UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS INSTITUTO DE FÍSICA DE SÃO CARLOS INSTITUTO DE QUÍMICA DE SÃO CARLOS ÁREA INTERUNIDADES CIÊNCIA E ENGENHARIA DE MATERIAIS

DETERMINAÇÃO DA ESTRUTURA CRISTALINA E MOLECULAR DE UMA FLAVONA

Jaime de Souza Júnior

Dissertação apresentada a área interunidades

Ciência e Engenharia de Materiais, IFSC, EESC IQSC,

da Universidade de São Paulo para a obtenção do título

de Mestre em Ciência e Engenharia de Materiais.

SERVIÇO DE BIBLIOTECA E INFORMAÇÃO IQSC/USP T 908

ORIENTADOR: Prof. Dr. Regina Helena de Almeida Santos

SÃO CARLOS

1996

Area Interunidades Ciência e Engenharia de Materiais

UNIVERSIDADE DE SÃO PAULO

Escola de Engenharia de São Carlos Instituto de Física de São Carlos Instituto de Química de São Carlos CAIXA POSTAL - 369 CEP 13560-970 - São Carlos/SP - Brasil Tel/Fax: (016) 274-9285

MEMBROS DA COMISSÃO JULGADORA DA DISSERTAÇÃO DE MESTRADO DE **JAIME DE SOUZA JÚNIOR** APRESENTADA A ÁREA INTERUNIDADES EM CIÊNCIA E ENGENHARIA DE MATERIAIS, DA EESC-IFSC-IQSC. UNIVERSIDADE DE SÃO PAULO, EM 24/05/1996.

COMISSÃO JULGADORA:

Profa. Dra. Regina Helena de Almeida Santos (DQFM-IQSC/USP)

Prof. Dr. Richard Charles Garratt (FFI-IFSC/USP)

Prof. Dr. Nilso Barelli (IQ-UNESP-Araraquara)

CAPES, CNPq, FAPESP, FINEP

Aos meus pais, Jayme e Stella

A Deus que me acompanha nesta minha existência

AGRADECIMENTOS

Quero expressar meus sinceros agradecimentos a todos aqueles que colaboraram para a execução deste trabalho de uma forma direta ou indireta, e em especial:

A Profa. Dra. Regina Helena de Almeida Santos pela dedicação com que orientou este trabalho, pelos seus ensinamentos, incentivo, apoio e amizade demostrados;

A Profa. Dra. Maria Teresa do Prado Gambardella pela solicitude e amizade;

A Prof. Dra. Regina H. Porto Francisco pela colaboração e amizade;

Ao Prof. Dr. Lourivaldo Santos da Universidade Federal do Pará, pelo fornecimento da amostra;

Aos demais Professores dos grupos de Cristalografia e Quântica pelo incentivo e amizade;

Aos meus colegas de sala Cristina Cunha Carvalho, Patrícia Carolina Moreno e Odonírio Abrahão Júnior, pela amizade, colaboração e companheirismo;

A Vânia Cardoso, Joel Marcondes pela amizade e solicitude;

A Ângela Marcia Derigi Silva pela colaboração, amizade e tempo

dispensado;

A Lio Vieira pela sugestões e discussões;

A Evandro Lopes Salgado pela força e amizade;

Ao Prof. Evair pelas sugestõesa e amizade;

A Taís Gauzer pelas sugestões e críticas;

A Dona. Aurora pela amizade;

Aos meus pais, minha eterna gratidão pelo amor, força, paciência, compreensão e incentivo que sempre recebi.

SERVIÇO DE BIBLIOTECA E INFORMAÇÃO IQSC/USP

ÍNDICE

ÍNDICE DE FIGURAS	i
ÍNDICE DE TABELAS	
RESUMO	v
ABSTRACT	vi
INTRODUÇÃO	1
CAPÍTULO I - REVISÃO TEÓRICA	4
1 - INTRODUÇÃO	4
1.1 - ORIGEM DA PRODUÇÃO DE RAIOS-X	4
1.2 - INTERAÇÃO DOS RAIOS-X COM A MATÉRIA	6
1.2.1- ESPALHAMENTO POR UM ELÉTRON	6
1.2.2- ESPALHAMENTO POR UM ÁTOMO	8
1.2.3 - ESPALHAMENTO POR UMA CELA UNITÁRIA	10
1.3 - A REDE RECÍPROCA	12
1.4 - A LEI DE BRAGG	14
1.5 - AS EQUAÇÕES DE LAUE	15
1.5.1 - EQUIVALÊNCIA DAS EQUAÇÕES DE LAUE E A LEI DE	
BRAGG	18
1.6- ESFERA DE EWALD	20
1.7 - REDUÇÃO DE DADOS	21
1.7.1 - FATORES QUE AFETAM AS INTENSIDADES	23
1.7.1.1 - FATOR DE POLARIZAÇÃO	23
1.7.1.2 - FATOR DE LORENTZ	23

1.8 - FATOR DE TEMPERATURA E SUA RELAÇÃO COM A INTEN- SIDADE	1.7.1.3 - FATOR DE ABSORÇÃO	24
SIDADE 26 1.9 - DENSIDADE ELETRÔNICA E FATOR DE ESTRUTURA 28 1.9.1 - SÉRIES DE FOURIER 29 1.10 - O PROBLEMA DA FASE 33 1.11 - MÉTODOS DIRETOS 34 1.11.1 - DESIGUALDADES DE HARKER ¢ KASPER 35 1.11.2 - FATOR DE ESTRUTURA UNITÀRIO 37 1.11.3 - FATOR DE ESTRUTURA NORMALIZADO 39 1.11.4 - DETERMINANTE DE KARLE- HAUPTMAN 41 1.11.5 - INVARIANTES ESTRUTURAIS 45 1.11.6 - SEMI-INVARIANTES ESTRUTURAIS E DEFINIÇÃO DA ORIGEM 47 1.11.7.1 - MÉTODOS CENTROSSIMÉTRICOS 52 1.11.7.2 - MÉTODOS NÃO CENTROSSIMÉTRICOS 52 1.11.9 - AS BASES DO MÉTODO DE MULTISSOLUÇÃO 6 1.12.1 - REFINAMENTO DE UMA ESTRUTURA 6 1.12.1 - SITUAÇÕES LIMITANTES DA FOURIER DIFERENÇA 7 1.12.2 - REFINAMENTO PELA SÍNTESE FOURIER DIFERENÇA 7 1.12.1 - SITUAÇÕES LIMITANTES DA FOURIER DIFERENÇA 7 1.12.2 - REFINAMENTO POR MÍNIMOS QUADRADOS 7	1.8 - FATOR DE TEMPERATURA E SUA RELAÇÃO COM A INTEN-	
1.9 - DENSIDADE ELETRÔNICA E FATOR DE ESTRUTURA 28 1.9.1 -SÉRIES DE FOURIER 29 1.10 - O PROBLEMA DA FASE 33 1.11 - MÉTODOS DIRETOS 34 1.11 - MÉTODOS DIRETOS 34 1.11 - DESIGUALDADES DE HARKER e KASPER 35 1.11.2 - FATOR DE ESTRUTURA UNITÁRIO 37 1.11.3 - FATOR DE ESTRUTURA NORMALIZADO 39 1.11.4 - DETERMINANTE DE KARLE- HAUPTMAN 41 1.11.5 - INVARIANTES ESTRUTURAIS 45 1.11.6 - SEMI-INVARIANTES ESTRUTURAIS 45 1.11.7 - RELAÇÕES DE PROBABILIDADE 52 1.11.7.1 - MÉTODOS CENTROSSIMÉTRICOS 51 1.11.9 - AS BASES DO MÉTODO DE MULTISSOLUÇÃO 6 1.12 - REFINAMENTO DE UMA ESTRUTURA 6 1.12.1 - REFINAMENTO PELA SÍNTESE FOURIER DIFERENÇA 6 1.12.1 - SITUAÇÕES LIMITANTES DA FOURIER DIFERENÇA 7 1.12.2 - REFINAMENTO POR MÍNIMOS QUADRADOS 7	SIDADE	26
1.9.1 -SÉRIES DE FOURIER. 29 1.10 - O PROBLEMA DA FASE. 33 1.11 - MÉTODOS DIRETOS. 34 1.11 - MÉTODOS DIRETOS. 34 1.11 - DESIGUALDADES DE HARKER e KASPER. 35 1.11.2 - FATOR DE ESTRUTURA UNITÁRIO. 37 1.11.3 - FATOR DE ESTRUTURA UNITÁRIO. 39 1.11.4 - DETERMINANTE DE KARLE- HAUPTMAN. 41 1.11.5 - INVARIANTES ESTRUTURAIS. 45 1.11.6 - SEMI-INVARIANTES ESTRUTURAIS E DEFINIÇÃO DA 00 ORIGEM. 47 1.11.7 - RELAÇÕES DE PROBABILIDADE. 52 1.11.7.1 - MÉTODOS CENTROSSIMÉTRICOS. 53 1.11.8 - ADIÇÃO SIMBÓLICA. 54 1.11.9 - AS BASES DO MÉTODO DE MULTISSOLUÇÃO. 66 1.12 - REFINAMENTO DE UMA ESTRUTURA. 6 1.12.1 - SITUAÇÕES LIMITANTES DA FOURIER DIFERENÇA. 6 1.12.2 - REFINAMENTO PELA SÍNTESE FOURIER DIFERENÇA. 7 1.12.2 - REFINAMENTO POR MÍNIMOS QUADRADOS. 7	1.9 - DENSIDADE ELETRÔNICA E FATOR DE ESTRUTURA	28
1.10 - O PROBLEMA DA FASE. 33 1.11 - MÉTODOS DIRETOS. 34 1.11 - MÉTODOS DIRETOS. 34 1.11 - DESIGUALDADES DE HARKER e KASPER. 35 1.11.2 - FATOR DE ESTRUTURA UNITÁRIO. 37 1.11.3 - FATOR DE ESTRUTURA UNITÁRIO. 39 1.11.4 - DETERMINANTE DE KARLE- HAUPTMAN. 41 1.11.5 - INVARIANTES ESTRUTURAIS. 45 1.11.6 - SEMI-INVARIANTES ESTRUTURAIS. 45 1.11.7 - RELAÇÕES DE PROBABILIDADE. 52 1.11.7.1 - MÉTODOS CENTROSSIMÉTRICOS. 51 1.11.7.2 - MÉTODOS NÃO CENTROSSIMÉTRICOS. 52 1.11.8 - ADIÇÃO SIMBÓLICA. 51 1.11.9 - AS BASES DO MÉTODO DE MULTISSOLUÇÃO. 6 1.12.1 - REFINAMENTO PELA SÍNTESE FOURIER DIFERENÇA. 6 1.12.1 - SITUAÇÕES LIMITANTES DA FOURIER DIFERENÇA. 7 1.12.2 - REFINAMENTO POR MÍNIMOS QUADRADOS. 7	1.9.1 -SÉRIES DE FOURIER	29
1.11 - MÉTODOS DIRETOS. 34 1.11 - DESIGUALDADES DE HARKER e KASPER. 35 1.11.2 - FATOR DE ESTRUTURA UNITÁRIO. 37 1.11.3 - FATOR DE ESTRUTURA NORMALIZADO. 39 1.11.4 - DETERMINANTE DE KARLE- HAUPTMAN. 41 1.11.5 - INVARIANTES ESTRUTURAIS. 45 1.11.6 - SEMI-INVARIANTES ESTRUTURAIS 45 1.11.7 - RELAÇÕES DE PROBABILIDADE. 52 1.11.7.1 - MÉTODOS CENTROSSIMÉTRICOS. 51 1.11.8 - ADIÇÃO SIMBÓLICA. 51 1.12 - REFINAMENTO DE UMA ESTRUTURA 6 1.12.1 - REFINAMENTO PELA SÍNTESE FOURIER DIFERENÇA. 6 1.12.2 - REFINAMENTO POR MÍNIMOS QUADRADOS. 7	1.10 - O PROBLEMA DA FASE	33
1.11.1 - DESIGUALDADES DE HARKER e KASPER	1.11 - MÉTODOS DIRETOS	34
1.11.2 - FATOR DE ESTRUTURA UNITÁRIO	1.11.1 - DESIGUALDADES DE HARKER e KASPER	35
1.11.3 - FATOR DE ESTRUTURA NORMALIZADO	1.11.2 - FATOR DE ESTRUTURA UNITÁRIO	37
 1.11.4 - DETERMINANTE DE KARLE- HAUPTMAN	1.11.3 - FATOR DE ESTRUTURA NORMALIZADO	39
1.11.5 - INVARIANTES ESTRUTURAIS 45 1.11.6 - SEMI-INVARIANTES ESTRUTURAIS E DEFINIÇÃO DA 47 0RIGEM 47 1.11.7 - RELAÇÕES DE PROBABILIDADE 52 1.11.7.1 - MÉTODOS CENTROSSIMÉTRICOS 53 1.11.7.2 - MÉTODOS NÃO CENTROSSIMÉTRICOS 54 1.11.8 - ADIÇÃO SIMBÓLICA 55 1.11.9 - AS BASES DO MÉTODO DE MULTISSOLUÇÃO 66 1.12 - REFINAMENTO DE UMA ESTRUTURA 66 1.12.1 - REFINAMENTO PELA SÍNTESE FOURIER DIFERENÇA 66 1.12.1.1 - SITUAÇÕES LIMITANTES DA FOURIER DIFERENÇA 77 1.12.2 - REFINAMENTO POR MÍNIMOS QUADRADOS 74	1.11.4 - DETERMINANTE DE KARLE- HAUPTMAN	41
1.11.6 - SEMI-INVARIANTES ESTRUTURAIS E DEFINIÇÃO DA ORIGEM	1.11.5 - INVARIANTES ESTRUTURAIS	45
ORIGEM	1.11.6 - SEMI-INVARIANTES ESTRUTURAIS E DEFINIÇÃO DA	
1.11.7 - RELAÇÕES DE PROBABILIDADE	ORIGEM	47
1.11.7.1 - MÉTODOS CENTROSSIMÉTRICOS 51 1.11.7.2 - MÉTODOS NÃO CENTROSSIMÉTRICOS 56 1.11.7.2 - MÉTODOS NÃO CENTROSSIMÉTRICOS 56 1.11.8 - ADIÇÃO SIMBÓLICA 57 1.11.9 - AS BASES DO MÉTODO DE MULTISSOLUÇÃO 66 1.12 - REFINAMENTO DE UMA ESTRUTURA 66 1.12.1 - REFINAMENTO PELA SÍNTESE FOURIER DIFERENÇA 66 1.12.1 - SITUAÇÕES LIMITANTES DA FOURIER DIFERENÇA 76 1.12.2 - REFINAMENTO POR MÍNIMOS QUADRADOS 77	1.11.7 - RELAÇÕES DE PROBABILIDADE	52
1.11.7.2 - MÉTODOS NÃO CENTROSSIMÉTRICOS. 54 1.11.8 - ADIÇÃO SIMBÓLICA. 54 1.11.9 - AS BASES DO MÉTODO DE MULTISSOLUÇÃO. 66 1.12 - REFINAMENTO DE UMA ESTRUTURA. 66 1.12.1 - REFINAMENTO PELA SÍNTESE FOURIER DIFERENÇA. 66 1.12.1.1 - SITUAÇÕES LIMITANTES DA FOURIER DIFERENÇA. 77 1.12.2 - REFINAMENTO POR MÍNIMOS QUADRADOS. 74	1.11.7.1 - MÉTODOS CENTROSSIMÉTRICOS	53
 1.11.8 - ADIÇÃO SIMBÓLICA	1.11.7.2 - MÉTODOS NÃO CENTROSSIMÉTRICOS	56
1.11.9 - AS BASES DO MÉTODO DE MULTISSOLUÇÃO	1.11.8 - ADIÇÃO SIMBÓLICA	59
1.12 - REFINAMENTO DE UMA ESTRUTURA	1.11.9 - AS BASES DO MÉTODO DE MULTISSOLUÇÃO	60
1.12.1 - REFINAMENTO PELA SÍNTESE FOURIER DIFERENÇA 6 1.12.1.1 - SITUAÇÕES LIMITANTES DA FOURIER DIFERENÇA 7 1.12.2 - REFINAMENTO POR MÍNIMOS QUADRADOS 7	1.12 - REFINAMENTO DE UMA ESTRUTURA	67
1.12.1.1 - SITUAÇÕES LIMITANTES DA FOURIER DIFERENÇA 7 1.12.2 - REFINAMENTO POR MÍNIMOS QUADRADOS 7	1.12.1 - REFINAMENTO PELA SÍNTESE FOURIER DIFERENÇA	67
1.12.2 - REFINAMENTO POR MÍNIMOS QUADRADOS	1.12.1.1 - SITUAÇÕES LIMITANTES DA FOURIER DIFERENÇA	70
	1.12.2 - REFINAMENTO POR MÍNIMOS QUADRADOS	75
1.12.3 - FUNÇÕES PESO	1.12.3 - FUNÇÕES PESO	80

1.12.3.1 CONTRIBUIÇÃO DE NON POISSON	80
1.12.3.2 - PESO PIVOT-POINT	81
1.12.3.3 - PESO UNITÁRIO	81
1.12.3.4 - PESO UNITÁRIO MODIFICADO	81
1.12.3.5 - PESO POLINOMIAL CRUICKSHANK	82
1.12.3.6 - PESO POLINOMIAL MODIFICADO DE CRUICKSHANK	82
1.12.3.7- MÉTODO DE PESAGEM KILLEAN E LAWRENCE	82
1.12.4 - CONTROLE DO REFINAMENTO E ÍNDICES DE DIS-	
CORDÂNCIA	83
CAPÍTULO II - DETERMINAÇÃO DA ESTRUTURA CRISTALINA E MOLECU-	
LAR DO 5,4'- DIHIDROXI - 3',5'- DIMETOXI - 6,7 - (2", 2", DI-	
METILPIRANO) FLAVONA	84
2.1 - INTRODUÇÃO	84
2.2 COLETA DE DADOS	85
2.3 - SOLUÇÃO E REFINAMENTO DA ESTRUTURA	87
2.4 - RESULTADOS E CONCLUSÕES	89
REFERÊNCIAS BIBLIOGRÁFICAS	100
APÊNDICE 1	102

ÍNDICE DE FIGURAS

Figura 1-	Representação estrutural de uma molécula de Flavona, com a	
	numeração típica usada nos flavanóides	1
Figura 2-	Representação estrutural de alguns compostos da classe dos	
	flavonoides. (a) flavanona; (b) isoflavona; (c) flavonol	2
Figura 3-	Campos elétrico e magnético associados com o movimento da onda de	
	raios-X na direção do eixo x	5
Figura 4-	Colisão elástica entre fóton e elétron (Demonstração do Efeito	
	Compton)	7
Figura 5-	Curva do fator de espalhamento para o átomo de carbono	9
Figura 6 -	Representação tridimensional de uma cela unitária genérica	10
Figura 7 -	Adição de ondas: a) tratamento vetorial; b) tratamento analítico; c)	
	ondas senoidais	10
Figura 8 -	Espaço Recíproco. a) representação dos eixos. b) relação entre o vetor	
	H e o plano hk <i>l</i>	13
Figura 9 -	Construção apresentando as condições de difração	14
Figura 10-	Diferença de percurso entre os raios incidentes e difratados	16
Figura 11-	Difração dos raios-X pelos planos cristalinos	19
Figura 12 -	A Esfera de Ewald ou Esfera de Reflexão	21
Figura 13 -	Relação entre os raios-X incidentes e os raios-X refletidos em um	
	elemento de volume dx	24
Figura 14 -	Gráfico de Wilson para a determinação dos fatores de escala e	
	temperatura isotrópico médio	28
Figura 15.	Densidade eletrônica unidimensional simétrica	29
Figura 16 -	Ilustração do diagrama de Argand	44
Figura 17 -	Deslocamento da origem de O para O ²	45
Figura 18-	Cela unitária no espaço recíproco	48
Figura 19 -	Origens equivalentes no grupo espacial P 1	50
Figura 20-	Distribuição de probabilidades de ϕ_3 para três valores de K	57
Figura 21 -	Diagrama do processo de convergência	62

i

Figura 22 -	Efeito dos erros posicionais visualizado na Fourier diferença. (a) na	
	direção de x; (b) no plano xy	69
Figura 23 -	Situações limites da sintese ΔF . (a) $ F_o \approx F_c $; (b) $ F_o > F_c $; (c)	
	$ F_{o} > F_{c} $	70
Figura 24 -	(a) vetores para o caso $ F_c > F_o $. (b) vetores para o caso, $ F_c >$	
	$ F_o $.com $\alpha_o = \alpha_c$. (c) comparação entre os vetores $F_o - F_c e \Delta F e^{-i\alpha c}$	72
Figura 25 -	Construção mostrando o intervalo de a	73
Figura 26 -	Seção em linha da síntese ρ_o - ρ_c : (a)- parâmetros térmicos super-	
	estimados; (b)-parâmetros térmicos sub-estimados	74
Figura 27 -	Seção da densidade eletrônica por um átomo. (a) densidade eletrônica	
	ideal, usando F_0 ; (b) densidade eletronica usando vibração isotrópica	
	(F _c); (c) densidade eletrônica ΔF , mostrando a aparência da diferença	
	que ocorre quando um átomo vibrando anisotrópicamente é	
	considerado isotróicpo. As linhas contínuas representam regiões	
	positivas e as tracejadas regiões de densidade eletrônica negativa	75
Figura 28 -	Grafico do limiar para o sistema de peso unitário modificado	81
Figura 29 -	Representação Ortep da molécula de 5,4'- dihidroxi - 3',5'- dimetoxi -	
	6,7 - (2", 2", dimetilpirano) flavona	89
Figura 30 -	Representação Ortep da Molécula de 5,4'- Dihidroxi - 3',5'- dimetoxi -	
	6,7 - (2", 2", dimetilpirano) flavona com os elipsoides de vibração	
	térmica	90
Figura 31 -	Representação Ortep da molécula de 5,4'-dihidroxi-3',5'-dimetoxi-6,7-	
	(2",2"-dimetilpirano) flavona. As linhas tracejadas indicam as	
	ligações de hidrogênio intramoleculares	9 8
Figura 32 -	Representação ORTEP das moléculas com orientação relativa à cela	
	unitária, formando cadeia ao longo da direção [101]. As ligações de	
	hidrogênio intra e intermoleculares estão representadas por linhas	
	tracejadas	99

ÍNDICE DE TABELAS

TABELA 1 -	VALORES TEÓRICOS RELACIONADOS AOS E	40
TABELA 2 -	VALORES DE K e E PARA DIFERENTES NÚMEROS DE	
	ÁTOMOS	58
TABELA 3 -	RESUMO DOS PRINCIPAIS DADOS CRISTALOGRÁFICOS	86
TABELA 4 -	COORDENADAS ATÔMICAS FRACIONÁRIAS E FATORES	
	DE VIBRAÇÃO TÉRMICA ISOTRÓPICOS EQUIVALENTES	
	(Å ²) COM OS RESPECTIVOS DESVIOS PADRÃO ENTRE	
	PARÊNTESES EXCLUIDOS OS HIDROGÊNIOS PARA O 5,4'-	
	DIHIDROXI-3',5'-DIMETOXI-6,7-(2'',2''-DIMETILPIRANO)	
	FLAVONA	91
TABELA 5 -	COORDENADAS ATÔMICAS FRACIONÁRIAS DOS ÁTO-	
	MOS DE HIDROGÊNIO PARA O 5,4'-DIHIDROXI-3',5'-DI-	
	METOXI-6,7-(2",2"-DIMETILPIRANO) FLAVONA	91
TABELA 6 -	PARÂMETROS DE VIBRAÇÃO ANISOTRÓPICA PARA O	
	5,4'-DIHIDROXI-3',5'-DIMETOXI-6,7-(2'',2''-DIMETILPI-	
	RANO) FLAVONA	9 2
TABELA 7 -	DISTÂNCIAS INTRAMOLECULARES (Å) COM OS RESPEC-	
	TIVOS DESVIOS PADRÃO ENTRE PARÊNTESES PARA O	
	5,4'-DIHIDROXI-3',5'-DIMETOXI-6,7-(2'',2''-	
	DIMETILPIRANO) FLAVONA	93
TABELA 8 -	ÂNGULOS INTRAMOLECULARES (°) COM OS DESVIOS	
	PADRÃO ENTRE PARÊNTESES PARA PARA O 5,4'-DIHI-	
	DROXI-3',5'-DIMETOXI-6,7-(2'',2''-DIMETILPIRANO)	
	FLAVONA	93

TABELA 9 -	EQUAÇÕES DOS PLANOS DE MÍNIMOS QUADRADOS E	
	ÂNGULOS DIEDROS PARA O 5,4'-DIHIDROXI-3',5'-DIME-	
	TOXI-6.7-(2",2"-DIMETILPIRANO) FLAVONA	94
TABELA 10 -	DISTÂNCIAS DE LIGAÇÃO DE HIDROGÊNIO (Å) INTRA E	
	INTERMOLECULARES, COM OS RESPECTIVOS DESVIOS	
	PADRÃO ENTRE PARÊNTESES PARA O 5,4'-DIHIDROXI-3'	
	,5'-DIMETOXI-6,7-(2'',2''-DIMETILPIRANO) FLAVONA	9 8
Tabela 11 -	ÂNGULOS DE LIGAÇÃO DE HIDROGÊNIO (⁰) INTRA E IN-	
	TERMOLECULARES, COM OS RESPECTIVOS DESVIOS	
	PADRÃO ENTRE PARÊNTESES PARA O 5,4'-DIHIDROXI-	
	3',5'-DIMETOXI-6,7-(2'',2''-DIMETILPIRANO) FLAVONA	9 9
TABELA A1 -	FATORES DE ESTRUTURA OBSERVADOS E CALCULADOS	
	PARA 0 5,4 -DIHIDROXI-3',5'-DIMETOXI- 6,7 -(2'',2''-DI-	
	METILPIRANO)FLAVONA	102

RESUMO

Neste trabalho apresenta-se inicialmente algumas considerações sobre a difração de raios-X, suas principais leis, fatores de correção dos dados experimentais, uma revisão sobre os principais Métodos Diretos de resolução da estrutura, e considerações sobre o refinamento da estrutura obtida.

A seguir descreve-se a determinação da estrutura cristalina do produto natural 5,4 -Dihidroxi-3',5'-dimetoxi- 6,7 -(2'',2''-dimetilpirano) flavona de fórmula molecular $C_{22}H_{20}O_7$, isolado de plantas da espécie *Neoraputia paraensis*, que cristaliza-se no sistema monoclínico, grupo espacial C2/c, com os seguintes parâmetros de cela unitária: a = 13,651(1), b= 23,428(2),c= 13,725(1) Å; β = 119,528(4)°, V=3819,6(5)Å³, D_c = 1,366g cm⁻³ e Z =8 moléculas por cela unitária.

A estrutura foi resolvida através da aplicação de Métodos Diretos. Os índices de discordância finais são: R= 0,0509, R_w = 0,0530 para 1743 reflexões com I $\ge 3\sigma(I)$.e R_{all} = 0,157.

A estrutura foi refinada fazendo uso dos cálculos de Fourier Diferença e pelo métodos de mínimos quadrados usando matriz completa.

A molécula apresenta duas ligações de hidrogênio intramoleculares, de força média (distâncias O-O 2,558(3) e 2,674(4) Å). O empacotamento cristalino apresenta duas outras ligações de hidrogênio intermoleculares, mais fracas, sendo feitas com as moléculas geradas pelo espelho c (distâncias O-O 2,830(3) e 2,992(3)Å). O efeito destas ligações intermoleculares é o da formação de cadeias ao longo da direção [101].

ABSTRACT

Initially, some considerations about X-ray diffraction, its laws, the factors for the correction of experimental data, a revision of the main Direct Methods for structure resolution, and comments on the refinement of the resulting structure are presented.

Next, the structure determination of the compound 5,4'-dihydroxy-3'-5'dimethoxy-6,7(2'',2'')dimethylpyran)flavone is described

The compound is isolated from plants of the species *Neuroputia paraenesis* and has the molecular formula $C_{22}H_{20}O_7$. It crystallizes in the monoclinic system, space group C2/c,with the following unit cell parameters: a = 13.651(1), b = 23.428(2), c = 13.725(1) Å; $\beta =$ 119.528(4)°, V=3819.6(5) A³, $D_c = 1.366g$ cm⁻³ e Z =8 molecules per unitcell.

The structure was solved applying Direct Methods. The final disagreement indices are: R= 0.0509, $R_w = 0.0530$ for 1743 reflections with I $\ge 3\sigma(I)$ and $R_{all} = 0.157$.

The structure was refined applying Fourier difference calculations and full matrix least squares methods.

The molecule shows two intramolecular hydrogen bonds of medium strength (distances O-O 2.558(3) and 2.674(4)Å). The crystal packing shows also two weaker hydrogen bonds; these are formed between the molecules generated by the c mirror (distances O-O 2.830(3) and 2.992(3)Å). The result of these intermolecular hydrogen bonds is the formation of chains in [101] direction.

INTRODUÇÃO

A classe de compostos denominada flavonóides é um conjunto de substâncias de ocorrência natural, compreendendo vários tipos de compostos.

O termo flavonóide foi aplicado por Geissman e Hinreiner [1952], para abranger todos os compostos, cuja estrutura está baseada sobre a molécula de flavona, que é a mais abundânte desta classe.

A figura 1 mostra a estrutura de uma molécula de flavona.

Figura 1 Representação estrutural de uma molécula de Flavona, com a numeração típica usada nos flavanóides.

Observando-se a figura 1, verifica-se que a molécula consiste de dois anéis benzênicos (A e B) unidos por uma ligação de três carbonos formada em um anel γ-pirona.

Para exemplificar a classe dos flavonóides a figura 2 representa alguns dos membros desta classe:

Figura 2 - Representação estrutural de alguns compostos da classe dos flavonóides. (a) flavanona; (b) isoflavona; (c) flavonol.

As flavonas são abundantemente encontradas em plantas superiores, atuando no crescimento das plantas e sendo também responsáveis pela sua pigmentação, que proporciona uma faixa de tonalidade que abrange do amarelo claro ao laranja, localizado-se principalmente em flores, poléns, e frutos. Embora não sejam sintetizadas pelos animais, as flavonas estão presentes nas asas de algumas borboletas, provenientes de sua dieta alimentar [Morris e Thomson, 1963].

A razão dos diversos componentes desta classe serem coloridos é devida a eles absorverem luz na região do espectro que se localiza entre 400 e 800mµ, e na região do ultravioleta (150 e 400mµ) causando excitação dos elétrons na molécula [Goodwin, 1965].

Uma outra característica da classe dos flavanóides, e em particular das flavonas, é que membros desta classe são associados com uma grande variedade de atividades farmacológicas, atividades estas que dependem da estrutura e orientação dos vários grupos na molécula.

Desta forma as flavonas podem ser usadas no tratamento de doenças. Por exemplo sabe-se que pequenas quantidades da substância podem agir como estimulantes cardíacos, algumas possuem propriedades antibacterianas; outras são agentes antialérgicos; ainda podem ser citadas outras propriedades tais como: febrífugas, calmantes, ictiotóxicas, podendo ainda inibir ou estimular certos sistemas de enzimas [Ikan, 1991].

Um exemplo de uso farmacológico é a substância 3',4',5',8-tetrametoxi- 5hidroxi-7,6-(2'',2'', dimeltilpirano)-flavona, que tem seu uso relatado na literatura na medicina popular possuindo atividades antitérmicas e calmantes entre outras [Arruda e outros, 1993].

Esta dissertação tem por objetivo descrever a determinação e a estrutura final obtida de uma flavona de fórmula molecular $C_{22}H_{20}O_7$, a 5,4 -Dihidroxi-3',5'-dimetoxi- 6,7 - (2'',2''-dimetilpirano)flavona, obtida a partir de plantas da espécie *Neoraputia paraensis*, vulgarmente conhecidas como capança, catanduva, caporé e pau branco.

A substância foi isolada pelo Prof.Dr. Lourivaldo da S. Santos [Santos e outros, 1995] a partir do extrato diclorometânico de folhas e caules através de técnicas cromatográficas, e purificada por cristalização.

Uma vez a estrutura resolvida o estudo posterior será desenvolvido pelo Prof. Lourivaldo da Silva Santos (UFPA), que irá testar as suas atividades antiflamatórias e analgésicas, além de visar a correlação entre a estutura química e atividade farmacológica.

CAPÍTULO I REVISÃO TEÓRICA

1 - INTRODUÇÃO

Neste capítulo apresenta-se uma revisão sobre os fundamentos teóricos da cristalografia de determinação de estruturas cristalinas e moleculares. Partindo inicialmente da natureza dos raios-X, são feitas considerações sobre os tipos de espalhamento destes pela matéria, apresentando-se a seguir as leis que descrevem as condições de difração.

São abordados também tópicos referentes às correções feitas sobre os dados de intensidade observada das reflexões dos planos cristalinos.

A abordagem do problema das fases é feita na sua relação com os métodos diretos de resolução de estrutura.

No refinamento da estrutura dá-se ênfase ao método de mínimos quadrados e síntese de Fourier diferença.

1.1 - ORIGEM DA PRODUÇÃO DE RAIOS-X [CULLITY, 1967]

O estudo de uma estrutura cristalina está baseado no fenômeno de difração dos raios-X, causado pela sua interação com elétrons dos átomos.

No espectro eletromagnético, os raios-X localizam-se entre a luz ultravioleta e a radiação gama, compreendendo uma faixa de comprimento de onda de 0,1 a 100 Å, sendo o intervalo mais útil para os fins analíticos o de 0,50 a 2,5 Å.

Os raios-X são produzidos quando elétrons com alta velocidade colidem com um metal alvo. Basicamente um tubo de produção de raios-X é constituído por uma fonte de origem de elétrons (catodo), um acelerador de alta voltagem, e um metal alvo (anodo). Estes tubos contém dois eletrodos, um ânodo (metal alvo), mantido a um potencial baixo e um cátodo mantido a um potencial negaivo da ordem de 30.000 a 50.000 V.

Quanto a sua natureza, os raios-X, são portanto ondas eletromagnéticas, que possuem associadas um campo elétrico (E) e um campo magnético (H). Isto pode ser representado utilizando-se a figura 3, onde um feixe de raios-X monocromático caminhando na direção do eixo x tem associados, um campo elétrico (E) na direção do eixo y e um campo magnético (H) na direção do eixo z .

Figura 3- Campos elétrico e magnético associados com o movimento da onda de raios-X na direção do eixo x [Cullity, 1967].

Se o campo elétrico é confinado ao plano yx, como as ondas caminham nesta direção, a onda é plano polarizada.

Uma onda plano-polarizada (E) não é constante com o tempo, mas varia de um máximo na direção de +y e atravessa para um outro máximo na direção de -y, e se assumirmos ambas variações como senoidais, podemos expressar a variação na equação

$$E = Asen 2\pi \left(\frac{x}{\lambda} - \nu t\right)$$
(1)

onde: A= amplitude da onda; λ = comprimento de onda; ν = frequência; x = espaço percorrido e t = tempo. Radiações eletromagnéticas, como por exemplo um feixe de raios-X, carregam energia, e a razão do fluxo desta energia através de unidade de área perpendicular a direção do movimento é chamado de Intensidade (I).

1.2 - INTERAÇÃO DOS RAIOS-X COM A MATÉRIA

1.2.1 - ESPALHAMENTO POR UM ELÉTRON [CULLITY, 1967]

Quando feixes de raios-X interagem com a matéria ocorrem dois processos de espalhamento: o Coerente ou Thomson e o espalhamento Incoerente ou Compton.

O espalhamento Coerente, ocorre quando a radiação-X atinge o elétron livre e o raio espalhado por este elétron possui a mesma frequência e comprimento de onda do raio incidente, apenas diferenciando na fase por 180°, portanto todos os raios espalhados por um único elétron tem a mesma relação de fase do feixe incidente.

Uma vez que os raios-X são espalhados em todas a direções pelo único elétron a intensidade dos raios espalhados dependerão do ângulo de espalhamento. Esta teoria eletromagnética desenvolvida por J.J Thomson mostra que:

$$I = I_0 \frac{e^4}{r^2 m^2 c^4} \left(\frac{1 + \cos^2 2\theta}{2} \right)$$
(2)

onde: θ é o ângulo de espalhamento;

I₀ é a intensidade do feixe incidente;

c é a velocidade da luz, m é a massa do elétron;

r é a distância total do espalhamento;

e é carga do elétron ;

 $(1+\cos^2 2\theta) =$ fator de polarização dos raios-X espalhados.

A outra maneira em que o elétron pode espalhar os raios-X, é manifestada no efeito Compton ou espalhamento incoerente, que ocorre na colisão de um fóton com um elétron livre, tendo o fóton energia hv_1 , Neste caso de colisão. a colisão é elástica sendo essencialmente um efeito semelhante ao choque de duas bolas de bilhar (figura 4). O elétron é colidido pelo fóton e este é desviado de um ângulo de 2 θ , com uma energia hv_2 , e alguma parte da energia inicial do fóton é transferido na forma de energia cinética para o elétron.

Figura 4 - Colisão elástica entre fóton e elétron (Demonstração do Efeito Compton)

O comprimento de onda (λ_2) da radiação espalhada é então ligeiramente maior que o comprimento de onda (λ_1) do raio incidente e a magnitude da variação é dada pela expressão:

$$\Delta\lambda(\text{\AA}) = \lambda_2 - \lambda_1 = 0,0243 (1 - \cos 2\theta)$$
(3)

O aumento no comprimento de onda depende somente do ângulo de espalhamento e varia de zero na direção $(2\theta = 0^\circ)$ a 0,05 Å na direção extrema $(2\theta = 180^\circ)$.

Então, a característica principal na radiação Compton é que sua fase não tem relação fixada com a fase do raio incidente, sendo por essa razão também conhecida como radiação incoerente. Este tipo de espalhamento é ignorado em experimentos de difração, causando apenas um efeito indesejável de escurecimento do fundo [Cullity, 1967].

1.2.2 - ESPALHAMENTO POR UM ÁTOMO

Quando um feixe de raios-X encontra um átomo, cada elétron espalha a radiação coerente ou Thomson de acordo com a equação 2 [Cullity, 1967].

Os núcleos deveriam tomar parte no espalhamento uma vez que possuem cargas e deveriam ser capazes de oscilar sob a influência de um feixe de raios-X incidente, mas isto não ocorre devido a sua enorme massa em relação ao elétron, portanto não pode oscilar numa apreciável extensão. A massa do próton é cerca de 2000 vezes a massa do elétron, e por esta razão o próton é muito pesado para ser um emissor secundário, uma vez que a equação 2 tem dependência do inverso do quadrado da massa da partícula espalhadora.

Pode-se concluir que as ondas espalhadas por um átomo são simplesmente a soma das ondas espalhadas pelos seus elétrons constituintes, notando que os elétrons de um átomo estão situados em diferentes pontos no espaço, e que isto introduz diferenças nas fases, entre as ondas espalhadas por diferentes elétrons, assim por exemplo, se o espalhamento está ocorrendo na direção de $2\theta = 0$, as ondas espalhadas por todos os elétrons estarão em fase e as amplitudes de todas as ondas espalhadas podem ser somadas diretamente.

Define-se assim, uma quantidade chamada de fator de espalhamento (f_0) , que descreve a eficiência de espalhamento de um átomo qualquer, em uma dada direção, segundo a equação:

$\mathbf{f}_{o} = \frac{\mathbf{Amplitude \ da \ onda \ espalhada \ por \ um \ atomo}}{\mathbf{Amplitude \ da \ onda \ espalhada \ por \ um \ eletron}}$ (4)

onde, f_0 é expresso em termos de poder de espalhamento de um número equivalente de elétrons localizados na posição do núcleo atômico.

Assumindo os átomos como esféricos, devido à parcial interferência que ocorre entre os espalhamentos pelos diferentes elétrons, o poder de espalhamento dos átomos é função do tipo de átomo, e de sen θ/λ , ou seja, do ângulo de incidência do feixe e do comprimento de onda, não dependendo portanto da sua posição na cela unitária do cristal.

A curva de variação do fator de espalhamento [Stout e Jensen, 1989], por exemplo para o átomo de Carbono, em função de $(sen\theta/\lambda)$ está representada na figura 5.

Figura 5- Curva do fator de espalhamento para o átomo de carbono.

Observando que em sen $\theta = 0$, o fator de espalhamento atômico para o carbono é igual a 6, correspondendo ao seu número atômico, a medida em que se aumenta o valor de sen θ/λ o valor de f_o decai, devido aos raios-X espalhados em uma parte do átomo estarem fora de fase com aqueles espalhados em outra parte da nuvem eletrônica, portanto a variação do fator de espalhamento é uma consequência do tamanho finito do átomo.

1.2.3- ESPALHAMENTO POR UMA CELA UNITÁRIA

De acordo com as diferentes eficiências com que os diversos átomos presentes em uma cela unitária difratam os raios-X, segundo o espalhamento coerente, as ondas difratadas tem diferentes intensidade ou seja diferentes amplitudes.

Seja a representação de uma cela unitária representada na figura 6:

Figura 6 - Representação tridimensional de uma cela unitária genérica [Cullity,1967].

Estas duas ondas incidentes, representadas pelos números 1 e 2, podem diferir em fase e amplitude, se o átomo B e o átomo na origem forem de espécie diferentes, então pode-se representar estas duas ondas em uma forma vetorial como ilustrado na figura 7a.

Figura 7 - Adição de ondas: a) tratamento vetorial; b) tratamento analítico; c)ondas senoidais.

Na figura 7a, A_1 é a amplitude da onda $1,\phi_1$ a sua fase, $A_2 e \phi_2$ amplitude e fase da onda 2 e $A_3 e \phi_3$ são a amplitude e a fase resultantes, encontradas pela adição de vetores.

Utilizando-se um tratamento analítico, no qual números complexos são utilizados para representar os vetores, podemos construir a figura 7b. A figura 7c é uma representação convencional da adição de ondas senoidais.

A partir da figura 7 pode-se construir uma expressão analítica para onda na forma de número complexo, Ae^{ix} , com A representando o comprimento do vetor onda (amplitide) e $\phi = ix = a$ fase da onda.

Exprimindo em séries de e^{ix}, cos x e sen x temos

$$e^{ix} = \cos x + i \sin x \tag{5}$$

$$Ae^{i\phi} = A\cos\phi + A\,i\,\sin\phi \tag{6}$$

Como a intensidade de uma onda é proporcional ao quadrado de sua amplitude necessita-se encontrar uma expressão para A^2 (o quadrado do valor absoluto do vetor onda); desta forma multiplicando-se a expressão 6 pelo complexo conjugado tem-se:

$$|Ae^{i\emptyset}|^2 = Ae^{i\phi} Ae^{-i\phi} = A^2$$
(7)

Como a amplitude de cada onda é dada pela soma do valor apropriado de f_o , o espalhamento atômico, em função dos valores de sen θ/λ envolvidos na reflexão, a fase de cada átomo sera dada por:

$$\phi = 2\pi \left(hx + ky + lz \right) \tag{8}$$

onde h, k ,l são os indices de Miller dos planos de reflexão considerados, e x, y ,z são as coordenadas atômicas.

Expressando a onda espalhada por cada átomo, em forma exponencial complexa, tem-se:

11

$$Ae^{i\phi} = f e^{2\pi i (hx + ky + lz)}$$
⁽⁹⁾

A onda resultante, espalhada por todos os átomos na cela unitária é denominada Fator de Estrutura, designado pelo símbolo F; este valor é obtido pela soma de todas as ondas espalhadas por átomos individuais [Stout e Jensen, 1989], a equação 9 passa a ter a forma:

$$F_{jkl} = \sum_{1}^{N} f_{j} e^{2\pi i (kx + ky + lz)}$$
(10)

A expressão 10 representa o fator de estrutura, de modo a fornecer acesso direto às três coordenadas no espaço direto (xyz), e aos três índices no espaço recíproco(hkl), Pode-se então representar a equação 10 em uma outra notação, indicando os três índices do vetor no espaço recíproco por **h**, e as três coordenadas no espaço direto pelo vetor **r**, e definindo o produto escalar destes dois vetores obtem-se:

$$\mathbf{h}.\mathbf{r} = \mathbf{h}\mathbf{x} + \mathbf{k}\mathbf{y} + \mathbf{l}\mathbf{z} \tag{11}$$

Então a expressão 10 pode ser reescrita como:

$$\mathbf{F}_{\mathbf{h}} = \Sigma \ \mathbf{f}_{\mathbf{j}} \ \mathbf{e}^{2\pi \mathbf{i} \ (\mathbf{h} \cdot \mathbf{r})} \tag{12}$$

ou ainda:

$$\mathbf{F}_{\mathbf{h}} = \Sigma \mathbf{f}_{\mathbf{j}} \left[\cos 2\pi \left(\mathbf{h} \cdot \mathbf{r} \right) + \mathbf{i} \operatorname{sen} 2\pi \left(\mathbf{h} \cdot \mathbf{r} \right) \right]$$
(13)

1.3 - A REDE RECÍPROCA

Redes recíprocas são redes triperiódicas, derivadas da rede no espaço direto.

Assumindo uma rede no espaço direto e uma cela unitária definida pelos vetores a_1 , a_2 , a_3 , a rede recíproca terá uma cela unitária definida pelos vetores b_1 , b_2 , b_3 com:

$$\mathbf{b}_1 = 1/\mathbf{V} \quad (\mathbf{a}_2 \times \mathbf{a}_3) \tag{14}$$

$$\mathbf{b}_2 = 1/\mathbf{V} \quad (\mathbf{a}_1 \times \mathbf{a}_3) \tag{15}$$

$$\mathbf{b}_3 = 1/\mathbf{V} \quad (\mathbf{a}_1 \times \mathbf{a}_2) \tag{16}$$

onde, V é o volume da cela unitária [Cullity, 1967].

