

AUTARQUIA ASSOCIADA À UNIVERSIDADE DE SÃO PAULO

USO DO HIDROGÊNIO NO TRANSPORTE PÚBLICO DA CIDADE DE SÃO PAULO

Patrícia Andrea Paladino

Tese apresentada como parte dos requisitos para obtenção do Grau de Doutor em Ciências na Área de Tecnologia Nuclear - Reatores

Orientador:

Prof. Dr. Eduardo Lobo Lustosa Cabral

INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES Autarquia associada à Universidade de São Paulo

USO DO HIDROGÊNIO NO TRANSPORTE PÚBLICO DA CIDADE DE SÃO PAULO

Patrícia Andrea Paladino

Tese apresentada como parte dos requisitos para obtenção do Grau de Doutor em Ciências na Área de Tecnologia Nuclear - Reatores

Orientador:

Prof. Dr. Eduardo Lobo Lustosa Cabral

Versão Corrigida Versão Original disponível no IPEN

> São Paulo 2013

Aos meus queridos pais, Arlindo e Wilma, que proporcionaram e me incentivaram nos estudos e fazem parte desse caminho.

À minha querida filha Flávia, meu maior presente e minha melhor amiga, pela compreensão, carinho e maturidade em todas as horas.

À minha querida amiga Gaianê, pelo incentivo, paciência, e orientação.

AGRADECIMENTO ESPECIAL

Your Eyes

I feel your eyes looking my life Where I go wherever I am I listen your voice It makes me happy and console I feel the strength of your love

Even the world made me cry I won't give up trusting you

Because you are and you'll always be The Lord of my life

Ever and forever

(Oficina G3)

Agradeço a Deus, pois ELE é a fonte de toda a sabedoria e faço minhas as palavras do profeta Daniel: "Seja bendito o nome de Deus para todo o sempre, porque Dele é a sabedoria e a força: Ele muda os tempos e as horas: Ele remove os reis e estabelece os reis: Ele dá sabedoria aos sábios e ciência aos entendidos. Ele revela o profundo e o escondido e conhece o que está nas trevas: e com Ele mora a luz. Ó Deus de meus pais, eu te louvo e celebro porque me deste sabedoria e força (Daniel 2:20-23 Bíblia Sagrada)". Foi Ele quem me deu forças, capacidade e recursos para chegar até aqui e continuará sustentando-me nos próximos desafios de minha vida.

AGRADECIMENTOS

Ao Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN/SP) na pessoa do seu Superintendente, Dr. José Carlos Bressiani pelo apoio e incentivo à pesquisa e capacitação científica nacional.

Ao meu orientador Dr. Eduardo Lobo Lustosa Cabral pela orientação e pela confiança depositada para a realização deste trabalho.

À minha amiga Profa. Dra. Gaianê Sabundjian, pela orientação, incentivo, colaboração, compreensão, paciência, amizade e apoio, demonstrados durante a execução deste trabalho, sem o qual não seria possível a realização do mesmo. Obrigada pelas muitas tardes de domingo que dedicou a este trabalho, lendo, corrigindo, me incentivando e me ajudando. E obrigada principalmente por ser um exemplo em minha vida pessoal e profissional.

À minha filha Flávia Paladino Biaty por me ajudar na elaboração desta tese e em todos os momentos do cotidiano.

Ao Dr. Ulysses Bitelli e aos colegas do CEN que direta ou indiretamente contribuíram para a realização deste trabalho.

Ao amigo Prof. Dr. Delfim Guimarães Fernandes do ISPA Instituto Superior de Psicologia Aplicada e do Instituto Superior de Serviço Social de-Lisboa, pelas leituras e contribuições dadas.

Aos amigos, Prof. Msc. Jaques Vereta e Prof. Msc. Arthur Pires Julião pelo carinho, orientação e pronta colaboração a este trabalho.

A todos os meus amigos e colegas da FATECSP e IFSP, que colaboraram direta ou indiretamente para a realização deste trabalho.

Aos membros titulares e suplentes componentes da banca examinadora.

