UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CAPLOS INSTITUTO DE EÍSICA DE SÃO CAPLOS

INSTITUTO DE FÍSICA DE SÃO CARLOS INSTITUTO DE QUÍMICA DE SÃO CARLOS

Caracterização Óptica e Estrutural de PbTiO₃ Nanoestruturado Obtido por Moagem Mecânica de Alta Energia

LUÍS PRESLEY SEREJO DOS SANTOS

Dissertação apresentada à Área de Interunidades em Ciência e Engenharia de Materiais, da Universidade de São Paulo, como parte dos requisitos para a obtenção do Título de Mestre em Ciência e Engenharia de Materiais.

Orientador: Prof. Dr. Edson Roberto Leite

São Carlos 2002 Santos, Luís Presley Serejo dos

S237 Caracterização óptica e estrutural de PbTiO₃ nanoestruturado obtido por moagem mecânica de alta energia / Luís Presley Serejo dos Santos. -- São Carlos, 2002.

Dissertação (Mestrado) -- Escola de Engenharia de São Carlos/Instituto de Física de São Carlos/Instituto de Química de São Carlos-Universidade de São Paulo, 2002.

Área: Ciência e Engenharia de Materiais. Orientador: Prof. Dr. Edson Roberto Leite.

1. Moagem de alta energia.. 2. Fotoluminescência. 3. Pós amorfos. 4. Nanoestruturado. 5. Semicondutores. I. Título.

Dedico este trabalho à minha mãe Bertulina pelo amor, incentivo e exemplo de vida, aos meus irmãos e minhas sobrinhas.

AGRADECIMENTOS

Ao Prof. Dr. Edson Roberto Leite pela valiosa orientação e principalmente pelo apoio, amizade e confiança, depositados em mim, sem os quais esse trabalho não teria sido realizado.

Ao Prof. Dr. Elson Longo pela amizade, e confiança transmitida.

Ao Dr. Carlos A. Paskocimas pelas valiosas discussões durante o desenvolvimento deste trabalho, pelo apoio e amizade em todos os momentos.

Ao Prof. Dr. Paulo Sérgio Pizani e ao Dr. Franchesco Lanciotti Júnior pelas análises de espectroscopia Raman.

A Dr. Maria Inês B. Bernardi pelas análises de difração de raios-X e por sua compreensão.

Ao Dr. Fenelon Martinho Pontes pela amizade e ajuda desde o início do mestrado.

Aos amigos M.Sc. Neftalí L. V. Carreño, Dr. José Hilton, Dr. Marcelo Moizinho, M.Sc. Elaine Paris, M.Sc. Luiz Edmundo Soledade, M.Sc. Adeilton Maciel, pela ajuda e amizade em várias etapas deste trabalho.

Aos técnicos e amigos João Gonzales e Francisco Rangel pelo inestimável apoio técnico.

A Secretária Daniela Armelin pela sua ajuda e amizade.

Aos demais colegas do CMDMC – LIEC – DQ – UFSCar.

Ao Laboratório Nacional de Luz Síncroton (LNLS), Campinas – SP, por disponibilizar o microscópio eletrônico de alta resolução (HRTEM).

Ao Programa Interunidades da USP – São Carlos.

SUMÁRIO

Α(GRADECIMENTOS	iv
LI	STA DE FIGURAS	vii
LI	STA DE TABELAS	X
LI	STA DE ABREVIATURAS E SÍMBOLOS	xi
RE	ESUMO	xii
ΑF	BSTRACT	.xiii
1.	INTRODUÇÃO	01
2.	REVISÃO DA LITERATURA	03
	2.1. Materiais Nanoestruturados	03
	2.1.1. Histórico	03
	2.1.2. Definição	04
	2.1.3. Classificação.	06
	2.2. Propriedades dos Materiais Nanoestruturados	10
	2.3. Métodos para a Produção de Materiais Nanoestruturados	10
	2.4. Moagem de Alta Energia	11
	2.5. Materiais Nanoestruturados Produzidos por Atrito Mecânico	12
	2.6. Estrutura Perovskita	15
	2.7. Titanato de Chumbo	16
	2.8. Método Pechini	17
	2.9. Luminescência	18
	2.9.1. Aspectos Teóricos	18
3.	MATERIAIS E MÉTODOS	22
	3.1. Preparação do Pó Cerâmico	22