Os pontos constituintes da rede recíproca descrevem completamente o cristal, de tal forma, que cada ponto da rede recíproca está relacionado com um conjunto de planos na rede direta e mostra a orientação e o espaçamento daquele conjunto de planos, como mostrado na figura 8.

Quanto as propriedades da rede recíproca verifica-se que:

a- o vetor \mathbf{H}_{hkl} , partindo da origem da rede recíproca para algum ponto na mesma, com as coordenadas hkl, é perpendicular ao plano da rede cristalina com índices de Miller hkl; este vetor é dado em têrmos de suas coordenadas pela expressão:

$$\mathbf{H}_{\mathbf{h}\mathbf{k}\prime} = \mathbf{h} \, \mathbf{b}_1 + \mathbf{k} \, \mathbf{b}_2 + l \, \mathbf{b}_3 \tag{17}$$

b- O comprimento do vetor \mathbf{H}_{hkl} é igual ao recíproco do espaçamento dos planos(hkl) ou:

$$|\mathbf{H}_{\mathbf{h}\mathbf{k}\mathbf{l}}| = 1/\mathbf{d}_{\mathbf{h}\mathbf{k}\mathbf{l}} \tag{18}$$

onde d_{hkl} é o espaçamento interplanar entre os planos vizinhos da família (hkl).

Figura 8 - Espaço Recíproco. a) representação dos eixos. b) relação entre o vetor H e o plano hk*l*.

1.4 - A LEI DE BRAGG

Em 1912 W. L. Bragg deduziu uma expressão simples para tratar o fenômeno de difração originado pelos planos da rede cristalina [Stout e Jensen, 1989].

Na figura 9 está representada uma família de planos P_1 e P_2 com espaçamento interplanar (d_{hkl}), e com orientação, relativa ao feixe de raios-X incidente, expressa pelo ângulo de incidência θ .

Figura 9 - Construção apresentando as condições de difração.

Na figura 9, 1 e 2 representam os feixes de raios-X incidentes, 1'e 2', correspondem aos feixes difratados, O e C são as posições dos elétrons no plano, e θ é o ângulo que os raios 1 e 2 fazem com os planos P₁e P₂.

Pela figura 9 verifica-se que:

$$\angle AOC = \angle BOC = \theta$$
 (19)

então se :

$$AC = BC \tag{20}$$

e

$$AC + CB (=2AC) \tag{21}$$

ou seja um número inteiro de comprimento de onda (λ), resultando em interferências construtivas (máximos de difração).

Pode-se então expressar a lei da difração da seguinte forma:

$$2AC = n\lambda \tag{22}$$

onde n é um número inteiro.e representa a ordem de difração. Entretanto como, por definição, AC/d = sen θ , substituindo na expressão 22, obtem-se finalmente:

$$n\lambda = 2d_{hk'} \operatorname{sen}\theta \tag{23}$$

A equação 23 chamada de Lei de Bragg mostra que a difração ocorre somente a ângulos especiais, e descreve a condição para a difração dos vários raios incidentes, fazendo um ângulo θ com planos fixados do cristal. No caso da reflexão (difração) ocorrer, para esses planos, geram-se os raios refletidos com desvio de 2 θ , em relação aos raios incidentes, somente quando θ e λ são compatíveis com a distância interplanar (d_{hk}), aí então existe reforço das ondas refletidas.

1.5 - AS EQUAÇÕES DE LAUE

As equações de Laue exprimem a condição necessária para que as ondas refletidas, por diferentes átomos presentes no cristal, estejam em fase e originem um máximo de interferência construtiva [Borges, 1980].

As equações de Laue podem ser obtidas a partir da figura 10.

Para que a interferência dos raios difratados resulte em um máximo de difração, a diferença de percurso destes deve ser igual a um número inteiro (H_1) de comprimento de onda, desta forma tem-se:

$$A_1 C - A_2 B = H_1 \lambda$$
⁽²⁴⁾

Figura 10- Diferença de percurso entre os raios incidentes e difratados

Da geometria da figura 10 verifica-se que:

$$A_1 C = a_1 \cos \varepsilon_1 \tag{25}$$

$$A_2 B = \mathbf{a}_1 \cos \delta_1 \tag{26}$$

Substituindo as equações 25 e 26 na expressão 24 obtem-se:

$$\mathbf{a}_{1}\left(\cos\varepsilon_{1}-\cos\delta_{1}\right)=\mathbf{H}_{1}\,\lambda\tag{27}$$

Expressando vetorialmente as equações 25 e 26:

$$\mathbf{A}_1 \mathbf{C} = \mathbf{a}_1 \mathbf{k}^{\prime} \tag{28}$$

$$\mathbf{A}_2 \quad \mathbf{B} = \mathbf{a}_1 \cdot \mathbf{k} \tag{29}$$

onde, \mathbf{a}_1 é o vetor reticular definindo a fila; $\mathbf{k} \in \mathbf{k}$ ' são vetores unitários na direção dos raios incidentes e difratados, e substituindo as expressões 28 e 29 em 27 tem-se finalmente:

$$\mathbf{a}_{1} \cdot (\mathbf{k}^{\prime} - \mathbf{k}) = \mathbf{H}_{1} \lambda \tag{30}$$

que descreve a difração para uma estrutura unidimensional.

Considerando agora o caso real, para uma estrutura cristalina possuindo caráter triperiódico, a condição de difração dos raios-X monocromáticos, é que o fenômeno de difração ocorrerá somente nas direções que satisfaçam o sistema de três equações:

$$\mathbf{a}_{1}\left(\cos\varepsilon_{1}-\cos\delta_{1}\right)=\mathbf{H}_{1}\,\lambda\tag{31}$$

$$\mathbf{a}_2 \left(\cos \varepsilon_2 - \cos \delta_2 \right) = \mathbf{H}_2 \lambda \tag{32}$$

$$\mathbf{a}_3 \left(\cos \varepsilon_3 - \cos \delta_3\right) = \mathbf{H}_3 \lambda \tag{33}$$

Expressando-se vetorialmente as equações de 31 a 33 obtem-se:

$$\mathbf{a}_{i} (\mathbf{k}^{\prime} - \mathbf{k}) = \mathbf{H}_{i} \lambda \tag{34}$$

onde i = 1, 2, 3 (espaço tridimensional)

Definindo-se a direção de propagação da onda [Vainshtein, 1981] pelo vetor k cujo módulo é dado por:

$$|\mathbf{k}| = 2\pi/\lambda \tag{35}$$

e, utilizando a equação 34, pode-se escrever as equações de Laue de uma outra forma:

$$\mathbf{a}_1 (\mathbf{k}^* - \mathbf{k}) = 2\pi \mathbf{h}$$
 ou $\mathbf{a}_1 \mathbf{S} = \mathbf{h}$ (36)

$$a_2 (k' - k) = 2\pi k$$
 ou $a_2 S = k$ (37)

$$\mathbf{a}_3 \ (\mathbf{k}' - \mathbf{k}) = 2\pi l \qquad \text{ou} \qquad \mathbf{a}_3 \mathbf{S} = l \tag{38}$$

chegando-se então à descrição da difração por um cristal, com a direção dos raios espalhados definida por:

$$\mathbf{S} = \mathbf{H}_{\mathbf{h}\mathbf{k}\mathbf{l}} = \mathbf{h} \, \mathbf{a}^* + \mathbf{k} \, \mathbf{b}^* + \mathbf{l} \, \mathbf{c}^* \tag{39}$$

1.5.1- EQUIVALÊNCIA DAS EQUAÇÕES DE LAUE E A LEI DE BRAGG

As equações de Laue e a da lei de Bragg fornecem, sob diferentes pontos de vista, as condições necessárias para ocorrência de máximos de difração, ou seja, a condição de difração de raios- X por um cristal pode ser expressa pela equação de Bragg ou em têrmos das equações de Laue [Borges, 1980].

Como descrito anteriormente, as equações de Laue são expressas pela equação 34 que de forma simplificada pode ser escrita como:

$$(\mathbf{k}' - \mathbf{k}) = \lambda \mathbf{g} \tag{40}$$

onde g é o vetor da rede recíproca; passando a ter a forma:

$$\mathbf{a}_{i} \cdot \mathbf{g} = \mathbf{H}_{i} \quad (i = 1, 2, 3)$$
 (41)

Escolhendo-se para referencial cristalográfico os três eixos definidos pelos vetores \mathbf{a}_i e exprimindo o vetor \mathbf{g} em termos de rede recíproca com constante k = 1, obtem-se:

$$\mathbf{g} = \mathbf{g}_1 \ \mathbf{a_1}^* + \mathbf{g}_2 \ \mathbf{a_2}^* + \mathbf{g}_3 \ \mathbf{a_3}^* \tag{42}$$

$$\mathbf{g} = \mathbf{g}_{\mathbf{i}} \, \mathbf{a}_{\mathbf{i}}^{T} \tag{43}$$

sendo :

$$\mathbf{a}_{1}^{\star} = \frac{\mathbf{a}_{2} \times \mathbf{a}_{3}}{\mathbf{a}_{1} \cdot \mathbf{a}_{2} \times \mathbf{a}_{3}} , \dots \text{ etc.}.$$
(44)

Usando esta expressão e inserindo-a na expressão 41 tem-se:

$$\mathbf{a}_{\mathbf{i}} \cdot \mathbf{g} = \mathbf{a}_{\mathbf{i}} \left(\mathbf{g}_{\mathbf{i}} \cdot \mathbf{a}_{\mathbf{i}}^{*} \right) \tag{45}$$

como:

$$\mathbf{a}_{i} \cdot \mathbf{a}_{i}^{\star} = \mathbf{a}_{i} \frac{\mathbf{a}_{j} \times \mathbf{a}_{k}}{\mathbf{a}_{i} \cdot \mathbf{a}_{j} \times \mathbf{a}_{k}} = \frac{\mathbf{V}}{\mathbf{V}} = \mathbf{1}$$
(46)

e,

$$\mathbf{a}_{j} \cdot \mathbf{a}_{j}^{\star} = \mathbf{a}_{i} \frac{\mathbf{a}_{k} \times \mathbf{a}_{i}}{\mathbf{a}_{i} \cdot \mathbf{a}_{j} \times \mathbf{a}_{k}} = \frac{\mathbf{0}}{\mathbf{V}} = \mathbf{0} \quad ; \quad \text{etc...}$$
(47)

resulta

$$\mathbf{a}_{\mathbf{i}} \cdot \mathbf{g} = \mathbf{g}_{\mathbf{i}} \tag{48}$$

Substituindo 48 em 44:

$$\mathbf{g}_{\mathbf{i}} = \mathbf{H}_{\mathbf{i}} \tag{49}$$

Como o vetor g é descrito pela equação 43 obtem-se:

$$\mathbf{g} = \mathbf{H}_1 \cdot \mathbf{a_1}^* + \mathbf{H}_2 \cdot \mathbf{a_2}^* + \mathbf{H}_3 \cdot \mathbf{a_3}^*$$
(50)

e pode-se concluir que o vetor \mathbf{g} é um vetor normal aos planos reticulares (hk*l*), possuindo uma amplitude igual ao recíproco da distância reticular dos planos (d_{hkl}^*).

Tendo-se em conta que o vetor λg , por ser igual a (k' - k), então existe no plano os vetores k e k', pode-se verificar algumas das propriedades:

a- Os três vetores \mathbf{k} , \mathbf{k}' (direções do raio incidente, difratado) e \mathbf{g} (direção da normal aos planos difratores (hk*l*)) são coplanares.

b- Dado que $|\mathbf{k}| = |\mathbf{k}'|$, o vetor **g** bissecta o ângulo definido pelos dois vetores como na figura 11, isto é, $\theta = \theta'$ ($e \phi = \phi'$).

Figura 11- Difração dos raios-X pelos planos cristalinos

A difração hkl pode ser descrita em termos de uma reflexão nos planos reticulares (hkl).

A partir da equação 40 e da figura 9 pode-se verificar que:

$$|\mathbf{k}^{\prime} - \mathbf{k}| = 2 \operatorname{sen} \boldsymbol{\theta}$$
(51)

e

$$|\mathbf{g}| = 1/\mathbf{d}_{\mathbf{h}\mathbf{k}/} \tag{52}$$

obtendo-se, $\lambda = 2d_{hkl}sen\theta$, ou de outra forma:

$$\theta = \operatorname{sen}^{-1} \left(\frac{\lambda}{2d_{hk}} \right)$$
(53)

A expressão acima evidencia que só ocorrerá reflexão de raios-X para os valores de ângulo de incidência igual a θ , ou seja no ângulo de Bragg.

1.6 - ESFERA DE EWALD

Como foi visto anteriormente, a condição de difração dos planos de um cristal deve obedecer tanto a lei de Bragg, como as equações de Laue, a partir disto, Ewald em 1921, abrangeu estas duas leis em uma construção geométrica (chamada de esfera de reflexão ou de Ewald) [Azároff, 1968], representada na figura 12.

Pela figura 12 vê-se que a esfera é desenhada centrada no cristal (c) e com raio igual a $1/\lambda$. A origem da rede recíproca é colocada em um ponto O onde o feixe de raios-X, na direção de AC, encontra a esfera. Assim o fenômeno de difração ocorrerá somente quando pontos da rede recíproca toquem a superfície da esfera de Ewald, e se B representa um ponto da rede recíproca, o vetor OB é um vetor do tipo dado pela equação 39.

Figura 12 - A Esfera de Ewald ou Esfera de Reflexão

Desta forma para que o plano hkl sofra a difração, o cristal é girado, de modo que os pontos da rede recíproca cortem a esfera de reflexão.

1.7 - REDUÇÃO DE DADOS

Em experimentos de difração de raios-X, visando a resolução de estruturas, obtem-se informações a respeito das intensidades (I) das ondas difratadas, que são proporcionais ao quadrado das suas amplitudes, também conhecidas como módulos dos Fatores de Estrutura ($|F_{hk/}|$ ou $|F_{obs}|$).

No cálculo dos módulos dos fatores de estrutura devem ser considerados alguns fatores que afetam as intensidades, fatores estes, inerentes ao processo experimental [Stout e Jensen, 1989].

Os fatores de estrutura estão relacionados com as intensidades de acordo com a relação:

$$|F_{hk/}| = |F_{obs}| \propto \sqrt{I}$$

ou de foma explícita:

$$\left|F_{obs}\right| = \sqrt{\frac{I_{obs}}{A.Lp}}$$
(54)

onde, L é o Fator de Lorentz, p é o fator de polarização e I_{obs} é a intensidade medida, e A representa o fator de absorção.

Para o caso da medida ser feita no difratômetro automático CAD-4 ENRAF-NONIUS, a intensidade observada é dada por [Enraf-Nonius, 1990]:

$$I_{obs} = \frac{ATN}{NPI} (C - R * B)$$
(55)

onde:

ATN = fator de atenuação

NPI = fator que incorpora a velocidade de varredura

C = contagem total

R = razão do tempo de varredura do background (radiação de fundo) em relação à contagem total (R= 2 para a varredura convencional do CAD-4)

B = contagem total do Background

A expressão normalmente aceita para o desvio padrão das intensidades após a correção pelos fator de Lorentz e polarização é dada por:

$$\sigma(F_{obs}) = \frac{BASE * ATN * \sqrt{(C + R^2 * B)}}{NPI * Lp}$$
(56)

onde:

BASE = $16,49^{\circ}/\text{min}$ no modo ω .
1.7.1 - FATORES QUE AFETAM AS INTENSIDADES

1.7.1.1 - FATOR DE POLARIZAÇÃO

O termo trigonométrico fator de polarização (p), aparece em experimentos de difração de raios-X, devido a natureza dos raios-X provenientes da fonte não serem polarizados, enquanto que os raios difratados pelo cristal tornam-se polarizados. Isto faz com que as intensidades espalhadas sejam reduzidas por um fator p que corrige o efeito do feixe difratado ser polarizado [Stout e Jensen, 1989].

O fator de polarização independe do método experimental, dependendo apenas do ângulo θ de Bragg, exceto quando o método usa monocromador. Na coleta de dados, utilizando-se o difratômetro CAD-4 da Enraf-Nonius, que possui cristal monocromador, o fator de polarização é dado por [Enraf-Nonius, 1990]:

$$\mathbf{p} = \left[(\text{Perf}) \frac{\cos^2 \theta_{\rm m} + \cos^2 2\theta}{1 + \cos^2 2\theta_{\rm m}} + (1 - \text{Perf}) \frac{\cos 2\theta_{\rm m} + \cos^2 2\theta}{1 + \cos 2\theta_{\rm m}} \right]$$
(57)

onde, Perf é uma constante que depende da mosaicidade do cristal monocromador (para o difratômetro CAD4 assume-se Perf com valor 0,5); θ_m é o ângulo de Bragg do cristal monocromador (12.2° para radiação de Mo); e θ é o ângulo de Bragg.

1.7.2 - FATOR DE LORENTZ

O fator de Lorentz [Stout e Jensen, 1989] surge nos cálculos de redução de dados, devido aos pontos no espaço recíproco atravessarem a esfera de reflexões de Ewald com velocidades diferentes. Este fator depende da técnica experimental utilizada na coleta dos dados de intensidade, e no caso do difratômetro CAD-4, o fator de Lorentz é dado por:

$$L = \frac{1}{\operatorname{sen}2\theta} \cdot \frac{1}{\cos\theta} = \frac{1}{\operatorname{sen}2\theta}$$
(58)

1.7.1.3 - FATOR DE ABSORÇÃO

O fator de absorção está relacionado com o fato que quando os raios-X atravessam um material ocorre uma progressiva diminuição da sua intensidade [Azároff, 1968].

A relação entre os raios-X incidentes e os raios-X refletidos são obtidos a partir da figura 13.

Figura 13 - Relação entre os raios-X incidentes e os raios-X refletidos em um elemento de volume dx.

Observando-se a figura 13 verifica-se que o elemento de volume do material será dado por: $dv = 1 \times 1 \times dx$ (cm³). Se a densidade do material é ρ , então a fatia dx,

SERVIÇO DE BIBLIOTECA E INFORMAÇÃO IQSC / USP contém npdv elétrons, e a perda da radiação total espalhada (dP) em todas as direções desta fatia de volume dv é dada por:

$$dP = I \sigma_e n\rho dv \tag{59}$$

O decrescimo nas intensidades dos raios espalhados pela fatia dx é então:

$$dI = -I\sigma_e n\rho \, dx \tag{60}$$

Integrando a equação 60,

$$\int dI/I = -\int \sigma_e n\rho dx \tag{61}$$

obtem-se:

$$\ln I = -\sigma_{en} \rho x + \text{constante}$$
(62)

Considerando a face da superfície, onde x=0, a intensidade dos raios incidentes é l_0 , então a expressão 62 torna-se:

$$\ln I_0 = 0 + \text{constante}$$
(63)

Substituindo a expressão 63 em 62 obtem-se:

$$I = I_0 \cdot e^{-\sigma \rho x}$$
(64)

mas, a capacidade de um material absorver raios-X é expressa pelo coeficiente de absorção de massa (μ_m) que é definido como:

 $\mu_{\rm m} = \mu/\rho \tag{65}$

Portanto a expressão 64 torna-se :

$$I = I_0 \cdot e^{-\mu x}$$
(66)

Já no caso de um composto, a absorção dependerá essencialmente dos elementos presentes e das proporções em que se encontram, então o coeficiente de absorção de massa de um composto pode ser calculado pela expressão 67

$$\mu = d \Sigma P(\mu/\rho) \tag{67}$$

onde d é a densidade do composto e P é a porcentagem dos elementos presentes.

1.8 - FATOR DE TEMPERATURA E SUA RELAÇÃO COM A INTENSIDADE

Em todo o tratamento de espalhamento feito nas seções anteriores, os átomos foram considerados como pontuais e fixados na rede, sem nenhum movimento vibratório térmico.

O efeito de vibração térmica também afeta as intensidades dos raios-X difratados porque os átomos, em um cristal, estão sempre vibrando sobre as suas posições e, portanto a magnitude de vibração, depende da temperatura, da massa do átomo, e das forças intermoleculares [Willis e Pryor, 1975]. Desta forma átomos ligados em cadeias, anéis, ou o tipo de átomos que estão ligados, afetam consideravelmente o efeito de vibração.

O efeito de vibração, é o de espalhar a nuvem eletrônica sobre um volume e assim causar uma diminuição do poder de espalhamento do átomo real Então a variação no poder de espalhamento é dada por:

$$e^{-B(\frac{\operatorname{sen}^2\theta}{\lambda^2})}$$
(68)

onde, B é o fator de temperatura atômico dado por $B = 8\pi^2 u^2$, sendo u é o deslocamento atômico médio.

Necessita-se agora encontrar uma expressão para o fator de espalhamento atômico para o átomo real, ou seja, o fator de espalhamento atômico pode ser escrito como [Stout e Jensen, 1989]:

$$\mathbf{f} = \mathbf{f}_{o} \mathbf{e}^{-\mathbf{B}(\frac{\mathbf{sen}^{2}\theta}{\lambda^{2}})}$$
(69)

Como a intensidade média observada (ou medida) (I_{rel}) corrigida pelo efeito Lp é dada por:

$$I_{rel} = \langle F_{rel} |^2 \rangle_{média}$$
(70)

e considerando uma cela unitária que contém N átomos, a intensidade média absoluta será dada por:

$$I_{abs} = \sum_{i=1}^{N} f_i^2$$
(71)

ou ainda,

$$I_{abs} = \sum_{i=1}^{N} f_{oi}^{2} e^{-2B(\frac{\sin^{2}\theta}{\lambda^{2}})}$$
(72)

Desde que a somatória é feita apenas sobre os fatores de espalhamento, tem-se:

$$I_{abs} = e^{-2B(\frac{sen^2\theta}{\lambda^2})} \sum_{i=1}^{N} f_{oi}^2$$
(73)

Como a intensidade média real (ou absoluta) (I_{abs}) é proporcional a intensidade média relativa pode-se escrever:

$$I_{\rm rel} = C I_{\rm abs} \tag{74}$$

ou,

$$I_{\rm rel} = C e^{-2B(\frac{\sin^2\theta}{\lambda^2})} \sum_{i=1}^{N} f_{\rm oi}^2$$
(75)

onde C representa o fator de escala entre a intensidade medida, dependente do método e aparelho de medida, e a intensidade real (proporcional aos elétrons espalhadores) [Stout e Jensen, 1989].

Reescrevendo-se a equação 75,

$$\frac{I_{rel}}{\sum_{i=1}^{N} f_{oi}^2} = C e^{-2B(\frac{sen^2\theta}{\lambda^2})}$$
(76)

e finalmente aplicando logaritmo natural obtem-se:

$$\ln\left(\frac{l_{rel}}{\sum_{i=1}^{N} f_{oi}^{2}}\right) = \ln C - 2B \frac{\operatorname{sen}^{2} \theta}{\lambda^{2}}$$
(77)

A equação 77 representa a equação de uma reta, e graficando-se: ln ($I_{rel}/\Sigma f_{oi}^2$) contra (sen² θ/λ^2), obtêm-se uma reta onde o coeficiente angular é -2B e o coeficiente linear é ln C. O gráfico assim obtido é conhecido como Gráfico de Wilson e está representado na figura 14.

Figura 14 - Gráfico de Wilson para a determinação dos fatores de escala e temperatura isotrópico médio.

1.9- DENSIDADE ELETRÔNICA E FATOR DE ESTRUTURA

Como abordado anteriormente, a onda resultante espalhada por uma cela unitária foi definida como o fator de estrutura (F_{hkl}). O fator de estrutura, pode então ser considerado como a soma de pequenas ondas, espalhadas por todos os elementos infinitesimais da densidade eletrônica (ρ (xyz)) de uma cela unitária[Stout e Jensen, 1989].

Como a densidade eletrônica $\rho(xyz)$ é definida como sendo o número de elétrons por unidade de volume, então o número de elétrons em algum elemento de volume dv será dado por:

$$\rho(\mathbf{x},\mathbf{y},\mathbf{z}) \, \mathrm{d}\mathbf{v} = \rho(\mathbf{r}) \mathrm{d}\mathbf{v} \tag{78}$$

ou na forma exponencial,

$$\rho(\mathbf{x}, \mathbf{y}, \mathbf{z}) e^{-2\pi i (h\mathbf{x} + k\mathbf{y} + l\mathbf{z})} d\mathbf{v} = \rho(\mathbf{r}) e^{-2\pi i (h.r)} d\mathbf{v}$$
(79)

Então, a partir das densidades eletrônicas, a soma das pequenas ondas espalhadas por uma cela unitária é dada pela integral sobre o volume:

$$F_{hkl} = \int \rho(x,y,z) e^{-2\pi i (hx+ky+lz)} dv = \int \rho(r) e^{-2\pi i (h,r)} dv$$
(80)

Através da expressão 80, conhecendo-se a densidade eletrônica no espaço recíproco pode-se calcular os F_{hkl} no espaço direto, a operação inversa será discutida logo a seguir.

1.9.1 - SÉRIES DE FOURIER

Como os cristais são estruturas de natureza periódica, ou seja, os átomos estão arranjados no espaço em uma forma periódica, a densidade eletrônica é também uma função periódica da posição destes átomos, e desta forma, analisa-se a densidade eletrônica por funções periódicas denominadas séries de Fourier [Azároff, 1968].

Como um exemplo de obtenção de uma série de Fourier, pode-se considerar o gráfico da figura 15.

Figura 15. Densidade eletrônica unidimensional simétrica.

Impondo que cada pico no gráfico da figura 15, representa a densidade eletrônica ρ_a , de um átomo em um cristal unidimensional, então o pico de máxima altura, representa a distribuição da densidade eletrônica $\rho(X)$ no referido cristal, de período translacional **a**.

Expressando esta densidade eletrônica por uma série de Fourier, em termos de cossenos, pelo fato da simetria ser apropriada tem-se:

$$\rho(X) = \sum_{n=-\infty}^{+\infty} A_n \cos 2\pi n \frac{X}{a}$$
(81)

onde n é uma variável inteira podendo ser positiva, negativa ou nula; X é a distância medida ao longo do eixo a.

Os coeficientes podem ser determinados analiticamente, uma vez que a função $\rho(X)$ é conhecida, pelo uso da ortogonalidade da série de Fourier. A multiplicação da equação 81 por cos $(2\pi m X/a)dX$ e posterior integração, sobre o período de translação **a**, resulta em:

$$\int_{-\frac{a}{2}}^{+\frac{a}{2}} \rho(X) \cos 2\pi m \frac{X}{a} dX = \sum_{n} A_{n} \int_{-\frac{a}{2}}^{+\frac{a}{2}} \cos 2\pi n \frac{X}{a} \cos 2\pi m \frac{X}{a} dX$$
(82)

A integração direta do lado direito da equação torna-se possível após a expansão,

$$=\frac{1}{2}\left\{\left[\sec 2\pi (n+m)\frac{X}{a}\right]_{-\frac{a}{2}}^{+\frac{a}{2}} + \left[\sec 2\pi (n-m)\frac{X}{a}\right]_{-\frac{a}{2}}^{+\frac{a}{2}} + \left[\sec 2\pi (n-m)\frac{X}{a}\right]_{-\frac{a}{2}}^{+\frac{a}{2}} + \left[\frac{1}{2}\int_{-\frac{a}{2}}^{+\frac{a}{2}} \cos 2\pi (n-m)\frac{X}{a}\right]_{-\frac{a}{2}}^{+\frac{a}{2}} + \left[\frac{1}{2}\int_{-\frac{a}{2}}^{+\frac{a}{2}} \sin 2\pi (n-m)\frac{X}{$$

Através da equação 83 verifica-se que é possível calcular os coeficientes da série de Fourier para cada valor onde n = m, através da equação 82:

$$A_{n} = \frac{2}{a} \int_{-\frac{a}{2}}^{+\frac{a}{2}} \rho(x) \cos 2\pi n \frac{X}{a} dX$$
(84)

Considerando agora a densidade eletrônica tridimensional, de um cristal, podese expressar esta densidade segundo:

$$\rho(XYZ) = \sum_{n} \sum_{m} \sum_{p} A_{nmp} e^{-2\pi i (n\frac{X}{a} + m\frac{Y}{b} + p\frac{Z}{c})}$$
(85)

onde as somatórias vão de - ∞ a + ∞ , ou ainda por:

$$A_{nmp} = A_{hkl} = \frac{1}{V} \int_{-\frac{a}{2}}^{\frac{a}{2}} \int_{-\frac{b}{2}}^{\frac{b}{2}} \int_{-\frac{c}{2}}^{\frac{c}{2}} \rho(XYZ) e^{-2\pi i (h\frac{X}{a} + k\frac{Y}{b} + l\frac{Z}{c})} \frac{V}{abc} dXdYdZ$$
(86)

onde n = h, m = k, p = l e V/abc é o fator geométrico de normalização dos coeficientes, para o caso geral de sistemas não ortogonais.

Entretanto, como a densidade eletrônica $\rho(X,Y,Z)$ de um cristal real é considerada como a soma das densidades eletrônicas dos átomos individuais, a equação do fator de estrutura passa a ter a seguinte forma:

$$F_{hkl} = \sum_{n} f_{n} e^{2\pi i \left(h \frac{X}{a} + k \frac{Y}{b} + l \frac{Z}{c} \right)_{n}} = \iiint_{\text{cela unitaria}} \rho(XYZ) e^{-2\pi i \left(h \frac{X}{a} + k \frac{Y}{b} + l \frac{Z}{c} \right)} \frac{V}{abc} dXdYdZ$$
(87)

Combinando-se as expressões obtêm-se:

$$A_{nmp} = A_{hkl} = \frac{1}{V} F_{hkl}$$
(88)

Finalmente pode-se representar a densidade eletrônica sob forma de série de Fourier de acôrdo com a equação:

$$\rho(xyz) = 1/V \sum_{h} \sum_{k=-\infty}^{+\infty} \sum_{l} F_{hkl} e^{-2\pi i \left(h\frac{X}{a} + k\frac{Y}{b} + l\frac{Z}{c}\right)}$$
(89)

ou de uma forma mais compacta, como o produto de dois vetores:

$$\rho(\mathbf{r}) = 1/V F_{\mathbf{h}} e^{-2\pi i (\mathbf{h} \cdot \mathbf{r})}$$
(90)

A equação 90, apresenta a densidade eletrônica no espaço direto em termos dos fatores de estrutura no espaço recíproco.

Uma outra expressão alternativa para o cálculo da densidade eletrônica, a partir das equações dos fatores de estrutura, pode ser escrita usando-se os módulos de $F_{hk/}$ [Stout e Jensen, 1989]:

$$\mathbf{F}_{\mathbf{h}\mathbf{k}\prime} = |\mathbf{F}_{\mathbf{h}\mathbf{k}\prime}| \mathbf{e}^{\mathbf{i}\,\boldsymbol{\alpha}\mathbf{h}\mathbf{k}\prime} = |\mathbf{F}_{\mathbf{h}\mathbf{k}\mathbf{l}}| \mathbf{e}^{2\pi\mathbf{i}\boldsymbol{\alpha}'\mathbf{h}\mathbf{k}\prime} \tag{91}$$

onde α_{hkl} é o ângulo da fase em radianos e α'_{hkl} é o ângulo da fase em ciclos, substituindo a expressão 91 em 90 obtem-se:

$$\rho(XYZ) = \frac{1}{V} \sum_{h} \sum_{k} \sum_{l} |F_{hkl}| e^{2\pi i \alpha'_{hkl}} e^{-2\pi i (h\frac{X}{a} + k\frac{Y}{b} + l\frac{Z}{c})}$$
(92)

ou

$$\rho(XYZ) = \frac{1}{V} \sum_{h} \sum_{k} \sum_{l} |F_{hkl}| e^{-2\pi i (h\frac{X}{a} + k\frac{Y}{b} + l\frac{Z}{c} - \alpha'_{kkl})}$$
(93)

Expandindo-se esta última expressão em termos de seno e cosseno, usando coordenadas fracionárias xyz, e assumindo a lei de Friedel [Stout e Jensen, 1989] a equação 93 passa a ter a forma:

$$\rho(xyz) = 1/V \sum_{h} \sum_{k} \sum_{l} |F_{hkl}| \cos 2\pi (hx + ky + lz - \alpha'_{hkl})$$
(94)

A equação 94 é a forma tridimensional da série de Fourier aplicada nos cálculos cristalográficos, a partir dos fatores de estrutura observados e das fases calculadas.

1.10 - O PROBLEMA DA FASE

Observando-se a expressão 94, verifica-se que se os fatores de estrutura são conhecidos em módulo, a partir do conhecimento das fases, pode-se calcular a densidade eletrônica do cristal, ou da cela unitária, e assim obter a imagem da estrutura do cristal.

Entretanto, no estudo de difração de raios-X por um cristal apenas as intensidades das ondas espalhadas são registradas, e todas as informações a respeito das fases são perdidas.

A razão desta perda é devida ao detector de raios-X, que podendo ser um filme ou um contador, mede somente as intensidades. Como as intensidades são proporcionais ao quadrado do fator de estrutura, que é um número complexo, quando as intensidades são medidas não é possivel separa-las em parte imaginária e real, então as fases são perdidas. Esta perda da informação da fase é, na cristalografia, conhecida como problema da fase [Hukins, 1981],[Bun, 1972].

Tradicionalmente considera-se que existem quatro métodos principais para a solução do problema da fase:

- * Métodos Diretos;
- * Função de Patterson;
- * Substituição Isomorfa;
- * Dispersão Anômola.

Métodos Diretos (que serão discutido mais adiante), são métodos puramente matemáticos que permitem determinar as fases de um certo arranjo de F_{hkl} , através de informações físicas e químicas do sistema [Schenk, 1991].

A Função de Patterson consiste em uma série de Fourier que utiliza os valores de $|F(hkl)|^2$ como coeficientes da série, ao invés de F(hkl), o que produz informações a

respeito da estrutura. Esta função fornece um mapa dos vetores entre os átomos, e estas informações podem então ser aperfeiçoadas por refinamentos [Sands, 1993].

O método de substituição isomorfa é aplicado para determinar estruturas que contém apenas átomos leves, usando-se o artifício de introduzir nesta estrutura um átomo pesado, desde que se obtenham cristais isomorfos, que passa a ser um átomo marcador para a obtenção das fases [Borges, 1980].

Dispersão anômola [Sands, 1993] é o método no qual a informação das fases é obtida pelo fato do comprimento de onda, da radiação incidente, ser próximo à descontinuidade de absorção de um dos átomos da rede cristalina, ocorrendo então uma interação com a frequência de vibração dos elétrons desse átomo, resultando em uma acentuada modificação da amplitude da radiação por ele dispersada. Neste método explora-se a lei de Friedel, uma vez que, neste caso $|F(\mathbf{h})| \neq |F(-\mathbf{h})|$.

1.11 - MÉTODOS DIRETOS

Todas as informações sobre as fases são perdidas no experimento de coleta de dados por difração de raios-X, pois as informações são apenas as intensidades dos raios difratados. Os Métodos Diretos usados para determinar as fases, são métodos puramente matemáticos que para, o estabelecimento de relações matemáticas, exigem que sejam impostas algumas restrições sobre o sistema. Estas restrições são:

a- a não negatividade da densidade eletrônica ou seja ($\rho \ge 0$);

b- os átomos devem ser considerados como pontuais, e portanto iguais.

Este método é muito utilizado na determinação de fases, principalmente em compostos orgânicos, onde átomos de carbono,oxigênio e nitrogênio, possuem número de elétrons pequeno e bastante próximos.

1.11.1 - DESIGUALDADES DE HARKER e KASPER

Os métodos diretos tiveram as suas origens nas relações de desigualdades, desenvolvidas por Harker e Kasper [1948]. As expressões desenvolvidas, proporcionaram os primeiros meios para a determinação da fase de uma reflexão em termos de sua magnitude.

Como um exemplo [Azároff, 1968] de obtenção da desigualdade de Harker-Kasper, parte-se de desigualdade de Schwartz:

$$|\int \mathbf{f}g \, \mathrm{d}r |^2 \leq (\int |\mathbf{f}|^2 \, \mathrm{d}r) (\int |\mathbf{g}|^2 \, \mathrm{d}r)$$
(95)

impondo os valores adequados na equação,

$$f = [V \rho(xyz)]^{1/2}$$
(96)

$$g = [V\rho (xyz)]^{1/2} e^{-2\pi i (hx+ky+lz)}$$
(97)

$$d\tau = dx \, dy \, dz \tag{98}$$

Substituindo agora as equações no lado esquerdo da expressão 95 tem-se:

$$\left| \int \mathbf{f} \, \mathbf{g} d\tau \right|^2 = \left| \mathbf{V} \iiint_{\text{cela unitaria}} \rho(\mathbf{x} \mathbf{y} \mathbf{z}) \, e^{-2\pi i \, (\mathbf{h} \mathbf{x} + \mathbf{k} \mathbf{y} + l\mathbf{z})} \, d\mathbf{x} d\mathbf{y} d\mathbf{z} \right|^2 \tag{99}$$

ou,

$$|\int \mathbf{fg} \, d\tau|^2 = |\mathbf{F}_{hkl}|^2 \tag{100}$$

Substituindo os mesmos valores, agora no direito da equação e lembrando que $|e^{2\pi i}|^2 = 1$ a desigualdade torna-se:

$$|\mathbf{F}_{hkl}|^2 \le \mathbf{V}^2 \left[\iiint_{\text{cela unitaria}} \rho(\mathbf{x}\mathbf{y}\mathbf{z}) \, d\mathbf{x} \, d\mathbf{y} \, d\mathbf{z} \right]^2$$
(101)

ou de uma outra forma:

$$|\mathbf{F}_{\mathbf{h}\mathbf{k}\prime}|^2 \leq \xi \tag{102}$$

sendo ξ o número total de elétrons contidos na cela unitária.

Supondo agora, que o cristal tem centro de simetria, então neste caso tem-se:

$$\rho(\mathbf{x}\mathbf{y}\mathbf{z}) = \rho(\mathbf{\overline{x}}\ \mathbf{\overline{y}}\ \mathbf{\overline{z}}) \tag{103}$$

e

$$F_{hkl} = V \iiint_{\text{cela unitaria}} \rho(xyz) \cos 2\pi (hx + ky + lz) dx dy dz$$
(104)

A desigualdade de Schwartz torna-se:

$$|F_{hkl}|^{2} \leq [V \iiint_{cela \text{ unitaria}} \rho(xyz) dxdydz] [V \iiint_{cela \text{ unitaria}} \rho(xyz) \cos^{2}2\pi(hx + ky + lz) dxdydz]$$
(105)

Fazendo agora uso da relação do termo trigonométrico $\cos^2 x = 1/2(1 + \cos 2x)$ e observando que o primeiro termo na equação 105 é igual a ξ obtem-se:

$$|F_{hk/}|^{2} \leq \xi/2 [V] \int \rho(x \ y \ z) dx dy dz + V] \int \rho(xyz) \cos 2\pi (2hx + 2ky + 2lz) dx dy dz] \leq \xi/2 (\xi + F_{2h2k2/})$$
(106)

Tomando a equação anterior e definindo $F_{hkl}\xi$ como o fator de estrutura unitário (U_{hkl}) (que será discutido na próxima seção) a desigualdade é reescrita finalmente como:

$$|U_{hkl}|^{2} \leq \frac{1}{2} \left(\pm \frac{1}{2} \mid U_{2h,2k,2l} \mid \right)$$
(107)

Esta desigualdade proposta por Harker e Kasper, possibilita a dedução das fases diretamente das amplitudes dos fatores de estrutura.

Para exemplificar o uso desta relação sobre as fases, pode-se supor que:

$$|U_{\rm h}| = 0.6$$
 e $U_{\rm 2h} = \pm 0.5$

a desigualdade fornece $0.36 \le (1/2) (1 \pm 0.5)$, que somente será satisfeita se o sinal de U_{2h} for positivo, ou seja implicando que a fase de U_{2h} é 2π .

Esta desigualdade inaugurou uma nova era na determinação de estruturas, embora, a sua utilização seja de uso limitado, ou seja, permite resolver apenas aquelas estruturas que contenham um número pequeno de átomos na cela unitária.

1.11.2 - FATOR DE ESTRUTURA UNITÁRIO

Todo o procedimento efetuado no desenvolvimento das desigualdades, até o momento, considerou a expressão para o fator de estrutura, assumindo-se os átomos como sendo pontuais. Considerando-se agora uma cela unitária contendo apenas uma espécie de átomos o fator de estrutura pode ser escrito na forma:

$$\mathbf{F}_{\mathbf{h}\mathbf{k}^{T}} = \mathbf{f} \, \Sigma \, \mathbf{e}^{2\pi \mathbf{i} \, (\mathbf{h}, \mathbf{r})} \tag{108}$$

onde a somatória é feita sobre os N átomos da mesma espécie;

ou, de outra forma:

$$\mathbf{F}_{\mathbf{h}\mathbf{k}l} = \mathbf{f} \cdot \mathbf{E} \tag{109}$$

onde E é a soma dos termos exponenciais.

Tomando-se agora a razão entre os fatores de espalhamento para um átomo pontual e o real, e assumindo f = Z (Z = número atômico) para átomos estacionários pontuais, obtem-se a relação:

$$\frac{F_{pontual}}{F_{real}} = \frac{ZE}{E f_0 e^{-B(sen^2\theta)/\lambda^2}}$$
(110)

portanto:

$$F_{pontual} = \frac{ZE}{E f_{o} e^{-B(sen^{2}\theta)/\lambda^{2}}} F_{real}$$
(111)

Mas, como na maioria dos casos os cristais possuem mais do que uma espécie atômica, a equação 111 não fornece valores exatos de $F_{pontual}$, portanto necessita-se fazer uma aproximação na relação Z/f, para que seja utilizada nos casos gerais:

$$F_{\text{pontual}} = \frac{\sum_{j}^{N} Z_{j}}{(e^{-B(\text{sen}^{2}\theta)/\lambda^{2}}) \sum_{j}^{N} f_{0j}} F_{\text{real}}$$
(112)

Na prática define-se o fator de estrutura unitário como:

$$U_{hkl} = \frac{F_{hkl(pontual)}}{F_{000}}$$
(113)

Sendo que $\sum_{j}^{N} Z_{j} = F_{000}$, e utilizando a expressão 113, tem-se:

$$U_{hkl} = \frac{F_{hkl}}{(e^{-B(sen^2\theta)/\lambda^2})\sum_{j}^{N} f_{0j}}$$
(114)

ou de uma forma mais geral, incluindo o fator de temperatura em f:

$$U_{hkl} = \frac{F_{hkl}}{\sum_{j}^{N} f_{j}}$$
(115)

onde N é o número total de átomos na cela unitária.

Se a estrutura é centrossimétrica, tem-se:

$$U_{hkl} = 2\sum_{j}^{\frac{N}{2}} n_j \cos 2\pi (hx_j + ky_j + lz_j)$$
(116)

onde n_j corresponde a $f_j/\Sigma f_j$. Para o caso de todos os átomos da estrutura iguais n_j será dado por $n_j = 1/N$.

Quanto aos valores médios dos fatores de estrutura e dos fatores de estrutura unitários as equações podem ser escritos na seguinte forma:

$$\langle \mathbf{F}^2 \rangle = \sum_{j}^{N} \mathbf{f}_j^2 \tag{117}$$

$$\langle U^2 \rangle = \sum_{j}^{N} n_j^2 \tag{118}$$

$$\langle \mathbf{U} \rangle = \left(\sum_{j=1}^{N} n_{j}^{2}\right)^{1/2}$$
(119)

A equação 119 representa uma boa aproximação quando a estrutura, a ser resolvida, é de um composto orgânico, sem átomos pesados e com todos os átomos com aproximadamente o mesmo número de elétrons.

1.11.3 - FATOR DE ESTRUTURA NORMALIZADO

Karle e Hauptman [1956] introduziram pela primeira vez o termo fator de estrutura normalizado (E_{hkl}) dado por:

$$E_{hkJ}^{2} = \frac{U_{hkJ}^{2}}{\langle U^{2} \rangle}$$
(120)

nos quais os valores de E_{hkl} apresentam certas conveniências matemáticas, permitindo o uso de cálculos probabilísticos além da normalização de todas as classes de reflexões em uma base comum.

Combinando-se as equações 120 e 118 dentro de uma forma geral tem-se:

$$E_{hkl}^{2} = \frac{U_{hkl}^{2}}{\varepsilon \sum_{j}^{N} n_{j}^{2}}$$
(121)

ou, de forma equivalente, reescrevendo a equação anterior usando módulos:

$$\left|\mathbf{E}_{\mathbf{h}\mathbf{k}l}\right|^{2} = \frac{\left|\mathbf{F}_{\mathbf{h}\mathbf{k}l}\right|^{2}}{\varepsilon \sum_{j}^{N} \mathbf{f}_{j}^{2}}$$
(122)

Da equação 122, pode-se observar que: $|E_{hk/}|^2$ é o fator de estrutura normalizado; f_j é o fator de espalhamento atômico e ε é um número inteiro que leva em conta a simetria do grupo espacial, garantindo que todos os tipos de reflexões sejam consideradas ou seja:

$$|\mathbf{E}_{\mathbf{h}\mathbf{k}'}|^2 \ge 1 \tag{123}$$

Os fatores de estruturas normalizados, $|E_{hkl}|$, são calculados na suposição que os átomos são pontuais, e a distribuição dos valores de $|E_{hkl}|$ é independente do conteúdo e tamanho da cela unitária, e quando não dispomos da geometria do conteúdo da cela unitária supõe-se que os átomos estejam aleatoriamente distribuídos na cela. Então de acordo com a equação 122 os fatores de estrutura normalizados dependem da presença ou da ausência de um centro de simetria do grupo espacial. A tabela 1 fornece os valores esperados para os casos centrossimétrico e assimétrico [Stout e Jensen, 1989].

Tabela 1

Valores teóricos relacionados aos E		
Valores médios	Centrossimétrico	Assimétrico
E ²	1,0000	1,0000
E ² -1	0,968	0,736
E	0,798	0.886
E > 1	32,0 %	36,8 %
E > 2	5,0 %	1,8 %
E > 3	0,3 %	0,01 %

1.11.4 - DETERMINANTE DE KARLE- HAUPTMAN

Como foi discutido anteriormente a etapa inicial da aplicação dos métodos diretos para a obtenção das fases utiliza as desigualdades de Harker e Kasper.