USO DO HIDROGÊNIO NO TRANSPORTE PÚBLICO DA CIDADE DE SÃO PAULO

Patricia Andrea Paladino

RESUMO

O hidrogênio pode ser considerado um importante e promissor vetor energético, podendo ser utilizado para substituir os combustíveis fósseis no setor de transportes por meio de células a combustível. Existem muitos métodos de se produzir hidrogênio. Estes métodos incluem a reforma de gás metano, a eletrólise e processos termo químicos. Uma grande quantidade de energia é necessária para se produzir hidrogênio. Em muitos processos de produção de hidrogênio, a energia de entrada necessária é na forma de calor ou eletricidade. O objetivo deste trabalho é analisar a viabilidade da produção de hidrogênio eletrolítico, utilizando-se energia disponível do sistema interligado nacional da cidade de São Paulo. Para atingir este objetivo estudou-se o sistema elétrico brasileiro, a tecnologia de produção, armazenamento e transporte do hidrogênio, analisando-se os custos e a avaliação ambiental de cada item. Calculou-se as externalidades negativas da poluição ambiental causada pela frota de ônibus movidos a diesel e por meio das análises e estimativas mostrou-se a viabilidade de substituição dos ônibus a diesel por ônibus a hidrogênio e a consequente melhora na qualidade socioambiental da população da cidade de São Paulo.

USE OF HYDROGEN IN THE PUBLIC TRANSPORT OF SAO PAULO CITY

Patricia Andrea Paladino

ABSTRACT

Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation sector of the economy by means of fuel cells. Several methods have been proposed to produce hydrogen. These methods include steam methane reforming, electrolysis and thermo chemical cycles. A large amount of energy is required to produce hydrogen. For many hydrogen production processes, input energy is needed in the form of either heat or electricity. The purpose of this work is to analyze the feasibility of production of electrolytic hydrogen using a available energy, of the national interconnected system of the São Paulo City.. To achieve this goal it was studied the Brazilian electric system, the technology of production, storage and transportation of hydrogen, analyzing the costs and environmental assessment of each item. It was estimated the negative externalities of environmental pollution by the fleet of diesel buses and through analysis proved the feasibility of replacing diesel buses with hydrogen buses. and the consequent improvement in the environmental quality of the population of São Paulo City.

SUMÁRIO

1	INT	ROI	DUÇÃO	1
1	.1	Obj	etivo do Trabalho	2
1	.2	Del	imitação e Escopo do Trabalho	3
1	.3	Mot	tivação do Trabalho	4
1	.4	Org	ganização do Trabalho	6
2	TE	CNC	DLOGIA DO HIDROGÊNIO	8
2	.1	Mé	etodos de produção de hidrogênio	8
	2.1	.1	Termólise	9
	2.1	.2	Eletrólise	. 10
	2.1	.3	Reforma de vapor	.12
	2.1	.4	Ciclo termoquímico	. 13
	2.1	.5	Produção de hidrogênio utilizando energia nuclear	. 14
	2.1	.6	Comparação dos métodos de produção de hidrogênio	20
2	.2	Arn	nazenamento e transporte do hidrogênio	. 24
	2.2	.1	Armazenamento e transporte do hidrogênio na forma gasosa	. 24
	2.2	.2	Armazenamento e transporte do hidrogênio na forma líquida	. 25
	2.2	.3	Armazenamento e transporte do hidrogênio na forma de hidretos	26
	2.2	.4	Comparação entre as diversas formas de armazenamento e transporte do hidrogênio	. 27
2	.3	Uso	o Final do Hidrogênio	. 28
	2.3	.1	Utilização do hidrogênio em células a combustível	. 30
	2.3	.2	Tecnologia de funcionamento do ônibus a hidrogênio	. 35
2	.4	Aná	álise ambiental da produção do hidrogênio	. 39
3			RAMA ATUAL DO TRANSPORTE PÚBLICO NA CIDADE DE SÃO	

