividade devido a não seletividade de reação do radical hidroxila (por ex., SO₄^{•-}, Cl[•], Cl₂^{•-}) e (4) reações de oxidação envolvendo estes radicais inorgânicos com compostos orgânicos (Gernjak 2006; Pignatello *et al.*, 2006; Kumar, 2011).

O efeito de inibição de cada íon inorgânico sobre a degradação promovida pelo processo Fenton está estabelecida na seguinte ordem: $H_2PO_4^- > CI^- > SO_4^{2-} > NO_3^- > CIO_4^-$ (Siedlecka *et al.*, 2007; Ratanatamskul *et al.*, 2010).

<u>lons Fosfato</u>: apresenta efeito sobre o processo Fenton, precipitando os íons de ferro na forma de complexos insolúveis e abstraindo os radicais hidroxila (Gernjak, 2006). Em meio ácido a espécie fosfórica presente em maior quantidade é o dihidrogeno fosfato ($H_2PO_4^-$), ocorrendo interferência no processo Fenton a partir de 1,5 mM de $H_2PO_4^-$ (Kumar, 2011; Ratanatamskul *et al.*, 2010).

O H₂PO₄⁻ presente no meio compete pelo radical hidroxila com os produtos orgânicos, ocasionando a diminuição na capacidade de degradação (Ratanatamskul *et al.*, 2010).

De acordo com Ratanatamskul *et al.* (2010) e Pignatello *et al.* (2006) cada complexo de ferro-H₂PO₄⁻, formado em meio neutro ou levemente ácido, age de maneira distinta no processo Fenton. Os íons ferrosos existem principalmente sob a forma de FeH₂PO₄⁺ durante a primeira etapa (rápida) do processo, possibilitando que este possa reagir com o peróxido de hidrogênio e produzir radicais hidroxila, sem interferir no processo oxidativo. Em uma segunda etapa (lenta), o complexo presente é o FeH₂PO₄²⁺, que precipita impedindo a reação com o peróxido de hidrogênio, finalizando o processo.

<u>lons Cloreto:</u> o efeito inibitório dos íons cloreto está ligado à geração do Cl₂⁻ e do complexo FeCl²⁺, com decréscimo simultâneo na eficiência de formação de HO•. Isto ocorre na formação do complexo FeCl²⁺, que inibe a reação com o peróxido de hidrogênio e bloqueia a formação do radical hidroxila (Ratanatamskul *et al.*, 2010; Kumar, 2011). Esta reação é mostrada na eq. 17 (Kumar, 2011).

$$Fe^{3+} + Cl^{-} \longrightarrow FeCl^{2+} \tag{17}$$

Os íons cloreto também reagem em solução com os radicais hidroxila, competindo com a matéria orgânica e originando Cl^{-•} e Cl₂^{-•} (Gernjak, 2006; Ratanatamskul *et al.*, 2010; Kumar, 2011). Estas reações são apresentadas nas eqs. 18 a 20 (Kumar, 2011).

$$Cl^- + OH^\bullet \to ClOH^{\bullet-}$$
 (18)

$$ClOH^{\bullet-} + H^+ \to Cl^{\bullet} + H_2O \tag{19}$$

$$Cl^{\bullet} + Cl^{-} \to Cl_{2}^{\bullet}$$
⁽²⁰⁾

Estas reações são rápidas, reversíveis e dependem da concentração do ânion e do íon H⁺ presentes no meio (Pignatello *et al.*, 2006).

Os radicais de cloro possuem outro agravante, pois reagem com a matéria orgânica, propiciando a mineralização da molécula, mas com formação de compostos organoclorados (Gernjak, 2006; Pignatello *et al.*, 2006).

Quando os radicais clorados formados interagem com o peróxido de hidrogênio, originam radicais hidroperoxila, que possuem potencial de oxidação menor que o apresentado pelo radical hidroxila. Estas reações estão mostradas nas eqs. 21 e 22 (Kumar, 2011).

$$Cl^{\bullet} + H_2O_2 \to OH_2^{\bullet} + Cl^- + H^+$$
 (21)

$$Cl_{2}^{-\bullet} + H_{2}O_{2} \to OH_{2}^{\bullet} + 2Cl^{-} + H^{+}$$
 (22)

A inibição do processo Fenton pelo íon cloreto ocorre para concentrações de Cl⁻ acima de 0,01M em meio ácido (Pignatello *et al.*, 2006).

<u>Íons Sulfato:</u> quando em baixa concentração e em meio ácido este íon proporciona o sequestro de radicais hidroxila e complexos solúveis de ferro (Pignatello *et al.*, 2006; Kumar, 2011).

O sequestro de radicais hidroxila origina o radical sulfato, que possui potencial de oxidação menor (diminuindo o efeito de degradação dos compostos) este radical também seria responsável pelo consumo de peróxido de hidrogênio ainda presente no meio, como apresentado pelas eqs. 23 a 25 (Gernjak, 2006; Kumar, 2011).

$$HSO_4^{-} + OH^{\bullet} \to SO_4^{\bullet-} + H_2O$$
⁽²³⁾

$$SO_4^{\bullet-} + H_2O_2 \to SO_4^{2-} + H^+ + OH_2^{\bullet}$$
 (24)

$$SO_4^{\bullet-} + OH_2^{\bullet} \to SO_4^{2-} + H^+ + O_2$$
 (25)

O complexo formado de Fe^{3+} com íons sulfato é uma mistura de FeSO_4^+ e $\text{Fe}(\text{SO}_4)_2^-$ os quais inibem a reação com o peróxido de hidrogênio, impossibilitando a redução do íon férrico para ferroso. Mas é provável que as concentrações de sulfato, da ordem de 10^{-3} M, introduzidas pela adição de ferro na forma de um sal de sulfato, terão pouco efeito sobre o desempenho da reação de Fenton (Pignatello *et al.*, 2006).

Os radicais sulfato quando presentes em altas concentrações no meio atuam como as espécies predominantes de oxidação e neste caso oxidam o soluto orgânico, contribuindo para a degradação (Kumar, 2011).

<u>Íons Nitrato:</u> de acordo com a literatura o nitrato não interfere no processo Fenton para concentrações de até 200 mM. Não há interferência, provavelmente por não ocorrer formação de complexo com os íons de ferro e nem a reação com os radicais hidroxila presentes no meio (Kommineni *et al.*, 2000; Pignatello *et al.*, 2006; Ratanatamskul *et al.*, 2010; Kumar, 2011).

<u>Íons Perclorato</u>: há pelo menos duas razões pelas quais os íons CIO_4^- apresentam menor influência sobre o processo de decomposição do que os outros íons: (a) os íons perclorato não formam complexos com Fe^{2+} e Fe^{3+} , e (2) não reagem com OH• (Pignatello *et al.* 2006; Siedlecka *et al.*, 2007).

<u>Íons Carbonato:</u> a forma do íon que está presente no meio depende do pH do meio, o equilíbrio pode ser verificado no gráfico apresentado na Figura 03.

Figura 03 – Fração Molar do CO₂ dissolvido em função do pH do meio (Jacob, 1999).

Em meio ácido a forma predominante é a de ácido carbônico, H₂CO₃, que não apresenta influência sobre o processo Fenton. Tanto o carbonato quanto o bicarbonato reagem com os radicais hidroxila, formando o radical carbonato (CO₃⁻•), como mostrado nas eqs. 26 e 27 (Kommineni *et al.*, 2000; Gernjak, 2006; Kumar, 2011).

$$OH^{\bullet} + HCO_3^- \to H_2O + CO_3^{\bullet-} \tag{26}$$

$$OH^{\bullet} + CO_3^{2-} \to OH^- + CO_3^{\bullet-}$$
 (27)

O radical CO₃^{-•} apresenta menor reatividade cm a matéria orgânica do que o radical hidroxila, retardando o processo de degradação. O efeito inibitório promovido pelo Na₂CO₃ mesmo em altas concentrações é desprezível (Kumar, 2011).

Consequentemente, para que o processo Fenton seja eficiente em um efluente com alta alcalinidade, será necessária, ou a redução do pH para valor inferior a 3, e desta forma os sais inorgânicos carbonato e bicarbonato serão liberados para a atmosfera na forma de CO₂, ou a adição de maiores quantidades de oxidante (H₂O₂) (Kommineni *et al.*, 2000).

<u>lons Fluoreto</u>: estes íons inibem a reação de Fenton através da formação de complexos solúveis de ferro e sequestro lento dos radicais hidroxila. A afinidade dos íons Fe³⁺ por fluoreto é alta, com sucessiva formação de mono-, di- e trifluoreto, sendo apenas o complexo monofluoreto férrico não interferente no processo Fenton (Pignatello *et al.*, 2006).

2.4. Estudos da Degradação de Tetraciclinas em Efluentes

Sabendo da presença destes fármacos em efluentes de diversas origens se faz necessário o estudo de novos processos para o tratamento deste efluente, mais baratos e mais ou tão eficientes quanto os já existentes.

Os POA são caracterizados por reações de oxidação química intermediadas pelo radical hidroxila (HO•), espécie extremamente reativa e pouco seletiva. O potencial padrão de redução do radical hidroxila ($E_0 = 2,73V$) é muito superior ao dos oxidantes convencionais, fazendo com que atue na oxidação de uma grande variedade de substâncias. Os radicais podem reagir com os contaminantes orgânicos por mecanismos distintos, dependendo da estrutura do composto alvo, conforme mostrado a seguir:

Hidrocarbonetos alifáticos - susceptíveis a reações de abstração de hidrogênio, produzindo radicais orgânicos que rapidamente se ligam ao oxigênio molecular e geram radicais peróxido que, por sua vez, iniciam reações oxidativas em cadeia, levando o substrato orgânico a CO₂, H₂O e sais inorgânicos (mineralização). Como representado pelas eqs. (28) e (29).

$$RH + OH^{\bullet} \rightarrow R^{\bullet} + H_2O$$
⁽²⁸⁾

$$R^{\bullet} + O_2 \rightarrow RO_2^{\bullet} \rightarrow CO_2 + H_2O + sais inorgânicos$$
 (29)

 Compostos orgânicos que contêm ligações π (insaturados e aromáticos) - reage preferencialmente por adição eletrofílica, formando radicais orgânicos. Como mostrado pela eq. (30).

$$(30)$$

 Hidrocarbonetos halogenados ou com alto grau de impedimento estérico - predomina a transferência eletrônica. Como apresentado pela eq. (31).

$$RX + OH^{\bullet} \rightarrow RX^{\bullet} + HO^{-}$$
(31)

Para compostos aromáticos, no qual a doxiciclina se enquadra, o comportamento esperado para a ação do radical hidroxila seria a partir da adição eletrofílica ao anel da molécula. Mas devido à complexidade da molécula, como o comprimento da ligação C-H, a estabilidade do radical orgânico formado, o número de átomos de hidrogênio (posições de ataque), os efeitos estéricos e a eletronegatividade dos substituintes, sendo muitas vezes o substituinte da molécula a receber o ataque do HO• ao invés de atacar o anel (Pignatello *et al.*, 2006).

Foram encontrados na literatura vários trabalhos sobre a degradação da doxiciclina e de outros fármacos em efluentes.

Rivas *et al.* (2011) estudaram a adsorção de doxiciclina em carvão ativo, fotólise por UV-C e ozonização em concentração de 5*10⁻⁵M. No processo de adsorção em carvão ativo obtiveram redução de 60 a 85% de COT, mas com significativa redução da eficiência com o reuso; redução de 20% da concentração inicial em 2h para a fotólise UV-C, mas sem redução de COT e degradação instantânea com redução de 60% de COT no processo com aplicação de ozônio. A combinação destes 3 processos apresentou uma redução de 70% de COT.

Ghosh *et al.* (2009) estudaram cinco antibióticos (claritromicina, enrofloxacina, sulfametoxazol, tetraciclina e trimetoprim) para avaliar a ação destes sobre as bactérias responsáveis pela oxidação da amônia em ETEs e observaram que para

concentrações inferiores a 0,05 mg/L, individualmente, estes fármacos não tiveram qualquer efeito significativo sobre aquelas bactérias.

Jia *et al.* (2009) estudaram a oxitetraciclina (OTC) e a tetraciclina (TC) e seus produtos de degradação 4-epitetraciclina (ETC), 4-epioxitetraciclina (EOTC), isoclortetraciclina (ICTC), anidrotetraciclina (ATC) e 4-epianidroclortetraciclina (EACTC). Aqueles autores avaliaram as concentrações presentes no afluente e efluente da estação de tratamento de esgoto e também no rio receptor deste efluente, na cidade de Beijing, China, através de cromatografia líquida acoplada a um detector de massa. Os resultados estão apresentados na Tabela 2.

Tabela 2 - Concentrações médias de tetraciclinas e os seus subprodutos detectados em ETEs e rios.					
Composto	Afluente (ng/L)	Efluente (ng/L)	Rio (ng/L)		
OTC	72,5	3,8	2,2		
TC	16,5	1,9	2,1		
ETC	5,9	< LDM*	< LDM*		
EOTC	8,5	< LDM*	< LDM*		
ICTC	9,5	6,8	<ldm*< td=""></ldm*<>		
ATC	5,7	<ldm*< td=""><td><ldm*< td=""></ldm*<></td></ldm*<>	<ldm*< td=""></ldm*<>		
EACTC	25,3	7,6	<ldm*< td=""></ldm*<>		
* <ldm =="" abaixo="" de="" detecção="" do="" limite="" método<="" p=""></ldm>					

Jia et al. (2009)

A presença de tetraciclinas em efluentes de diversas origens tem estimulado vários estudos de novos processos para o tratamento das tetraciclinas. Vários estudos tratam dos mecanismos de degradação com vários processos e sobre a identificação dos produtos resultantes desta degradação, sendo que a maioria destes processos oxidativos baseia-se na geração de radicais hidroxila (Fatta *et al.*, 2011).

Gujarathi *et al.* (2005) avaliaram a utilização de *M. aquaticum* e *P. stratiotes* para fitorremediação de efluentes contendo tetraciclina e oxitetraciclina. Concluíram que as moléculas dos antibióticos são degradadas pelas enzimas catalíticas e radicais presentes nas raízes destes vegetais. Apresentando degradação quase completa até 6 dias após inserção de *P. stratiotes* e 15 dias com *M. aquaticum*. A taxa de modificação dos antibióticos diminuiu com o aumento da concentração inicial destes, o que sugere que o composto de modificação (enzima catalítica) presente nas raízes pode estar em concentrações limitadas.

Ikehata *et al.* (2006) estudaram a degradação fotocatalítica com mineralização parcial de tetraciclina por TiO_2 e obtiveram uma conversão quase completa de 50 mg/L de tetraciclina em duas horas de tratamento e cerca de 90% do Carbono Orgânico Total (TOC) foi removido em 6 h.

Reyes *et al.* (2006) compararam a eficiência da remoção de tetraciclina em suspensões aquosas de TiO₂ irradiada com três fontes de luz diferentes: uma lâmpada de UV, um dispositivo solar e uma lâmpada UV-A. Observaram uma degradação não significativa quando as irradiações foram realizadas na ausência de TiO₂. Houve rápida degradação do fármaco na presença de 0,5 g/L de TiO₂, obtendo 50% da concentração inicial após 10, 20 e 120 minutos, para a lâmpada de UV, dispositivo solar e lâmpada UV-A, respectivamente. Porém, todos os subprodutos gerados mantiveram a atividade antibacteriana.

Jiao *et al.* (2008) estudaram a degradação fotocatalítica da tetraciclina e a toxicidade dos seus produtos de degradação, que apresentaram a relação massacarga (m/z) iguais a 398 e 413. O anel naftol da tetraciclina permaneceu intacto durante a fotólise e a toxicidade dos compostos da fotólise, utilizando *V. fischeri*, revelaram que a toxicidade aumentava com o tempo de irradiação.

Sunaric *et al.* (2009) estudaram a oxidação da doxiciclina com peróxido de hidrogênio utilizando como catalisador o íon cobre. Aqueles autores compararam os resultados de concentração residual do fármaco obtidos por espectrofotometria com os resultados obtidos por CLAE, que apresentaram desvio padrão relativo não superior a 3,80%.

Jeong *et al.* (2010) estudaram os mecanismos de oxidação por radicais hidroxila de quatro antibióticos da classe das tetraciclinas (tetraciclina, clortetraciclina, oxitetraciclina e doxiciclina). Os radicais eram gerados por irradiação do meio com radiação gama e com radiólise de pulsos de elétrons, que provoca a quebra da molécula de água em radicais hidroxila. Observaram que a eficiência do radical hidroxila para as quatro tetraciclinas variou de 32% a 60%, enquanto que para elétrons livres aquosos (e⁻_{aq}) a eficiência variou de 15 a 29%, exceto para a clortetraciclina, que foi de 97%. Os produtos de degradação da doxiciclina foram obtidos por CLAE acoplado ao detector de massa, sendo apresentados e identificados na Figura 04.

De acordo com o trabalho apresentado por Jeong *et al.* (2009) o radical hidroxila formado durante o processo Fenton, é inserido no cloridrato de doxiciclina
através da adição eletrofílica no anel 1, provocando o aumento na massa molar em 16 g/gmol. O rearranjo provocado pela inserção provoca a oxidação do grupo hidroxila no anel 3 dando origem a uma cetona, formação de uma quinona no anel 1 e a abstração do H no anel 2, proporcionando a formação da dupla ligação, como pode ser observado na Figura 04.

Figura 04 – Produtos de degradação e de reação propostos para a doxiciclina (Jeong, 2009).

Yuan *et al.* (2011) estudaram a degradação de oxitetraciclina, doxiciclina e ciprofloxacina com radiação UV e peróxido de hidrogênio associado ao UV em amostras de água de diferentes procedências (água ultrapura, água de superfície,

água potável e efluentes de estação de tratamento de efluentes municipal), com a finalidade de avaliar a influência das diferentes matrizes sobre a degradação dos fármacos em separado e com concentração de 5µM. Avaliaram a toxicidade do produto degradado através de culturas de *Vibrio fischeri*. Observaram que após o tratamento UV não apresentou redução significativa da toxicidade e que o tratamento com UV/H₂O₂ em um primeiro instante houve aumento da toxicidade, e depois diminuiu, formando produtos atóxicos.

Mboula et al. (2012) avaliaram a degradação da tetraciclina com um processo TiO₂/UV, fotocatalítico heterogêneo com focando na determinação da biodegradabilidade, toxicidade e identificação dos subprodutos formados durante o tratamento fotocatalítico. Observaram uma redução de 24% da concentração de carbono orgânico dissolvido, e redução da toxicidade sobre a cultura de Pseudomonas aeruginosa e a não biodegradabilidade através do teste de Sturm. O estudo dos subprodutos através de HPLC ESI-(+) – MS/MS mostrou que o anel da tetraciclina não é aberto e, assim, a estrutura dos subprodutos não é tão diferente do composto inicial, como mostrado na Figura 05.

Figura 05 - Produtos de degradação fotocatalítica da tetraciclina (Adaptado de Mboula et al., 2012).

3. Objetivos

3.1. Objetivos Gerais

Avaliar a degradação do antibiótico cloridrato de doxiciclina em matriz sintética através do processo Fenton.

3.2. Objetivos Específicos

Com este trabalho, procurou-se estudar as melhores condições para a oxidação do antibiótico cloridrato de doxiciclina, através do processo Fenton, em matrizes sintéticas. Procurando estabelecer as condições mais adequadas de concentração de oxidante, catalisador, temperatura e pH do meio através das avaliações dos parâmetros concentração residual do fármaco por espectrofotometria, concentração residual do peróxido de hidrogênio e carbono orgânico total dissolvido em função do tempo.

Após a obtenção da melhor condição experimental de oxidação, avaliou-se a toxicidade celular do meio reacional após o término do experimento, empregando-se células L-929 possibilitando avaliar a inativação da molécula do fármaco sobre as células teste. Testes utilizando culturas de *Escherichia coli*, possibilitaram determinar através de resultados de concentração inibitória mínima (CIM), se o efluente gerado durante o processo permanece ou não com ação antibiótica sobre o organismo teste. A junção dos dois resultados, citotoxicidade e CIM, possibilitaram determinar se o resíduo obtido através do processo Fenton é mais tóxico do que o fármaco original.

Através da análise de CLAE acoplado a detector de massa, foi possível a determinação da massa molecular dos produtos de degradação gerados durante o processo Fenton, possibilitando a sugestão de estruturas moleculares para estes produtos de degradação.

4. Materiais e Métodos

4.1. Materiais

4.1.1. Equipamentos

Agitador mecânico Heidolph – modelo RZR 2021; Autoclave Stermax analógica horizontal; Balança Analítica Marte – modelo AL 500; Banho-termostatizado Tecnal – modelo TE 184; Concentrador rotativo a vácuo Eppendorf – modelo Concentrator Plus; Equipamento para Carbono Orgânico Total Shimadzu – modelo COT 5000A Espectrofotômetro Femto - modelo 600S; Placa de aquecimento Quimis – modelo Q-261A21; pHmetro Marte – modelo MB 10; Termopar Gulton – modelo GULterm 200;

4.1.2. Reagentes

4.1.2.1. Meios Reacionais

Cloridrato de doxiciclina 91,9% (Merck - Calbiochem[®]) Peróxido de hidrogênio 33% PA (Synth) Sulfato ferrosos heptahidratado PA (Synth)

4.1.2.2. Análise da Concentração de Cloridrato de Doxiciclina

Ácido acético glacial PA (Synth) Ácido sulfúrico PA (Synth) Acetato de sódio anidro PA (Merck) Cloridrato de doxiciclina 91,9% (Merck - Calbiochem[®]) Hidróxido de sódio PA (Synth) Iodeto de potássio PA (Merck) Molibdato de sódio dihidratado PA (Synth) Nitrato de sódio PA (Riedel) Sulfito de sódio anidro PA (Baker)

4.1.2.3. Análise da Concentração de Peróxido de Hidrogênio

Ácido sulfúrico PA (Synth) Oxalato de sódio PA (Vetec) Permanganato de potássio PA (Synth) Peróxido de hidrogênio 33% PA (Synth)

4.1.2.4. Análise da Concentração de Carbono Orgânico Total

Ácido sulfúrico PA (Synth) Hidróxido de sódio PA (Synth) Iodeto de potássio PA (Merck) Sulfito de sódio anidro PA (Baker)

4.1.2.5. Análise da Concentração de Íon Ferroso

Acetato de amônio PA (Synth) Ácido acético glacial PA (Synth) Sulfato ferrosos heptahidratado PA (Synth) 1,10-fenantrolina (Synth)

4.1.2.6. Análise em CLAE – UV

Acetato de potássio PA – HPLC (J.T.Baker) Acetonitrila grau HPLC (J.T.Baker); Ácido acético glacial grau HPLC (J.T.Baker); Ácido sulfúrico PA (Synth) Cloridrato de doxiciclina 91,9% (Merck - Calbiochem®) Hidróxido de sódio PA (Synth) Peróxido de hidrogênio 33% PA (Synth)

4.1.2.7. Análise em CLAE – Massa

Ácido acético glacial grau HPLC (J.T.Baker); Ácido sulfúrico PA (Synth) Cloridrato de doxiciclina 91,9% (Merck - Calbiochem®) Hidróxido de sódio PA (Synth) Metanol grau HPLC (J.T.Baker) Peróxido de hidrogênio 33% PA (Synth)

4.1.2.8. Análise de CIM

Ácido sulfúrico PA (Synth) Cloreto de Bário PA (Merck) Cloridrato de doxiciclina 91,9% (Merck - Calbiochem®) Hidróxido de sódio PA (Synth) Meio de cultura Luria Bertani (Sigma-Aldrich) Peróxido de hidrogênio 33% PA (Synth) Sulfato de Bário PA (Merck) Sulfato ferrosos heptahidratado PA (Synth)

4.1.2.9. Análise de Citotoxicidade

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) PA (Sigma-Aldrich) Ácido sulfúrico PA (Synth) Cloridrato de doxiciclina 91,9% (Merck - Calbiochem®) Dubecco´s Modified Eagle Medium, low glucose (DMEM) (Sigma-Aldrich) Hidróxido de sódio PA (Synth) Peróxido de hidrogênio 33% PA (Synth) Sulfato ferrosos heptahidratado PA (Synth) Tripan Blue 0,4% (Sigma-Aldrich) Tripsina EDTA 0,25% (Sigma-Aldrich)

4.2. Métodos

4.2.1. Equipamento

A aparelhagem experimental utilizada nos ensaios consistiu de banho termostatizado, refrigerador, béqueres, balões volumétricos, balança semi-analítica, filtros, agitadores mecânicos, termopares, pHmetro, buretas e espectrofotômetro.

O esquema do equipamento utilizado está mostrado na Figura 06. A concentração da solução de doxiciclina foi elaborada de acordo com concentrações presentes em efluentes hospitalares.

Figura 06 – Equipamento experimental para os ensaios de oxidação pelo processo Fenton.

O béquer (A) contendo a solução aquosa de cloridrato de doxiciclina a 100 mg/L ficava imerso em um banho termostatizado (B) com temperatura ajustável entre 0 e 100℃. O béquer dispunha de um agitador m ecânico (C), um termopar (D), um medidor de pH (E). Nas dosagens e amostragens utilizaram-se micropipetas de 0 a 20, 20 a 200 e de 100 a 1000 µL Finnpipette, Colour 4027.

4.2.2. Planejamento Experimental

Os ensaios de oxidação do cloridrato de doxiciclina foram realizados de acordo com planejamento experimental do tipo Delineamento Composto Central Rotacional, DCCR, como proposto no livro de Rodrigues e lemma (2005). Este planejamento encontra-se nas Tabelas 3 e 5. Para cada ensaio, havia, concomitantemente, 3 meios reacionais diferentes, sendo que todos eram mantidos sob agitação mecânica, no mesmo banho termostatizado. A manutenção dos três meios distintos possibilitou avaliar qual seria a influência do íon ferroso sobre a degradação do fármaco e sobre a degradação do peróxido de hidrogênio, possibilitando subtrair cada interferência sobre o resultado obtido pelo processo Fenton. As substituições não foram feitas, porque os resultados mostraram-se inconstantes dentro do tempo reacional, impossibilitando determinar com segurança a influencia de cada meio "incompleto" sobre o processo Fenton.

Neste trabalho o DCCR proposto apresenta 3 variáveis independentes que são a concentração inicial de íons ferrosos, concentração inicial de peróxido de hidrogênio e temperatura. Estas três variáveis foram escolhidas devido à grande influência que elas exercem sobre o processo, como relatado nos trabalhos de Eisenhauer (1964), Sims (1981), Mota *et al.* (2005), Coelho *et al.* (2006), Tambosi (2008), Beati *et al.* (2009), Kaczmarek e Lis (2009) e Vlyssides *et al.* (2011). No planejamento experimental é necessário codificar as variáveis. Para isto, atribuíram-se os valores -1 e +1 aos limites inferiores e superiores das variáveis codificadas a serem estudadas e inseriu-se o ponto 0, referente ao ponto central. O planejamento DCCR pressupõe ainda valores extremos das variáveis, correspondentes a valores codificados -1,68 e +1,68. A Tabela 3 mostra as variáveis codificadas e suas correspondências numéricas com as variáveis reais

Tabela 3 – Valores reais e codificados das variáveis estudadas							
Variáveis	-1,68	-1	0	+1	+1,68		
C _{Fe} ⁺² (mg/L), X ₁ '	5	28,3	62,5	96,7	120		
C _{H2O2} (mg/L), X ₂ '	100	262	500	738	900		
T (°C), X ₃ '	0	8,1	20	31,9	40		

Os intervalos de concentração de peróxido de hidrogênio (C_{H2O2}), íon ferroso (C_{Fe}^{2+}) e de temperatura foram fixados de acordo com informações da literatura, apresentados na Tabela 4.

	Tabela	4 – Dados extraído	os da literatura para	a a montagen	n do planejamentc	o fatorial tipo DCC	CR	
C _{substrato} (mg/L)	C _{Fe} ²⁺ (mg/L)	C _{H202} (mg/L)	Temperatura (°C)	рН₀	Fe ²⁺ :H ₂ O ₂	Fe ²⁺ : substrato	H ₂ O ₂ : substrato	Referências
50/fenol	0,168 - 1,620	0,306 - 5,542	10 e 50	3,0 - 4,0	0,030 - 5,29	0,0034 - 0,0324	0,0061 - 0,1108	Eisenhauer, 1964
100/fenol	10 - 40	0,072 - 0,217	25	2,0 - 8,0	46,08 - 555,08	0,1 - 0,4	1388,9 - 460,8	Sims, 1981
131,8/fenol	37,4 - 167,5	680 - 5902,4	25	3,0	0,0063 - 0,25	0,28 - 1,27	5,16 - 44,80	Mota et al., 2005
300 - 400/matéria orgânica dissolvida em água ácida de refinaria de petróleo	800 - 1000	8000 - 12000	25 - 45	8,0	0,067 - 0,125	2,00 - 3,33	20,0 - 40,0	Coelho et al., 2006
0,100 - 0,600/ acetaminofeno, cetoprofeno, naproxeno, roxitromicina, sulfametoxazol e trimetoprima (0,100 mg/L cada fármaco)	3,4 - 10	17 - 50	25	3,0	0,068 - 0,588	5,66 - 100	28,33 - 500	Tambosi, 2008
200/ranitidina	558,47	630	20		0,89	2,79	3,15	Beati et al., 2009
0,199 - 9,938/Oxitetraciclina	558,47	6,8	25	3,5	82,13	56,195 - 2809,77	0,684 - 34,21	Kaczmarek e Lis, 2009
4423,12/ácido gálico	217,8 - 1669,8	265,2 - 28560,0	25	2,6 - 3,0	0,0076 - 6,297	0,049 - 0,378	0,060 - 6,457	Vlyssides et al., 2011
100/doxiciclina HCI	500	20	25	2,8 - 3,0	0,14	0,7	5	Ensaios Preliminares

43

O termo pH₀, atribuído na legenda da Tabela 4, refere-se ao pH inicial ou faixa de pH inicial em que o experimento foi conduzido.

Com base nos dados coletados em artigos publicados sobre o processo Fenton, sendo estes dados aplicados a massa de 100 mg/L de cloridrato de doxiciclina, as condições iniciais sugeridas para o tratamento desta molécula seriam as concentrações de peróxido de hidrogênio e de íons ferrosos iguais a 500 mg/L e 70 mg/L respectivamente.

Definindo-se as variáveis a serem estudadas bem como os limites superiores e inferiores, montou-se o planejamento experimental, obtendo-se o número de ensaios através da eq. 32, sendo K o número de variáveis independentes a serem estudadas e o número de pontos centrais é aleatório (não inferior a três):

 $2^{K}_{pontos fatoriais} + 2.K_{pontos axiais} + pontos centrais = número de ensaios$ (32)

Tabela 5 – Planejamento experimental							
Ensaio	X ₁ '	X ₂ '	X ₃ '				
1	-1	-1	-1				
2	+1	-1	-1				
3	-1	+1	-1				
4	+1	+1	-1				
5	-1	-1	+1				
6	+1	-1	+1				
7	-1	+1	+1				
8	+1	+1	+1				
9	-1,68	0	0				
10	+1,68	0	0				
11	0	-1,68	0				
12	0	+1,68	0				
13	0	0	-1,68				
14	0	0	+1,68				
15	0	0	0				
16	0	0	0				
17	0	0	0				
18	0	0	0				
19	0	0	0				
20	0	0	0				

4.3. Ensaios

4.3.1. Solução de Cloridrato de Doxiciclina 100mg/L

Pesar em balança analítica com precisão de ±0,001, 100 mg de cloridrato de doxiciclina e homogeneizar em balão volumétrico de 1L com água destilada. Esta solução apresenta pH entre 2,8 a 3,1, sendo necessário a correção do pH da solução apenas nos ensaios referentes à influência do pH do meio sobre o processo.

4.3.2. Meio Reacional Contendo Cloridrato de Doxiciclina, H₂O₂ e Fe²⁺

Transferir, com auxílio de proveta, 200 mL da solução contendo 100 mg/L de fármaco, para béquer coberto com papel alumínio, protegendo da ação da luz, colocar este béquer em banho termostatizado na temperatura estabelecida no planejamento experimental (0; 8,1; 20; 31,9 ou 40°C) sob agitação com agitador mecânico; quando atingida a temperatura desejada dentro do béquer, adiciona-se a este a solução de sulfato ferroso com concentração de modo que a concentração de Fe²⁺ no meio tenha o valor desejado (5; 28,3; 62,5; 96,7 ou 120 mg/L) e um volume de peróxido de hidrogênio necessário para que a concentração no meio tenha o valor desejado (100; 262; 500; 738 ou 900 mg/L). O ensaio se inicia com a adição do peróxido de hidrogênio, quando então o cronômetro era disparado. Eram coletadas amostras em tempos pré-determinados para determinação espectrofotométrica da concentração residual de doxiciclina.

4.3.3. Meio Reacional Contendo Cloridrato de Doxiciclina e Fe²⁺

Transferir, com auxílio de proveta, 200 mL da solução contendo 100 mg/L de fármaco, para béquer coberto com papel alumínio, protegendo da ação da luz, colocar este béquer em banho termostatizado na temperatura estabelecida no planejamento experimental (0; 8,1; 20; 31,9 ou 40°C) sob agitação com agitador mecânico; quando atingida a temperatura desejada dentro do béquer, adiciona-se a este a solução de sulfato ferroso com concentração de modo que a concentração de Fe²⁺ no meio tenha o valor desejado (5; 28,3; 62,5; 96,7 ou 120 mg/L).

4.3.4. Meio Reacional Contendo H₂O₂ e Fe²⁺

Transferir, com auxílio de proveta, 200 mL de água destilada, para um béquer coberto com papel alumínio, protegendo da ação da luz, colocar este béquer em banho termostatizado na temperatura estabelecida no planejamento experimental (0; 8,1; 20; 31,9 ou 40°C) sob agitação com agitador mecânico; quando atingida a temperatura desejada dentro do béquer, adiciona-se a este a solução de sulfato ferroso com concentração de modo que a concentração de Fe²⁺ no meio tenha o valor desejado (5; 28,3; 62,5; 96,7 ou 120 mg/L) e um volume de peróxido de hidrogênio necessário para que a concentração no meio tenha o valor desejado (100; 262; 500; 738 ou 900 mg/L).

O fluxograma do procedimento está apresentado na Figura 07.

Figura 07 – Fluxograma para realização dos ensaios.

4.4. Métodos Analíticos

4.4.1. Quantificação da Doxiciclina

4.4.1.1. Preparo de Soluções e Reagente

Solução inibidora do sistema Foto-Fenton (contendo 0,1 mol/L de cada componente)

Dissolver 16,6 g de iodeto de potássio + 12,6 g de sulfito de sódio + 4 g de hidróxido de sódio em água destilada, completando o volume para 1000 mL.