Utilizando as relações de desigualdades de Cauchy e Schwartz [Azároff, 1968], Karle e Hauptman [1950] derivaram relações entre os fatores de estrutura que resultam na obtenção de suas fases, impondo que a densidade eletrônica $\rho(\mathbf{r})$ seja positiva em todo o espaço.

De acordo com a expressão 89, que fornece a densidade eletrônica no espaço real, é possível obte-la também no espaço recíproco. Esta transformação do espaço real para o espaço recíproco foi resolvida por Karle e Hauptman [1950]. definindo a forma hermitiana.

Partindo-se da transformada de Fourier:

$$F_{hkl} = V \iiint \rho(x, y, z) \exp^{-2\pi i \left[(hx + ky + lz) \right]} dx dy dz$$
(124)

a forma hermitiana pode ser escrita:

$$\sum_{hkl}^{m} \sum_{kkl}^{m} X_{hkl} \overline{X}_{kkl'} F_{h-h,k-k,l-l} = V \iiint \rho(x,y,z) \sum_{hkl}^{m} \sum_{kkl'}^{m} X_{hkl'} \overline{X}_{kkl'} \exp\{-2\pi i [(h-h')x + (k-k')y + (l-l')z] dxdydz\}$$
(125)

onde: m = 1, 2,...,n; X_{hk/} é uma variável independente; $\overline{X}_{kk/}$ é o complexo conjugado de $X_{hk/}$; a integral tripla é feita entre 0 e 1,e a somatória representa uma somatória tripla.

Expressando-se o lado direito da equação como o produto de uma soma tripla e seu complexo conjugado, então a expressão 125 torna-se:

$$V \iiint \rho(\mathbf{x}, \mathbf{y}, \mathbf{z}) \sum_{\mathbf{hk}l}^{\mathbf{m}} \sum_{\mathbf{h'k}l'}^{\mathbf{m}} X_{\mathbf{hk}l} \overline{X}_{\mathbf{h'k}l'} \exp\{-2\pi \mathbf{i}[(\mathbf{h} - \mathbf{h'})\mathbf{x} + (\mathbf{k} - \mathbf{k'})\mathbf{y} + (l - l')\mathbf{z} \, d\mathbf{x} \, d\mathbf{y} \, d\mathbf{z}] =$$

$$= V \iiint \rho(\mathbf{x}, \mathbf{y}, \mathbf{z}) \sum_{\mathbf{hk}l'}^{\mathbf{m}} X_{\mathbf{hk}l'} \exp\{-2\pi \mathbf{i}(\mathbf{hx} + \mathbf{hy} + l\mathbf{z})\}^2 \, d\mathbf{x} \, d\mathbf{y} \, d\mathbf{z}$$
(126)

Como $\rho(x,y,z)$ é uma função não negativa, o lado esquerdo da equação 126 consiste de formas hermitianas não negativas escritas como:

$$\sum_{\mathbf{h}\mathbf{k}l}^{m} \sum_{\mathbf{h}'\mathbf{k}'l'}^{m} X_{\mathbf{h}\mathbf{k}l} \overline{X}_{\mathbf{h}'\mathbf{k}'l'} F_{\mathbf{h}-\mathbf{h}',\mathbf{k}-\mathbf{k}',l-l'} \geq 0 \quad \mathbf{m} = 1,2,3.....$$
(127)

Como a forma hermitiana requer a condição de não negatividade, um sistema de determinantes envolvendo fatores de estrutura também deverá ser **Não** negativo [Karle, 1976], então a partir desta condição, pode-se mostrar que esta condição implica em:

$$\begin{bmatrix} F_{0} & F_{-h1} & F_{-h2} & \dots & F_{-hn} \\ F_{h1} & F_{0} & F_{h1-h2} & \dots & F_{h1-hn} \\ F_{h2.} & F_{h2-h1} & F_{0} & \dots & F_{h2-hn} \\ \dots & \dots & \dots & \dots & F_{h2-hn} \\ \dots & \dots & \dots & \dots & \dots \\ F_{hn.} & F_{hn-h1.} & F_{hn-h2.} & F_{0} \end{bmatrix} \ge 0 \quad (n=0, 1, 2 \dots m-1) \quad (128)$$

O determinante expresso em 128 é conhecido por determinante de Karle-Hauptman, podendo ser de qualquer ordem, e devido ao fato da densidade eletrônica ser sempre positiva, o determinante também o será, verificando-se que, quanto ao modo de sua obtenção, não é feita nenhuma suposição prévia a respeito das formas da densidade eletrônica.

Uma maneira mais geral é utilizar o determinante na forma de fatores de estrutura unitários, o que ao mesmo tempo remove a dependência dos fatores de estrutura

com os valores de sen θ/λ . Usando os fatores unitários o novo determinante será de ordem **m**, e sabendo-se que U(0) = 1, terá a seguinte forma:

$$\begin{bmatrix} 1 & U_{-h1} & U_{-h2} & \dots & U_{-hm} \\ U_{h1} & 1 & U_{h1-h2} & \dots & U_{h1-hm} \\ U_{h2} & U_{h2-h1} & 1 & \dots & U_{h2-hm} \\ \dots & \dots & \dots & \dots \\ U_{hm} & U_{hm-h1} & U_{hm-h2} & 1 \end{bmatrix} \ge 0$$
(129)

Usando os fatores de estrutura unitários para uma estrutura cristalina centrossimétrica onde $U_h = U_{-h}$, e considerando um determinante de ordem três obtêm-se um resultado já familiar:

$$\begin{bmatrix} 1 & U_{-h} & U_{-2h} \\ U_{h1} & 1 & U_{h1-h2} \\ U_{h2} & U_{h2-h1} & 1 \end{bmatrix} \ge 0$$
(130)

Resolvendo o determinante expresso em 130 obtêm-se:

$$1 - 2 ||U_{h}||^{2} - ||U_{2h}||^{2} + 2 ||U_{h}||^{2} ||U_{2h}| \ge 0$$

$$(1 - U_{2h}) - (1 + U_{2h}) - 2 ||U_{h}||^{2} (1 - U_{2h}) \ge 0$$

$$(1 - U_{2h}) [1 + U_{2h} - 2|U_h|^2] \ge 0,$$

e rearranjando, obtêm-se finalmente a desigualdade de Harker e Casper:

$$|U_{\mathbf{h}}|^{2} \le \frac{1}{2} [1 + U_{2\mathbf{h}}]$$
(131)

Karle e Hauptman [1950] rearranjaram o determinante 129 para expressar a região de fases para um único fator de estrutura, a partir de dois outros fatores de estrutura,

cujas fases são conhecidas. Desta forma, assumindo que U_h é desconhecido e o restante conhecido, pode-se escrever:

$$|\mathbf{U}_{\mathbf{h}} - \boldsymbol{\delta}_{\mathbf{h} - \mathbf{k}}| \le \mathbf{r} \tag{132}$$

onde

$$\delta_{\mathbf{h}\cdot\mathbf{k}} = \mathbf{U}_{\mathbf{k}} \, \mathbf{U}_{\mathbf{h}\cdot\mathbf{k}}, \, \mathbf{e}, \, \mathbf{r} = \begin{bmatrix} 1 & \mathbf{U}_{\mathbf{k}}^{*} \\ \mathbf{U}_{\mathbf{k}} & 1 \end{bmatrix}^{\frac{1}{2}} \begin{bmatrix} 1 & \mathbf{U}_{\mathbf{\cdot}\mathbf{h}\cdot\mathbf{k}}^{*} \\ \mathbf{U}_{\mathbf{h}\cdot\mathbf{k}} & 1 \end{bmatrix}^{\frac{1}{2}}$$

A interpretação da equação 132, usando F_h no lugar de U_h pode ser representada no diagrama de Argand na figura 16.

De acordo com o diagrama da figura 16, o fator de estrutura, F_h , cujo módulo é conhecido, está restrito a um círculo no plano complexo, centrado em δ e com raio igual a r.

SERVIÇO DE BIBLIOTECA E INFORMAÇÃO IQSC/USP Este arco (A-B) será tanto menor quanto maiores forem os valores de $|F_h|$, $|F_k| \in |F_{h-k}|$, ou seja os determinantes tendendo a uma alta ordem, o valor de r pode tornarse muito pequeno ou ser igual a zero.

1.11.5 - INVARIANTES ESTRUTURAIS [HAUPTMANN E KARLE, 1953]

Uma das dificuldades na solução do problema da fase é a escolha da origem da cela unitária, com respeito aos elementos de simetria.

Escolhendo-se arbitrariamente a origem da cela, os fatores de estrutura não serão afetados, mas as fases serão drasticamente afetadas. Entretanto, existem certas combinações de fases, cujos valores são determinados pela estrutura isolada e são independentes da escolha da origem, estas combinações lineares de fases são denominadas invariantes estruturais.

Utilizando-se a figura 17, obtêm-se uma expressão quantitativa que fornece a variação da fase, sobre os fatores de estrutura, ϕ_h , ao variar-se a origem do ponto O para um outro ponto O' sobre um vetor t.

Figura 17 - Deslocamento da origem de O para O'

$$\mathbf{F}_{\mathbf{h}} = \Sigma \mathbf{f}_{\mathbf{j}} \exp\{2\pi \mathbf{h} \cdot \mathbf{r}_{\mathbf{i}}\}$$
(133)

$$\mathbf{F_h}' = \Sigma \mathbf{f_j} \exp \left\{ 2\pi i \mathbf{h} \cdot (\mathbf{r_i} - \mathbf{t}) \right\} \qquad \text{ou}$$

$$\mathbf{F_h}' = \Sigma \mathbf{f_j} \exp\{2\pi \mathbf{i} \mathbf{h} \cdot \mathbf{r_j}\} \exp\{-2\pi \mathbf{i} \mathbf{h} \cdot \mathbf{t}\}$$
(134)

sendo a somatória sobre os N átomos; então

$$\mathbf{F_h}' = \mathbf{F_h} \exp\left(-2\pi \mathbf{i} \ \mathbf{h} \cdot \mathbf{t}\right) \tag{135}$$

ou,

$$\mathbf{F_h}^{\prime} = \left| \mathbf{F_h} \right| \exp \left\{ -2\pi \mathbf{i} \, \mathbf{h} \cdot \mathbf{t} + \mathbf{i} \, \phi_{\mathbf{h}} \right\}$$
(136)

como $|F_h'| = |F_h|$, então:

$$\phi_{\mathbf{h}}' = -2\pi \mathbf{h} \cdot \mathbf{t} + \phi_{\mathbf{h}} \tag{137}$$

Conclui-se então que as fases dependem da escolha da origem, sendo modificadas por uma quantidade igual a -2π h.t, enquanto, por outro lado, as amplitudes são independentes da escolha da origem.

Desta forma considerando o produto de fatores de estrutura:

e consequentemente,

quando: $\mathbf{h}_1 + \mathbf{h}_2 + \mathbf{h}_3 + \dots \equiv 0$, tem se a chamada invariante de estrutura, que é uma quantidade independente da escolha da origem.

Como na difração de raios-X obtem-se informações apenas das amplitudes, o que se quer dizer é que, na prática, qualquer produto de fatores de estrutura, em que a soma dos seus índices for igual a zero deve ser uma invariante estrutural.

Alguns exemplos importantes de invariante de estrutura são:

* F(0) que depende apenas do conteúdo da cela unitária;

* F_{h} . $F_{-h} = |F_{h}|^{2}$ que estabelece que as amplitudes dos fatores de estrutura são independentes da origem;

* $F_h \cdot F_k \cdot F_{-h-k}$ que é chamado de triplete, relação Σ_2 , ou invariante de três fases;

* $F_{-h}F_{-k}F_{-l}F_{h+k+l}$ que são chamados de quartetos invariantes ou invariante de quatro fases.

1.11.6 - SEMI-INVARIANTES ESTRUTURAIS E DEFINIÇÃO DA ORIGEM

Semi-invariantes estruturais [Main,1976] são produtos de fatores de estrutura, ou combinações lineares de fases, cujos valores são unicamente determinados pela simetria do cristal e são independentes da escolha da origem desde que a nova origem seja colocada sobre ponto de simetria equivalente.

Para definir a estrutura de um cristal por completo, necessita-se especificar as posições atômicas dentro de uma unidade translacional que é a cela unitária do retículo. De

fato, a origem da cela unitária pode ser movida livremente dentro de um cristal, mas para especificar as coordenadas atômicas, a origem de uma cela deve ser definida.

A escolha da origem da cela unitária não pode ser feita de uma forma aleatória. Existem posições preferênciais, dependendo então da simetria do cristal. Desta forma para cada grupo espacial existem conjuntos de pontos cuja vizinhança em termos de elementos de simetria é idêntica, e cada um destes conjuntos é chamado de classe de origem equivalente.

Assim por exemplo tomando-se o grupo espacial P1, e definindo a cela unitária no espaço recíproco, representada na figura 18, onde V* é o volume do espaço recíproco, e os eixos são definidos pelos vetores h_1 , h_2 e h_3 , não coplanares, pode-se calcular V* como:

$$\boldsymbol{\tau} = \mathbf{h_1} \bullet \mathbf{h_2} \times \mathbf{h_3} \tag{140}$$

Figura 18- Cela unitária no espaço recíproco.

Escrevendo os vetores em termos de seus componentes tem-se:

$$h_1 = h_1 a^* + k_1 b^* + l_1 c^*$$
(141)

$$\mathbf{h_2} = \mathbf{h_2} \ \mathbf{a^*} + \mathbf{k_2} \ \mathbf{b^*} + \mathbf{l_2} \mathbf{c^*}$$
(142)

$$h_3 = h_3 a^* + k_3 b^* + l_3 c^*$$
(143)

A equação para o volume do paralelepípedo a partir das equações anteriores torna-se:

$$\tau = (h_1 \cdot a^* + k_1 \cdot b^* + l_1 c^*) \cdot (h_2 a^* + k_2 b^* + l_2 c^*) \cdot (h_3 a^* + k_3 b^* + l_3 c^*)$$
(144)

ou,

$$\tau = (\mathbf{a^* \bullet b^* \times c^*}) \{ \mathbf{h}_1 (\mathbf{k}_2 \mathbf{l}_3 - \mathbf{k}_3 \mathbf{l}_2) + \mathbf{k}_1 (\mathbf{l}_2 \mathbf{h}_3 - \mathbf{l}_3 \mathbf{h}_2) + \mathbf{l}_1 (\mathbf{h}_2 \mathbf{k}_3 - \mathbf{h}_3 \mathbf{k}_2)$$
(145)

Expressando a equação anterior em forma de determimante pode-se escrever:

$$\tau = (\mathbf{a^{*\bullet} b^{*} \times c^{*}}) \begin{vmatrix} \mathbf{h}_{1} & \mathbf{k}_{1} & \mathbf{l}_{1} \\ \mathbf{h}_{2} & \mathbf{k}_{2} & \mathbf{l}_{2} \\ \mathbf{h}_{3} & \mathbf{k}_{3} & \mathbf{l}_{3} \end{vmatrix}$$
(146)

Como a definição da origem requer $\tau = V^* = (a^* \bullet b^* \times c^*)$; então o determinante anterior torna-se:

$$\begin{vmatrix} h_1 & k_1 & l_1 \\ h_2 & k_2 & l_2 \\ h_3 & k_3 & l_3 \end{vmatrix} = \pm 1$$
(147)

onde -1 indica que o conjunto dos 3 vetores h_1 , h_2 e h_3 forma um conjunto "mão esquerda".

Pelas equações 136 e 137, verificou-se que a mudança da origem por um vetor t, deixa inalterado o módulo, mas altera a fase do fator de estrutura.

Considerando o grupo espacial P1, cuja cela unitária está mostrada na figura 19, pode-se verificar que existem 8 centros de inversão equivalentes.

A equação 137, pode ser reescrita como:

$$\phi_{\mathbf{h}}^{\prime} = \phi_{\mathbf{h}} - 2\pi \mathbf{h} \Delta \mathbf{x} \tag{148}$$

onde Δx representa a translação de origem, e então pode-se definir:

$$\Delta \phi = -2\pi \mathbf{h} \, \Delta \mathbf{x} \tag{149}$$

Para que as fases não sejam alteradas pela mudança de origem é necessário que $\Delta \phi = 2n\pi$, ou de forma explícita:

$$2\pi (hx + ky + lz) = 2 n \pi$$

(hx + ky + lz) = n (150)

onde x,y,z são as coordenadas das posições de origem equivalentes e n é um número inteiro.

Aplicando o mesmo raciocínio para o produto de fatores de estrutura, ou seja para a soma das fases (equação 139), tem-se:

$$\Sigma \mathbf{h}_{i} \mathbf{x} + \Sigma \mathbf{k}_{i} \mathbf{y} + \Sigma l_{i} \mathbf{z} = \mathbf{n}$$
(151)

Pela figura 19 (grupo espacial $P\overline{1}$) verifica-se que as coordenadas dos centros de inversão possuem valores iguais a 0 e 1/2, para os 3 eixos **a**, **b** e **c**.

Para que a equação 143 seja satisfeita é preciso que h_i , k_i e l_i sejam todos pares, o que matematicamente é expresso por: p (mod q), ou seja,

p (mod q) significa que q é subtraido de p, até que um número r ($0 \le r \le q$) seja atingido.

Então pode-se concluir que para o grupo espacial $P\overline{1}$ as semi-invariantes de estrutura serão as reflexões que tem hk*l* todos pares.

Com base nestas considerações pode-se concluir que: " um conjunto de reflexões define a origem se e somente se elas são linearmente independentes e primitivas em relação ao módulo semi-invariante".

Como regra prática para definir a origem em qualquer grupo espacial Hauptmam e Karle [1956] estabeleceram um procedimento simples que consiste em:

1 - escolher as p reflexões e reduzi-las ao módulo semi-invariante; o número p é igual ao número de elementos do vetor semi-invariante ((hkl) mod (2, 2, 2) implica em 3 reflexões);

2 - montar uma matriz de ordem p x p das p reflexões escolhidas e calcular o seu determinante;

3 - se o determinante for igual a \pm 1 a origem está fixada, caso contrário não.

No caso de grupos espaciais não centrossimétricos, além da origem é necessário fixar o enantiomorfo, e isto é feito pela escolha de uma reflexão adicional que seja linearmente dependente daquelas escolhidas para fixar a origem. Esta necessidade surge como consequência direta da definição de estruturas cristalinas enantiomorfas, que são aquelas que embora tenham a mesma origem são relacionadas por diferença de fase, de π radianos, em uma reflexão.

1.11.7 - RELAÇÕES DE PROBABILIDADE

Para estruturas reais a dimensão dos dados envolvidos, número de reflexões, faz com que somente as desigualdades sejam insuficientes para encontrar uma solução das fases. É então necessário encontrar uma outra forma de abordagem que resulte numa melhor aproximação [Stout e Jensen, 1989].

Pode-se facilmente verificar que há um intervalo de intensidades de reflexões que são pequenas para serem usadas nas desigualdades, mas são suficientemente, ou relativamente, grandes, ou seja estão entre as observáveis. Para estas reflexões é possível estabelecer equações que são provavelmente verdadeiras, e a partir delas extrair informação sobre as suas fases.

Estes métodos, probabilisticos, foram inicialmente introduzidos para o uso em estruturas centrossimetricas e posteriormente estendidos aos grupos não centrossimétricos.

1.11.7.1 - MÉTODOS CENTROSSIMÉTRICOS

As primeiras aproximações para os métodos descritos por Sayre [1952], apresentam resultados equivalentes aos publicados anteriomente por Karle e Hauptman [1950].

Pode ser estabelecido sob certas restrições que:

$$F_{hkl} = \sum_{h'} \sum_{k'} \sum_{l'} F_{h'k'l'} F_{h-h', k-k', l-l'}$$
(153)

A implicação da equação 153 é que qualquer fator de estrutura F_{hkl} pode ser determinado pelo produto de todos os pares de fatores de estrutura, cujos índices adicionados fornecem (hkl). Assim por exemplo F_{213} dependerá do produto de F_{322} e F_{111} .

Segundo a expressão 153, para se determinar um fator de estrutura qualquer, é necessário conhecer as magnitudes e fases de todos os outros, e de acordo com Sayre, para os casos onde F_{hkl} , são altos, as séries devem tender fortemente em uma direção (+ ou -), direção esta que é geralmente determinada pelas concordâncias entre os sinais dos produtos entre os valores de F grandes. Então para o caso de três reflexões grandes pode-se escrever as seguintes expressões:

$$\mathbf{s}(\mathbf{F}_{\mathbf{h}\mathbf{k}\mathbf{l}}) \approx \mathbf{s}(\mathbf{F}_{\mathbf{h}^{'}\mathbf{k}^{'}T}) \cdot \mathbf{s} \left(\mathbf{F}_{\mathbf{h}\cdot\mathbf{h}^{'},\mathbf{k}\cdot\mathbf{k}^{'},\mathbf{l}\cdot\mathbf{l}^{'}}\right)$$
(154)

ou,

$$s(F_{hkl})$$
. $s(F_{h'k'l'})$. $s(F_{h-h',k-k',l-l'}) \approx +1$ (155)

onde s significa sinal de e \approx indica "provavelmente igual a' e s() pode ser considerado como ± 1 , e geralmente é indicado como s(hkl).

As equações 154 e 155 são equações de probabilidade derivadas da equação 139 que permite a escolha do sinal da invariante de estrutura.

Cochran e Woolfson [1955] desenvolveram uma expressão para encontrar a probabilidade (P) de um sinal, ou fase:

$$P = 1/2 + 1/2 \{ tgh [(\sigma_3/\sigma_2^{-3}) | U_{hk'} | U_{h'k''} | U_{h'h',k''} | U_{h'h',k'k',l''} |] \}$$
(156)

onde:

$$\sigma_3 = \sum_{j}^{N} n_j^3 \tag{157}$$

$$\sigma_2 = \sum_{j}^{N} n_j^2 \tag{158}$$

com n_j definido por $f_j / \Sigma f_j$.

Para os casos em que os átomos da cela são iguais pode-se facilmente chegar a:

$$\frac{\sigma_3}{\sigma_2^3} = \frac{N}{N^3} \left(\frac{N}{N^2}\right)^{-3} = N$$
(159)

então:

$$P = 1/2 + 1/2 \{ tgh [N | U_{hkl} | U_{h'k'l'} | U_{h'h', k'k', l'l'} |] \}$$
(160)

Reescrevendo a equação 160 em termos de fator de estrutura normalizado (E_{hkl}), obtêm-se:

$$P = \frac{1}{2} + \frac{1}{2} \{ tgh[(\sigma_3/\sigma_2^{3/2}) | E_{hkl} | E_{h'k'l'} | E_{h-h',k-k',l-l'} |] \}$$
(161)

Notando-se que:

$$\frac{\sigma_3}{\sigma_2^{\frac{3}{2}}} = \frac{N}{N^3} \left(\frac{N}{N^2}\right)^{\frac{-3}{2}} = \frac{1}{\sqrt{N}} = N^{\frac{-1}{2}}$$
(162)

encontra-se:

$$P = \frac{1}{2} + \frac{1}{2} \left\{ tgh \left[N^{-1/2} | E_{hkl} E_{h'k'l'} E_{h-h',k-k',l-l'} | \right] \right\}$$
(163)

As equações 161 e 163 são as de maior uso devido às peculiaridades com que são tratadas no cálculo dos E as classes especiais de reflexões.

Finalmente, pode-se escrever as equações de probabilidade em termos de fatores de estrutura unitário e fatores de estrutura normalizados, para o caso particular onde $s(2h, 2k, 2l) \approx s(hkl) \cdot s(hkl)$

$$P_{+}(U_{2h,2k,2l}) = 1/2 + 1/2 \{ tgh [(\sigma_3 / 2\sigma_2^{3}) | U_{2h,2k,2l} | (U_{hkl}^2 - \sigma_2)] \}$$
(164)

ou

$$P_{+}(E_{2h,2k,2l}) = \frac{1}{2} + \frac{1}{2} \{ tgh[(\sigma_{3}/2\sigma_{2}^{3/2}) | E_{2h,2k,2l} | (E_{hkl}^{2} - 1)] \}$$
(165)

onde P_+ (U_{hkl}) é a probabilidade que $U_{2h,2k,2l}$ tenha sinal positivo.

Frequentemente ocorre que nos últimos estágios de determinação das fases existe um grande número de relações na forma da equação 154 para uma mesma reflexão, cada uma delas com probabilidade não muito grande, de forma que aumenta-se a confiabilidade usando a relação conhecida como Σ_2 :

$$s(hkl) = \sum_{h'k'l'} s(h'k'l') s(h-h',k-k',l-l')$$
(166)

Sob estas condições

$$P_{+} = 1/2 + 1/2 \{ tgh [N | U_{hkl} | \sum_{h'k'l'} U_{h'k'l'} | U_{h'k'l'} | U_{h'k'l'} | U_{h'k',k'k',l-l'}] \}$$
(167)

$$P_{+} = 1/2 + 1/2 \{ tgh [N^{-1/2}] E_{hkl} | \sum_{h'k'l'} E_{h'k'l'} E_{h-h', k-k', l-l'}] \}$$
(168)

Uma vez que o argumento da tangente hiperbólica pode ser positivo ou negativo, valores de P_+ menores que 1/2 indicam que o sinal da fase é negativo, enquanto que valores maiores que 1/2 indicam sinal positivo, assim:

$$P_{-} = 1 - P_{+}$$
 (169)

1.11.7.2 - MÉTODOS NÃO CENTROSSIMÉTRICOS

Para o caso de grupos espaciais não centrossimétricos a equação 166 é escrita na seguinte forma:

$$\phi(\mathbf{h}) \approx \phi(\mathbf{h}') + \phi(\mathbf{h} \cdot \mathbf{h}') \tag{170}$$

ou

$$\phi(\mathbf{h}) + \phi(\mathbf{h}') + \phi(\mathbf{\bar{h}} - \mathbf{\bar{h}'}) = \phi_3 \approx 0 \tag{171}$$

onde ϕ é o ângulo da fase expressado em frações de um ciclo, e como no caso anterior a probabilidade de $\phi_3 = 0$ aumenta com a magnitude das reflexões envolvidas [Cochran,1955].

As fases agora podem assumir diversos valores, então as probabilidades assumirão a forma de uma distribuição que fornecerão vários graus de erro, assim para a equação 170, a distribuição da probabilidade será dada por [Karle e Hauptman, 1950]:

$$P\{\Delta \boldsymbol{\phi}(\mathbf{h})\} = \frac{e^{K(\mathbf{h},\mathbf{h}')\cos\{\boldsymbol{\phi}\mathbf{h}\}-[\boldsymbol{\phi}(\mathbf{h}')\boldsymbol{\phi}(\mathbf{h}-\mathbf{h}')]\}}}{2\pi \mathbf{I}_{0}[K(\mathbf{h},\mathbf{h}')]}$$
(172)

onde

$$\mathbf{K}(\mathbf{h},\mathbf{h}') = 2 \left(\mathbf{N}^{-1/2} \right) \left| \mathbf{E}(\mathbf{h}) \mathbf{E}(\mathbf{h}') \mathbf{E}(\mathbf{\overline{h}} \ \mathbf{\overline{h}'}) \right|$$
(173)

e, I₀ é a função de Bessel modificada.

Como exemplo a figura 20 exibe a expressão para a probabilidade calculada para os diferentes valores de K.

Figura 20- Distribuição de probabilidades de ϕ_3 para três valores de K.

A tabela 2 mostra os valores médios de E para diferentes números de átomos na cela e os diferentes valores de E.

Tabela 2

	$\langle E \rangle = (E_1 E_2 E_3)^{1/3}$		
K	N = 100	N = 30	
0,68	1,5	1,2	
1,60	2,0	1,6	
3,12	2,5	2,0	

VALORES DE K e E PARA DIFERENTES NÚMEROS DE ÁTOMOS

De uma forma particular, onde existem mais do que um apontamento triplo para a fase de uma reflexão, pode-se escrever a equação desenvolvida por Karle e Hauptman [1950], conhecida como fórmula da tangente:

$$tg[\phi(\mathbf{h})] = \frac{\sum_{\mathbf{h}'} K(\mathbf{h}, \mathbf{h'}) \operatorname{sen}[\phi(\mathbf{h'}) + \phi(\mathbf{h} - \mathbf{h'})]}{\sum_{\mathbf{h}'} K(\mathbf{h}, \mathbf{h'}) \cos[\phi(\mathbf{h'}) + \phi(\mathbf{h} - \mathbf{h'})]}$$
(174)

A fórmula da tangente tem grande importância prática em métodos diretos para cristais não centrossimétricos, é frequentemente utilizada na forma pesada, para a qual as contribuições para as somas são pesadas em termos da probabilidade das relações [Hull e Irwin, 1978].

A probabilidade de distribuição de $\phi(\mathbf{h})$ predita pela equação 174 pode ser calculada de equações similares a equação 172, mas é frequentemente descrita em termos de sua variança, o quadrado dos seus desvios padrão.
1 11.8 - ADIÇÃO SIMBÓLICA

A adição simbólica foi o primeiro método direto utilizado como rotina na determinação de estruturas cristalinas [Karle e Karle, 1966].

Através desta técnica, obtêm-se apenas um único conjunto de fase através da relação: $\phi(h) \approx \phi(k) + \phi(h - k)$

Assumindo esta aproximação e considerando-a igual a zero, tem-se que se forem conhecidas duas fases é possível calcular a terceira. Isto pode ser conseguido através da fixação da origem, mas no caso das reflexões que fixam a origem não serem suficientes, combinam-se outras reflexões com fases desconhecidas, que são representadas por símbolos e então novas fases são calculadas em termos desses símbolos. Posteriormente calcula-se o valor destas fases atribuindo aos símbolos valores de fase adequados.

Após a substituição dos símbolos, refina-se essas fases através da fórmula da tangente (equação 174) e assim é possível encontrar as fases restantes obtendo assim, o conjunto de fases para o cálculo do mapa de densidade eletrônica usando como coeficientes os fatores de estrutura normalizado com as fases obtidas.

O método de adição simbólica inicia-se com uma coleção de n relações de fase para m fases desconhecidas onde m < < n. Esta reflexões iniciais são escolhidas de forma que em princípio todas as outras fases podem ser obtidas a partir delas.

Quanto ao procedimento uma adição simbólica pode-se estabelecer como passos:

a - Cálculo dos fatores de estrutura normalizados;

b - Geração das relações de fase (tripletes);

c -Escolha do conjunto inicial (fixação da origem);

d- Escolha das reflexões usadas com fase igual a símbolo;

e-Determinação de valores numéricos aproximados dos símbolos;

f- Refinamento numérico das fases;

g- Cálculo das sínteses de Fourier e suas interpretações;

h- Rápido refinamento da estrutura.

1.11.9 - AS BASES DO MÉTODO DE MULTISSOLUÇÃO

Embora a adição simbólica seja um dos importantes métodos diretos [Karle e Karle, 1964] existe um problema com este método, que é o fato de não ser possível combinar certas indicações de fases se elas envolverem diferentes símbolos. Assim, por exemplo, se a fase está indicada como a+b em uma relação de fase e c+d em uma outra relação , então não será permitida uma indicação combinada como uma média (a+b+c+d)/2, Isto ocorre devido a ambiguidade de " 2π " na definição das fases. Então com a = b = $\pi/2$ e c = d = $-\pi/2$ as duas indicações individuais serão as mesmas, desde que $\pi \equiv -\pi$, mas a indicação média deve ser zero.

Nos estágios iniciais da determinação de fases existem usualmente muitas indicações de fases em que todas podem ser usadas em um modo positivo, por esta razão

Germain e Woolfson [1968] propuseram o uso de valores de fases explícitos, melhores então do que símbolos, e estas idéias originaram o sistema de programas MULTAN (multisolution tangent formula) e outras técnicas similares.

Os métodos de multissolução, são de variedades diferentes, mas todos sistematizam o mesmo processo de determinação de fase, que ao invés de utilizar um único valor para o símbolo (como na adição simbólica) utilizam um conjunto de valores possíveis de fase para esse símbolo, isto é, estabelecem um intervalo de valores numéricos que são usados. Para cada conjunto de fases utiliza-se a fórmula da tangente, ou uma forma otimizada desta [Hull e Irwin, 1978] para o cálculo das fases do restante das reflexões. Assim para cada conjuto obtem-se os valores das fases, relativos aos valores iniciais atribuidos aos símbolos, gerando-se conjuntos de fases, ou soluções possíveis.

A avaliação da confiabilidade é feita pelo cálculo de valores que representam a consistência entre os dados observados e o modelo que são as figuras de mérito.

As principais etapas na aplicação do método são:

1 - Cálculo dos módulos dos fatores de estrutura normalizados.

Nesta etapa se alguma informação sobre a geometria molecular é conhecida pode-se melhorar os cálculos dos fatores de estrutura normalizados incorporando esta informação.

2 - Seleção de um conjunto de reflexões com os maiores valores de E.

Neste estágio seleciona-se as reflexões com maiores valores de |E|, através das quais a estrutura pode ser resolvida (origem, enantiomorfo, reflexões adicionais para as quais vai ser variada a fase). O número de reflexões a serem selecionadas depende do número

de átomos da molécula e do sistema cristalino. Uma vez que ao final do processo deverá ser calculado um mapa de densidade eletrônica. No sistema MULTAN, a rotina estabelece este número como sendo $4 \times N + 100$, onde N é o número de átomos da unidade assimétrica, e acrescenta a ele mais 100 reflexões para o sistema triclínico, e 50 para o sistema monoclínico.

3 - Geração das relações Σ_2 (tripletes):

As relações Σ_2 são geradas pelo uso de reflexões com os maiores valores de |E| e também pelos pares de contribuições das reflexões de menores valores de |E|.

4- - Seleção de um conjunto de partida:

O algorítmo para a escolha de um arranjo de partida é chamado de procedimento de convergência descrito por Germain, Main e Woolfson [1970], cujo diagrama de fluxo está representado na figura 21.

Figura 21 - Diagrama do processo de convergência.

O valor de α_{est} é encontrado a partir da equação:

$$\alpha_{est}^{2} = \sum_{\mathbf{k}} K(\mathbf{h}, \mathbf{k})^{2} + \sum_{\mathbf{k}} \sum_{l} K(\mathbf{h}, \mathbf{k}) K(\mathbf{h}, l) \frac{\mathbf{l}_{1} \{ K(\mathbf{h}, \mathbf{k}) \}}{\mathbf{l}_{0} \{ K(\mathbf{h}, \mathbf{k}) \}} \frac{\mathbf{l}_{1} \{ K(\mathbf{h}, l) \}}{\mathbf{l}_{0} \{ K(\mathbf{h}, l) \}}$$
(175)

onde I_0 e I_1 são funções de Bessel, a somatória dupla sobre k e *l* presupõe k $\neq l$.

A cada estágio o algoritmo de convergência identifica aquelas reflexões de α_{est} que são elimindas do processo desde que elas não sejam necessárias no processo de fixação da origem. Quando α_{est} é igual a zero isto significa que esta reflexão não pode ter sua fase determinada pelas remanescentes, e neste caso essa reflexão é incorporada ao conjunto de partida e sua fase vai ser variada no processo de geração dos conjuntos de soluções possíveis.

5- Atribuição das fases iniciais

O processo de determinação de fase através da formula da tangente inicia-se com as fases que definem a origem e enantiomorfo, e mais um conjunto de fases atribuídas em valores permitidos, para fornecer diferentes conjuntos de partida.

6 - Geração dos conjuntos de soluções possíveis.

Através da aplicação da formula da tangente é possível calcular as fases para os diferentes conjuntos iniciais, e também refina-las.

7 - Avaliação da confiabilidade das soluções obtidas.

Uma vez que as fases de todos os conjuntos foram calculadas, a avaliação da confiabilidade de cada conjunto é feita pelo cálculo das figuras de méritos.

Alguns exemplos de figuras de mérito utilizadas são:

Figura de Mérito Absoluta [Woolfson, 1976]

Esta figura de mérito utiliza diferentes valores de α , através de:

$$\mathbf{ABSFOM} = \frac{\sum_{\mathbf{h}} \{\alpha(\mathbf{h}) - \alpha_r(\mathbf{h})\}}{\sum_{\mathbf{h}} \{\alpha_{est}(\mathbf{h}) - \alpha_r(\mathbf{h})\}}$$
(176)

onde:

$$\alpha(\mathbf{h}) = \left\{ \left[\Sigma_{\mathbf{n}} K(\mathbf{h}, \mathbf{k}) \cos \left[\phi(\mathbf{h}) + \phi(\mathbf{h} - \mathbf{k}) \right] \right]^2 + \left[\Sigma K(\mathbf{h}, \mathbf{k}) \sin \left[\phi(\mathbf{k}) + \phi(\mathbf{h} - \mathbf{k}) \right] \right]^2 \right\}^{1/2}$$
(177)

$$\alpha_{est} = \sum_{\mathbf{h}} K(\mathbf{h}, \mathbf{k}) \frac{\mathbf{l}_1 \{ K(\mathbf{h}, \mathbf{k}) \}}{\mathbf{l}_0 \{ K(\mathbf{h}, \mathbf{k}) \}}$$
(178)

e α_r é dado por:

$$\alpha_r = \sum_{\mathbf{h}} \sqrt{\sum_{\mathbf{h}} K^2(\mathbf{h}, \mathbf{k})}$$
(179)

O valor de ABSFOM varia entre 0 (zero), para fases aleatórias e 1 (um) para o caso em que os valores de α são iguais aos valores esperados.

Figura de mérito Ψ₀

A segunda figura de mérito Ψ_o é calculada usando-se os maiores e menores valores de |E|, cujas fases foram determinadas e é calculado por:

$$\Psi_{o} = \frac{\sum_{\mathbf{h}} \left| \sum_{\mathbf{k}} E(\mathbf{k}) E(\mathbf{h} - \mathbf{k}) \right|}{\sum_{\mathbf{h}} \left(\sum_{\mathbf{k}} \left| E(\mathbf{k}) E(\mathbf{h} - \mathbf{k}) \right|^{2} \right)^{1/2}}$$
(180)

Para os conjuntos de fases apropriadas, ou proximas da realidade o valor de Ψ_0 tende a unidade.

Figura de mérito R.

A terceira figura de mérito é o índice R (fator de concordância) [Karle e Karle 1966]. Esta figura de mérito na realidade fornece o fator de discordância entre a estrutura proposta e verdadeira, portanto para valores menores de R melhor será o modelo de estrutura encontrado.

O Indice R é definido da seguinte forma:

$$R = \frac{\sum_{\mathbf{h}} \left\| E(\mathbf{h}) \right\|_{obs} - \left\| E(\mathbf{h}) \right\|_{calc}}{\sum_{\mathbf{h}} \left| E(\mathbf{h}) \right\|_{obs}}$$
(181)

onde, $|E(h)|_{obs}$ são os módulos de fatores de estrutura normalizados observados e $|E(h)|_{calc}$ são os módulos dos fatores de estrutura calculados de acordo com:

$$|E(\mathbf{h})|_{cale} = K \sum_{\mathbf{k}} E(\mathbf{k}) E(\mathbf{h} - \mathbf{k})$$
(182)

onde K é uma constante de normalização garantindo que:

en en der eine juppenen.

5 F F

1 11 1 1 1

$$\sum_{\mathbf{h}} |\mathbf{E}(\mathbf{h})|_{obs}^2 = \sum_{\mathbf{h}} |\mathbf{E}(\mathbf{h})|_{calc}^2$$
(183)

Uma outra forma da figura de mérito R é a calculada usando-se os valores de α , conhecida como R α que então tem a seguinte forma:

$$R\alpha = \frac{\sum_{\mathbf{h}} |\alpha(\mathbf{h}) - \alpha_{est}(\mathbf{h})|}{\sum_{\mathbf{h}} \alpha_{est}(\mathbf{h})}$$
(184)

O que ocorre normalmente, é que na maioria das vezes as três ou quatro figuras de mérito descritas não são satisfeitas ao mesmo tempo para os conjuntos considerados. Assim para solucionar o problema definiu-se uma figura de mérito combinada envolvendo ABSFOM, Ψ_0 e R que foi chamada de CFOM, expressa da forma:

$$CFOM = w_1 \frac{ABSFOM - (ABSFOM)_{\min}}{(ABSFOM)(ABSFOM)_{\max}} + w_2 \frac{(\Psi_0)_{\max} - \Psi_0}{(\Psi_0)_{\max} - (\Psi_0)_{\min}} + w_3 \frac{R_{\max} - R}{R_{\max} - R_{\min}}$$
(185)

ou usando $R\alpha$:

$$CFOM = w_1 \frac{ABSFOM - (ABSFOM)_{\min}}{(ABSFOM)(ABSFOM)_{\max}} + w_2 \frac{(\Psi_0)_{\max} - \Psi_0}{(\Psi_0)_{\max} - (\Psi_0)_{\min}} + w_3 \frac{R\alpha_{\max} - R\alpha}{R\alpha_{\max} - R\alpha_{\min}}$$
(186)

onde w_1, w_2, w_3 são pesos geralmente tomados como 0,6, 1,2 e 1,2 respectivamente, para dar a CFOM valores no intervalo 0 a 3.

7 - Mapas de E.

Mapa de E é o nome dado aos mapas de densidade eletrônica, calculados usando-se como coeficientes da série de Fourier os valores dos módulos dos fatores de estutura normalizados, |E|, atribuindo a eles as fases calculadas pelo processo descrito anteriormente.

Desta forma finalmente constrói-se os mapas de Fourier das melhores soluções. Nesta etapa quase ou todos os átomos são localizados. O modelo inicial da estrutura é assim obtido estando terminada a etapa de aplicação dos métodos diretos.

Caso o modelo obtido seja muito incompleto, ou seja, poucos átomos foram localizados, pode-se reiniciar o processo de obtenção das fases, usando como informação, para o cálculo dos fatores de estrutura normalizados, a parte da estrutura obtida no modelo. O processo restante segue as etapas descritas.

1.12 - REFINAMENTO DE UMA ESTRUTURA

Após resolver o problema de encontrar as fases obtem-se um modelo que consiste em uma coleção de parâmetros especificando as localizações de todos os átomos (ou da maior parte) dentro da cela unitária. O modelo obtido deve agora ser ajustado (refinado) relativamente às intensidades das reflexões medidas, ou seja, no estágio de refinamento de uma estrutura a ser analisada, supõe-se que a estrutura contém todos os átomos e a apartir daí, pode-se localizar os átomos restantes ou ajustar a posição dos já encontrados, até o máximo de concordância permitido pelos dados coletados.

1.12.1 - REFINAMENTO PELA SÍNTESE DE FOURIER DIFERENÇA

Uma das maneiras de encontrar-se os átomos, não considerados no modelo, em uma cela unitária é uma aproximação importante, conhecida como síntese de Fourier diferença (Stout e Jensen, 1989), na qual calcula-se a densidade eletrônica ($\rho(xyz)$) usando como coeficientes da série as diferenças entre os módulos dos fatores de estrutura observado e calculado ($\Delta F = |F_o| - |F_c|$).

Escrevendo separadamente $\rho_o e \rho_c$, densidade eletrônica observada e calculada respectivamente,

$$\rho_{o}(x,y,z) = \frac{1}{V} \sum \sum F_{o}(hkl) e^{-2\pi i (hx + ky + lz)} + R$$
(187)

$$\rho_{\rm c}(\mathbf{x},\mathbf{y},\mathbf{z}) = \frac{1}{V} \Sigma \Sigma \Sigma F_{\rm c}(\mathbf{hk}l) e^{-2\pi i (\mathbf{hx} + \mathbf{ky} + l_{\rm Z})} + \mathbf{R}^{\prime}$$
(188)

onde R e R' são representações remanescentes das partes omitidas das séries, e tomando-se as duas séries e subtraíndo termo a termo encontra-se:

$$\rho_{o}(x,y,z) - \rho_{c}(x,y,z) = \frac{1}{V} \sum \sum (F_{o} - F_{c})_{hkl} e^{-2\pi i (hx + ky + lz)} + R - R'$$
(189)

como as terminações da síntese são aproximadamentes iguais, ou seja, próximas de zero então a síntese de diferença pode ser escrita de uma nova forma:

$$\rho_{\rm o} - \rho_{\rm c} = \frac{1}{V} \sum \sum \Delta F(hkl) e^{-2\pi i (hx+ky+lz)}$$
(190)

ou separando F(hkl) em amplitude e fase, a expressão 189 adquire uma nova forma, dada por:

$$\Delta \rho = 1/V \Sigma \Sigma \Sigma (|F_o| - |F_c|) e^{i \alpha c} e^{-2\pi i (hx + ky + lz)}$$
(191)

onde α_c é a fase do Fator de estrutura calculado. O significado desta expressão é que ela representa estritamente a diferença entre a densidade eletrônica real e a do modelo usado para o cálculo do fator de estrutura.

Uma outra vantagem da síntese de diferença é de mostrar claramente os erros posicionais dos átomos na estrutura que está sendo analisada, podendo então ser utilizada como uma bases para o posterior refinamento.

Os efeitos nas coordenadas posicionais pode ser mostrado através da figura 22.

SERVIÇO DE BIBLIOTECA E INFORMAÇÃO IQSC/USP

Figura 22 - Efeito dos erros posicionais visualizado na Fourier diferença. (a) na direção de x; (b) no plano xy.

Na figura 22a a linha A ilustra a densidade eletrônica ideal de um átomo, projetado sobre uma linha através do seu centro, a linha B (tracejada) ilustra a posição do átomo do modelo usado no cálculo de F_c e finalmente a linha C é o resultado da síntese ΔF .

A figura 22b mostra um átomo mal localizado, linhas tracejadas (região negativa) e a posição correta do átomo está representada na região de linha contínua.

Torna-se evidente que um erro em uma coordenada resultará em um gradiente na síntese ΔF , assim , a correção para uma coordenada atômica estará na direção do gradiente que se direcionará a uma região mais positiva.