3.1	Tra	ansportes na cidade de São Paulo	. 42
3.2	Or	ganização do transporte público na cidade de São Paulo	. 44
3.3	Da	dos operacionais da frota de ônibus	. 48
3.	3.1	Número de ônibus da frota	. 48
3.	3.2	Velocidade média dos ônibus	. 49
3.	3.3	Número de passageiros transportados	. 49
3.	3.4	Distância percorrida	. 50
3.	3.5	Consumo de Diesel	. 50
3.4	Cu	sto da frota de ônibus a diesel	. 51
3.5	Sui	mário do Capítulo	. 53
	_	SE DO CUSTO AMBIENTAL DA FROTA DE ÔNIBUS DA CIDADE O PAULO	
4.1	Pol	luição atmosférica na cidade de São Paulo	. 59
4.2	Quan	tificação dos principais poluentes emitidos pela queima de diesel.	. 67
4.3	Val	lor econômico do ar degradado pelas emissão de poluentes	. 71
4.	3.1 V	alor econômico do ar degradado pelos poluentes de efeitos locais	3 71
4.	3.2	Valor econômico do ar degradado pelos gases de efeito estufa	. 73
4.	3.3	Valor econômico total do ar degradado pelas emissões totais de gases pelo diesel	
4.4	Cá	lculo das externalidades negativas na saúde da população	. 76
4.5	Cu	sto ambiental e social da poluição	. 82
5 S	ISTEI	MA ELÉTRICO BRASILEIRO E DISPONIBILIDADE DE ENERGIA	83 ،
5.1	En	ergia necessária para produzir hidrogênio	. 84
5.2	Sis	tema elétrico brasileiro	. 85
5.3	Co	nsumo	. 90
5.4	Ge	ração e disponibilidade de energia	. 92
5.	4.1	Energia elétrica eólica	. 92

	5.4.2	Energia elétrica nuclear	. 94
	5.4.3	Energia hidrelétrica	. 98
	5.4.3	.1 Energia armazenada e energia natural afluente	100
	5.4.3	.2 Volume de água nos reservatórios	101
	5.4.3	.3 Disponibilidade de energia nas usinas hidrelétricas	107
	5.4.3	.4 Energia vertida turbinável	113
5.	5 D	risponibilidade de energia elétrica nas distribuidoras	116
5.	6 D	risponibilidade de energia elétrica no comércio de energia	118
5.	7 S	umário do capítulo	121
6		LISE DE CUSTOS PARA INSTALAÇÃO E OPERAÇÃO DA FROTA NIBUS A HIDROGÊNIO	
6.	1 A	valiação de custos para a produção de hidrogênio	123
6.	2 A	valiação de custos de armazenamento e transporte do hidrogênio	128
6.	3 C	susto da planta de eletrólise	132
6.	4 E	stações de abastecimento de hidrogênio	134
6.	5 C	susto do ônibus a hidrogênio	136
6.	6 C	custos da substituição da frota a diesel pela frota a hidrogênio	137
6.	7 S	umário do capitulo	140
7	ANÁL	ISE DOS RESULTADOS	142
7.	1 Ir	nvestimentos Iniciais	142
7.	2 C	custos anuais	142
7.		iabilidade econômica da substituição dos ônibus a diesel por ônibuidrogênio	
8	CON	CLUSÃO	147
8.	1 S	ugestões para trabalhos futuros	148
ΑP	ÊNDIC	DE A	150
RF	FFRÊ	NCIAS BIBLIOGRÁFICAS	185

LISTA DE FIGURAS

FIGURA 2.1 - Principais fontes de energia usadas para produção de hidrogênio
9
FIGURA 2.2 - Diagrama simplificado do processo eletrolítico
FIGURA 2.3 – Esquema de Célula a Combustível
FIGURA 2.4 – Tecnologias de células a combustível
FIGURA 2.5 – Modelo do ônibus a hidrogênio <i>Daimler Chysler</i> 36
FIGURA 2.6 – Ilustração de um ônibus a hidrogênio modelo Daimler Chysler 37
FIGURA 2.7 – Ilustração de um ônibus a hidrogênio EMTU
FIGURA 3.1 – Mapa da RMSP43
FIGURA 3.2 - Espaço público ocupado pela mesma quantidade de
passageiros transportados por automóveis, ônibus convencional
e ônibus articulado44
FIGURA 3.3 - Regiões da cidade de São Paulo definidas para organizar o
transporte coletivo46
FIGURA 3.4 – Divisão em distritos das regiões do transporte coletivo da cidade
de São Paulo46
FIGURA 3.5 – Velocidade média dos ônibus na cidade de São Paulo 49
FIGURA 4.1 - Localização das estações da rede automática de monitoramento
da CETESB62
FIGURA 4.2 - Localização das estações e pontos de amostragem da rede
manual de monitoramento da CETESB62
FIGURA 4.3 - Emissões relativas por tipo de fonte na RMSP 64