Solução de molibdato de sódio 5*10⁻³ mol/L

Dissolver 1,21 g de molibdato de sódio diidratado em balão volumétrico de 1000 mL com água destilada.

Solução de nitrato de sódio 1 mol/L

Dissolver 84,99 g de nitrato de sódio em balão volumétrico de 1000 mL com água destilada.

Solução tampão acetato 0,01 mol/L pH 5,0

Dissolver 0,8203 g de acetato de sódio anidro + 0,57 mL de ácido acético glacial em balão volumétrico de 1000 mL com água destilada.

4.4.1.2. Análise da Doxiciclina

Os íons de ferro podem interferir na análise, sendo necessária a sua remoção do meio. Outro interferente nesta análise é o peróxido de hidrogênio, como apresentado por Gutiérrez *et al.* (1991) e Beati *et al.* (2009), a molécula de peróxido de hidrogênio forma complexo amarelo com o íon molibdato sendo passível de quantificação no meio por espectrofotometria em 350nm, resultando em um falso incremento nos resultados da quantificação do fármaco. Nesta quantificação será necessário o uso de uma solução inibidora de sistema foto-Fenton usada por Mota *et al.* (2005), cujas reações estão descritas pelas eqs. (33) a (36). Esta solução é composta de iodeto de potássio (0,1M), sulfito de sódio (0,1M) e hidróxido de sódio (0,1M) em meio aquoso.

O peróxido de hidrogênio presente na amostra de meio reacional reage com o íon iodeto, formando iodo e água. Na presença do sulfito de sódio, o peróxido de hidrogênio presente na amostra reage formando sulfato de sódio e água. Estas duas reações são responsáveis pela decomposição do peróxido de hidrogênio residual na alíquota retirada do meio reacional para determinação da concentração residual do cloridrato de doxiciclina.

O pH extremamente alto, próximo a 13, obtido pela presença do hidróxido de sódio na solução inibidora do sistema foto-Fenton, possibilita a formação de hidróxido de ferro (Fe²⁺ e Fe³⁺), que são pouco solúveis em meio aquoso, possibilitando a retirada destes através de filtração ou centrifugação.

$$H_2O_2 + 2I^- + 2H^+ \rightarrow I_2 + 2H_2O$$
 (33)

$$H_2O_2 + Na_2SO_3 \rightarrow Na_2SO_4 + 2H_2O$$
(34)

$$Fe^{2+} + 2OH^{-} \rightarrow Fe(OH)_{2}$$
(35)

 $\mathrm{Fe}^{^{3+}} + \mathrm{3OH}^{-} \to \mathrm{Fe(OH)}_{^{3}} \tag{36}$

Coletar em frasco contendo 2 mL da solução inibidora de sistema foto-Fenton, 5mL de alíquota do meio reacional. Homogeneizar e filtrar com filtro de 0,45 µm acoplado a seringa, coletando o filtrado em frasco limpo.

Transferir com o auxilio de uma pipeta graduada 6mL de filtrado para um frasco limpo contendo 2,5 mL de água destilada e 2 gotas de H_2SO_4 1:5. Homogeneizar esta solução acidificada (pH~3).

De acordo com a metodologia desenvolvida por Stankov, M.J.; Veselinovic, D. (1988), serão determinadas as concentrações de doxiciclina tomando-se como base a análise do complexo formado entre o fármaco e o molibdato de sódio. Como apresentado na Figura 08.

Figura 08 – Reação de formação de complexo doxiciclina-molibdato (Adaptado de Cunha e Sakai, 1985; Stankov *et al.*, 1991).

Transferir 1 mL da solução acidificada para balão volumétrico de 5 mL e juntar a este 1mL de solução $Na_2MoO_4 5*10^{-3}$ mol/L, 0,5 mL de $NaNO_3$ 1 mol/L e 0,5 mL de solução tampão acetato 0,01 mol/L pH 5,0.

Avolumar o balão com água destilada, homogeneizar.

Transferir para cubeta de 1 cm e efetuar a leitura em espectrofotômetro em comprimento de onda de 390 nm.

Com base na equação da reta obtida com a análise da curva de calibração, apresentada na Figura 1 do Apêndice A, a concentração de doxiciclina residual será dada pela expressão (37):

$$C_{doxi\,\mathrm{HCl}} = \frac{ABS}{0.0027} \tag{37}$$

Em que:

 $C_{Doxi,HCl}$ = concentração de cloridrato de doxiciclina residual (mg/L) ABS = absorbância da amostra Os fluxogramas de preparo da amostra e quantificação da concentração residual de cloridrato de doxiciclina estão apresentados nas Figuras 09 e 10, respectivamente.

Figura 09 – Fluxograma da remoção do Fe²⁺ e do H₂O₂ residuais

Figura 10 - Fluxograma da quantificação do cloridrato de doxiciclina

4.4.2. Quantificação do Peróxido de Hidrogênio

4.4.2.1. Preparo de Soluções e Reagente

Solução de ácido sulfúrico 1:5

Dissolver 200 mL de ácido sulfúrico concentrado em balão volumétrico de 1000mL com água destilada.

Solução de permanganato de potássio 0,002 mol/L padronizada

Dissolver 0,32 g de permanganato de potássio em 1000 mL de água destilada. Guardar a solução por 24h para estabilidade do meio. Padronizar com Oxalato de Sódio 0,01 mol/L.

Solução de Oxalato de Sódio 0,01 mol/L

Dissolver 0,335 g de oxalato de sódio em 250 mL de água destilada.

4.4.2.2. Padronização do KMnO₄ 0,002 mol/L

Em três erlenmeyers de 125 mL adicionar 10 mL de solução de $Na_2C_2O_4$ 0,01 mol/L em cada erlenmeyer. Adicionar a estes 10 mL de solução H_2SO_4 1:5 e 50 mL de água destilada.

Aquecer a 60°C o conteúdo dos erlenmeyers, mantendo esta temperatura, efetuar a titulação com a solução de KMnO₄ 0,002 mol/L que deve ser padronizada até aparecimento de leve coloração violeta.

Aguardar 30 segundos após a viragem, garantindo a permanência da cor.

Anotar o volume de cada titulação e fazer uma média entre elas.

O volume teórico encontrado através da estequiometria da reação é de 19,75375 mL da solução de KMnO₄ 0,002 mol/L para titular os 10 mL da solução de Na₂C₂O₄ 0,01 mol/L. O fator da solução de permanganato de potássio será determinado pela eq. (38).

$$fc = \frac{VolumeTe{o}rico}{Volume \operatorname{Re} al}$$
(38)

Em que:

Volume Teórico = 19,75375 mL.

Volume Real = obtido experimentalmente.

4.4.2.3. Análise de Peróxido de Hidrogênio

A metodologia proposta para esta determinação está de acordo com o trabalho apresentado por Albuquerque (2005), no qual a concentração foi determinada por método titulométrico tomando-se como base a reação redox entre o peróxido de hidrogênio e o permanganato de potássio em meio ácido, como apresentada pela eq. (39).

$$2MnO_{4}^{-} + 5H_{2}O_{2} + 6H^{+} \rightarrow 2Mn^{2+} + 8H_{2}O + 5O_{2}$$
(39)

De acordo com testes preliminares, a solução de cloridrato de doxiciclina titulada da mesma forma, não interferiu no resultado final da determinação, pois o volume gasto foi igual à amostra branco (0,2 mL). O íon ferroso por sua vez, quando titulado, consome o permanganato de potássio da solução titulante como apresentado pela eq. 40, mas não apresenta falso ponto de viragem que desaparece antes de 30 segundo, o qual ocorre na quantificação do peróxido de hidrogênio.

$$MnO_{4}^{-} + 5Fe^{2+} + 8H^{+} \to Mn^{2+} + 5Fe^{3+} + 4H_{2}O$$
(40)

Em erlenmeyer de 125 mL contendo 5 mL de H₂SO₄ 1:5 e 50 mL de água destilada, adicionar 2 mL de alíquota do meio reacional.

Homogeneizar e titular com solução de KMnO₄ 0,002 mol/L padronizado (Morita, 2007).

Aguardar 30 segundos após a viragem, garantindo a permanência da cor.

Com base no volume encontrado na titulação da alíquota retirada do meio reacional, a concentração instantânea de peróxido de hidrogênio presente no meio será dada pela expressão (41):

$$C_{H_2O_2(ppm)} = \frac{A * M * 5 * 34 * 10^3 * Fc}{2 * V}$$
(41)

Em que:

 $C_{H_2O_2(ppm)}$ = concentração de peróxido de hidrogênio (mg/L)

A = volume do titulante (mL)

M = molaridade do titulante (mol/L)

Fc = fator de correção do titulante

V = volume da amostra (mL)

O fluxograma da quantificação da concentração residual de peróxido de hidrogênio está apresentado na Figura 11.

Figura 11 – Fluxograma da análise de peróxido de hidrogênio residual

4.4.3. Carbono Orgânico Total

A análise da concentração de carbono orgânico total (COT) foi realizada no Centro de Engenharia de Sistemas Químicos (CESQ-EPUSP), com o equipamento TOC-5000A (Shimadzu). Neste equipamento as amostras (V = 7 mL) são acidificadas (pH = 2,0-3,0), injetadas com alimentador automático e conduzidas a um forno de alta temperatura (680°C) com catalisador d e platina com atmosfera de O₂. Toda matéria orgânica é oxidada a CO₂, que é determinado por um sensor de infravermelho não dispersivo (NDIR).

Com base na área do pico do dióxido de carbono detectado, esta era convertida para concentração de carbono total (TC) com base em uma curva de calibração obtida com padrões de biftalato de potássio de concentrações conhecidas. No aparelho, parte da amostra é dispersa em solução de H₃PO₄ para determinação de carbono inorgânico (IC) a partir de uma curva de calibração determinada com padrões de carbonato e bicarbonato de sódio de concentrações conhecidas. A diferença entre essas medidas fornece como resultado a concentração de carbono total presente no líquido. Na Figura 12 está mostrado o equipamento TOC-5000A (Shimadzu).

Figura 12 – Equipamento TOC 5000A (CESQ-EPUSP).

A Figura 13 apresenta o fluxograma do procedimento de análise para determinação da concentração de carbono orgânico nas amostras do meio reacional.

Figura 13 – Fluxograma da análise para a determinação de Carbono Orgânico Total.

4.4.4. Quantificação de Íon Ferroso

O método para quantificação da concentração de íon ferroso presente em solução foi obtido de APHA, 1999. Método: 3500–Fe: B. Phenanthroline Method.

4.4.4.1. Preparo de Soluções e Reagente

Solução padrão de sulfato ferroso Dissolver 0,05 g de FeSO₄.7H₂O em 1000 mL de água destilada.

Solução tampão de acetato de amônio

Dissolver 250 g de acetato de amônio em 150 mL de água destilada. Adicionar 700 mL de ácido acético glacial concentrado e avolumar para 1000 mL.

Solução de ortofenantrolina

Dissolver 100 mg de 1,10-fenantrolina monohidratada em 100 mL de água com agitação e aquecimento à 80°C. A solução deverá ser descartada se escurecer.

4.4.4.2. Análise de Íon Ferroso

Pipetar 1 mL de amostra em um frasco âmbar. Adicionar 2,5 mL de solução tampão acetato de amônio mantendo o pH do meio analítico estável, 5,5 mL de solução de ortofenantrolina, responsável pela formação do complexo colorido com o íon ferroso, e 9 mL de água destilada. Agitar vigorosamente. Guardar em local escuro, fazendo a leitura da absorbância entre 5 e 10 minutos após a adição da ortofenantrolina em 510 nm, contra branco de reagentes. A Figura 14 mostra a formação do complexo entre a ortofenantrolina e o íon ferroso.

Figura 14 – Formação do complexo Ferroína (Fe²⁺-ortofenantrolina)

Preparo dos padrões

Em frascos âmbar, adicionar os volumes de solução padrão e água de acordo com a Tabela 6, adicionando a cada frasco 2,5 mL de solução tampão acetato de amônio e 5,5 mL de solução de ortofenantrolina. Agitar vigorosamente. Guardar em local escuro, fazendo a leitura da absorbância entre 5 e 10 minutos após a adição da ortofenantrolina em 510 nm.

·	Tabela 6 – Soluções padrão de íon feri	roso
C _{Fe} ⁺² (mg/L)	Volume solução padrão (mL)	Volume de água (mL)
0,5	1,25	8,75
1,0	2,5	7,5
2,0	5	5
3,0	7,5	2,5
4,0	10	0

O fluxograma da análise da concentração de íons ferrosos em solução é apresentada na Figura 15.

Figura 15 – Fluxograma da análise da concentração de íon ferroso em solução.

4.4.5. Determinação de Doxiciclina por CLAE – Detector UV

Os resultados analíticos de concentração de cloridrato de doxiciclina obtidos por espectrofotometria foram comparados aos obtidos por CLAE-UV, Shimadzu – modelo UFLC, acoplado a um detector de UV Shimadzu – modelo SPD-20A UFLC UV-VIS Detector, instalado no CESQ-EPUSP.

4.4.5.1. Condições Analíticas

Todas as análises foram feitas em temperatura de coluna de 40°C em condições isocráticas. A fase móvel consistia de uma mistura contendo 25% de acetronila e 75% solução tampão acetato 30 µM, pH = 4,5. A vazão da fase móvel

era de 0,400 mL/min e o volume das injeções era de 10 μ L. A coluna utilizada era da Shimadzu – Shim-pack XR-ODS (2,0 mm i.d. x 50 mm). O comprimento de onda utilizado pelo detector UV para a análise de cloridrato de doxiciclina foi 350 nm e o tempo de corrida 15 minutos.

4.4.5.2. Preparo das Curvas de Calibração

Foram preparadas soluções padrão com concentrações de 0, 10, 20, 40, 60, 80 e 100 mg/L a partir da solução-mãe de 100 mg/L, convenientemente diluídos em balão volumétrico de 10 mL com água destilada. Cada padrão foi analisado por CLAE e os valores das áreas máximas foram traçados em função das concentrações dos padrões.

4.4.5.3. Preparo das Amostras

As condições do meio reacional (V = 200 mL) foram C_{Fe}^{2+} = 25 mg/L e C_{H2O2} = 611 mg/L e T = 35°C. As amostras foram coletadas nos instantes 30, 60, 90, 120, 300 segundos. Em cada amostragem, retirava-se uma alíquota de 2 mL do meio reacional e adicionava-se 30 µL de NaOH 0,1M para precipitação do íon Fe³⁺ e neutralização do resíduo de H₂O₂, que continha cerca de 9 mg/L de peróxido. Esta solução era filtrada em filtro 45 µm e o pH do filtrado corrigido com 20 µL H₂SO₄ 1:5 (pH~1,5).

4.4.6. Determinação de Doxiciclina com CLAE - Espectrômetro de Massa

Os ensaios para a determinação dos produtos de degradação obtidos através da condição experimental encontrada foram realizados no equipamento LC Shimadzu – modelo Prominence UFLC, acoplado a um detector de Massa Shimadzu – modelo LCMS-IT-TOF instalado no CESQ-EPUSP.

4.4.6.1. Condições Analíticas

Todas as análises foram feitas em temperatura de coluna de 40°C em condições isocráticas. A fase móvel consistiu de uma mistura contendo 50% metanol e 50% solução aquosa ácido acético 0,1% v/v. A vazão da fase móvel era de 0,2

mL/min e o volume das amostras injetadas era de 1 μ L. A coluna utilizada era da Shimadzu – Shim-pack XR-ODS (2,0 × 50 mm, 2 μ m) e o tempo de corrida era de 5 minutos.

4.4.6.2. Preparo das Amostras

As condições do meio reacional (V = 200 mL) foram C_{Fe}^{2+} = 25 mg/L e C_{H2O2} = 611 mg/L e T = 35°C. As amostras foram coletadas nos instantes 30, 60, 90, 120, 300 segundos e 10 min. Em cada amostragem, retirava-se uma alíquota de 2 mL do meio reacional e adicionava-se 30 µL de NaOH 0,1M para precipitação do íon Fe³⁺ e neutralização do resíduo de H₂O₂, que continha cerca de 9 mg/L de peróxido. Esta solução era filtrada em filtro 45 µm e o pH do filtrado corrigido com 20 µL H₂SO₄ 1:5 (pH~1,5).

4.5. Ensaios de Toxicidade

Os ensaios de toxicidade foram realizados em trabalho conjunto com o Prof. Dr. Marco Antonio Stephano no Laboratório de Imunobiológicos e Biofármacos da Faculdade de Ciências Farmacêuticas – USP.

4.5.1. Preparo da Solução Estoque de Cloridrato de Doxiciclina, Branco Reacional e Amostra

Solução de cloridrato de doxiciclina 2000 µg/mL – pesa-se 0,1 g de cloridrato de doxiciclina e dilui com água destilada em balão volumétrico de 50 mL.

O branco reacional é preparado com 9 mg/L de H_2O_2 e 25 mg/L de Fe^{3+} em 200 mL de meio aquoso. Retira-se uma alíquota de 20 mL e adiciona-se a esta NaOH 0,1M até pH 13 para precipitação do íon Fe^{3+} e neutralização do resíduo de H_2O_2 (~9 mg/L). Esta solução é filtrada em filtro 45µm e o filtrado corrigido o pH para 7,0 com H_2SO_4 1:5 (v/v).

A amostra de tratamento é preparada através da montagem do meio reacional contendo 200 mL de solução 100 mg/L de cloridrato de doxiciclina, 25 mg/L de Fe²⁺ e 611 mg/L de H₂O₂ em béquer protegido da luz e temperatura interna do meio reacional em 35°C. Após 240 minutos de reação, retira-se uma alíquota de 20 mL do meio reacional e adiciona-se a esta NaOH 0,1M até pH 13 para precipitação do íon

Fe³⁺ e neutralização do resíduo de H₂O₂ (~9 mg/L). Esta solução é filtrada em filtro 45 μ m e o filtrado corrigido o pH para 7,0 com H₂SO₄ 1:5 (v/v).

Todas as soluções utilizadas foram esterilizadas por filtração (filtro 0,22 μm), em capela de fluxo unidirecional, anterior ao uso das mesmas nos testes.

4.5.2. Teste de Concentração Inibitória Mínima (CIM)

O teste foi feito de acordo com o protocolo para determinação de CIM (MIC, em inglês) em microplaca, contido no M07-A8 do National Committee for Clinical Laboratory Standards. A cepa sensível a doxiciclina utilizada foi *Escherichi coli* ATCC 25922. As placas de Petri descartáveis com meio de cultura sólido LB ágar (Luria Bertani ágar, Difco) e o meio líquido LB (Luria Bertani, Difco) foram preparados de acordo com o fabricante, em água deionizada, seguida de esterilização em autoclave e teste de esterilidade antes do uso (ausência de turvação após incubação por 24 h/37℃).

4.5.2.1. Preparo de Soluções e Reagente

Preparo da solução de antibiótico – A solução antibiótico estoque (1 mg/mL)
 foi preparada em água purificada tipo I, esterilizada por filtração filtro 0,22 μm) e
 utilizada após o preparo.

- Preparação da solução padrão de turbidez – Para padronizar a densidade do inoculo foi utilizado padrão de turbidez de BaSO₄, equivalente a uma solução padrão 0,5 de McFarland (~ 1 a 2 x10⁸ UFC/mL). O padrão foi feito com uma alíquota de 0,5mL de BaCl₂ 0.048 mol/L em 99,5 mL de H₂SO₄ 0,18 mol/L, homogeneizando constantemente para manter a suspensão. A densidade deste padrão foi verificada em espectrofotômetro (625 nm) em cubeta de 1 cm de caminho ótico. Para que a solução padrão seja válida, o valor da absorbância deve ser de 0,08 a 0,10, mantendo-se constante até o dia da análise.

4.5.2.2. Preparação do Inóculo e Suspensão Direta

Inicialmente, uma alçada do micro-organismo foi inoculada em placa de Petri com meio LB ágar (18-24 h / 37° C). Dessa placa for am selecionadas colônias isoladas e ressuspensas em 5 mL de solução salina estéril (NaCl 0.9%

peso/volume). A turbidez foi medida (espectrofotômetro - 625 nm) a cada colônia adicionada, sendo a adição interrompida quando o valor da densidade ótica da suspensão bacteriana atingiu o valor da solução padrão de turbidez.

4.5.2.3. Teste de Susceptibilidade ao Antibiótico

A susceptibilidade ao antimicrobiano foi determinada pelo ensaio de microdiluição. Para as diluições de antibiótico, a solução estoque foi diluída para o dobro da concentração desejada na primeira coluna da microplaca de 96 poços. Prosseguiu-se a diluição seriada (100 µL por poço) em meio de cultura LB da primeira a décima coluna, sendo a 11^a o controle de crescimento e a 12^a o controle de esterilidade do meio (Figura 16).

	1	2	3	4	5	6	7	8	9	10	11	12
Doxiciclina HCI	25 µg/ml	12,5 µg/ml	6,3 µg/ml	3,2 µg/ml	1,6 µg/ml	0,8 µg/ml	0,4 µg/ml	0,2 µg/ml	0,1 µg/ml	0,01 µg/ml	0	0
Doxiciclina HCl	25 µg/ml	12,5 µg/ml	6,3 µg/ml	3,2 µg/ml	1,6 µg/ml	0,8 µg/ml	0,4 µg/ml	0,2 µg/ml	0,1 µg/ml	0,01 µg/ml	0	0
Doxiciclina HCl	25 µg/ml	12,5 µg/ml	6,3 µg/ml	3,2 µg/ml	1,6 µg/ml	0,8 µg/ml	0,4 µg/ml	0,2 µg/ml	0,1 µg/ml	0,01 µg/ml	0	0
Tratamento	25%	12,5%	6,3%	3,2%	1,6%	0.8%	0.4%	0.2%	0,1%	0,05%	0	0
Tratamento	25%	12,5%	6,3%	3,2%	1,6%	0.8%	0.4%	0.2%	0,1%	0,05%	0	0
Tratamento	25%	12,5%	6,3%	3,2%	1,6%	0.8%	0.4%	0.2%	0,1%	0,05%	0	0
Branco do tratamento	25%	12,5%	6,3%	3,2%	1,6%	0.8%	0.4%	0.2%	0,1%	0,05%	0	0

Figura 16 – Esquema de montagem da placa de CIM.

A suspensão celular com densidade corrigida para 0.5 McFarland foi diluída em meio de cultura (10^6 UFC/mL) e colocada 100 µL em cada poço. Em paralelo, foi conferida a pureza do inoculo incubando uma alíquota da bactéria em ágar junto com o teste.

Todas as diluições do antibiótico, tratamento e branco do tratamento foram feitas utilizando-se meio de cultura LB.

O teste foi então incubado em 37°C/24h e analisado visualmente. A concentração do último poço que não turvou foi considerada a CIM.

4.5.3. Teste de Citotoxicidade

4.5.3.1. Cultura Celular

A cepa murina utilizada para controle de citotoxicidade foi a L929, ATCC CCL-1, cultivada em meio Dubecco's Modified Eagle Medium, low glucose (DMEM) contendo 10% de Soro Fetal Bovino (SFB). A incubação em garrafas descartáveis de cultura (25 cm³ ou 75 cm³) foi realizada em estufa (5% CO₂ / 37°C), sendo o repique feito a cada 48h.

4.5.3.2. Viabilidade Celular por MTT

O teste de citotoxicidade foi baseado na ISO 10993-5:2009 - Anexo C (International Organization for Standardization, 2009), sendo determinado pelo ensaio de MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide). O MTT indica a presença de mitocôndrias ativas e, consequentemente, de viabilidade celular.

Para realização do teste, o cultivo celular foi mantido até o segundo repique. Em seguida, o meio de cultura foi descartado e as células aderentes foram tratadas com solução de tripsina 0,5% / EDTA 0,2% (Sigma) por 15 min/37°C, descolando o tapete celular. A suspensão celular obtida foi acrescida de DMEM+10%SFB para neutralização da pepsina. As células viáveis foram contadas através de câmara de neubauer, em microscópio, após coloração com azul de tripano (Tripan Blue 0,4%, Sigma). A concentração celular foi então ajustada com meio DMEM (10⁵ células/mL) e distribuídas em microplacas de 96 poços para o teste (100 μ L/poço). Após incubação das microplacas para aderência celular (5% CO₂/37°C/24h), foi retirado o meio de cultura e adicionado 100 μ L por poço dos tratamentos e controles: somente meio de cultura – 100% de viabilidade, etanol 20% - 0% viabilidade, meio de tratamento do antibiótico e água nas proporções das amostras teste. As placas com os tratamentos foram novamente incubadas (5%CO₂/37°C/24h) para posterior verificação de viabilidade celular.

Após o tratamento descrito, o meio de cultura dos poços foi descartado e a solução de MTT (1 mg/mL em água purificada tipo I) foi adicionada em cada poço, seguida de nova incubação (37°C/2h). Em seguida, a solução de MTT foi descartada e 100µL de isopropanol foram adicionados em cada poço para dissolver os cristais

formados nas mitocôndrias. A absorbância foi lida em espectrofotômetro a 570 nm. A viabilidade celular relativa dos tratamentos foi quantificada em porcentagem de absorbância, sendo o controle de crescimento com meio de cultura considerado como 100%.

5. Resultados e Discussões

5.1. Validação do Método Espectrofotométrico para Determinação da Concentração Residual Final de Cloridrato de Doxiciclina

O método mais simples encontrado na literatura para a determinação espectrofotométrica de doxiciclina foi o proposto por Stankov e Veselinovic (1988). O método espectrofotométrico é um método indireto para determinação da concentração de doxiciclina e, portanto, necessita de uma curva de calibração obtida a partir da determinação da absorbância de soluções contendo quantidades conhecidas do antibiótico, em um comprimento de onda para o qual a absorbância da amostra seja máxima. Uma curva de calibração típica está mostrada na Tabela A do Apêndice A.

De acordo com a Resolução 899/03 da ANVISA (Brasil, 2003), o objetivo de uma validação é demonstrar que o método é apropriado para a finalidade pretendida, ou seja, a determinação qualitativa, semiquantitativa e/ou quantitativa de fármacos e outras substâncias. Segundo esta resolução, os testes realizados neste trabalho para a quantificação da concentração de cloridrato de doxiciclina estão submetidos à Categoria II da classificação de testes, apresentado na Tabela 7.

Tab	ela 7 - Classificação dos testes, segundo sua finalidade.
Categoria	Finalidade do teste
l	Testes quantitativos para a determinação do princípio ativo
	em produtos farmacêuticos ou matérias primas.
II	Testes quantitativos ou ensaio limite para a determinação
	de impurezas e produtos de degradação em produtos
	farmacêuticos e matérias-primas.
III	Testes de desempenho (por exemplo: dissolução, liberação
	do ativo).
IV	Testes de identificação.
Eanto: DDASIL (2002)	

Fonte: BRASIL (2003)

Para garantir a qualidade dos resultados oferecidos a Categoria II da resolução estabelece que devem ser avaliados os parâmetros de especificidade; linearidade; precisão (repetibilidade), limite de quantificação; exatidão e robustez.

Especificidade

A especificidade é a capacidade que o método possui de medir exatamente um composto em presença de outros componentes tais como impurezas, produtos de degradação e componentes da matriz (BRASIL, 2003).

De acordo com Brasil (2003), para a análise quantitativa e análise de impurezas na ausência de padrão do produto de degradação disponível, pode-se comparar os resultados do teste das amostras contendo impurezas ou produtos de degradação com os resultados de um segundo procedimento bem caracterizado (por ex. método descrito pelas Farmacopéias), incluindo amostras armazenadas sob condições de estresse (por ex. luz, calor, umidade, hidrólise ácida/básica, oxidação).

A fim de verificar a especificidade do método espectrofotométrico empregado, as amostras da curva de calibração e amostras retiradas do meio reacional (submetidas ao processo oxidativo de Fenton), foram submetidas à análise por CLAE-UV de acordo com metodologia proposta por ANVISA (2010), comparando-se os resultados obtidos pelas duas técnicas analíticas.

A Figura 17 mostra os cromatogramas obtidos e a Figura 18 mostra um alto coeficiente de correlação entre as áreas dos picos e a concentração de doxiciclina. Os dados de onde foram extraídas as áreas relativas para cada ponto da curva estão apresentados no Apêndice B e na Tabela B do Apêndice A.

Observa-se ainda na Figura 17 uma alta especificidade do método analítico por CLAE-UV.

Foi realizado um ensaio (T= 35° C, $C_{Fe}^{2+} = 25$ mg/L, $C_{H2O2} = 611$ mg/L) para se determinar a concentração de doxiciclina por CLAE-UV nos instantes iniciais da reação e os resultados estão mostrados na Tabela 8 e em nos gráficos obtidos pelo aparelho de CLAE apresentados na subdivisão <u>Amostras</u> no Apêndice B, onde também estão mostrados os resultados de concentração de doxiciclina determinados por espectrofotometria. Na Tabela 8 os resultados da análise espectrofotométrica são a média de 2 ensaios, enquanto os resultados da análise por CLAE são para um único ensaio. Estes resultados mostram que os valores de concentração obtidos por espectrofotometria são em média 25 vezes maiores do que os obtidos por CLAE-UV. Acredita-se que pelo método espectrofotométrico são determinadas estruturas moleculares de produtos de degradação da doxiciclina que mantêm o grupo funcional que se liga ao íon molibdato, responsável pela quantificação da doxiciclina pelo método espectrofotométrico. Embora estes

produtos de degradação não sejam, a rigor, a doxiciclina original, elas são responsáveis pela falsa determinação de doxiciclina.

Figura 17 – Gráfico da curva de calibração obtida por CLAE-UV (350 nm), — 0 mg/L; — 10 mg/L; — 20 mg/L; — 40 mg/L; — 60 mg/L; — 80 mg/L e — 100 mg/L.

Figura 18 – Gráfico de correlação entre a concentração de $C_{\text{Doxi.HCI}}$ e a área dos picos em 350nm.

espectrolot	ometria e por CLAE-U	$= 25 \text{ mg/L}, C_{H2O2} =$	611 mg/L).		
Tempo de	Espectrofo	tômetro	CLAE-UV		
reação (s)	Abs (390nm)	C _{Doxi.HCI} (mg/L)	Área do pico (350nm)	C _{Doxi.HCI} (mg/L)	
30	0,067	25,1	8.953,000	0,895	
60	0,043	15,9	6.182,000	0,618	
90	0,040	14,9	6.610,000	0,661	
120	0,034	12,4	5.875,000	0,588	
300	0,038	14,0	5.424,000	0,542	

Tabela 8 – Comparação entre as concentrações de cloridrato de doxiciclina obtidas por espectrofotometria e por CLAE-UV (T= 35° C, $C_{E_{0}}^{2+} = 25 \text{ mg/L}$, $C_{H2O2} = 611 \text{ mg/L}$).

Limite de Detecção e Quantificação

O limite de detecção é a menor quantidade do analíto presente em uma amostra e que pode ser detectado, porém não necessariamente quantificado, sob as condições experimentais estabelecidas (BRASIL, 2003).

O limite de quantificação é a menor quantidade do analíto em uma amostra e que pode ser determinada com precisão e exatidão aceitáveis sob as condições experimentais estabelecidas (BRASIL, 2003).

Foram determinados os limites de detecção e de quantificação, através da realização em triplicata da curva de calibração de cloridrato de doxiciclina com concentrações de 0, 0,2, 0,5, 1,0, 2,0, 4,0, 6,0, 8,0, 10,0, 20,0, 40,0, 60,0, 80,0 e 100,0 mg/L pelo método espectrofotométrico e os resultados estão mostrados na Tabela 9.

C _{Doxi.HCl}	Abs1	Abs2	Abs3	Média	Desvio	Intervalo de
(mg/L)	(390nm)	(390nm)	(390nm)		Padrão	confiança
0,0	0,000	0,000	0,000	0,000	0,000	-
0,2	0,000	0,000	0,000	0,000	0,000	-
0,5	0,000	0,000	0,001	0,000	0,001	6,533E-04
1,0	0,002	0,003	0,003	0,003	0,001	6,533E-04
2,0	0,006	0,008	0,009	0,008	0,002	1,729E-03
4,0	0,010	0,013	0,011	0,011	0,002	1,729E-03
6,0	0,020	0,021	0,018	0,020	0,002	1,729E-03
8,0	0,025	0,025	0,023	0,024	0,001	1,307E-03
10,0	0,028	0,030	0,030	0,029	0,001	1,307E-03
20,0	0,056	0,054	0,055	0,055	0,001	1,132E-03
40,0	0,121	0,126	0,119	0,122	0,004	4,080E-03
60,0	0,183	0,180	0,179	0,181	0,002	2,356E-03
80,0	0,245	0,249	0,250	0,248	0,003	2,994E-03
100,0	0,303	0,304	0,304	0,304	0,001	6,533E-04

O limite de quantificação foi estabelecido como sendo de 1,00 mg/L, pois nesta concentração a absorbância obtida foi de 0,003 ± 0,001 (erro na leitura do aparelho Femto-600S). Abaixo desta concentração as leituras permaneceram similares às leituras obtidas para a amostra em branco. Como relatado em Brasil (2003), o limite de detecção não necessita ser quantificado, sendo apenas detectado. A concentração de 0,50 mg/L de cloridrato de doxiciclina apresentou absorbância de 0,001 com comprimento de onda igual a 390 nm, sendo esta concentração do fármaco considerada o limite de detecção do método apesar da incerteza do resultado poder estar dentro da faixa de erro analítico atribuído ao espectrofotômetro Femto 600-S.

Linearidade

A linearidade é a capacidade de uma metodologia analítica de demonstrar que os resultados obtidos são diretamente proporcionais à concentração do analíto na amostra, dentro de um intervalo especificado (BRASIL, 2003). Para que o método possa ser considerado linear esta resolução propõe que as análises sejam determinadas no mínimo com 5 concentrações diferentes do analíto e que o critério mínimo aceitável do coeficiente de correlação deve ser igual a 0,99.

Para a verificação da linearidade do método obteve-se o gráfico da Figura 19, a partir dos dados apresentados na Tabela 9, onde de acordo com o coeficiente de correlação da reta é igual a 0,995 e através a análise da barra de erros expressa, o resultado possui pouca variação.

Figura 19 – Determinação do limite de quantificação e de detecção da concentração de cloridrato de doxiciclina através da barras de erro para cada concentração do fármaco em solução.

Precisão (Repetibilidade)

A repetibilidade é a concordância entre os resultados dentro de um curto período de tempo com o mesmo analista e mesma instrumentação. A repetibilidade do método é verificada por, no mínimo, nove determinações, contemplando o intervalo linear do método, ou seja, três concentrações (baixa, média e alta), com três réplicas cada ou mínimo de seis determinações a 100% da concentração do teste (BRASIL, 2003).