Correções nas coordenadas x, por exemplo, podem ser obtidas com suficiente precisão através da expressão:

$$\Delta_{\rm xq} = \frac{\rm inclinação}{\rm curvatura} = -\frac{\partial \Delta \rho / \partial x_q}{\partial^2 \rho / \partial x_q^2}$$
(192)

Equações similares podem ser obtidas para as coordenadas y e z.

Os valores próprios para as curvaturas podem ser derivados de uma síntese de F_o , contendo somente termos correspondentes àqueles usados na síntese de ΔF .

Na prática entretanto esse método de ajuste, das coordenadas posicionais dos átomos do modelo, demanda um grande volume computacional, sendo este tipo de ajuste pouco utilizado.

Na equação 191, no primeiro termo da exponencial, aparece o termo α_c (fase calculada), mostrando que a principal informação obtida é que se o valor de α_c for igual ou próximo a α_o (fase do fator de estrutura observado), resultará o fornecimento de uma medida direta dos erros entre o modelo usado ($|F_c|$) e a verdadeira estrutura, implícito pelos valores de $|F_o|$. A consequência importante é que através deste tipo de síntese pode-se localizar átomos não incluidos no modelo, permitindo completar a estrutura.

O principal argumento para estas considerações vem das considerações feitas para as situações limitantes.

1.12.1.1 - SITUAÇÕES LIMITANTES DA FOURIER DIFERENÇA

Deve-se analisar agora os casos limitantes de $|F_o| \in |F_c|$, que são basicamente $|F_o| \approx |F_c| \in |F_o| \neq |F_c|$.

Para o segundo caso duas situações diferentes podem ocorrer, $|F_o| > |F_c| e |F_c| > |F_o|$. Os três casos estão mostradas na figura 23.

Figura 23 - Situações limites da sintese ΔF . (a) $|F_o| \approx |F_c|$; (b) $|F_o| > |F_c|$; (c) $|F_o| > |F_c|$.

Se o modelo de fases for correto existirá alta probabilidade de que α_c seja aproximadamente correspondente ao valor da fase verdadeira de F_o . É portanto nesta suposição que a síntese F_o (sintese de Fourier usando como coeficientes $|F_o|$ com a fase igual a α_c) está baseada.

Para o caso em que α_e difere do valor verdadeiro, um valor alto de $|F_o|$ introduzirá sérios erros na síntese resultante.

Reflexões nas quais $|F_o| \approx |F_c|$ (figura 23a) tendem a reproduzir o modelo, e acrescentam apenas pequenas informações, desta forma o uso desta reflexões oferece, neste estágio, pequeno ganho, mas possíveis riscos de grandes distorções. Na síntese de Fourier diferença entretanto $|F_o| - |F_c| \approx 0$, então o efeito destas reflexões é automaticamente minimizado.

Segundo caso $|F_0| \neq |F_c|$:

Para este caso duas situações se apresentam, $|F_o| > |F_c| |e| |F_c| > |F_o|$.

No caso onde $|F_o| > |F_c|$ (figura 23b, então $|F_o|$ fará uma importante contribuição para a série de Fourier diferença e proporcionará informações úteis; desde que α_c seja próximo de α_o . Entretanto a probabilidade de correspondência entre α_c e α_o , é tanto menor quanto maior for a diferença entre $|F_o| \in |F_c|$ e diminuirá ainda mais quando $|F_c|$ se aproxima de zero, desta forma estas reflexões são inseguras.

Quando $|F_c| > |F_o|$ (figura 23c) embora as reflexões observadas transportem informações sobre a estrutura verdadeira, o módulo $|F_o|$ contribue com muito pouco efeito na somatória no caso da sintese de Fourier com os F_o como coeficientes.

Na sintese ΔF entretanto, $||F_o| - |F_c||$ serão grandes e farão uma importante contribuição para a síntese.

Deve ser lembrado porém que estes termos, $||F_o| - |F_c||$, terão suas fases mais ou menos corretas, dependendo da diferença entre $\alpha_c \in \alpha_o$.

A verdade sobre esta afirmação pode ser verificada pela interpretação da figura

24.

Figura 24 - (a) vetores para o caso $|F_c| > |F_o|$. (b) vetores para o caso, $|F_c| > |F_o|$.com $\alpha_o = \alpha_c$. (c) comparação entre os vetores $F_o - F_c e \Delta F e^{-i\alpha c}$.

Representando-se os coeficientes da síntese diferença ($\Delta F = F_o - F_c$), através de vetores para os três casos anteriores, ilustrados na figura 24, pode -se escrever:

$$\left|\Delta \mathbf{F}\right| \mathbf{e}^{i\,\alpha\Delta} = \left|\mathbf{F}_{o}\right| \mathbf{e}^{i\,\alpha\circ} - \left|\mathbf{F}_{c}\right| \mathbf{e}^{i\alpha\circ} \tag{193}$$

Pela observação da figura 24a, nota-se que estes valores são justamente os vetores requeridos para corrigir o valor de F_c para os valores reais de F_o . Estes vetores são os fatores resultantes da adição da densidade eletrônica quando necessária e subtração quando em excesso.

Como α_o é desconhecido, pode-se fazer as seguintes suposições:

$$\alpha_{\rm o} \approx \alpha_{\rm c} \tag{194}$$

$$|\Delta F| e^{i\alpha\Lambda} \approx |F_o| e^{i\alpha c} - |F_c| e^{i\alpha c}$$
(195)

$$\left|\Delta F\right| e^{i\alpha\Delta} \approx \left(\left|F_{o}\right| - \left|F_{c}\right|\right) e^{i\alpha c}$$
(196)

$$\left|\Delta F\right| e^{i\,\alpha\Delta} \approx \left|\Delta F\right| e^{i\,\alpha c} \tag{197}$$

Como considerou-se até o presente momento somente reflexões para as quais ΔF resulta sempre negativo a aproximação na realidade é:

$$\left|\Delta F\right| e^{i\,\alpha\Delta} \approx -\left|\Delta F\right| e^{i\alpha c} \tag{198}$$

Observando-se a figura 24c, verifica-se que estes dois vetores são comparáveis em magnitude e fase.

Pode-se agora generalizar a construção geométrica destes fatores (equação 197) reescrevendo-a na seguinte forma:

$$\Delta \mathbf{F} = -\mathbf{F}_{\mathbf{c}} + \mathbf{F}_{\mathbf{o}} \tag{199}$$

Esta generalização pode ser ilustrada na figura 25, concluindo-se que o valor de ΔF sempre deve estar situado sobre um círculo de raio $|F_o|$ ao redor dos F_o .

Figura 25 - Construção mostrando o intervalo de a.

A síntese ΔF também pode mostrar os efeitos dos erros em parâmetros térmicos usados no modelo.

Observando-se a figura 26 verifica-se que a linha contínua (a), ilustra a densidade eletrônica real, a linha tracejada (b); representa a densidade eletrônica calculada e a linha mais escura (c) representa a diferença ($\rho_0 - \rho_c$).

Figura 26 - Seção em linha da síntese ρ₀ - ρ_c: (a)- parâmetros térmicos super-estimados;
(b)-parâmetros térmicos sub-estimados

Pela figura 26a verifica-se que se o parâmetro de vibração témica assumido for maior que o real, ΔF mostrará um maximo positivo, e na figura 26b se o parâmetro for assumido menor que o real, ΔF fornecerá uma região negativa. Pode-se também mostrar que a magnitude e o sinal da curvatura do máximo ou mínimo no mapa ΔF é uma medida de erros nos parâmetros.

Sabendo-se que os movimentos térmicos dos átomos não são esfericamente simétricos, numa situação anisotrópica, o movimento vibratório conduzirá a uma distribuição elipsoidal da densidade eletrônica. Isto esta ilustrado na figura 27, que apresenta uma seção através de um átomo vibrando anisotropicamente (a), o mesmo átomo vibrando isotropicamente (b) e a diferença (c)entre (a) e (b).

Figura 27 - Seção da densidade eletrônica por um átomo. (a) densidade eletrônica ideal, usando F_0 ; (b) densidade eletronica usando vibração isotrópica (F_c); (c) densidade eletrônica ΔF , mostrando a aparencia da diferença que ocorre quando um átomo vibrando anisotrópicamente é considerado isotrópico. As linhas contínuas representam regiões positivas e as tracejadas regiões de densidade eletrônica negativa.

1.12.2 - REFINAMENTO POR MÍNIMOS QUADRADOS

Um método analítico de refinamento de grande poder e alcance, está baseado sobre o princípio dos mínimos quadrados [Stout e Jensen, 1989].

Considerando uma função linear com n variáveis $x_1, x_2, ..., x_n$; estas variáveis, podem ser obtidas definindo um espaço, cujo valor em algum ponto é determinado pela localização ($x_1, x_2, x_3,..., x_n$) e pelos parâmetros independentes($p_1, p_2,..., p_n$), que definem a função,

Assim pode-se escrever a função como:

$$\mathbf{f} = \mathbf{p}_1 \, \mathbf{x}_1 + \mathbf{p}_2 \, \mathbf{x}_2 + \mathbf{p}_3 \, \mathbf{x}_3 + \dots + \mathbf{p}_n \, \mathbf{x}_n \tag{200}$$

Se os valores da função são medidos em **m** diferentes pontos com $\mathbf{m} > \mathbf{n}$, o princípio dos mínimos quadrados impõe que os melhores valores para os parâmetros p_1, p_2, \dots, p_n são aqueles que minimizam a soma dos quadrados das diferenças (propriamente pesadas) entre os valores observados e calculados da função, para todos os pontos observados. Desta forma a quantidade a ser minimizada é dada por:

$$D = \sum_{r=1}^{m} w_r (f_{o,r} - f_{o,r})^2$$
(201)

onde w_r é o peso determinado de uma observação, $f_{o,r}$ é um dos m valores observados da função e $f_{c,r}$ é o valor correspondente calculado.

Para obter-se as melhores correspondências será necessário, considerar os parâmetros p como variáveis que podem ser ajustadas para minimizar D. Este é um problema de minimização direta que é tratado pela diferenciação do lado direito da equação (200), com respeito a cada parâmetro, e igualando a zero. Então:

$$\sum_{r=1}^{m} w_r (f_{o,r} - f_{c,r})^2 \frac{\partial f_{c,r}}{\partial p_j} = 0 , \quad \text{onde } j=1,2,3,\dots,n \quad (202)$$

que se constitui em um conjunto de n equações a n variaveis, conjunto este conhecido como equações normais.

O que ocorre na prática, é que existem **m** equações observadas com a forma da equação 201, sendo uma para cada observação (F_o). Como o que se quer é tratar os parâmetros p_j , como quantidades a serem ajustadas, e os diferentes valores de x possuem diferentes valores fixados para cada uma das **m** observações, a situação é costumariamente reverter a ordem.

Tomando-se as derivadas parciais $\partial f_{c,r} / \partial p_j$ para cada uma das m equações observadas e substituindo na equação 202 obtem-se as n equações normais representadas abaixo:

$$\sum_{r=1}^{m} w_r (f_{o,r} - x_{r1}p_1 - x_{r2}p_2 - x_mp_n)x_{r1} = 0$$

$$\sum_{r=1}^{m} w_r (f_{o,r} - x_{r1}p_1 - x_{r2}p_2 - \dots - x_mp_n) x_{r2} = 0$$

$$\sum_{r=1}^{m} w_r (f_{o,r} - x_{r1}p_1 - x_{r2}p_2 - \dots - x_mp_n) x_m = 0$$
(203)

Rearranjando as expressões anteriores pode-se reescrever de forma mais

completa:

$$\sum_{r=1}^{m} w_r x_{r1}^2 p_1 + \sum_{r=1}^{m} w_r x_{r1} x_{r2} p_2 + \ldots + \sum_{r=1}^{m} w_r x_{r1} x_m p_n = \sum_{r=1}^{m} w_r f_{o,r} x_{r1}$$

$$\sum_{r=1}^{m} w_r x_{r2} x_{r1} p_1 + \sum_{r=1}^{m} w_r x_{r2}^2 p_2 + \ldots + \sum_{r=1}^{m} w_r x_{r2} x_m p_n = \sum_{r=1}^{m} w_r f_{o,r} x_{r2}$$

$$\sum_{r=1}^{m} w_r x_{r1} x_{r1} p_1 + \sum_{r=1}^{m} w_r x_{r2} p_2 + \ldots + \sum_{r=1}^{m} w_r x_{r2}^2 p_n = \sum_{r=1}^{m} w_r f_{o,r} x_{r2}$$
(204)

A solução deste sistema de **n** equações fornece diretamente os melhores valores dos parâmetros p_i no sentido dos mínimos quadrados.

Se a forma funcional das equações observadas não é linear nos valores de p, então as equações normais não são lineares tornando-se insolúveis, entretanto nestes casos, pode ser tornadas lineares por uma aproximação da função em série de Taylor:

$$f(p_1, p_2, ..., p_n) = f(a_1, a_2, ..., a_n) + \frac{\partial f(a_1, a_2, ..., a_n)}{\partial p_1} (p_1 - a_1) + ... \frac{\partial f(a_1, a_2, ..., a_n)}{\partial p_n} (p_n - a_n)$$

ou

$$\mathbf{f}(\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_n) = \mathbf{f}(\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n) + \frac{\partial f(\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n)}{\partial \mathbf{p}_1} \Delta \mathbf{p}_1 + \dots + \frac{\partial f(\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n)}{\partial \mathbf{p}_n} \Delta \mathbf{p}_n$$
(205)

onde termos de Δp_i , de potencia maior que um foram desprezados. Os a_j , são valores aproximados de p_i , e f $(a_1, a_2,...,a_n)$; ∂ f $(a_1, a_2,...,a_n)/\partial p_j$; ∂ f $(a_1, a_2, ..., a_n)/\partial p_n$, são as funções e suas derivadas avaliadas em seus valores aproximados.

Se os valores de a_j são aproximações suficientes boas, a aplicação dos processos de mínimos quadrados usando as equações lineares dadas pela equação 204 fornecerá valores para as quantidades Δp_j , de modo que os a_j sejam dados por:

$$\mathbf{a}_{j} = \mathbf{a}_{j} + \Delta \mathbf{p}_{j} \tag{206}$$

Portanto uma aproximação melhor para os melhores valores dos parâmetros p_{j} , melhores então do que os iniciais a_{j} .

Por outro lado devido as séries terem sido truncadas pelo despreso de altas potencias de Δp_j , os cálculos devem ser repetidos usando como valores aproximados para cada repetição os resultados derivados dos cálculos precedentes.

O processo interativo está completo quando não existe variação significativa nos parâmetros entre dois ciclos sucessivos, isto está em contraste para o caso onde as equações observadas são verdadeiramente lineares, quando nenhuma aproximação nos parâmetros é requerida e a solução das equações normais fornece seus valores interativos.

Em difração de raios-X, as formas funcionais dos fatores de estrutura são transcendentais e assim devem ser aproximadas por uma série de Taylor truncada, então neste caso a quantidade minimizada é dada por:

$$D = \sum_{hd} w_{hkl} (|F_o| - |kF_c|)^2$$
(207)

Desta forma a quantidade D é minimizada sobre todas as reflexões observadas.

A minimização é feita como no caso anterior tomando-se a derivada com respeito a cada parâmetro e igualando a zero, o que conduzirá às n equações similares a equação 202:

$$\sum_{kl} w_{kkl} (|F_o| - |kF_c(p_1, p_2, ..., p_n)| \frac{\partial |kF_c(p_1, p_2, ..., p_n)|}{\partial p_j} = 0 \quad \text{com } j=1,2,3...n \quad (208)$$

Expressando-se a função $|F_e|$ como uma série de Taylor e negligênciando os termos de potência maior que um:

$$|\mathbf{k}F_{c}(\mathbf{p}_{1},...,\mathbf{p}_{n})| = |\mathbf{k}F_{c}(\mathbf{a}_{1}...,\mathbf{a}_{n})| + \frac{\partial|\mathbf{k}F_{c}|}{\partial \mathbf{p}_{1}}\Delta \mathbf{p}_{1} + \ldots + \frac{\partial|\mathbf{k}F_{c}|}{\partial \mathbf{p}_{n}}\Delta \mathbf{p}_{n}$$
(209)

onde $p_1,...,p_n$, podem ser algum dos parâmetros: escala, posicionais ou térmicos, $e.\Delta p_j = p_j - a_j$ Substituindo a equação209 em 208 tem-se:

$$\sum_{\mathbf{k}\mathbf{k}'} \mathbf{w}_{\mathbf{k}\mathbf{k}\mathbf{k}'} (|\mathbf{F}_{\mathbf{o}}| - |\mathbf{k}\mathbf{F}_{\mathbf{c}}(\mathbf{a}_{1},...,\mathbf{a}_{n})| - \frac{\partial |\mathbf{k}\mathbf{F}_{\mathbf{c}}|}{\partial \mathbf{p}_{1}} \Delta \mathbf{p}_{1} - \dots - \frac{\partial |\mathbf{k}\mathbf{F}_{\mathbf{c}}|}{\partial \mathbf{p}_{n}} \Delta \mathbf{p}_{n}) \frac{\partial |\mathbf{k}\mathbf{F}_{\mathbf{c}}|}{\partial \mathbf{p}_{j}} = 0 \quad (210)$$

onde j=1,2,3....,n

A equação 210 pode ser escrita ainda de uma outra forma:

$$\sum_{\mathbf{k}\mathbf{k}'} \mathbf{w}_{\mathbf{k}\mathbf{k}\mathbf{k}'} (\Delta \mathbf{F} - \frac{\partial |\mathbf{k}\mathbf{F}_c|}{\partial \mathbf{p}_1} \Delta \mathbf{p}_1 - \dots - \frac{\partial |\mathbf{k}\mathbf{F}_c|}{\partial \mathbf{p}_n} \Delta \mathbf{p}_n) \frac{\partial |\mathbf{k}\mathbf{F}_c|}{\partial \mathbf{p}_j} = 0$$
(211)

onde ΔF tem o papel das quantidades observadas f_o nas equações 201 e 202 respectivamente.

Expandindo-se e rearranjando a equação 211 obtem-se um conjunto de equações, que pode ser comparado termo a termo com a equação 203.

Este é um sistema de n equações sobre n incognitas Δp_j . Observa-se que estas equações são lineares sobre os Δp_j e tem solução. A combinação destas equações com as aproximações iniciais dos a_j fornece os melhores valores aproximados para vários parâmetros, podendo ser usada para a repetição do processo, assim as convergências são obtidas até que os sucessivos ciclos não produzam variações significativas.

.....

1.12.3 - FUNÇÕES PESO

As funções minimizadas pelos métodos de mínimos quadrados trazem consigo, o fator de pesagem (w), como sendo uma medida de segurança das observações. Escolhida adequadamente, possui o efeito de ajustar a contribuição de cada observação para as equações normais com o objetivo de produzir melhores resultados.

Existem diversos esquemas de pesagem, cada um incluindo diferentes considerações. Para a maioria dos sistemas de peso, as reflexões não observadas são omitidas das equações de minimização, portanto tem peso zero.

A seguir faz-se uma breve descrição dos principais esquemas de peso.

1.12.3.1 CONTRIBUIÇÃO DE NON POISSON

Este esquema de peso é dado pela equação abaixo notando que quando a reflexão obedece $F^2 \leq \text{corte} \bullet \sigma$ (F²), ou seja é não observada, então a reflexão será omitida:

$$w = \frac{1}{\sigma(F)^2}$$
(213)

onde,

$$\sigma(F) = \frac{\sigma(F^2)}{2F}$$
(214)

$$\sigma(F^2) = (\sigma(I)^2 + (p \bullet F^2)^2)^{\frac{1}{2}}$$
(215)

Para estas equações tem-se:

F: é o fator de estrutura com desvio padrão $\sigma(F)$;

 $\sigma(I)$: é o desvio padrão de I, baseado sobre a contagem estatística;

w: peso para a reflexão;

p: fator de instabilidade experimental usado para diminuir o efeito de reflexões mais fortes. Este fator depende sobre a estabilidade dos dados coletados experimentalmente, sendo valores entre 0,02 e 0,07 são geralmente apropriados. No sistema MolEN [Enraf-Nonius, 1990), o valor é tomado como 0,04

1.12.3.2 - PESO PIVOT-POINT

O "pivot" é definido como sendo 1/3 do valor de F_{max} , sendo F_{max} o valor máximo do fator de estrutura observado.

Para o sistema de peso pivot-point são definidas as seguintes situações:

Se F < pivô, então w = F / pivot;

Se $F \ge piv\hat{o}$, então w = pivot /F;

Se F < corte então w = 0.

1.12.3.3 - PESO UNITÁRIO

Neste caso o valor de w será assumido igual a 1, para todas as reflexões, com exceção das não observadas, para as quais w = 0, ou seja, se $I \le \text{corte} \cdot \sigma(I)$ onde o corte é um parâmetro definido.

1.12.3.4 - PESO UNITÁRIO MODIFICADO

Neste sistema de pesagem de reflexões, o fator de estrutura apresenta duas situações definidas pela figura28.

Figura 28 - Gráfico do limiar para o sistema de peso unitário modificado.

Usando-se o gráfico se F > limiar então:w = 1,0; se F ≤ limiar a equação para o peso será dada por :

```
w = [\text{limiar}/\text{F}]^2
Se F for não observado, W =0.
```

1.12.3.5 - PESO POLINOMIAL CRUICKSHANK

Este peso é dado pela equação:

$$W = \frac{1}{C_0 + C_1 F + C_2 F^2 + C_3 F^3}$$
(216)

Onde os coeficientes C₀, C₁, C₂ e C₃ são normalmente definidos pelo usuário.

1.12.3.6 - PESO POLINOMIAL MODIFICADO DE CRUICKSHANK

Este tipo de peso inclui os coeficientes largura e altura da reflexão, e é usualmente definido por:

$$w = \frac{1}{1 + \left[\frac{F - altura}{largura}\right]^2}$$
(217)

Os coeficientes altura e largura são definidos pelo usuário.

1.12.3.7 - MÉTODO DE PESAGEM KILLEAN E LAWRENCE [1969]

A expressão para este peso é dada por :

$$w = \frac{1}{\sigma F^2 + (PWT \bullet F)^2 + QWT}$$
(218)

onde PWT e QWT são valores usualmente definidos com valores 0.02 e 1 respectivamente. Valores típicos para PWT são de 0.02 a 0.03 e para QWT são de 0 a 3 dependendo dos dados de intensidade. O fator PWT ajusta a contribuição dos F mais altos, enquanto que QWT tem maior eficiência sobre os valores de F pequenos.

1.12.4. - CONTROLE DE REFINAMENTO E INDICE DE DISCORDÂNCIA

Um índice de verificação da adequação do sistema de pesos utilizado no programa de refinamento por métodos de mínimos quadrados é denominado 'godness of fit' (GOF ou S) dado pela equação:

$$GOF = \sqrt{\frac{\sum_{i=1}^{m} w \|Fo_i\| - |Fc_i\|^2}{\text{graus de liberdade}}}$$
(219)

onde graus de liberdade corresponde ao número de reflexões menos o número de variáveis.

A equação 219, algumas vezes também chamada de desvio padrão de uma observação de pesos unitários (S), e é uma medida dos graus para os quais a distribuição encontrada das diferenças entre $|F_o|$ e $|F_c|$ adequa as distribuições esperadas dos pesos usados no refinamento.

Os controles de refinamento de uma estrutura mais usuais são os chamados índices de discordância, R.

Dentre os mais utilizados colocam-se:

R não pesado (unweighted R value), dado pela expressão:

$$R = \sqrt{\frac{\sum_{i=1}^{m} ||Fo_{i}| - |Fc_{i}||^{2}}{\sum_{i=1}^{m} |Fo_{i}|^{2}}}$$
(220)

R pesado (weighted R), dado pela equação:

$$R = \sqrt{\frac{\sum_{i=1}^{m} w \|Fo_i\| - |Fc_i\|^2}{\sum_{i=1}^{m} w |Fo_i|^2}}$$
(221)

Rall, ou R sobre todas as reflexões é calculado como R pesado (com peso unitário), incluindo todas as reflexões, é o único que inclue as não observadas.

CAPÍTULO II

DETERMINAÇÃO DA ESTRUTURA CRISTALINA E MOLECULAR DO 5,4'- DIHIDROXI - 3',5'- DIMETOXI - 6,7 - (2", 2", DIMETILPIRANO) FLAVONA

2.1 - INTRODUÇÃO

Como motivação deste trabalho e dos pesquisadores que atuam nesta área da Ciência, pode-se parafrasear o Prof. Dr. Nilso Barelli:

"Os motivos que levam a resolver as estruturas das substâncias cristalinas, naturais ou artificiais, se aprofundam na indagação da própria natureza, fascínio pela estrutura do mundo em que vivemos, o que na verdade constitui uma atitude profundamente religiosa."

Neste capítulo será apresentada a estrutura cristalina e molecular do composto 5,4',-Dihidroxi- 3',5'- dimetoxi- 6,7-(2'',2''- dimetilpirano)flavona.

Os monocristais foram fornecidos pelo Prof. Dr. Lourivaldo da Silva Santos da Universidade Federal do Pará, com o objetivo da determinação de sua estrutura molecular, para efeito de comparação com resultados espectroscópicos.

Para obter melhores monocristais a amostra foi recristalizada utilizando como solvente álcool etílico e deixada a baixa temperatura (geladeira).

2.2 COLETA DE DADOS

Um monocristal do composto de cor amarela transparente, de dimensões $0,10 \times 0,08 \times 0,12$ mm, foi selecionado e colado em uma fibra de vidro, sendo então montado no difratômetro CAD-4 da Enraf-Nonius para a realização das medidas dos parâmetros da cela unitária e das intensidades das reflexões.

Os ângulos de posicionamento para 25 reflexões, localizadas e centradas automaticamente, permitiram calcular e refinar os parâmetros da cela unitária.

No experimento as medidas de intensidades foram feitas utilizando-se a radiação $K_{\alpha}(Mo)$ ($\lambda = 0.71073$ Å), monocromatizada por um cristal de grafite no modo ômega (ω), com um intervalo de 2 θ entre 0 e 41.2°, e velocidade de varredura máxima igual a 16,48⁰/min, e minima de 1,83⁰/min.

Durante a coleta de dados foram usadas três reflexões $(\overline{1}, 11, \overline{2}; 0\overline{6}, \overline{4}; 6, 0, \overline{12})$, para o controle das intensidades, as quais foram registradas a cada 2h, observando-se que a variação foi menor que 5%.

Tendo-se em vista o limite máximo de θ mediu-se as reflexões com índices no intervalo -13 \leq h \leq 13; 0 \leq k \leq 23; -13 \leq l \leq 0; sendo coletadas 4118 reflexões, das quais 3952 reflexões independentes, destas, 1743, foram consideradas observadas com I \geq 3 σ (I).

O cristal de 5,4',-Dihidroxi- 3',5'- dimetoxi- 6,7-(2'',2''- dimetilpirano)flavona pertence ao sistema cristalino monoclínico, com: a =13,561(1), b= 23,428(2), c = 13,725(1)Å, $\beta = 119,528(4)^0$, V = 3819,6(5)Å³

A análise das extinções sistemáticas (hkl com h+k = 2n) levou a uma cela unitária centrada C; a presença de reflexões h0l somente do tipo l = 2n indicou duas possibilidades de grupo espacial: C2/c ou Cc. O cálculo da densidade supondo Z = 8 moleculas/cela unitária resultou no valor $D_c = 1,366 \text{ g}\cdot\text{cm}^{-3}$, coerente com o esperado para este tipo de composto (calculando para Z=4, obtem-se $D_c = 0.683 \text{ g}\cdot\text{cm}^{-3}$).

A escolha do grupo espacial C2/c foi confirmada como correta quando do cálculo da distribuição estatística dos fatores de estrutura, que apresentaram distribuição correspondente a cristal centrossimétrico ($\langle |E| \rangle = 0,670$).

Tabela 3

RESUMO DOS PRINCIPAIS DADOS CRISTALOGRÁFICOS

Fórmula Molecular: C ₂₂ H ₂₀ O ₇		Massa Molecular: 396,38		
Sistema Cristalino: Monocl	línico	Grupo Espacial : C2/c		
Extinções Sistemáticas:	hkl: h+k =	2n		
	h0 <i>l</i> : (h)	l = 2n		
a = 13,561(1) Å		$V = 3819,6(5)Å^3$		
b= 23,428(2) Å		$D_c = 1,366 \text{ g}\cdot\text{cm}^{-3}$		
c = 13,725(1) Å		Z = 8 moleculas/cela unitária		
$\beta = 119,528(4)^0$				
$\lambda(K_{\alpha}Mo) = 0,71073\text{\AA}$		μ (Mo K α) = 0,9 cm ⁻¹		
modo de coleta: ω				
velocidade de varredura: m	náxima = 16,48 ⁰	/min		
m	$inima = 1,83^{0}/m$	nin		
Dimensões do Cristal: 0,10	0 × 0,08 × 0,12			
Número de reflexões colet	adas: 4118			
Número de reflexões Inder	pendentes: 3952			
Número de reflexões sister	náticas : 98			
Número de Reflexões com	$I > 3\sigma(I)$: 1743	3		
$w = \frac{1}{1 + \begin{bmatrix} Fo - 86,79 \\ 4,38 \end{bmatrix}^2}$		GOF = 1,09		
R = 0,0509	$R_w = 0,0530$	$R_{all} = 0.157$		

2.3 - SOLUÇÃO E REFINAMENTO DA ESTRUTURA

Os dados de intensidades foram reduzidos a módulos dos fatores de estrutura com seus respectivos desvios padrão, após a correção pelos fatores de Lorentz polarização e absorção pelo método empírico PSISCAN [Enraf-Nonius, 1990].

Os índices de consistência interna calculados para os dados foram: 0,016 e 0,021, para as reflexões observadas e todas respectivamente, quando considerou-se as intensidades; e 0,015 e 0,055 considerando-se os fatores de estrutura.

Os fatores de transmissão máximos e mínimo foram respectivamente: 0,9998 e 0,9648, respectivamente, e o médio igual a 0,9791.

A estrutura foi resolvida utilizando Métodos Diretos pelo programa SIR [Enraf- Nonius, 1990], tendo sido localizados todos os átomos, exceto os hidrogênios.

Os fatores de escala e temperatura isotrópico médio foram conseguidos pelo gráfico de Wilson com os seguintes valores: K= 10.74637 e B= 3.83207.

Inicialmente as relações de fase foram obtidas, após a normalização dos fatores de estrutura, utilizando-se as reflexões com $E \ge 1.836$, gerando 3229 tripletes positivos, 173 negativos e 500 quartetos negativos.

A fixação da origem da cela unitária foi efetuada pelas reflexões 715 e 8,18, $\overline{7}$, e os símbolos foram selecionados para as seguintes reflexões: 570; 5,1,10; 6,0, $\overline{12}$; 408 e 4,16,1.

A partir do conjunto que apresentou as melhores figuras de mérito, calculou-se um mapa de E que mostrou máximos de densidade eletrônica, todos com aproximadamente a mesma intensidade, para os átomos de carbono e oxigênio.

87

O refinamento da estrutura foi feito pelo método de mínimos quadrados utilizando o sistema de programa Molen [Enraf-Nonius, 1990], instalado no computador VAX 4600 do Instituto de Química de São Carlos USP.

Foram usados os fatores de espalhamento atômico de Cromer e Waber [1974] para os átomos não hidrogênio, e os de Stewart e outros [1965] para os átomos de hidrogênio.

Os parâmetros posicionais e de vibração térmica isotrópica foram refinados por 3 ciclos, considerando-se todos os átomos como carbono, resultando em um fator de discordância R=0,36, usando peso unitário. Após o cálculo do mapa de Fourier diferença verificou-se que os átomos estavam corretamente localizados, e foi possível distinguir os oxigênios.

Manteve-se os átomos refinando com fator de vibração térmica isotrópico até R=0,19, e após transforma-los em anisotrópicos, o índice de discordância tornou-se igual a R=0,079.

Finalmente os átomos de hidrogênio foram posicionados, de acôrdo com a geometria do átomo ao qual estavam ligados, quando R= 0,072. Suas posições não foram refinadas , mas sim recalculadas a cada estágio de refinamento, até a convergência final. Foi adotado o valor de $6,0Å^2$ para o fator de temperatura dos hidrogênios.

Os hidrogênios das hidroxilas (O5-H e O7-H) foram localizados nos mapas de Fourier diferença, mas não foram refinados.

Os parâmetros atômicos, exceto os hidrogênios, foram refinados por mínimos quadrados usando a matriz completa até R= 0,0509 e R_w = 0,0530, com peso Cruickshank modificado (equação 216), com largura igual 4,38 e altura igual a 86,79. Neste estágio GOF = 1,09 e R_{all} = 0.157.

Durante os estágios finais do refinamento foi incluído o fator de extinção, e refinado, seu valor final foi de $1,24(8).10^{-7}$.

Foram refinados 263 parâmetros, com 1763 reflexões observadas.

Durante todo o processo de refinamento foram efetuados cálculos de distâncias e ângulos interatômicos, para verificação da coerência química do modelo refinado. Os programas utilizados foram ESD e BOND do sistema MolEN [Enraf- Nonius, 1990].

No estágio final do refinamento o mapa de Fourier diferença mostrou densidade eletrônica positiva máxima igual a $0,27(2) \text{ e/Å}^3$ e negativa igual a $-012(2) \text{ e/Å}^3$.

2.4 - RESULTADOS E CONCLUSÕES

A estrutura molecular apresentou-se como proposta pelo Prof. Dr. Lourivaldo da S. Santos.

A estrutura cristalina consiste de uma molécula por unidade assimétrica, com a formação de ligações de hidrogênio intra e intermoleculares.

Uma representação ORTEP [Jonhson, 1965] da estrutura molecular do composto, está na figura 29 com os átomos identificados.

Figura 29 - Representação Ortep da molécula de 5,4'- dihidroxi - 3',5'- dimetoxi - 6,7 - (2", 2", dimetilpirano) flavona

Na figura 30 é feita uma representação ORTEP com os elipsóides com 50 % de probabilidade.

Figura 30 - Representação Ortep da Molécula de 5,4'- Dihidroxi - 3',5'- dimetoxi - 6,7 - (2", 2", dimetilpirano) flavona com os elipsoides de vibração térmica.

Os parâmetros posicionais com os respectivos fatores de vibração térmica isotrópica equivalentes de todos os átomos, exceto os hidrogênios, estão listados na tabela 4. Os parâmetros posicionais dos átomos de hidrogênios estão na tabela 5.

A tabela 6 apresenta os parâmetros de vibração térmica anisotrópica dos átomos, exceto para os átomos de hidrogênios.

Na tabela 7 encontram-se as distâncias interatômicas com seus desvios padrão.

A tabela 8 mostra os ângulos interatômicos com seus desvios padrão.

Os fatores de estrutura calculados e observados finais estão listados no Apendice 1.

A tabela 9 contém os ângulos de torção calculados para a molécula de 5,4'dihidroxi-3',5'-dimetoxi-6,7-(2'',2''-dimetilpirano) flavona.

TABELA 4

COORDENADAS ATÔMICAS FRACIONÁRIAS E FATORES DE VIBRAÇÃO TÉRMICA ISOTRÓPICOS EQUIVALENTES (Å²) COM OS RESPECTIVOS DESVIOS PADRÃO ENTRE PARÊNTESES EXCLUIDOS OS HIDROGÊNIOS PARA O 5,4'-DIHIDROXI-3',5'-DIMETOXI-6,7-(2'',2''-DIMETILPIRANO) FLAVONA

Átomo	X	У	z	Beq
O1	0.9828(2)	0.5515(1)	0.1211(2)	3.38(7)
O2	1.1064(2)	0.7399(1)	0.1908(3)	6.5(1)
O3	0.5870(2)	0.4812(1)	-0.0850(3)	4.73(8)
O 4	0.7937(2)	0.3136(1)	0.0148(3)	5.25(9)
O 5	0.6014(2)	0.3674(1)	-0.0846(3)	5.13(9)
O 6	1.3018(2)	0.4883(1)	0.2675(3)	4.77(8)
07	1.3781(2)	0.5903(1)	0.3116(3)	5.07(9)
C 1	1.0014(3)	0.4943(2)	0.1256(3)	2.93(9)
C2	1.1059(3)	0.4723(2)	0.1736(3)	3.4(1)
C3	1.2038(3)	0.5084(2)	0.2229(3)	3.3(1)
C4	1.1832(3)	0.5684(2)	0.2189(3)	3.03(9)
C5	1.2702(3)	0.6093(2)	0.2632(4)	3.9(1)
C6	1.2482(3)	0.6668(2)	0.2569(4)	4.7(1)
C 7	1.3333(3)	0.7111(2)	0.2935(6)	8.5(2)
C8	1.3042(4)	0.7649(2)	0.2914(6)	9.6(2)
C9	1.1891(3)	0.7831(2)	0.2595(4)	5.5(1)
C10	1.1351(3)	0.6840(2)	0.2050(4)	4.4(1)
C11	1.0469(3)	0.6458(2)	0.1583(4)	4.0(1)
C12	1.0725(3)	0.5887(2)	0.1672(3)	3.2(1)
C13	0.8949(3)	0.4618(2)	0.0716(3)	2.92(9)
C14	0.8987(3)	0.4027(2)	0.0717(3)	3.5(1)
C15	0.8000(3)	0.3714(2)	0.0198(4)	3.7(1)
C16	0.6965(3)	0.3999(2)	-0.0335(4)	3.7(1)
C17	0.6936(3)	0.4586(2)	-0.0315(4)	3.6(1)
C18	0.7920(3)	0.4906(2)	0.0197(3)	3.3(1)
C19	1.1759(5)	0.7914(3)	0.3609(6)	9.8(3)
C20	1 1530(4)	0.8357(2)	0.1893(5)	7.8(2)
C21	0.8967(3)	0.2824(2)	0.0682(4)	4.8(1)
C22	0.5760(3)	0.5414(2)	-0.0874(4)	5.3(1)

Fator de vibração térmica isotrópico definido como: Beq = $(4/3)[a^2\beta(1,1) + b^2\beta(2,2) + c^2\beta(3,3) + ab(\cos\gamma)\beta(1,2) + ac(\cos\beta)\beta(1,3) + bc(\cos\alpha)\beta(2,3)]$

TABELA 5

COORDENADAS ATÔMICAS FRACIONÁRIAS DOS ÁTOMOS DE HIDROGÊNIO PARA O 5,4'-DIHIDROXI-3',5'-DIMETOXI-6,7-(2'',2''-DIMETILPIRANO) EL AVONA

FLAVONA.								
Átomo	X	у	Z	Átomo	X	у	Z	
H(O5)	0.5375	0.3950	-0.1049	H193	1.2341	0.8237	0.4140	
H(O7)	1.3750	0.5464	0.3059	H201	1.0680	0.8466	0.1688	
H2	1.1165	0.4265	0.1751	H202	1.2090	0.8704	0.2348	
H7	1.4202	0.7000	0.3221	H203	1.1558	0.8281	0.1129	
H8	1.3682	0.7972	0.3144	H211	0.8787	0.2372	0.0575	
H11	0.9605	0.6602	0.1161	H212	0.9479	0.2938	0.0311	
H14	0. 978 9	0.3809	0.1124	H213	0.9413	0.2926	0.1563	
H18	0.789 0	0.5366	0.0194	H221	0.4877	0.5526	-0.1320	
H191	1.0907	0.8047	0.3351	H222	0.6136	0.5574	-0.0027	
H192	1.1933	0.7517	0.4065	H223	0.6180	0.5599	-0.1290	

TABELA 6 PARÂMETROS DE VIBRAÇÃO ANISOTRÓPICA PARA O 5,4'-DIHIDROXI-3',5'-DIMETOXI-6,7-(2'',2''-DIMETILPIRANO) FLAVONA.

Átomo	II(1 1)		TT(2 2)			
Alonio	O(1,1)	0(2,2)	U(3 , 3)	U(1,2)	U(1,3)	U(2,3)
01	0.021(1)	0.036(1)	0.050(2)	0.005(1)	0.010(1)	0.004(1)
0	0.021(1)	0.030(1)	0.039(2)	-0.005(1)	0.010(1)	-0.004(1)
0^2	0.038(1)	0.035(2)	0.152(3)	-0.004(1)	0.030(1)	-0.010(2)
03	0.022(1)	0.038(1)	0.094(2)	0.001(1)	0.009(1)	0.001(2)
04	0.026(1)	0.035(1)	0.106(2)	-0.000(1)	0.007(1)	0.007(2)
05	0.023(1)	0.039(1)	0.103(2)	-0.003(1)	0.008(1)	0.007(2)
06	0.023(1)	0.043(2)	0.092(2)	0.004(1)	0.010(1)	0.007(2)
07	0.022(1)	0.044(2)	0.103(2)	-0.003(1)	0.013(1)	-0.003(2)
C1	0.029(1)	0.034(2)	0.043(2)	-0.003(1)	0.014(1)	0.002(2)
C2	0.027(1)	0.034(2)	0.060(2)	-0.001(1)	0.014(1)	0.002(2)
C3	0.028(1)	0.040(2)	0.048(2)	0.000(2)	0.011(1)	0.007(2)
C4	0.025(1)	0.039(2)	0.044(2)	-0.003(1)	0.012(1)	-0.001(2)
C5	0.025(1)	0.040(2)	0.075(3)	-0.003(2)	0.018(1)	-0.002(2)
C6	0.029(1)	0.040(2)	0.102(3)	-0.006(2)	0.025(2)	-0.008(2)
C7	0.033(2)	0.042(3)	0.221(6)	-0.007(2)	0.040(2)	-0.018(4)
C8	0.043(2)	0.051(3)	0.246(6)	-0.020(2)	0.053(3)	-0.034(4)
C9	0.044(2)	0.039(2)	0.116(3)	-0.007(2)	0.031(2)	-0.016(3)
C10	0.035(2)	0.032(2)	0.093(3)	-0.004(2)	0.026(2)	-0.004(2)
C11	0.027(1)	0.042(2)	0.077(3)	-0.002(2)	0.021(1)	-0.003(2)
C12	0.025(1)	0.035(2)	0.055(2)	-0.006(1)	0.015(1)	-0.003(2)
C13	0.026(1)	0.036(2)	0.042(2)	-0.004(1)	0.011(1)	0.000(2)
C14	0.024(1)	0.040(2)	0.057(2)	-0.002(1)	0.012(1)	0.004(2)
C15	0.030(1)	0.032(2)	0.065(2)	-0.001(2)	0.013(1)	0.007(2)
C16	0.022(1)	0.037(2)	0.066(3)	-0.006(2)	0.008(1)	0.003(2)
C17	0.028(1)	0.036(2)	0.062(2)	0.002(2)	0.014(1)	0.005(2)
C18	0.029(1)	0.035(2)	0.055(2)	-0.002(2)	0.015(1)	0.000(2)
C19	0.072(3)	0.150(6)	0.120(5)	-0.018(4)	0.023(3)	-0.014(5)
C20	0.083(3)	0.056(3)	0.154(5)	-0.019(2)	0.055(3)	-0.000(3)
C21	0.031(2)	0.037(2)	0.089(3)	0.003(2)	0.009(2)	0.008(2)
C22	0.034(2)	0.044(2)	0.098(3)	0.006(2)	0.014(2)	-0.003(3)

A expressão para o parâmetro de vibração anisotrópica é: exp[$-2\pi i2\{h^2a^{*2}U(1,1)+k^2b^{*2}U(2,2)+l^2c^{*2}U(3,3)+2hka^*b^*U(1,2)+2hla^*c^*U(1,3)+2klb^*c^*U(2,3)\}\}$

TABELA 7

			_		
01	C1	1.359(4)	C4	C12	1.397(4)
01	C12	1.377(4)	C5	C6	1.374(6)
O2	C9	1.461(5)	C6	C7	1.449(6)
O2	C10	1.353(5)	C6	C10	1.402(5)
03	C17	1.371(4)	C7	C8	1.317(7)
O3	C22	1.416(5)	C8	C9	1.469(7)
O4	4 C15	1.356(4)	C9	C19	1.50(1)
O4	C21	1.425(4)	C9	C20	1.492(7)
05	C16	1.363(4)	C10	C11	1.378(5)
O6	C3	1.255(4)	C11	C12	1.371(5)
07	C5	1.357(4)	C13	C14	1.385(5)
C1	C2	1.345(5)	C13	C18	1.395(5)
C1	C13	1.476(5)	C14	C15	1.382(5)
C2	C3	1.437(5)	C15	C16	1.399(5)
C3	C4	1.429(5)	C16	C17	1.377(5)
C4	C5	1.409(5)	C17	C18	1.388(5)

DISTÂNCIAS INTRAMOLECULARES (Å) COM OS RESPECTIVOS DESVIOS PADRÃO ENTRE PARÊNTESES PARA O 5,4'-DIHIDROXI-3',5'-DIMETOXI-6,7-(2'',2''-DIMETILPIRANO) FLAVONA.

TABELA 8

ÂNGULOS INTRAMOLECULARES (⁰) COM OS DESVIOS PADRÃO ENTRE PARÊNTESES PARA PARA O 5,4'-DIHIDROXI-3',5'-DIMETOXI-6,7-(2'',2''-DIMETIL PIRANO) FLAVONA.