FIGURA 4.4 - Emissões relativas de material particulado pelos veículos
pesados a diesel na RMSP64
FIGURA 4.5 – Número de ultrapassagens do padrão e de nível de atenção por
mês (2006 a 2010) – RMSP65
FIGURA 4.6 –Concentrações médias anuais de MP ₁₀ em 2011 na RMSP 78
FIGURA 5.1 – Geração total de energia no SIN em 2011
FIGURA 5.2 - Carga de demanda do SIN (Mwmed) nos anos de 2009 a 2012
91
FIGURA 5.3 – Demanda do subsistema SE/CE por hora em MW 92
FIGURA 5.4 - Geração de energia eólica em MW nos anos de 2010, 2011 e
201293
FIGURA 5.5 – Geração de energia nuclear no ano de 2010
FIGURA 5.6 – Geração de energia nuclear no ano de 2011
FIGURA 5.7 – Geração de energia nuclear no ano de 2012
FIGURA 5.8 – Geração de energia nuclear em MW nos anos de 2010, 2011 e
201297
FIGURA 5.9 – Geração de energia hidráulica em MW nos anos de 2010, 2011
e 201299
FIGURA 5.10 – Esquema do aproveitamento hidrelétrico
FIGURA 5.11 - Variação do volume útil dos reservatórios estudados - 2009 a
2012 em %
FIGURA 5.12 – Energia Natural Afluente do SIN – 2009 a 2012 em MWmed106
FIGURA 5.13 – Energia Armazenada do SIN – 2009 a 2012 em MWmed 107
FIGURA 5.14 – ENA, EAr, e carga de demanda do SIN – 2009 em MWmed 109
FIGURA 5.15 – ENA, EAr, e carga de demanda do SIN – 2010 em MWmed109

FIGURA 5.16 – ENA, EAr, e carga de demanda do SIN – 2011 em MWmed 110
FIGURA 5.17 – ENA, EAr, e carga de demanda do SIN – 2012 em MWmed110
FIGURA 5.18 - Relação entre ENA, EAr, e carga de demanda do SIN - 2009
em MWmed111
FIGURA 5.19 – Relação entre ENA, EAr, e carga de demanda do SIN – 2010
em MWmed111
FIGURA 5.20 - Relação entre ENA, EAr, e carga de demanda do SIN - 2011
em MWmed112
FIGURA 5.21 – Relação entre ENA, EAr, e carga de demanda do SIN – 2012
em MWmed112
FIGURA 5.22 - Disponibilidade média mensal de EVT e consumo elétrico da
planta de produção de hidrogênio114
FIGURA 5.23 - Energia vertida turbinável e energia total gerada no SIN - 2009,
2010 e 2011 (GWh)115
FIGURA 6.1 – Custo das diferentes tecnologias de produção de hidrogênio
segundo Yan e Hino (2011)125
FIGURA 6.2 - Custo de armazenamento do hidrogênio a curto prazo 130
FIGURA 6.3 - Custo de armazenamento do hidrogênio a longo prazo 130
FIGURA 6.4 - Custo unitário de planta eletrolítica e capacidade da planta de
eletrólise134
FIGURA 6.5 – Esquema de uma estação de abastecimento de hidrogênio . 135
FIGURA 6.6 – Curva Maxcy-Silberston
FIGURA 6.7 – Investimentos para substituição da frota de ônibus a diesel pela
frota a hidrogênio141