O ensaio de repetibilidade do método espectrofotométrico utilizando-se os dados obtidos na Tabela 9 e representados pelas barras de erros da Figura 19 para a determinação da concentração de cloridrato de doxiciclina atribuem ao método boa repetibiliade devido ao fato de apresentar variação máxima de leitura de $\pm 4,080*10^{-3}$ (unidades de absorbância), garantindo a confiança dos resultados obtidos pelo método.

Exatidão

A exatidão de um método analítico é a proximidade dos resultados obtidos pelo método em estudo em relação ao valor verdadeiro (BRASIL, 2003).

De acordo com Brasil (2003), no caso da indisponibilidade de amostras de certas impurezas e/ou produtos de degradação, se aceita a comparação dos resultados obtidos com um segundo método bem caracterizado (metodologia

farmacopéica ou outro procedimento analítico validado). A exatidão é calculada como porcentagem de recuperação da quantidade conhecida do analíto adicionado à amostra, ou como a diferença porcentual entre as médias e o valor verdadeiro aceito, acrescida dos intervalos de confiança.

A exatidão do método deve ser determinada a partir de, no mínimo, nove determinações contemplando o intervalo linear do procedimento, ou seja, três concentrações (baixa, média e alta) com três réplicas cada. A exatidão é expressa pela relação entre a concentração média determinada experimentalmente e a concentração teórica correspondente (eq. (42)) (BRASIL, 2003):

$$Exatidão = \frac{\text{Concentração média experimental}}{\text{Concentração Teórica}} *100$$
(42)

A exatidão do método espectrofotométrico para cada faixa de determinação da concentração de cloridrato de doxiciclina nas soluções em estudo está apresentada na Tabela 10.

C _{Doxi.HCI.Teórica}	C _{Doxi} .	HCI.Experimental (I	Mádia	Exatidão	
(mg/L)	1 ^a	2 ^a	3 ^a	Wieula	(%)
0,000	0,000	0,000	0,000	0,000	-
1,000	0,658	0,980	0,984	0,875	87,4
4,000	3,291	4,249	3,610	3,717	92,9
6,000	6,583	6,865	5,908	6,452	107,5
8,000	8,229	8,172	7,549	7,984	99,7
10,000	9,216	9,807	9,847	9,624	96,2
20,000	18,432	17,653	18,054	18,047	90,2
40,000	39,828	41,190	39,062	40,027	100,1
60,000	60,236	58,843	58,758	59,280	98,7
80,000	80,644	81,401	82,065	81,370	101,7
100,000	99,735	99,381	99,791	99,636	99,6

Tabela 10 – Exatidão do método espectrofotométrico para determinação de concentração de cloridrato de doxiciclina em solução.

O método apresentou-se com pouca exatidão na quantificação da solução contendo apenas cloridrato de doxiciclina em meio aquoso, pois a variação dos resultados ficou em \pm 4% para concentrações (10 - 100 mg/L), aumentando este desvio para 13% na faixa de baixa concentração (1 - 10 mg/L). O limite de quantificação apresentou resultados de 1,000 \pm 0,13 mg/L do fármaco.

Robustez

A robustez de um método analítico é a medida de sua capacidade em resistir a pequenas e deliberadas variações dos parâmetros analíticos. Indica sua confiança durante o uso normal. Durante o desenvolvimento da metodologia, deve-se considerar a avaliação da robustez. Constatando-se a susceptibilidade do método a variações nas condições analíticas, estas deverão ser controladas e precauções devem ser incluídas no procedimento (BRASIL, 2003).

De acordo com Brasil (2003), a robustez de um método espectrofotométrico deve ser avaliada através da sensibilidade a variações de temperatura, pH e diferentes fabricantes do solvente a que as amostras serão submetidas durante os testes de rotina.

Para a verificação da robustez do método para determinação da concentração de cloridrato de doxiciclina e a estabilidade do fármaco em solução, esta foi submetida a diferentes temperaturas (20, 30, 40, 50, 60 e 70°C) e amostrada a cada hora. O gráfico que representa este ensaio está apresentado na Figura 20 e nas Tabelas C a H do Apêndice A.

Como pode ser observado no gráfico da Figura 20, a temperatura do meio não influenciou a análise do fármaco e sua estabilidade no intervalo de tempo estudado, pois os resultados estão dentro da faixa de exatidão do método para alta concentração de cloridrato de doxiciclina que é de 4%.

A interferência do pH da amostra, não foi avaliada, devido a faixa de pH avaliada neste estudo (pH = 1,0 - 4,0) ser corrigida pela incorporação da solução inibidora do sistema foto Fenton e H₂SO₄ 1:5 a amostra e posterior ajuste fino do pH para 5,0 com a solução tampão acetato que constitui o método.

Figura 20 – Concentração de cloridrato de doxiciclina residual em função da temperatura (C_{Doxi.HCl} = 100 mg/L), ∆ 20°C; □ 30°C; + 40°C; ○ 50°C; ◊ 60°C; x 70°C.

5.2. Influência da Temperatura sobre a Oxidação do Cloridrato de Doxiciclina e do Peróxido de Hidrogênio sem Adição de Íons Fe²⁺ e com Incidência de Luz.

Foram realizados 5 ensaios, sendo cada ensaio subdividido em Meio 1 (cloridrato de doxiciclina + H_2O_2), Meio 2 (apenas H_2O_2) e Meio 3 (apenas solução de cloridrato de doxiciclina), para a verificação da cinética de oxidação do cloridrato de doxiciclina com peróxido de hidrogênio. O Meio 1 é o qual nós temos interesse, enquanto o Meio 2 e o Meio 3 servem para verificar se houve reações espontâneas de decomposição de peróxido de hidrogênio ou de cloridrato de doxiciclina, as quais seriam as responsáveis por taxas de decomposição maiores das duas substâncias no Meio 1.

As temperaturas testada foram 20, 30, 40, 50, 60 e 70°C, sendo mantidas constantes a concentração inicial de fármaco (100 mg/L) e de peróxido de hidrogênio no meio (10.000 mg/L). A concentração de 10.000 mg/L de peróxido de hidrogênio foi escolhida aleatoriamente para avaliar a degradação do fármaco em um meio contendo alta concentração de peróxido. Todos os meios foram mantidos com exposição a luz natural.

Os resultados para a verificação da influência da temperatura estão mostrados nas Figuras 21 a 23 e nas Tabelas C a H do Apêndice A.

Figura 21 – Concentração de peróxido de hidrogênio em função da temperatura (C_{H2O2} = 10.000 mg/L), Δ 20°C; \Box 30°C; + 40°C; \circ 50°C; \diamond 60°C; x 70°C.

Figura 22 – Concentração de cloridrato de doxiciclina residual em função da temperatura ($C_{Doxi.HCI} = 100 \text{ mg/L}, C_{H2O2} = 10.000 \text{ mg/L}), \Delta 20^{\circ}\text{C}; \Box 30^{\circ}\text{C}; + 40^{\circ}\text{C}; \circ 50^{\circ}\text{C}; \diamond 60^{\circ}\text{C}; x 70^{\circ}\text{C}.$

Figura 23 – Concentração de peróxido de hidrogênio em função da temperatura $C_{\text{Doxi,HCl}}$ = 100 mg/L, C_{H2O2} = 10.000 mg/L), Δ 20°C; \Box 30°C; + 40°C; \circ 50°C; \diamond 60°C; x 70°C.

Os resultados mostrados nas Figuras 20 e 21 indicam que a degradação de cloridrato de doxiciclina e peróxido de hidrogênio nas diversas temperaturas foi desprezível, sendo observado após a primeira hora do início do ensaio um decréscimo de aproximadamente 8% da concentração inicial do cloridrato de doxiciclina mantendo-se estável durante as oito horas seguintes. As variações presentes na determinação do peróxido de hidrogênio devem-se a oscilações encontradas na precisão do método titulométrico com KMnO₄ que é de 0,2 mL (±1 gota) de solução titulante em cada ponto.

Ao serem analisados os resultados encontrados para a concentração de cloridrato de doxiciclina residual nos meios reacionais contendo peróxido de hidrogênio e sem íon ferroso, apresentados na Figura 22, observa-se forte influência da temperatura na faixa entre 20 e 30°C. Para as temperaturas acima de 30°C, a influência diminui principalmente na velocidade inicial de degradação. Através deste estudo, é possível afirmar que a influência da temperatura, entre 30 e 70°C, na cinética de degradação do fármaco é pequena.

Normalmente o aumento da temperatura afeta positivamente o processo Fenton, uma vez que a energia cinética aumenta e consequentemente, a velocidade da reação aumenta (Homem, 2011).

O comportamento observado para a degradação do fármaco em reator aberto e exposto a iluminação natural pode ser explicado pela decomposição da molécula de peróxido de hidrogênio apresentado pela equação (43) (Bossmann *et al.*, 1998; Souza, 2004; Pignatello *et al.*, 2006). Como o meio está com excesso de H_2O_2 , o radical hidroxila reage com este, como apresentado na equação (44), originando o radical hidroperóxido, que possui potencial de oxidação menor que o radical hidroxila, mas proporciona a continuidade do processo oxidativo. Devido ao excesso de peróxido de hidrogênio presente no meio, os radicais hidroperóxido podem reagir com o H_2O_2 como proposto pela equação (45) (Souza, 2004; Pignatello *et al.*, 2006), mas como a constante de reação é extremamente baixa, esta reação tem pouca influência no processo. Outra reação que ocorre com os radicais hidroxila presentes no meio é a de formação do peróxido de hidrogênio através da equação (46), que tem a maior constante de taxa e competirá pelo radical hidroxila com a molécula do fármaco, equação (2).

$H_2O_2 + hv \rightarrow 2OH^{\bullet}$	$K_{43} = 6*10^{-7} M^{-1} . s^{-1}$	(43)
$OH^{\bullet} + H_2O_2 \rightarrow H_2O + HO_2^{\bullet}$	$K_{44} = (2,7 - 3,3)^* 10^7 M^{-1} . s^{-1}$	(44)
$HO_2^{\bullet} + H_2O_2 \rightarrow H_2O + O_2 + OH^{\bullet}$	$K_{45} = 3 M^{-1}.s^{-1}$	(45)
$2OH^{\bullet} \rightarrow H_2O_2$	$K_{46} = 4,2^{*}10^{9} M^{-1}.s$	(46)

A constante de homólise da molécula de peróxido de hidrogênio (eq. 43) é muita baixa em relação às outras constantes de taxas, o que explica a alta concentração residual de peróxido no meio.

5.3. Degradação do Cloridrato de Doxiciclina por Peróxido de Hidrogênio com e sem Adição de Íons Fe²⁺, com e sem Incidência de Luz Natural.

Foram realizados 8 ensaios para se verificar a influência da luz natural e do íon Fe²⁺ na degradação individual do cloridrato de doxiciclina (100 mg/L) e do peróxido de hidrogênio. A concentração inicial de peróxido de hidrogênio foi estabelecida em 500 mg/L para os meios contendo íon Fe²⁺ e 10.000 mg/L para os meios em que não há adição de íon Fe²⁺. O pH dos meios mantiveram-se entre 3,0 e 3,5 mesmo sem haver controle. Os resultados de concentração de fármaco residual estão mostrados na Figura 24 e, e os resultados de peróxido de hidrogênio estão mostrados na Figura 25 e 26. Os dados estão apresentados nas Tabelas I e J do Apêndice A.

Figura 24 – Concentração de cloridrato de doxiciclina residual em função do tempo, ∆ Exposto à luz natural (processo Foto-Fenton), com Fe²⁺; ○ Protegido da luz natural, com Fe²⁺; □ Exposto à luz natural, sem Fe²⁺; + Protegido da luz natural, sem Fe²⁺.

Figura 25 – Concentração de peróxido de hidrogênio em função do tempo sem íon ferroso, ∆ Exposto à luz natural (processo Foto-Fenton); □ Protegido da luz natural.

Figura 26 – Concentração de peróxido de hidrogênio em função do tempo com íon ferroso, ∆ Exposto à luz natural (processo Foto-Fenton); □ Protegido da luz natural.

Os resultados de concentração de cloridrato de doxiciclina residual das Figuras 25 e 26 mostram que há influência da luz natural sobre o meio, que estimula o aumento significativo na oxidação do fármaco, tanto para os meios contendo íons Fe²⁺ quanto nos que não possuem. Isto ocorre devido à maior concentração de peróxido de hidrogênio (nos ensaios sem adição de Fe²⁺ a concentração de peróxido de hidrogênio era de 10.000 mg/L, enquanto nos ensaios com adição de Fe²⁺ era de 500 mg/L). A adição do íon Fe²⁺ catalisa o processo de oxidação, que é potencializado na presença da luz natural. Mas, como o laboratório não dispõe de espectroradiômetro para medir a intensidade de radiação e o comprimento de onda da luz incidente, optou-se por realizar apenas ensaios de Fenton, apesar da eficiência de oxidação e velocidade ser menor.

Ao final dos ensaios pelo processo Fenton a concentração de cloridrato de doxiciclina residual variou entre 12 e 22 mg/L.

Observou-se que a influência da luz na ausência de íons Fe²⁺ sobre a concentração de peróxido de hidrogênio é desprezível, da ordem de 2 a 7%. A influência do íon Fe²⁺ foi significativa nos meios em que foram adicionados, causando queda acentuada na concentração, da ordem de 90%.

5.4. Degradação do Cloridrato de Doxiciclina por Peróxido de Hidrogênio em Diferentes Concentrações, com Adição de Íons Fe²⁺, sem Incidência de Luz.

Foram realizados 8 ensaios para se verificar a influência da concentração inicial de peróxido sobre as concentrações residuais de cloridrato de doxiciclina e de peróxido de hidrogênio. Os resultados estão mostrados na Figura 27 e na Tabela K do Apêndice A. A concentração de 70 mg/L de íons ferrosos foi escolhida através dos dados selecionados nas referências apresentadas na Tabela 4.

Figura 27 – Concentração de cloridrato de doxiciclina residual em meios contendo diferentes concentrações iniciais de H₂O₂, Δ 50 mg/L; □ 100 mg/L; + 250 mg/L; ○ 375 mg/L; ◊ 500 mg/L; x 625 mg/L; ♦ 750 mg/L; − 5000 mg/L, (C_{Doxi.HCI} = 100 mg/L, C_{Fe}²⁺ = 70 mg/L e T = 20°C).

A concentração residual final de cloridrato de doxiciclina exibiu um mínimo para a concentração de peróxido de 625 mg/L. A redução na eficiência de degradação do fármaco também foi observada por Vlyssides *et al.* (2010), que atribuem este fenômeno à reação do radical hidroxila com moléculas de peróxido de hidrogênio em excesso, originando radical hidroperoxil que reage com o radical hidroxila, formando água e oxigênio molecular, eqs. (3) e (14).

5.5. Degradação do Cloridrato de Doxiciclina por Peróxido de Hidrogênio, com Adição de Diferentes Concentrações de Íon Fe²⁺, sem Incidência de Luz.

Foram realizados 11 ensaios para se verificar a influência da concentração de Fe²⁺ na concentração residual final de cloridrato de doxiciclina e na concentração

residual de peróxido de hidrogênio. Os resultados estão mostrados na Figura 28 e na Tabela L do Apêndice A. A concentração de 500 mg/L de peróxido de hidrogênio foi escolhida através dos dados selecionados nas referências apresentadas na Tabela 4.

Figura 28 – Concentração de cloridrato de doxiciclina residual em meios contendo diferentes concentrações de íon Fe²⁺ (T=20°, C_{Doxi.HCl inicial} = 100 mg/L e C_{H2O2}=500 mg/L), ∆ 1 mg/L; □ 5 mg/L; + 10 mg/L; ○ 20 mg/L; ◊ 35 mg/L; x 50 mg/L; ♦ 70 mg/L; — 90 mg/L; ▲ 120 mg/L; ● 250 mg/L; ■ 500 mg/L.

Os resultados apresentados por estes testes mostraram que o potencial catalítico do íon Fe^{2+} ocorre mesmo quando a concentração deste íon no meio é baixa (1 mg/L). Para a concentração de Fe^{2+} maiores ou iguais a 5 mg/L obtiveramse valores de concentração residual final de cloridrato de doxiciclina variando entre 0 e 4,4 mg/L, mostrando que a ação catalítica do íon Fe^{2+} não aumenta proporcionalmente com o aumento de sua concentração. Este fato também evidencia que o íon Fe^{2+} quando em alta concentração no meio, exerce ação de sequestro de radicais hidroxila, limitando a eficiência do processo na degradação do fármaco. Como também foi observado por Homem (2011) que afirmou que um aumento na concentração inicial de Fe^{2+} resulta num aumento da eficiência de degradação até uma determinada concentração deste íon, a partir da qual o desempenho do processo se mantém inalterado devido ao sequestro de radicais hidroxila exercido pelo excesso de íons Fe^{2+} presente no meio (eq. (4)).

5.6. Oxidação do Cloridrato de Doxiciclina no Processo Fenton, Influência da Temperatura, sem Incidência de Luz.

Foram realizados 6 ensaios para se avaliar a influência da temperatura na concentração residual de cloridrato de doxiciclina e na concentração residual de peróxido de hidrogênio. Os resultados estão mostrados nas Figuras 29 e 30 (Apêndice A - Tabela M). As concentrações de peróxido de hidrogênio e de íons ferrosos utilizadas foram 500 mg/L e 120 mg/L, respectivamente, pois, de acordo com os ensaios para se verificar as influências de cada um dos reagentes, para a relação mássica $C_{H2O2}/C_{Fe}^{2+} = 0,24$ obteve-se as menores concentrações de cloridrato de doxiciclina em um menor intervalo de tempo.

Figura 29 – Concentração de cloridrato de doxiciclina residual em meios com diferentes temperaturas, $\Delta 0^{\circ}$ C; $\Box 10^{\circ}$ C; $\circ 20^{\circ}$ C; + 30^{\circ}C; $\diamond 40^{\circ}$ C e x 40^{\circ}C (análise a partir de 5 min), (C_{Doxi.HCl inicial} = 100 mg/L; C_{H2O2}=500 mg/L e C_{Fe}²⁺ = 120 mg/L).

Figura 30 – Concentração de peróxido de hidrogênio em meios com diferentes temperaturas, Δ 0°C; \Box 10°C; \circ 20°C; + 30°C; \diamond 40°C e x 40°C (análise a partir de 5 min)), (C_{Doxi.HCl inicial} = 100 mg/L; C_{H2O2}=500 mg/L e C_{Fe}²⁺ = 120 mg/L).

Os resultados obtidos nos ensaios de oxidação do cloridrato de doxiciclina pelo processo Fenton apresentados na Figura 29 em diferentes temperaturas, mostram que a temperatura influencia significativamente o processo na faixa estudada. Apresentando menor valor de concentração residual final de cloridrato de doxiciclina (< 1 mg/L) para temperatura de 40°C. O erro estatístico da concentração de cloridrato de doxiciclina foi pequeno, variando no máximo em ± 1,3 mg/L para cada instante, como mostrado pelas barras de erro apresentadas no gráfico da Figura 29 e na Tabela M do Apêndice A. Quanto maior a temperatura menor o tempo para se atingir regime permanente de operação, para T = 40°C o regime permanente é atingido em menos de 60 min, enquanto para T = 20°C o regime permanente é atingido em cerca de 240 min

Os resultados obtidos para a concentração residual de peróxido de hidrogênio no processo Fenton apresentados na Figura 30, mostram que a partir dos 60 minutos, o sistema está em regime permanente, e que todas as concentrações estão muito próximas, não sendo possível determinar a influência da temperatura. Como pode ser observado através das barras de erros no gráfico da Figura 30 e na Tabela M do Apêndice A, o erro estatístico máximo foi de ± 11,6 mg/L para cada instante.

Os resultados para se avaliar a influência da temperatura na concentração residual do cloridrato de doxiciclina na ausência de peróxido de hidrogênio estão

mostrados no Apêndice A – Tabela N. As concentrações iniciais de cloridrato de doxiciclina ficou estabelecida em 100 mg/L, mantendo a relação com a concentração pré estabelecida para este trabalho. A concentração de íons ferrosos inicial foi a mesma proposta para o meio completo do processo Fenton (120 mg/L), permitindo a avaliação da ação do íon ferroso sobre a degradação e análise da molécula do fármaco.

Na ausência de peróxido de hidrogênio observa-se uma queda da concentração residual final de cloridrato com o aumento da temperatura. A concentração residual variou de 97,9 mg/L, a 0°C, para 61,6 mg/L, a 40°C.

Os resultados para se avaliar a influência da temperatura na concentração residual de peróxido de hidrogênio na ausência de cloridrato de doxiciclina estão mostrados no Apêndice A – Tabela O. As concentrações iniciais de íons ferrosos e peróxido de hidrogênio foram as mesmas propostas para o meio completo do processo de Fenton, 120 mg/L e 500 mg/L respectivamente, permitindo avaliar a influência do íon ferroso sobre a concentração de peróxido de hidrogênio residual, na ausência de doxiciclina.

Observa-se um mínimo na concentração residual final de peróxido de hidrogênio para temperaturas entre 20 e 30°C.

5.7. Planejamento Fatorial.

Foram realizados 20 ensaios segundo o planejamento fatorial Delineamento Composto Central Rotacional (DCCR). As variáveis independentes testadas foram a concentração de íons ferrosos, C_{Fe}^{2+} (X₁'), concentração de peróxido de hidrogênio, $C_{H_2O_2}$ (X₂') e temperatura, T (X₃'). A variável dependente sobre a qual foram verificadas as influências das variáveis acima foi a concentração residual final de cloridrato de doxiciclina, ($C_{Doxi,HCl}$ Residual). As variáveis do planejamento são apresentadas na Tabela 11. Os resultados obtidos são apresentados nas Figuras 31 a 41 (Apêndice A - Tabelas P a R).

Ensaio	X ₁ ' (Fe ²⁺)	X ₂ ' (H ₂ O ₂)	X ₃ ' (T)	C _{Fe} ²⁺ (mg/L)	С _{н2О2} (mg/L)	Т (ºС)	C _{Doxi.HCI.} Residual (mg/L)	Razão Molar Fe ²⁺ /H ₂ O ₂
Ensaio 1	-1	-1	-1	28,3	262	8,1	28,6	0,063
Ensaio 2	+1	-1	-1	96,7	262	8,1	5,8	0,215
Ensaio 3	-1	+1	-1	28,3	738	8,1	18,5	0,022
Ensaio 4	+1	+1	-1	96,7	738	8,1	4,3	0,076
Ensaio 5	-1	-1	+1	28,3	262	31,9	13,6	0,063
Ensaio 6	+1	-1	+1	96,7	262	31,9	2,6	0,215
Ensaio 7	-1	+1	+1	28,3	738	31,9	7,8	0,022
Ensaio 8	+1	+1	+1	96,7	738	31,9	3,0	0,076
Ensaio 9	-1,68	0	0	5,0	500	20,0	4,4	0,006
Ensaio 10	+1,68	0	0	120,0	500	20,0	3,3	0,139
Ensaio 11	0	-1,68	0	62,5	100	20,0	55,8	0,363
Ensaio 12	0	+1,68	0	62,5	900	20,0	4,7	0,040
Ensaio 13	0	0	-1,68	62,5	500	0,0	21,4	0,073
Ensaio 14	0	0	+1,68	62,5	500	40,0	2,6	0,073
Ensaio 15	0	0	0	62,5	500	20,0	0,0	0,073
Ensaio 16	0	0	0	62,5	500	20,0	0,2	0,073
Ensaio 17	0	0	0	62,5	500	20,0	2,0	0,073
Ensaio 18	0	0	0	62,5	500	20,0	0,0	0,073
Ensaio 19	0	0	0	62,5	500	20,0	0,0	0,073
Ensaio 20	0	0	0	62,5	500	20,0	0,4	0,073
Média dos pontos centrais						0,43		
•	Desvio	o padrão	o dos p	ontos ce	ntrais		0,52	
Coe	Coeficiente de variação dos pontos centrais 1,21							

Tabela 11 – Condições experimentais do planejamento fatorial DCCR, variáveis codificadas e não codificadas e resultados de concentração residual final de doxiciclina, C_{Doxi.HCI-Residual.}

A análise da Tabela 11 mostra que houve uma grande variação nos resultados de $C_{\text{Doxi,HCI}}$ residual e foram obtidos valores de 0 a 55,8 mg/L, ou seja, o planejamento experimental utilizado e os valores das variáveis no ponto central foram adequados ao estudo. Os menores valores finais de $C_{\text{Doxi,Residual}}$ foram obtidos para o ponto central. Os pontos centrais apresentaram desvio padrão e coeficiente de variação elevados, 0,52 e 1,21 respectivamente. Observamos também que o valor de $C_{\text{Doxi,Residual}} = 2,0$ mg/L obtido no ensaio 17 está situado a 3 desvios padrão do valor médio. Desprezando-se o ensaio 17 teríamos então para a média no ponto central, desvio padrão e coeficiente de variação de 0,12, 0,18 e 1,49, respectivamente. Embora o coeficiente de variação seja elevado, a média e o desvio padrão são muito baixos, inferiores ao limite de detecção e de quantificação, que

são de 0,5 mg/L e 1,0 mg/L, respectivamente. Estes resultados também mostram que o planejamento utilizado contemplou condições operacionais que influenciaram significativamente a variável dependente.

Figura 31 – Influência da temperatura (a) $C_{H2O2} = 262 \text{ mg/L e } C_{Fe}^{2+} = 28,3 \text{ mg/L}, \Delta 8,1^{\circ}C, \Box 31,9^{\circ}C;$ (b) $C_{H2O2} = 500 \text{ mg/L e } C_{Fe}^{2+} = 62,5 \text{ mg/L}, \Delta 0^{\circ}C, \Box 40^{\circ}C; +20^{\circ}C;$ (c) $C_{H2O2} = 262 \text{ mg/L e } C_{Fe}^{2+} = 96,7 \text{ mg/L}, \Delta 8,1^{\circ}C, \Box 31,9^{\circ}C;$ (d) $C_{H2O2} = 738 \text{ mg/L e } C_{Fe}^{2+} = 28,3 \text{ mg/L}, \Delta 8,1^{\circ}C, \Box 31,9^{\circ}C;$ (e) $C_{H2O2} = 738 \text{ mg/L e } C_{Fe}^{2+} = 96,7 \text{ mg/L}, \Delta 8,1^{\circ}C, \Box 31,9^{\circ}C;$ (e) $C_{H2O2} = 738 \text{ mg/L e } C_{Fe}^{2+} = 96,7 \text{ mg/L}, \Delta 8,1^{\circ}C, \Box 31,9^{\circ}C;$ (e) $C_{H2O2} = 738 \text{ mg/L e } C_{Fe}^{2+} = 96,7 \text{ mg/L}, \Delta 8,1^{\circ}C, \Box 31,9^{\circ}C;$ (e) $C_{H2O2} = 738 \text{ mg/L e } C_{Fe}^{2+} = 96,7 \text{ mg/L}, \Delta 8,1^{\circ}C, \Box 31,9^{\circ}C;$ (e) $C_{H2O2} = 738 \text{ mg/L e } C_{Fe}^{2+} = 96,7 \text{ mg/L}, \Delta 8,1^{\circ}C, \Box 31,9^{\circ}C;$ (f) $C_{H2O2} = 738 \text{ mg/L e } C_{Fe}^{2+} = 96,7 \text{ mg/L}, \Delta 8,1^{\circ}C, \Box 31,9^{\circ}C;$ (h) $C_{H2O2} = 738 \text{ mg/L e } C_{Fe}^{2+} = 96,7 \text{ mg/L}, \Delta 8,1^{\circ}C, \Box 31,9^{\circ}C;$ (h) $C_{H2O2} = 738 \text{ mg/L e } C_{Fe}^{2+} = 96,7 \text{ mg/L}, \Delta 8,1^{\circ}C, \Box 31,9^{\circ}C;$ (h) $C_{H2O2} = 738 \text{ mg/L e } C_{Fe}^{2+} = 96,7 \text{ mg/L}, \Delta 8,1^{\circ}C, \Box 31,9^{\circ}C;$ (h) $C_{H2O2} = 738 \text{ mg/L e } C_{Fe}^{2+} = 96,7 \text{ mg/L}, \Delta 8,1^{\circ}C, \Box 31,9^{\circ}C;$ (h) $C_{H2O2} = 738 \text{ mg/L e } C_{Fe}^{2+} = 96,7 \text{ mg/L}, \Delta 8,1^{\circ}C, \Box 31,9^{\circ}C;$ (h) $C_{H2O2} = 738 \text{ mg/L e } C_{Fe}^{2+} = 96,7 \text{ mg/L}, \Delta 8,1^{\circ}C, \Box 31,9^{\circ}C;$ (h) $C_{H2O2} = 738 \text{ mg/L e } C_{Fe}^{2+} = 96,7 \text{ mg/L}, \Delta 8,1^{\circ}C;$ (h) $C_{H2O2} = 738 \text{ mg/L e } C_{Fe}^{2+} = 96,7 \text{ mg/L}, \Delta 8,1^{\circ}C;$ (h) $C_{H2O2} = 738 \text{ mg/L e } C_{Fe}^{2+} = 96,7 \text{ mg/L}, \Delta 8,1^{\circ}C;$ (h) $C_{H2O2} = 738 \text{ mg/L e } C_{Fe}^{2+} = 96,7 \text{ mg/L}, \Delta 8,1^{\circ}C;$ (h) $C_{H2O2} = 738 \text{ mg/L e } C_{Fe}^{2+} = 96,7 \text{ mg/L}, \Delta 8,1^{\circ}C;$ (h) $C_{H2O2} = 738 \text{ mg/L e } C_{Fe}^{2+} = 96,7 \text{ mg/L}, \Delta 8,1^{\circ}C;$ (h) $C_{H2O2} = 738 \text{ mg/L e } C_{Fe}^{2+} = 96,7 \text{ mg/L}, \Delta 8,1^{\circ}C;$ (h) $C_{H2O2} = 738 \text{ mg/L e } C_{Fe}^{2+} = 96,7 \text{ mg/L}, \Delta 8,1^{\circ}C;$ (h) $C_{H2O2} = 7$

Figura 32 – Influência da temperatura (a) $C_{H2O2} = 262 \text{ mg/L e } C_{Fe}^{2+} = 28,3 \text{ mg/L}, \Delta 8,1^{\circ}C, \Box 31,9^{\circ}C;$ (b) $C_{H2O2} = 500 \text{ mg/L e } C_{Fe}^{2+} = 62,5 \text{ mg/L}, \Delta 0^{\circ}C, \Box 40^{\circ}C, +20^{\circ}C;$ (c) $C_{H2O2} = 262 \text{ mg/L e } C_{Fe}^{2+} = 96,7 \text{ mg/L}, \Delta 8,1^{\circ}C, \Box 31,9^{\circ}C;$ (d) $C_{H2O2} = 738 \text{ mg/L e } C_{Fe}^{2+} = 28,3 \text{ mg/L}, \Delta 8,1^{\circ}C, \Box 31,9^{\circ}C;$ (e) $C_{H2O2} = 738 \text{ mg/L e } C_{Fe}^{2+} = 96,7 \text{ mg/L}, \Delta 8,1^{\circ}C, \Box 31,9^{\circ}C;$ (e) $C_{H2O2} = 738 \text{ mg/L e } C_{Fe}^{2+} = 96,7 \text{ mg/L}, \Delta 8,1^{\circ}C, \Box 31,9^{\circ}C;$ (e) $C_{H2O2} = 738 \text{ mg/L e } C_{Fe}^{2+} = 96,7 \text{ mg/L}, \Delta 8,1^{\circ}C, \Box 31,9^{\circ}C;$ (b) $C_{H2O2} = 738 \text{ mg/L e } C_{Fe}^{2+} = 96,7 \text{ mg/L}, \Delta 8,1^{\circ}C, \Box 31,9^{\circ}C;$ (c) $C_{H2O2} = 738 \text{ mg/L e } C_{Fe}^{2+} = 96,7 \text{ mg/L}, \Delta 8,1^{\circ}C, \Box 31,9^{\circ}C;$ (e) $C_{H2O2} = 738 \text{ mg/L e } C_{Fe}^{2+} = 96,7 \text{ mg/L}, \Delta 8,1^{\circ}C, \Box 31,9^{\circ}C;$ (f) $C_{H2O2} = 738 \text{ mg/L e } C_{Fe}^{2+} = 96,7 \text{ mg/L}, \Delta 8,1^{\circ}C, \Box 31,9^{\circ}C;$ (g) $C_{H2O2} = 738 \text{ mg/L e } C_{Fe}^{2+} = 96,7 \text{ mg/L}, \Delta 8,1^{\circ}C, \Box 31,9^{\circ}C;$ (g) $C_{H2O2} = 738 \text{ mg/L e } C_{Fe}^{2+} = 96,7 \text{ mg/L}, \Delta 8,1^{\circ}C, \Box 31,9^{\circ}C;$ (g) $C_{H2O2} = 738 \text{ mg/L e } C_{Fe}^{2+} = 96,7 \text{ mg/L}, \Delta 8,1^{\circ}C, \Box 31,9^{\circ}C;$ (g) $C_{H2O2} = 738 \text{ mg/L}$ (g)

Figura 33 – Influência da temperatura (a) $C_{H2O2} = 262 \text{ mg/L e } C_{Fe}^{2+} = 28,3 \text{ mg/L}, \Delta 8,1^{\circ}C, \Box 31,9^{\circ}C;$ (b) $C_{H2O2} = 500 \text{ mg/L e } C_{Fe}^{2+} = 62,5 \text{ mg/L}, \Delta 0^{\circ}C, \Box 40^{\circ}C; +20^{\circ}C;$ (c) $C_{H2O2} = 262 \text{ mg/L e } C_{Fe}^{2+} = 96,7 \text{ mg/L}, \Delta 8,1^{\circ}C, \Box 31,9^{\circ}C;$ (d) $C_{H2O2} = 738 \text{ mg/L e } C_{Fe}^{2+} = 28,3 \text{ mg/L}, \Delta 8,1^{\circ}C, \Box 31,9^{\circ}C;$ (e) $C_{H2O2} = 738 \text{ mg/L e } C_{Fe}^{2+} = 96,7 \text{ mg/L}, \Delta 8,1^{\circ}C, \Box 31,9^{\circ}C,$ sobre a concentração de Carbono Orgânico Total (COT) através do processo Fenton.