DIMET		III JILA	UIIA.				
C1	01	C12	119.9(2)	O2	С9	C8	111.3(4)
C9	O 2	C10	120.0(3)	O2	C 9	C19	106.4(5)
C17	O3	C22	118.0(3)	O2	C9	C2 0	104.5(3)
C15	O4	C21	117.6(3)	C8	C9	C19	111.0(5)
01	C 1	C2	122.0(3)	C8	C 9	C2 0	113.3(5)
01	C1	C13	111.8(3)	C19	C 9	C2 0	109.9(5)
C2	C1	C13	126.2(3)	O2	C 10	C6	121.2(3)
C1	C2	C3	121.3(3)	O2	C 10	C11	116.0(3)
06	C3	C2	121.8(3)	C6	C10	C11	122.6(4)
06	C3	C4	122.0(3)	C 10	C 11	C12	117.8(3)
C2	C3	C4	116.2(3)	O 1	C12	C 4	120.8(3)
C3	C4	C5	122.9(3)	01	C12	C11	116.5(3)
C3	C4	C12	119.8(3)	C4	C12	C11	122.7(3)
C5	C4	C12	117.2(3)	C1	C13	C14	119.3(3)
07	C5	C4	118.0(3)	C1	C13	C18	120.0(3)
07	C5	C6	120.2(3)	C14	C13	C18	120.7(3)
C4	C5	C6	121.8(3)	C13	C 14	C15	120.2(3)
C5	C 6	C 7	124.5(4)	O4	C15	C14	125.2(3)
C5	C 6	C10	117.7(3)	O 4	C15	C16	115.2(3)
C7	C6	C10	117.6(4)	C14	C15	C 16	119.5(3)
C6	C7	C8	119.7(4)	05	C16	C15	117.5(3)
C15	C16	C17	119.8(3)	C 16	C17	C18	121.3(3)
03	C17	C16	114.1(3)	C13	C18	C17	118.5(3)
03	C17	C18	124.6(3)				

Os planos de mínimos quadrados calculados para a estrutura da molécula 5,4'-

dihidroxi-3',5'-dimetoxi-6,7(2",2"-dimetilpirano)flavona (tabela 9) mostram que o anel y-

pirona (C1/C2/C3/C4/C12/01) e o anel benzênico A (C4/C5/C6/C10/C11/C12) são planares.

O anel benzenico B é totalmente planar com, fazendo um ângulo de 3(1)°,

com o plano do anel γ -pirona.

TABELA 9 EQUAÇÕES DOS PLANOS DE MÍNIMOS QUADRADOS E ÂNGULOS DIEDROS PARA O 5,4'-DIHIDROXI-3',5'-DIMETOXI-6,7-(2'',2''-DIMETILPIRANO) FLAVONA.

Equação Normalizada do Plano 1: 0.481(1) X + 0.049(2) Y - 0.8756(7) Z - 5.41(3) = 0Equação Cristalográfica do Plano 1: 6.55(2) X + 1.15(4) Y - 13.7(2) Z - 5.41(3) = 0

	Jourdenadas Ortogu	1011220023 003 21101			
	átomo	Х	Y	Z	Distância
	C1	12.8017	11.5779	1.5006	-0.003(4)
	C2	13.9027	11.0613	2.0742	-0.001(4)
	C3	14.9042	11.9072	2.6636	0.005(4)
	C4	14.6500	13.3130	2.6149	-0.006(4)
	C12	13.4910	13.7884	1.9972	0.002(4)
	O 1	12.5781	12.9175	1.4466	0.003(3)
outr	os átomos				
	O 6	15.9384	11.4356	3.1964	0.013(3)
Chi Squar	red = 5.4				

Equação Normalizada do Plano 2: 0.483(2) X + 0.044(2) Y - 0.8747(9) Z - 5.37(4) = 0Equação Cristalográfica do Plano 2: 6.58(2) X + 1.03(4) Y - 13.7(3) Z - 5.37(4) = 0

Coordenadas Ortogonalizadas dos Átomos no Plano 2

átomo	х	Y	Z	Distância
C4	14.6500	13.3130	2.6149	-0.004(4)
C5	15.5376	14.2700	3.1442	0.003(4)
C6	15.2798	15.6177	3.0692	0.004(5)
C 10	14.0883	16.0200	2.4488	-0.011(5)
C11	13.2018	15.1248	1.8914	0.010(4)
C12	13.4910	13.7884	1.9972	-0.002(4)
outros áto	mos			
07	16.6812	13.8256	3.7235	0.029(2)
Chi Squared =	12.7			
TABELA 9 (continuação)

Equação Normalizada do Plano 3: 0.450(2) X + 0.118(2) Y - 0.885(1) Z - 6.09(5) = 0Equação Cristalográfica do Plano : 6.13(3) X + 2.77(5) Y - 13.6(3) Z - 6.09(5) = 0

Coordenadas Ortogonalizadas dos Átomos no Plano 3

	átomo	Х	Y	Z	Distância
	C 6	15.2798	15.6177	3.0692	-0.085(5)
	C7	16.1931	16.6545	3.5062	0.061(7)
	C8	15.8096	17.9142	3.4816	0.060(7)
	C9	14.4560	18.3406	3.1008	-0.161(5)
	O 2	13.7931	17.3298	2.2798	0.148(4)
	C10	14.0883	16.0200	2.4488	-0.024(5)
0	utros áto	mos			
	C19	13.5923	18.5357	4.3120	-1.599(7)
	C20	14.4390	19.5736	2.2611	0.721(6)
~ ~					

Chi Squared = 2939.2

Equação Normalizada do Plano 4: 0.519(2) X + 0.022(2) Y - 0.8544(9) Z - 5.58(2) = 0Equação Cristalográfica do Plano 4: 7.08(2) X + 0.51(4) Y - 13.7(2) Z - 5.58(2) = 0

Coordenadas Ortogonalizadas dos Átomos no Plano 4

átomo	Х	Y	Z	Distância
C13	11.7144	10.8153	0.8558	0.003940
C14	11.7647	9.4317	0.8572	-0.002(4)
C15	10.7711	8.6993	0.2365	-0.004(4)
C16	9.7191	9.3659	-0.4004	0.009(4)
C17	9.6667	10.7415	-0.3768	-0.008(4)
C18	10.6621	11.4898	0.2353	0.002(4)
outros á	tomos			
C 1	12.8017	11.5779	1.5006	0.034(4)
O5	8.7681	8.6042	-1.0105	0.020(3)
O4	10.7180	7.3460	0.1773	-0.011(3)
C21	11.7616	6.6154	0.8149	-0.030(4)
O3	8,5754	11.2709	-1.0158	-0.017(3)
C22	8.4404	12.6801	-1.0440	-0.032(5)
Chi Squared =	10.0			

Equação Normalizada do Plano 5:-0.787(5) X - 0.354(7) Y - 0.504(4) Z +19.45(8) = 0 Equação Cristalográfica do Plano5: -10.73(6) X - 8.3(2) Y - 0.7(5) Z + 19.45(8) = 0

Coordenadas Ortogonalizadas dos Átomos no Plano 5

átomo	Х	Y	Z
C19	13.5923	18.5357	4.3120
C20	14.4390	19.5736	2.2611
C 9	14.4560	18.3406	3.1008

Angulos Diedros Entre Os Planos

Plano No.	Plano No.	Angulos Diedros
1	2	0.(6)
1	3	4.(1)
1	4	3.(1)
1	5	87.4(3)
2	3	5.(1)
2	4	3.(2)
2	5	87.4(3)
3	4	7.0(8)
3	5	87.1(3)
4	5	89.2(3)

O plano de mínimos quadrados calculado para o anel formado pelos átomos C6/C7/C8/C9/O2/C10, mostrou a quase planaridade deste. As distâncias máximas ao plano ocorrem para C(9) (-0,161(5)Å) e O(2) (0,148(4)Å). Este plano faz um ângulo diedro de $4(1)^{0}$ com o anel γ -pirona.

O plano cálculado para os 2 grupos metil e carbono do anel a que se ligam (C9/C19/C20) faz um ângulo de 87,4(3)⁰ com o anel γ -pirona.

O comprimento da ligação médio calculado para os anéis benzênico A e B são respectivamente de 1,387 e 1,388 Å.

Estes valores são próximos aos valores encontrados em anéis aromáticos de flavonas, como por exemplo no composto 5-Hidroxi-6,7,8,3',4',5'-hexametoxi flavona [Rajan e outros, 1987], onde verifica-se o comprimento médio nas ligações de C-C nos anéis benzênicos A e B de 1,39 (1) e 1,40(1)Å respectivamente. Os valores encontrados são próximos aos valores médios para anéis aromáticos que é de 1,395(3)Å. [Kennard e outros 1972].

De acordo com a tabela 7 as ligações C(1)-O(1) e C(12)-O(1) são respectivamente de 1,359(4) e 1,377(4) Å, valores próximos aos valores encontrados para a estrutura de flavonóides descritos por Rossi e outros [1980].

Analisando os comprimentos das ligações C(4)-C(3) e C(3)-C(2) encontra-se valores de 1,429(5) e 1,437(4) Å, valores coerentes com as distâncias C-C em uma situação similar (1,44 (1)Å) para compostos do mesmo tipo [Kennard e outros 1972], e aos valores encontrados em outras flavonas [Srinivasan e outros 1986]. Assim por exemplo o comprimento da ligação C(10)-C(4) e C(4)-C(3) (1,454(4) e 1,425(4)Å) no composto 7-hidroxi-2',3',4'-trimetoxi flavona [Molins 1992].correspondem aos valores encontrados neste trabalho.

SERVIÇO DE BIBLIOTECA E INFORMAÇÃO IQSC/USP

Para a ligação C(5)-O(7) a distância de 1,357(4)Å (tabela 7) é um comprimento de ligação normal para um ligação C (aromático) - O (simples), situação similar à encontrada para uma distância de 1,364(5) Å, observada no 4-bromo-5-hidroxi-flavona [Hayashi, e outros, 1974].

Os átomos de C(1)-C(13) ligam os dois anéis, γ -pirona e o anel benzênico B, com uma distância de 1,476(5)Å. Este valor de distância pode ser comparado com os observados no bifenil, com uma distância entre os anéis de 1,489(7)Å [Bastiansen & Traetteberg, 1962]; 1,48Å [Pauling, 1960], e 1,468(5)Å para o composto 5-hidroxi-6,7,8,3',4',5'- hexametoxiflavona [Vijayalakshmi e outros, 1987].

A distância da ligação C = O (Carbonila) entre os átomos C(3)-O(6) é de 1,255(4)Å (tabela 7) que pode ser comparada ao valor de 1,254Å encontrado no 4'-bromo-5-hidroxiflavona [Hayashi e outros 1974].

Quanto às distâncias de não ligação observa-se que existe uma ligação de hidrogênio entre o grupo hidroxila (O7-H) ligado ao C(5) e o oxigênio (O6) ligado ao C(3). As distâncias de 1,616 (3)Å entre o H(O7) e O(6), e 2,558(3)Å entre o O(7) e O(6) caracterizam que o hidrogênio H(O7), está intramolecularmente ligado ao oxigênio O(6), estabelecendo assim uma ligação de hidrogênio, com um ângulo O(6)-H(O7)-O(7) de 149,5(2)°. Esta ligação de hidrogênio é considerada de força média.

Outra ligação intramolecular, embora mais fraca, pode ser observada entre O(5)-H(05)-O(3), com distância O-O de 2,674(4)Å, distância H(O5)-O(3) de 2,102(3)Å, e ângulo de 113,8(2)⁰. Estas ligações intramoleculares podem ser vistas na figura 31.

Figura 31 - Representação Ortep da molécula de 5,4'-dihidroxi-3',5'-dimetoxi-6,7-(2'',2''-dimetilpirano) flavona. As linhas tracejadas indicam as ligações de hidrogênio intramoleculares.

Além destas ligações intramoleculares o empacotamento cristalino mostra a

existência de duas outras ligações, mais fracas, intermoleculares.

Uma é feita compartilhando H(O5), entre O(5)e O(7) com operação de simetria x-1,1-y,z-0,5 ($d_{o-o}=2,830(3)$ Å); a outra é a interação entre O3 eO7, pela mesma operação de simetria ($d_{o-o}=2,992(3)$ Å) compartilhando H(O7).

As distâncias e ângulos envolvidos nas ligações de hidrogênio estão mostradas

na tabela 10 e 11 respectivamente.

Tabela 10

DISTÂNCIAS DE LIGAÇÃO DE HIDROGÊNIO (Å) INTRA E INTERMOLECULARES, COM OS RESPECTIVOS DESVIOS PADRÃO ENTRE PARÊNTESES PARA O 5,4'-DIHIDROXI-3',5'-DIMETOXI-6,7-(2'',2''-DIMETILPIRANO) FLAVONA.

06	07	2,558(4)	06	H(O7)	1,616(3)	07	H(O7)	1,030(2)
03	05	2,674(4)	03	H(O5)	2,212(3)	05	H(O5)	1,001(3)
05	07*	2,830(3)	07 	H(O5)	1,924(2)			
03	07♣	2,992(3)	03	H(O7)♣	2,599(2)			

♣ operação de simetria: x-1,1-y,z-0,5

Tabela 11

ÂNGULOS DE LIGAÇÃO DE HIDROGÊNIO (⁰) INTRA E INTERMOLECULARES, COM OS RESPECTIVOS DESVIOS PADRÃO ENTRE PARÊNTESES PARA O 5,4'-DIHIDROXI-3',5'-DIMETOXI-6,7-(2'',2''-DIMETILPIRANO) FLAVONA.

O6	H(O7)	07	149,5(1)	03	H(O5)	05	113,8(2)
05	H(O5)	07*	147,9(2)	O3	HO(7) ♣	07*	102,2(1)

+ operação de simetria: x-1,1-y,z-0,5

As ligações intermoleculares produzem o efeito de uma cadeia infinita de moléculas colocadas ao longo da direção [101] e geradas pelo espelho c, como mostrado na figura 32.

Figura 32 - Representação ORTEP das moléculas com orientação relativa à cela unitária, formando cadeia ao longo da direção [101]. As ligações de hidrogênio intra e intermoleculares estão representadas por linhas tracejadas.

REFERÊNCIAS BIBLIOGRÁFICAS

- Arruda, A. C., Souza, J.P.I. de, Souza, M.B.C. & Arruda, M.S.P.; 16^a Reunião Anual da Sociedade Brasileira de Química. Caxambú, MG, maio 1993.
- Azároff, L.V.; <u>Elements of X-ray crystallography</u>. (1968), New York, Mac Graw-Hill Book Company.
- Bastiansen, O. & Traetteberg, M.; Tetrahedron, (1962), 17, 147.
- Borges, S.B.; Elementos de Cristalografia. (1980), Lisboa, Fundação Calouste Gulbernian.
- Bunn, C. W., <u>Cristais se Papel na Natureza e na Ciência</u>. (1972), São Paulo, Editora da Universidade de São Paulo
- Cochran, W.; Acta Cryst. (1955), 8, 473.
- Cochran, W. & Woolfson, M.M.; Acta Cryst. (1955), 8, 1.
- Cromer, D.T. & Waber, J.T.; <u>International Tables For X-Ray Cryatallography</u>. (1974) IV, London, The Kynoch Press.
- Cullity, B.D.; <u>Elements of x-ray diffraction In Detection of x-ray</u>. (1967), New York, Addisson-Wesley.
- Enraf -Nonius; Molen Crystal Structures Analysis. (1990), Vol.I, Holland.
- Geismann, T.A. & Hinreiner, E.; Bot. Rev. (1952), 18, 77.
- Germain, G., Main, P. & Woofson, M.M.; Acta Cryst. (1970), B26, 274.
- Germain, G. & Woofson, M.M.; Acta Cryst. (1968), B24, 91.
- Gooddwin, T.W.; <u>Chemistry and Biochemistry of Plants Pigments.</u> (1965), London, Academic Press.
- Harker, D. & Kasper.; Acta Cryst. (1948), 1, 70.
- Hauptmann H. & Karle, J.; Monograph 3 (1953), Pittsburgh, Polycrystal Book Service.
- Hayashi, T., Kaway, S., Ohno, T., Iitaka, Y & Akimoto, T.; <u>Chem. Pharm. Bull</u> (1974)22, 1219.
- Hull, S.E. & Irwin, M. J.; Acta Cryst. (1978), A34, 863
- Hukins, W.L.D.; X-ray Diffraction by Disordered and Ordered Systems. (1981), New York, Pergamon Press.
- Ikan, R.; Natural Products, A Laboratory Guide. (1991), New York, Academic Press, Inc..

Johnson, C.K.;. ORTEP: A FORTRAN Thermal- ellipsoid Plot Program for Crystal Structure Illustration. (1965), Oak Ridge National Laboratory, Tennessee, USA.

- Karle, J.; Escola Latino Americana de Cristalografia: Métodos Diretos (Notas de Aula), (1976), Cap. II, São Carlos, SP, Brasil.
- Karle, J & Hauptman, H.;. Acta Cryst. (1950), 3, 181.
- Karle, J & Hauptman, H.; Acta Cryst. (1956), 9, 635.
- Karle, J. & Karle I.L.; Acta Cryst. (1964), 17, 835.
- Karle, J. & Karle I.L.; Acta Cryst. (1966), 21, 849.
- Kennard, D.J., Watson, F.H., Allen, N.W., Isaacs, W.D., Motherwell, S., Patterson, R.C. & Town, W.G.; <u>Molecular Structures and Dimensions</u>. (1972), A1, Utrech: Oosthoek.
- Killean, R.C.G. & Lawrence, J.L.; Acta Cryst. (1969), B25, 1750.
- Main. P.; Escola Latino Americana de Cristalografia, Métodos Diretos (Notas de Aula). (1976) Cap. 6, São Carlos, SP, Brasil.
- Morris, S.J. & Thomson, R.H.; J. Insect Physiol. (1963),9, 391.
- Pauling, L.; The Nature of The Chemical Bond. (1960), Cornell Univ. Press.
- Rossi, M., Cantrell, J.S., Farber, A. J., Dyott, T., Carrel, H.L. Glusker, J.P.; <u>Cancer Res</u>. (1980), **40**, 2774.
- Sands, D.E.; Introduction to Crystallography. (1993), New York, Dover Publications, Inc..
- Santos, L. da S., Silva, E.O. da & Lobato, C.M. da L.; XXXV Congresso Brasileiro de Química. Salvador, Ba, setembro (1995)
- Sayre, D.;. Acta Cryst. (1952), 5, 60.
- Schenk, H.; Direct Methods of Solving Crystal Structures. (1991), New York, Plenum Press
- Stewart, R.F., Davidson, E.R. & Simpson W.T.; J.Chem. Phys.; (1965), 42, 3175.
- Stout, G.H. & Jensen, L.H.; X-ray Structure Determination: A Practical Guide. (1989), New York, John Wiley & Sons, Inc.
- Vainshtein, B.K.; <u>Modern Crystallography Symmetry of Crystals</u>, <u>Methods of Structural</u> <u>Crystallography.</u> (1981), New York, Springer-Verlag Berlin Heidlberg New York.
- Vijayalakshma, J., Rajan, S.S. & Srinivasan, R.; Acta Cryst. (1987), C43, 1998.
- Willis, B.T.M. and Pryor, A.W.; <u>Thermal Vibrations in Crystallography</u>. (1975), Cambridge, Cambridge University Press.
- Woolfson, M.M.; Escola Latino Americana de Cristalografia: Métodos Diretos (Notas de Aula), (1976), Cap. XV, São Carlos, SP, Brasil.

APENDICE 1

TABELA A1

FATORES DE ESTRUTURA OBSERVADOS E CALCULADOS PARA O 5,4[°]-DIHIDROXI-3[°],5[°]-DIMETOXI- 6,7 -(2^{°°},2^{°°}-DIMETILPIRANO)FLAVONA

___

Н —	K -	L -	Fobs	Fcalc	SigF	H -	К -	L -	Fobs	Fcalc	SigF
H - 877165631221172346615716655666152110122	$\begin{array}{c} K \\ - \\ 0 \\ - \\ 1 \\ - \\ 1 \\ - \\ 2 \\ - \\ 3 \\ - \\ - \\ 1 \\ - \\ 2 \\ - \\ 3 \\ - \\ - \\ - \\ 1 \\ - \\ - \\ - \\ 1 \\ - \\ -$	L - 16 16 15 14 13 13 13 13 13 13 13 13 12 12 12 12 12 12 12 12 12 12 12 12 12	Fobs 326 135 115 113 122 161 242 101 116 100 137 124 192 158 204 111 1002 258 121 228 332 120 458 212 209 131 152 161 150 253 193 139 144 103 188 111	Fcalc 328 102 102 105 106 118 244 60 117 89 134 124 182 148 196 90 1027 275 74 204 331 91 508 212 227 132 105 155 174 243 176 109 161 105 195 102	SigF 9 15 17 15 17 13 10 15 15 15 15 13 14 11 14 12 14 14 10 14 9 7 16 7 11 10 15 12 14 12 12 13 16 11 17	H - 10 9 5 7 9 15 4 8 10 1 5 7 11 15 10 14 1 15 10 14 1 9 2 6 5 12 5 11 10 12 5 10 12 5 10 12 10 12 10 12 10 12 10 12 12 12 12 12 12 12 12 12 12	K 18- 19- 1- 1- 2- 3- 3- 4- 5- 6- 7- 8- 9- 11- 12- 2- 3- 3- 4- 5- 6- 7- 8- 9- 11- 12- 13- 16- 17- 18- 19- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1	L - 12 -12 -11 -11 -11 -11 -11 -11 -11 -11 -	Fobs 200 124 208 209 180 152 210 135 163 198 215 222 193 324 172 168 245 132 188 168 188 168 188 165 125 193 286 143 190 162 172 162 172 162 172 163 193 286 143 190 162 172 163 193 286 143 190 165 125 193 286 143 190 162 172 163 193 286 143 190 162 172 163 193 286 143 190 162 172 163 193 286 143 190 162 172 163 193 286 143 190 162 172 163 193 286 143 190 162 172 163 193 286 143 190 162 172 163 193 286 143 190 162 172 162 172 163 163 193 286 143 190 162 172 162 172 162 172 163 193 286 143 190 162 172 162 172 162 172 162 172 162 172 162 172 162 172 162 172 162 172 162 172 162 172 163 172 162 172 162 172 162 172 168 172 162 172 162 172 162 172 162 172 168 172 162 172 162 172 162 172 162 172 162 172 108	Fcalc 177 93 269 226 142 156 216 123 170 149 189 216 183 312 149 156 303 112 192 167 170 115 138 175 135 187 277 135 162 147 159 150 111 108 150 294 80	SigF 11 14 8 9 13 8 9 13 8 12 9 8 12 9 12 9 12 9 12 12 12 12 12 12 12 12 12 12
2 12 1 11 2 12 12 1	14- 14- 15- 15- 16- 16- 17- 17-	-12 -12 -12 -12 -12 -12 -12 -12	111 189 311 264 201 147 221	102 172 285 258 212 148 218	17 11 9 12 15 11) 18 2 18 9 19 2 20 3 20 9 21 4 0	-11 -11 -11 -11 -11 -11 -11	108 195 117 181 159 151 227	294 80 188 113 189 141 136 196	9 16 11 18 12 12 9 7
11 2	18	-12	132	2 118	16	1.	1 ()-10	262	245	8

Н	K	L	Fobs	Fcalc	SigF	Н	K	L	Fobs	Fcalc	SigF
_	-	-				_	-	-			
13	5-	15	0	33	92	12	0-	14	-97	4	36
2	6-	15	59	104	64	14	0-	14	-20	16	41
4	6-	15	53	20	28	1	1-	14	-54	56	53
6	6-	15	52	48	28	3	1-	14	60	4	22
8	6-	.15	-98	15	47	5	1-	14	-117	83	35
10	6-	.15	-104	7	39	7	1-	14	-105	28	34
12	6-	·15	-112	1/	41 55	11	1-	14	80	22	81
3 E	7	1 E	-64	10	50 50	⊥⊥ 1 ⊃	1-	14 14	02	4/	92 4 4
с 7	7	1 E	-03	0 // 1	5Z 70	15	1	14	-83	43	44
0	7-	15	-62	41 Q	19	2	2-	14	- 28	4 Q	75 35
9 11	7	.15	-02	28	49	Ζ Λ	2-	14 17	-20	0 36	21
13	7-	-15		20	50 62	4	2-	11	-68	50	21
2	8-	-15	49 70	13	58	8	2-	14	-58	11	52
4	8-	-15	,0	38	100	10	2-	14	95	39	16
6	8-	-15	-58	7	26	12	2-	14	55	61	55
10	8-	-15	-49	25	27	14	2-	14	48	35	63
12	8-	-15	-60	8	25	1	3-	14	-113	29	35
3	9-	-15	49	4	65	3	3-	14	0	37	92
5	9-	-15	-78	20	48	5	3-	14	-31	47	34
7	9-	-15	-78	59	52	7	3-	14	30	53	71
9	9-	-15	-71	13	51	9	3-	·14	-48	10	26
11	9-	-15	-73	2	52	11	3-	-14	-74	46	53
4	10-	-15	49	29	70	13	3-	-14	0	1	91
6	10-	-15	49	3	32	15	3-	-14	-100	35	48
8	10-	-15	87	86	21	2	4 -	-14	56	28	59
10	10.	-15	50	27	27	4	4 -	-14	-29	27	/ _
12	10-	-15	61	25	49	6	4 -	-14	43	48	61 10
3	11-	-15	-134	4	41	8	4-	-14	84	10	18 E 1
5	11.	-15	-73	20	53	10 10	4-	-14	-51	19	
- 9	1 J	-15	-113		36 E0	⊥∠ 1 4	4- 1	-14 11	10	01 10	100
ΤT	11.	-15	-66	210 F	UC EE	14	4- 5	-14 11	49	22	50 50
4	12	-15	-66	с 20	22	⊥ ⊥	ۍ ۲	-14 14	- 4.2	22	50 50
6	12	-15	55	20	E A	ے د	5	=⊥4 1 /	- 42	т б	30
8	12	-15	-80	42	54	ך ב	5.	-14 -11	-125	0 27	21
TÜ	12	-15	59	0		1	ן. ב	-14	20- 20-	10	2.1 17
5	13	-15	-82	20	4/ 50	11) 5	-14 _11	-101	20	11
/	13	-15	-66	67	22	1 J	ר ב	-14 11	-101	2.J 61	41 79
9	13	-15	90	0	20	2 2	5		-53	27	54
2	U	-14	32	1 70	00	ے ۸	6	- <u>1</u> 4	_11	27	19
4	U	-14	-59		48	4	U C	-14 _1/	∩ . ⊥ T	20 1 Q	יב קר
6) (–⊥4	13	36	4/	6	o C	-14	0	ہ OT	03 20
8	S C)-14	52	75	56	8	6	-14	0	4	رج ۱ ۱
10) ()-14	-41	61	60	10	6	- ⊥4	-86	8	4⊥

H	K L	Fobs	Fcalc	SigF	H	K L	Fobs	Fcalc	SigF
10	15 - 0	170	155	10	2	C O	100	150	0
10	16 -9	210	100 201	10	2	6 - 8	128	13U 274	9
12	16 -9	219	221	10	4	6 -8	240	274	6
1	17 -9	391	385	- 10	8	6 -8	203	200	7
7	17 -9	184	164	9	10	6 - 8	200	214	8
11	17 -9	177	173	11	3	7 -8	235	219	7
8	18 -9	113	120	14	7	7 -8	153	145	9
10	18 -9	337	310	8	9	7 -8	306	335	6
1	19 -9	157	183	12	11	7 -8	118	96	14
7	19 -9	214	199	9	15	7 -8	166	153	12
4	20 -9	97	47	14	4	8 - 8	281	252	6
8	20 -9	231	232	9	6	8 - 8	165	149	8
3	23 -9	133	14/ 116	14	14	8 -8		219	1 U 1 1
Z 1	0 - 8	3051	440 3165	11	1 5	9 - 0	200	102	11 7
4	0 - 8	258	236	±1 6	ך ב	9 - 0	109	192	12
10	0 -8	105	124	12	11	9 - 8	137	157	14
14	0 -8	606	618	10	2	10 -8	422	432	6
1	1 -8	136	125	8	4	10 -8	246	259	7
3	1 -8	404	411	6	6	10 -8	213	211	7
5	1 -8	571	567	8	7	11 -8	88	90	13
7	1 -8	293	272	5	2	12 -8	130	137	10
9	1 -8	268	244	6	4	12 -8	139	96	10
13	1 -8	170	170	12	6	12 -8	121	96	10
2	2 -8	312	303	5	8	12 -8	189	199	8
4	2 - 8	124		1 I 0	с Т	13 - 8	94 106	100	14
0 Q	2 - 8	134 2 3 2	216	0 6	5 7	13 -8	130	129	10
12	2 - 8	148	126	12	, 9	13 -8	308	297	8
14	2 -8	448	431	7	11	13 -8	280	269	8
1	3 -8	171	162	7		14 -8	145	132	10
3	3 -8	315	327	5	6	14 -8	138	103	- 9
11	3 -8	284	288	7	10	14 -8	354	354	8
13	3 -8	180	192	12	9	15 -8	515	505	8
4	4 -8	269	230	5	6	16 -8	140	157	12
6	4 -8	159	177	7	8	16 -8	264	267	9
8	4 - 8	113	93	11	10	16 -8	229	254	9
14	4 - 8	329	326		14	16 -8	125	102	13
1	5 -8	2/1	239	6	1	17 -8	115	81	15
3 1	5 0	330	310	5	т 5	17 -8	110	122	16
נ ר	J -0 5 _0	110	133	a a	ן ר	17 <u>-</u> 8	112	142 25	15
/	J =0	175 175	100	ر ۵	1	17 - 0	201	200	0 T O
ע 1 ר	5 - 0		10U 571	9	כ ר	17 - 0	224 100	220 Q5	フ 1 に
13	5 - 8	204	170	יא ר א לא	L D	10 - 0	109	100	10 10
CΤ	5 - 8	151	$\perp 1 \angle$	±4	t t) TO <u>-</u> Q	σCI	TAT	14

···· — · · · · · · · · ·

H K L	Fobs	Fcalc	SigF	H	K L	Fobs	Fcalc	SigF
				-				
8 18 -8	357	347	7	9	7 -7	132	136	10
10 18 -8	115	94	13	2	8 -7	279	275	5
1 19 -8	310	307	8	4	8 - 7	374	366	5
3 19 -8	109	106	13	6	8 - 7	209	230	6
7 19 -8	257	239	8 1 /	10	8 - /		205	10
2 20 -8	107	134	14 15	1	0 - 7	100	100	12
4 20 -0 8 20 -8	240	232	1.) Q	т З	9 - 7 9 - 7	241	229	6
3 21 -8	105	83	13	5	9 - 7	157	167	8
5 21 -8	227	200	9	7	9 -7	131	138	10
7 21 -8	163	192	12	9	9 -7	96	77	13
4 22 -8	234	229	9	2	10 -7	307	274	6
7 23 -8	109	87	13	4	10 -7	424	446	7
3 1 -7	829	977	11	6	10 -7	267	235	6
5 1 -7	982	1035	10	8	10 -7	157	161	9
/ <u>1</u> – /	323	333	5		$\begin{array}{c} \perp \perp - \\ 1 \\ 1 \\ 1 \\ \end{array}$	95	86	12
13 1 - 7	423	420	/ 5	3 7	11 -7	09/	694 60	9 10
2 2 - 7	362	290	5	13	11 -7	00 256	280	21
6 2 -7	225	219	6	2	12 -7	134	110	10
8 2 -7	299	290	6	4	12 -7	160	159	10 8
10 2 -7	131	130	10	10	12 -7	214	201	9
14 2 -7	139	169	12	12	12 -7	99	93	14
1 3 -7	105	86	9	1	13 -7	173	159	8
3 3 -7	312	293	5	3	13 -7	276	301	6
5 3 -7	239	224	5	7	13 -7	125	133	10
9 3 -7	521	516	8	9	13 -7	200	201	
13 3 -7	594	569	8	1.3	13 -7	164	168	11
15 3 -7	112	121	15	2	14 -7	150	172	
4 4 -7	242	247	5	8	14 -7	170	155	10
6 4 -7	130	128	8	10	14 -7	275	271	9
8 4 -7	277	265	6	1	15 -7	234	259	- 7
12 4 -7	236	239	9	3	15 -7	160	162	ģ
1 5 -7	128	137	8	5	15 -7	115	112	11
3 5 -7	205	213	6	q	15 -7	381	277	±± 7
9 5 - 7	100	213 77	10	11	15 _7	121	127	10
3 J = 7	201	205	12	2 T T	16 7	101	200	12
$11 \ 5 = 7$ $13 \ 5 = 7$	201	200	0	2	16 -7	191	208 256	ס ר
13 5 -7	176	160	ט ר	10	10 - 7 16 - 7	202	200	י ר
$\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{7}$	1 / V	109	/ 1 0	L U 1	10 - /	290 200	209 200	/ ר
0 0 = 7	104 125	90 1 / 1		L L	17 -7	323 101	290 161	1
12 6 -7	14J 262	141 268	10 0	ך ב	17 - 7	167 167	162	9 10
5 7 -7	202	233	6	, R	18 -7	103 630	100 636	14 Q
7 7 -7	408	394	о 5	10	18 -7	146	148	11
/	100	J J I	5	- U	±	U	1 1 1 U	1 L L

Н	_K	L -	Fobs	Fcalc	SigF	H -	K	L -	Fobs	Fcalc	SigF
1	19	-7	124	122	14	10	6	-6	163	156	8
7	19	-7	342	335		12	6	-6	253	258	9
6	20	-7	381	385	7	1	7	-6	240	251	5
3	21	-7	102	99	14	5	7	-6	327	322	5
7	21	-7	227	215	8	7	7	-6	562	578	9
8	22	-7	120	106	12	9	7	-6	429	424	6
3	23	-7	132	112	12	13	7	-6	248	239	8
5	23	-7	177	165	10	15	7	-6	110	115	14
2	0	-6	735	830	10	4	8	-6	150	140	7
6	0	-6	288	249	5	6	8	-6	161	202	7
8	0	-6	231	231	6	8	8	-6	379	367	5
10	0	-6	92	109	12	10	8	-6	227	226	/
14	0	-6 6	423	425	/ ר	14	8	-6	165	159	11 E
14 1	1	-0	361	360	6	ン 5	9	-0 -6	320	201	5 5
י ד	1	-6	144	197	7	J 7	9 Q	-0 -6	108 229	291 120	5
7	1	-6	307	319	5	4	10	-6	230	420 250	6
11	1	-6	128	145	11	6	10	-6	164	167	7
13	1	-6	307	304		12	10	-6	147	115	12
2	2	-6	297	306	5	1	11	-6	295	294	5
4	2	-6	302	315	5	3	11	-6	103	91	10
6	2	-6	422	453	7	5	11	-6	168	168	7
8	2	-6	308	306	5	7	11	-6	210	199	6
16	2	-6	175	170	12	11	11	-6	260	253	9
1	3	-6	385	382	5	2	12	-6	672	665	9
3	3	-6	229	187	5	4	12	-6	669	665	9
5	3	-6	277	292	5	6	12	-6	304	294	5
/	3	-6	312	309	5	8	12	-6	15/	164	10
11	 ా	-6	193	205	8	14	12	-6	1/8	162	10
13	3	-6	320 164	124	0	14	12	-6	200	220	1 U 7
2	4	-0	104	104	5	3	1 1	-0	320 206	200	6
4	4	-0	116	130	3	ے ۱	11 11	-0	290	190	07
0 0	4 /	-6	170	192	2 Q	10	11	-6	194 508	107	, 8
10	4	-0	4/U 1/2	407	10	10	14	-0 -6	245	4 <i>31</i> 252	0
10	4	-0	144	102	10	12	14	-0	160	163	2 Q
1 /	4	-0	247	200	0	1	10	-0	202	200	0 7
14	4	-0	293	200	0	9	10	-0	392	200	/ 1 /
1	. 5	-6	94	106	10	13	10	0 -0	100	100	14
/	, 5 , F	-6	598	6U1	9	UL D	10	о - б	143	101	1
9	י 5 -	-6	478	500	/	12	16	- 6	164	181	12
11	. 5	-6	264	258	/	9	11	-6	342	349	8
13	5 5	-6	372	383	8	4	15	5 -6	199	156	9
2	2 6	5 -6	157	123	7	6	18	3 -6	335	328	8
6	56	5 -6	338	336	5	6	18	3 -6	159	125	11

Page 5

and and the second s

Н	Κ	L	Fobs	Fcalc	SigF	Н	K	L	Fobs	Fcalc	SigF
-	-	-					-	-			
4	16-	12	59	83	26	7	5-	11	67	12	17
6	16-	12	27	3	38	9	5-	11	49	3	27
8	16-	12	-82	59	48	11	5-	11	-27	64	71
10	16-	12	73	101	51	2	6-	·11	27	44	75
3	17-	12	-44	1	28	4	6-	·11	70	113	47
5	17-	12	81	. 1	48	6	6-	·11	54	27	21
7	17-	12	-59) 15	24	8	6-	-11	-50	7	25
9	17-	12	-36	5 15	32	10	6-	-11	-102	36	40
4	18-	12	13	3 3	50	12	6-	·11	-112	10	35
6	18-	•12	77		19	16	6-	-11	-57	./	60
8	18-	12	- / 8	3 · 51	42	3	/-	·	-32	39	35
с 7	19-	12	- 32	2 20	50 20	5 7	/- 7	•⊥⊥ • 1 1	90	43 E0	10
1	19-	12	-100	> ZU	28	1 1	7	•⊥⊥ • •	/ 8	20	10
4	20-	12	-12	2 J9 N 75	49	13	7 - 7 -	-⊥⊥ _11	04 76	23	49 20
8	20-	.12	-105	5 19	20	15	7-	-⊥⊥ -11	-129	24	20 34
2	20	.11	-81		41	4	, 8-	-11	12.5 77	108	54
4	0-	-11	-50) 0	53	8	8-	-11	0	72	92
6	0-	-11	-109	9 0	32	10	8-	-11	-55	24	28
8	0-	-11	55	5 0	21	12	8-	-11	69	36	43
10	0-	-11	-110	0 0	36	14	8-	-11	90	55	17
12	0-	-11	51	L 0	56	1	9-	-11	58	33	57
14	0-	-11	-121	L 0	30	3	9-	-11	-104	18	36
16	0-	-11	49	9 0	57	7	9-	-11	47	38	62
1	1-	-11	66	5 12	48	9	9-	-11	-99	5	39
3	1-	-11	-62	2 5	43	11	9.	-11	12	46	48
11	1-	-11	-82	2 36	43	13	9.	-11	37	3	32
13	1-	-11	-65	5 5	50	2	10.	-11	89	79	20
2	2-	-11	-50) 28	22	4	10.	-11	69	35	52
6	2-	-11	8	/ 68	15	8	10.	-⊥⊥ 11	TOO	105	18
12	2-	- 1 i	-9	8 29 D DD	40	10	10	- 1 1 - 1	-80	68 57	40
14	2-	- 1 1	6	2 33	24	14	10	- ⊥ ⊥ - 1	00 55	24	ZZ 51
Тр	2.	- 1 1	9. E	Z 103 7 20	20	14	10 11	—⊥⊥ _11	-55 06	24 ج	
3	3. 2	⊥⊥- - 1 1	-5		50	1	. <u> </u>	-11 -11	50	5	28 TU
12	ა. ა	⊥⊥ - 1 1	1 つ	U Z	90 20	-) <u>1</u> 1	_11	59 70	20 20	20 55
10 T0	ر ۲	-⊥⊥ 11	-12			, i) 11	_11	- 0.4	55	Д 1
2	4.	-11	-2	0 04 0 10	: 09 : 50	11	7 11	11 11	- 94	11	4 ± 0 5
4	4	-11	5	2 15) 52			-11		11	90
6	4	-11	-3	5 54	59) 13	3 11	-1+	-/6	5	44
8	4	-11	5	3 42	2 49) 15	5 11	-11	-88	121	52
12	4	-11	3	42	2 72) / . 4	2 12	-11	-157	17	25
16	4	-11	6	64 64	4 27	, i	4 12	2-11	48	49	33
3	5	-11	1	.3 14	4 42	2	6 12	2-11	73	95	26
5	5	-11		52 92	2 54	1	8 12	2-11	57	19	51

Page 6

Н —	K -	L	Fobs	Fcalc	SigF	Н —	К _	L -	Fobs	Fcalc	SigF
H 9146857926324123724680246123791246802 10246135791246802	K - 177888999900122234550000000011111122222222222222222222222	L	Fobs 215 142 171 214 589 409 130 95 132 459 104 158 219 104 158 219 104 114 105 8219 698 621 429 212 1258 167 203 608 1026 730 563 175 212 2106 205 288 84 179 604	Fcalc 217 120 157 212 579 411 130 95 161 445 129 184 150 258 89 106 113 8199 673 621 414 217 1245 185 207 614 1023 710 551 186 231 2164 242 343 85 182 592	SigF 10 10 9 8 9 7 14 14 13 7 14 10 9 14 12 15 27 9 7 6 7 15 10 11 8 8 9 8 7 8 4 11 7 14 12 15 27 9 7 6 7 15 10 10 9 8 9 7 14 12 15 27 9 7 6 7 15 10 10 9 8 9 7 14 12 15 27 9 7 6 7 15 10 10 9 8 9 7 14 12 15 27 9 7 6 7 15 10 11 8 8 9 7 14 12 15 27 9 7 6 7 15 10 11 8 8 9 8 7 14 12 15 27 9 7 6 7 15 10 11 8 8 9 8 7 7 8 4 11 15 27 9 7 6 7 15 10 11 8 8 9 8 7 7 8 4 11 7 10 11 8 8 9 8 7 7 8 4 11 7 7 9 7 6 7 15 10 11 8 8 9 8 7 7 8 4 11 7 9 7 8 4 11 7 9 7 8 4 11 7 9 7 8 4 4 11 7 9 7 8 4 4 11 7 9 7 8 4 4 11 7 9 7 8 7 7 8 4 4 11 7 9 7 8 8 9 8 7 7 9 7 8 4 4 11 7 9 7 8 4 4 11 7 9 7 8 8 9 8 7 7 8 8 9 8 7 7 8 4 4 11 7 9 7 8 4 4 11 7 9 9 8 8 7 7 8 8 9 8 7 7 8 8 9 8 7 7 8 8 9 8 7 7 8 8 8 9 8 7 7 8 8 8 9 8 7 7 8 8 8 9 8 7 7 8 8 8 9 8 7 7 8 8 8 9 8 7 7 8 8 8 8 8 7 7 8 8 8 8 7 7 8 8 8 7 7 8 8 8 8 7 7 8 8 8 8 8 7 7 8 8 8 7 7 8 8 8 8 8 7 7 8 8 8 8 8 8 8 7 7 8 8 8 7 7 8 8 8 8 8 8 8 8 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8	H - 15 2 4 8 10 12 14 1 3 5 7 11 13 15 2 4 6 8 16 1 3 5 7 9 13 2 4 8 10 12 14 1 3 5 7 11 13 5 7 9 13 2 4 8 10 12 14 1 3 5 7 9 13 2 4 8 10 12 14 1 3 5 7 9 13 2 4 8 10 12 14 1 3 5 7 9 13 2 4 8 10 12 14 1 3 5 7 9 13 2 4 8 10 12 14 1 3 5 7 9 13 2 4 8 10 12 14 13 5 7 9 13 2 4 8 10 12 14 13 5 7 9 13 2 4 8 10 12 14 13 5 7 9 13 2 4 8 10 12 14 1 3 5 7 9 13 2 4 8 10 12 14 1 3 5 7 9 13 2 4 8 10 12 14 1 3 5 7 9 13 2 4 8 10 12 14 1 3 5 7 9 13 2 4 8 10 12 14 1 3 5 7 9 13 2 4 8 10 12 14 1 3 5 7 9 13 2 4 8 10 12 14 1 3 5 7 9 2 2 4 8 10 12 14 1 3 5 7 9 2 2 4 8 10 12 14 1 3 5 7 9 2 2 4 8 10 12 14 1 3 5 7 9 2 2 4 8 10 14 1 3 5 7 9 2 2 4 8 10 14 1 3 5 7 9 2 2 14 1 15 14 15 15 15 15 15 15 15 15 15 15	K - 344444455555556666667777778888888999990	$ \begin{array}{c} L \\ - \\ - \\ 4 \\ - \\ -$	Fobs 118 730 181 208 238 638 113 486 458 397 191 893 304 129 506 615 606 284 169 521 409 265 710 181 232 649 171 342 122 443 117 104 322 268 172 168 420	Fcalc 99 739 160 189 237 620 107 496 455 411 185 932 323 132 510 620 577 288 138 545 414 293 696 193 252 692 190 350 89 439 124 108 330 250 179 179 408	SigF 14 9 5 6 7 9 13 7 6 6 6 10 8 13 7 7 5 12 7 5 8 7 9 10 5 6 0 7 9 13 7 5 8 7 9 10 5 6 10 8 13 7 5 12 7 5 8 7 9 10 5 6 6 10 8 13 7 5 12 7 5 8 7 9 10 5 6 6 10 8 13 7 5 6 6 10 8 13 7 5 12 7 5 8 7 9 10 5 6 6 10 8 13 7 5 12 7 5 8 7 9 10 5 6 6 10 8 13 7 5 12 7 5 8 7 9 10 5 6 6 10 8 7 7 5 12 7 5 8 7 9 10 5 6 6 10 8 7 7 5 8 7 9 10 5 6 10 8 7 7 5 8 7 9 10 5 6 10 7 5 8 7 9 10 5 6 10 7 7 5 8 7 9 10 5 6 10 7 5 8 7 9 10 5 6 10 7 5 8 7 9 10 5 6 10 7 5 8 7 9 10 5 6 10 7 5 8 7 9 10 5 6 10 7 13 8 5 5 6 8 6 8 5 5 6 8 7 9 10 5 6 8 7 9 10 5 6 8 5 5 6 8 5 5 6 8 6 8 5 5 6 8 6 8 6 8 5 5 6 8 6 8 5 5 6 8 6 8 5 5 6 8 6 8 5 5 6 8 6 8 5 5 6 8 6 8 6 8 6 8 5 5 6 8 6 8 6 8 5 5 6 8 6 8 5 5 6 8 6 8 5 5 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 7 8 7 7 7 5 8 7 8 5 5 6 8 6 8 6 8 6 8 6 8 6 8 7 8 7 8 7 8 7 8 7 8 7 7 7 7 8 7 7 8 7 8 7 7 7 7 7 7 7 7 7 7 7 7 8 7 7 8 7 7 7 8 7 7 8 7 7 7 7 7 7 7 7 7 8 7 7 7 7 7 7 7 7 8 8 7 8 7 7 7 7 7 7 7 7 7 7 7 7 7
16 16 3	233	-4 -4 -4	145 519 488	132 514 475	13 6 6	4 10 12	10 10 10	-4 -4 -4	682 98 221	632 98 229	8 12 8
3 5 7 9	3 3 3 7	-4 -4 -4 -4	488 239 127 620	475 254 147 616	ь 4 7 9	12 1 3 5	11 11 11 11	, -4 -4 -4 -4	221 145 73 244	229 144 67 235	。 6 11 5
11	3	3 - 4	299	281	6	ç) 11	-4	109	129	11