LISTA DE TABELAS

TABELA 2.1 – Parâmetros dos reatores para produção de hidrogênio via
energia nuclear19
TABELA 2.2 - Comparação dos três métodos de produção de hidrogênio 20
TABELA 2.3 - Comparação dos três métodos de produção de hidrogênio 22
TABELA 2.4 – Comparação entre os tipos de células a combustível 34
TABELA 3.1 – Divisão das regiões da cidade por empresas e consórcios 47
TABELA 3.2 – Quantidade de ônibus da frota da cidade de São Paulo 52
TABELA 3.3 – Custo de cada tipo de ônibus
TABELA 3.4 – Custo total da frota de ônibus a diesel da cidade de São Paulo53
TABELA 3.5 – Dados médios referentes à frota de ônibus a diesel da cidade de
São Paulo54
TABELA 4.1 - Contribuição relativa das fontes de poluição do ar na RMSP 63
TABELA 4.2 - Efeitos nocivos dos principais poluentes veiculares locais 66
TABELA 4.3 – Índice de emissões dos poluentes gerados pela queima de óleo
diesel67
TABELA 4.4 – Emissão de poluentes pela frota de ônibus a diesel na cidade de
São Paulo68
TABELA 4.5 - Emissões de poluentes por ônibus a diesel por pass.km 69
TABELA 4.6 - Emissões de poluentes na cidade de São Paulo calculada
segundo a metodologia que considera a mobilidade urbana 70
TABELA 4.7 – Emissão de poluentes pela frota de ônibus a diesel na cidade de
São Paulo calculada de acordo com as duas metodologias
utilizadas71

TABELA 4.8 – Custo direto da poluição do ar por tipo de poluente
TABELA 4.9 - VERA da poluição de efeito local causada pelo consumo de
diesel nos ônibus da cidade de São Paulo72
TABELA 4.10 – Índice PAG dos poluentes de efeitos globais74
TABELA 4.11 – Padrões nacionais de qualidade do ar segundo Resolução do
CONAMA Nº 03 de 28/06/9077
TABELA 5.1 – Mudanças no setor elétrico brasileiro
TABELA 5.2 – Geração de energia do SIN (dados de janeiro/2011 a
dezembro/2011)88
TABELA 5.3 - Carga de demanda do SIN em MWmed nos anos de 2009 a
201290
TABELA 5.4 – Geração de energia eólica do SIN em MWmed93
TABELA 5.5 – Geração de energia nuclear do SIN em MWmed
TABELA 5.6 – Disponibilidade de energia nuclear do SIN em MWmed 98
TABELA 5.7 – Geração de energia hidrelétrica do SIN em MWmed
TABELA 5.8 – Dados de referência das principais usinas do SIN 102
TABELA 5.9 – Volume de água do reservatório da Usina de Furnas – 2009 a
2012 em % do volume útil103
TABELA 5.10- Volume de água do reservatório da usina de Furnas de 2009 a
2012 em hm ³ 103
TABELA 5.11- Variação do volume útil dos reservatórios estudados - 2009 a
2012 - em %104
TABELA 5.12 –Energia Natural Afluente do SIN – 2009 a 2012 em MWmed 105
TABELA 5.13 – Energia Armazenada do SIN – 2009 a 2012 em MWmed 106

TABELA 5.14 – Avaliação de disponibilidade de energia hidrelétrica – 2009 a
2012 em MWmed108
TABELA 5.15 – Energia vertida turbinável no SIN – 2006 a 2011 em GWh 115
TABELA 5.16 – Geração de Energia total GWh (hidráulica) no SIN – 2009 a
2012 em GWh115
TABELA 6.1- Custo estimado de diversas tecnologias da produção de
hidrogênio124
TABELA 6.2 - Estimativa de custos de armazenamento de gás comprimido. 129
TABELA 6.3 - Custo unitário de capital da planta de eletrólise em função da
capacidade de produção133
TABELA 6.4 - Dados médios referentes à frota de ônibus a hidrogênio da
cidade de São Paulo140
TABELA 7.1 - Custos anuais do funcionamento dos ônibus a hidrogênio e dos
ônibus a diesel (US\$)143
TABELA 7.2- Custos anuais do funcionamento dos ônibus a hidrogênio e dos
ônibus a diesel (US\$) para os15 primeiros anos145
TABELA 7.3 - Custos anuais do funcionamento dos ônibus a hidrogênio e dos
ônibus a diesel (US\$) – 15 a 30 anos 146
TABELA A.1- Dados de referência das usinas do SIN151
TABELA A.2 – Volume de água do reservatório da usina de Furnas em %
(2009 a 2012)155
TABELA A.3 – Volume de água do reservatório da usina de Mascarenhas em
% (2009 a 2012)155
TABELA A.4 – Volume de água do reservatório da usina de Marimbondo em %
(2009 a 2012)156

