• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.85.2008.tde-10062008-143233
Documento
Autor
Nome completo
Bruno Ribeiro de Matos
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2008
Orientador
Banca examinadora
Fonseca, Fabio Coral (Presidente)
Gonzalez, Ernesto Rafael
Muccillo, Reginaldo
Título em português
Preparação e caracterização de eletrólitos compósitos Nafion - TiO2 para aplicação em células a combustível de membrana de troca protônica
Palavras-chave em português
Célula a Combustível.
Compósito
Nafion
Titânia
Resumo em português
A fabricação e a caracterização de eletrólitos compósitos Nafion - TiO2, e seu uso em células PEM (Proton Exchange Membrane) operando em temperaturas elevadas (~ 130 ºC) foram estudados. A operação em altas temperaturas da célula PEM traz benefícios, como o aumento da cinética das reações eletródicas, o aumento da cinética de transporte difusional nos eletrodos e o aumento da tolerância da célula ao contaminante monóxido de carbono. O Nafion ®, eletrólito polimérico comumente empregado em células PEM, possui condutividade elétrica dependente da quantidade de água contida em sua estrutura. Desta forma, o aumento da temperatura de operação da célula acima de 100 ºC causa a desidratação do polímero diminuindo acentuadamente sua condutividade elétrica. Para aumentar o desempenho dos eletrólitos operando em altas temperaturas, eletrólitos compósitos (Nafion-TiO2) foram preparados pelo método de conformação por evaporação em molde. A adição de partículas higroscópicas de titânia (TiO2) na matriz polimérica visa melhorar as condições de umidificação do eletrólito em temperaturas elevadas. Três tipos de partículas de titânia com diferentes áreas de superfície específica e formas distintas foram investigados. Compósitos à base de Nafion com adição de 2,5 a 15% em massa de partículas de titânia com forma aproximadamente esférica e com área de superfície específica de até ~115 m2g-1 apresentaram maiores valores da temperatura de transição vítrea do que o polímero. Este aumento melhora a estabilidade do eletrólito durante a operação de células a combustível PEM em 130 ºC. Os compósitos formados a partir da adição de nanotubos derivados de titânia apresentaram pronunciado ganho de desempenho e maior estabilidade térmica em operação de células acima de 100 ºC. Neste caso, a elevada área superficial e a forma dos nanotubos de titânia contribuíram significativamente para o aumento da absorção e da retenção de água do compósito. Por outro lado, as curvas de polarização mostraram um aumento na polarização por queda ôhmica com o aumento da concentração das partículas cerâmicas adicionadas. A morfologia do polímero não foi alterada com a adição de partículas inorgânicas, portanto, o desempenho dos compósitos reflete uma competição entre a adição de uma fase isolante, que diminui a condutividade elétrica, e o aumento da estabilidade térmica ou da retenção de água do compósito. Os eletrólitos compósitos testados provaram serem promissores na aplicação em células PEM em temperaturas acima de 100 ºC.
Palavras-chave em inglês
composite
fuel cell
nafion
titania
Resumo em inglês
The fabrication and characterization of Nafion - TiO2 composites, and the use of such electrolytes in PEM (Proton Exchange Membrane) fuel cell operating at high temperature (130 °C) were studied. The operation of a PEM fuel cell at such high temperature is considered as an effective way to promote fast electrode reaction kinetics, high diffusional transport, and high tolerance to the carbon monoxide fuel contaminant. The polymer Nafion® is the most used electrolyte in PEM fuel cells due to its high proton conductivity. However, the proton transport in Nafion is dependent on the water content in the polymeric membrane. The need of absorbed water in the polymer structure limits the operation of the fuel cell to temperatures close to 100 °C, above which Nafion exhibits a fast decrease of the ionic conductivity. In order to increase the performance of the electrolyte operating at high temperatures, Nafion-TiO2 composites have been prepared by casting. The addition of titania hygroscopic particles to the polymeric matrix aims at the enhancement of the humidification of the electrolyte at temperatures above 100 °C. Three types of titania particles with different specific surface area and morphology have been investigated. Nafion-based composites with the addition of titania nanoparticles, in the 2.5-15 wt.% range, with nearly spherical shape and specific surface area up to ~115 m2g-1 were found to have higher glass transition temperature than the polymer. Such an increase improves the stability of the electrolyte during the fuel cell operation at high temperatures. The addition of titania-derived nanotubes results in a pronounced increase of the performance of PEM fuel cell operating at 130 °C. In this composite, the high specific surface area and the tubular shape of the inorganic phase are responsible for the measured increase of both the absorption and retention of water of the composite electrolyte. Nonetheless, the polarization curves of fuel cell using the composite electrolytes exhibited an increase of the ohmic polarization associated with the addition of the insulating titania particles. As the chemical structure of Nafion was observed to be insensitive to the addition of the inorganic particles, the high performance of the composite electrolytes is a result of competing effects: the decrease of the electrical conductivity and a higher thermal stability or water absorption/retention capacity. The experimental results suggest that the Nafion-TiO2 composites are promising electrolytes for PEM fuel cells operating at temperatures above ~100 °C.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
brunomatos.pdf (2.23 Mbytes)
Data de Publicação
2009-03-17
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.