Figura 34 – Influência da concentração de peróxido de hidrogênio (a) $C_{Fe}^{2^+} = 28,3 \text{ mg/L e T} = 8,1^{\circ}C, \Delta$ 262mg/L, \Box 738mg/L; (b) $C_{Fe}^{2^+} = 62,5 \text{ mg/L e T} = 20^{\circ}C, \Delta$ 100mg/L, \Box 900mg/L; +500mg/L; (c) $C_{Fe}^{2^+} =$ 96,7 mg/L e T = 8,1°C, Δ 262mg/L, \Box 738mg/L; (d) $C_{Fe}^{2^+} = 96,7 \text{ mg/L e T} = 31,9^{\circ}C, \Delta$ 262mg/L, \Box 738mg/L; (e) $C_{Fe}^{2^+} = 28,3 \text{ mg/L e T} = 31,9^{\circ}C, \Delta$ 262mg/L, \Box 738mg/L; sobre a degradação do cloridrato de doxiciclina através do processo Fenton.

Figura 35 – Influência da concentração de peróxido de hidrogênio (a) $C_{Fe}^{2^+} = 28,3 \text{ mg/L e T} = 8,1^{\circ}C, \Delta$ 262mg/L, \Box 738mg/L; (b) $C_{Fe}^{2^+} = 62,5 \text{ mg/L e T} = 20^{\circ}C, \Delta$ 100mg/L, \Box 900mg/L, +500mg/L; (c) $C_{Fe}^{2^+} =$ 96,7 mg/L e T = 8,1°C, Δ 262mg/L, \Box 738mg/L; (d) $C_{Fe}^{2^+} = 96,7 \text{ mg/L e T} = 31,9^{\circ}C, \Delta$ 262mg/L, \Box 738mg/L; (e) $C_{Fe}^{2^+} = 28,3 \text{ mg/L e T} = 31,9^{\circ}C, \Delta$ 262mg/L, \Box 738mg/L; obre o consumo de peróxido de hidrogênio através do processo Fenton.

Figura 36 – Influência da concentração de peróxido de hidrogênio (a) $C_{Fe}^{2^+} = 28,3 \text{ mg/L e T} = 8,1^{\circ}C, \Delta$ 262mg/L, \Box 738mg/L; (b) $C_{Fe}^{2^+} = 62,5 \text{ mg/L e T} = 20^{\circ}C, \Delta$ 100mg/L, \Box 900mg/L, +500mg/L; (c) $C_{Fe}^{2^+} =$ 96,7 mg/L e T = 8,1°C, Δ 262mg/L, \Box 738mg/L; (d) $C_{Fe}^{2^+} =$ 96,7 mg/L e T = 31,9°C, Δ 262mg/L, \Box 738mg/L; (e) $C_{Fe}^{2^+} =$ 28,3 mg/L e T = 31,9°C, Δ 262mg/L, \Box 738mg/L; sobre a concentração de Carbono Orgânico Total (COT) através do processo Fenton.

Figura 37 – Influência da concentração de íons ferrosos (a) $C_{H2O2} = 262 \text{ mg/L e T} = 8,1^{\circ}C, \Delta 28,3\text{mg/L}, \Box 96,7\text{mg/L};$ (b) $C_{H2O2} = 500 \text{ mg/L e T} = 20^{\circ}C, \Delta 5\text{mg/L}, \Box 120\text{mg/L}, +62,5\text{mg/L};$ (c) $C_{H2O2} = 738 \text{ mg/L e T} = 8,1^{\circ}C, \Delta 28,3\text{mg/L}, \Box 96,7\text{mg/L};$ (d) $C_{H2O2} = 738 \text{ mg/L e T} = 31,9^{\circ}C, \Delta 28,3\text{mg/L}, \Box 96,7\text{mg/L};$ (e) $C_{H2O2} = 262 \text{ mg/L e T} = 31,9^{\circ}C, \Delta 28,3\text{mg/L}, \Box 96,7\text{mg/L}, \text{ sobre a degradação do cloridrato de doxiciclina através do processo Fenton.$

Figura 38 – Influência da concentração de íons ferrosos (a) $C_{H2O2} = 262 \text{ mg/L e T} = 8,1^{\circ}C, \Delta 28,3\text{mg/L}, \Box 96,7\text{mg/L};$ (b) $C_{H2O2} = 500 \text{ mg/L e T} = 20^{\circ}C, \Delta 5\text{mg/L}, \Box 120\text{mg/L}, + 62,5\text{mg/L};$ (c) $C_{H2O2} = 738 \text{ mg/L e T} = 8,1^{\circ}C, \Delta 28,3\text{mg/L}, \Box 96,7\text{mg/L};$ (d) $C_{H2O2} = 738 \text{ mg/L e T} = 31,9^{\circ}C, \Delta 28,3\text{mg/L}, \Box 96,7\text{mg/L};$ (e) $C_{H2O2} = 262 \text{ mg/L e T} = 31,9^{\circ}C, \Delta 28,3\text{mg/L}, \Box 96,7\text{mg/L},$ sobre o consumo de peróxido de hidrogênio através do processo Fenton.

Figura 39 – Influência da concentração de íons ferrosos (a) $C_{H2O2} = 262 \text{ mg/L e T} = 8,1^{\circ}C, \Delta 28,3\text{mg/L}, \Box 96,7\text{mg/L};$ (b) $C_{H2O2} = 500 \text{ mg/L e T} = 20^{\circ}C, \Delta 5\text{mg/L}; \Box 120\text{mg/L}, + 62,5\text{mg/L};$ (c) $C_{H2O2} = 738 \text{ mg/L e T} = 8,1^{\circ}C, \Delta 28,3\text{mg/L}, \Box 96,7\text{mg/L};$ (d) $C_{H2O2} = 738 \text{ mg/L e T} = 31,9^{\circ}C, \Delta 28,3\text{mg/L}, \Box 96,7\text{mg/L};$ (e) $C_{H2O2} = 262 \text{ mg/L e T} = 31,9^{\circ}C, \Delta 28,3\text{mg/L}, \Box 96,7\text{mg/L};$ sobre a concentração de Carbono Orgânico Total (COT) através do processo Fenton.

Figura 41 – Verificação da reprodutibilidade contendo as barras de desvio padrão dos ensaios obtidos no ponto central do planejamento do processo Fenton ($C_{H2O2} = 500 \text{ mg/L}$, $C_{Fe}^{2+} = 62,5 \text{ mg/L} \text{ e T} = 20^{\circ}\text{C}$)

Os gráficos apresentados nas Figuras 31 a 39 mostram que tanto a temperatura quanto a concentração de peróxido de hidrogênio possuem menor influência no processo oxidativo da molécula de cloridrato de doxiciclina e na taxa de consumo do peróxido de hidrogênio no decorrer do tempo, dentro da faixa estudada, sendo de acordo com estes dados a concentração de íons ferroso presente no meio a variável de maior importância. A taxa de mineralização obtida nas condições deste planejamento, resultantes das análises de COT, apresentaram diminuição da carga orgânica presente na solução entre 20,9 – 35,7% da concentração de carbono orgânico total inicial.

Os gráficos apresentados na Figura 40 contem todas as repetições do ponto central do planejamento, enquanto que na Figura 41 os dados apresentam as barras de erro para cada instante de tempo de amostragem.

Através dos resultados obtidos determinaram-se os coeficientes de regressão, apresentados na Tabela 12, e a análise de variância ANOVA do ajuste é apresentada na Tabela 13. A eq. (47) mostra o modelo de superfície obtido através do software Statistica[®]. Os X's são representações das 3 variáveis independentes codificadas para o planejamento DCCR, sendo proporcionais as concentrações iniciais de íons ferrosos, peróxido de hidrogênio e temperatura respectivamente.

$C_{\text{Doxiciclina Residual}} = 0,625 - 3,995 * X_1' + 0,015 * X_1'^2 - 7,536 * X_2' + 9,341 * X_2'^2$	(17)
$-4,540 * X_{3}'+2,875 * X_{3}'^{2}+1,844 * X_{1}'*X_{2}'+2,676 * X_{1}'*X_{3}'+0,783 * X_{2}'*X_{3}'$	(47)

	Tabela 12 – Coeficientes de regressão.							
	Coeficientes de regressão	Erro Padrão	t	р	Lim. Conf 95%	Lim. Conf. + 95%		
Média	0,625	3,688	0,169	0,868	-7,59	8,85		
X ₁ '(L)	-3,995	2,448	-1,635	0,132	-9,46	1,45		
X ₁ ' (Q)	-0,015	2,386	-0,005	0,995	-5,33	5,30		
X ₂ ' (L)	-7,536	2,448	-3,078	0,011	-12,99	-2,08		
X ₂ ' (Q)	9,341	2,386	3,914	0,002	4,02	14,66		
X ₃ ' (L)	-4,540	2,448	-1,849	0,094	-9,98	0,93		
X ₃ ' (Q)	2,875	2,386	1,204	0,256	-2,44	8,19		
X ₁ '*X ₂ '	1,844	3,198	0,578	0,575	-5,28	8,98		
X ₁ '* X ₃ '	2,676	3,198	0,828	0,426	-4,48	9,78		
X ₂ '*X ₃ '	0,783	3,198	0,242	0,813	-6,35	7,90		

Tabela 13 – ANOVA							
	SQ	GL	MQ	F	р		
X ₁ ' (L)	218,87	1	218,868	2,68	0,133		
X ₁ ' (Q)	0,003	1	0,002	0,00	0,998		
X ₂ ' (L)	775,21	1	775,219	9,50	0,012		
X ₂ ' (Q)	1253,19	1	1253,195	15,36	0,003		
X ₃ ' (L)	279,76	1	279,760	3,43	0,094		
X ₃ ' (Q)	118,65	1	118,652	1,46	0,255		
X ₁ '*X ₂ '	27,38	1	27,380	0,33	0,575		
X ₁ '*X ₃ '	56,18	1	56,180	0,69	0,426		
X ₂ '*X ₃ '	4,805	1	4,805	0,06	0,813		

Análise de Variância - Modelo Quadrático

Fonte de Variação	Soma de Quadrados	Grau de Liberdade	Quadrado Médio	Fcalc.	p
Regressão	2688,80	9	298,756	3 65	0 0270
Resíduos	817,95	10	81,795	3,05	0,0279
Falta de ajuste	814,87	5	162,975	265 14	0,000005
Erro puro	3,07	5	0,615	265,14	
Total	3506,75	19			
% variação	o explicada (R	²)		76,675	
F	0,05		3,02		

Apenas os coeficientes de regressão apresentados por X_2 ' (L) e X_2 ' (Q) foram estatisticamente significativos (p< 0,05).

Na Figura 42, é apresentado o gráfico de distribuição dos pontos entre os valores experimentais versus os valores previstos pelo modelo.

Figura 42 – Valores experimentais versus valores previstos de C_{Doxi, Residual}.

Através do planejamento proposto, foi possível a construção das superfícies de respostas, apresentadas na Figura 43, e definir as regiões de interesse.

Figura 43 – Superfícies de resposta e curvas de contorno para concentração de cloridrato de doxiciclina em função da C_{Fe}^{2+} e C_{H2O2} (a) e (b); da temperatura e C_{H2O2} (c) e (d) e da temperatura e C_{Fe}^{2+} (e) e (f).

De acordo com Pandey *et al.* (2000), a condição ótima experimental pode ser determinada através da determinação das derivadas parciais, eqs. (48), (49) e (50) do modelo das variáveis codificadas, (eq.47).

$$\left(\frac{\partial WHC}{\partial X'_{1}}\right)_{X'_{2}X'_{3}} = 0$$
(48)

$$\left(\frac{\partial WHC}{\partial X'_2}\right)_{X'_2X'_2} = 0 \tag{49}$$

$$\left(\frac{\partial WHC}{\partial X'_3}\right)_{X'_1X'_2} = 0 \tag{50}$$

Através da resolução do sistema de equações algébricas lineares obtidas pelas eqs. (48), (49) e (50), determinou-se a melhor região com menor concentração residual de acordo com o planejamento fatorial, que corresponde a $C_{Fe}^{2+} = 25 \text{mg.L}^{-1}$; $C_{H_2O_2} = 611 \text{ mg.L}^{-1}$ e Temperatura = 35°C.

5.8. Comparação dos Resultados do Ponto Central do Planejamento DCCR com os Resultados da Melhor Condição Operacional Determinada pelo Planejamento Fatorial.

Foram realizados ensaios em triplicata utilizando-se a melhor condição operacional para a menor concentração residual de cloridrato de doxiciclina (C_{Fe}^{2+} = 25 mg/L; C_{H2O2} = 611 mg/L e Temperatura = 35°C) determinada pelo planejamento DCCR, para a concentração de cloridrato de doxiciclina $C_{Doxi.HCl}$, concentração de peróxido de hidrogênio, C_{H2O2} , e carbono orgânico total, COT. Os resultados obtidos de concentração de cloridrato de doxiciclina residual final, $C_{Doxi.HCl}$, concentração de peróxido de hidrogênio, C_{H2O2} , e carbono orgânico total, COT, foram comparados com os resultados obtidos nas condições do ponto central do planejamento fatorial. Os resultados estão apresentados na Figura 44 e na Tabela S do Apêndice A.

Figura 44 – Comparação entre ponto central (Δ) e melhor condição do planejamento fatorial DCCR (\Box). (a) Concentração residual final de cloridrato de doxiciclina; (b) Concentração residual final de peróxido de hidrogênio; (c) Concentração de Carbono Orgânico Total (COT). Δ (C_{Fe}²⁺ = 62,5 mg/L; C_{H2O2} = 500 mg/L e Temperatura = 20°C); \Box (C_{Fe}²⁺ = 25 mg/L; C_{H2O2} = 611 mg/L e Temperatura = 35°C).

Os gráficos 44a e 44b mostram que não há diferença significativa na concentração residual de cloridrato de doxiciclina e de peróxido de hidrogênio ao longo do tempo de reação, respectivamente.

O gráfico 44c mostra que a mineralização da molécula foi maior para a condição proposta no planejamento em relação ao ponto central. Os resultados obtidos de redução de COT foram de 40,1% e 30,0% para a condição proposta no planejamento e no ponto central, respectivamente.

5.9. Concentração do Íon Fe²⁺ durante o Processo Fenton.

Foram realizados ensaios, para se verificar da concentração de íon Fe^{2+} ao longo do tempo de reação na melhor condição proposta pelo planejamento fatorial ($C_{Fe}^{2+} = 25 \text{ mg/L}$; $C_{H_2O_2} = 611 \text{ mg/L}$ e Temperatura = 35°C). Os resultados destes testes estão apresentados na Figura 45 e na Tabela T do Apêndice A.

Figura 44 – Concentração de íon Fe^{2+} durante o processo Fenton ($C_{Fe}^{2+} = 25 \text{ mg/L}$; $C_{H2O2} = 611 \text{ mg/L}$ e Temperatura = 35°C).

De acordo com os resultados apresentados na Figura 45, o íon Fe²⁺ adicionado inicialmente ao processo está presente em solução por no máximo 20 minutos, sendo convertido a íon Fe³⁺. O íon Fe²⁺ é consumido pelas reações mostradas pelas eqs. (1), (4), (7) e (10), sendo a reação que controla o seu consumo a reação (1) que tem menor constante de taxa de consumo K₁ = 63-76 M⁻¹.s⁻¹. O íon Fe²⁺ é gerado pelas reações mostradas pelas eqs. (6), (8) e (11), sendo a reação que controla a sua geração a reação (6) que tem menor constante de taxa de geração K₆ = 10⁻² M⁻¹.s⁻¹. Devido a baixa velocidade de conversão Fe³⁺ para Fe²⁺ em relação a alta velocidade de consumo do Fe²⁺, a concentração no meio não pode mais ser detectada pelo método da o-fenantrolina, após os 20 min. de reação.

5.10. Influência do pH na Concentração Residual Final de Doxiciclina, C_{Doxi.HCl,Residual,Final}, Concentração Residual Final de Peróxido de Hidrogênio, C_{H2O2,Residual,Final}, e Carbono Orgânico Total final, COT_{Final}

Foram realizados 4 ensaios, para se verificar a influência do pH na concentração residual final de cloridrato de doxiciclina, concentração residual final de peróxido de hidrogênio, C_{H2O2,Residual,Final}, e carbono orgânico total, COT_{Final}. Nestes testes utilizou-se H₂SO₄ ou NaOH no ajuste dos valores de pH que foram acertados no tempo zero e mantidos constantes durante o ensaio. Os resultados estão mostrados na Figura 46 e na Tabela U do Apêndice A. As condições

experimentais dos ensaios foram C_{Fe}^{2+} = 25 mg/L, C_{H2O2} = 611 mg/L e T = 35°C, que correspondem a melhor condição de degradação do cloridrato de doxiciclina proposta pelo planejamento fatorial.

Figura 46 – Influência do pH na concentração residual de cloridrato de doxiciclina. (a) Concentração residual final de cloridrato de doxiciclina; (b) Concentração residual final de peróxido de hidrogênio; (c) Concentração de Carbono Orgânico Total (COT). Δ pH 1,0; \Box pH 2,0; + pH 3,0 e \circ pH 4,0. (C_{Fe}²⁺ = 25 mg/L; C_{H2O2} = 611 mg/L e Temperatura = 35°C).

Os resultados mostrados na Figura 46 indicam que para pH = 3 houve maior consumo de peróxido. Para valores de pH < 2, um excesso de peróxido de hidrogênio protonado ($H_3O_2^+$) reduz sua interação com o íon Fe²⁺, diminuindo a formação do radical hidroxila, reduzindo a quantidade de radicais disponíveis (Durán *et al.*, 2010; Herney-Ramirez *et al.*, 2010). Os resultados obtidos para pH = 4 estão de acordo com os apresentados na literatura (Pacheco, 2004; Durán *et al.*, 2010).

Pacheco (2004) estudou a degradação de chorume pelo processo Fenton, utilizou $C_{H2O2} = 600 \text{ mg/L}$, $C_{Fe}^{2+} = 5 \text{ mg/L}$ e diferentes valores de pH = 1,0, 4,0 e 7,0, e obteve redução de DQO de 30%, 51% e 33%, respectivamente, para cada valor de pH estudado.

Duran *et al.* (2010) avaliou a degradação do efluente de um sistema integrado de gaseificação-ciclo combinado (SIGCC) de energia na Espanha, obtendo, através do processo foto-Fenton em reator com capacidade de 28 L, mineralização de 90% em 150 minutos de reação com vazão de 120 ml/h de H_2O_2 a 30%; C_{Fe}^{2+} = 7,6 mg/L e pH = 3,75.

Através destes experimentos, observou-se que a faixa de pH ideal para o processo Fenton está entre 2 e 3, causado por uma alta taxa de formação de (•OH).

Os resultados de COT apresentados mostram que a mineralização do fármaco pelo processo Fenton permanece baixa, restando ainda em solução subprodutos orgânicos da degradação do cloridrato de doxiciclina. A maior redução de COT, de 40,9%, foi obtida para pH entre 3 e 4 com temperatura de 35°C e C_{Fe}^{2+} e C_{H2O2} iguais a 25 mg/L e 611 mg/L, respectivamente. Nos ensaios do planejamento fatorial DCCR, nos quais não houve controle de pH , mantendo-se naturalmente em 3,2 ± 0,3, a maior redução de COT obtida foi de 35,7%, para C_{Fe}^{2+} = 28,3 mg/L, C_{H2O2} = 738 mg/L e T = 31,9°C.

A baixa degradação da matéria orgânica presente foi influenciada significativamente pelo pH do meio. Em pH $\leq 2,0$ o H₂O₂ estará em sua forma protonada, impedindo a ação do íon ferroso para a formação do radical hidroxila. Em pH > 4,0, além da formação de hidróxido de ferro que precipita, inibindo a reação com o peróxido de hidrogênio, a molécula de H₂O₂ sofre decomposição originando água e oxigênio. Neste pH, a molécula do fármaco por estar em sua forma catiônica (ChemSpider, 2013) pode formar um complexo com o hidróxido de ferro e precipita no fundo do reator, reduzindo a COT presente na solução.

5.11. Influência da Temperatura, Concentração Inicial de Fe²⁺, C_{Fe}²⁺₀, e Concentração Inicial de Peróxido de Hidrogênio, C_{H2O2,0}, na Concentração Residual Final de Doxiciclina, C_{Doxi.HCl,Residual,Final}, Concentração Residual Final de Peróxido de Hidrogênio, C_{H2O2,Residual,Final}, e Carbono Orgânico Total final, COT_{Final}.

Foram realizados 12 ensaios para se verificar as influências da temperatura, concentração inicial de Fe^{2+} , $C_{Fe}^{2+}_{0}$, e concentração inicial de peróxido de hidrogênio, $C_{H2O2,0}$, na concentração residual final de doxiciclina, $C_{Doxi.HCl,Residual,Final}$, concentração residual de peróxido de hidrogênio, $C_{H2O2,Residual,Final}$, e carbono orgânico total final, COT_{Final} .

Os resultados obtidos estão apresentados na Tabela 14 e nas Figuras 47 a 49 e também nas Tabelas V a X do Apêndice A.

Ensaios	C _{Fe} ²⁺ 0	C _{H2O2,0}	т (ºC)	Concentrações Residuais Finais (mg/L)		
	(mg/L)	(mg/L)		C _{Doxi.HCl}	C _{H2O2}	СОТ
INF-01	25,0	611	20,0	2,3	55	39,20
INF-02	25,0	611	31,9	2,5	23	39,03
O.P.	25,0	611	35,0	1,1	20	32,81
INF-03	25,0	611	40,0	1,8	15	33,86
INF-04	25,0	611	50,0	2,0	18	35,87
INF-05	25,0	262	35,0	6,6	11	38,68
INF-06	25,0	500	35,0	3,1	29	36,44
O.P.	25,0	611	35,0	1,1	20	32,81
INF-07	25,0	738	35,0	1,3	40	37,12
INF-08	25,0	900	35,0	2,3	23	37,70
INF-09	1,0	611	35,0	6,8	458	53,35
INF-10	5,0	611	35,0	3,8	362	47,85
O.P.	25,0	611	35,0	1,1	20	32,81
INF-11	62,5	611	35,0	1,3	23	39,80
INF-12	96,7	611	35,0	2,4	17	37,99

Tabela 14 – Condições experimentais ao redor da condição de mínimo residual do planejamento fatorial DCCR.

O.P. = Melhor condição operacional determinada pelo planejamento fatorial DCCR para o valor mínimo de concentração residual final de doxiciclina, C_{Doxi,Residual,Final}.
 INF = condição de estudo ao redor de O.P. para avaliação da influência de cada variável sobre a concentração residual final de doxiciclina, C_{Doxi,Residual,Final}.

Figura 47 – Influência da temperatura sobre (a) $C_{\text{Doxi,HCI,Residual,Final}}$, (b) $C_{\text{H2O2,Residual,Final}}$ e (c) $\text{COT}_{\text{Final}}$ para a condição de concentração mínima de cloridrato de doxiciclina obtida pelo planejamento fatorial DCCR ($C_{\text{H2O2}} = 611 \text{ mg/L} \text{ e } C_{\text{Fe}}^{2+} = 25 \text{ mg/L}$). $\circ 20^{\circ}$ C, $\Delta 31,9^{\circ}$ C, $+ 35^{\circ}$ C, $\Box 40^{\circ}$ C e $\diamond 50^{\circ}$ C.

A Figura 47a mostra que a menor concentração residual final de doxiciclina, cerca de 1 mg/L, foi obtida para T = 35° C; para temperaturas maiores ou menores que 35° C as concentrações residuais de doxiciclina são de cerca de 2 mg/L e pouco sensíveis à temperatura na faixa estudada. A concentração residual final de peróxido de hidrogênio atinge um mínimo de cerca de 10 mg/L para T = 40° C, mostrado na Figura 47b. Em temperaturas menores a taxa de decomposição do peróxido de hidrogênio é menor e, consequentemente, gerará menor quantidade de radicais hidroxila. Para temperaturas maiores a taxa de decomposição do peróxido será maior e também a taxa de consumo de radicais hidroxila pelas reações dadas pelas eqs. (3), (4) e (5).

Os valores de COT, Figura 47c, apresentaram dois patamares, o primeiro, de aproximadamente 40 mg/L, para temperaturas de 20 a 30°C, e outro por volta de 30 mg/L, para temperaturas a partir de 35°C. Este comportamento se deve provavelmente ao fato de que a mineralização de moléculas orgânicas é favorecida para temperaturas mais elevadas, porém há um limite de temperatura, a partir da

qual, os subprodutos orgânicos formados são mais resistentes quimicamente ao ataque dos radicais hidroxila.

Figura 48 – Influência da concentração de peróxido de hidrogênio inicial sobre (a) $C_{Doxi,Residual,Final}$, (b) $C_{H2O2,Residual,Final}$ e (c) COT_{Final} para a condição de concentração mínima de cloridrato de doxiciclina obtida pelo planejamento fatorial DCCR (C_{Fe}^{2+} = 25 mg/L e T = 35°C). \circ 262mg/L, Δ 500mg/L, + 611mg/L, \Box 738mg/L e \Diamond 900mg/L.

A Figura 48a mostra que a concentração residual final de doxiciclina é mínima para $C_{H2O2,0} = 611 \text{ mg/L}$; observa-se ainda uma queda acentuada de $C_{\text{Doxi.HCl,Residual,Final}}$ para concentrações de peróxido crescendo de 262 até 611 mg/L e também, um aumento lento de $C_{\text{Doxi.HCl,Residual,Final}}$ para valores de $C_{H2O2,0}$ maiores que 611 mg/L. A concentração residual final de doxiciclina cai com o aumento da concentração de peróxido de hidrogênio devido ao aumento da taxa de geração de radicais hidroxila segundo a eq. (1), porém há um limite para este aumento, que é exercido pelo consumo de radicais hidroxila pelas reações de terminação, eqs. (3), (4) e (5). Para concentrações de peróxido maiores que 611 mg/L, a eficiência de degradação da doxiciclina diminui, ou seja, $C_{\text{Doxi.HCl,Residual,Final}}$ aumenta, devido ao aumento do consumo de radicais hidroxila mostrado pelas eqs. (3), (4) e (5).

A Figura 48b mostra que a curva de $C_{H2O2,Residual,Final}$ apresenta um máximo para $C_{H2O2,0}$ aproximadamente igual a 700 mg/L. A pequena queda observada a partir deste valor deve-se, provavelmente, às reações de consumo de peróxido de hidrogênio, dadas pelas eqs. (3), (6) e (13).

A Figura 48c mostra que a concentração de COT_{Final} foi pouco influenciada pela concentração inicial de peróxido de hidrogênio e variaram de 38 mg/L (30% de redução), para $C_{H2O2,0} = 262$ mg/L, para 33 mg/L (40% de redução), para $C_{H2O2,0} = 611$ mg/L. Dentro do limite de precisão dos resultados, observa-se um valor mínimo de COT_{Final} para $C_{H2O2,0} = 611$ mg/L. Isto indica que a mineralização da doxiciclina foi máxima para esta concentração inicial de peróxido de hidrogênio e esta observação corresponde à condição de menor concentração residual final de doxiciclina. Podese afirmar também persistem no meio moléculas orgânicas resistentes à oxidação pelo radical hidroxila.

Figura 49 – Influência da concentração de íon Fe²⁺ inicial sobre (a) $C_{Doxi,Residual,Final}$, (b) $C_{H2O2,Residual,Final}$ e (c) COT_{Final} para concentração mínima de cloridrato de doxiciclina obtida pelo planejamento fatorial DCCR ($C_{H2O2} = 611 \text{ mg/L} \text{ e T} = 35^{\circ}\text{C}$). $\circ 1 \text{mg/L}$, $\Delta 5 \text{mg/L}$, + 25 mg/L, $\Box 62,5 \text{mg/L} \text{ e } \diamond 96,7 \text{mg/L}$.

A Figura 49a mostra que há um mínimo de concentração residual final de doxiciclina, de aproximadamente 1 mg/L, para $C_{Fe}^{2+}_{,0} = 25$ mg/L; para valores menores de $C_{Fe}^{2+}_{,0}$ a queda de $C_{Doxi,Residual,Final}$ é acentuada, de 7 para 1 mg/L, para os valores de $C_{Fe}^{2+}_{,0}$ variando de 1 a 25 mg/L, respectivamente; para valores maiores de $C_{Fe}^{2+}_{,0}$, variando de 25 a 96,7 mg/L, a concentração residual de doxiciclina aumenta pouco, de 1 para 2 mg/L. O aumento da concentração de íon Fe²⁺ favorece a geração de radical hidroxila, eq. (1), porém até certo valor limite, pois para altos valores de $C_{Fe}^{2+}_{,0}$ poderá haver captura de radical hidroxila, eq. (4), pelo íon Fe²⁺.

A Figura 49b mostra uma queda acentuada da concentração de $C_{H2O2,Residual}$, de aproximadamente 470 para cerca de 10 mg/L, com o aumento de C_{Fe}^{2+} ,0 de 1 para 25 mg/L; para valores maiores de C_{Fe}^{2+} ,0, os valores de $C_{H2O2,Residual}$ ficam praticamente constantes ao redor de 10 mg/L. O excesso de Fe^{2+} favorece a reação paralela deste íon com o radical hidroxila, eq. (4), que é 7 ordens de grandeza maior do que a reação do íon Fe^{2+} com o peróxido de hidrogênio, eq. (1).

A Figura 49c mostra uma queda acentuada da concentração de COT_{Final}, de aproximadamente 53 para cerca de 32 mg/L, com o aumento de C_{Fe}^{2+} ,0 de 1 para 25 mg/L; para valores maiores de C_{Fe}^{2+} ,0, variando de 25 para 96,7 mg/L, os valores de COT_{Final}, crescem pouco, de 32 para 37 mg/L. Novamente, conforme já comentado sobre as influências da temperatura e C_{H2O2,0}, o maior poder oxidante do meio reacional (maior concentração de radicais hidroxila) ocorre para C_{Fe}^{2+} ,0 ao redor de 25 mg/L. A redução máxima de COT_{Final} foi de 42%, restando no meio moléculas orgânicas derivadas da doxiciclina e que têm alta resistência química.

5.12. Influência da Razão Molar [Fe²⁺/H₂O₂] sobre a C_{Doxi,Residual}, C_{H2O2,Residual} e COT

Foram realizados 4 ensaios para se verificar a influência da relação molar entre as concentrações de Fe²⁺ e H₂O₂ na concentração residual de doxiciclina, **C**_{Doxi,Residual}, concentração residual de peróxido de hidrogênio, **C**_{H2O2,Residual}, e a concentração de carbono orgânico total, COT. Foram testados os valores da relação molar [Fe²⁺/H₂O₂] = 0,1; 0,5; 1 e 2, sendo mantidos constantes a temperatura, T = 35°C, e a concentração de Fe²⁺, 250 mg/L (4,47 mM). Estes valores foram especificados com base no artigo de revisão de Neyens e Baeyens (2003), que, por sua vez, se basearam nos resultados de Yoon *et al.* (2001). Aqueles autores demonstraram que, as principais condições que afetam o processo Fenton são as relações de concentração de íons ferrosos, íons férricos e peróxido de hidrogênio, estudando a formação e consumo dos radicais hidroxila para diferentes razões molares $[Fe^{2+}/H_2O_2]$ (<< 1, = 1 e ≥ 2).

De acordo com Neyens e Baeyens (2003), para razão molar $[Fe^{2+}/H_2O_2]$ alta, isto é, ≥ 2 , na ausência de compostos orgânicos, os radicais hidroxila produzidos como resultado da equação (1), reagem rapidamente com os íons ferrosos, equação (4), e em menor velocidade com o peróxido de hidrogênio, equação (3), causando a rápida terminação das reações radicalares em cadeia. Quando em presença de moléculas orgânicas, o íon ferroso compete com o composto orgânico pelo radical hidroxila, como apresentado pelas equações (2) e (4). Este comportamento faz com que o íon ferroso atue como reagente, sequestrando os radicais formados pela equação (1), diminuindo a eficiência do processo, deixando de agir apenas como catalisador dentro do processo Fenton.

Para razão molar $[Fe^{2+}/H_2O_2] = 1$, todo ion ferroso é rapidamente convertido a íons férricos como mostrado pela equação (1). Quando na ausência de moléculas orgânicas, o peróxido é decomposto lentamente pelo íon férrico, iniciando a cadeia de reações radicalares proposto pela equação (6), proporcionando a redução do íon férrico para íon ferroso. Como a velocidade da reação (6) é significativamente mais baixa que a da reação (1), esta etapa permanece como a determinante de velocidade da reação de consumo do peróxido residual, permitindo subdividir em duas etapas as reações no meio: (a) $H_2O_2 - Fe^{2+} e$ (b) $H_2O_2 - Fe^{3+}$. Entretanto, na presença de compostos orgânicos, o comportamento destas etapas é influenciado de duas formas: (a) não ocorre mais a decomposição de peróxido após o decaimento inicial deste, devido a reação (2) ser dez vezes maior que a reação de consumo do peróxido de hidrogênio pelo radical hidroxila, equação (3); (b) a presença de grande concentração de compostos orgânicos impede o consumo do radical hidroxila pelo íon ferroso, proporcionando que o íon ferroso remanescente possa reagir com o peróxido, aumentando ligeiramente o consumo de peróxido no estágio inicial da reação.

De acordo com Neyens e Baeyens (2003), quando a razão molar é baixa, isto é [Fe²⁺/H₂O₂] << 1, na ausência de moléculas orgânicas, após o total consumo do íon ferroso inicial pela reação apresentada na equação (1), inicia-se o sistema férrico (equação 6), responsável pelo ciclo reacional até total consumo do peróxido.
Quando em presença de compostos orgânicos todo o íon ferroso é consumido rapidamente, mas o sistema férrico apresentado na falta de compostos orgânicos é praticamente cessado, ocorrendo na falta de íons ferrosos a reação de radicais hidroxila com o peróxido de hidrogênio remanescente (eq. 3), formando o radical HO₂[•], responsável pela redução lenta de Fe³⁺ para Fe²⁺ (eq. 8) e continuidade do processo.

Os resultados estão apresentados na Figura 50 e Tabela Y do Apêndice A.

Figura 50 – Influência da razão molar [Fe²⁺/H₂O₂] sobre (a) $C_{\text{Doxi,Residual}}$, (b) $C_{\text{H2O2,Residual}}$ e (c) COT ($C_{\text{Fe}}^{2+}_{0}$ = 250 mg/L e T = 35°C). Δ [Fe²⁺/H₂O₂] = 0,1 ($C_{\text{H2O2,0}}$ = 1.400 mg/L) ; \Box [Fe²⁺/H₂O₂] = 0,5 ($C_{\text{H2O2,0}}$ = 280 mg/L); + [Fe²⁺/H₂O₂] = 1 ($C_{\text{H2O2,0}}$ = 140 mg/L) e \circ [Fe²⁺/H₂O₂] = 2 ($C_{\text{H2O2,0}}$ = 70 mg/L).