109

Н	Κ	L	Fobs	Fcalc	SigF	Н	K	L	Fobs	Fcalc	SigF
-	-	-					-	-			
15	11	-4	249	238	9	6	26	-4	173	146	10
2	12	-4	212	198	5	1	27	-4	123	122	13
4	$12^{$	-4	272	280	5	5	27	- 4	114	96	14
6	12	-4	203	225	6	1	1	-3	2069	2099	7
1	13	-4	313	299	5	3	1	-3	2029	1998	7
5	13	-4	265	253	5	5	1	-3	1033	988	9
7	13	-4	282	294	6	7	1	-3	162	156	6
9	13	-4	458	454	6	11	1	-3	606	628	9
2	14	- 4	265	248	5	13	1	-3	228	244	9
4	14	- 4	188	180	6	2	2	-3	1418	1490	7
8	14	-4	504	511	7	4	2	-3	430	444	7
10	14	<u>-</u> 4	202	211	10	6	2	-3	339	306	5
12	14	- 4	98	72	14	8	2	-3	192	187	6
- 5	15	-4	123	122	9	12	2	-3	193	201	10
7	15	- 4	803	825	10	14	2	-3	103	110	15
11	15	-4	166	161	10	16	2	-3	134	140	14
	16	-4	243	267	6	1	3	-3	388	429	5
6	16	-4	458	483	7	- 3	3	-3	505	542	6
8	16	- 4	349	353	7	7	3	-3	1137	1105	11
12	16	-4	173	162	11	11	3	-3	973	972	14
	17	-4	166	198	8	13	3	-3	169	177	10
3	17	- 4	258	273	6	2	4	-3	141	143	- 5
5	17	- 4	241	245	6	4	4	<u> </u>	210	223	4
7	17	-4	377	366	6	6	Â	<u> </u>	683	640	1 7
11	17	- A	146	161	11	8	r A	_ 3	242	233	י ה
 /	1 8	1	180	101	2 1 1	10		-3	232	255	6
4	10	_ 1	542	1 J J 5 5 7	0	11	4	-3	102	100	0
0	10 10	-4 -1	242	001 071	9 0	1	4 5	-3	192	109	9 A
0 5	10	-4	27J 526	Z/I 501	0	1 5	5	-))	200	207	4 E
- -	10	-4 -1	145	146	10	0	5	- J 2	210	270	С Б
0	10	-4	175	140	12	۲ ۱۱	5	- J - J	200	2011	С 0
9	19	-4	1/5	164	10		5	-3	207		8
11	19	-4	100	94	15	13	5	-3	142	127	11
2	20	-4	173	147	9	2	6	-3	296	247	5
4	20	-4	176	165	10	4	6	-3	405	417	6
6	20	-4	323	327	8	6	6	-3	191	187	5
8	20	- 4	113	107	12	10	6	-3	357	364	6
1	21	- 4	210	224		1	7	_ 3	158	177	5
ר ד	21	г _ Л	335	224	כ ר	.⊥ .⊥	, 7	-3	112	113	6
5	21	_ /	162	144	10	5	7	-3	41Z 007	94D	10
2	22	_ /	384	113	10	כ ר	י ר	-3	301	940 400	I U
ے ۸	<u> ム</u> つつ	_ /	120	413 167	1 0	/	/ ר	- J - J	1 A O	402	10
4 5	22	-4	150	10F	⊥∠ 1 1	9 1 0	/ ר	- J _ J		1 L Ŭ	TC
с 0	23	-4 _1	110	0 E 1 A D	⊥⊥ 1 つ	15 15	/ רי	- J 2	140	184	10
9	23	-4	100	20	13	15	/	- 3	146	15/	13
2	26	- 4	123	129	12	2	8	-3	790	830	9

Н —	K _	L -	Fobs	Fcalc	SigF	Н —	K -	L -	Fobs	Fcalc	SigF
4	8	-3	514	510	7	9.	17	-3	108	116	1.5
6	8	-3	175	161	6	6	18	-3	1004	1015	14
8	8	-3	359	329	5	8	18	-3	186	161	10
10	8	-3	176	184	7	10	18	-3	167	173	10
14	8	-3	144	159	12	12	18	-3	146	131	12
1	9	-3	262	205	4	5	19	-3	509	512	8
3	9	-3	513	535	7	7	19	-3	178	177	10
5	9	-3	314	319	4	4	20	-3	543	538	9
7	9	-3	87	77	11	1 :	21	-3	174	168	10
9	9	-3	180	184	7	5	21	-3	233	215	8
2	10	-3	779	764	10	7	21	-3	124	102	11
4	10	-3	291	288	4	2	22	-3	111	135	15
10	10	-3	136	131	10	4	22	-3	168	148	11
1	11	-3	1491	1544	10	6	22	-3	176	194	10
3	11	-3	243	250	5	1	23	-3	167	167	9
5	11	-3	217	186	5	3	23	-3	305	316	/
1 1	11	-3	324	334	5	4	24	-3	93	96	14 11
12	⊥⊥ 1 1	-3	302	406	0 1 0	6 7	24 25	-3	132	120	14
2 2	⊥⊥ 1つ	-3	165	149	13	/	20	-3	100 110	100	14
ے ۸	⊥∠ 1 つ	-3	100	⊥∠4 227	ю 5	4	20	-3 -3	152	136	10
4	12	-3	272	227	5	3	20	-3	133	130 77	14
0 8	12	-3	273 177	257	2	5 5	27	-3 -3	196	151	10
1	13	_ 3	372	360	6	2	2 /	-2	£ 50	691	10
ר ד	13	<u>-</u> 3	120	91	7	4	0	-2	460	412	6
5	13	-3	326	334	5	6	0	-2	961	92.9	10
11	13	-3	230	249	8	8	0	-2	243	259	5
4	14	-3	108	120	9	10	0	-2	687	697	10
6	14	-3	203	191	6	12	0	-2	502	502	7
8	14	-3	619	625	8	14	0	-2	192	183	9
10	14	-3	101	115	15	1	1	-2	250	280	3
1	15	-3	327	333	5	3	1	-2	316	316	5
3	15	-3	309	284	5	5	1	-2	962	937	9
5	15	-3	225	229	6	7	1	-2	104	103	8
7	15	-3	683	704	10	9	1	-2	265	258	5
9	15	-3	345	346	7	11	1	-2	597	600	9
11	15	-3	232	231	8	2	2	-2	737	767	6
4	16	-3	129	134	8	4	2	-2	1167	1207	8
6	16	-3	673	673	10	6	2	-2	102	57	8
8	16	- 3	468	470	6	12	2	-2	153	151	11
1	17	_ ~	248	249	б б	14	2	-2	258	265	
- -	. <u> </u>	_ २	2-10 2-17	240	6	1	ר ג	-2	192	230	4
ר ב	· ⊥ /	5	201	240	U	<u>+</u>	0	-		200	-1
	17	<u> </u>	283	260	6	3	3	-2	989	996	7

Page 9

H _	K -	L -	Fobs	Fcalc	SigF	H	K -	L -	Fobs	Fcalc	SigF
6	22	- 9	70	65	21	3	11	-8	-75	28	38
8	22	-9	-121	12	38	5	11	-8	-44	19	22
10	22	-9	-100	32	38	9	11	-8	-73	11	40
1	23	-9	60	37	52	11	11	-8	39	62	33
5	23	-9	55	23	23	13	11	-8	-73	2	46
7	23	- 9	-56	23	50	15	11	-8	-65	5	47
9	23	-9	-47	10	52	10	12	-8	56	18	53
2	24	-9	94	107	19	12	12	-8	-71	24	44
4	24	-9	-73	83	51	14	12	-8	-63	15	44
. 6	24	-9	-87	30	4⊥ 7∧	5 1 2	13 12	-8	- / 9	40	31
12	0	-0 -8	-37	2.5 67	74 61	15	13	-0 -8	48	10 7	28
16	0	-8	84	93	19	2	14	-8	37	35	20
11	1	-8	38	49	55	8	14	-8	-37	71	59
15	1	-8	80	59	18	12	14	-8	-29	105	68
10	2	-8	26	71	61	1	15	-8	39	120	66
16	2	-8	-45	47	60	3	15	-8	47	71	55
7	3	-8	73	79	14	5	15	-8	-91	11	37
- 9	3	-8	12	84	16	11	15	-8	90	77	16
15	3	-8	-145	31	30		15	-8	-35	39	29
10	4	-8	60		15	13	15	-8	/1	69	21
10	4	-8	64	95	4 /	2	16	-8	-/1	150	50
12	4	-8	69	4/	50	4	16	-8	39	37	28
10	4	-8 0	U	74	95	12	16	-8	32	4 /	66
5	5	-8	-96	29	25	3	1/	-8	-27	37	65
11	C	-8	55	22	51	11	17	-8	_ 0	34	56
12	6	-8	-91	47	42	2	18	-8	77	69	21
14	6	-8	-89	61	44	4	18	-8	55	10	25
16	6	-8	0	73	92	12	18	-8	42	54	29
1	/	-8	-64	75	34	5	19	-8	73	9	16
5	/	-8	61	63	42	9	19	-8	0	3	87
13	/	-8	-64	34	43	11	19	-8	-26	83	37
2	8	-8	62	16	17	6	20	-8	43	87	58
8	8	- g	66	153	43	10	20	-8	37	50	30
12	8	-8	-39	10	61	12	20	-8	-100	-	39
Тр	8	-8	51	/1	27	1	21	-8	64	111	47
19	9	-8	26	38	68	9	21	-8	-54	4	57
13	9	-8	53	55	50	11	21	-8	-32	31	65
15	9	-8	48	102	60	2	22	-8	-19	49	38
8	10	-8	57	51	50	6	22	-8	78	132	49
10	10	-8	-64	27	49	8	22	-8	64	3	21
12	10	-8	-58	17	21	10	22	-8	-93	- -	32
14	10	-8	-87	134	48	1	23	-8	-71	42	45
1	11	-8	-55	31	43	3	23	-8	-126	62	31

Н	K L	Fobs	Fcalc	SigF	H	K	L	Fobs	Fcalc	SigF
-					-	-	-			
5	27 -2	124	107	13	12	8	-1	260	241	8
3	1 -1	825	835	7	1	9	-1	334	326	5
7	1 -1	446	422	6	3	9	-1	405	422	6
9	1 -1	208	195	6	5	9	-1	290	295	4
11	1 -1	423	425	7	7	9	-1	314	307	5
15	1 -1	150	130	12	9	9	-1	136	146	9
2	2 -1	822	841	6	11	9	-1	344	360	8
4	2 -1	267	265	4	13	9	-1	183	189	10
6	2 -1	564	531	.7	2	10	-1	736	715	10
8	2 -1	551	559	9	6	10	-1	283	259	5
10	2 -1	226	237	/	8	10	-1	1/6	182	/
⊥ ⊃	3 - ⊥ ⊃ 1	13/4	1416	5	10	10	-⊥ 1	193	202	10
ے ۲	3 -1 2 1	1216	1239	/	14	10	-1 1	140	146	10
5 7	S =⊥ 3 =1	1310 512	1249	9	14	10	-⊥ _1	1642	91 1614	10
a l	3 - 1	1/3	499	o Q	т Е	11 11	-⊥ -1	2042	302	10 5
्र 1२	3 -1	130	118	11	G G	⊥⊥ 11	-1 -1	152	164	a a
15	3 - 1	229	227	10	11	11 11		348	104 358	2 7
4	<u> </u>	679	668	- U G	13	11	<u> </u>	141	120	11
6	4 -1	1528	1482	10	2	12	-1	516	474	8
8	4 -1	352	323	-0 6	4	12	-1	172	177	6
10	4 -1	336	362	6	6	12	-1	236	228	6
12	4 -1	143	150	12	10	12	-1	384	396	7
1	5 -1	366	380	6	1	13	-1	565	514	8
3	5 -1	434	435	6	3	13	-1	337	350	5
5	5 -1	654	611	9	5	13	-1	264	231	5
7	5 -1	85	95	9	7	13	-1	240	274	6
9	5 -1	356	355	5	2	14	-1	176	197	6
11	5 -1	320	330	7	4	14	-1	517	529	7
2	6 -1	495	512	6	6	14	-1	337	361	6
6	6 -1	1016	962	11	10	14	-1	328	368	7
8	6 -1	522	543	8	1	15	-1	227	277	5
10	6 -1	115	137	10	3	15	-1	642	627	9
12	6 -1	132	145	11	5	15	-1	290	282	5
1	7 -1	230	240	4	7	15	5 -1	446	458	6
3	7 -1	100	118	6	9	15	5 –1	244	245	8
5	7 -1	1201	1162	10	13	15	5 -1	196	196	11
9	7 -1	167	154	8	2	16	5 -1	272	272	6
11	7 -1	262	280	8	4	16	5 -1	119	135	9
13	7 -1	147	169	11	6	5 16	5 -1	490	507	8
2	8 -1	1001	1019	9	8	3 16	5 -1	614	631	9
4	8 -1	1291	1240	9	1	. 17	7 -1	376	322	6
6	8 -1	400	397	6	-	3 17	7 -1	417	449	6
о Я	8 -1	351	357	5	-	7 17	7 -1	201	180	9

H	K	L	Fot)S	Fcalc	SigF	H	K	L	Fob	s Fcal	c SigF
_	-				204		-	-	_	172	/ 170	
11	17	- 1 - 1	1 3 1 3	२७	123	11	2	4	0	28	4 1/9 2 25	4 0 4 7
2	18	- 1	2	77	268	6	4	4	0	15	0 15	5 5
4	18	-1	31	12	316	6	6	4	Õ	49	6 47	0 8
6	18	-1	73	39	743	10	8	4	0	33	9 36	8 5
3	19	-1	55	55	547	8	10	4	0	74	6 76	1 15
5	19	-1	22	24	247	8	1	5	0	38	8 41	1 6
7	19	-1	1(8	110	15	3	5	0	12	19 10	9 5
11	19	- <u> </u>	1:	26	116	11	/	5	0	100	13 I.9	0 8
4	20	-⊥ _1	5 U 1 (22	55U 151	9 10	9	5 5	0	30 100	108 108	4 13 1 7
1	20	- 1	10	55 64	202	9 I U	⊥⊥ 1 २	5	0	16	7 40 7 16	4 / 2 10
3	21	- 1	12	20	126	13	10	6	Ő	72	9 72	7 7
9	21	-1	14	40	117	11	2	6	0	65	2 65	8 8
2	22	-1	1!	51	164	12	4	6	0	104	1 100	99
1	23	-1	1:	39	156	12	6	6	0	13	6 11	4 6
9	23	-1	1.	73	166	11	8	6	0	14	5 13	1 8
8	24	-1	18	31	160	11	14	6	0	25	3 23	1 9
5	25	-1	10	64 24	151	10		/	0	48	47	7 6
6 1	20 27		Z. 1 (34 12	204	9 1 /	כ ר	ן ר	0		3 108 1 25	4 10
2	27		1 9	92 86	1910	14	, a	י ר	0	22	. 20 7 26	v o a a
2. Δ	0	0	13	2 U R 1	1314	8	11	7	0	26	5 26	० ० २ व
- 6	0	0	± 0 (4 (14 14	392	10	1 I 0	, 8	0	20)J 20)S 57	2 2 2 8
8	0	0	4	17	433	±0 7	2	8	0	16	51 20	0 5
10	Õ	Õ	160	00	1616	14	4	8	0	11	3 11	9 14
12	0	0	22	29	213	8	6	8	Õ	55	6 53	1 8
14	0	0	18	80	192	11	8	8	0	16	50 15	8 12
3	1	0	12	50	1227	9	10	8	0	52	25 57	0 19
5	1	0	74	41	737	17	12	8	0	15	0 15	8 11
7	1	0	3:	17	323	5	1	9	0	11	.5 10	7 6
9	1	0	2'	73	284	6	3	9	0	30	5 30	0 12
2	2	0	11	75	1138	6	5	9	0	56	54 55	7 17
4	2	0	7:	33	722	15	9	9	0	10	6 12	6 12
6	2	0	24	48	230	5	0	10	0	76	6 78	3 9
8	2	0	12	24	114	9	2	10	0	112	3 106	5 9
10	2	0	72	27	706	17	6	10	0	13	10 ±00	3 7
14	2	0	20	05	187	9	8	10	0	21	4 21	२ व
1	3	0	22	26	237	3	10	10	Õ	26	50 27	6 8
3	3	0	19	95	154	4	12	10	0	13	5 14	5 17
5	3	0	33	35	346	5	3	11	0	21	.5 21	9 5
7	3	0	82	27	827	12	5	11	0	18	4 15	9 8
9	3	0	3(06	284	6	7	11	0	32	.5 31	96
11	3	0	1(67	163	22	11	11	0	10	10 10	1 13

Η	K	L	Fobs	Fcalc	SigF	Η	Κ	L	Fobs	Fcalc	SigF
-	-	-				_	-	-			
13	11	0	295	271	9	0	26	0	174	191	10
2	12	0	381	365	6	4	26	0	165	150	11
4	12	0	104	129	8	1	27	0	129	118	12
8	12	0	175	156	8	5	27	0	150	130	12
1	13	0	309	270	5	2	28	0	116	80	13
3	13	0	160	150	8	1	1	1	2189	2205	5
5	13	0	175	194	8	3	1	1	633	598	8
7	13	0	394	401	7	5	1	1	319	266	5
9	13	0	121	122	12	7	1	1	169	167	6
0	14	0	203	191	5	9	1	1	666	681	10
2	14	0	135	139	15	11	1	1	306	318	8
4	14	0	183	194	6	2	2	1	826	766	7
6	14	0	471	484	17	4	2	1	188	171	5
8	14	0	297	319	11	6	2	1	219	196	5
5	15	0	983	1005	13	10	2	1	170	155	9
7	15	0	112	121	13	12	2	1	115	122	13
9	15	0	165	152	9	14	2	1	116	134	16
11	15	0	147	136	12	1	3	1	814	803	6
0	16	0	188	185	6	3	3	1	474	472	6
2	16	0	229	240	6	5	3	1	920	916	10
4	16	0	548	568	8	7	3	1	101	89	9
6	16	0	426	424	6	9	3	1	1109	1109	14
10	16	0	156	136	IU		3	1	187	162	10
Ţ	17	0	343	356	5	13	3	L r	16/	148	
3	17	0	407	422	0	0	4	1	844 CO1	920	0
с 7	17	0		514 14C	0 1 1	Ζ.	4	1	000	000	0
/	17	0	154	140		4	4	1	990 250	092 070	9 5
9	10	0	104	15Z 214	τU	0	4	⊥ 1	200	212	J
2	10	0	281	514	10	0	4	1	340 130	110	10
4	10	0	00Z	200	10	10	4	1	100	106	10
0 2	10	0	597	015 015	10	1	4 5	⊥ 1	10Z 205	103	10
3	19	0	814	C10	10	1 2	С Г	⊥ 1	100	405	6
С 7	19	0	290	20/	0	5	5	⊥ 1	109	129	0 5
/	19	0	192	192	10	с г	С Г	1		220) 0
9	19	U	121	110	13	1 1	C C	⊥ 1	440	40/	0 10
0	20	0	135	154	9	ΤT Ο	5	⊥ 1	1054	1070	13 7
2	20	U	211	266	/	0	0	1	1004	1072	/
4	20	0	271	261	9	2	6	1	1008	10/1	8 7
6	5 20	0	181	192	9	4	6	1	113	122	/ 7
1	. 21	0	372	388	1	6	6	1	132	134	1
5	5 21	0	185	180	9	8	6	1	204	213	1 0
C) 22	0	455	491	7	10) 6	1	194	202	10
	3 23	0	254	270	9	12	26	1	98	132	15
ç	9 23	0	139	137	13	1	. 7	1	683	707	8

Values	oes of	10	*Fobs a	nd 10*F	calc					Pa	ge 14
Н —	K _	L -	Fobs	Fcalc	SigF	H -	K -	L -	Fobs	Fcalc	SigF
3	7	1	1203	1175	9	3	17	1	400	427	6
5	7	1	588	539	8	5	17	1	300	309	6
7	7	1	206	218	6	2	18	1	135	127	9
11	7	1	160	166	9	4	18	1	1073	1105	14
13	7	1	168	173	10	6	18	1	210	211	9
0	8	1	500	514	6	8	18	1	174	159	10
2	8	1	971	963	9	10	18	1	170	173	11
4	8	1	382	365	6	3	19	1	506	497	8
10	8	1	4/5	445	6 10	5	19	1	216	205	9
12	o Q	-	133	133 TOO	12 7	0	20	⊥ 1	23/	218 41 E	1
ユ ス	G G	÷	433 548	400 518	/ 8	ے ۸	20	1	300 147	410	11
7	ģ	1	166	174	0 7	ب 4	20	⊥ 1	152	185	12
11	9	1	112	119	13	0	22	1	238	225	12
0	10	1	935	891	-0	4	22	1	195	182	9
2	10	1	110	97	7	1	23	1	314	357	7
4	10	1	203	218	5	5	23	1	125	101	11
8	10	1	277	270	6	2	24	1	196	199	9
10	10	1	109	100	14	4	24	1	204	199	9
1	11	1	432	405	6	1	25	1	102	97	13
3	11	1	96	88	8	5	25	1	154	146	12
5	11	1	657	647	9	7	25	1	310	267	9
7	11	1	136	150	9	4	26	1	131	112	13
9	11	1	416	460	7	6	26	1	193	175	11
11	11	1	195	189	9	1	27	1	167	119	10
0	12	7	127	131	7	3	27	1	192	158	10
2	12	1	428	396	./	0	28	1	111	76	13
4	12	i 1	269	247	5	2	28	1	145	144	12
	13	1	153	146	6	0	0	2	1585	1626	6
3	13	1	292	311	5	2	0	2	1222	1174	8
9	13	1	204	224	9	4	0	2	744	696	10
4	14	1	08		12	6	0	2	175	150	6
6 0	14	1	667	674	10	8	0	2	658	643	10
8	14	1	110	126	15	10	0	2	375	370	7
1	15	1	472	458	7	12	0	2	280	283	8
3	15	1	264	272	5	1	1	2	694	710	7
5	15	1	831	846	9	3	1	2	1072	1042	9
7	15	1	540	528	8	5	1	2	112	114	7
9	15	1	224	223	8	7	1	2	115	130	9
11	15	1	137	137	12	9	1	2	785	794	10
0	16	1	81	76	12	0	2	2	1150	1182	6
4	16	1	818	836	9	2	2	2	585	613	8
6	16	1	392	406	6	4	2	2	178	177	5
Ţ	Τ./	Ŧ	225	249	6	10	2	2	133	117	12

Reflexões observadas $I > 3\sigma(I)$

Н -	K -	L -	Fobs	Fcalc	SigF	H	K -	L _	Fobs	Fcalc	SigF
10	2	2	234	210	Q	6	10	2	030	221	7
1	2 7	2	234 707	708	8	8	12	2	130	165	13
⊥ 3	3	2	416	387	7	10	12	2	205	220	 9
5	3	2	268	257	5	1	13	2	109	65	8
7	3	2	474	453	7	5	13	2	305	320	6
9	3	2	255	268	7	0	14	2	505	464	7
0	4	2	598	639	8	2	14	2	331	337	6
2	4	2	799	795	8	4	14	2	115	126	10
4	4	2	619	566	7	6	14	2	662	692	10
6	4	2	315	280	5	8	14	2	443	478	7
8	4	2	544	580	7	3	15	2	327	333	5
10	4	2	548	561	8	5	15	2	49/	512	10
」 つ	5	2	194	189	4	9	15	2	164	102	10
5	С 5	2	004 1100	024 1078	9 11	0	16	2	100	200	6
7	5	2	97	1070 79	10	2. A	16	2	287	268	6
9	5	2	323	339	10	1	17	2	199	179	7
13	5	2	140	150	12	3	17	2	249	248	7
0	6	2	288	303	4	5	17	2	500	500	8
2	6	2	390	349	6	0	18	2	285	275	6
6	6	2	334	355	5	2	18	2	597	592	8
8	6	2	361	375	6	4	18	2	101	110	15
1	7	2	327	310	5	8	18	2	147	149	12
3	7	2	1271	1183	10	1	19	2	617	649	10
5	7	2	433	402	6	3	19	2	281	289	7
7	7	2	163	139	8	5	19	2	323	321	8
. 9	7	2	189	211	9	2	20	2	145	101	1 L
	/	2	1/8 015	192	TO	1	21	2	200		9
13	/	2	215	196	9	ے د	∠⊥ 21	2	110	116 116	
<u>ک</u>	0	2	430	400	6	0	21	2	296	324	14 Q
4	0	2	440 212	304	5	1	22	2	200	315	0 7
10	0	2	010 071	200	ך ב	1 5	25	2	105	03 710	י ז ה
10	0	2	271	290	/ 5	し つ	20	2	117	115	± Ј 1 л
1 2	9	2	201	100	0	2	20	2	12/	111	⊥4 1 0
3	9	2	299	020	0 5	0 0	21	2	117	エエエ フク	1 /
2	9	2	200	200	ט ר	2	. 20	2	172	100	14 5
/	9	2	226	228	/ E	1	. 1	ン つ	201	100	С
0	10	2	194	254	5	5) <u> </u>	3	201	203	5
6	10	2	106	121	LÜ	-) 1	3	301	302	J C
1	11	2	692	664	8	-	/ 1	3	343	358	C
3	11	2	69	51	11	Ç) 1	3	454	480	7
7	11	2	395	393	6	13	3 1	3	187	171	11
0	12	2	1172	1144	10	() 2	3	901	899	7
2	12	2	813	819	11		2 2	3	99	116	7

and the second sec

4 2 3 167 148 6 8 10 3 247 251 8 6 2 3 362 361 5 10 10 3 106 119 14 8 2 3 200 206 8 3 11 3 231 264 5 1 3 3 272 263 4 5 11 3 117 105 9 3 3 1000 990 10 7 11 3 226 230 8 5 3 3 206 212 10 2 2 3113 320 4 9 3 206 212 10 2 2 3114 113 8 13 3 182 174 11 4 12 3 202 212 6 0 4 3 240 244 4 6 12 3 106 10 10 10 11 </th <th>Н</th> <th>K</th> <th>L</th> <th>Fobs</th> <th>Fcalc</th> <th>SigF</th> <th>Н</th> <th>Κ</th> <th>L</th> <th>Fobs</th> <th>Fcalc</th> <th>SigF</th>	Н	K	L	Fobs	Fcalc	SigF	Н	Κ	L	Fobs	Fcalc	SigF
423167148681032472518623362361510103106119148232993006111320821751023200206831132312645133272263451131171059331000990107113226230853332663295911335538777331191341001233133204932062121021231141138133182174114123220212604324024446123103102122433683756812336640384439769551111333155777533673706814325629789531511711211534054626 <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td>		-	-				-	-	-			
6 2 3 362 361 5 10 10 3 106 119 14 8 2 3 299 300 6 1 11 3 208 217 5 10 2 3 200 206 8 3 11 3 217 5 3 3 1000 990 10 7 11 3 226 230 8 5 3 326 329 5 9 11 3 355 387 7 7 3 3 119 134 10 0 12 3 114 113 8 13 3 182 174 11 4 12 3 102 12 2 4 3 368 360 8 8 4 3 376 955 11 11 3 3 169 177 8 4 3 371 387 6 5 13 3 169 177	4	2	3	167	148	6	8	10	3	247	251	8
8 2 3 209 300 6 1 11 3 208 217 5 10 2 3 200 206 8 3 11 3 231 264 5 1 3 3 272 263 4 5 11 3 117 105 9 3 3 1000 990 10 7 11 3 226 230 8 5 3 3 119 134 10 0 12 3 313 320 4 9 3 220 212 10 2 12 3 114 113 8 13 3 182 174 11 4 12 3 200 212 6 0 4 3 240 244 4 6 12 3 103 102 12 2 4 3 368 375 6 8 12 3 368 103 103 </td <td>6</td> <td>2</td> <td>3</td> <td>362</td> <td>361</td> <td>5</td> <td>10</td> <td>10</td> <td>3</td> <td>106</td> <td>119</td> <td>14</td>	6	2	3	362	361	5	10	10	3	106	119	14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	2	3	299	300	6	1	11	3	208	217	5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	2	3	200	206	8	3	11	3	231	264	5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	3	3	272	263	4	5	11	3	117	105	9
5 3 3 326 329 5 9 11 3 355 367 7 7 3 3 106 212 10 2 12 3 114 113 8 13 3 3 162 174 11 4 12 3 220 212 6 0 4 3 240 244 4 6 12 3 368 403 8 4 4 3 976 955 11 1 13 3 155 172 8 8 4 3 371 387 6 5 13 3 169 177 8 1 5 3 502 524 7 2 14 3 400 402 7 3 5 3 925 854 10 4 14 3 195 223 7 7 5 3 367 370 6 8 14 256	3	3	3	1000	990	10	7	11	3	226	230	8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	57	<i>う</i>	చ ా	326	329	5	9	$\downarrow \downarrow$ 1 2	ు స	355	38/	/
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	/	2 2	े २	206	134 010	10	0	12 12	ר ר	515 114	320 113	4 Q
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	و 1 ۲	۲ ر	2	182	212 174	11	2. A	12	ר ר	220	212	6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10 1	Δ	ר ר	240	244	4	4	12	ך ר	103	102	12
4 4 3 976 955 11 1 13 3 410 393 6 6 4 3 164 117 7 3 13 3 155 172 8 8 4 3 371 387 6 5 13 3 169 177 8 1 5 3 502 524 7 2 14 3 400 402 7 3 5 3 925 854 10 4 14 3 195 223 7 7 5 3 367 370 6 8 14 3 256 297 8 9 5 3 151 171 12 1 153 3 462 6 0 6 3 455 470 7 3 155 3 362 5 6 6 3 163 112 0 16 3 341 429 7 <	2	4	3	368	375	6	8	12	3	368	403	-2-8
6 4 3 164 117 7 3 13 3 155 172 8 8 4 3 371 387 6 5 13 3 169 177 8 1 5 3 502 524 7 2 14 3 400 402 7 3 5 3 925 854 10 4 14 3 195 223 7 7 5 3 367 370 6 8 14 3 256 297 8 9 5 3 151 171 12 155 3 405 462 6 0 6 3 363 368 6 4 16 3 41 429 7 8 6 3 160 164 10 6 16 3 532 560 7 10 6 3 363 368 11 5 17 3 10	4	4	3	976	955	11	1	13	3	410	393	6
8433713876513316917781535025247214340040273539258541041431952237753367370681432562978953151171121534054626063455470731531281389263307314451534864897463129012081101633453625663363368641634314297863160164106163532560710631661751081631121051317322521410018316215481173175164102183416420608380576594183665670928313141310101193<	6	4	3	164	117	7	3	13	3	155	172	8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8	4	3	371	387	6	5	13	3	169	177	8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	5	3	502	524	7	2	14	3	400	402	7
75336737068143256297895315117112115340546260634554707315312813892633073144515348648974631290120811016334536256633633686416343142978631601641061635325607106316617510816311210513173224257511731301341477310894117173142160119732052141001831621548117317516410218341642060838057659418366567092831314131010119334437974835615559319	3	5	3	925	854	10	4	14	3	195	223	7
953151171121153405462606345547073153128138926330731445153486489746312901208110163345362566336336864163431429786316016410616353256071063166175108163112105131732242575117313013414773108941171731421601197320521410018316215481173175164102183416420608380576594183665670928313141310101193344379748356155593193165198116832702706220 <td>7</td> <td>5</td> <td>3</td> <td>367</td> <td>370</td> <td>6</td> <td>8</td> <td>14</td> <td>3</td> <td>256</td> <td>297</td> <td>8</td>	7	5	3	367	370	6	8	14	3	256	297	8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	5	3	151	171	12	1	15	3	405	462	6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C	6	3	455	470	1	3	15	3	128	138	9
4631290120811016334336256633633686416343142978631601641061635325607106316617510816311210513173224257511734894716373870865115173130134147731089411717314216011973205214100183162154811731751641021834164206083805765941836656709283131413101011933443797483561555931931651981168327027062203385391710831871971062031881761019361064181<21	2	6	3	307	314	4	5	15	3	486	489	/
6 6 3 363 366 6 4 16 3 431 429 7 8 6 3 160 164 10 6 16 3 532 560 7 10 6 3 166 175 10 8 16 3 112 105 13 1 7 3 224 257 5 1 17 3 489 471 6 3 7 3 870 865 11 5 17 3 130 134 14 7 7 3 108 94 11 7 17 3 142 160 11 9 7 3 205 214 10 0 18 3 162 154 8 11 7 3 175 164 10 2 18 3 416 420 6 0 8 3 805 765 9 4 18 3 665 670 9 2 8 3 1314 1310 10 199 3 344 379 7 4 8 3 561 555 9 3 195 198 11 6 8 270 270 6 2 20 3 188 176 10 8 3 187 197 10 6 20 3 188 1	4	6	3	1290 363	7708 370	11	U A	16 16	3	340 121	362	כ ד
1063166175108163332360131732242575117348947163738708651151731301341477310894117173142160119732052141001831621548117317516410218341642060838057659418366567092831314131010119334437974835615559319316519811683270270622033853917108318719710620318817610193610641812131221021339322218850223171031459331529854223107103147933373408723 <td>c c</td> <td>6</td> <td>े २</td> <td>303 160</td> <td>300 164</td> <td>10</td> <td>4</td> <td>16</td> <td>े २</td> <td>401 530</td> <td>429 560</td> <td>י ר</td>	c c	6	े २	303 160	300 164	10	4	16	े २	401 530	429 560	י ר
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	6	ר ר	166	175	10	8	16	ר ר	112	105	13
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	, 0 7	3	224	257	-5	1	17	3	489	471	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	3 7	3	870	865	11	5	17	3	130	134	14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	7	3	108	94	11	• 7	17	3	142	160	11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ç) 7	3	205	214	10	0	18	3	162	154	8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	. 7	3	175	164	10	2	18	3	416	420	6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	() 8	3	805	765	9	4	18	3	665	670	9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	2 8	3	1314	1310	10	1	19	3	344	379	7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ľ,	8	3	561	555	9	3	19	3	165	198	11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(58	3	270	270	6	2	20	3	385	391	7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1() 8	3	187	197	10	6	20	3	188	176	10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	L 9	3	610	641	8	1	21	3	122	102	13
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		39	3	222	188	5	C	22	3	123	123	14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ſ	59	3	315	298	5	4	22	3	107	103	14
9 9 3 337 340 8 7 23 3 182 159 10 11 9 3 166 159 11 3 25 3 123 98 12 0 10 3 657 705 7 4 26 3 247 207 9 2 10 3 81 88 10 0 0 4 764 762 8 6 10 3 227 240 7 2 0 4 607 638 7		79	3	139	150	9	6	5 22	3	97	72	15
11 9 3 166 159 11 3 25 3 123 98 12 0 10 3 657 705 7 4 26 3 247 207 9 2 10 3 81 88 10 0 0 4 764 762 8 6 10 3 227 240 7 2 0 4 607 638 7	(99	3	337	340	8	7	23	3	182	159	10
0 10 3 657 705 7 4 26 3 247 207 9 2 10 3 81 88 10 0 0 4 764 762 8 6 10 3 227 240 7 2 0 4 607 638 7	1	1 9	3	166	159	11		3 25	3	123	98	12
2 10 3 81 88 10 0 0 4 764 762 8 6 10 3 227 240 7 2 0 4 607 638 7		0 10	3	657	705	7	4	26	3	247	207	9
6 10 3 227 240 7 2 0 4 607 638 7		2 10	ک ح	81	88	10	() ()	4	764	762	8
		6 10	े २	207	240	-0 7		> 0	Â	607	638	

118

Н —	K _	L -	Fobs	Fcalc	SigF	H _	К -	L _	Fobs	Fcalc	SigF
	~		~ ~ 4	504	0	<i>c</i>	1.0		•		
4	0	4	571	584	8	6	10	4	98	75	11
ю 0	0	4	120 1205	1200	10 14	10	10	4	24/	259 100	9
10	0	4	216	21/	14 Q	10	1 U	4	190	330 T00	9
1	1	4	506	502	ך ר	11	11	4	275	246	8
3	1	4	544	553	, 8	0	12	4	342	330	5
5	1	4	302	321	5	4	12	4	147	174	9
7	1	4	264	273	6	8	12	4	133	122	10
0	2	4	421	433	7	3	13	4	196	181	7
2	2	4	488	532	7	5	13	4	279	246	7
6	2	4	341	349	5	7	13	4	129	170	15
10	2	4	693	708	14	9	13	4	113	113	15
10	2	4 1	10Z	91 97	⊥4 13	0	14 17	4	128 274	104 304	0 6
1	2	4 /	125	97 119	13	Z 1	14	4 1	274 191	195	0 8
5	3	4	567	556	9	6	14	4	208	205	9
7	3	4	381	375	6	1	15	4	120	157	10
9	3	4	132	122	12	3	15	4	825	859	10
0	4	4	77	84	9	0	16	4	202	210	7
4	4	4	313	295	5	2	16	4	482	502	8
8	4	4	534	532	8	4	16	4	465	464	7
1	5	4	662	645	10	8	16	4	104	81	14
ろ 「	5	4	391	372	6 5		17	4	248	252	/ ר
5 7	5	4 1	200	205	J Q	5 5	17	4 1	490	470	11
, G	5	4	194	188	8	5 7	17	4	114	114	14
11	5	4	138	135	12	Ó	18	4	202	231	7
0	6	4	331	344	6	2	18	4	570	566	9
2	6	4	876	866	11	4	18	4	356	353	7
6	6	4	163	170	8	6	18	4	113	104	13
12	6	4	237	227	10	1	19	4	620	619	11
1	7	4	270	293	5	3	19	4	198	195	10
3	7	4	627	619	8	5	19	4	173	167	10
5	7	4	107	138	10	0	20	4	215	234	9
9	7	4	302	292	7	2	20	4	167	152	11
0	8	4	181	200	5	4	20	4	207	206	9
4	8	4	355	341	5	1	23	4	127	160	13
6	8	4	176	178	8	0	28	4	108	74	14
8	8	4	389	413	7	1	1	5	447	436	6
1	g	-	95	113	9	7	1	5	477	497	6
ר ג	ģ	Δ	284	293	5	C) 7	5	169	165	10
0 0	a	 /	204 Q7	255 86	1 <u>/</u>	ſ) 2	5	104	99	8
9 0	ン 10	4 /	رو 210	00 804	11	C F	5 2	ך ר	151	153	9 9
2	10 10	4 []	121	122	8	1	3	5	406	425	6

Values	of	10	*Fobs a	nd 10*F	'calc					Pa	ge 18
H _	K -	L -	Fobs	Fcalc	SigF	Н -	К -	L _	Fobs	Fcalc	SigF
3	3	5	659	629	8	0	18	5	146	164	11
7	3	5	810	806	11	2	18	5	815	817	11
9	3	5	193	199	9	4	18	5	212	229	8
2	4	5	542	552	8	1	19	5	296	321	8
4	4	5	188	200	7	3	19	5	145	142	11
6	4	5	141	136	9	0	20	5	245	234	8
10	4 5	5	152	127	11		21	5	124	116	12
⊥ २	5 5	כ 5	90 130	100 151	9			ך ב	139	116	11
ר ה	5	5	268	275	6	2	24 27	5	201 185	204 181	9 17
9	5	5	122	98	12	2	26	5	105	81	15
Ō	6	5	165	182	-2	1	27	5	141	122	13
2	6	5	135	134	8	0	0	6	328	300	5
4	6	5	276	268	6	2	0	6	379	375	5
6	6	5	233	246	7	6	0	6	431	447	6
1	7	5	569	552	8	8	0	6	293	323	8
3	7	5	394	385	6	10	0	6	226	216	9
5	7	5	106	107	11	1	1	6	496	497	7
9	7	5	117	128	13	7	1	6	655	657	9
11	7	5	152	119	11	0	2	6	471	480	6
0	8	5	292	294	5	8	2	6	119	143	12
2	8	5	187	176	6	10	2	6	152	136	12
4	8	5	293	281	6	1	3	6	233	204	5
1	9	5	201	169	6	3	3	6	82	96	12
3	9	5	167	161	7	5	3	6	264	287	6
0	10	5	91	91	10	0	4	6	336	319	5
2	10	5	145	161	8	2	4	6	272	284	5
1	11	5	132	123	8	4	4	6	166	180	8
3	11	5	306	319	6	6	4	6	315	281	7
7	11	5	278	300	7	8	4	6	349	324	, 7
0	12	5	267	2.62	6	1	5	6	335	320	6
2	12	5	139	149	9	3	5	6	496	480	0 7
1	13	5	271	280	6	7	5	6	156	175	13
- 7	13	5	138	167	12	, 0	5	6	150	150	C L C
, Л	1 /	5	111	107 11 A	12	1	6	G	100	100	/
1	15	5	914 211	414 010	C C	4	0	0 C		189	8
2 1	15 15	J E	244 4CO	470	0	0	0	6	204	179	9
С Г	10	5	462	470	/	1	/	6	/4/	736	8
С Г	10	5	426	419	/	3	1	6	378	371	6
/	15	5	110	130	15	0	8	6	304	333	5
9	15	5	143	136	13	2	8	6	221	220	6
2	16	5	660	650	9	4	8	6	128	129	9
4	16	5	229	214	10	8	8	6	199	192	9
1	17	5	518	516	8	1	9	6	353	345	5
3	17	5	398	371	8	3	9	6	129	122	10

and a management of the state o

Reflexões observadas I $\geq 3\sigma(I)$

The definition of the second

H	K -	L -	Fobs	Fcalc	SigF	Н —	K -	L -	Fobs	Fcalc	SigF
5	9	6	143	153	11	5	9	7	145	134	13
4	10	6	107	85	11	7	9	7	235	252	9
5	11	6	218	231	10	6	10	7	187	203	10
0	12	6	323	313	5	1	11	7	129	128	10
4	12	6	113	89	13	7	11	7	273	272	8
6	12	6	141	161	11	6	12	7	285	282	8
8	12	6	156	160	11	3	13	7	138	135	13
3	13	6	169	149	10	0	14	7	234	222	7
4	14	6	402	376	7	4	14	7	114	128	13
6	14	6	298	313	8	6	14	7	149	165	12
1	15	6	196	190	8	3	15	7	317	304	9
3	15	6	278	264	9	2	16	7	292	308	9
7	15	6	110	87	14	4	16	7	330	305	8
0	16	6	93	103	12	0	18	7	302	300	9
2	16	6	260	283	8	2	18	7	368	368	/
1	17	6	168	184	11	0	20	/	226	217	9
3	1/	6	324	344	8	2	0	8	241	243	10
0	10	6	380	385	1 2	4	0	8	129	109	12
2	10	6	146	149	13 11	6 1	1	8	1/5	1/3	
⊥ ⊃	19	6	109	189	11	⊥ ⊃	1	8	161	193	0
) ()	20	6	220 117	ZI4 100	10	5	1	0	100	109 252	9 0
ע ר	20	0 7	177	113	2 2	כ ר	⊥ 1	0	110	130	0 1 3
2 7	⊥ 1	7	221	⊥4J 213	o Q	,	1 2	o Q	119	160	10
/	2	7	186	179	9 7	2	2	8	03 110	100	12
5	2	7	216	200	10	2 4	2	8	171	183	10
8	2	7	151	134	10	6	2	8	439	479	- 0
1	2	7	360	332		1	3	8	165	145	, 8
3	٦	7	159	140	8	3	3	8	222	211	7
7	3	7	107	- 99	13	5	3	8	245	258	9
0	4	7	220	214	-0	7	3	8	144	134	11
2	4	7	543	518	8	0	4	8	166	145	
6	4	7	202	233	10	2	4	8	145	158	9
1	5	7	630	679	- 0	6	4	8	350	298	7
5	5	7	187	171	10	1	5	8	230	240	7
2	6	7	643	628	- ° G	3	5	8	200	197	8
Δ	6	, 7	182	178	8	5	5	Ř	200	291	Ğ
1	7	י ר	112	127	6	כ ר	5	Q Q	100	291	1 A
÷ -	, ,	1	440	427	10	· · ·) C	0	105	117	14 7
/	/	/	136	119	12	0	6	Ø	41/	41/	
U	8	1	536	520	8	1	/	8	355	329	ь 10
2	8	7	172	187	9	1	/	8	148	139	12
4	8	7	143	153	12	2	8	8	205	182	
8	8	7	136	134	13	6	> 8	8	222	197	10
3	9	7	89	93	13	1	. 9	8	111	95	12