	3.2. Cond	ições usadas para a moagem25
	3.3. Técni	cas de Caracterização
	3.3.1.	Difração de Raios X
	3.3.2.	Microscopia Eletrônica de Transmissão de Alta Resolução29
	3.3.3.	Espectroscopia de Reflectância Óptica na Região do UV-Visível30
	3.3.4.	Espectroscopia Raman31
4.	RESULTA	ADOS E DISCUSSÕES
	4.1. Prime	rira Moagem32
	4.2. Segur	nda Moagem34
	4.3. Terce	ira Moagem39
	4.4. Carac	terização por Espectroscopia Raman43
5.	CONCLU	SÕES50
6.	REFERÊN	NCIAS BIBLIOGRÁFICAS51
ΑF	ÊNDICE	57

LISTA DE FIGURAS

Figura 1 - Representação esquemática do material nanoestruturado formado por
átomos com arranjo cristalino (círculos escuros) e átomos com arranjo cristalino de
contorno (círculos claros). Os átomos de contorno são mostrados em posições
regulares da rede cristalina, porém na realidade, devem relaxar para formar diferentes
arranjos atômicos
Figura 2 – Esquematização da classificação dos materiais nanoestruturados de acordo
com a composição química e forma dimensional07
Figura 3 – Esquema dos quatro tipos de materiais nanoestruturados classificados de
acordo com a dimensionalidade da nanoestrutura09
Figura 4 – Mecanismo de funcionamento e as forças exercidas no moinho mecânico
de alta energia do tipo Atritor14
Figura 5 – Representação esquemática de uma estrutura perovskita cúbica ideal15
Figura 6 – Reações envolvidas no método Pechini
Figura 7 – Representação esquemática de um íon luminescente (A). A emissão indica
o retorno radiativo, e calor o retorno não-radiativo para o estado fundamental19
Figura 8 – Representação esquemática dos níveis de energia gerados por impurezas
doadoras e aceptoras em um material semicondutor. $E_{\rm g}$ é o gap de energia21
Figura 9 – Fluxograma representativo do procedimento experimental24
Figura 10 – Moinho mecânico de alta energia (Atritor)
Figura 11 - Tipos de esferas de zircônia com diferentes diâmetros utilizadas no
processo de moagem
Figura 12 – Difratômetro de raios X utilizado para as análises27

Figura 13 – Esquema ilustrativo da preparação de amostras para análise no
HRTEM30
Figura 14 – Espectrofotômetro utilizado para as análises de UV-Visível30
Figura 15 – Difratogramas do pó de PbTiO ₃ moídos com esferas de 4 mm em
diferentes tempos de moagem
Figura 16 – Difratogramas do pó de PbTiO ₃ moído em diferentes tempos com esferas
de 2 mm
Figura 17 – Padrão de difração de elétrons dos pós de PbTiO ₃ moídos durante 10 e
200 horas, respectivamente
Figura 18 – Variação do tamanho de cristalitos em função do tempo de moagem36
Figura 19 - Variação da constante de tetragonalidade (c/a) em função do tempo de
moagem
Figura 20 – Evolução da fração amorfa (FA) em função do tempo de moagem (t)38
Figura 21 – Micrografia obtida por HRTEM referente ao pó de PbTiO ₃ moído por
200 horas
Figura 22 – Difratogramas de raios X do pó de PbTiO ₃ após a moagem utilizando
esferas com 5,0 mm de diâmetro
Figura 23 - Evolução da fração amorfa (FA) em função do tempo de moagem (t)
utilizando esferas de moagem com diâmetros diferentes
Figura 24 - Variação da tetragonalidade (c/a) em função do tempo de moagem para
moagem utilizando esferas de 5 mm
Figura 25 - Espectros Raman e emissão fotoluminescente do pó de PT moído em
diferentes tempos e com diferentes tamanhos de esferas: (a) esferas de 2,0 mm; (b)
esferas com 5,0 mm de diâmetro, respectivamente