A Figura 50a mostra que a relação molar $[Fe^{2+}/H_2O_2]$ tem grande influência sobre a concentração residual de doxiciclina, o que também pode ser interpretado como influência da concentração inicial de peróxido de hidrogênio, conforme já mostrado na Figura 48a, na qual a menor concentração residual final de doxiciclina correspondia a uma relação molar $[Fe^{2+}/H_2O_2] = 0,067$. Na Figura 50a a concentração residual final de doxiciclina variou de 1,3 a 29,6 mg/L, para relações molares de 0,1 a 2, respectivamente. Aparentemente, a cinética das reações não foi influenciada pela relação molar, em vista do comportamento semelhante das curvas ao logo da reação. Na faixa de valores de relação molar estudada não se observa excesso de peróxido de hidrogênio, portanto, não há consumo significativo de radical hidroxila pela reação (3) ou pela reação (5). Por outro lado, na faixa estudada há falta crescente de peróxido de hidrogênio com o aumento da relação molar.

A Figura 50b mostra uma clara influência da relação molar sobre a concentração residual de peróxido de hidrogênio, que variou de 20 a 124 mg/L, para relações molares variando de 0,1 a 2. Considerando os resultados da Figura 48b, constatamos que o crescimento da concentração residual final de peróxido é praticamente linear com a concentração inicial de peróxido, visto que não há excesso de peróxido no meio e assim, as reações de terminação, eqs. (3) e (5), e a de autoconsumo de peróxido, eq. (13), não têm taxas significativas.

A Figura 50c mostra influência desprezível da relação molar sobre o COT_{Final}, que foram de cerca de 27% para todas as relações estudadas. Aqui cabem os mesmos comentários feitos aos resultados mostrados na Figura 48c, ou seja, permanecem ainda em solução subprodutos orgânicos não degradáveis pelo processo Fenton.

5.13. Influência da Razão Molar Constante [Fe²⁺/H₂O₂] sobre a C_{Doxi,Residual}, C_{H2O2,Residual} e COT

Foram realizados 3 ensaios para se verificar a influência das quantidades de $C_{Fe}^{2+}_{0}$ e $C_{H2O2,0}$, mantendo-se constante a relação molar $[Fe^{2+}/H_2O_2]$ sobre a concentração residual de doxiciclina, concentração residual de peróxido e COT. Foram tomados como base os valores de concentração de peróxido, $C_{H2O2,0} = 611$ mg/L, e de íon Fe^{2+} , $C_{Fe}^{2+}_{0} = 25$ mg/L, obtidos pelo planejamento fatorial para a melhor condição experimental correspondente ao mínimo de concentração residual final de doxiciclina. Para esta condição a relação molar constante utilizada é $[Fe^{2+}/H_2O_2] = 0,025$ e foram testadas as concentrações de peróxido $C_{H2O2,0} = 305$ e 1222 mg/L e concentrações de Fe^{2+} , $C_{Fe}^{2+}_{0} = 12,5$ e 50,0 mg/L. Estes valores correspondem ao dobro e à metade do valor nominal, respectivamente.

Os resultados estão mostrados na Figura 51 e na Tabela Z no Apêndice A.

Figura 51 – Influência da razão molar constante, $[Fe^{2+}/H_2O_2] = 0,025$, sobre (a) $C_{Doxi,Residual}$, (b) $C_{H_{2O2,Residual}} e$ (c) COT para condição de condição de concentração mínima de cloridrato de doxiciclina obtida pelo planejamento fatorial DCCR (T = 35°C). $\Delta C_{H_{2O2}} = 305,5 \text{ mg/L}$, $C_{Fe}^{2+} = 12,5 \text{ mg/L}$; $\Box C_{H_{2O2}} = 611 \text{ mg/L}$, $C_{Fe}^{2+} = 25 \text{ mg/L}$; $+ C_{H_{2O2}} = 1222 \text{ mg/L}$, $C_{Fe}^{2+} = 50 \text{ mg/L}$.

A Figura 51a e 51b mostra os resultados de $C_{Doxi,HCI,Residual}$ e $C_{H2O2,Residual}$ e verifica-se que não há diferença significativa entre os resultados apresentados. Isto decorre do fato de que as concentrações estudadas não representam nem excesso e nem falta dos reagentes. Os valores de $C_{Doxi,HCI,Residual,Final}$ e $C_{H2O2,Residual,Final}$ foram de 2,0 e 18 mg/L, respectivamente.

A Figura 51c mostra que os resultados de COT são influenciados pela relação $[Fe^{2+}/H_2O_2]$ e que a concentração intermediária, $C_{H2O2} = 611 \text{ mg/L} \text{ e } C_{Fe}^{2+} = 25 \text{ mg/L}$, determinada originalmente pelo planejamento fatorial, é a que resultou em maior redução da COT, da ordem de 43,8%. Para as concentrações menor e maior a redução foi de cerca de 30%. A degradação da doxiciclina não foi influenciada pelas concentrações dos reagentes na faixa estudada, porém, os subprodutos de degradação o foram. Os resultados mostram que a mineralização dos subprodutos foi favorecida pela concentração intermediária, ou seja, a concentração de radicais hidroxila em menor ou maior concentração do que a concentração intermediária não

favorece reações de mineralização de parte dos subprodutos de degradação da doxiciclina.

5.14. Ensaio de Longa Duração

Foi realizado um ensaio de longa duração (9 dias) com reposição diária de peróxido de hidrogênio e de Fe²⁺ para restabelecer a concentração inicial de $C_{H2O2} = 611 \text{ mg/L}$ e $C_{Fe}^{2+} = 25 \text{ mg/L}$, melhor condição do planejamento experimental, sendo mantida a temperatura constante em 35°C. Os resultados de $C_{Doxi,Residual}$, $C_{H2O2,Residual}$ e COT estão mostrados na Figura 52 e na Tabela AA do Apêndice A.

Os resultados da Figura 52a mostram que a concentração de doxiciclina cai ao valor mínimo de 0,8 mg/L em 4 horas de reação. A Figura 52d mostra os aumentos diários da concentração de peróxido de hidrogênio bem como o seu desaparecimento. A Figura 52c mostra que a concentração de COT cai acentuadamente no primeiro dia, cerca de 30,9% e, então cai gradativamente durante os 9 dias de ensaio, Figura 52e, atingindo o valor de 24,8 mg/L, correspondendo a 54,6% de redução.

Os resultados de concentração de peróxido no meio mostram que a taxa de decomposição foi similar para todos os dias do estudo. Os resultados de COT (gráficos 52c e 52e) mostram que houve mineralização de 20,8% nos primeiros 5 minutos e de 30,9% em 240 minutos do primeiro dia de reação. Esta taxa inicial de mineralização não se mantém nos dias subsequentes, ocorrendo incremento na porcentagem de mineralização de aproximadamente 4% ao dia, finalizando ao final do nono dia de reação com mineralização igual a 54,6%. Esta diminuição da taxa de mineralização pode ser explicada pelo consumo dos radicais hidroxila pelos próprios reagentes formadores (H₂O₂ e Fe²⁺), não possibilitando a reação dos radicais com a matéria orgânica presente no meio.

Figura 52 – Ensaio de longa duração (9 dias, adição diária de Fe^{2+} e H_2O_2 para restabelecer a condição inicial: $C_{H2O2} = 611 \text{ mg/L}$, $C_{Fe2+} = 25 \text{ mg/L}$). T = 35°C. (a) $C_{Doxi,Residual}$; (b) $C_{H2O2,Residual}$ primeiro dia; (c) COT primeiro dia; (d) $C_{H2O2,Residual}$; (e) COT.

Este estudo mostra que, apesar de ter havido aumento na mineralização da matéria orgânica presente no meio, esta foi pequena em relação à necessidade de altas concentrações de peróxido de hidrogênio e, principalmente, de íon ferroso. Neste ensaio de longa duração foi utilizado 1,120 g de sulfato ferroso heptahidratado, correspondendo a 0,225 gramas de ferro. Observou-se uma grande quantidade de depósito de material particulado de coloração característica de hidróxido de ferro (alaranjado) no fundo do reator do processo.

5.15. Influência do Bombeamento de Ar no Processo Fenton

Apesar de todos os ensaios terem sido realizados sob agitação mecânica intensa (500 rpm) em vaso aberto, procurou-se verificar se a introdução de bolhas de ar no meio reacional através de um mini compressor de ar acoplado a uma pedra porosa, afetaria o processo em termos de concentração residual de doxiciclina, concentração residual de peróxido de hidrogênio e de COT.

Os resultados estão mostrados na Figura 53 e na Tabela AB do Apêndice A.

Figura 53 – Influência do bombeamento de ar no processo Fenton para a condição de condição de concentração mínima de cloridrato de doxiciclina obtida pelo planejamento fatorial DCCR ($C_{H2O2} = 611$ mg/L, $C_{Fe2+} = 25$ mg/L e T = 35°C), Δ sem bombeamento; \Box com bombeamento. (a) $C_{Doxi,Residual}$; (b) $C_{H2O2,Residual}$; (c) COT.

Os gráficos 53a e 53b mostram que a concentrações residuais de doxiciclina e de peróxido de hidrogênio não foram influenciadas pelo bombeamento de ar no meio reacional.

A Figura 53c mostra que a adição forçada de ar provocou aumento na mineralização da matéria orgânica dissolvida de 40,1% para 43,8%, fato este que

pode ser atribuído à formação de radical orgânico (produto de oxidação da eq. (2)) que reage com o oxigênio molecular presente no meio formando radical hidroperoxila, que mesmo possuindo potencial de oxidação menor que o radical hidroxila favorece a mineralização das moléculas orgânicas presentes no meio reacional. De acordo com Nogueira et al. (2007), o radical hidroxila ataca o composto alvo, provocando a formação de outros radicais, eq. (51), que ao reagir com a molécula de O₂, eq. (52), promove a formação de radical hidroperoxila, menos oxidante que o radical hidroxila.

$$OH^{\bullet} + HROH \to ROH^{\bullet} + H_2O \tag{51}$$

$$ROH^{\bullet} + O_2 \to RO + HO_2^{\bullet} \tag{52}$$

5.16. Avaliação da Concentração Inibitória Mínima Exercida pelo Resíduo da Degradação do Cloridrato de Doxiciclina

Os ensaios de concentração inibitória mínima são importantes para determinar qual a menor concentração que um determinado agente antibiótico deve estar presente para exercer ação inibitória sobre determinado microrganismo. Os organismos testes para cloridrato de doxicilina estão apresentados na Tabela 15.

Organismo	CIM (µg/mL)
Escherichia coli ATCC 25922	1,0-4,0
Staphylococcus aureus ATCC 29213	0,25 – 1,0
Enterococcus faecalis ATCC 29212	8 - 32
Pseudomonas aeruginosa ATCC 27853	8 – 32

°FDA (2013)

Os resultados da triplicata de ensaios para a determinação da CIM empregando-se como organismo controle a Escherichia coli estão apresentados na Figura 54.

	1	2	3	4	5	6	7	8	9	10	11	12
Doxiciclina HCI	25 µg/ml	12,5 µg/ml	6,3 µg/ml	3,2 µg/ml	1,6 µg/ml	0,8 µg/ml	0,4 µg/ml	0,2 µg/ml	0,1 µg/ml	0,01 µg/ml	0	0
Doxiciclina HCI	25 µg/ml	12,5 µg/ml	6,3 µg/ml	3,2 µg/ml	1,6 µg/ml	0,8 µg/ml	0,4 µg/ml	0,2 µg/ml	0,1 µg/ml	0,01 µg/ml	0	0
Doxiciclina HCI	25 µg/ml	12,5 µg/ml	6,3 µg/ml	3,2 µg/ml	1,6 µg/ml	0,8 µg/ml	0,4 µg/ml	0,2 µg/ml	0,1 µg/ml	0,01 µg/ml	0	0
Tratamento	25%	12,5%	6,3%	3,2%	1,6%	0.8%	0.4%	0.2%	0,1%	0,05%	0	0
Tratamento	25%	12,5%	6,3%	3,2%	1,6%	0.8%	0.4%	0.2%	0,1%	0,05%	0	0
Tratamento	25%	12,5%	6,3%	3,2%	1,6%	0.8%	0.4%	0.2%	0,1%	0,05%	0	0
Branco do tratamento	25%	12,5%	6,3%	3,2%	1,6%	0.8%	0.4%	0.2%	0,1%	0,05%	0	0

Figura 54 – Representação do teste CIM por microdiluição em placa de 96 poços, região cinza: turvação após 24 horas (crescimento microbiano). Região preta: sem turvação (inibição do crescimento).

A concentração inibitória mínima de cloridrato de doxiciclina foi de 1,6 µg/ml, compatível com a descrita na literatura (FDA, 2013) para *Escherichia coli*. O antibiótico oxidado não foi capaz de inibir o crescimento em concentração menor ou igual a 25% da solução inicial, equivalente a 25 µg/mL de doxiciclina oxidada. A concentração do tratamento não foi aumentada acima de 25% para não diluir o meio de cultura em excesso, o que interfere na cinética de crescimento bacteriano. Através deste teste é possível afirmar que o efluente do tratamento não foi tóxico para o microorganismo estudado, pois não inibiu seu crescimento celular. A ausência de inibição também evidencia que a amostra mais concentrada contém menos que 6,4 µg/ml do antibiótico (quatro vezes o valor do CIM, pois estava diluído a 25%), ou seja, houve inativação de no mínimo 94% da quantidade inicial de doxiciclina.

5.17. Avaliação da Citotoxicidade do Resíduo da Degradação do Cloridrato de Doxiciclina

Os ensaios de citotoxicidade foram desenvolvidos tanto com o efluente na concentração real do experimento quanto concentrado 10x em concentrador rotativo a vácuo, sendo a citotoxicidade medida pelo teste do MTT, os resultados representam à média (pontos) e desvio padrão (barra de erros) de 3 ensaios

contendo cada amostra testada em triplicada. Os resultados para o efluente puro estão apresentados na Figura 55.

Figura 55 – Teste de citotoxicidade das amostras após 24 h de incubação com células L929 utilizando efluente na condição real.

Na Figura 55 as porcentagens apresentadas na identificação das amostras referem-se à quantidade do produto adicionada a célula, sendo o restante constituído por meio de cultura. Ex: efluente 30% - 30% do efluente mais 70% de meio de cultura. Este gráfico mostra que 20 a 30% de amostra podem afetar o crescimento celular, mesmo que a amostra seja o tampão fosfato (solução salina) não prejudicial à célula, não há diferença significativa entre o efluente e o branco da reação, o que mostra que não houve geração de subprodutos tóxicos a esse tipo celular no processo de tratamento do efluente. Comparando-se os dados do cloridrato de doxiciclina está manteve-se tóxica a célula em altas concentrações, sendo seu efeito dose-dependente.

Na tentativa de avaliar a influência do efluente e branco da reação, estes foram concentrados 10x, utilizando-se o equipamento concentrador rotativo a vácuo Eppendorf – modelo Concentrator Plus, facilitando o estudo da citotoxicidade em maiores concentrações. Os resultados estão apresentados na Figura 56.

Figura 56 – Teste de citotoxicidade das amostras após 24 h de incubação com células L929 utilizando efluente concentrado 10 vezes.

A Figura 56 mostra a percentagem refere-se à quantidade relativa de células viáveis, sendo 100% de viabilidade a quantidade de células após 24 h de incubação, apenas em meio de cultura. Não há diferença significativa entre o efluente e o branco da reação concentrados, pois a concentração do efluente e branco da reação aumentou a viabilidade celular, confirmando que a citotoxicidade anterior era relacionada à diluição do meio de cultura, e não a toxicidade do tratamento, não apresentando toxicidade significativa às células L929 em até 50% de concentração (5% de solução 10x concentrada), que foi a maior concentração testada.

5.18. Produtos de Degradação da Doxiciclina

A espectrometria de massa (MS) se baseia no movimento de íons em campos elétricos e magnéticos para classificá-los de acordo com sua relação massa-carga (m/z). A introdução da amostra pode ser direta na fonte de ionização (amostras puras) ou utilizando-se técnicas de cromatografia acoplada ao espectrômetro de massa para separação dos componentes de amostras complexas (misturas) permitindo a análise em separado de cada um de seus compostos. As moléculas que constituem a amostra introduzida no aparelho são ionizadas, formando íons,

que de acordo com a massa e a carga do íon podem ser identificados e quantificados.

Os resultados obtidos neste estudo através de cromatografia líquida acoplada a um detector de massa estão apresentados na Tabela 16 e nos gráficos do Apêndice C. Nos cromatogramas obtidos consideraram-se como produtos de degradação os picos com altura maior ou igual a três vezes a altura do ruído. De acordo com as massas moleculares apresentadas, buscou-se identificar as moléculas detectadas comparando-se com as moléculas propostas em trabalhos publicados por Jeong *et al.* (2010), Yuan *et al.* (2011), Mboula *et al.* (2012). Também foram sugeridas estruturas moleculares hipotéticas partindo-se da molécula de doxiciclina, pois o radical hidroxila é um oxidante bastante reativo e pouco seletivo. As estruturas atribuídas a cada produto de degradação obtido estão apresentadas nas Figuras 57 e 58.

Tamma da	Tempo a do <u>30 segundos 60 segundos 180 seg</u>		po amostral segundos	nostral undos 300 segundos			10 minutos			
retenção (min)	m/z	Legenda da Estrutura Sugerida	m/z	Legenda da Estrutura Sugerida	m/z	Legenda da Estrutura Sugerida	m/z	Legenda da Estrutura Sugerida	m/z	Legenda da Estrutura Sugerida
	106	I	105	I	105	I	105	I	116	В
	165	Н	155	S	165	Н	187	Q	187	Q
	187	Q	165	Н	187	Q	241	Т	241	Т
0.6	241	Т	187	Q	241	Т	269	Ν	269	N
0,0	270	Ν	247	R	269	Ν	307	L	351	G
	351	G	269	Ν	351	G	351	G		
			307	L			383	E		
			351	G			433	J		
	143	F	143	F	143	F	143	F	143	F
	165	Н	165	Н	263	С	263	С	165	Н
	263	С	263	С	383	E	307	L	263	С
0,9	383	E	307	L	445	А	383	E	307	L
	445	А	383	E	503	0	445	А	383	E
			445	А			503	0	405	К
									503	0
			75	D						
1 2			263	С						
1,2			340	Μ						
			400	Р						

Tabela 16 – Produtos de degradação em relação ao tempo de amostragem.

A Tabela 16 apresenta a relação massa-carga dos produtos de degradação, presentes nas amostras retiradas do meio reacional. A molécula protonada ([M + H]⁺) de doxiciclina possui m/z de 445, sendo a Unidade de Massa Atômica (u.m.a.) igual a 444. De posse dos resultados apresentados pela espectrometria de massas,

é possível afirmar que as moléculas geradas com a degradação do cloridrato de doxiciclina através do processo Fenton originam, em sua maioria, moléculas com baixa relação massa-carga (m/z < 445), como pode ser observado na Tabela 16 e nos gráficos do Apêndice C, já nos instantes iniciais do processo. Estes resultados indicam que o radical hidroxila tem a capacidade de promover tanto a perda de átomos e grupos funcionais localizados na periferia da molécula quanto de promover a quebra de anéis aromáticos.

Os produtos de degradação originados durante o processo sofrem ataque do radical hidroxila, originando moléculas instáveis, que são capazes de reagir com outras moléculas presentes no meio, possibilitando a formação de moléculas mais estáveis, mantendo uma concentração elevada de COT do meio reacional.

De acordo com os dados obtidos, a molécula original de cloridrato de doxiciclina com relação massa-carga (m/z) de 445, que apresenta um tempo de retenção 0,9 min, é degradada em tempo de reação inferior a 10 minutos.

De acordo com os resultados obtidos por Yuan et al., (2011), que propuseram estruturas moleculares para os produtos de degradação do cloridrato de doxiciclina, é possível identificar alguns dos produtos resultantes da oxidação pelo processo Fenton, como o produto D (m/z = 76), Figura 57, que corresponde a uma molécula de glicina ($C_2H_5NO_2$) originária da quebra de um dos anéis da estrutura do fármaco; o produto I (m/z = 104), Figura 57, que corresponde ao ácido propanodióico ($CH_2(COOH)_2$), também resultado da clivagem dos anéis da molécula do fármaco; e o produto H (m/z = 166), Figura 57, correspondente ao ácido 1,4-benzenodicarboxílico ($C_6H_4(COOH)_2$), que mantém um anel em sua estrutura.

As estruturas com relação m/z = 154, 399 e 401 foram propostas por Jeong *et al.* (2010) e Mboula *et al.* (2012) e também estão apresentadas na Figura 57. O produto E (m/z = 385) é o resultado da perda de um grupo hidroxila e do grupo amida, por parte da molécula da doxiciclina. O produto J (m/z = 432) é o resultado da adição de um grupo hidroxila em um dos anéis da molécula do fármaco. O produto P (m/z = 399) se originou da saída do grupo amida da estrutura molecular do cloridrato de doxiciclina. Mboula *et al.* (2012), sugere a perda de 307 u.m.a. da molécula, mas não sugere uma estrutura.

A estrutura proposta para o íon com m/z = 307, foi obtida através da comparação desta massa na base de dados ChemSpider[®] com estruturas semelhantes à molécula da doxicilina. Com esta busca encontrou-se uma molécula

com m/z = 305. A estrutura está mostrada na Figura 58, produto L. Esta molécula juntamente com a de m/z = 154, produto S da Figura 57, sugere que ocorre quebra de parte da estrutura cíclica da doxicilina. Outras estruturas não puderam ser sugeridas do mesmo modo, devido à falta de semelhança com a estrutura molecular da doxicilina.

Figura 57 – Estruturas moleculares para os produtos de degradação da doxiciclina através da ação do radical hidroxila (Jeong *et al.*, 2010, Yuan *et al.*, 2011 e Mboula *et al.*, 2012).

A estrutura com m/z = 187, representada pela letra Q na Figura 58, está presente nas amostras retiradas nos instantes 30, 60, 180 e 300 segundos e também na amostra de 10 min, sendo um dos íons de maior concentração na amostra de acordo com os cromatogramas obtidos, ou seja, com pico de maior área. A estrutura proposta pode ser observada na Figura 58, sugerindo que houve o rompimento entre os anéis B e C da molécula A na Figura 57.

A estrutura com m/z = 241 está presente nas amostras retiradas nos instantes 30, 180 e 300 segundos e também na amostra de 10 min. A estrutura proposta está mostrada na Figura 58, sugerindo que houve o rompimento no anel C e saída do grupo -NH₂.

A estrutura com m/z = 270 foi detectada nas amostras retiradas nos instantes 30, 60, 180 e 300 segundos e também na amostra de 10 min, sendo um dos íons de maior concentração na amostra de acordo com os cromatogramas obtidos. A

estrutura proposta está apresentada na Figura 58, sugerindo que houve o rompimento entre os anéis C e D e entrada de uma hidroxila no anel A.

A estrutura com m/z = 355, representada pela estrutura G da Figura 58, foi detectada nas amostras retiradas nos instantes 30, 60, 180 e 300 segundos e também na amostra de 10 min. A estrutura sugerida está mostrada na Figura 58, que poderia ser explicada pela retirada do grupo -CONH₂, dois grupamentos –CH₃ e um –OH da estrutura A da Figura 57.

A estrutura com m/z = 148, representada pela estrutura F da Figura 58, foi detectada nas amostras retiradas nos instantes 30, 60, 180 e 300 segundos e também na amostra de 10 min. A estrutura sugerida está mostrada na Figura 58, que poderia ser explicada pelo rompimento entre os anéis B e C e saída de um grupamento –CH₃ e um -OH do anel B da estrutura A da Figura 57.

A estrutura com m/z = 260, representada pela estrutura C da Figura 58, está presente nas amostras retiradas nos instantes 30, 60, 180 e 300 segundos e também na amostra de 10 min, sendo um dos íons de maior concentração na amostra de acordo com os cromatogramas obtidos. A estrutura sugerida está apresentada na Figura 58, que poderia ser explicada pelo rompimento entre os anéis C e D da estrutura A da Figura 57.

A estrutura com m/z = 241, representada pela estrutura T da Figura 58, está presente na amostra retirada no instante 60 segundos. A estrutura sugerida está apresentada na Figura 58, que poderia ser explicada pelo rompimento entre os anéis C e D e saída de um grupamento $-CH_3$ do anel B da estrutura A da Figura 57.

A estrutura com m/z 340, representada pela estrutura M da Figura 58, está presente apenas na amostra retirada no instante 60 segundos, sendo um dos íons de maior concentração na amostra de acordo com os cromatogramas obtidos. A estrutura sugerida está apresentada na Figura 58, que poderia ser explicada através da saída dos grupos $-CONH_2$, $-N(CH_3)_2$ e -OH da estrutura A da Figura 57.

A estrutura com m/z = 503, representada pela estrutura O da Figura 58, está presente nas amostras retiradas nos instantes 180 e 300 segundos e 10 minutos. A estrutura sugerida está apresentada na Figura 58, que poderia ser explicada através da saída do grupo -NH₂ e entrada de um grupo –OH no anel A e de um grupo – C_2O_2 na estrutura A da Figura 57.

Figura 58 – Sugestão de estruturas moleculares dos produtos de degradação da doxiciclina obtidas pelo processo Fenton.

6. Conclusões

Validação do Método Espectrofotométrico para Determinação da Concentração Residual Final de Cloridrato de Doxiciclina

O método de quantificação do cloridrato de doxiciclina, validado de acordo com os critérios da Resolução 899/03 da ANVISA, é adequado quando não for possível o uso de técnicas de maior custo como a análise por CLAE (UV ou Massa).

Influência da Temperatura sobre a Oxidação do Cloridrato de Doxiciclina e do Peróxido de Hidrogênio sem Adição de Íons Fe²⁺ e com Incidência de Luz

A temperatura exerce efeito positivo na decomposição da molécula de peróxido de hidrogênio, sendo mais evidente no intervalo entre 20 e 30°C, mas tendo aumento a cada intervalo de temperatura para cada instante da reação de degradação do fármaco pelos radicais formados.

<u>Degradação do Cloridrato de Doxiciclina por Peróxido de Hidrogênio com e</u> <u>sem Adição de Íons Fe²⁺, com e sem Incidência de Luz Natural</u>

As concentrações residuais finais de fármaco são semelhantes para duas condições extremas: (1) $C_{H2O2,0} = 10.000 \text{ mg/L}$, sem adição de íon ferroso e exposto à luz natural e (2) $C_{H2O2,0} = 500 \text{ mg/L}$, com adição de íon ferroso e protegido da luz

natural. Devido à ação catalítica do íon ferroso foi possível a utilização de menores quantidades de peróxido de hidrogênio e obter a mesma concentração residual final de fármaco em tempo menor.

A luz natural potencializa a degradação do fármaco em ambos os casos, mas devido a impossibilidade experimental durante a realização deste trabalho de mestrado para sua quantificação, optou-se por estudar apenas o processo Fenton térmico (sem incidência de luz natural ou radiação UV).

<u>Degradação do Cloridrato de Doxiciclina por Peróxido de Hidrogênio em</u> <u>Diferentes Concentrações, com Adição de Íons Fe²⁺, sem Incidência de Luz</u>

A concentração residual final mínima de fármaco foi obtida para $C_{H2O2,0} = 625$ mg/L. Para concentrações maiores é favorecido o consumo dos radicais hidroxila pelas moléculas de peróxido em excesso no meio.

<u>Degradação do Cloridrato de Doxiciclina por Peróxido de Hidrogênio, com</u> <u>Adição de Diferentes Concentrações de Íon Fe²⁺, sem Incidência de Luz</u>

A concentração residual final mínima de fármaco foi obtida para $C_{Fe}^{2+} = 70$ mg/L, acima desta concentração, os resultados indicam que houve diminuição da capacidade oxidativa, provavelmente devido ao sequestro dos radicais hidroxila exercido pelo excesso de íons Fe²⁺ e Fe³⁺ no meio.

<u>Oxidação do Cloridrato de Doxiciclina no Processo Fenton, Influência da</u> <u>Temperatura, sem Incidência de Luz</u>.

O processo Fenton é mais eficiente em temperaturas próximas da ambiente, entre 20 e 30°C, acima desta temperatura, ocorre diminuição da capacidade oxidativa do processo sobre a molécula de cloridrato de doxiciclina devido ao aumento da competição entre as moléculas presentes no meio.

Planejamento Fatorial

É possível afirmar que o método utilizado é válido e se mostra eficiente para a degradação do fármaco nas condições propostas pelo planejamento DCCR e pH natural do meio na faixa entre 2,7 – 3,0, C_{Fe}^{2+} = 25 mg/L, C_{H2O2} = 611 mg/L e Temperatura = 35°C, pois a molécula do fármaco apresentou concentração

virtualmente nula ao final do processo, apesar de obter apenas 40,9% de mineralização dos compostos orgânicos em solução.

Concentração do Íon Fe²⁺ durante o Processo Fenton

O íon ferroso participa do processo apenas nos instantes iniciais, sendo após 20 minutos totalmente consumido, sendo indetectável após este período.

<u>Comparação dos Resultados do Ponto Central do Planejamento DCCR com</u> os Resultados da Melhor Condição Operacional Determinada pelo Planejamento <u>Fatorial</u>.

Através do aumento da concentração de peróxido de hidrogênio, a diminuição da concentração inicial de íons ferrosos e aumento da temperatura, como proposto pelo planejamento fatorial, a carga orgânica da solução foi reduzida para 40% em comparação aos 30% que eram obtidos com a condição proposta para o ponto central.

Influência do pH na Concentração Residual Final de Doxiciclina, <u>C_{Doxi.HCI,Residual,Final}</u>. Concentração Residual Final de Peróxido de Hidrogênio, <u>C_{H202,Residual,Final}</u>. e Carbono Orgânico Total Final, COT_{Final}

A menor concentração residual final de doxiciclina e de COT foi obtida para pH entre 2,0 e 3,0.

<u>Influência da Temperatura, Concentração Inicial de Fe²⁺, C_{Fe}²⁺₀, e</u> <u>Concentração Inicial de Peróxido de Hidrogênio, C_{H2O2,0}, na Concentração Residual Final de Doxiciclina, C_{Doxi.HCI,Residual,Final}, Concentração Residual Final de Peróxido de <u>Hidrogênio, C_{H2O2,Residual,Final}, e Carbono Orgânico Total Final, COT_{Final}</u></u>

As três variáveis (C_{H2O2} , C_{Fe}^{2+} e T) exercem efeito significativo. Com base na análise de resíduos do software Statistica[®], as variáveis que mais influenciam o processo são C_{H2O2} e C_{Fe}^{2+} , respectivamente. A melhor condição determinada pelo planejamento fatorial foi C_{Fe}^{2+} = 25 mg/L, C_{H2O2} = 611 mg/L e T = 35°C. Para estas condições obteve-se a menor concentração residual final de cloridrato de doxiciclina e de COT, que foram de 1,1 e 32,8 mg/L, respectivamente.

Influência da Razão Molar $[Fe^{2+}/H_2O_2]$ sobre a $C_{Doxi,Residual}$, $C_{H2O2,Residual}$ e <u>COT.</u>

A menor concentração residual final de doxiciclina e de COT foi obtida para razão molar $[Fe^{2+}/H_2O_2] = 0,1$. Para razões molares diferentes, a formação e consumo dos radicais hidroxila é deslocada, estimulando o consumo do radical, interferindo de forma drástica no potencial de oxidação da molécula orgânica, diminuindo o rendimento do tratamento.

Influência da Razão Molar Constante $[Fe^{2+}/H_2O_2]$ sobre a $C_{Doxi, Residual.}$ <u> $C_{H2O2, Residual.}$ e COT</u>

Quando mantida a mesma razão molar, mas alterando a concentração inicial de cada reagente de Fenton na reação, quando em alta concentração dos reagentes as reações de consumo do radical hidroxila são favorecidas, promovendo uma menor mineralização dos produtos de degradação intermediários da oxidação do cloridrato de doxiciclina. Quando a concentração dos reagentes é baixa, ocorre formação insuficiente de radicais para a diminuição da carga orgânica da solução.

Ensaio de Longa Duração

A mineralização do meio é pouco influenciada pela adição de mais reagente de Fenton ao meio, havendo gradativa, porém pequena diminuição da COT para a alta quantidade de peróxido de hidrogênio e íons ferrosos necessárias para esta queda.

Influência do Bombeamento de Ar no Processo Fenton

A adição de oxigênio através do bombeamento de ar durante o processo mostrou-se particularmente importante por ser uma alternativa barata e mantendo o mecanismo de oxidação em cadeia pela formação do radical hidroperoxila (HO₂•) através da reação do radical orgânico (ROH•) com o O₂, aumentando a mineralização do meio.

<u>Avaliação da Concentração Inibitória Mínima Exercida pelo Resíduo da</u> <u>Degradação do Cloridrato de Doxiciclina e Avaliação da Citotoxicidade do Resíduo</u> <u>da Degradação do Cloridrato de Doxiciclina</u> A avaliação da citotoxicidade do resíduo e da Concentração Inibitória Mínima (CIM) pela *Escherichia coli* mostraram que o cloridrato de doxiciclina teve suas características antibióticas neutralizadas, sendo viável o tratamento pelo processo proposto nas condições propostas pelo planejamento fatorial DCCR.

Produtos de Degradação da Doxiciclina

Os produtos de degradação, analisados através de espectrometria de massa, sugerem que a molécula é fragmentada em locais pouco específicos, obtendo-se moléculas com baixa relação massa/carga e que estas podem reagir entre si, originando moléculas mais estáveis.

A redução máxima alcançada neste trabalho foi de 44% da COT inicial e desta forma, o processo Fenton se aplica a um processo global de tratamento de efluentes como um processo intermediário que reduz a toxicidade e a carga orgânica e adéqua o efluente para uma etapa posterior, principalmente pela inativação das propriedades antibióticas que poderiam ocasionar o processo de resistência bacteriana a este antibiótico e uma possível biodegradação da molécula orgânica residual.

7. Sugestões para o Prosseguimento do Trabalho

-Estudar o tratamento de efluentes reais pelo processo Fenton.

-Avaliar a degradação da molécula de cloridrato de doxiciclina através de outros POAs, como, por exemplo, foto-Fenton solar, ozônio, UV, TiO₂ solar/UV e suas combinações: foto-Fenton/UV/Luz Negra, O₃/UV/H₂O₂, comparando-se os resultados obtidos e a aplicabilidade destes.

-Identificar os produtos de degradação da doxiciclina pelo processo Fenton.