H	K	L	Fobs	Fcalc	SigF	H	K	L	Fobs	Fcalc	SigF
6	10	8	178	180	10	6	4	10	142	140	14
3	11	8	174	192	12	1	5	10	157	134	11
1	13	8	196	195	10	4	6	10	122	58	12
3	13	8	158	137	10		/	10	160 115	191	13
/	13	8		90	210	3	12	10	120	93	13
1	14 17	0 8	110	118	9 15	4	14	10	131	126	15 15
1	15	8	552	520		4	14	10	152	149	13
0	16	8	356	359	8	1	15	10	163	124	11
2	16	8	290	328	8	0	16	10	189	172	11
1	17	8	362	380	7	1	17	10	153	146	14
3	17	8	114	112	15	0	4	11	188	213	11
0	18	8	300	302	8	0	6	11	280	294	9
2	18	8	236	239	9	4	12		171	148	12
3	19	В О	140	146	⊥⊥ 1 2	1	15	⊥⊥ 1 1	142	80 125	10 14
ے ج	20	o G	149 235	261	1.3 Q		16	11 11	166	145	11
7	1	g	120	201 95	13	2	16	11	189	141	12
4	2	9	170	179	11	0	18	11	176	170	12
1	3	9	229	202	7	4	0	12	354	350	9
5	3	9	445	414	7	3	1	12	176	169	11
7	3	9	137	134	13	4	2	12	247	282	10
0	4	9	317	290	6	3	3	12	140	140	13
4	4	9	119	120	15	4	4	12	153	130	13
2	6	9	184	183	10	3	5	12	111	118	17
4	6	9	106	116	14	0	16	12	164	165	14
1	7	9	247	227	7	3	3	13	173	154	13
7	7	9	110	61	16						
0	8	9	125	107	11						
2	8	9	147	126	12						
1	11	9	124	119	14						
5	11	9	127	129	15						
2	14	9	186	167	10						
1	15	9	174	173	11						
3	15	9	236	241	10						
0	16	9	385	373	7						
1	17	9	247	252	10						
0	18	9	436	414	7						
2	18	9	130	173	15						
4	0	10	146	159	12						
6	0	10	156	174	12						
5	1	10	379	377	8						
3	3	10	129	140	12						
4	4	10	140	87	12						

H -	K L	Fobs	Fcalc	SigF	H _	K L	Fobs	Fcalc	SigF
H - 8798460235913468023579146802579146	K L 0-17 1-17 2-17 0-16 0-16 0-16 1-16 1-16 1-16 1-16 2-16 2-16 2-16 2-16 2-16 3-16 3-16 3-16 3-16 4-16 4-16 4-16 5-16 5-16 5-16 5-16 5-16	Fobs -105 0 -74 -74 34 74 -55 -57 -47 -79 57 28 95 -123 -31 80 47 0 -57 -52 33 51 -34 -32 -40 62 75 -74 -73 -91 -56 76 108 71	Fcalc 0 35 1 79 4 31 9 33 25 14 153 35 17 14 203 14 155 51 11 98 17 1 98 17 1 36 37 60 37 0 56 4 4 67 12	SigF 46 107 55 55 67 23 56 58 64 49 63 40 19 36 72 59 68 106 58 28 76 31 35 77 33 27 50 55 49 53 22 18	H - 7 9 8 2 4 6 8 10 12 14 1 3 5 7 9 11 13 2 4 6 8 10 12 14 1 3 5 7 9 11 13 2 4 6 8 10 12 14 13 5 7 9 11 13 2 4 6 8 10 12 14 13 5 7 9 11 13 2 4 6 8 10 12 14 13 5 7 9 11 13 2 4 6 8 10 12 14 13 5 7 9 11 13 2 4 6 8 10 12 14 13 5 7 9 11 13 2 4 6 8 10 12 14 13 5 7 9 11 13 2 4 6 8 10 12 14 13 5 7 9 11 13 2 4 6 8 10 12 14 13 2 4 6 8 10 12 14 13 2 4 6 8 10 12 14 13 2 4 6 8 10 12 14 13 2 4 6 8 10 12 14 13 2 4 6 8 10 12 14 13 2 4 6 8 10 12 14 13 2 4 6 8 10 12 14 13 2 4 6 8 10 12 14 13 2 4 6 8 10 12 14 13 2 4 6 8 10 12 14 13 2 4 6 8 10 12 14 13 2 4 6 8 10 12 14 13 2 4 6 8 10 12 14 13 2 4 6 8 14 13 2 4 6 8 14 13 2 4 6 8 14 13 2 4 6 8 14 14 13 2 4 6 8 14 14 13 2 4 6 8 14 14 14 14 14 14 15 14 14 15 14 14 15 14 14 15 14 15 14 15 15 15 15 15 15 15 15 15 15	K L 9-16 9-16 10-16 0-15 0-15 0-15 0-15 0-15 1-15 1-15 1-15 1-15 1-15 1-15 2-15 2-15 2-15 2-15 2-15 3-15 3-15 3-15 3-15 3-15 4-15 4-15	Fobs 88 -33 -37 67 -55 -81 -74 0 -124 84 -119 0 70 93 57 48 47 -16 45 -92 -112 -78 49 77 -31 24 100 -30 32 -46 76 56	Fcalc 25 8 40 0 0 0 0 0 0 0 0 0 0 0 0 0	SigF 21 75 38 45 26 47 49 59 40 38 95 18 26 63 43 45 26 63 43 65 26 54 72 40 74 83 55 26 54 72 40 74 83 55 26 58 26 55 55 55 55 55 55 55 55 55 55 55 55 55
6 8 10 12	6-16 6-16 6-16 6-16	-71 58 -56 -75	12 20 10 39	24 61 54 53	6 8 10 12	4-15 4-15 4-15 4-15	27 55 57 -106	49 12 0 59	39 56 25 38
5 7 9 11	7-16 7-16 7-16 7-16	-115 76 -32 0	11 21 11 20	40 48 68 103	14 1 3 5	4-15 5-15 5-15 5-15	78 -33 47 -44	7 3 119 25	50 35 76 60
6 8	8-16 8-16	-24 -46	3 32	44 68	7	5 - 15 5 - 15	71 43	44 22	51 30
10	8-16	-145	21	36	11	5-15	-100	13	38

-59

73

52

-41

4

6

0-14

0-14

8 0-14

10 0-14

27

36

75

61

48

47

56

60

4 6-14

6 6-14

8 6-14

10 6-14

нкі — — —	Fobs	Fcalc	SigF 	Н —	K L 	Fobs	Fcalc	SigF
13 5-15	5 0	33	92	12	0-14	-97	4	36
2 6-15	5 59	104	64	14	0-14	-20	16	41
4 6-15	5 53	20	28	1	1-14	-54	56	53
6 6-15	52	48	28	3	1-14	60	4	22
8 6-15	-98 = -104	15	4/	כ ד	⊥ − ±4 1_14	-11/	83 20	35
10 6-10	-104	17	39 41	, a	1 - 14 1 - 14	201 - 08	20	54 18
3 7-15	5 -64	70	55	11	1-14	00	47	92
5 7-15	5 -63	6	52	13	1-14	-83	43	4 4
7 7-15	5 32	41	79	15	1-14	35	4	73
9 7-15	5 -62	9	49	2	2-14	-28	8	35
11 7-15	5 –111	28	36	4	2-14	68	36	21
13 7-15	5 49	5	62	6	2-14	-68	6	21
2 8-15	5 70	13	58	8	2-14	-58	11	52
4 8-1		38	100	10	2-14	95 5	39	16 55
6 8-1:	-58	/ 25	26 27	14	2 - 14	55	01 25	22
10 8-1	5 - 49	20	27	⊥4 1	2 - 14 3 - 14	48 	20	00 35
3 9-1	5 49	4	25 65	⊥ ר	3 - 14	0	37	92
5 9-1	5 -78	20	48	5	3-14	-31	47	34
7 9-1	5 -78	59	52	7	3-14	30	53	71
9 9-1	5 -71	13	51	9	3-14	-48	10	26
11 9-1.	5 -73	2	52	11	3-14	-74	46	53
4 10-1	5 49	29	70	13	3-14	0	1	91
6 10-1	5 49	3	32	15	3-14	-100	35	48
8 10-1	5 87	86	21	2	4-14	56	28	59
10 10-1	5 50	27	27	4	4-14	-29		/ L 6 1
12 10-1	5 61 5 -134	23	49 41	0	4-14	4.5 8.4	40 Q	18
5 11-1	5 <u>-</u> 134 5 <u>-</u> 73	20	41 53	10	4-14	-51	19	51
9 11-1	5 –113	17	36	12	4-14	0	61	100
11 11-1	5 -66	2.6	50	14	4-14	49	12	65
4 12-1	5 -66	5	55	1	5-14	66	22	50
6 12-1	5 55	28	31	3	5-14	-42	1	59
8 12-1	5 -80	42	54	5	5-14	-123	6	32
10 12-1	5 59	8	57	7	5-14	-69	27	21
5 13-1	5 -82	25	47	9	5-14	80	10	17
7 13-1	5 -66	67	53	11	5-14	-101	29	41
9 13-1		6	20	1 3	5_1/	-31	61	79
	5 95) n	ZU	10) J-T4	: JI	U L	15

Page 2

26

18

4

8

-11

0

0

-86

49

95

93

41

Η	K	L	Fobs	Fcalc	SigF	Н	К	L	Fobs	Fcalc	SigF
_	_	_				_	_	_			
12	6-	14	0	22	98	11	13-	.14	-109	19	40
14	6-	14	69	31	58	4	14-	.14	-135	44	37
Ţ	/-	14	-140	1/	30	6	14-	•14	-79	69	48
3	/-	·14	8/	102	19	8	14-	-14	-40	43	34
57	7-	·14 14	54	20	58	10	14-	·14	31	6	36
0	7-	14 14	-00 23	33	20 20	כ ר	10- 15-	•14 11	-99	40	43 50
ש 1 ק	7-	.1/	2.5 Q.N	52	20	, a	15-	-14 -17	84	3 T T	50 53
2	, 8-	·14	-100	12	20	6	16-	-14	-145	44	35
4	8-	-14	78	31	46	8	16-	-14	-173	28	30
6	8-	-14	24	41	42	2	-0-	-13	-76	20	41
8	8-	-14	-72	6	21	4	0-	-13	-84	Õ	42
10	8-	14	-43	6	54	6	0-	-13	77	0	21
12	8-	-14	-44	65	60	8	0-	-13	-62	0	53
14	8-	-14	50	3	63	10	0-	-13	59	0	46
1	9-	-14	18	32	48	12	0-	-13	-42	0	63
3	9-	-14	47	54	70	14	0-	-13	-44	0	52
5	9-	-14	64	19	24	1	1-	-13	-33	9	32
7	9-	-14	52	67	30	3	1-	-13	-110	38	29
9	9-	-14	-81	43	41	7	1-	-13	-73	12	24
11	9-	-14	71	72	22	9	1-	-13	-63	14	51
13	- 9-	-14 14	6U 4 E	1	50	1 1 2	1 - 1	-13 13	52	32	54
2	10-	-14	-40	Z 1	30	15	1 - 1 -	-13	-72	10	/4 /0
4	10-	-14 -11	-129	т г	30 72	10	1 · 2 ·	-13	- 72	19 61	49 50
8	10-	-14	-43	29 29	61	2	2.	_13	-65	9 Q	26
10	10-	<u>-</u> 14	21	38	41	Ŕ	2.	-13	-119	71	34
12	10-	-14	-64	38	55	10	2.	-13	-53	31	24
1	11-	-14	35	16	71	12	2.	-13	-10	10	46
3	11-	-14	-46	10	28	14	2.	-13	-31	24	73
5	11-	-14	-99	11	41	1	3.	-13	79	57	19
7	11.	-14	73	7	52	5	3	-13	28	121	80
9	11-	-14	17	15	44	7	3	-13	12	39	51
11	11.	-14	-45	69	64	9	3	-13	65	46	54
13	11.	-14	-74	21	24	13	3	-13	-53	13	54
2	12	-14	-56	14	57	15	3	-13	-86	28	42
4	12	-14	48	31	65	4	. 4	-13	82	26	4 8
Q	12	_11	70	8/	23	-		- 13	59	82	29
10	10	_14	-55	- 04 . 16	2J 56		ד ע ג ג	_13	-25	02 17	12
10	10	-14 1 /	-00	9 40 C D C	20	10) 4) 1	_10	-2J _10	ر ۲۲	1 E
12	12	-14	-136) 30	30	· 1(/ 4	-13	-10	ر ۱۸۱	40
3	13	-14	-135		3/	12	4	-13	0	141	ULL 10
5	13	-14	34	43	/1		± 4	-13	92	48	18
7	13	-14	58	30	64	: -	L 5	-13	-46	63	26
9	13	-14	-120) 30	42		3 5	5-13	- 57	21	56

_ · ·

Н —	K L 	Fobs	Fcalc	SigF	Н -	К -	L -	Fobs	Fcalc	SigF
5	5-13	-113	47	41	11	11-	13	-98	29	41
/ 0	5-13	-56	30 13	58	13	11-	13	-45	22	69 55
11	5-13	-04 49	13 73	42	ے د	12-	.13	60 61	12	25 27
13	5-13	57	39	58	6	12-	13	-90	40 50	41
15	5-13	-32	17	74	8	12-	13	0	70	105
2	6-13	69	81	49	10	12-	13	73	5	45
4	6-13	0	18	92	12	12-	13	-120	90	43
b Q	6-13 6-13	-62 65	⊥ / Q	26 44	3	13-	13	-32	10	71
10	6-13	-65	0	45	5	13-	13 13	62 -53	13	20 58
14	6-13	59	3	25	7	13-	13	-43	42 64	59
1	7-13	80	94	21	9	13-	13	-32	42	35
3	7-13	70	57	21	11	13-	13	-71	43	55
5	7-13	-79	15	19	13	13-	13	-105	55	39
/ 0	7-13	43	10 12	29 54	2	14-	·13	34	28	73
9 1 3	7-13	-40 -62	13	54	4	14-	.13	-109	⊥ / 1 O	35
15	7-13	-57	50	53	8	14-	.13	-69	10	49 51
2	8-13	-52	13	55	10	14-	·13	0	24	89
4	8-13	-71	11	48	12	14-	-13	94	82	21
6	8-13	-57	64	53	1	15-	·13	-105	43	45
8	8-13	-87	54	40	3	15-	·13	68	28	55
10	8-13	31	106	77	5	15-	·13	44	20	31
12	8-13	73	3	47	7	15-	·13	-63	26	57
14	8-13	-65	18	51	9	15-	13	-111	46	37
1	9-13	-50	48	27	11	15-	13	-65	18	24
3	9-13	-66	3	49	4	16-	13	0	6	97
5	9-13	75	9	48	6	16-	13	-170	0	30
7	9-13	43	81	63	8	16-	13	0	3	92
9	9-13	-83	61	40	10	16-	13	-17	31	44
11	9-13	83	89	21	5	17-	13	-80	6	49
13	9-13	77	8	21	7	17-	·13	-122	12	37
2	10-13	- 92	2	36	9	17-	13	-46	62	60
4	10-13	-43	14	29	4	18-	13	-88	70	46
6	10-13	90	70	18	6	18-	·13	60	12	58
8	10-13	-10	48	47	8	18-	13	-12	18	50
10	10-13	-30	77	71	2	0-	12	-47	27	56
12	10-13	-94	31	42	8	0-	12	-80	4	46
14	10-13	0	5	93	10	0-	12	-61	30	51
1	11-13	-118	13	33	12	0-	12	-71	53	41
3	11-13	-28	18	35	14	0-	12	-43	20	54
5	11-13	63	32	53	3	1-	12	-46	6	59
9	11-13	-100	20	38	9	1-	·12	74	58	22

-

Н —	К -	-	Fob	s F 	calc	SigF - 	H -	к -	L -	F0 	bs 	Fcal	C	SigF
13	1-	12	-9	4	14	38	1	9-	-12		56	1	5	25
15	1-	12	8	4	90	21	3	9-	-12	-	75	4	5	23
2	2-	12 12		3	/6	19	5	9. 0	-12		50	4	0	64 62
4 8	2-	12	-7 -7	5	44 43	49	9	9. G.	-12	_	39 26	2	9	ि दर
10	2-	12	-8	7	32	43	11		-12		54	2	. 0	51
12	2-	12	-8	2	63	40	13	9.	-12	_	88	5	1	41
14	2-	12	-6	59	44	44	15	9-	-12	_	27	1	6	37
1	3-	12	8	2	82	49	2	10.	-12	-	65	1	0	45
3	3-	12	-4	9	45	30	4	10.	-12		72	ç	8	55
7	3-	12	-8	4	32	46	6	10.	-12		59	10)3	65
9	3- 3-	.12	6) / [0	1 / 6 /	23	8	10	-⊥∠ _12		58	5)4 1	44 21
⊥⊥ 1 3)- २-	12	7) J J	64 66	20	12	10	-12 -12	_	.92	4 F	:4 :0	42
2	4-	12	-7	3	65	51	14	10	-12	-1	38	-	7	33
4	4-	·12	- 4	16	63	60	1	11	-12	_	73	5	50	49
8	4-	·12	- 8	31	34	40) 3	11	-12	_	75	1	0	18
10	4-	12	-3	33	9	35	5 5	11	-12		0	2	28	93
12	4-	•12	-7	1	38	45	5 7	11	-12	-	-70	1	. 1	44
14	4-	-12	6	59	24	23	3 9	11	-12	-	-42		5	28
ے ۲	5-	-12	1 (13	56	20		11	-12		64 04	- - -	31 - 7	48
כ 7	5- 5-	-12 -12	T ()())フ	101 101		> 13 > 2	12	-⊥∠ -12	-	-84 -73)/ 1/1	40 48
9	5-	-12 -12	∠ ټ	55	20 41	26	. 2 5 4	12	-12 -12		53	-	±4 75	40 52
11	5-	-12	{	33	93	10) 6	12	-12	_	-50	ſ	50	55
13	5-	-12	_	74	13	43	3 8	12	-12		43		7	28
4	6-	-12	- 6	54	20	24	1 10	12	-12	-	- 42		94	66
6	6-	-12	-13	30	84	33	3 12	2 12	-12		66		29	58
8	6-	- 12	1	56	68	54	1 14	12	-12		30		26	38
10	6-	-12		48	85	63	3 1	. 13	-12	-	-30	1	34	78
12	6-	-12	8	38	96	19	9 3	3 13	-12	-	-19		56	42
14	6-	-12		18	66	4) 13 , 13	-12		86		15	20
ל ר	-/-	-12	-	48	15	61) = (/ 13 \ 13	-12		6Z		24 20	20
כ ר	/• 7.	-12 -12		1Z 22	0 17	4.	2 1 2 1	2 I 3	x=12	-	-0J 61		39 Q6	40 28
à	יי די.	-12 -12		22 68	47 61	4. 1	а , с т.) I (1 1 /	-12		-45		21	20
13	7.	<u> </u>		00 73	7	4	२ । २	± ±= 5 12	L-12				2 I 4 R	20 79
15	7.	_12		69	104	6	2	R 14	1-12	_	100		38	39
2 2	R R	-12		67	-04	5 5	0 1) 14	1-12		0		82	94
<i>2</i> . Л	υ Ω	<u> </u>	_1	04	י <u>י</u> רא	ے د	1	3 1 1	5-12		65		72	57
ч К	U R	-12	Ť	63	52 79	- 6	- 0	5 1 9	5-12		-30		46	67
υ Ω	0 2	-12		85	61	1	9	7 1	5-12		55		0	50
12	0 Я	-12	-	49	7	2	6	9 1	5-12		-93		31	44
14^{-2}	8	-12	_	31	18	6	5 1	3 1	5-12		-74		20	54

Η	ΚL	Fobs	Fcalc	SigF	Н	K L	Fobs	Fcalc	SigF
-					-	_ ~			
4	16-12	59	83	26	7	5-11	67	12	17
6	16-12	27	3	38	9	5-11	49	3	27
8	16-12	-82	59	48	11	5-11	-27	64	71
10	10-12	13	101	51	2	6-11 (11	27	44	15
3 5	17 - 12	-44 01	⊥ 1	20 48	4	6-11 6-11	70 54	113 27	4 / 21
5	17-12	01 -59	15	40 24	8	6-11	-50	27	21
9	17-12	-36	15	32	10	6-11	-102	36	40
4	18-12	13	3	50	12	6-11	-112	10	35
6	18-12	77	19	19	16	6-11	-57	7	60
8	18-12	-78	- 51	42	3	7-11	-32	39	35
5	19-12	-32	51	68	5	7-11	90	43	15
7	19-12	-108	20	38	7	7-11	78	58	18
4	20-12	-12	59	49		7-11	84	23	49
6 0	20-12	-105		20	13 15	7-⊥⊥ 7-11	/0 _120	37	20
0 2	0 - 11	-103	49	44 41	L J A	8-11	-129	24 108	54
4	0-11	-50	0	53	8	8-11	0	±00 72	92
6	0-11	-109	Õ	32	10	8-11	-55	24	28
8	0-11	55	0	21	12	8-11	69	36	43
10	0-11	-110	0	36	14	8-11	90	55	17
12	0-11	51	0	56	1	9-11	58	33	57
14	0-11	-121	0	30	3	9-11	-104	18	36
16	0-11	49	0	57	7	9-11	47	38	62
1	1-11	66	12	48	9	9-11	-99	5	39
3	1-11	-62	5	43	11	9-11	12	46	48
11	1-11	-82	36	43	13	9-11	37	3	32
13	1-11	-65	5	50	2	10-11	89	79	20
2	2-11	-50	28	22	4	10-11	69	35	52
10		8/	68	15	8	10-11	100	105	18
14	2 - 11	-98	29	40	10	10 11	-80	68 57	46
14	2 - 11	02	102	24	1 A	10 11	66 55	5/	
2 10	2 - 11 3 - 11	92 57	20	20	⊥4 1	10-11	-00	24 F	LC 1 C
່ ດ	3 - 11	-57	30	50	1		80	C	15
لا 1 ک	3 - 11	125	ے ۱۲	90	3		59	69	28
13	3-11	-135	15	29	/		70	39	55
2	4-11	-25	84	69	9		-94	67	41
4	4-11	52	15	52			0	11	95
0 0	4−⊥⊥ 4−11	-35 52	54 10	59	15		-/6	5	44
12	4-11	20 20	4Z 19	49 70	с СТ	12 - 11	-00 -157	17 17	52 25
16	4 - 11	50 60	42 64	72 27	ے ۱	12 - 11	-T21 V8	т / т Л	∠ ⊃ ∠⊃
- 3	5-11	13	14	42	- 6	12-11	73	49 95	26
5	5-11	52	92	54	8	12-11	57	19	51

Н	K	L	Fobs	Fcalc	SigF	Н	K	L	Fobs	Fcalc	SigF
-	-	-				_	-	-			
10	12-	11	-71	27	49	6	22-	-11	-41	13	31
14	12-	11	-92	29	41	2	0-	-10	-54	91	49
1	13-	11	-59	1	49	8	0-	-10	64	90	17
3	13-	-11	79	81	20	10	0-	-10	46	8	50
7	13-	.11	-80	33	44	12	0-	-10	-99	12	39
9	13-	•11	-28	38	68	7	1-	-10	-67	26	38
1 2	13-	- 1 - 1 - 1 - 1	90	103	19	11	1-	-10	54	12	21
13	11-	· ⊥ ⊥ . າ า	. 20	נו רר		⊥⊥ 1 ⊃	1-	-10	- / 0	6Z	46 56
<u>ک</u>	14-	- ⊥ ⊥ - 1 1	-29	03	17	LS A	1 - 2 -	-10	43	4 Z A A	50 64
4	14-	.11	- 81	35	т / Л 1	4	2-	-10 -10	-23 18	44	04 1 G
0 R	14-	-11	-71	12	46	14	2-	-10	-42	16	4 J 60
10	14-	-11	54	78	54	16	2.	-10	-60	31	23
12	14-	-11	77	65	23	1	3.	-10	39	56	26
14	14-	-11	-115	34	40	3	3-	-10	49	92	51
	15-	-11	-133	72	32	5	3.	-10	64	112	42
3	15-	-11	93	113	18	7	3.	-10	30	30	28
5	15-	-11	-105	63	38	9	3.	-10	68	81	18
7	15-	-11	-29	42	34	11	3.	-10	97	22	17
9	15-	-11	69	46	42	13	3.	-10	62	99	24
13	15-	-11	-32	45	69	2	4.	-10	76	107	46
2	16-	- ⊥ ⊥ -	-58	23	24	4	4	-10	/8 5 C	94	15
4	10-	- ⊥ ⊥ - 1 -	-89	15	16	6	4	-10	56		19
o o	16-	-⊥⊥ _11	-99	∠ 17	40	10	4	-10 -10	-30	43	40
0 1	17-	- <u>+ +</u> - 1 1	09 17	12	30	1	4 5	-10 -10	-39 59	14	20
ب ۲	17-	_11	-67	21	47	т Г	5	-10	0	14 53	83
7	17-	-11	-52	69	55	7	5	-10	-42	52	53
11	17-	-11	74	14	44	. 2	6	-10	52	13	52
	18-	-11	-30	6	63	4	6	-10	-39	13	26
6	18.	-11	-43	27	62	6	5 6	-10	-43	1	23
8	18.	-11	27	51	38	10) 6	-10	-65	32	23
1	19.	-11	-45	33	67	12	2 6	-10	-69	11	50
3	19	-11	33	21	63	16	56	-10	-46	88	60
5	19	-11	-31	. 3	64		37	-10	69	2	41
7	19	-11	-77	16	40		5 7	-10	25	58	70
11	19	-11	-46	5 6	62	-	77	-10	-93	9	33
4	20	-11	-55	5 8	51	1:	37	-10	-102	15	34
- 6	20	-11	-64	1 72	56		, 7	3-10	27	36	68
1 0	20	_11	υ- Γ(, 72) 71	25		- C 1 F	$3 - 1 \cap$	-21	Д И 1	67
υ L U C	20	- I I _ 1 1	. Jo	אין א רי ג	20 21	, '		×_10	- 24 - 25		62
3		+ + 1 1	. 01 01	ע ק בי היי בי	Z4 / / C	2	ο σ α α	3 - 10	-35 -25	51 57	65 65
5	2 ± 2	-11	. - 92		4.3) 0.0) 1	υ c γ c	2 - 10	-2J 50	74 77	25
/		-11	- 44			ע <u>ו</u>	<u>د</u> د		00	/ 4	2.) E O
4	22	:-11	-4	1 32	1 D2	: L	4 ($\neg - \bot \cup$	-43	49	00

- ----

H —	K -	L -	Fobs	Fcalc	SigF	H _	K -	L -	Fobs	Fcalc	SigF
16	8-	10	-74	55	47	1	17-	- 10	56	69	26
3	9 -	10	46	7	54	3	17-	-10	69	37	44
7	9-	10	56	98	21	5	17-	-10	38	31	30
11	9-	10	-132	21	35	7	17-	-10	-41	12	52
13	9-	10	66	65	22	9	17-	-10	-42	2	60
15	9-	10	-102	27	38	4	18-	-10	62	5	53
2	10-	·10	23	20	40	6	18.	-10	-51	52	56
4	10-	.10	48	11	25	10	18.	-10	-114	68 21	36 (F
6	10-	10	-49	102	23 17	1	10.	-10	34	31 96	10
0 1 ()	10-	.10	90 50	29	£ / 60	⊥ २	19	<u>-10</u>	84	95	19
12	10-	-10	-50	6	50	5	19.	-10	, 0	11	85
14	10-	-10	63	60	24	11	19	-10	-56	104	64
1	11-	-10	26	1	41	2	20.	-10	-62	13	23
3	11-	-10	63	61	24	4	20	-10	-121	2	31
5	11-	-10	39	35	67	6	20	-10	0	64	92
7	11-	-10	68	19	21	8	20	-10	-70	35	46
11	11-	-10	-64	18	47	10	20	-10	58	5	23
13	11-	-10	32	54	36	1	21	-10	69	24	52
15	11- 10	-10	-93	_ ح د	3/	ے ح	21	-10	- / 8	39	42
10 10	12-	-10	1C	13	55	כ ר	21	-10 -10	-90	9	00 17
エム 1	13_	-10	-42 70	41 2	10	, 0	21	-10	-90	ככ ר	47 22
⊃ T	13	-10	/ 0 1 0	7	49	9 0	21	-10 -10	-04	56	65
ン 「	10	1 O	-10	40	44 E 0	<u>ک</u>	22	-±0 10	- 52	50	00
5	13-	-10	-46	49	58	4	22	-IU	15	177	
/	13-	-10	/4	25	45	6	22	-10	/5	1//	51
9	13-	-10	65	24	53	8	22	-10	-140	33	31
13	13-	-10	4/	8	26	<u>ර</u>	23	-10	68	49	22
2	14-	-10	51	50	61	5	23	-10	-81	21	45
6	14-	-10 10	-21	62	68	1	23	-10	101	88	1/
8	14-	-10	-56	22	53	Z	0	-9	-/1	0	35
10	14-	-10	-50	13	53	4	0	-9	4 /	0	21
1	15-	-10	-82	40	42	6	0	-9	-74	0	32
3	15-	-10	-28	81	39	8	0	-9	48	0	49
5	15-	-10	-97	52	41	10	0	-9	79	0	14
7	15-	-10	-40	7	58	12	0	-9	-85	0	45
9	15-	-10	60	67	51	14	0	-9	62	0	50
13	15 -	-10	59	29	51	16	0	-9	34	0	65
2	16-	-10	0	12	94	5	1	-9	70	37	15
4	16-	-10	-40	78	55	9	1	-9	46	20	22
6	16-	-10	0	49	54	13	1	-9	70	28	23
8	16-	-10	-58	6	47	2	2	-9	57	61	43
10	16-	-10	-30	19	34	8	2	-9	65	100	18
12	16-	-10	72	63	22	10	2	-9	75	87	17
Lues	of 10*	'Fobs a	ind 10*F	calc					Pa	ge 9	
----------	----------------	------------	----------	------------	--------	------------	---------	----------	-------	----------	
H _	K L 	Fobs	Fcalc	SigF	H _	K -	L -	Fobs	Fcalc	SigF	
12	2 -9	64	120	55	4	12	-9	-56	104	50	
14	2 -9	0	28	87	8	12	-9	-52	10	52	
16	2 -9	-36	37	30	12	12^{-12}	-9	75	81	19	
11	3 -9	72	106	49	3	13	-9	39	19	60	
13	3 -9	42	54	62	7	13	-9	76	137	50	
15	3 -9	-98	3	35	9	13	-9	56	76	55	
2	4 -9	-46	9	45	13	13	-9	55	13	24	
4	4 -9	57	101	44	15	13	-9	80	25	19	
6	4 -9	40	59	49	2	14	-9	-111	34	36	
12	4 -9	90	81	19	4	14	-9	-45	24	58	
3	5 -9	-45	28	49	6	14	-9	51	3	24	
5	5 -9	-45	21	48	8	14	-9	52	104	29	
7	5 -9	-46	77	46	12	14	-9	74	71	20	
9	5 -9	-49	160	56	1	15	-9	58	61	56	
11	5 -9	-70	102	49	5	15	-9	68	52	23	
13	5 -9	-28	68	67	9	15	-9	60	49	21	
2	6 -9	-18	47	35	2	16	-9	99	86	17	
4	6 - 9	48	21	21	4	16	-9	28	19	70	
10	6 - 9	4 /	71	45	6	16	-9	-83	33	46	
1/	6 -9	59	32	26	8	16	-9	71	70	42	
14 16	6 -9	54	58	25	14	16	-9	-33	31	68	
10 2	0 -9 7 0		58	46	3	17	-9	-69	34	48	
ט ה	7 -9	80 10	90	15	5	17	-9	-142	41	30	
5 7	7 0	-13	63	3/	9	1/	-9	61	57	22	
/ 11	7 - 9	- 23	25	45	13	1/	-9	-73	24	43	
10	γ 9 8 - 0	20 12	24 01	49	2	18	-9	/5	139	45	
11	0 - 9 8 - 0	4Z 04		104 17	4	18	-9	52	30	4 /	
14 16	0 -9 8 _0	94 _66	94 55	1 /	10	10	-9	6/	33	40	
10	0 - 9 0 - 0	_03 _00	20	40 24		10	-9	/5	5	46	
⊥ ר	9 _ 9	-05		54 65	ے د	19	-9	89	66	1/	
7	0 _0	2.J 6.A	44	10	5	19	-9	20	14	36	
11	9 - 9 0 - 0	04	4Z 0	0.2	11	19	-9	- / 5	43	49	
12	9 - 9	17	0	93	11	19	-9	44	20	29	
T 2	9-9	10	C FD	42	2	20	-9	/1	107	56	
2	10 -9	-49	57	54	6	20	-9	-91	111	46	
5	10 -9	-11	27	40	10	20	-9	-45	80	57	
ΤÜ	10 -9	43	93	33	1	21	-9	82	59	18	
12	10 -9	61	70	50	3	21	-9	45	4	61	
14	10 -9	-69	16	50	5	21	-9	-124	65	29	
1	11 -9	-15	55	37	7	21	-9	32	74	74	
7	11 -9	37	31	55	à	21	_ Q	_ Q1	20	15	
à	11 _0	36	0r 01	2 0	11	⊥ ->1	ر م_	ノエ フェ	20	4) 11	
ر 1 1	11 0	20	40	3Z 40	11	∠⊥ 20	- 9	- 37	Ø	31	
1 1	11 -9	-22	σZ	42	Ζ.	22	-9	-63	6	41	
13	11 -9	60	49	23	4	22	-9	72	96	22	

SERVIÇO DE BIBLIOTECA E INFORMAÇÃO IQSC/USP

and the second second

Н	K	L	Fobs	Fcalc	SigF	H	K	L	Fobs	Fcalc	SigF
-		-				-	-	-			
6	22	-9	70	65	21	3	11	-8	-75	28	38
8	22	-9	-121	12	38	5	11	-8	-44	19	22
10	22	-9	-100	32	38	9	11	-8	-73	11	40
1	23	-9	60	37	52	11	11	-8	39	62	33
5	23	-9	55	23	23	13	11	-8	-73	2	46
7	23	-9	-56	23	50	15	11	-8	-65	5	47
9	23	-9	-47	10	52	10	12	-8	56	18	53
2	24	-9	94	107	19	12	12	-8	-71	24	44
4	24	-9	-73	83	51	14	12	-8	-63	15	44
6	24	-9	-87	35	41	5	13	-8	-79	45	31
6	0	-8	0	25	74	13	13	-8	0	15	56
12	0	-8	-37	67	61 10	15	13	-8	48	7	28
16	1	-8	84	93	19	2	14	-8	37	35	27
⊥⊥ 1 ⊑	1	-8	38	49	22 10	8 10	14	-8	-3/	105	59
10	⊥ 2	_0	80	29 71	10	1	14 15	-8	-29	100	60
16	2	-0	-45	/1	60	ר ב	15	-0 -8	39 17	12U 71	55
10	2	-8	40 73		14	5 5	15	-8	-91	11	33
ģ	3	– 8	72	84	16	7	15	-8	90	+ + 77	16
15	3	-8	-145	31	30	11	15	-8	-35	39	29
2	4	-8	60	17	15	13	15	-8	71	69	21
10	4	-8	64	95	47	2	16	-8	-71	150	50
12	4	-8	69	47	50	4	16	-8	39	37	28
16	4	-8	0	74	95	12	16	-8	32	47	66
5	5	-8	-96	29	25	3	17	-8	-27	37	65
11	5	-8	55	22	51	11	17	-8	0	34	56
12	6	-8	-91	47	42	2	18	-8	77	69	21
14	6	-8	-89	61	44	4	18	-8	55	10	25
16	6	-8	0	73	92	12	18	-8	42	54	29
1	7	-8	-64	75	34	5	19	-8	73	9	16
5	7	-8	61	63	42	9	19	- 8	0	- - -	£0 87
13	7	-8	-64	34	43	11	19	-8	-26	83	37
2	8	- 8	62	16	17		20	-8	20 43	87	58
8	8 8	<u>–</u> 8	66	153	13	10	20	-8	27	50	30
12	Q Q	<u>-</u> 8	-30	10	4J 61	10	20	0	100	JU 1	20
16	Q	0 _ 0	-59	1 U		1	20	-0	-100		39
10	0	-0		/ L 2 0	21	1		-8	64		4 /
10	9	- 8 0	26	38	68	9	21	-8	-54	4	57
13	9	- 8 0	53	55	50	11	21	-8	-32	31	65
15	9	-8	48	102	60	2	22	-8	-19	49	38
8	10	-8	57	51	50	6	22	-8	78	132	49
10	10	-8	-64	27	49	8	22	-8	64	3	21
12	10	-8	-58	17	21	10	22	-8	-93	- -	32
14	10	-8	-87	134	48	1	23	-8	-71	42	45
1	ίl	-8	-55	31	43	3	23	-8	-126	62	31

-

H _	K L 	Fobs	Fcalc	SigF	Н -	K _	L 	Fobs	Fcalc	SigF
-	22 0	60	26	0.0	1 1	0	7	20	7.4	60
2 0	23 - 8	60 69	20 40	22	13	9	- / - 7	39	/4 50	63 58
2	23 - 0 24 - 8	-45	49 52	Z⊥ 55	15	9	- 7	51 60	30	23
4	24 - 8	40 36	61	30	10	10	-7	-101	62	35
6	24 - 8	33	13	66	12	10	-7	42	2	61
8	24 -8	48	16	49	14	10	-7	32	42	59
1	25 -8	49	57	60	5	11	-7	20	41	31
3	25 -8	55	5	24	9	11	-7	58	74	19
5	25 -8	-46	21	54	11	11	-7	-47	11	57
7	25 -8	69	10	42	15	11	-7	72	93	22
2	0 -7	53	0	39	6	12	-7	56	63	18
4	0 -7	20	0	27	8	12	- 7	80	82	15 5
6	0 -7	-60	0	34	⊥4 ⊑	12	- /	-44	0 2 E	56 10
0	0 -7	20	0	21	11	13	- / - 7	49 -124	2 S Q A	73 73
12	0 -7	-99	0	2⊥ 35	15	13	-7	-88	1	41
14	0 -7	-109	Õ	32	4	14	-7	-28	10	27
16	0 -7	-102	0	35	6	14	-7	36	23	52
1	1 -7	57	24	14	12	14	-7	-104	3	34
9	1 -7	34	14	25	14	14	-7	-107	16	36
11	1 -7	-48	20	21	7	15	-7	70	101	43
15	1 -7	-53	145	56	13	15	-7	0	148	101
12	2 -7	-65	21	45	4	16	-7	-15	45	35
16	2 -7	0	69	95	6	16	- /	54	65	4 /
1	3 -1	63 27	106 70	41 67	14	16	- / - 7	- 104 - 33	53	4 / 63
⊥⊥ 2	3 - 7	21	79 61	55	74 74	17	- / - 7	-33 83	9.7	17
10	4 -7	-24	46	64	G G	17	-7	-46	27	25
14	4 - 7	72	40 64	20	11	17	-7	55	54	50
16	4 -7	97	79	17	13	17	-7	65	29	21
5	5 -7	-49	36	36	2	18	-7	40	15	59
7	5 -7	-37	72	45	4	18	-7	30	25	35
15	5 -7	57	93	55	6	18	-7	23	40	41
2	6 -7	61	39	36	12	18	-7	0	74	94
10	6 -7	46	76	23	3	19) -7	93	63	16
14	6 -7	57	3	22	5	19) -7	-93	8	37
16	6 -7	-46	6	51	9	19) -7	0	67	57
Į.	7 -7	61	106	16	11	19) -7	-74	2	18
3	7 -7	58	8	40	2	20) -7	30	39	60
11	7 -7	-74	8	40	4	20) -7	42	58	54
13	7 -7	-91	62	34	8	20) -7	-95	2	31
8	8 -7	-117	13	27	10) 2() -7	-104	36	34
14	8 -7	86	64	17	12	2 2 (J -7	-32	7	58
16	8 - 7	67	88	24	1	. 21	l - 7	0	78	85

H	K	L	Fobs	Fcalc	SigF	Η	K	L	Fobs	Fcalc	SigF
_	_					_	_	-			
5	21	-7	-65	5	40	9	9	-6	51	31	47
9	21	-'/	86	90	17	11	9	-6	-110	41	31
ΤΤ	21	-7	-80	4	40	13	9	-6	61	100	21
2	22	- /	70	69	46	15	9	-6	-106	50	37
4	22	- /	44	49	53	2	10	-6	-4/	13	41
6	22	- /	- / 4	65	46	8	10	-6	43	64	44
ΤŪ	22	- /	62	45	22	10	10	-6	-44	79	49
	23	- /	-43	29	53	14	10	-6	-69	2	44
	23	- /	-95	8	34	10	11	-6	3/		52
9	23	- /	-36	15	J⊥ ⊑1	15	1 1 1 1	-6	70	49	48
ے ۸	$\angle 4$	- /	00	40		CL 10	⊥⊥ 1⊃	-6	59	10	5U 17
4	24 27	- / _7	-05	10	41 50	10	12	-0	80 50	9Z 0 C	エ / 1 ワ
0	24	- / _ 7	-40	44 64	16	с Т	10	-0	0C	00 21	エ / フ /
0	24 25	- /	00	04 1	10	ے ج	13	-6	_13	2 7	14
3	25 25	_7	-00	4 71	49 61	כ ר	13	-0	-43	28	19
5	25	_7	80	01 01	17	11	13	-0	20	20 57	50 71
7	25	_7	-87	10	13	13	13	-6	-61	13	13
2	25	_7	0	38	4.J Q 1	15	13	-0	-01 -111	4 J 2 A	40
~ ~	20	- 7	-66	20	91 1 1	10	11	-0	- 1 1 1	24 10	4Z 30
4	20	- 1	00-	130	44	0	14	-0	_ 20	12 25	20
16	0	-0	00	100	17	0 1 /	14 11	-0	-39	20	23
ЦЮ	1	-0	20	00	17	14	14	-0	-00	20	40
5	⊥ 1.	-6	39 Cr		1/		15	-6	- 78	22	34
- 9	1.	-6	-65	1	14	3	15	-6	61 40	82	44
15	Ţ	-6	56	81	49	5	15	-6	-42	36	4 /
10	2	-6	57	50	18	μ⊥	15	-6	-65	96	4 /
12	2	-6	-91	21	38	2	16	-6	-66	13	37
14	2	-6	-39	38	27	4	16	-6	-126	14	26
9	3	-6	34	65	52	6	16	-6	-/3	12	35
15	3	-6	-75	12	38	8	16	-6	-85	7	43
16	4	-6	-79	40	41	14	16	-6	0	62	91
3	5	-6	55	79	38	1	17	-6	-78	46	37
5	5	-6	-27	66	48	3	17	-6	37	54	51
15	5	-6	-43	71	58	5	17	-6	52	46	23
- 2	6	-6	53	65	37	7	17	-6	72	56	20
8	6	-6	-49	80	39	11	17	-6	41	20 73	29
14	6	-6	-29	54	62	13	17	-6	-15	15	2 J 5 7
16	6	-6	-65	51	11	10	1 2	-6	-95	1	31
т О - С	7	-6	-83	51	26	12	10	-0	-95	10	30
י ר ך	, 7	ں ء		67	20	2 7 T	10 10	-0	- J L - Q 1	4 U 0	10
+ + 2	י ג	-0	-27	26	10	ر ۱۱	エブ 10	-0		0 1	4 U 5 G
10	υ Q	-0 -6	-57	20 1	よう エロ	±⊥ 1	- ビジ - つつ	-0 -6	-44 50	∠4 01	50 E 1
16	0	- 6	61	⊥ 1つ	52 A C	<u>∠</u> л	20	-0	50	21 C7	E O
τŪ	0	-0	20		40	4	20	-0	-00	ю/ Г	52
÷	9	-0	38	4 /	4 /	6	ΖÜ	-6	-95	5	36

Page 12

134

Н —	к -	L -	Fobs	Fcalc	SigF	Н —	К -	L	Fobs	Fcalc	SigF
H - 802357916803792468157246135246	K - 20 20 21 21 21 22 22 23 23 24 24 25 26 26 27 27 0 0 0	L - 6666666666666666666666666666666665555	Fobs -41 56 -66 -40 -50 30 45 59 86 -16 -65 -117 -43 93 45 -65 -117 -43 93 45 -30 65 49 25 54 -27 -79 -86 -57 39 -33 60 -53 -11 0	Fcalc 41 34 8 26 32 33 86 43 104 37 57 51 21 86 59 17 62 7 30 10 14 16 30 22 13 16 15 0 0 0	SigF 57 47 48 52 48 60 57 55 16 39 41 30 51 17 57 49 24 35 21 34 43 37 44 30 63 54 35 67	H - 16 1 15 4 6 12 16 3 5 9 10 12 14 16 1 3 11 15 12 14 5 7 9 15 6 10 14 15 12 14 15 15 12 14 15 15 12 14 15 15 15 10 14 15 15 15 15 15 15 15 15 15 15	K - 45566666777888889999001111112223333	L - 55555555555555555555555555555555555	Fobs -56 19 -77 41 -39 57 46 28 -33 -94 86 58 -91 -60 58 57 28 91 66 91 -60 58 57 28 91 66 9 -52 63 42 60 -52 63 42 60 -57 -31 58 30	Fcalc 22 85 8 41 35 40 55 14 120 7 120 7 120 78 139 72 93 88 12 106 82 81 42 129 57 82 74 91 18 17 27 24	SigF 54 51 41 38 18 49 29 21 45 27 14 54 49 22 13 38 67 19 23 21 36 38 22 50 35 74 22 44 633
8 10 12 14 16 5 7 15 6 14 16 13 15 2		-5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -	16 50 -49 -125 49 44 -38 -30 -46 -41 -65 40 93 32	0 0 0 38 85 1 62 17 5 13 100 35	29 41 24 28 57 35 38 48 15 46 39 31 17 42	2 4 10 14 13 22 12 14 7 13 22 14 7 13 22 10 12	14 14 14 14 15 16 16 16 17 17 17 17 17 18 17 2 18 2 18 2 18 2 1	-5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -	53 58 63 48 -63 44 92 35 66 22 59 -112 -45 47	62 65 47 1 16 46 73 25 31 57 54 28 1 88	17 35 44 61 46 20 15 66 19 40 38 30 56 53