Figura 26 – (a) Espectro de emissão fotoluminescente do pó de PbTiO ₃ moído por
200 horas; (b) Espectro de emissão fotoluminescente do polímero que reveste o
recipiente do moinho. Em anexo, o espectro Raman da esfera de zircônia utilizada na
moagem45
Figura 27 – Espectros Raman detalhados para os pós moídos utilizando esferas de
moagem com 2,0 mm de diâmetro. As setas indicam os modos vibracionais47
Figura 28 – Dependência espectral da reflectância para o composto de PbTiO ₃
amorfizado utilizando esferas de diferentes tamanhos após vários tempos de
moagem. (a) esferas de moagem com 2,0 mm; (b) esferas com 5,0 mm de diâmetro,
respectivamente

LISTA DE TABELAS

Tabela I – Métodos de síntese dos materiais nanoestruturados	11
Tabela II – Reagentes utilizados na obtenção do pó de PbTiO ₃ cristalino	23

LISTA DE ABREVIATURAS E SIGLAS

T_c Temperatura de Curie

PT Titanato de chumbo

DRX Difração de raios X

 $E_g \hspace{1cm} Energia \hspace{1cm} da \hspace{1cm} banda \hspace{1cm} gap$

HRTEM Microscopia eletrônica de transmissão de alta resolução

c/a Constante de tetragonalidade

FA Fração amorfa

FL Fotoluminescência

RESUMO

Os compostos com estruturas peroviskitas (ABO₃), em particular o PbTiO₃ (PT), na sua forma cristalina mostram comportamento de um semicondutor com um "band gap" de energia de aproximadamente 3 eV. Na forma amorfa, estes materiais apresentam emissão de fotoluminescência na região do visível à temperatura ambiente quando preparados pelo método Pechini. Neste sentido decidiu-se pesquisar um método alternativo para a obtenção do PT nanoestruturado e amorfo a partir do PT cristalino. Tal nanoestrutura pode ser obtida por moagem mecânica de alta energia. O processamento por moagem de alta energia foi realizado em um moinho mecânico do tipo atritor. O acompanhamento estrutural e microestrutural da evolução da amorfização em função do tempo de moagem foi realizado por difração de raios-X e microscopia eletrônica de transmissão. A variação do tamanho dos cristalitos foi acompanhada através da análise do alargamento dos picos de difração de raios-X. O fenômeno de fotoluminescência dos pós moídos foi acompanhado por meio do espalhamento Raman e de técnicas de absorção óptica (fotoluminescência e UV-Visível). Os resultados mostram que o processamento utilizado modifica a superfície das partículas, deixando num estado altamente desordenado. O alto grau de desordem estrutural é suficiente para gerar muitos estados eletrônicos localizados dentro do gap de energia. Isto resulta em um decaimento radiativo de transições eletrônicas, que possivelmente devem ser responsáveis pela fotoluminescência. Além disso, verificou-se que a eficiência do processo de moagem aumenta quando são usados esferas com tamanho reduzido, pois a área de contato entre a superfície da esfera e a amostra aumenta. Isto sugere que o processo de amorfização é provocado preferencialmente por cisalhamento.

ABSTRACTS

Compounds with perovskite structures (ABO₃), particularly PbTiO₃ (PT), in the crystalline form display a semiconductor behavior with a band gap of approximately 3 eV. In the amorphous form, these materials present photoluminescence emission in the region of the visible at ambient temperature, when prepared by the Pechini method. In this way it was decided to investigate an alternative method to obtain nanostructured PT, starting from crystalline PT, with photoluminescence emission in the region of the visible at room temperature. This nanostructure can be obtained by high energy mechanical milling. The high energy mechanical milling process was accomplished in a mechanical mill of the attritor type. The structural and microstructural evolution of the amorphization as a function of the time of milling was followed by X-ray difraction and transmission electronic microscopy. The decrease of the crystallite size was confirmed the broadening of the peaks in the patterns of X-ray diffraction. The phenomenon of photoluminescence of the milled powders was accompanied by the Raman sccatering and by techniques of optical absorption (photoluminescence and UV-visible). The results showed that the used process modifies the surface of the particles, leading to a highly disordered state. The high degree of structural disorder is sufficient to generate many electronic states located within the energy gap. This ends up in a radiative decline of electronic transitions, that possibly should be responsible for the photoluminescence. Besides, it was verified that the efficiency of the milling process increases when are used spheres with reduced size, because the contact area between the surfaces of the spheres and the samples increases. This suggests that the amorphization process is preferentially provoked by shear.