-Fazer a avaliação econômica do processo, considerando o consumo de peróxido de hidrogênio, sulfato ferroso e tratamentos posteriores devido à formação de lodo de hidróxido de ferro.

-Avaliar a ação biológica dos sub-produtos.

-Estudar a biodegradabilidade do efluente gerado

-Avaliar a toxicidade do efluente gerado com outros organismos como por ex., Staphylococcus aureus, Dafnia magna, Vibrio fischeri, Pseudokirchneriella

subcapitata.

-Estudar a degradação para concentrações menores, na faixa de µg/L.

8. Publicações dos Resultados

As publicações decorrentes deste trabalho de mestrado encontram-se no Apêndice D.

9. Referências Bibliográficas

- AGA, D.S. Fate of Pharmaceuticals in the Environment and in Water Treatment Systems. CRC Press, 2008.
- AGÊNCIA NACIONAL DE VIGILÂNCIA SANITÁRIA (ANVISA). Farmacopéia Brasileira Vol. 2. 5ªEd. Brasília, DF, 2010.836p.
- ALBUQUERQUE, L.F. Estudo da oxidação do metabissulfito de sódio contido no efluente da carcinicultura, 2005, 98f. Dissertação (Mestrado em Engenharia Química) – Centro de Tecnologia, Departamento de Engenharia Química, Programa de Pós-Graduação em Engenharia Química, Universidade Federal do Rio Grande do Norte, Natal, 2005.
- AMERICAN PUBLIC HEALTH ASSOCIATION (APHA). Standard methods for the examination of water and watwater. 20th ed. Washington, 1999.
- ANDREOZZI, R.; CAPRIO, V.; INSOLA, A.; MAROTTA, R.; SANCHIRICO, R. Advanced oxidation processes for the treatment of mineral oilcontaminated wastewaters. Water Research, v. 34, n. 2, 2000. p. 620-628.
- BARTLETT, J.G.; BUSTETTER, L.A.; GORBACH, S.L.; ONDERDONK, A. Comparative effect of tetracycline and doxycycline on the occurrence of resistant Escherichia coli in the faecal flora. Antimicrob Agents Chemother, v. 7, 1975. p.55-57.
- BEATI, A. A. G. F.; ROCHA, R. S.; OLIVEIRA, J. G.; LANZA, M. R. V. Estudo da degradação da ranitidina via H₂O₂ eletrogerado/Fenton em um reator eletroquímico com eletrodos de difusão gasosa. Quím. Nova, vol.32, nº.1, 2009. p. 125-130.
- BIANCO, B.; MICHELIS, I.; VEGLIÒ,F. Fenton treatment of complex industrial wastewater: Optimization of process conditions by surface response method. Journal of Hazardous Materials. V.186, 2011. p.1733–1738.

- BOSSMANN, S. H.; OLIVEROS, E.; GÖB, S.; SIEGWART, S.; DAHLEN, E. P.; PAYAWAN JR., L.; STRAUB, M.; WÖRNER, M.; BRAUN, A. M. New evidence against hydroxyl radicals as reactive intermediates in the thermal and photochemically enhanced Fenton reactions. J. Phys. Chem. A. v. 102, 1998. p. 5542-5550.
- BRASIL. AGÊNCIA NACIONAL DE VIGILÂNCIA SANITÁRIA (ANVISA). Resolução RE nº 899, de 29 de maio de 2003. **Guia para validação de métodos analíticos e bioanalíticos**. Diário Oficial da União, Brasília – DF, 02 Jun. 2003.
- BRASIL. COMPANHIA DE TECNOLOGIA DE SANEAMENTO AMBIENTAL (CETESB). Qualidade das águas interiores no estado de São Paulo – Apêndice A – Significado ambiental e sanitário das variáveis de qualidade das águas e dos sedimentos e metodologias analíticas e de amostragem. 2009. Disponível em: http://www.cetesb.sp.gov.br/userfiles/file/agua/aguassuperficiais/variaveis.pdf. Acesso em: 30 jan. 2013.
- BRITTO, J.M.; RANGEL,M.C. Processos avançados de oxidação de compostos fenólicos em efluentes industriais. Química Nova, Vol. 31, No. 1, 2008. p.114-122.
- BURKE A.; CUNHA, MD. New uses for older antibiotics: nitrofurantoin, amikacin, colistin, polymyxin B, doxycycline, and minocycline revisited. The Medical Clinics of North America. v. 90, 2006. p.1089–1107.
- CALAMARI, D.; ZUCCATO, E.; CASTIGLIONI, S.; BAGNATI, R.; FANELLI, R. Strategic survey of therapeutic drugs in the rivers Po and Lambro in northern Italy. Environ Sci Technol. Vol. 37, 2003, p.1241–1248.
- CLINICAL AND LABORATORY STANDARDS INSTITUTE (CLSI). Methods for dilution antimicrobial susceptibility test for bacteria that grow aerobically, seventh edition. Approved standard M7-A8 CLSI, Wayne, Pensilvania, 2009; p.65.
- COELHO, A.; CASTRO, A.V.; DEZOTTI, M. SANT'ANNA JUNIOR.; G.L. Tratamento das águas ácidas de refinaria de petróleo pelos processos Fenton e foto-Fenton combinados. 23º Congresso Brasileiro de Engenharia Sanitária e Ambiental, Campo Grande-MS. 2005.
- COELHO, A.; CASTRO, A.V.; DEZOTTI, M. SANT'ANNA JUNIOR.; G.L. **Treatment** of petroleum refinery sourwater by advanced oxidation processes. Journal of Hazardous Materials, v.137, Nº 1, 2006. p.178–184.
- CUNHA, I.I.L.; NASTASI, M.J.C. Solvent extraction studies using tetracycline as complexing agent. Journal of Radioanalytical and Nuclear Chemistry, v.92, N^o 1, 1985. p. 79-92.
- CHEMSPIDER. The free chemical database. Advanced Search. Disponivel em: <<u>http://www.chemspider.com/FullSearch.aspx</u>>. Acesso em: 13 jun. 2013.

- DOPAR, M.; KUSIC, H.;KOPRIVANAC, N. Treatment of simulated industrial wastewater by photo-Fenton process. Part I: The optimization of process parameters using design of experiments (DOE). Chemical Engineering Journal, Volume 173, Issue 2, 2011, p.267-279.
- DURÁN, A.; MONTEAGUDO, J.M.; SAN MARTÍN, I.; AGUIRRE, M. Mineralization of integrated gasification combined-cycle power-station wastewater effluent by a photo-Fenton process. Journal of Environmental Management, Vol. 91, Issue 9, 2010, p.1840-1846.
- EISENHAUER, H. R. **Oxidation of phenolic wastes**. Journal (Water Pollution Control Federation), v. 36 (9), 1964. p. 1116-1128.
- FAN, X.; HAO, H.; SHENA, X.; CHENA, F.; ZHANGA, J. Removal and degradation pathway study of sulfasalazine with Fenton-like reaction. Journal of Hazardous Materials, v.190, 2011. p.493–500.
- FATTA-KASSINOS, D.; VASQUEZ, M. I.; KUMMERER, K. Transformation products of pharmaceuticals in surface waters and wastewater formed during photolysis and advanced oxidation processes – Degradation, elucidation of byproducts and assessment of their biological potency. Chemosphere, v.85, 2011. p.693–709.
- FDA. U.S. Food and Drug Administration. Doryx (doxycycline hyclate) Capsule, Delayed Release Pellets. Disponível em: http://www.accessdata.fda.gov/drugsatfda_docs/label/2008/050582s027lbl.pdf. Acesso em: 04 junho 2013.
- FENTON, H.J.H. **Oxidation of tartaric acid in presence of iron.** J. Chem. Soc., Trans., v. 65, 1894. p. 899–911.
- GERNJAK, D. W.; MALDONADOB, M. I.; FUERHACKER, M.; MALATO, S. Solar photo-Fenton treatment of EU priority substances: Process parameters and control strategies. Madri – Espanha : Ed. CIEMAT, 2006. 183 p.
- GHOSH, G. C.; OKUDA, T.; YAMASHITA, N.; TANAKA, H. Occurrence and elimination of antibiotics at four sewage treatment plants in Japan and their effects on bacterial ammonia oxidation. Water Science and Technology, v. 59, 2009. p. 779-786.
- GUJARATHI, N. P.; HANEY, B. J.; LINDEN, J. C. Phytoremediation potential of Myriophyllum aquaticum and Pistia stratiotes to modify antibiotic growth promoters, tetracycline and oxytetracycline, in aqueous wastewater systems. International Journal of Phytoremediation, v. 7 (2), 2005. p.99-112.
- GUTIÉRREZ, M.; HENGLEIN, A.; IBAÑEZ, F. Radical scavenging In the sonolysis of aqueous solutions of I, Br, and N₃. The Journal of Physical Chemistry, v. 95 (15), 1991. p. 6044-6047.

- HABER, F.; WEISS, J. **On the catalysis of hydroperoxide**. Naturwissenschaften, v.20, 1932. p. 948–950.
- HARDMAN, J.G.; LIMBIRD, L.E.; MOLINOFF, P.B.; RUDDON, R.W.; GILMAN, A.G. Goodman & Gilman's the pharmacological basis of therapeutics. 9.ed. New York: MacGraw-Hill, 2001. p.1183-1184.
- HERNEY-RAMIREZ, J.; VICENTE, M. A.; MADEIRA, L. M. Heterogeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment: A review. Applied Catalysis B Environmental, v. 98, 2010, p.10-26.
- HOMEM, V. M. F. C. Tecnologias alternativas de remoção de antibióticos de águas contaminadas. 2011, 341f.; Dissertação de Doutorado - Faculdade de Engenharia da Universidade do Porto – Engenharia do Ambiente, Porto, 2011.
- HORBYLON, B.Z. Estudo in vitro da cinética de desorção de doxiciclina e tetraciclina impregnadas a membrana de colágeno utilizadas como dispositivos de liberação medicamentosa local. 2008, 51f.; Dissertação de Mestrado Faculdade de Odontologia da Universidade Federal de Uberlândia Reabilitação Oral, Uberlândia-MG, 2008.
- IKEHATA, K.; NAGHASHKAR, N. J.; EL-DIN, M. G. Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: a review. Ozone: Science and Engineering, v.28, 2006. p.353–414.
- INTERNATIONAL ORGANIZATION FOR STANDARDIZATION ISO 10993-5. Biological evaluation of medical devices. Part 5: Tests for cytotoxicity: In vitro methods, International Organization for Standardization, Geneva, 1999. p. 24-28.
- JACOB, D. J. Introduction to Atmospheric Chemistry. Princeton University Press, 273f., 1999. cap. 6, p. 83-104, 1999. Disponível em: <<u>http://acmg.seas.harvard.edu/publications/jacobbook/bookchap6.pdf</u>>. Acesso em: 05 Dez. 2012.
- JEONG, J.; SONG, W.; COOPER, W.J.; JUNG, J.; GREAVES, J. Degradation of tetracycline antibiotics: Mechanisms and kinetic studies for advanced oxidation/reduction processes. Chemosphere, v.78, 2010. p.533–540.
- JIA, A.; XIAO, Y.; HU, J.; ASAMI, M.; KUNIKANE, S. Simultaneous determination of tetracyclines and their degradation products in environmental waters by liquid chromatography–electrospray tandem mass spectrometry. Journal of Chromatography A, v.1216, 2009. p.4655–4662.
- JIAO, S.; ZHENG, S.; YIN, D.; WANG, L.; CHEN, L. Aqueous photolysis of tetracycline and toxicity of photolytic products to luminescent bacteria. Chemosphere, v.73, 2008. p.377–382.

- KACZMAREK, M.; LIS, S. Chemiluminescence determination of tetracyclines using Fenton system in the presence europium(III) ions. Analytica Chimica Acta, v.639, 2009. p.96–100.
- KOLPIN, D.W.; FURLONG, E.T.; MEYER, M.T.; THURMAN, M.E.; ZAUGG, S.D.; BARBER, L.B.; BUXTON, H.T. Pharmaceuticals, hormones and other organic wastewater contaminants in U.S. streams, 1999–2000: A national reconnaissance. Environ Sci Technol, v.36, 2002. p.1202–1211.
- KOMMINENI, S.; ZOECKLER, J.; STOCKING, A.; LIANG, S.; FLORES, A.; KAVANAUGH, M. 3.0 Advanced Oxidation Processes. In: TREATMENT Technologies for Removal of Methyl Tertiary Butyl Ether (MTBE) from Drinking Water: Air Stripping, Advanced Oxidation Process, Granular Activated Carbon, Synthetic Resin Sorbents. National Water Research Institute, Second Edition, 410f., 2000. cap. 3, p. 109-208, 2000.
- KUMAR, S. M. Degradation and mineralization of organic contaminants by Fenton and photo-Fenton process: Review of mechanisms and effects of organic and inorganic additives. Research Journal of Chemistry and Environment, v. 15 (2), p. 96-112, 2011.
- LAVORENTI, A. **Cinética química.** Piracicaba: Depto. de Ciências Exatas ESALQ / USP, 2002. Disponível em: <u>http://www.lce.esalq.usp.br/arquimedes/Atividade09.pdf</u>. Acesso em: 11 Jul 2013.
- MARTINS, E.R.; YAMAMOTO, A.C.A.; HAHN, R.C. Diagnóstico Laboratorial em Microbiologia Clínica - Apostila de Bacteriologia – Faculdade de Ciências Farmacêuticas – Universidade de Cuiabá. 2011. Disponível em: http://pt.scribd.com/doc/51848504/APBac-11>. Acesso em: 30/06/2011.
- MATOS, I.L.; SHIRAISHI, K.A.; BRAZ, A.D.; FERNANDES, J.R. **Peróxido de hidrogênio: importância e determinação.** Química Nova, v.26, Nº 3, 2003. p.373-380.
- MBOULA, V. M.; HÉQUET, V.; GRU, Y.; COLIN, R.; ANDRÈS, Y. Assessment of the efficiency of photocatalysis on tetracycline biodegradation. Journal of Hazardous Materials, v.209-210, 2012. p.355–364.
- MORITA, T.; ASSUMPÇÃO, R. M. V. **Manual de soluções, reagentes e solventes.** Ed. Edgard Blucher LTDA. 2ª edição Revisada, 2007. 724f.
- MOTA, A. L. N.; MURANAKA, C. T.; MORAES, J. E. F.; NASCIMENTO, C. A. O.;CHIAVONE-FILHO, O. Aplicação do processo foto-Fenton na fotodegradação do fenol em meio aquoso utilizando lâmpadas de luz negra como fonte de radiação. XXI Congreso Interamericano de Ingeniería Química – Peru, 2005.

NOGUEIRA, R. F. P.; TROVÓ, A. G.; SILVA, M. R. A.; VILLA, R. D.; OLIVEIRA, M. C. Fundamentos e aplicações ambientais dos processos Fenton e foto-Fenton. Química Nova, v.30, Nº 2, 2007. p.400-408.

NEYENS, E.; BAEYENS, J. A review of classic Fenton's peroxidation as an advanced oxidation technique. Journal of Hazardous Materials. v.98, 2003. p.33-50.

- PACHECO, J. R. Estudo de certas potencialidades de processos oxidativos avançado para o tratamento de percolado de aterro sanitário. 2004, 97f.; Dissertação de Mestrado em Química Analítica - Universidade Federal do Paraná, Curitiba-PR, 2004.
- PANDEY, P. K.; RAMASWAMY, H. S. GELASIS, D. Water-holding capacity and gel strength of rennet curd as affected by high-pressure treatment of milk. Food Research International, v.33 (8), 2000, p655–663.
- PIGNATELLO, J. J.; OLIVEROS, E.; MACKAY, A. Advanced oxidation process for organic contaminant destruction based on the Fenton reaction and related chemistry. Critical Reviews in Environment Science and Technology, v. 36 (1), p. 1-84, 2006.
- RATANATAMSKUL, C., CHINTITANUN, S., MASOMBOON, N., LU, M. C. Inhibitory effect of inorganic ions on nitrobenzene oxidation by fluidized-bed Fenton process. Journal of Molecular Catalysis A: Chemical, v. 331 (1–2), p. 101-105, 2010.
- REYES, C.; FERNANDEZ, J.; FREER, J.; MONDACA, M. A.; ZAROR, C.; MALATO, S.; MANSILLA, H.D. Degradation and inactivation of tetracycline by TiO₂ photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, v.184, 2006. p.141–146.
- RIVAS, J.; ENCINAS, A.; BELTRAN, F.; GRAHAN, N. Application of advanced oxidation processes to doxycycline and norfloxacin removal from water. Journal of Environmental Science and Health Part A - Toxic/Hazardous Substances & Environmental Engineering, v.46 (9), 2011, p.944-951.
- RODRIGUES, M. I.; IEMMA, A. F. Planejamento de experimentos e otimização de processos: uma estratégia sequencial de planejamentos. Campinas: Casa do Pão Editora, 2005.
- RUFINO, J.L. Desenvolvimento de métodos analíticos para determinação de tetraciclina, doxiciclina, azitromicina, norfloxacina e ciprofloxacina em formulações farmacêuticas. 2009, 146f. Dissertação de Doutorado Universidade Estadual Paulista. Instituto de Química, Araraquara-SP, 2009.
- SIEDLECKA, E. M., WIĘCKOWSKA, A., STEPNOWSKI, P. Influence of inorganic ions on MTBE degradation by Fenton's reagent. Journal of Hazardous Materials, v. 147 (1–2), p. 497-502, 2007.

- SIMS, A. F. E. **Phenol oxidation with hydrogen peroxide.** Effluent and Water Treatment Journal, v. 21 (3), 1981. p. 109 112.
- SKÚLASON, S.; INGÓLFSSON, E.; KRISTMUNDSDÓTTIR, T. Development of a simple HPLC method for separation of doxycycline and its degradation products. Journal of Pharmaceutical and Biomedical Analysis, v.33 (4), 2003, p.667-672.
- SNEZANA, S.M.; GORDANA, Z.M.; DANIJELA, A.K.; DANIELA, C.N.; BILJANA, B.A.; IVANA, D.R. A rapid and reliable determination of doxycycline hyclate by HPLC with UV detection in pharmaceutical samples. J. Serb. Chem. Soc., v.73 (6), 2008, p.665–671.
- SOUZA, D.R. Degradação da matéria orgânica proveniente de efluente de industria de madeira, empregando fotocatálise e radiação solar. 2004. 100f. Dissertação de Mestrado – Universidade Federal de Uberlândia - Instituto de Química, Uberlândia-MG, 2004.
- STANKOV, M.J.; VESELINOVIC, D. Spectrophotometric methods for determination of doxycycline in pharmaceutical preparations. Pharmazie, v.43, N° 1, 1988. p. 49-50.
- STANKOV, M.J.; MALESEV, D.; VESELINOVIC, D.; RADOVIC, Z. **Complex** compounds and of doxycycline with WO₄²⁻ and MoO₄²⁻ ions. Polyhedron, v.10, N^o 4, 1991. p. 455-458.
- SUNARIC, S. M.; MITIC, S.S.; MILETIC, G.Z.; PAVLOVIC, A.N.; NASKOVIC-DJOKIC,D. Determination of doxycycline in pharmaceuticals based on its degradation by Cu(II)/H₂O₂ reagent in aqueous solution. Journal of Analytical Chemistry, v.64, N^o 3, 2009. p.231–237.
- TAMBOSI, J. L. Remoção de fármacos e avaliação de seus produtos de degradação através de tecnologias avançadas de tratamento. 2008. 141f. Dissertação de Doutorado – Universidade Federal de Santa Catarina. Departamento de Engenharia Química e Engenharia de Alimentos, Florianópolis-SC, 2008.
- VLYSSIDES, A.; BARAMPOUTI, E.M.; MAI, S.; SOTIRIA, M.; ELENI, N. **Degradation and mineralization of gallic acid using Fenton's reagents.** Environmental Engineering Science, v.28 (7), 2011. p. 515 - 520.
- WATKINSON, A.J.; MURBYD, E.J.; KOLPINE, D.W.; COSTANZO, S.D. The occurrence of antibiotics in an urban watershed: From wastewater to drinking water. Sci. Tot. Environ., v.407 (8), 2009.p.2711–2723.
- WITTENAU, M.S.; BEEREBOOM, J.J.; BLACKWOOD, R.K.; STEPHENS, C.R. 6deoxytetracyclines. III. Stereochemistry at C6. J Ame Chem Soc.,v.84, 1962. p.2645-47.

- YAP, C. L.; GAN, S.; NG, H. K. Fenton based remediation of polycyclic aromatic hydrocarbons-contaminated soils – Review. Chemosphere, v.83, 2011. p.1414–1430.
- YOON, J.; LEE, Y.; KIM, S. Investigation of the reaction pathway of OH radicals produced by Fenton oxidation in the conditions of wastewater treatment. Wat. Sci. Technol. v. 44 (5), 2001. p. 15–21.
- YUAN, F.; HU, C.; HU, X.; WEI, D.; CHEN, Y.; QU, J. Photodegradation and toxicity changes of antibiotics in UV and UV/H₂O₂ process. Journal of Hazardous Materials, v.185, 2011. p.1256–1263.

APÊNDICES

Apêndice A

C _{Doxi.HCI} (mg/L)	Abs sem inibidor da Fenton (390nm)	Abs com inib. de Fenton (390nm)
0,000	0,000	0,000
10,000	0,009	0,031
20,000	0,022	0,074
40,000	0,088	0,147
60,000	0,129	0,213
80,000	0,174	0,290
100,000	0,247	0,362

Tabela A – Concentração de cloridrato de doxiciclina com e sem adição de solução inibidora do sistema Foto-Fenton.

			. ~
I abela B – Resultados da	as areas dos picos	para cada concentra	çao da curva de calibração.

C _{Doxi.HCI} (mg/L)	Área relativa dos picos
0	0
10	89075
20	174274
40	366793
60	564754
80	754427
100	888219

Tempo (h)	Cloridrato de H ₂ C	doxiciclina + D ₂	H ₂ O ₂	Cloridrato de doxiciclina
	C _{H2O2} (mg/L)	C _{Doxi.HCI} (mg/L)	C _{H2O2} (mg/L)	C _{Doxi.HCI} (mg/L)
0	10.000	100	10.000	100
1	9670	77,7	10021	92,4
2	9670	58,3	9670	97,4
3	9670	46,2	10021	90,9
4	9318	45,8	9846	99,2
5	9494	43,0	9670	98,1
6	9494	36,2	9846	96,6
7	9670	35,4	9670	98,4
8	9846	36,2	9670	97,7
9	9670	34,4	9670	95,9
24	9635	37,6	9529	90,6

Tabela C - Resultados de concentração de cloridrato de doxiciclina residual e de peróxido de hidrogênio (T = 20°C).

Tabela D - Resultados de concentração de cloridrato de doxiciclina residual e de peróxido de hidrogênio (T = 30 °C).

Tempo (b)	Cloridrato de H ₂ C	doxiciclina + D ₂	H ₂ O ₂	Cloridrato de doxiciclina
	C _{H2O2} (mg/L)	C _{Doxi.HCI} (mg/L)	C _{H2O2} (mg/L)	C _{Doxi.HCI} (mg/L)
0	10.000	100	10.000	100
1	9.483	39,5	9841	98,6
2	9.841	32,8	9841	96,9
3	9483	19,0	9841	96,6
4	9304	21,7	9841	97,2
5	9662	16,6	9841	97,6
6	10020	12,2	9841	97,1
7	9662	13,8	9841	96,9
8	9483	15,0	10020	89,5

Tabela E - Resultados de concentração de cloridrato de doxiciclina residual e de peróxido de
hidrogêniq ($T = 40^{\circ}$ C).

T amara (14)	Cloridrato de H ₂ C	doxiciclina + D ₂	H ₂ O ₂	Cloridrato de doxiciclina
Tempo (n)	C _{H2O2} (mg/L)	C _{Doxi.HCI} (mg/L)	C _{H2O2} (mg/L)	C _{Doxi.HCI} (mg/L)
0	10.000	100	10.000	100
1	9670	36,9	10021	91,8
2	9670	28,7	9670	94,4
3	9494	22,9	9846	96,7
4	9494	14,7	10021	98,0
5	9494	9,8	10021	97,0
6	9494	13,4	9846	98,6
7	9318	12,1	10021	97,0
8	9318	12,1	10021	96,7

Tompo (b)	Cloridrato de H ₂ C	doxiciclina + D ₂	H ₂ O ₂	Cloridrato de doxiciclina
rempo (n)	C _{H2O2} (mg/L)	C _{Doxi.HCI} (mg/L)	C _{H2O2} (mg/L)	C _{Doxi.HCI} (mg/L)
0	10.000	100	10.000	100
1	9142	47,1	9846	90,9
2	9670	30,7	9846	89,3
3	9670	25,2	9846	93,9
4	9846	22,9	9846	94,5
5	9846	23,2	9670	92,9
6	10021	22,9	9846	92,2
7	10021	22,6	10021	91,9
8	10021	22,9	9846	92,2

Tabela F - Resultados de concentração de cloridrato de doxiciclina residual e de peróxido de hidrogênio (T = 50°C).

Tabela G - Resultados de concentração de cloridrato de doxiciclina residual e de peróxido de hidrogênio (T = 60 °C).

Tompo (b)	Cloridrato de H ₂ C	doxiciclina + D ₂	H_2O_2	Cloridrato de doxiciclina
Tempo (n)	C _{H2O2} (mg/L)	C _{Doxi.HCI} (mg/L)	C _{H2O2} (mg/L)	C _{Doxi.HCI} (mg/L)
0	10.000	100	10.000	100
1	9846	34,6	10021	89,4
2	9670	32,2	10021	94,6
3	9670	28,6	10021	92,2
4	9846	26,2	10021	100,2
5	9846	27,4	10021	98,2
6	10021	26,6	10021	96,6
7	9318	23,1	9846	99,4
8	9670	23,8	10021	96,6

Tabela H - Resultados de concentração de cloridrato de doxiciclina residual e de peróxido de hidrogênio (T = 70°C).

Tompo (h)	Cloridrato de H ₂ C	doxiciclina + D ₂	H ₂ O ₂	Cloridrato de doxiciclina
rempo (n)	C _{H2O2} (mg/L)	C _{Doxi.HCI} (mg/L)	C _{H2O2} (mg/L)	C _{Doxi.HCI} (mg/L)
0	10.000	100	10.000	100
1	9791	28,3	10021	93,6
2	9846	23,0	10021	93,6
3	9846	23,0	10021	94,2
4	9670	18,8	10021	97,4
5	9494	11,2	9846	93,9
6	9670	14,1	10021	98,3
7	9846	13,2	10021	99,5
8	9670	14,1	9846	98,3

	Exposto à l (Processo F	Luz Natural oto-Fenton)	Protegido da In	cidência de Luz				
Tempo de amostragem (min)	Com Adição de Fe ²⁺	Sem Adição de Fe ²⁺	Com Adição de Fe ²⁺	Sem Adição de Fe ²⁺				
	C _{Doxi.HCI} (mg/L)	C _{Doxi.HCI} (mg/L)	C _{Doxi.HCI} (mg/L)	C _{Doxi.HCI} (mg/L)				
0	100,0	100,0	100,0	100,0				
60	48,1	59,4	58,3	55,6				
120	9,3	27,9	54,8	48,5				
180	5,0	22,2	47,3	49,7				
240	3,0	19,9	48,9	50,5				
300	2,0	19,6	39,0	50,1				
360	-	15,9	35,5	49,7				
420	-	16,3	30,0	50,5				
480	-	15,6	22,5	41,4				
540	-	16,3	26,4	50,1				

Tabela I – Concentração de cloridrato de doxiciclina residual (T=30º, C_{Fe}²⁺=70mg/L)

	Exposto à l (Processo F	Luz Natural Foto-Fenton)	Protegido da In	cidência de Luz
Iempo de amostragem (min)	Com Adição de Fe ²⁺	Sem Adição de Fe ²⁺	Com Adição de Fe ²⁺	Sem Adição de Fe ²⁺
()	С _{н2О2} (mg/L)	С _{н2О2} (mg/L)	С _{н202} (mg/L)	С _{н2О2} (mg/L)
0	500	10.000	500	10.000
60	92	9841	92	9841
120	74	9305	46	9841
180	55	9841	37	9662
240	37	9483	27	9841
300	37	9483	37	9841
360	46	9483	37	9662
420	37	9662	37	9841
480	46	9483	46	9662
540	46	9305	37	9841

Tabela J – Concentração de peróxido de hidrogênio (T= 30° , C_{Fe}²⁺=70mg/L)

				C _{H2O2.Inic}	_{ial} (mg/L)						
Tempo	50	100	250	375	500	625	750	5000			
(min)	C _{Doxi.HCI}					C _{Doxi.HCI}	C _{Doxi.HCI}				
	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)			
0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0			
60	84,8	73,4	0,8	3,2	11,0	2,0	9,7	15,2			
120	69,4	52,1	2,8	7,3	10,0	6,1	4,8	10,5			
180	56,5	44,8	4,4	4,8	6,8	4,4	4,8	6,3			
240	41,9	45,5	4,0	3,6	3,6	4,4	2,4	6,8			
300	43,0	44,8	3,2	5,2	5,3	2,0	3,2	8,4			
360	38,2	38,9	4,0	2,8	3,9	1,2	3,2	7,9			
Tempo	C _{H2O2}	C _{H2O2} C _{H2O2}		C _{H2O2}							
(min)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)			
0	50,0	100,0	250,0	375,0	500,0	625,0	750,0	5000,0			
60	55,7	46,4	27,8	37,1	18,6	55,7	46,4	2021,9			
120	46,4	46,4	37,1	27,8	18,6	37,1	37,1	1582,4			
180	46,4	46,4	37,1	55,7	27,8	37,1	37,1	1318,7			
240	46,4	46,4	46,4	37,1	37,1	27,8	37,1	879,1			
300	46,4	46,4	46,4	37,1	27,8	37,1	37,1	439,6			
360	55,7	46,4	46,4	55,7	37,1	46,4	46,4	445,3			

Tabela K – Concentração de cloridrato de doxiciclina residual e peróxido de hidrogênio em meios contendo diferentes concentrações iniciais de H_2O_2 (T=20°C, $C_{Doxi,HCl inicial} = 100mg/L$ e $C_{Fe}^{2+}=70mg/L$).

Tabela L – Concentração de cloridrato de doxiciclina residual e peróxido de hidrogênio em meios contendo diferentes concentrações íons ferroso (T=20°, C_{Doxi.HCl inicial} = 100mg/L e C_{H2O2}=500mg/L).

				C	concentra	ação de F	e ²⁺ (mg/L	.)			
Tempo	1	5	10	20	35	50	70	90	120	250	500
(min)	C _{Doxi.HCI} (mg/L)										
0	100	100	100	100	100	100	100	100	100	100	100
60	65,2	7,7	9	14,5	11,4	8,1	11	8,1	2,6	15,8	2,9
120	63	11,9	9	8,9	7,4	6,2	10	4,5	2,2	2,9	2,2
180	52,4	9	6,4	7,3	4,1	5,2	6,8	4,4	2,2	2,2	1,1
240	23,8	4,8	5,5	4,4	4,1	4,1	3,6	3,3	0,6	1,9	1,1
300	14,1	4,2	3,2	0,4	3,7	4,8	5,3	2,5	0	0,4	1,5
360	14,8	3,2	3,9	0,8	4,4	4,1	3,9	1,8	0	0,7	0
Tempo	C _{H2O2}										
(min)	(mg/L)										
0	500	500	500	500	500	500	500	500	500	500	500
60	529	362	325	46	83	46	56	37	19	9	19
120	473	325	288	74	37	37	46	37	19	19	28
180	464	362	278	74	37	37	28	28	19	19	28
240	492	334	297	83	28	37	28	28	19	9	28
300	482	334	306	46	46	46	56	56	19	19	9
360	492	334	315	65	37	37	56	37	19	19	19

Tabela M – Concentração de cloridrato de doxiciclina residual e peróxido de hidrogênio em diferentes temperaturas (C_{DoxiHCI}= 100mg/L, C_{Fe²⁺=120 mg/L e C_{H202}=500mg/L).}

	ŏ	2 2	10	ç	20	ပ္ရ	30	ç	40	ç		40°C	
	C _{H202}	C _{Doxi.HCI}	C _{H202}	C _{Doxi.HCI}	C _{H202}	C _{Doxi.HCI}	C _{H202}	C _{Doxi.HCI}	C _{H202}	C _{Doxi.HCI}	Tempo	C _{H202}	C _{Doxi.HCI}
(,,,,,,)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(min)	(mg/L)	(mg/L)
0	500,0	100,0	500,0	100,0	500,0	100,0	500,0	100,0	500,0	100,0	0	500,0	100,0
60	55,7	69,1	18,6	54,5	9,3	27,8	18,6	33,3	37,1	3,0	5	92,8	4,6
120	46,4	33,4	27,8		18,6	8,7	18,6	10,6	46,4	4,3	20	37,1	3,8
180	27,8	8,1	27,8	17,9	27,8	10,4	27,8	5,8	64,9	4,9	40	37,1	2,3
240	27,8	4,2	37,1	11,3	18,6	8,3	27,8	3,2	64,9	3,0	60	37,1	3,1
300	55,7	5,8	37,1	9,6	27,8	5,6	27,8	6,7	55,7	3,9	06	37,1	1,9
360	46,4	3,8	37,1	10,0	27,8	6,2	27,8	1,3	55,7	2,3	120	37,1	3,8
Desvio Padrão	12,6743	1,01533	7,57433	0,87909	7,57433	1,44436	4,79043	2,75682	10,8448	0,82736	180	37,1	1,9
Interv. Conf.	11,6	0,9	6,9	0,8	6,9	1,3	4,4	2,5	9,9	0,8	240	37,1	1,9
											300	27,8	2,3
										ļ	360	37,1	3,1
											Desvio	3.50623	0.58749
											Padrão)
											Interv.	3.0	0.5
											Conf.	- ()	- 1 -

	0ºC	10ºC	20ºC	30ºC	40°C	40	°C
Tempo (min)	C _{Doxi.HCI} (mg/L)	Tempo (min)	C _{Doxi.HCI} (mg/L)				
0	100,0	100,0	100,0	100,0	100,0	0	100,0
60	71,4	70,1	85,0	83,8	80,5	5	71,2
120	110,9	86,4	110,0	72,3	80,9	20	71,5
180	84,4	63,8	122,1	79,6	80,9	40	69,2
240	107,1	84,1	137,7	68,7	71,0	60	70,8
300	81,0	69,4	144,3	71,3	75,0	90	73,5
360	97,9	64,8	113,8	71,3	74,3	120	77,3
Desvio Padrão	13,2346	10,0561	16,0649	1,47688	2,11363	180	70,8
Interv. Conf.	12,1	9,2	14,7	1,4	1,9	240	76,9
						300	73,5
						360	71,5
						Desvio Padrão	2,7286
						Interv. Conf.	2,5

Tabela N – Concentração de cloridrato de doxiciclina residual em diferentes temperaturas sem peróxido ($C_{Doxi,HCI}$ = 100mg/L e C_{Fe}^{2+} =120 mg/L).