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Η	K	L	Fobs	Fcalc	SigF	Н	Κ	L	Fobs	Fcalc	SigF
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	-	-				-	-	-			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	19	-5	72	15	16	6	10	-4	65	59	13
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11	19	-5	-31	48	57	8	10	- 4	-40	47	±0 50
820-5639619711-45039171020-580671711111-4073961220-57741491311-404193121-5622123812-4663639521-541116591012-4-653543721-5-4115521212-4-346026921-5-4320551412-4-7554191121-5597553313-4-4344571022-5-863039614-4-798335323-55372481414-469562123-5-7.35930315-437220923-558144915-4-334632424-5-161040216-44810743824-5-9151411016-4344729125-5-54135013 </td <td>4</td> <td>20</td> <td>-5</td> <td>86</td> <td>122</td> <td>18</td> <td>14</td> <td>10</td> <td>- 4</td> <td>80</td> <td>85</td> <td>19</td>	4	20	-5	86	122	18	14	10	- 4	80	85	19
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	20	-5	63		19	7	11	-4	50	39	17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	20	-5	80	67	17	11	11	- 4	0	22 73	96
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	20	-5	77	41	49	13	11	- <u>1</u>	0	41	93
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	21	-5	62	21	23	8	12	<u> </u>	66	36	39
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	21	-5	41	116	59	10	12	- <u>1</u>	-65	20 35	43
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	21	- 5	-41	15	52	12	12	- 4	- 34	50 60	26
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ġ	21	-5	-43	20	55	14	12	- 4	75	54	19
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	21	-5	59	75	53	- 1 - 1	13	<u> </u>	/ 9 / 9	65	
8 22 -5 38 46 29 13 13 -4 -43 44 57 10 22 -5 -86 30 39 6 14 -4 -79 83 35 3 23 -5 53 72 48 14 14 -4 69 56 21 5 23 -5 -135 9 30 3 15 -4 37 2 20 9 23 -5 -135 9 30 3 15 -4 37 2 20 9 23 -5 -16 10 40 2 16 -4 48 107 43 4 24 -5 -16 10 40 2 16 -4 48 107 43 8 24 -5 -91 51 41 10 16 -4 48 107 43 8 24 -5 -91 51 41 10 16 -4 48 107 43 24 -5 -144 93 30 9 17 -4 -32 81 67 226 -5 -111 23 36 2 18 -4 -69 22 14 4 26 -5 47 83 59 10 18 -4 -91 72 42 127 -5 59 40 51 31 </td <td></td> <td>$\frac{1}{22}$</td> <td>-5</td> <td>41</td> <td>42</td> <td>23</td> <td>11</td> <td>13</td> <td>- 4</td> <td>66</td> <td>22</td> <td>20 43</td>		$\frac{1}{22}$	-5	41	42	23	11	13	- 4	66	22	20 43
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ř	22	-5	38	46	29	13	13	- 4	-43	Δ Δ	57
323-55372481414-4695621523-5-291249115-4-322249723-5-135930315-437220923-558144915-4-334632424-5-4318561315-4746952624-5-161040216-44810743824-5-9151411016-4344729125-5-1449330917-4-328167226-5-1112336218-4-692214426-54783591018-4-692214426-54783321218-4-917242127-59711717119-4688319327-5594051319-4704116527-5-8134401020-4-882438151-4414828 <td>10</td> <td>22</td> <td>-5</td> <td>-86</td> <td>30</td> <td>39</td> <td></td> <td>14</td> <td>- 4</td> <td>-79</td> <td>83</td> <td>35</td>	10	22	-5	-86	30	39		14	- 4	-79	83	35
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_3	23	-5	53	72	48	14	14	- 4	69	56	21
723-5-135930315-437220923-558144915-4-334632424-5-4318561315-4746952624-5-161040216-44810743824-5-9151411016-4344729125-5-1449330917-4-328167226-5-1112336218-4-692214426-5-73238321218-4-917242127-59711717119-4688319327-5594051319-4704116527-5-8134401020-40980131<-4	5	23	-5	-29	12	49	1	15	-4	-32	22	49
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	23	-5	-135		30	÷ R	15	- 4	37	22	20
4 24 -5 -43 18 56 13 $15 -4$ 74 69 52 $6 24 -5$ -16 10 40 $2 16 -4$ 48 107 43 $8 24 -5$ -91 51 41 $10 16 -4$ 34 47 29 $1 25 -5$ -144 93 30 $9 17 -4$ 53 63 27 $5 25 -5$ -54 13 50 $13 17 -4$ -32 81 67 $2 26 -5$ -111 23 36 $2 18 -4$ -69 22 14 $4 26 -5$ 47 83 59 $10 18 -4$ 0 56 53 $6 26 -5$ -32 38 32 $12 18 -4$ -91 72 42 $1 27 -5$ 97 117 17 $1 19 -4$ 68 83 19 $3 27 -5$ 59 40 51 $3 19 -4$ 70 41 16 $5 27 -5$ -81 34 40 $10 20 -4$ 0 9 80 13 $1 -4$ -116 29 32 $12 20 -4$ -88 24 38 15 $1 -4$ 41 48 28 $7 21 -4$ 79 81 16 14 $2 -4$ 31 15 60 $9 21 -4$ 0 7 87 13 $3 -4$ 30 74 65 $11 21 -4$ 68 3 44 6 $4 -4$ 63 106 13 $622 -4$ 52 44 46	ġ	23	-5	58	1	44	ğ	15	-4	-33	46	32
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	24	-5	-43	18	56	13	15	<u> </u>	7 A	40 69	52
$8 \ 24 \ -5 \ -91$ 51 41 $10 \ 16 \ -4$ 34 47 29 $1 \ 25 \ -5 \ -144$ 93 $30 \ 9 \ 17 \ -4$ $53 \ 63 \ 27$ $5 \ 25 \ -5 \ -54$ $13 \ 50 \ 13 \ 17 \ -4$ $-32 \ 81 \ 67$ $2 \ 26 \ -5 \ -111$ $23 \ 36 \ 2 \ 18 \ -4 \ -69 \ 22$ 14 $4 \ 26 \ -5 \ -54 \ 13 \ 59 \ 10 \ 18 \ -4 \ -69 \ 22$ 14 $4 \ 26 \ -5 \ -57 \ 23 \ 38 \ 32 \ 12 \ 18 \ -4 \ -91 \ 72 \ 42$ $1 \ 27 \ -5 \ 97 \ 117 \ 17 \ 1 \ 19 \ -4 \ 68 \ 83 \ 19$ $3 \ 27 \ -5 \ 59 \ 40 \ 51 \ 3 \ 19 \ -4 \ 70 \ 41 \ 16$ $5 \ 27 \ -5 \ -81 \ 34 \ 40 \ 10 \ 20 \ -4 \ 0 \ 9 \ 80$ $13 \ 1 \ -4 \ -116 \ 29 \ 32 \ 12 \ 20 \ -4 \ -88 \ 24 \ 38$ $15 \ 1 \ -4 \ 41 \ 48 \ 28 \ 7 \ 21 \ -4 \ 79 \ 81 \ 16$ $14 \ 2 \ -4 \ 31 \ 15 \ 60 \ 9 \ 21 \ -4 \ 79 \ 81 \ 16$ $14 \ 2 \ -4 \ 31 \ 15 \ 60 \ 9 \ 21 \ -4 \ 79 \ 81 \ 16$ $16 \ 4 \ -4 \ -57 \ 85 \ 49 \ 8 \ 22 \ -4 \ -92 \ 22 \ 35$ $9 \ 5 \ -4 \ 66 \ 67 \ 14 \ 10 \ 22 \ -4 \ 42 \ 7 \ 27$ $10 \ 6 \ -4 \ -54 \ 40 \ 39 \ 1 \ 23 \ -4 \ 60 \ 22 \ 37$ $12 \ 6 \ -4 \ -113 \ 5 \ 30 \ 3 \ 23 \ -4 \ 37 \ 39 \ 26$ $14 \ 6 \ -4 \ -12 \ 70 \ 45 \ 7 \ 23 \ -4 \ 61 \ 75 \ 47$ $15 \ 7 \ -4 \ 34 \ 5 \ 59 \ 424 \ -4 \ -76 \ 7 \ 44$ $10 \ 9 \ -4 \ 69 \ 53 \ 21 \ $	6	24	-5	-16	10	40	2	16	_ /	18	107	13
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	R	24	-5	-91	51	ч0 Л1	10	16	- 1	31	107	40
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	25	-5	<u> </u>	03	30	0 I O	17	- 1	53	47	29
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	± ح	25	-5	-54	13	50	13	エ / 1 ワ	-4 1	20	0.1	2 I (7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	20	-5	_111	23 10	36	2 1 J	1 0	-4	- 52	01	0/
426-54785591018-405653626-5-3238321218-4-917242127-59711717119-4688319327-5594051319-4704116527-5-8134401020-40980131-4-11629321220-4-882438151-4414828721-4798116142-4311560921-40787133-43074651121-46834464-46310613622-4-92223595-46667141022-442727106-4-578549822-4-92223595-46667141022-4602237126-4-113530323-4636746117-4-36115642<	ے ا	20	-5		23	50	10	10	-4	-69		14
$6 \ 26 \ -5 \ -32 \ 38 \ 32 \ 12 \ 18 \ -4 \ -91 \ 72 \ 42$ $1 \ 27 \ -5 \ 97 \ 117 \ 17 \ 1 \ 19 \ -4 \ 68 \ 83 \ 19$ $3 \ 27 \ -5 \ 59 \ 40 \ 51 \ 3 \ 19 \ -4 \ 70 \ 41 \ 16$ $5 \ 27 \ -5 \ -81 \ 34 \ 40 \ 10 \ 20 \ -4 \ 0 \ 9 \ 80$ $13 \ 1 \ -4 \ -116 \ 29 \ 32 \ 12 \ 20 \ -4 \ -88 \ 24 \ 38$ $15 \ 1 \ -4 \ 41 \ 48 \ 28 \ 7 \ 21 \ -4 \ 79 \ 81 \ 16$ $14 \ 2 \ -4 \ 31 \ 15 \ 60 \ 9 \ 21 \ -4 \ 0 \ 7 \ 87$ $13 \ 3 \ -4 \ 30 \ 74 \ 65 \ 11 \ 21 \ -4 \ 68 \ 3 \ 44$ $64 \ -4 \ 63 \ 106 \ 13 \ 6 \ 22 \ -4 \ 52 \ 44 \ 46$ $16 \ 4 \ -4 \ -57 \ 85 \ 49 \ 8 \ 22 \ -4 \ -92 \ 22 \ 35$ $9 \ 5 \ -4 \ 66 \ 67 \ 14 \ 10 \ 22 \ -4 \ 42 \ 7 \ 27$ $10 \ 6 \ -4 \ -57 \ 85 \ 49 \ 8 \ 22 \ -4 \ -92 \ 22 \ 35$ $9 \ 5 \ -4 \ 66 \ 67 \ 14 \ 10 \ 22 \ -4 \ 42 \ 7 \ 27$ $10 \ 6 \ -4 \ -57 \ 85 \ 49 \ 8 \ 23 \ -4 \ 60 \ 22 \ 37$ $12 \ 6 \ -4 \ -113 \ 5 \ 30 \ 3 \ 23 \ -4 \ 63 \ 67 \ 46$ $14 \ 6 \ -4 \ 12 \ 70 \ 45 \ 7 \ 23 \ -4 \ 63 \ 67 \ 46$ $14 \ 6 \ -4 \ 12 \ 70 \ 45 \ 7 \ 23 \ -4 \ 63 \ 67 \ 46$ $14 \ 7 \ -4 \ -36 \ 115 \ 64 \ 2 \ 24 \ -4 \ 61 \ 75 \ 47$ $15 \ 7 \ -4 \ 31 \ 104 \ 65 \ 8 \ 24 \ -4 \ -76 \ 7 \ 44 \ 33$ $13 \ 9 \ -4 \ 69 \ 53 \ 21 \ 1 \ 25 \ -4 \ -87 \ 4 \ 33$	4	20	-5	4 /	83	29	10	10	-4	0	56	53
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 1	20	-5	-32	38	32	12	18	-4	-91	12	42
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	27	-5	97		1/	Ţ	19	-4	68	83	19
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	27	-5	59	40	51	3	19	-4	./0	41	16
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	27	-5	-81	34	40	10	20	-4	0	9	80
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13	1	-4	-116	29	32	12	20	-4	-88	24	38
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15	1	-4	41	48	28	7	21	-4	79	81	16
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14	2	-4	31	15	60	9	21	-4	0	7	87
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13	3	-4	30	74	65	11	21	- 4	68	3	ΔΛ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	4	-4	63	106	13		22	- 1	52	л л	44
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16		- 4	-57	200	10	Q Q	22	- /	_02	44 00	9 U P
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 0	ד ג	- A	66	60	ч.) 1 Л	10	22	-4	- 92	22	20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	S G	-4 A	50	07	14	10	22	-4	42		27
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	b C	-4	- 54	40	39	1	23	-4	60	22	37
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	6	-4	-113	5	30	3	23	-4	37	39	26
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14	6	-4	12	70	45	7	23	-4	63	67	46
15 7 -4 34 5 59 4 24 -4 -90 9 33 6 8 -4 0 93 68 6 24 -4 -76 7 44 13 9 -4 31 104 65 8 24 -4 -72 22 40 15 9 -4 69 53 21 1 25 -4 -87 4 33	11	7	-4	-36	115	64	2	24	-4	61	75	47
6 8 -4 0 93 68 6 24 -4 -76 7 44 13 9 -4 31 104 65 8 24 -4 -72 22 40 15 9 -4 69 53 21 1 25 -4 -87 4 33	15	7	-4	34	5	59	4	24	-4	-90	9	33
13 9 -4 31 104 65 8 24 -4 -72 22 40 15 9 -4 69 53 21 1 25 -4 -87 4 33	6	8	-4	0	93	68	6	24	-4	-76	7	44
15 9 -4 69 53 21 1 25 -4 -87 4 33	13	9	-4	31	104	65	8	24	-4	-72	22	40
	15	9	-4	69	53	21	1	25	-4	-87	4	33

....

Н —	K -	L	Fobs	Fcalc	SigF	Н -	K _	L -	Fobs	Fcalc	SigF
3	25	-1	-59	20	20	11	1 /	-3	-16	81	27
5	25	- 4	-39	20	20 61	13 13	15	-3	-40	127	51
7	25	- 4	J2 47	15	45	2	16	-3	41	15	39 39
4	26	-4	43	16	27	10	16	-3	42	84	48
3	27	-4	83	73	18	12	16	<u>-</u> 3	-104	59	37
2	28	-4	59	16	45 45	11	17	-3	-87	22	39
4	28	-4	-47	42	57	13	17	-3	-35	13	31
2	0	-3	-33	0	16	2	18	-3	-93	10	30
4	0	-3	-52	0	29	4	18	-3	-23	4	27
6	0	-3	42	0	36	1	19	-3	-25	75	62
8	0	-3	- 50	0	34	3	19	-3	26	25	53
10	0	-3	-75	0	30	9	19	-3	-146	15	23
12	0	-3	-54	0	49	11	19	-3	65	10	19
14	0	-3	-95	0	35	2	20	-3	66	56	42
16	0	-3	-75	0	37	6	20	-3	69	124	47
9	1	-3	33	2	47	8	20	-3	-41	59	50
15	1	-3	28	12	33	10	20	-3	0	25	90
5	3	-3	6	9	31	3	21	-3	-38	20	50
15	3	-3	-55	80	39	11	$2 \downarrow$	-3	-38	23	27
10	3	-3	54	0U 10	100 15	11	21	-3 -3	84	84 71	10 10
12	4 5	-3	-07	24	40	10	22	-3	4J 	13	40 21
15	5	-3	52 76	24 89	JZ 45	±0 5	22	-3	-70	1 J 1 J	17
8	6	- 3	, 0 60	39	14	7	23	-3	74	66	18
12	. 6	-3	-73	95	44	, 9	23	-3	-107	17	37
14	6	-3	65	104	47	2	24	-3	-72	29	41
11	7	-3	71	64	19	8	24	-3	0	31	80
12	8	-3	49	78	28	1	25	-3	66	104	21
11	9	-3	57	59	23	3	25	-3	31	106	66
13	9	-3	-19	4	35	5	25	-3	45	15	46
15	9	-3	-110	10	34	2	26	-3	65	59	17
6	10	-3	-20	70	53	1	27	-3	66	67	50
8	10	-3	-94	40	28	2	28	-3	59	45	51
12	10	-3	58	78	19	4	28	-3	-33	97	65
14	10	-3	67	26	19	13	1	-2	-92	65	35
9	11	-3	-75	52	34	15	1	-2	-32	37	66
10	12	-3	-46	90	54	8	2	2 -2	0	42	68
12	12	-3	-89	36	35	10) 2	2 -2	-37	60	21
14	12	-3	92	47	16	13	3 3	3 -2	-110	14	29
7	12	_ २	74	212	43	1 4	. 2	1 -2	65		46
, 0	12		ر ب ۲	212	15	1 -		- <u>-</u> 2	84	108	19
ر د ۱	1 I I I	3	00 70	2.0 1./	10	± - 2	, . 	5 -2	_50	100 56	30 20
- ± 0) IJ) — ງ ົ່	10	14	10	1) () /	5 <u>-</u> 2	0.0- A 0	00 70	20
2	: ⊥4	-3	68	91	12	12	_		-04		59
12	2 14	-3	-96	23	31	\perp 2	ŧ (o -2	- 31	45	54

Н	K L	Fobs	Fcalc	SigF	Н	Κ	L	Fobs	Fcalc	SigF
-					-					
9	7 -2	-41	101	47	6	24	-2	-87	21	37
2	8 -2	0	97	57	8	24	-2	33	19	59
14	8 -2	-78	61	43	1	25	-2	-100	47	32
7	9 -2	-53	17	34	3	25	-2	0	49	86
9	9 -2	-92	35	31	5	25	-2	45	54	53
8	10 -2	55	112	45	2	26	-2	-124	7	27
12	10 -2	-93	11	33	4	26	-2	-44	79	54
14	10 -2	59	3	49	6	26	-2	-126	60	31
7	11 -2	28	19	23	1	27	-2	-51	13	22
13	11 -2	91	79	16	3	27	-2	-96	48	35
14	12 -2	79	75	20	2	28	-2	48	10	46
1	13 -2	0	41	62	4	28	-2	-94	32	38
3	13 -2	-69	8	26	2	0	-1	-45	0	23
5	13 -2	-89	49	25	4	0	-1	-14	0	48
13	13 -2	-96	31	36	6	0	-1	-86	0	21
6	14 -2	63	19	14	8	0	-1	32	0	47
12	14 -2	-61	43	41	10	0	-1	52	0	44
3	15 -2	40	43	39	12	0	-1	72	0	44
13	15 -2	0	11	81	14	0	-1	-109	0	31
4	16 -2	66	83	13	5	1	-1	48	12	11
6	16 -2	- 50	42	41	13	1	-1	-22	22	33
12	16 -2	-23	33	34	12	2	-1	69	108	21
1	17 -2	75	74	13	14	2	-1	0	40	88
9	17 -2	37	21	26	11	3	-1	74	95	46
11	17 -2	38	48	27	2	4	-1	22	21	19
6	18 -2	88	76	16	14	4	-1	38	16	28
8	18 -2	0	53	86	13	5	-1	71	21	42
10	18 -2	97	122	16	15	5	<u> </u>	-88	101	43
1	10 -2	-129	23	24	1	6	<u> </u>	30 30	1	30
⊥ ∩	10 2	125	20	24	ч 1 л	6	1	50	т БО	52
9 11	19 -2	55	40	20	14	o 7	- T	20	00 10	01
11	19 -2	58	35	46	/	/	- ⊥	- / /	IU	23
2	20 -2	61	108	19	10	8	-1	6⊥	47	47
4	20 -2	78	106	17	4	10	-1	-19	39	43
6	20 -2	92	66	16	3	11	-1	52	20	31
10	20 -2	-110	3	31	7	11	-1	-117	5	23
- 0	21 -2	-108	25	30	8	12	-1	45	66	<u> </u>
ġ	21 -2	100	70	18	12	12	_ 1	32	18	
6	21 - 2	52	13	1 1	12 Q	12	_1	0	10 27	86
8	22 - 2	32	±0 37	44 58	11	13	_1	- 11	10	50
1	22 - 2	52	33	13	13	13	1	-41	49 70	20
т Г	23 - 2	0 U _ Q A	55 7 N	3 E 7 F	CT O	1 /	_⊥ _1	/U _11/	10	20
5 0	23 - 2	-04 _110	4 / つ	20	10	⊥4 1 л	_⊥ _1	-114 51	4 ೧೯	رد ۱۸
2		-110	ζ,	20		14	- T	-04	20	4.4
2	24 -2	-18	4	34	11	15	 ⊥	29	57	33
4	24 -2	31	64	30	10	16	-1	72	85	19

Η	Κ	L	Fobs	Fcalc	SigF	Н	Κ	L	Fobs	Fcalc	SigF
-	-	-				-	-	-			
12	16	-1	-51	5	23	11	9	0	7	45	80
5	17	-1	26	78	58	13	9	0	10	59	85
8	18	-1	-70	41	16	4	10	0	42	26	24
10	18	-1	38	46	28	1	11	0	45	54	20
12	18	-1	-33	56	32	9	11	0	72	107	31
1	19	-1	26	49	57	0	12	0	44	41	14
9	19	-1	54	67	49	6	12	0	38	11	47
2	20	-1	32	56	30	10	12	0	95	124	17
6	20	-1	-39	74	57	12	12	0	82	95	33
10	20	-1	-55	51	45	11	13	0	107	99	20
5	21	-1	29	20	64	13	13	0	70	102	36
1	21	-1	45	54	23	10	14	0	-58	2	51
6	22	-⊥ ₁	61 50	68	20	12	14	0	-39	34	55
8	22	- L	56	60	51	1	15	0	36	5/	41
UL C	22	-1 1	-81	4 7	44	3	15	0	45	15	28 50
5 5	23	- <u>1</u>	11 60	1	41 15	10	16	0	20	2/ 11/	29
ך ר	23	- <u>+</u>	-30	42	40 61	11	17	0	95 70	106	29 67
2	20	<u> </u>	-30 -/1	12 64	11	1 I 1	1 Q	0	62	18	15
2 1	24	1	-41 -95	18	34	8	18	0	-26	40 67	10 31
5	24	_ 1	-117	10 35	30	10	18	0	20	42	60
1	25	-1	11, 0	116	88	1	19	0	-83	29	39
3	25	-1	70	33	43	11	19	Õ	67	69	35
7	25	-1	75	119	50		20	Ō	-46	17	39
2	26	-1	88	81	16	10	20	0	-103	5	37
4	26	-1	58	59	21	3	21	0	-29	26	49
3	27	-1	33	64	69	7	21	0	-60	22	43
5	27	-1	77	72	18	9	21	0	45	33	40
2	28	-1	0	98	100	2	22	0	-57	114	57
4	28	-1	66	12	19	4	22	0	36	27	49
1	29	-1	-125	41	37	6	22	0	-20	24	64
11	1	0	-61	20	46	8	22	0	-21	6	66
13	1	0	43	48	34	1	23	0	80	56	30
12	2	0	-89	18	34	5	23	0	25	48	49
13	3	0	98	90	34	7	23	0	-74	62	40
12	4	0	74	80	29	0	24	0	-28	94	55
14	4	0	53	80	68	2	24	0	65	36	32
5	5	0	30	27	42	4	24	0	33	28	37
10	6	5 0	-29	34	45	6	5 24	0	-58	41	42
12	6	5 0	-41	48	52	8	24	0	-46	48	65
3	5 7	0	53	52	19	1	. 25	0	44	36	49
13	37	1 0	-28	37	38		3 25	0	- 75	36	38
1 /	, ۲	ې ۱	- = = 1 5	18	54	۔ ۲	5 25	0	-31	43	62
	n c	, u	1 Q		<u></u>	-	, <u> </u>	ñ	69	59	33
/	5	, U	10	50	÷ + +		20	\sim	00	~ 5	

Н —	K -	L	Fobs	Fcalc	SigF	H -	K -	L -	Fobs	Fcalc	SigF
2	- 26	0	65	24	32	0	-	-	-34	59	49
6	26	Õ	63	45	35	1	19	1	-62	20	39
3	27	0	106	104	35	7	19	1	30	1	53
0	28	0	67	23	41	9	19	1	61	56	20
4	28	0	-42	4	42	6	20	1	-58	40	41
1	29	0	-57	18	45	8	20	1	56	22	51
2	0	1	-73	0	22	10	20	1	26	77	37
4	0	1	-59	0	25		21	1	63		18
6	0	⊥ 1	-5Z	0	28	5 7	21	1	60 60	20	4/ २०
10	0	⊥ 1	QQ	0	20 37	6	$\frac{21}{22}$	1	-00 77	20 81	30 17
12	0	1	-00	0	26	8	22	⊥ 1	-97	3	⊥ / 35
14	0	1	35	Ő	66	3	23	1	0	58	82
13	ĩ	1	66	40	42	7	23	1	33	31	63
8	2	1	50	57	17	0	24	1	60	48	17
14	4	1	78	108	50	6	24	1	-29	2	30
9	5	1	-42	20	21	3	25	1	-69	22	40
13	5	1	75	64	46	0	26	1	55	65	53
9	7	1	-39	3	23	2	26	1	49	77	25
8	8	1	-49	27	43	5	27	1	49	101	60
10	8	1		28	44	11	1	2	-/1	31 1	16 46
2 0	9	1	-47	9	54 51	±3 6	⊥ 2	2	00 55	1 65	40
ر 1 ٦	9	1	-36	27	28	8	2	2	62	30	37
10	10	1	51	64	17	11	3	2	53	20	50
12	10	1	-60	46	19	13	3	2	37	65	31
13	11	1	-88	61	40	12	4	2	74	45	18
6	12	1	35	56	52	11	5	2	62	146	51
8	12	1	-95	19	31	4	6	2	-57	40	29
10	12	1	-65	63	42	10	6	2	-27	27	34
12	12	1	48	56	51	12	6	2	-70	59	37
5	13	1	-46	4	43	8	8	2	-57	0	36
7	13	1	-51	75	41	12	28	2	36	94	30
11	13	1	-98	51	37	<u> </u>) 9	2	57	52	50
0	14	1	-36	65	40	11	9	2	-74	77	3/
2	14	1	50	68	37	4	2 10	2	59	82	12
10	14	1	-60	1	44	4	1 10	2	32	31	4⊥ 20
12	14	1	-65	105	51	8	3 10	2	33	68	30
2	16	1	-56	36	37	10) 10	2	0	61	84
8	16	1	-69	67	36	1:	2 10) 2	-64	6	45
10) 16	1	65	39	44		5 11	_ 2	59	110	39
-	7 17	1	-88	108	38		9 11	L 2	49	73	28
(9 17	1	-42	24	57	1	1 11	12	65	33	20
11	1 17	1	0	47	92		4 12	2 2	-50	7	40

- · -

H	K _	L -	Fobs	Fcalc	SigF	H	K -	L _	Fobs	Fcalc	SigF
2	10	2	6.6	1 ⊑	10	10	0	2	C C	0	4 E
כ ר	10	2	00		12	12	1	っ っ	60	20	40
/ 0	13	2	-20 50	12	20	⊥⊥ 1 つ	1	ン っ	-4Z	29	4 / 5 0
2 1 1	13	2	_55	40	20	11 11	2	ר ג	-44	00 75	25
10	11	2	-35	130	24 //1	10	1	ר ר	-47	15	2 J A A
1	15	2	16	100	4⊥ 35	12	4 /	2	-49	4J 34	30
1 7	15	2	40 63	74	23	±2. 5	45	े २	-70 50	J4 /1	36
11	15	2	-73	23	46	11	5	3	0	7+ 5	81
	16	2	-46	31	56	12	6	3	34	0	62
8	16	2	0	114	89		7	3	46	60	41
10	16	2	-31	24	60	8	8	3	39	25	26
7	17	2	52	44	45	12	8	3	64	127	23
9	17	2	- 53	68	51	4	10	3	52	10	16
6	18	2	-130	18	29	12	10	3	99	93	18
10	18	2	81	72	18	11	11	3	80	85	19
9	19	2	-96	39	33	10	12	3	0	6	82
0	20	2	-94	82	35	7	13	3	57	55	23
4	20	2	-79	42	38	9	13	3	31	29	64
6	20	2	70	87	19	11	13	3	-46	56	60
8	20	2	-83	17	36	0	14	3	32	30	21
/	21	2	43	56 105	26	6	14	3	-46	12	54
9	21	2	91	125	18 17	10	14 15	3	- 60	11	JL 45
Z A	22	2	00 31	120	17 60	/ Q	15 15	ン マ	-09	60 8	4.) 8.4
4	22	2	31	20	28	9	16	ר ר	-100	21	25
ט ר	22	2	54 60	72	20	10	16	2	-56	38	52
5	23	2	32	104	71	- Ŭ 9	17	3	-64	72	20
7	23	2	-32	19	66	6	18	3	-109	5	29
0	24	2	-63	20	18	8	18	3	46	39	50
2	24	2	-67	45	46	5	19	3	66	75	18
4	24	2	-61	7	45	7	19	3	0	75	84
6	24	2	-66	33	21	9	19	3	-27	55	34
1	25	2	31	20	58	0	20	3	-36	34	26
3	25	2	77	76	18	4	20	3	-90	27	35
0	26	2	-103	18	35	8	20	3	48	19	57
4	26	2	64	36	20	3	21	3	-90	10	40
1	27	2	-64	28	38	5	21	3	86	89	15
\cap	20	2	_27	12	33	2 7	21	ې ۲	67	105	-0 55
0	20	2	-27 50	12	12	2	$\frac{2}{2}$	2	-40	100 64	Д 7
0	0	ン っ	10	0	10		22	3	40 55	27	21
۷ ک	U	2 2	40 วา	0	14 27	1 C	20	с С	00 _ 70	3 L 2 L	2 C
4	U	3	30	0	21) [ン ?	עו = 1	رد ۱٦	20 60
6	0	3	-58	U	29	5	~ 23	3	-51	⊥ /	
8	0	3	-67	0	35	(1 24	3	-41	98	54
10) ()	3	0	0	82	2	24	3	64	60	20

Wirmen Forst and the second

Η	K	L	Fobs	Fcalc	SigF	Н	Κ	L	Fobs	Fcalc	SigF
_	-	-				-	-	-			
4	24	3	33	2	65	9	17	4	69	51	47
6	24	3	60	104	48	8	18	4	60	5	22
1	25	3	44	13	25	7	19	4	0	61	89
5	25	3	69	115	57	6	20	4	33	11	60
0	26	3	32	49	66	8	20	4	-33	13	60
2	26 27	3	8Z 24	4Z	16		21	4	/6	101	20
⊥ ว	27	ン マ	54 64	54 67	22	5	21	4 1	o2 0	101	1 / 5 4
0	28	3	92	68	16	7	21	4	89	94	17
12	0	4	-46	23	54	0	22	4	66	53	18
9	1	4	-79	105	41	2	22	4	0	11	50
11	1	4	0	55	83	4	22	4	45	44	51
4	2	4	-71	63	29	6	22	4	-45	1	53
3 11	3 7	4 1	43	69 55	10 10	ے ج	23	4 1	3Z 34	62 13	59 30
2	4	4	56	44	13	0	23	4	-90	43 76	35
6	4	4	43	34	47	2	24	4	-82	27	35
10	4	4	-66	4	41	4	24	4	0	15	85
12	4	4	71	106	24	1	25	4	-31	25	63
4	6	4	53	59	15	3	25	4	-121	29	31
10	6	4	/4 74	54 50	19	0	26	4	39	38	28
10	0 7	4 4	-25	102	19 56	2	20	4 2	-73	76	47 46
11	, 7	4	38	37	30	Ú Ú	0	5	-62	0	27
2	8	4	-28	13	45	2	0	5	53	0	33
10	8	4	92	108	17	4	0	5	-53	0	35
5	9	4	55	45	17	6	0	5	-24	0	56
7	9	4	-65	24	41	8	0	5	29	0	65
ΤŢ	9	4	59	12	45	10	U	5	0	0	51
4	10	4	-77	28	34	3	1	5	-29	63	42
1	11	4	-79	6	24	5	1	5	19	67	30
3	11	4	63	103	38	11	1	5	48	6	25
7	11	4	-91	70	36	2	2	5	54	33	36
9	11	4	91	86	16	4	2	5	40	50	42
2	12	4	47	45	40	8	2	5	-56	25	24
6	12	4	55	40	51	10	2	5	46	71	56
10	12	4	-60	48	21	5	3	5	39	6	20
1	13	4	-44	14	39	11	3	5	34	94	69
8	14	4	45	37	55	0	4	5	-86	24	24
10	14	4	23	14	38	8	4	5	-84	47	43
5	5 15	4	0	135	91	7	5	5	-84	17	38
7	15	4	-29	102	63	11	. 5	5	97	69	17
ç) 15	4	70	88	21	8	6	5 5	44	79	31
E	5 16	4	30	79	59	10) 6	5 5	0	80	88

Н _	K _	L _	Fobs	Fcalc	SigF	H -	K -	L -	Fobs	Fcalc	SigF
H - 780579468059468026806857685724	K - 7 8 8 9 9 9 10 10 10 11 12 12 12 13 13 14 14 16 16 17 18 19 19 20 20	L- 55555555555555555555555555555555	Fobs -98 56 75 -98 58 64 -8 87 -66 -64 67 47 -50 -46 -64 67 47 -50 -46 -34 -34 -34 -136 -31 -31 -31 -31 -31 -31 -31 -46 -53 -31 -34 -71 -92 -93 -60 68 55	Fcalc 28 93 91 65 14 101 33 84 1 19 67 76 50 1 22 30 51 27 8 32 11 44 24 107 99 37 84 35 104 115 8 77 27 11	SigF 35 23 46 27 52 21 38 16 42 51 44 50 43 26 27 23 15 57 30 17 25 29 31 50 54 35 16 27 37 19 43 48 16 48	H - 304359246910592805796107902681379215	K - 256011122234556666777889910010111111233	9 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	Fobs 60 67 -24 75 -34 -49 55 -53 -28 -112 -62 71 37 -27 49 66 67 91 49 70 -40 68 -38 -33 41 72 55 -23 63 -122 0 -48 72	Fcalc 93 56 56 63 6 16 34 7 104 21 22 86 56 16 38 52 44 124 102 54 69 6 73 15 9 38 32 11 30 31 0 11 34	SigF 50 47 27 13 47 38 15 39 23 31 37 42 19 22 30 52 16 47 17 49 55 20 42 55 20 42 55 20 42 55 20 42 55 20 42 50 42 30 42 44 30 42 44
4 6 3 5 0	20 20 21 21 21 22	5 5 5 5 5	55 52 31 -123 61	11 24 52 22 12	48 24 65 32 19	5 7 9 (2	13 13 13 13 13 14 214	6 6 6 6 6 6 6	72 -43 -105 -42 27	34 37 22 55 34	44 56 37 47 55
4 6 1 2	22 5 22 23 5 23 4 24	555555	22 0 -105 -24 -93	44 7 53 52 5	38 88 33 39 34	3 2 6 8	$\begin{array}{c} 14 \\ 5 \\ 15 \\ 16 \\ 5 \\ 16 \\ 3 \\ 16 \\ 5 \\ 17 \\ 17 \\ 17 \\ 17 \\ 17 \\ 17 \\ 17 \\ 17$	8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	59 -82 -57 66 -57	105 8 56 88 8	24 33 45 20 44 53

a the definition of a second

Η	K	L	Fobs	Fcalc	SigF	Н	K	L	Fobs	Fcalc	SigF
-	-	-				-		-			
7	17	6	52	53	25	6	8	7	54	49	22
4	18	6	-127	15	29	1	9	7	12	45	39
6	18	6	-63	81	53	9	9	7	78	65	21
5	19	6	-54	66	55	0	10	7	26	72	29
7	19	6	-88	40	45	2	10	7	-61	26	41
2	20	6	-10	30	42	4	10	7	75	120	46
4	20	6	0	31	89	8	10	7	0	16	92
6	20	6	35	19	63	3	11	7	-21	30	35
1	21	6	86	81	15	5	11	7	60	98	22
3	21	6	70	77	19	0	12	7	63	16	17
5	21	6	-29	46	32	2	12	7	-51	87	49
0	22	6	-62	82		4	12	/	88	77	19
	22	b C	40 56	4U 14	54 E 1	8	12	7	-80	3	40
4	22	6	-30	14 21		1 5	13 12	7	-/Z	92	41
۲ ۲	23	6	-30 59	88	54 55	ך ב	13 13	7	-110	Z / 5 3	30 60
0	20	6	-77	13	42	2	т.) 1 Л	7	-44 0	55	88
2	24	6	-91	11	33	8	14	7	-66	55	10 10
1	25	6	-65	29	48	1	15	7	39	20	40 59
0	26	6	58	73	25	5	15	7	-30	28	57
0	0	7	-68	0	29	7	15	7	-80	14	36
2	0	7	41	0	47	0	16	7	39	27	28
4	0	7	-46	0	20	6	16	7	67	56	53
6	0	7	-38	0	57	1	17	7	100	74	18
8	0	7	68	0	19	3	17	7	81	117	18
10	0	7	-30	0	33	5	17	7	54	82	25
1	1	7	-57	69	35	4	18	7	-28	74	33
5	1	7	61	99	54	6	18	7	-87	10	43
9	1	7	-63	31	47	1	19	7	53	93	53
0	2	7	53	67	36	3	19	7	-68	14	40
2	2	7	24	0	28	5	19	7	34	4.5	67
10	2	7	96	70	16	2	20	7	72	56	19
5	3	7	8.5	61	16	4	20	7	98	105	1 Q
g	ې ۲	7	-78	26	л 1	1	20	'	-30	27	10 70
Λ	Л	7	61	50	+±⊥ 17	2 1	∠⊥ ⊃1	· -	-50	21	70
4	4	ו ר	04	50	1	3	$\angle \perp$	/	U	/6	90
0	4 r	/	40	6U	44	U	22	/	4 /	40	27
2	С Г	7	36	20 5 C	24	2	22	1	-31	68	58
/	5	/	62	56	45	4	22	7	35	28	64
9	5	/	- 72		45	1	23	7	33	4	61
Û	6	/	39	33	45	3	23	2	-81	30	40
6	6	/	40	68	31	0	24	7	-107	54	36
8	6	/	0	55	89	2	24	7	-124	3	30
3	/	/	-24	74	58	1	25	7	-94	19	38
5	7	7	-109	19	32	0	0	9	46	32	44

Contraction of the associated

Page 22

- -

Reflexões não observadas I < $3\sigma(I)$ Values of 10*Fobs and 10*Fcalc

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Η	K	L	Fobs	Fcalc	SigF	Н	Κ	L	Fobs	Fcalc	SigF
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	-	-				-	-	-			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	14	9	58	22	52	3	11	10	79	82	48
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	14	9	0	38	90	5	11	10	-73	4	44
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	15	9	-24	50	38	0	12	10	-28	41	38
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	16	9	-30	88	74	2	12	10	-29	23	66
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	16	9	59	76	50	1	13	10	0	63	90
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	17	9	77	52	19	3	13	10	68	40	23
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	18	9	-24	27	37	5	13	10	-125	17	34
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	19	9	66	71	23	0	14	10	-45	15	26
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	19	9	-114	7	34	3	15	10	59	13	57
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	20	9	-122	49	35	2	16	10	75	70	48
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	20	9	60	41	52	3	17	10	-46	58	60
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	21	9	-46	29	27	0	18	10	-26	69	36
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	22	9	13	58	20	2	18	10	-46	5	54
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	U	10	46	34	49	Ţ	19	10	-130	88	38
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	1	10	56	5	49	0	20	10	-103	41	39
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 1	⊥ 1	10	-38	80	29	0	0	11	-/1	0	21
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	⊥ 1	10	-30	40	52	∠	0	11 11	-40	U	4/
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, 	+ 2	10	-47	29	20	4	1	⊥⊥ 11	-30	0	5/ 10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	2	10	_27	33	67	3 T	⊥ 1	⊥⊥ 1 1	100	6/ 10	
4 2 10 -31 48 63 0 2 11 94 76 19 1 3 10 55 48 24 2 211 0 59 95 5 3 10 72 22 51 4 2 211 -30 74 65 7 3 10 -28 28 37 1 3 11 -69 68 48 0 4 10 68 64 18 3 311 90 71 17 2 4 10 -27 59 65 5 3 11 68 42 50 3 5 10 -27 59 65 5 3 11 68 42 50 3 5 10 72 61 18 2 4 11 -26 65 37 0 6 10 -79 42 44 1 5 11 -96 56 38 6 6 10 -79 42 44 1 5 11 -96 56 38 6 6 10 -79 42 44 1 5 11 -96 56 38 6 6 10 -32 55 57 5 51 -16 54 54 3 7 10 43 9 61 2 611 -123	Ζ Λ	2	10	-27 -51	52 72	10	ے ج	1	11 11	-62	19	∠⊥ 10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	2	10	-31	12	49	0	1 2	11 11	94	70	19
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	ے ح	10	55	40	24	2	2	11 11	50 50	59	90
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	2 7	10	55 72	22	24 51	2 /	2	11	-30	44 77	20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	3	10	-28	22	37		2	11	-50	14 60	10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ó	4	10	20 68	20 64	18	ר ד	2	11 11	00	00 71	40
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	4	10	-27	59 59	10 65	ך ב	ہ د	11 11	90 68	11	1 / 5 0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	5	10	72	61	18	2	1	11	60	4Z 20	16
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	5	10	0	52	90 90	2. A	4	11	-26	20	40
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	6	10	-79	42	<u> </u> Д Л	4	4 5	11 11	-20	0) Q	57
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	6	10	50	69	29	ר ד	5	11	-96	56	30
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	6	10	-32	55	57	5	5	11	-56	1	54
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	7	10	43	9	61	2	6	11	_98	3	24
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	7	10	-11	79	46	2. Δ	6	11	-123	3	31
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	8	10	-97	53	36	1	7	11	30	20	51
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	8	10	84	19	15	⊥ २	7	1 1	50	29	10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	Ř	10	-30	58	62	0	8	11	51	3 0	49
1 9 10 65 47 24 4 8 11 -78 65 51 5 9 10 -34 23 30 1 9 11 -110 10 31 0 10 10 -95 42 40 3 9 11 -110 10 31 0 10 10 -95 42 40 3 9 11 12 39 46 2 10 10 43 9 60 0 10 11 -57 9 47 4 10 10 33 14 70 2 10 11 -68 35 40 1 11 10 52 41 48 4 10 11 60 115 64	6	8	10	35	67	73	2	8	1 1	70 70	24	52
1 10 -34 23 30 1 9 11 -110 10 31 5 9 10 -34 23 30 1 9 11 -110 10 31 0 10 10 -95 42 40 3 9 11 12 39 46 2 10 10 43 9 60 0 10 11 -57 9 47 4 10 10 33 14 70 2 10 11 -68 35 40 1 11 10 52 41 48 4 10 11 60 115 64	1	g,	10	65	47	24	2 4	8	<u>+</u> + 1 1	-78	24	51
0 10 10 -95 42 40 3 9 11 12 39 46 2 10 10 43 9 60 0 10 11 -57 9 47 4 10 10 33 14 70 2 10 11 -68 35 40 1 11 10 52 41 48 4 10 11 60 115 64	5	9	10	-34	23	30		G G	1 1	-110	10	31 21
2 10 10 43 9 60 0 10 11 -57 9 47 4 10 10 33 14 70 2 10 11 -68 35 40 1 11 10 52 41 48 4 10 11 60 115 64	0	10	10	-95	42	40	⊥ ר	q	11	12	10 20) I 1 G
4 10 10 33 14 70 2 10 11 -68 35 40 1 11 10 52 41 48 4 10 11 60 115 64	2	10	10^{-0}	43	9	60	0	10	<u> </u>	-57	a a	40
1 11 10 52 41 48 4 10 11 60 115 64	4	10	10	33	14	70	2	10	11	-68	י זר	 1 ()
	1	11	10	52	41	48	4	10	17	60	115	

140

Н —	K _	- -	Fobs	Fcalc	SigF	H _	K _	L -	Fobs	Fcalc	SigF
1	11	1 1	-90	15	38	2	Δ	13	59	82	59
т Х	11		-101	32	40	1	י ק	13	74	34	47
0	$\frac{11}{12}$	11	-78	11	40	0 0	6	13	60	62	25
2	12	11	33	32	71	2	6	13	-73	50	4 9
3	13	11	-92	20	33	1	7	13	-92	12	17
0	14^{-1}		72	51	49	0	8	13	66	70	48
2	14	11	76	76	45	2	8	13	-99	8	43
3	15	11	-116	13	33	1	9	13	-86	12	46
1	17	 	-103	95	44	0	10	13	75	4	48
0	0	12	30	54	65	1	11	13	26	5	41
2	0	12	-68	40	45	0	12	13	-73	16	42
1	1	12	0	22	87	0	14	13	71	58	60
0	2	12	-64	50	45	0	0	14	47	36	61
2	2	12	45	69	64	1	1	14	73	30	22
1	3	12	-41	83	63	0	2	14	-85	16	19
0	4	12	97	89	16	1	3	14	0	31	101
2	4	12	61	59	23	0	4	14	76	36	45
1	5	12	78	52	18	1	5	14	-81	9	47
0	6	12	69	5	45	0	6	14	-50	13	27
2	6	12	-129	0	31	0	8	14	-124	12	34
4	6	12	-88	36	36						
1	7	12	55	15	50						
3	7	12	34	14	67						
0	8	12	63	45	52						
2	8	- 2	69	30	22						
1	9	±2	-23	19	38						
3	9	-2	-87	41	44						
0	10	-2	-60	5	52						
2	10	12	-38	3	31						
1	11	±2	-31	49	35						
3		12	/3	31	22						
0	12		-93	59	39						
2	12	12	-58	32	23						
1	13	12	87	66	20						
0	14	12	-96	65	44						
1	. 15	$\rightarrow \pm 2$	-5/	37	55						
0		1 13	-122	0	3Z						
2	: 0) _3	-45	0	59						
1	. 1	. 13	65	ے 110	22						
	s 1	. 13	78	118	23						
0) 2	13	-50	6	26						
2	2 2	2 13	75	125	53						
]	. 3	3 13	35	23	33						
() 4	1 13	-92	2	38						