• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
https://doi.org/10.11606/T.85.2012.tde-10122012-084041
Document
Auteur
Nom complet
Cecilio Alvares da Cunha
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2012
Directeur
Jury
Ramanathan, Lalgudi Venkataraman (Président)
Ambrozio Filho, Francisco
Goldenstein, Helio
Lima, Nelson Batista de
Sinatora, Amilton
Titre en portugais
Desenvolvimento de revestimentos nanoestruturados de Cr3C2-25(Ni20Cr)
Mots-clés en portugais
aspersão térmica
compósitos
material nanocristalino
moagem de alta energia
revestimento nanoestruturado
Resumé en portugais
O presente estudo está dividido em duas partes. A primeira parte está relacionada à preparação de pós de Cr3C2-25(Ni20Cr) nanoestruturados através do processo de moagem de alta energia, bem como à caracterização dos pós moídos e no estado como recebido. A análise dos dados obtidos nesta etapa do trabalho foi feita utilizando-se uma abordagem essencialmente teórica. A segunda parte deste estudo refere-se à produção e caracterização de revestimentos preparados com os pós de Cr3C2-25(Ni20Cr) nanoestruturados e como recebido. O comportamento destes revestimentos sob erosão-oxidação em alta temperatura foi comparado com base em uma abordagem de caráter mais tecnológico. O tamanho médio de cristalito do pó de Cr3C2-25(Ni20Cr) decresceu rapidamente de 145 nm para 50 nm nos estágios iniciais de moagem e, posteriormente, com o aumento do tempo de moagem, decresceu mais lentamente até atingir um estado estacionário para um tamanho de cristalito em torno de 10 nm. Este estado estacionário corresponde ao início do processo de recuperação dinâmica. A máxima deformação da rede cristalina (δ = 1,17%) foi observada para pós moídos por 16 horas, caracterizando um tamanho crítico de cristalito da ordem de 28 nm. Por outro lado, o parâmetro de rede atingiu um mínimo para pós moídos por 16 horas. Após atingir o tamanho crítico de cristalito, a densidade de discordâncias praticamente não mais varia (estado estacionário) e toda deformação plástica posteriormente introduzida no material é acomodada através de eventos que ocorrem nos contornos de grão, particularmente por meio do processo designado deslizamento de contorno de grão (grain boundary sliding). A energia de deformação armazenada na rede cristalina dos pós de Cr3C2-25(Ni20Cr) moídos com diferentes tempos de moagem foi determinada por meio de medidas da variação de entalpia. Estes resultados indicaram que a máxima variação de entalpia (ΔH = 722 mcal) também ocorreu para pós moídos por 16 horas. Analogamente, a máxima variação do calor específico (ΔCp = 0,278 cal/gK) ocorreu para pós moídos por 16 horas. As seguintes propriedades mecânicas dos revestimentos de Cr3C2-25(Ni20Cr), preparados utilizando-se o processo HVOF de aspersão térmica, foram determinadas: microdureza Vickers, módulo de Young e tenacidade à fratura. As propriedades dos revestimentos preparados com os pós nanoestruturados e como recebido foram comparadas. A dureza e o módulo de Young dos revestimentos preparados com os pós nanoestruturados foram aproximadamente 26% maiores que aqueles preparados com os pós como recebido. A tenacidade à fratura dos revestimentos nanoestruturados foi aproximadamente 36% maior do que o verificado para os revestimentos produzidos com pós no estado como recebido. A resistência à erosão-oxidação do revestimento produzido com o pó nanoestruturado foi em torno de 52% maior do que a do revestimento preparado com o pó no estado como recebido, a 800ºC. Ambos os revestimentos mostraram um aumento da taxa de erosão-oxidação para temperaturas acima de 450ºC.
Titre en anglais
Development of Cr3C2-25(Ni20Cr) nanostructured coatings
Mots-clés en anglais
high energy milling
mechanical milling
nanocrystalline powder
nanostructured coating
thermal spraying
Resumé en anglais
This study is divided in two parts. The first part is about the preparation of nanostructured Cr3C2-25(Ni20Cr) powders by high energy milling followed by characterization of the milled and the as received powder. Analyses of some of the data obtained were done using a theoretical approach. The second part of this study is about the preparation and characterization of coatings prepared with the nanostructured as well as the as received Cr3C2-25(Ni20Cr) powders. The high temperature erosion-oxidation (E-O) behavior of the coatings prepared with the two types of powders has been compared based on a technological approach. The average crystallite size of the Cr3C2-25(Ni20Cr) powder decreased rapidly from 145 nm to 50 nm in the initial stages of milling and thereafter decreased slowly to a steady state value of around 10 nm with further increase in milling time. This steady state corresponds to the beginning of a dynamic recovery process. The maximum lattice strain (δ = 1,17%) was observed in powders milled for 16 hours, and this powders critical crystallite size was 28 nm. In contrast, the lattice parameter attained a minimum for powders milled for 16 hours. Upon reaching the critical crystallite size, the dislocation density attained a steady state regime and all plastic deformation introduced in the material there after was in the form of events occurring at the grain boundaries, due mainly to grain boundary sliding. The deformation energy stored in the crystal lattice of the Cr3C2-25(Ni20Cr) powders milled for different times was determined from enthalpy variation measurements. These results indicated that the maximum enthalpy variation (ΔH = 722 mcal) also occurred for powders milled for 16 hours. In a similar manner, the maximum specific heat variation (ΔCp = 0,278 cal/gK) occurred for powders milled for 16 hours. The following mechanical properties of Cr3C2-25(Ni20Cr) coatings prepared using the HVOF thermal spray process were determined: Vickers micro-hardness, the Young Modulus and the fracture toughness. The properties of the coatings prepared with the nanostructured and the as received powders were compared. The hardness and Young Modulus of the coatings prepared with nanostructured powders were approximately 26% higher than that of the coatings prepared with as received powders. The fracture toughness of the nanostructured coating was 36% higher. The erosion-oxidation resistance of the coating produced with the nanostructured powder was around 52% higher than that of the coating prepared with the as received powders at 800 ºC. The E-O wastage of both types of coatings increased with temperature beyond 450 ºC.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2013-02-15
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2024. Tous droits réservés.