Tabela O – Concentração de peróxido de hidrogênio em diferentes temperaturas sem cloridrato de doxiciclina (C_{Fe}^{2+} =120 mg/L e $C_{H_{2O_2}}$ =500mg/L).

Tompo	0ºC	10ºC	20ºC	30ºC	40°C	40°C	
(min)	C _{H2O2}	Tempo	C _{H2O2}				
(11111)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(min)	(mg/L)
0	500,0	500,0	500,0	500,0	500,0	0	500,0
60	361,8	18,6	9,3	9,3	176,3	5	408,2
120	352,5	18,6	9,3	9,3	64,9	20	287,6
180	334,0	27,8	9,3	9,3	46,4	40	194,8
240	324,7	27,8	9,3	18,6	37,1	60	139,1
300	324,7	27,8	9,3	9,3	37,1	90	92,8
360	334,0	37,1	9,3	9,3	37,1	120	55,7
Desvio Padrão	15,243	6,98319	0	3,78716	4,63831	180	46,4
Interv.	13,9	6,4	#NÚM!	3,5	4,2	240	37,1
						300	37,1
						360	37,1
						Desvio Padrão	38,7805
						Interv. Conf.	32,9

	Ensaio 20	C _{Doxi.HCI}	(mg/L)	100,0	14,9	2,1	3,3	2,5	1,7	0,0	0,0	0,8	C _{H202}	(mg/L)	500	204	97	80	35	35	27	27	27	COT	(mg/L)	54,9	41,0					39,2		38,5
C).	Ensaio 19	C _{Doxi.HCI}	(mg/L)	100,0	5,7	3,8	1,9	2,7	0,8	0'0	0,0	0,0	C _{H202}	(mg/L)	500	204	106	44	35	35	27	27	27	COT	(mg/L)	54,9	44,2					40,3		39,2
С _{Н202} + Т ⁰	Ensaio 18	C _{Doxi.HCI}	(mg/L)	100,0	11,1	9,6	8,1	1,0	0,0	5,5	0,0	0,0	C _{H202}	(mg/L)	500	195	106	62	44	35	27	27	27	COT	(mg/L)	54,9	44,2					41,5		41,2
C _{Fe} ²⁺ + (Ensaio 17	C _{Doxi.HCI}	(mg/L)	100,0	9,4	8,0	5,8	5,8	4,0	3,1	1,3	2,7	C _{H202}	(mg/L)	500	222	89	80	35	18	27	27	27	сот	(mg/L)	54,9	40,4					37,5		37,6
)0mg/L +	Ensaio 16	C _{Doxi.HCI}	(mg/L)	100,0	4,7	3,9	2,0	1,6	3,1	1,2	0,4	0,0	C _{H202}	(mg/L)	500	195	89	53	44	35	27	27	27	сот	(mg/L)	54,9	42,5					42,8		45,2
_{oxi.HCI} = 1C	Ensaio 15	C _{Doxi.HCI}	(mg/L)	100,0	11,9	11,5	4,0	2,6	1,8	0'0	5,3	10,1	C _{H2O2}	(mg/L)	500	195	106	71	53	44	44	27	35	COT	(mg/L)	54,9	42,3			,		39,9		45,6
CCR (C _D	Ensaio 14	C _{Doxi.HCI}	(mg/L)	100,0	4,3	0,0	3,0	2,6	3,4	3,0	2,6	2,6	C _{H202}	(mg/L)	500	186	97	71	27	27	35	27	27	сот	(mg/L)	54,9	38,4			,	·	38,2		40,4
Ido-se Di	Ensaio 13	C _{Doxi.HCI}	(mg/L)	100,0	41,8	44,1	19,8	22,1	25,0	19,1	19,8	23,0	C _{H202}	(mg/L)	500	381	257	239	195	177	133	133	142	сот	(mg/L)	54,9	46,6					43,0		40,7
io aplicar	Ensaio 12	C _{Doxi.HCI}	(mg/L)	100,0	18,1	8,7	7,1	4,9	4,9	3,9	4,5	4,9	C _{H202}	(mg/L)	006	814	199	136	06	27	27	18	18	сот	(mg/L)	54,9	44,6					39,9		38,8
hidrogên	Ensaio 11	C _{Doxi.HCI}	(mg/L)	100,0	55,6	53,9	55,1	56,4	53,0	55,1	56,8	54,7	C _{H202}	(mg/L)	100	54	45	50	45	50	50	59	63	сот	(mg/L)	54,9	46,8					46,6		46,6
óxido de	Ensaio 10	C _{Doxi.HCI}	(mg/L)	100,0	1,8	0,7	0,0	0,0	4,0	1,8	3,7	2,9	C _{H202}	(mg/L)	500	154	45	36	36	36	27	27	27	сот	(mg/L)	54,9	43,1	43,3	41,9	43,1	43,7	44,3	46,0	44,6
ual e perd	Ensaio 9	C _{Doxi.HCI}	(mg/L)	100,0	12,6	21,3	12,1	8,2	9,7	7,3	3,4	5,3	C _{H202}	(mg/L)	500	452	425	380	380	362	362	335	335	сот	(mg/L)	54,9	55,6	56,8	51,6	54,0	52,3	51,5	48,3	47,4
na residu	Ensaio 8	C _{Doxi.HCI}	(mg/L)	100,0	7,9	6,7	5,0	6,1	4,3	3,2	2,9	3,2	C _{H202}	(mg/L)	738	208	06	45	27	45	54	45	63	сот	(mg/L)	54,9	46,9	43,2	41,7	41,6	40,5	45,5	42,0	40,6
e doxicicli	Ensaio 7	C _{Doxi.HCI}	(mg/L)	100,0	16,6	19,5	17,7	11,9	11,6	10,5	9,4	6,1	C _{H202}	(mg/L)	738	525	407	353	289	262	208	181	181	сот	(mg/L)	54,9	44,0	41,4	38,9	39,4	37,5	38,5	36,7	35,3
idrato de	Ensaio 6	C _{Doxi.HCI}	(mg/L)	100,0	15,0	12,0	7,5	7,5	7,1	9,4	2,2	3,0	C _{H2O2}	(mg/L)	262	45	36	45	45	36	45	36	36	сот	(mg/L)	54,9	41,6	42,6	44,2	43,0	42,2	38,9	40,6	40,8
io de cloi	Ensaio 5	C _{Doxi.HCI}	(mg/L)	100,0	16,4	23,0	20,5	22,6	16,8	12,7	13,1	14,0	C _{H202}	(mg/L)	262	136	06	72	54	54	45	18	18	сот	(mg/L)	54,9	42,0	38,0	43,1	42,7	40,0	39,5	41,4	42,3
ncentraçâ	Ensaio 4	C _{Doxi.HCI}	(mg/L)	100,0	0'6	13,3	8,6	11,7	7,8	3,9	4,7	3,9	C _{H202}	(mg/L)	738	335	163	66	63	54	45	27	36	сот	(mg/L)	54,9	49,8	47,2	46,9	42,8	46,3	41,2	41,7	41,7
a P – Cor	Ensaio 3	C _{Doxi.HCI}	(mg/L)	100,0	38,6	35,3	28,6	26,1	26,4	26,4	21,7	15,4	C _{H202}	(mg/L)	738	570	407	344	280	253	217	208	136	сот	(mg/L)	54,9	48,5	46,1	43,7	43,1	52,1	47,4	43,6	46,4
Tabela	Ensaio 2	C _{Doxi.HCI}	(mg/L)	100,0	6,8	7,7	8,9	8,9	8,5	8,1	6,4	5,2	C _{H202}	(mg/L)	262	83	37	28	28	28	37	37	28	сот	(mg/L)	54,9	44,6	43,7	43,6	43,4	45,6	44,4	46,3	45,2
	Ensaio 1	C _{Doxi.HCI}	(mg/L)	100,0	41,3	35,1	35,8	30,0	24,5	30,8	28,4	28,8	C _{H202}	(mg/L)	262	139	93	83	56	46	37	37	28	СОТ	(mg/L)	54,9	47,4	43,5	42,2	42,8	44,7	37,8	37,9	38,9
	Temno	(min)	,	0	5	20	40	60	06	120	190	240	Tempo	(min)	0	5	20	40	60	06	120	190	240	Tempo	(min)	0	5	20	40	60	06	120	190	240
	Ensaio 20	C _{Doxi.HCI}	(mg/L)	100,0	81,7	80,4	78,8	72,6	83,8	82,9	78,4	81,7		Ensaio 20	C _{H2O2}	(mg/L)	500	460	451	443	416	390	372	345	328									
-----------------------------------	-----------	-----------------------	--------	-------	-------	-------	-------	-------	-------	------	------	-------	------------------------------------	-----------	-------------------	--------	-----	-----	-----	-----	-----	-----	-----	-----	-----									
	Ensaio 19	C _{Doxi.HCI}	(mg/L)	100,0	75,0	78,5	75,8	76,2	75,8	79,6	82,3	82,3		Ensaio 19	C _{H2O2}	(mg/L)	500	461	443	425	399	390	346	337	319									
	Ensaio 18	C _{Doxi.HCI}	(mg/L)	100,0	76,3	79,1	78,4	79,1	77,5	79,9	79,9	79,2		Ensaio 18	C _{H2O2}	(mg/L)	500	487	443	452	416	399	399	372	337									
	Ensaio 17	C _{Doxi.HCI}	(mg/L)	100,0	77,5	79,7	81,1	81,9	79,3	80,2	77,5	76,2		Ensaio 17	C _{H2O2}	(mg/L)	500	461	461	416	390	354	354	328	319									
+ T⁰C).	Ensaio 16	C _{Doxi.HCI}	(mg/L)	100,0	86,2	75,6	74,0	83,4	77,5	78,7	77,9	74,8		Ensaio 16	C _{H2O2}	(mg/L)	500	496	461	461	443	425	425	408	399									
- + C _{Fe} ²⁺	Ensaio 15	C _{Doxi.HCI}	(mg/L)	100,0	66,1	75,4	76,3	79,4	89,1	76,3	75,2	86,4	T°C).	Ensaio 15	C _{H2O2}	(mg/L)	500	461	452	416	416	408	399	363	354									
100mg/l	Ensaio 14	C _{Doxi.HCI}	(mg/L)	100,0	67,4	68,7	80,7	81,1	82,0	83,3	78,5	77,3	+ C _{H202} +	Ensaio 14	C _{H2O2}	(mg/L)	500	496	496	487	434	478	470	443	443									
C _{Doxi.HCI} =	Ensaio 13	C _{Doxi.HCI}	(mg/L)	100,0	101,1	100,4	102,0	105,3	104,0	99,7	99,1	101,7	2 (C _{Fe} ²⁺ -	Ensaio 13	C _{H2O2}	(mg/L)	500	461	443	452	461	452	452	443	443									
DCCR (Ensaio 12	C _{Doxi.HCI}	(mg/L)	100,0	94,0	79,9	85,9	88,9	87,2	85,9	85,1	86,8	se DCCI	Ensaio 12	C _{H2O2}	(mg/L)	006	904	886	832	760	651	633	506	470									
cando-s∈	Ensaio 11	C _{Doxi.HCI}	(mg/L)	100,0	94,0	79,9	85,9	88,9	87,2	85,9	85,1	86,8	plicando	Ensaio 11	C _{H2O2}	(mg/L)	100	72	63	63	45	54	54	45	45									
idual apli	Ensaio 10	C _{Doxi.HCI}	(mg/L)	100,0	79,3	79,3	80,1	80,4	79,7	68,7	73,5	73,9	rogênio a	Ensaio 10	C _{H2O2}	(mg/L)	500	407	362	317	271	271	262	217	181									
iclina res	Ensaio 9	C _{Doxi.HCI}	(mg/L)	100,0	84,9	88,3	97,5	95,6	97,0	94,1	92,2	98,0	lo de hidi	Ensaio 9	C _{H2O2}	(mg/L)	500	506	497	497	497	497	497	488	479									
de doxic	Ensaio 8	C _{Doxi.HCI}	(mg/L)	100,0	81,4	71,2	78,4	80,2	76,5	75,0	71,2	75,7	e peróxic	Ensaio 8	C _{H2O2}	(mg/L)	738	633	552	470	389	335	289	253	66									
loridrato	Ensaio 7	C _{Doxi.HCI}	(mg/L)	100,0	80,1	85,4	87,9	83,0	86,7	87,9	87,5	88,3	ntração d	Ensaio 7	С _{H2O2}	(mg/L)	738	723	733	723	696	678	633	633	615									
tção de c	Ensaio 6	C _{Doxi.HCI}	(mg/L)	100,0	81,4	71,2	78,4	80,2	76,5	75,0	71,2	75,7	- Concer	Ensaio 6	C _{H2O2}	(mg/L)	262	235	190	172	163	172	172	136	127									
Concentra	Ensaio 5	C _{Doxi.HCI}	(mg/L)	100,0	80,1	85,4	87,9	83,0	86,7	87,9	87,5	88,3	abela R	Ensaio 5	C _{H2O2}	(mg/L)	262	271	244	244	235	217	226	226	208									
ela Q – C	Ensaio 4	C _{Doxi.HCI}	(mg/L)	100,0	72,5	86,2	80,7	86,2	86,2	86,9	73,7	70,6	H	Ensaio 4	C _{H2O2}	(mg/L)	738	597	588	597	579	534	588	543	506									
Tab	Ensaio 3	C _{Doxi.HCI}	(mg/L)	100,0	86,3	88,1	88,9	102,1	105,8	91,8	88,5	88,9		Ensaio 3	C _{H2O2}	(mg/L)	738	733	723	733	733	733	733	723	733									
	Ensaio 2	C _{Doxi.HCI}	(mg/L)	100,0	91,8	81,8	92,6	83,4	87,0	79,3	80,6	78,1		Ensaio 2	C _{H2O2}	(mg/L)	262	297	195	195	186	186	186	176	186									
	Ensaio 1	C _{Doxi.HCI}	(mg/L)	100,0	87,7	88,4	88,4	87,7	103,6	95,1	83,8	86,5		Ensaio 1	C _{H2O2}	(mg/L)	262	260	260	250	241	232	241	232	232									
	Tempo	(min)		0	5	20	40	60	06	120	190	240			lempo	(uiu)	0	5	20	40	60	06	120	190	240									

Tabela S – Resultados apresentados para comparação entre os obtidos através do ponto central do planejamento fatorial e os da melhor condição para menor concentração para menor concentração residual de cloridrato de doxiciclina.
--

					n								
	Tempo	C _{H202}	C _{H202}	C _{H202}	Média C _{H202}	C _{Doxi.HCI}	C _{Doxi.HCI}	C _{Doxi.HCI}	Média C _{Doxi.HCI}	СОТ	сот	СОТ	Média COT
	(min)	(mg/L) 1	(mg/L) 2	(mg/L) 3	(mg/L)	(mg/L) 1	(mg/L) 2	(mg/L) 3	(mg/L)	(mg/L) 1	(mg/L) 2	(mg/L) 3	(mg/L)
	0	511	554	546	537	96,7	97,6	95,6	96,6	54,90	54,90	54,90	54,90
	5	173	173	165	170	17,0	5,2	5,2	9,1	40,41	44,16	40,96	41,85
(500nnm	20	87	69	78	78	14,2	4,8	6,0	8,3				
H,O.	40	35	35	35	35	12,6	3,6	3,6	6,6				
00 F - 2 - 2+	60	26	35	35	32	11,4	4,0	4,4	6,6				
• 2,5ppm re	06	17	17	26	20	8,7	2,0	1,6	4,1				
e 20°C)	120	17	17	17	17	1,6	0,4	1,2	1,1	37,47	40,30	39,18	38,99
	180	17	17	17	17	3,2	0,0	0,4	1,2				
	240	17	17	17	17	3,6	0,0	0,0	1,2	37,61	39,22	38,48	38,44
	0	601	619		610	100,4	100,1		100,2	51,37	55,60		53,49
	5	274	301		287	5,7	10,4		8,1	41,38	44,54		42,96
	20	150	168		159	4,4	7,9		6,1				
(611ppm	40	97	106		102	3,5	2,1		2,8				
H ₂ O ₂ ; 25ppm	60	62	35		49	1,8	2,5		2,1				
Fe ²⁺ e 35°C)	06	44	27		35	1,3	2,1		1,7				
	120	27	27		27	0,9	1,2		1,1	39,02	36,70		37,86
	180	18	18		18	0,9	0,4		0,6				
	240	18	18		18	0'0	0,8		0,4	33,48	36,56		35,02

Tempo (min)	C _{Fe} ²⁺ 1 (mg/L)	C _{Fe} ²⁺ 2 (mg/L)	C _{Fe} ²⁺ 3 (mg/L)	Média C _{Fe} ²+ (mg/L)
0	24,5	24,9	24,0	24,5
1	10,6	13,8	12,0	12,1
2	7,9	9,7	7,5	8,4
3	6,8	8,1	6,5	7,1
4	5,2	6,6	5,0	5,6
5	5,0	6,2	4,8	5,3
6	-	5,1	4,5	4,8
7	-	5,5	4,4	4,9
8	-	5,0	4,5	4,7
9	-	3,8	3,7	3,8
10	-	4,0	3,5	3,8
15	-	1,5	1,6	1,6
20	0	0	0	0,0

Tabela T – Resultados apresentados para ensaio de consumo de íons ferrosos no processo Fenton $(C_{Doxi,HCI} = 100 \text{ mg/L}; C_{H2O2} = 611 \text{ mg/L}; C_{Fe}^{2+} = 25 \text{ mg/L e T} = 35^{\circ}C).$

	mg/∟,		= 55 C).	Redução
Tempo (min)	Current (ma/L)			de COT (%)
		nH 1 00		
0	606.2	01 0	5/ 97	0
5	545 5	16.2	55 81	0
20	176 3	15.8	55,01	
20	470,5	12.0		
40 60	380.7	12,9		
00	346 4	80		
120	320.0	0,9	16 63	15.2
120	329,0 268 4	7,3 1 1	40,05	15,2
240	200,4	4,4	15 90	16.6
240	259,0	0,1	45,69	10,0
0	606.2	ρπ 2,00	E1 00	0
0	000,Z	95,1	04,09 40.07	
5	301,0	7,2	40,07	11,1
20	277,1	7,0		
40	207,8	4,8		
60	173,2	5,6		
90	129,9	4,4		
120	103,9	4,4		
180	69,2	3,2	44.40	0.4 7
240	60,6	4,0	41,43	24,7
		pH 3,00	- /	
0	606,2	96,4	54,89	0
5	259,8	5,1	37,33	32,1
20	147,2	3,9		
40	86,6	2,3		
60	77,9	0,4		
90	34,6	0,0		
120	17,3	1,5	32,41	41,1
180	17,3	0,8		
240	17,3	0,0	32,43	41,0
		рН 4,00		
0	580,2	94,5	54,87	0
5	502,2	25,5	46,92	14,7
20	398,3	20,0		
40	346,4	18,8		
60	329,0	17,6		
90	173,2	18,0		
120	129,9	11,7	32,78	40,4
180	77,9	7,0	·	
240	34,6	5,1	32,20	41,5

Tabela U – Resultados apresentados para influência do pH do meio ($C_{\text{Doxi,HCI}} = 100 \text{ mg/L}$; $C_{\text{H2O2}} = 611 \text{ mg/L}$; $C_{\text{Fe}}^{2^+} = 25 \text{ mg/L} \text{ e T} = 35^{\circ}\text{C}$).

				•		ma/	L).		-		-		
	Tempo	C _{H2O2}	C _{H2O2}	C _{H2O2}	Média C _{H2O2}	C _{Doxi.HCl}	C _{Doxi.HCI}	C _{Doxi.HCI}	Média C _{Doxi.HCI}	COT	СОТ	COT	Média COT
	(min)	(mg/L) 1	(mg/L) 2	(mg/L) 3	(mg/L)	(mg/L) 1	(mg/L) 2	(mg/L) 3	(mg/L)	(mg/L) 1	(mg/L) 2	(mg/L) 3	(mg/L)
	0	610	610	611	610	98,1	98,5	100,0	98,9	54,00	57,53	52,09	54,54
	5	389	371	362	374	16,5	15,3	15,8	15,8	39,28	47,78	43,34	43,47
INF-01	20	274	265	276	272	10,2	4,7	13,0	9,3	40,20			40,20
(611ppm	40	212	195	207	204	9,0	3,4	9,9	7,5	36,90			36,90
H ₂ O ₂ ; 25ppm	60	168	168	190	175	7,9	4,2	9,9	7,3	35,94			35,94
Fe ²⁺ e 20°C)	90	133	133	146	137	1,6	3,0	9,3	4,6	35,80			35,80
10 020 0)	120	97	88	112	99	3,9	2,1	7,2	4,4	34,44	42,12	37,50	38,02
	180	/1	80	86	79	2,7	3,8	7,2	4,6	32,26			32,26
	240	44	53	69	55	2,0	3,0	6,9	3,9	37,08	36,40	34,88	36,12
	0	628	610	611	616	100,0	98,0	99,6	99,2	52,16	57,36	57,81	55,77
	5	292	318	336	315	11,6	25,2	13,8	16,9	46,06	41,35	44,94	44,12
INF-02	20	1//	203	215	199	9,9	6,1	0,7	7,0	30,50			30,50
(611ppm	40	141	133	104	140	0,9	0,9	4,0	6,9 5 7	30,00			30,00
H ₂ O ₂ ; 25ppm	00	00 52	00 71	129	102	0,0	4,5	4,1	5,7	30,00			35,60
Fe ²⁺ e 31,9ºC)	90 120	33	52	42	10	0,9 5 9	3,7	2,0	3,1	22 10	22.01	27.24	24,00
	120	27	35	43	32	5,6	4,9	3,0 1 1	4,0	35,10	33,91	37,34	34,78
	240	27	27	17	23	5,5	24	1 9	3,5	46 32	31.83	36.46	38.20
	0	606	619	611	612	86.5	101.0	96.5	94.6	51 21	54 70	54 90	53.60
	5	260	301	222	261	5 1	12.6	5 1	76	34 18	43.32	37 34	38.28
	20	147	186	119	151	3.9	5.3	3.9	4 4	35 70	10,02	01,01	35 70
O.P. (611ppm	40	87	133	85	101	2.4	6,1	2.4	3.6	26.24			26.24
H ₂ O ₂ ; 25ppm	60	78	106	68	84	0.4	3.2	0.4	1.3	10.70			10.70
Fe ²⁺ e 35°C)	90	35	71	34	46	0,0	3,2	0,0	1,1	15,86			15,86
,	120	17	53	26	32	1,6	2,4	1,6	1,9	20,02	37,76	32,42	30,07
	180	17	27	26	23	0,8	1,6	0,8	1,1	39,32			39,32
	240	17	18	26	20	0,0	0,8	0,0	0,3	20,08	37,78	32,44	30,10
	0	592	610	611	604	98,2	98,5	100,0	98,9	50,13	53,63	51,34	51,70
	5	239	239	362	280	11,1	12,0	7,2	10,1	37,05	43,20	34,08	38,11
INF-03	20	124	97	198	140	9,0	3,9	2,3	5,1	32,97			32,97
(611ppm	40	53	53	0	35	3,7	4,7	1,5	3,3	32,87			32,87
H ₂ O ₂ : 25ppm	60	44	44	78	55	2,9	1,3	0,4	1,5	32,95			32,95
Eo ²⁺ o 40%C)	90	35	27	60	41	2,9	0,4	1,1	1,5	30,77			30,77
re e40°C)	120	27	18	26	23	2,1	0,9	4,6	2,5	31,11	34,04	31,12	32,09
	180	18	18	17	18	0,8	2,6	3,4	2,3	30,85			30,85
	240	18	18	9	15	2,9	0,9	0,4	1,4	30,81	33,20	30,08	31,36
	0	628	619	619	622	97,8	97,7	98,1	97,8	53,63	51,34	52,09	52,35
	5	186	177	186	183	3,7	4,3	5,1	4,4	39,30	37,82	38,70	38,61
INF-04	20	80	71	80	77	2,9	2,2	1,7	2,2				
(611ppm	41	53	44	71	56	4,5	3,0	1,3	2,9				
H ₂ O ₂ ; 25ppm	60	35	27	35	32	2,1	1,3	1,3	1,5				
Fe ²⁺ e 50ºC)	90	27	27	18	24	2,5	1,3	0,8	1,5	00.40	04.00	00.40	04.07
	120	27	18	18	21	3,7	0,4	1,7	1,9	38,12	31,90	32,18	34,07
	180	18	18	18	18	2,1	1,3	2,5	2,0	00.40	00.00	00.40	04.04
	240	18	18	18	18	2,5	2,2	2,1	2,2	38,40	33,96	32,46	34,94

Tabela V – Influência da temperatura do meio ($C_{\text{Doxi,HCI}} = 100 \text{ mg/L}$; $C_{\text{H2O2}} = 611 \text{ mg/L}$; $C_{\text{Fe}}^{2+} = 25 \text{ mg/L}$)

Imm Imm Imm Imm Implie		-	<u> </u>	0		H202 00 111					20 1119,		00 0/.	
(min) (mgL) 1 (mgL) 2 (mgL) 3 (mgL) 4 (mgL) 4 (mgL) 3 (mgL) 3 (mgL) 4 (mgL) 4 (mgL) 4 (mgL) 3 (mgL) 3 (mgL) 3 (mgL) 4 (mgL) 3 (mgL) 3 <th< th=""><th></th><th>Tempo</th><th>C_{H2O2}</th><th>C_{H2O2}</th><th>C_{H2O2}</th><th></th><th>C_{Doxi.HCI}</th><th>C_{Doxi.HCI}</th><th>C_{Doxi.HCI}</th><th>Media C_{Doxi.HCl}</th><th>COT</th><th>COL</th><th>COL</th><th>Media CO I</th></th<>		Tempo	C _{H2O2}	C _{H2O2}	C _{H2O2}		C _{Doxi.HCI}	C _{Doxi.HCI}	C _{Doxi.HCI}	Media C _{Doxi.HCl}	COT	COL	COL	Media CO I
0 262 262 262 262 100.0 100.0 100.0 51.7 55.17 35.35		(min)	(mg/L) 1	(mg/L) 2	(mg/L) 3	(mg/L)	(mg/L) 1	(mg/L) 2	(mg/L) 3	(mg/L)	(mg/L) 1	(mg/L) 2	(mg/L) 3	(mg/L)
NF-05 95 86 103 95 17,6 13,6 11,6 14,2 36,58 40,02 46,24 40,95 (262ppm 40 26 17 26 23 9,5 11,4 9,8 10,0 35,58 37,52 36,551 H ₀ 0; 25ppm 60 26 9 9 11 4,4 11,0 7,0 9,8 35,96 33,71 34,83 Fe* <s35c)< th=""> 120 17 9 9 11 4,4 11,4 8,1 7,9 34,92 34,18 36,16 41,75 37,60 240 17 9 9 11 4,5 5,6 7,0 38,34 33,06 4,75 37,50 5 2500 250 500 500 100,0 100,0 100,0 110,0 51,1 52,17 31 51,1 52,7 32,3 36,12 36,12 36,13 36,12 1600000 101 172</s35c)<>		0	262	262	262	262	100,0	100,0	100,0	100,0	55,17	55,17	52,53	54,29
INF-05 (R262pm H, O ₂ : 25ppm 20 52 52 52 52 52 9.2 12.1 8.8 10.0 35.65 37.52 36.55 H, O ₂ : 25ppm 90 17 9 9 14 11.4 41.0 7.0 9.8 35.65 35.35 35.35 120 17 9 9 11 9.9 10.0 5.6 85. 35.71 86.16 41.75 37.87 240 17 9 9 11 4.4 5.9 6.7 5.6 38.37 37.21 36.05 37.21 0 500 500 500 100.0 100.0 100.0 51.31 51.11 82.77 57.7 57.7 36.83 37.64 36.83 36.64 (500pm 40 111 112 87 103 1.7 0.7 6.5 38.94 30.2 36.84 36.64 60 111 78 71 30.3 31.64		5	95	86	103	95	17,6	13,6	11,6	14,2	36,58	40,02	46,24	40,95
H202; 250pm H202; 250pm B0 40 26 9 9 11 41,4 11,4 9,8 10,2 36,47 35,35 35,31 H20; 250pm Fe* e 35°C) 90 17 9 9 11 4,4 11,4 8,1 7,9 34,92 34,19 34,83 120 17 9 9 11 4,4 11,4 8,1 7,9 34,92 34,19 34,83 240 17 9 9 11 5,5 5,9 2,1 4,5 36,44 36,44 36,66 37,70 0 500 500 500 500 100,0 100,0 100,0 51,31 51,11 52,77 51,73 6 20 145 17,7 0,7 6,5 3,0 36,42 36,24 32,78 38,85 36,51 10,5 13,1 1,7 10,0 2,9 5,7 3,4 36,22 36,83 33,56 41,83 32,27	INE-05	20	52	52	52	52	9,2	12,1	8,8	10,0	35,58	37,52		36,55
Hoo: 25pm 60 26 9 9 14 11.4 11.0 7.0 9.8 35.96 35.71 34.83 Fe ⁺ e 35°C) 120 17 9 9 11 9.9 10.0 5.6 8.5 35.71 36.16 41.75 37.50 180 17 9 9 11 5.5 5.9 2.1 4.5 86.9 38.07 37.21 36.05 37.21 5 290 284 217 264 8.6 8.8 9.5 9.0 38.37.4 35.42 37.21 51.73 51.73 51.73 51.73 51.73 51.73 51.73 51.73 51.73 52.76 36.64 36.02 36.65 36.61 36.65 36.61 36.61 36.61 36.61 36.61 36.61 36.61 36.61 36.61 36.61 37.41 36.84 36.02 36.63 36.61 36.61 36.70 36.70 1600 1111 17	(262nnm	40	26	17	26	23	9,5	11,4	9,8	10,2	36,47	35,35		35,91
psyc: sopering gen 11 4.4 11.4 8.1 7.9 34.92 34.19 34.55 180 17 9 9 11 5.5 5.9 2.1 4.5 36.04 38.06 37.50 240 17 9 9 11 5.5 5.9 2.1 4.5 38.04 38.06 37.50 0 500 500 500 500 100.0 100.0 100.0 51.31 51.15 2.77 51.73 1NF-06 20 145 172 130 1.49 4.5 8.7 7.3 6.8 37.64 36.62 38.34 36.42 42.78 38.65 1600ppm 40 111 112 87 103 1.7 0.7 6.5 3.0 36.42 37.66 38.43 36.22 36.43 36.62 36.43 36.62 36.43 36.62 36.43 36.27 36.39 31.56 11.0 1.0		60	26	9	9	14	11.4	11.0	7.0	9.8	35.96	33.71		34.83
Fe ⁺ e 35°C) 120 17 9 9 11 9,9 100 5.6 8.5 38,71 38,16 41,75 37,87 180 17 9 9 11 5,5 5,9 2,1 4,5 38,94 38,06 37,50 37,50 240 17 9 9 11 5,5 5,9 2,1 4,5 38,94 38,42 34,2 38,85 37,21 36,05 37,21 36,05 37,21 36,05 37,21 36,05 37,21 36,05 37,21 36,05 38,81 35,42 42,78 38,85 38,85 38,91 36,32 38,85 38,91 36,35 36,91 38,65 38,61 38,65 38,61 36,65 38,65 36,65 36,65 36,65 36,65 36,65 36,65 36,65 36,65 36,65 36,65 36,65 36,65 36,65 36,65 36,65 36,65 36,66 36,80 32,711 30,60 34	H ₂ O ₂ ; 25ppm	90	17	9	9	11	44	114	8 1	79	34 92	34 19		34 55
180 17 9 9 11 0.55 5.9 2.1 4.5 36.06 17.05 37.20 240 17 9 9 11 4.4 5.9 0.7 5.6 38.37 37.21 36.05 37.21 0 500 500 500 500 500 100.0 100.0 100.0 100.0 100.0 38.34 35.42 42.78 38.85 NF-06 20 145 172 130 1.7 0.7 6.5 3.0 36.82 36.18 36.52 100 77 43 17 46 1.0 2.9 5.7 3.2 36.24 37.06 36.83 31.66 37.80 120 68 61 137 10 2.5 3.8 2.5 35.24 30.18 33.66 120 61 137 2.3 3.4 3.5 1.1 3.2 37.10 30.68 37.60 33.80 <t< td=""><th>Fe²⁺ e 35ºC)</th><td>120</td><td>17</td><td>9</td><td>9</td><td>11</td><td>9.9</td><td>10.0</td><td>5.6</td><td>85</td><td>35 71</td><td>36.16</td><td>41 75</td><td>37.87</td></t<>	Fe²⁺ e 35ºC)	120	17	9	9	11	9.9	10.0	5.6	85	35 71	36.16	41 75	37.87
240 17 9 9 11 64 53 6,7 56 38,77 37,21 36,05 37,21 5 500 500 500 500 100,0 100,0 100,0 100,0 51,31 51,11 52,77 51,73 (500pm) 40 115 112 87 100,0 100,0 100,0 100,0 51,31 51,11 52,77 51,73 58,83 37,62 36,36 <th></th> <td>180</td> <td>17</td> <td>ä</td> <td>å</td> <td>11</td> <td>5,5</td> <td>5.9</td> <td>21</td> <td>4.5</td> <td>36.94</td> <td>38.06</td> <td>11,70</td> <td>37.50</td>		180	17	ä	å	11	5,5	5.9	21	4.5	36.94	38.06	11,70	37.50
0 500 51,7 51,31 51,11 52,17 53,80 51,66 41,80 56,2 36,64 36,62 36,64 36,62 36,65 56,7 32,2 36,24 37,06 36,65 36,65 36,65 36,65 36,60 36,62 36,64 36,00 36,62 36,64 36,00 36,271 37,24 36,00 31,3 37,10 30,00 34,20 37,34 38,2271 240 43 22 261 51 11 12,6<		240	17	0	9	11	0,0 1 1	5.0	6.7	-,5	38 37	37 21	36.05	37,30
NF-06 500 300 300 300 100,0 </td <th></th> <td>240</td> <td>500</td> <td>500</td> <td>500</td> <td>500</td> <td>100.0</td> <td>100.0</td> <td>100.0</td> <td>100.0</td> <td>51 21</td> <td>51 11</td> <td>52,77</td> <td>51,21</td>		240	500	500	500	500	100.0	100.0	100.0	100.0	51 21	51 11	52,77	51,21
INF-06 20 145 172 130 149 172 130 149 145 172 130 149 4,5 8,7 7,3 6,8 37,46 36,27 36,28 36,22 36,18 36,26 36,27 36,28 31,56 41,88 36,27 120 68 26 17 31 1,0 2,5 3,8 2,5 35,24 30,18 32,21 32,01 32,21 32,00 34,20 34,20 34,20 34,20 34,20 34,20 34,20 34,20 34,20 35,60 39,4 43,52 37,34 38,28 36,70 36,26 36,24 34,20 35,60 36,50 36,50 36,50 36,50 36,50		5	200	200	217	300	100,0	100,0	100,0	100,0	20.24	25.40	40.79	20.05
INF-06 20 143 112 130 149 4,3 6,7 7,3 0,6 37,40 30,36 31,36 41,38 30,271 30,36 31,36 31,30 30,36 31,36 31,30 30,36 31,31 30,60 34,30 30,36 34,30 30,36 34,30 30,34 38,28 30,70 30,60 34,30 30,34 38,28 30,70 30,73 35,70		5	290	204	217	204	0,0	0,0	9,5	9,0	30,34	35,42	42,70	30,00
(500ppm 40 111 112 87 103 1, 7 0, 7 5, 5 3, 0 36,92 36,18 36,12 36,43 36,02 36,43 36,02 36,43 36,02 36,43 36,27 36,24 36,24 36,24 36,27 36,43 36,27 36,43 36,27 36,43 36,27 36,43 37,10 30,80 34,90 35,60 36,57 4,16 51,21 54,70 54,39 53,60 39,9 4,4 35,70 36,39 44,4 35,70 35,36 36,90 37,10 34,80 36,20 36,70 36,370 36,39 44,4 35,70	INF-06	20	145	1/2	130	149	4,5	8,7	7,3	6,8	37,46	30,30		36,91
H ₂ ,0; 25ppm 60 111 78 61 83 3,1 4,7 5,7 4,5 36,84 36,02 36,43 Fe ^{3*} e 35°C 120 68 26 17 37 2,1 2.9 5,7 3,2 36,24 37,06 36,65 180 51 26 17 37 2,1 2.9 6,1 3,7 35,38 31,56 41,88 36,27 240 43 26 17 29 1,0 5,5 3,1 3,2 37,10 30,60 34,90 34,20 5 260 301 222 261 5,1 16,6 34,48 43,32 37,34 38,28 0.9 60 78 106 68 84 0,4 3,2 0,4 1,3 10,70 10,70 120 17 23 26 32 1,6 2,4 1,6 1,9 20,02 37,78 32,42 30,07 <t< td=""><th>(500ppm</th><td>40</td><td>111</td><td>112</td><td>87</td><td>103</td><td>1,7</td><td>0,7</td><td>6,5</td><td>3,0</td><td>36,92</td><td>36,18</td><td></td><td>36,55</td></t<>	(500ppm	40	111	112	87	103	1,7	0,7	6,5	3,0	36,92	36,18		36,55
Fe ^{3*} e 35°C) 90 77 43 17 46 1,0 2,9 5,7 3,2 36,24 37,06 36,65 36,65 180 51 26 17 31 1,0 2,5 3,8 2,5 35,24 30,16 43,8 32,71 240 43 26 17 29 1,0 5,5 3,1 3,2 37,10 30,60 34,90 34,20 0 606 619 611 612 86,5 101,0 96,5 94,6 51,21 54,70 54,90 53,60 20 147 186 119 151 3,9 5,3 3,9 4,4 35,70 35,70 35,70 120 17 53 26 32 1,6 2,4 1,6 1,9 20,02 37,76 32,42 30,07 180 17 27 26 23 0,8 1,6 0,8 1,1 39,32 240	H ₂ O ₂ ; 25ppm	60	111	78	61	83	3,1	4,7	5,7	4,5	36,84	36,02		36,43
10 20 68 26 17 37 2,1 2,9 6,1 3,7 35,38 31,56 41,88 36,27 240 43 26 17 31 1,0 2,5 3,8 2,5 35,24 30,18 32,71 240 43 26 17 29 1,0 5,5 3,1 3,2 37,10 30,60 34,90 34,20 5 260 301 222 221 5,1 12,6 5,1 7,6 34,18 43,32 37,34 38,28 0.P. (611ppm 40 87 133 85 101 2,4 6,1 2,4 3,6 26,24 26,24 420;2;25ppm 60 78 106 68 84 0,4 3,2 0,4 1,3 10,70 10,70 10,70 120 17 53 2,6 32 1,6 2,4 1,6 1,9 2,02 37,76 32,42 30,07 180 17 27 26 23 0,8 1,6 0,8<	Eo ²⁺ o 35%	90	77	43	17	46	1,0	2,9	5,7	3,2	36,24	37,06		36,65
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Te e 55 (C)	120	68	26	17	37	2,1	2,9	6,1	3,7	35,38	31,56	41,88	36,27
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		180	51	26	17	31	1,0	2,5	3,8	2,5	35,24	30,18		32,71
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		240	43	26	17	29	1,0	5,5	3,1	3,2	37,10	30,60	34,90	34,20
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0	606	619	611	612	86,5	101,0	96,5	94,6	51,21	54,70	54,90	53,60
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		5	260	301	222	261	5,1	12,6	5,1	7,6	34,18	43,32	37,34	38,28
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		20	147	186	119	151	3,9	5,3	3,9	4,4	35,70			35,70
H₂O₂; 25ppm 60 78 106 68 84 0,4 3,2 0,4 1,3 10,70 10,70 Fe ^{2*} e 35°C) 90 35 71 34 46 0,0 3,2 0,0 1,1 15,86 15,86 120 17 53 26 32 1,6 2,4 1,6 1,9 20,02 37,76 32,42 30,07 180 17 27 26 23 0,8 1,6 0,8 1,1 39,32 39,32 240 17 18 26 20 0,0 0,8 0 0,33 20,08 37,78 32,44 30,10 10,70 743 738 738 740 100,0 100,0 98,1 99,4 57,90 51,11 58,19 57,73 (738ppm 40 186 190 130 168 5,2 5,5 3,9 4,9 40,98 38,80 38,80 38,80 38,895 </td <th>O.P. (611ppm</th> <td>40</td> <td>87</td> <td>133</td> <td>85</td> <td>101</td> <td>2,4</td> <td>6,1</td> <td>2,4</td> <td>3,6</td> <td>26,24</td> <td></td> <td></td> <td>26,24</td>	O.P. (611ppm	40	87	133	85	101	2,4	6,1	2,4	3,6	26,24			26,24
Fe ^{2*} e 35°C) 90 35 71 34 46 0,0 3,2 0,0 1,1 15,86 15,86 120 17 53 26 32 1,6 2,4 1,6 1,9 20,02 37,76 32,42 30,07 240 17 18 26 23 0,8 1,6 0,8 1,1 39,32 39,32 240 17 18 26 20 0,0 0,8 0,0 0,3 20,08 37,78 32,44 30,10 5 442 388 346 392 9,4 10,6 16,4 12,2 47,28 37,00 42,56 42,28 (738ppm 40 186 190 130 168 5,2 5,5 3,9 4,9 40,98 38,90 38,94 38,95 (738ppm 40 186 190 130 168 5,2 0,31 3,1 4,7 38,78 38,60 38,99	H ₂ O ₂ ; 25ppm	60	78	106	68	84	0.4	3.2	0.4	1.3	10.70			10.70
120 17 53 26 32 1,6 2,4 1,6 1,9 20,02 37,76 32,42 30,07 180 17 27 26 23 0,8 1,6 0,8 1,1 39,32 39,32 39,32 240 17 18 26 20 0,0 0,8 0,0 0,3 20,08 37,78 32,44 30,10 0 743 738 738 740 100,0 100,0 98,1 99,4 57,90 51,11 58,19 55,242,28 INF-07 20 274 258 191 241 6,8 7,2 3,1 5,7 42,12 35,78 38,95 (738ppm 40 186 190 130 168 5,2 5,5 3,9 4,9 40,98 38,90 39,94 H ₂ O ₂ ; 25ppm 60 150 155 104 136 5,9 5,1 3,1 4,7 38,78 38,60	Fe ²⁺ e 35⁰C)	90	35	71	34	46	0.0	3.2	0.0	1.1	15.86			15.86
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		120	17	53	26	32	1.6	24	1.6	19	20.02	37 76	32 42	30.07
240 17 18 26 20 0,0 0,8 0,0 0,3 20,02 37,78 32,44 30,10 0 743 738 738 740 100,0 100,0 98,1 99,4 57,90 51,11 58,19 55,73 5 442 388 346 392 9,4 10,6 16,4 12,2 47,28 37,00 42,56 42,28 INF-07 20 274 258 191 241 6,8 7,2 3,1 5,7 42,12 35,78 38,99 39,94 40 186 190 130 168 5,2 5,5 3,9 4,9 40,98 38,90 38,89 38,69 38,69 38,69 38,69 38,69 38,69 38,69 38,69 38,69 38,69 38,69 38,69 38,69 38,69 38,69 38,69 38,68 38,60 32,28 32,28 32,28 32,28 32,28 32,28		180	17	27	26	23	0.8	1.6	0.8	1 1	39.32		,	39.32
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		240	17	18	26	20	0,0	0.8	0,0	0.3	20.08	37 78	32 44	30.10
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	743	738	738	740	100.0	100.0	98.1	99.4	57.90	51 11	58 19	55 73
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		5	143	388	346	302	9.4	100,0	16.4	12.2	47.28	37.00	42.56	12 28
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		20	274	259	101	241	5,4	7.2	2 1	57	47,20	25 79	42,50	22,20
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	INF-07	20	196	100	120	169	5.2	7,2	2.0	3,7	42,12	28.00		20,35
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(738ppm	40	160	190	104	100	5,2	5,5	3,9	4,9	40,90	30,90		39,94
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	H ₂ O ₂ ; 25ppm	60	150	100	104	130	5,9	5,1	3,1	4,7	30,70	30,00		30,09
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fe ²⁺ e 35⁰C)	90	97	121	69	96	4,9	4,5	2,0	3,8	38,82	38,78	24.00	38,80
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,	120	71	103	35	70	0,0	3,1	1,6	1,5	38,00	36,84	34,00	36,28
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		180	44	86	26	52	0,7	2,7	1,6	1,7	36,28	28,28		32,28
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		240	27	78	17	40	0,0	1,7	0,8	0,8	36,66	28,68	33,06	32,80
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	900	900	900	900	100,0	100,0	100,0	100,0	53,42	60,19	56,81	56,81
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		5	482	457	448	462	8,7	11,9	10,7	10,4	48,70	48,48	37,86	45,02
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	INF-08	20	276	293	276	281	6,5	7,1	5,3	6,3	40,96	40,32	31,16	37,48
H ₂ O ₂ : 25ppm 60 172 181 172 175 2.9 6.2 1,5 3,5 38,20 37,24 33,58 36,34 Fe ²⁺ e 35°C) 90 138 121 103 121 2,2 2,7 1,8 2,2 38,18 30,58 29,62 32,80 120 95 52 43 63 1,8 0,9 4,5 2,4 36,52 29,54 33,58 33,22 180 43 17 17 26 2,5 1,8 1,5 1,9 36,06 35,12 35,68 35,68 240 26 17 26 23 2,2 2,1 1,8 2,0 36,94 35,62 32,04 34,87	(900ppm	40	215	241	207	221	2,2	1,8	2,1	2,0	38,46	32,36	40,10	36,98
Fe ²⁺ e 35°C) 90 138 121 103 121 2,2 2,7 1,8 2,2 38,18 30,58 29,62 32,80 Fe ²⁺ e 35°C) 120 95 52 43 63 1,8 0,9 4,5 2,4 36,52 29,54 33,58 33,22 180 43 17 17 26 2,5 1,8 1,5 1,9 36,06 35,12 35,84 35,68 240 26 17 26 23 2,2 2,1 1,8 2,0 36,94 35,62 32,04 34,87	H ₂ O ₂ : 25ppm	60	172	181	172	175	2,9	6,2	1,5	3,5	38,20	37,24	33,58	36,34
ref e 35°C 120 95 52 43 63 1,8 0,9 4,5 2,4 36,52 29,54 33,58 33,22 180 43 17 17 26 2,5 1,8 1,5 1,9 36,06 35,12 35,84 35,68 240 26 17 26 23 2,2 2,1 1,8 2,0 36,94 35,62 32,04 34,87		90	138	121	103	121	2,2	2,7	1,8	2,2	38,18	30,58	29,62	32,80
180 43 17 17 26 2,5 1,8 1,5 1,9 36,06 35,12 35,84 35,68 240 26 17 26 23 2,2 2,1 1,8 2,0 36,94 35,62 32,04 34,87	re™ e 35°C)	120	95	52	43	63	1,8	0,9	4,5	2,4	36,52	29,54	33,58	33,22
<u>240 26 17 26 23 2,2</u> 2,1 1,8 2,0 36,94 35,62 32,04 34,87		180	43	17	17	26	2,5	1,8	1,5	1,9	36,06	35,12	35,84	35,68
		240	26	17	26	23	2,2	2,1	1,8	2,0	36,94	35,62	32,04	34,87

Tabela W – Influência da C_{H2O2} do meio ($C_{Doxi,HCI}$ = 100 mg/L; C_{Fe}^{2+} = 25 mg/L e T = 35°C).

-	Tempo	<u> </u>	Current		Média Curre			Ca una	Média Carrier	<u>сот</u>			Mádia COT
	(min)	(ma/l) 1	(ma/l) 2	(ma/l) 3	(mg/l)	(ma/l) 1	(ma/l) 2	(ma/l) 3	(ma/l)	(ma/L) 1	(mg/L) 2	(ma/L) 3	(mg/L)
	0	624	611	615	617	97.6	98.0	101.3	99.0	53 42	59.87	55.09	56 13
	5	606	603	601	604	47.2	41.6	50.3	46.4	58.90	57.94	56.18	57.68
	20	563	534	539	545	20.3	24.5	17.0	20.6	56.42		,	56.42
(611nnm	40	520	500	513	511	16.3	19.2	16.2	17.2	52.80			52.80
	60	485	500	495	493	16,3	13,1	11,2	13,5	51,42			51,42
$\Pi_2 U_2$; ippin	90	485	491	486	487	15,4	11,0	7,7	11,4	53,16			53,16
Fe²⁺ e 35ºC)	120	476	500	451	476	13,4	9,0	5,4	9,3	51,14	55,58	47,28	51,34
	180	459	482	433	458	10,2	9,4	6,6	8,7	53,68		, -	53,68
	240	459	482	433	458	9,8	9,0	7,7	8,8	51,30	56,44	45,40	51,05
	0	624	619	611	618	82,7	100,5	100,0	94,4	56,26	53,73	52,77	54,25
	5	450	495	526	490	18,0	17,6	17,5	17,7	55,17	49,67	51,10	51,98
INF-10	20	450	433	465	450	8,2	9,6	11,7	9,8	51,69			51,69
(611ppm	41	450	424	439	438	7,4	7,5	10,2	8,4	50,83			50,83
H.O.: 5ppm	60	433	371	431	412	6,1	4,2	8,8	6,4	49,89			49,89
T-2 ² , oppin	90	407	371	422	400	4,9	3,4	6,9	5,1	49,59			49,59
Fe e 35°C)	120	390	345	405	380	4,1	3,4	5,8	4,4	50,55	44,03	44,08	46,22
	180	372	354	405	377	4,1	2,5	4,8	3,8	50,45			50,45
	240	364	327	396	362	3,4	2,9	4,4	3,6	51,37	42,49	42,20	45,35
	0	606	619	611	612	86,5	101,0	96,5	94,6	51,21	54,70	54,90	53,60
	5	260	301	222	261	5,1	12,6	5,1	7,6	34,18	43,32	37,34	38,28
0.0.44	20	147	186	119	151	3,9	5,3	3,9	4,4	35,70			35,70
U.P. (611ppm	40	87	133	85	101	2,4	6,1	2,4	3,6	26,24			26,24
H ₂ O ₂ ; 25ppm	60	78	106	68	84	0,4	3,2	0,4	1,3	10,70			10,70
Fe²⁺ e 35ºC)	90	35	71	34	46	0,0	3,2	0,0	1,1	15,86			15,86
	120	17	53	26	32	1,6	2,4	1,6	1,9	20,02	37,76	32,42	30,07
	180	17	27	26	23	0,8	1,6	0,8	1,1	39,32			39,32
	240	17	18	26	20	0,0	0,8	0,0	0,3	20,08	37,78	32,44	30,10
	0	611	619	632	621	100,0	100,6	97,8	99,5	54,50	59,87	58,01	57,46
INE-11	5	119	159	217	165	11,4	7,3	17,0	11,9	41,81	41,38	41,76	41,65
(611nnm	20	60	44	43	49	10,7	3,5	13,5	9,2	38,33			38,33
H.O.:	40	34	30	20	32	5,5	3,1	4,3	4,2	33,11			33,77
11 ₂ O ₂ ,	60	34	35	20 17	32	0,8	3,1	1,9	3,9	37,00			37,00
62,5ppm Fe	90	20	27	17	23	4,0	2,3	0,0	2,3	30,ZI	20.20	20.00	30,21
e 35°C)	120	20	27	17	23	2,0	1,5	1.2	1,0	20,03	39,30	39,00	29.65
	240	20	27	17	23	1,0	0,4	1,2	1,1	26 71	40.20	10 22	20,00
	240	611	598	654	621	100.0	80.6	100.5	93.7	50.79	53 73	53.61	52 71
	5	172	173	133	159	6.8	4.5	11.5	7.6	37 12	42 01	39.46	39.53
INF-12	20	34	69	44	49	5.6	2.0	1.3	3.0	35.42	12,01	00,10	35.42
(611ppm	40	34	52	35	41	4.9	2.9	2.5	3.4	33 78			33 78
H ₂ O ₂ ;	60	34	35	35	35	4.9	2.5	0.8	2.7	35.08			35.08
96 7nnm Fe ²⁺	90	26	26	27	26	4.6	3.7	1.3	3.2	33.56			33.56
e 35%C)	120	26	17	27	23	3.7	2.0	1.3	2.3	31.98	39.99	37.36	36.44
0.00 0,	180	26	17	18	20	1.9	1.6	1.7	1.7	33.92	,- 5	,	33.92
	240	17	17	18	17	3.7	1.2	0.8	1.9	36.04	41.59	36.34	37.99
	= : :					-,.	• ,=	-,-	.,-	,	,	,	

Tabela X – Influência da C_{Fe}^{2+} do meio ($C_{Doxi,HCI} = 100 \text{ mg/L}$; $C_{H2O2} = 611 \text{ mg/L} \text{ e T} = 35^{\circ}\text{C}$).

	Tabela	Y – Influê	ncia da raz	zão molar	[Fe ²⁺ /H ₂ O ₂] n	o meio (C _D	^{oxi.HCI} = 10	0 mg/L; C _F	$e^{2+} = 250 \text{ mg/L} \in$	e T = 35°C	·		
	Tempo (min)	C _{H202} (ma/L) 1	С _{н202} (mq/L) 2	С _{H202} (ma/L) 3	Média C _{H202} (mɑ/L)	C _{DoxiHCI} (ma/L) 1	C _{Doxi.HCI} (ma/L) 2	C _{Doxi.HCI} (ma/L) 3	Média C _{Doxi.HCI} (ma/L)	COT (mg/L) 1	COT (mg/L) 2	COT (mg/L) 3	Média COT (mg/L)
	0	1394	1379	1291	1355	92,0	99,8	100,8	97,5	57,25	55,07	53,63	55,32
	S	225	292	221	246	2,6	6,1	8,4	5,7	38,14	39,04	38,12	38,43
	20	78	71	62	20	1,5	4,4	1,6	2,5				
Proporção Fe2+/H2O2 =	40	17	44	53	38	2,2	2,4	2,0	2,2				
0,1 (1400ppm H ₂ O ₂ ;	60	17	35	35	29	1,5	1,2	1,2	1,3				
250ppm Fe ²⁺ e 35ºC)	06	26	27	27	26	2,6	1,6	2,0	2,1				
	120	26	27	27	26	0,0	0,8	1,6	0,8	38,42	37,78	35,10	37,10
	180	26	18	18	20	1,8	2,4	2,8	2,4				
	240	26	18	18	20	0,4	2,4	1,2	1,3	38,86	37,94	32,52	36,44
	0	303	309	283	298	98,9	100,1	99,2	99,4	57,25	54,90	53,53	55,23
	5 2	104	62	53	73	12,4	9,8	10,8	11,0	47,68	42,23	38,04	42,65
	20	43	71	62	59	9,1	10,1	7,9	9,0				
Proporção Fe2+/H2O2 =	40	17	71		44	9,1	10,1	5,4	8,2				
0,5 (280ppm H ₂ O ₂ ;	60	43			43	9,5	9,4	7,1	8,7				
250ppm Fe ²⁺ e 35ºC)	06	78			78	9,1	9,1	6,6	8,3				
:	120	78	71	62	20	8,4	9,4	6,2	8,0	44,54	44,03	39,38	42,65
	180	78			78	7,7	9,8	5,8	7,8				
	240	78	71	62	20	8,0	8,1	5,0	7,0	40,30	40,89	38,02	39,74
	0	165	150	141	152	100,3	100,6	100,0	100,3	53,31	54,70	53,53	53,84
	5	113	115	88	105	29,3	23,1	25,7	26,1	44,94	44,10	38,42	42,49
	20		97	88	93	26,7	23,5	21,6	23,9				
Proporção Fe2+/H2O2 = 1	40					26,3	24,7	24,1	25,0				
(140ppm H ₂ O ₂ ; 250ppm	60					25,4	23,1	22,4	23,6				
Fe ²⁺ e 35ºC)	06					26,3	23,9	24,9	25,0				
	120		97	88	93	28,9	21,9	22,4	24,4	46,40	40,52	40,06	42,33
	180					26,3	22,3	22,8	23,8				
	240		106	88	97	27,2	23,5	20,3	23,7	44,96	39,52	35,18	39,89
	0	87	71	80	62	100,3	99,3	100,2	6'66	53,31	55,07	53,63	54,00
	5	130	115	124	123	25,8	45,2	44,5	38,5	46,10	42,68	42,74	43,84
:	20		124	133	128	24,5	38,7	36,8	33,3				
Proporção Fe2+/H2O2 = 2	40		124	133	128	24,1	41,0	36,4	33,8				
(70ppm H ₂ O ₂ ; 250ppm	60		124		124	24,5	37,3	32,7	31,5				
Fe ²⁺ e 35ºC)	06		124		124	25,4	36,8	35,6	32,6				
•	120		133		133	19,7	41,5	31,9	31,0	37,84		36,30	37,07
	180		124		124	18,8	32,6	34,4	28,6				
	240		124		124	17,5	35,4	36,0	29,6	41,02	40,96	36,02	39,33

က
Ш
⊢
Φ
Ļ
<u>b</u>
Ε
0
ä
Ш
÷
Ъ
C
ì
ð
Ε
Q
5
Ĭ
ă
6
S
<u>.0</u>
e
2
_
Ô
÷
+
°a
ШĽ
F
-00
Ĕ
2
ž
ВЧ
2
9
ືສ
. <u>.</u>
ŝ
Ĩ
nfl
-
Ľ
2
0

	Tempo	C _{H202}	C _{H202}	C _{H202}	Média C _{H202}	C _{Doxi.HCI}	C _{Doxi.HCI}	C _{Doxi.HCI}	Média C _{Doxi.HCI}	СОТ	СОТ	СОТ	Média COT
	(min)	(mg/L) 1	(mg/L) 2	(mg/L) 3	(mg/L)	(mg/L) 1	(mg/L) 2	(mg/L) 3	(mg/L)	(mg/L) 1	(mg/L) 2	(mg/L) 3	(mg/L)
	0	336	318	354	336	100,7	100,1	101,4	100,7	58,01	51,60	53,61	54,40
	5	159	177	159	165	8,4	13,4	13,6	11,8	49,26	42,42	44,18	45,29
	20	133	124	133	130	7,2	5,0	4,2	5,5				
(305,5ppm H ₂ O ₂ ;	40	97	88	106	97	7,6	4,6	3,0	5,1				
12,5ppm Fe ²⁺ e	60	62	62	106	77	3,4	2,5	2,1	2,7				
35°C)	06	62	53	80	65	3,4	3,3	2,5	3,1				
	120	53	27	53	44	3,8	3,8	2,1	3,2	43,00	37,54	35,60	38,71
	180	35	18	27	27	2,3	2,1	3,0	2,4				
	240	18	18	18	18	0,8	3,3	1,3	1,8	41,72	34,82	35,80	37,45
	0	909	619	611	612	86,5	101,0	96,5	94,6	51,21	54,70	54,90	53,60
	5	260	301	222	261	5,1	12,6	5,1	7,6	34,18	43,32	37,34	38,28
	20	147	186	119	151	3,9	5,3	3,9	4,4	35,70			
(611ppm H ₂ O ₂ ;	40	87	133	85	101	2,4	6,1	2,4	3,6	26,24			
25ppm Fe ²⁺ e	60	78	106	68	84	0,4	3,2	0,4	1,3	10,70			
35°C)	06	35	71	34	46	0,0	3,2	0'0	1,1	15,86			
	120	17	53	26	32	1,6	2,4	1,6	1,9	20,02	37,76	32,42	30,07
	180	17	27	26	23	0,8	1,6	0,8	1,1	39,32			
	240	17	18	26	20	0,0	0,8	0,0	0,3	20,08	37,78	32,44	30,10
	0	1229	1202	1061	1164	93,0	98,5	97,6	96,4	53,63	58,01	51,60	54,41
	5	416	530	460	469	11,8	10,0	31,6	17,8	42,94	40,26	41,46	41,55
	20	177	221	239	212	3,4	1,7	2,8	2,6				
(1222ppm H ₂ O ₂ ;	40	62	106	133	100	4,2	1,7	4,4	3,4				
50ppm Fe ²⁺ e	60	35	71	88	65	1,5	2,1	1,6	1,7				
35°C)	06	27	44	53	41	1,1	2,9	3,2	2,4				
	120	27	18	35	27	2,3	2,5	2,0	2,3	36,30	37,82	34,36	36,16
	180	18	18	27	21	1,5	0,8	2,4	1,6				
	240	18	18	18	18	1,1	2,1	2,8	2,0	36,02	38,28	34,16	36,15

Tabela Z – Influência da razão molar constante [Fe²⁺/H₂O₂] no meio (C_{Dovi HCI} = 100 mg/L e T = 35° C).

Tempo (min)	[H.O.] (mg/L)		Fo	[TOC] (mg/l) teorico 54 897
	619	101.0	29.7	54 695
5	301	12.6	20,1	43,320
20	186	53		-0,020
40	133	6.1		
-0 60	106	3.2		
90	71	3.2		
120	53	2.4		37.76
120	33 27	2,4		51,10
240	19	1,0	24.0	27 78
1/25	10	0,8	24,9	36,70
1433	10 610	0,0	24,4	30,320
1440	520	0.0		37 700
1440	53U 249	0,0		37,700
1500	240			26 58
1000	00 50			30,30
1620	53 07		10.6	24.20
1680	21		49,6	34,28
2805	9			31,328
2870	548			22.224
2875	416			32,224
2930	150			00.470
2990	/1			30,176
3050	53			22.2
3110	35			29,8
4335	18			29,840
4340	575			~~~~~
4345	354			29,228
4400	133			
4460	80			31,416
4520	44			
4580	35			28,7
8715	18			28,6
8720	566			
8725	345			29,356
8780	168			
8840	106			25,816
8900	62			
8960	35			30,672
10070	18			30,340
10075	601			
10080	416			29,412
10135	150			
10195	53			27,752
10255	35			
10315	27			29,2
11490	18			28,356
11495	610			
11500	469			27,452
11555	150			
11615	53			25,988
11675	44			
11735	27			26,964
12955	18			26,840
12960	601			
12965	424			25,396
13020	133			
13080	53			26,6
13140	35			·
13200	27			27.036
14395	18			26.660
14397	619			- ,
14402	469			27.700
14457	133			
14517	53			25.68
14577	35			_0,00
14637	27			24.8
11007	_,			27,0

Tabela AA – Ensaio de longa duração ($C_{\text{Doxi,HCl}} = 100 \text{ mg/L}$; $C_{\text{H2O2}} = 611 \text{ mg/L}$; $C_{\text{Fe}}^{2+} = 25 \text{ mg/L} \text{ e T} = 35^{\circ}\text{C}$).

Tabela AB – Infi	luência d∈	e bombear	mento de a	ar no proc	cesso Fenton	(C _{Doxi.HCl} =	= 100 mg/	L; C _{H2O2} =	611 mg/L; C _{Fe} ²	²⁺ = 25 m(g/L e T =	35°C).	
	Tempo (min)	C _{H202} (mg/L) 1	С _{н202} (mg/L) 2	C _{H202} (mg/L) 3	Média C _{H202} (mg/L)	C _{Doxi.HCI} (mg/L) 1	C _{Doxi.HCI} (mg/L) 2	C _{Doxi.HCI} (mg/L) 3	Média C _{Doxi.HCI} (mg/L)	COT (mg/L) 1	COT (mg/L) 2	COT (mg/L) 3	Média COT (mg/L)
	0	601	619		610	100,4	100,1		100,2	51,37	55,60		53,49
	S	274	301		287	5,7	10,4		8,1	41,38	44,54		42,96
Com	20	150	168		159	4,4	7,9		6,1				
Borbulhamento	40	97	106		102	3,5	2,1		2,8				
de ar (611ppm	60	62	35		49	1,8	2,5		2,1				
H ₂ O ₂ ; 25ppm	06	44	27		35	1,3	2,1		1,7				
Fe ²⁺ e 35ºC)	120	27	27		27	0'0	1,2		1,1	39,02	36,70		37,86
	180	18	18		18	0,9	0,4		0,6				
	240	18	18		18	0,0	0,8		0,4	33,48	36,56		35,02
	0	909	619	611	612	86,5	101,0	96,5	94,6	51,21	54,70	54,90	53,60
	5	260	301	222	261	5,1	12,6	5,1	7,6	34,18	43,32	37,34	38,28
Sem	20	147	186	119	151	3,9	5,3	3,9	4,4	35,70			
Borbulhamento	40	87	133	85	101	2,4	6,1	2,4	3,6	26,24			
de ar (611ppm	60	78	106	68	84	0,4	3,2	0,4	1,3	10,70			
H ₂ O ₂ ; 25ppm	06	35	71	34	46	0'0	3,2	0,0	1,1	15,86			
Fe ²⁺ e 35ºC)	120	17	53	26	32	1,6	2,4	1,6	1,9	20,02	37,76	32,42	30,07
	180	17	27	26	23	0,8	1,6	0,8	1,1	39,32			
	240	17	18	26	20	0,0	0,8	0,0	0,3	20,08	37,78	32,44	30,10

ä
"
'ө
JL
ů
2
5
ů
ĩ
l/g
5
51
Ĩ
02
CH2
T
g/L
Е
8
, ,
õ
xi.H
ů
9
đ
en
Щ
SSC
ë
20
ō
гD
а С
ğ
nto
nei
an
þ
ы
d e
ď
cia
ên
iflu
<u> </u>
m
Α
୍ବାସ
ab
Ë

Apêndice B

Branco

Amostras

60 segundos

90 segundos

300 segundos

Apêndice C

Gráficos obtidos a partir da análise de LC-MS-IT-TOF utilizando Coluna shim pack vp c18 50mm comprimento 2mm diâmetro tamanho de partícula 2µm, fluxo isocrático 0,2mL/min MeOH/H₂O com 0,1% acido acético (50:50).

Cromatograma padrão 100 mg/L UV

Espectro de massas tempo de retenção 1,2min

Cromatograma 30 segundos degradação 100 mg/L UV

Cromatograma 60 segundos degradação 100 mg/L UV

Espectro de massas tempo de retenção 0,6min

Espectro de massas tempo de retenção 0,9min

Ms

Espectro de massas tempo de retenção 0,6min

Cromatograma 300 segundos degradação 100 mg/L UV

MS

Espectro de massas tempo de retenção 0,6min

Cromatograma 10 minutos degradação 100 mg/L UV

MS

Espectro de massas tempo de retenção 0,6min

Apêndice D

Publicações durante o mestrado.

-Borghi, A. A.; Palma, M. S. A. Chemical oxidation of doxycycline hiclate with fenton process. XLVI Semana Universitária Paulista de Farmácia e Bioquímica, Faculdade de Ciências Farmacêuticas da USP, 17-21/10/2011, São Paulo, SP.

-Borghi, A. A.; Palma, M. S. A. Oxidação química de hiclato de doxiciclina através do processo fenton. Simpósio Brasil-Japão-XX Encontro Anual da SBPN, USP-Leste, 25-26/10/2011, São Paulo, SP.

-Borghi, A. A.; Palma, M. S. A. Oxidação química de hiclato de doxiciclina através do processo fenton: ensaios. Simpósio Farmacêutico da Faculdade de Farmácia de Juiz de Fora, Faculdade de Farmácia da UFJF, 30/10-03/11/2011, Juiz de Fora, MG.

-Borghi, A. A.; Palma, M. S. A.; Nakagawa, M. I. Chemical oxidation of doxycycline hiclate through the fenton processo: optimal operating condition according to a DCCR factorial design. XIX Congresso Brasileiro de Engenharia Química, 09-12/09/2012, Búzios, RJ.

Trabalhos publicados e apresentados através da coorientação de alunos de Iniciação Científica:

-Nakagawa, M. I.; Palma, M. S. A.; Borghi, A. A. Oxidação química da doxiciclina pelo processo fenton: verificação da influência da concentração de Fe²⁺. 19^o Simpósio Internacional de Iniciação Científica, 19^o. SIICUSP, 25/11/2011, São Carlos, SP.

-Nakagawa, M. I.; Palma, M. S. A.; Borghi, A. A. Oxidação química da doxiciclina pelo processo fenton: verificação da influência da concentração de H₂O₂. VII Semana de Engenharia Química da Escola Politécnica da USP, 01/02/2012, São Paulo, SP.

Trabalho aceito para apresentação em Pôster e publicação do resumo no VII Encontro sobre Aplicações Ambientais de Processos Oxidativos Avançados, a ser realizado de 15 a 18/10/2013, Recife, PE.

-Borghi, A. A.; Palma, M. S. A. Influência da Relação Fe²⁺/H₂O₂ na concentração residual de cloridrato de doxiciclina em solução aquosa pelo processo Fenton.

Artigo submetido ao Brazilian Journal of Pharmaceutical Sciences, 01/11/2012:

-Borghi, A. A.; Palma, M. S. A. Environmental contamination by tetracyclines – Review.