TABELA A.5 – Volume de água do reservatório da usina de Água Vermelha em
%(2009 a 2012)156
TABELA A.6 – Volume de água do reservatório da usina de Emborcação em %
(2009 a 2012)157
TABELA A.7 – Volume de água do reservatório da usina de Nova Ponte em %
(2009 a 2012)157
TABELA A.8 – Volume de água do reservatório da usina de Itumbiara em %
(2009 a 2012)158
TABELA A.9 – Volume de água do reservatório da usina de São Simão em %
(2009 a 2012)158
TABELA A.10 – Volume de água do reservatório da usina de Ilha Solteira em %
(2009 a 2012)159
TABELA A.11 – Volume de água do reservatório da usina de Barra Bonita em
% (2009 a 2012)159
TABELA A.12 – Volume de água do reservatório da usina de Promissão em %
(2009 a 2012)160
TABELA A.13 – Volume de água do reservatório da usina de Três Irmãos em %
(2009 a 2012)160
TABELA A.14 – Volume de água do reservatório da usina de Jurumirim em %
(2009 a 2012)161
TABELA A.15 – Volume de água do reservatório da usina de Chavantes em %
(2009 a 2012)161
TABELA A.16 – Volume de água do reservatório da usina de Capivara em %
(2009 a 2012)162

TABELA A.17 -	 Volume de água do reservatório da usina de Bento Munhoz em
	% (2009 a 2012)
TABELA A.18 -	- Volume de água do reservatório da usina de Salto Santiago em
	% (2009 a 2012)
TABELA A.19 -	- Volume de água do reservatório da usina de Três Marias em %
	(2009 a 2012)
TABELA A.20 -	- Volume de água do reservatório da usina de Sobradinho em %
	(2009 a 2012)
TABELA A.21	 Volume de água do reservatório da usina de Serra da Mesa
	em % (2009 a 2012)
TABELA A.22	 Volume de água do reservatório da usina de Gonzaga em %
	(2009 a 2012)
TABELA A.23	 Volume de água do reservatório da usina de Tucuruí em %
((2009 a 2012)165
TABELA A.24 -	- Volume de água mensal dos reservatórios das usinas de Água
	Vermelha, Barra Bonita, Capivara, Chavantes e Emborcação
	em 2009166
TABELA A.25	- Volume de água mensal dos reservatórios das usinas de
	Furnas, G.B. Munhoz, Ilha Solteira, Itaparica e Itumbiara em
	2009
TABELA A.26	 Volume de água mensal dos reservatórios das usinas de
	M.Moraes, Marimbondo, Nova Ponte, Promissão e São Simão
	em 2009 167

TABELA A.27 -	- Volume de água mensal dos reservatórios das usinas de Serra
	Mesa, Salto Santiago, Sobradinho, Três Marias e Tucuruí em
	2009
TABELA A.28 -	- Volume de água mensal dos reservatórios das usinas de Água
	Vermelha, Barra Bonita, Capivara, Chavantes e Emborcação
	em 2010
TABELA A.29	- Volume de água mensal dos reservatórios das usinas de
	Furnas, G.B. Munhoz, Ilha Solteira, Itaparica e Itumbiara em
	2010
TABELA A.30	- Volume de água mensal dos reservatórios das usinas de
	M.Moraes, Marimbondo, Nova Ponte, Promissão e São Simão
	em 2010
TABELA A.31 -	- Volume de água mensal dos reservatórios das usinas de Serra
	Mesa, Salto Santiago, Sobradinho, Três Marias e Tucuruí em
	2010
TABELA A.32 -	- Volume de água mensal dos reservatórios das usinas de Água
	Vermelha, Barra Bonita, Capivara, Chavantes e Emborcação
	em 2011 170
TABELA A.33	- Volume de água mensal dos reservatórios das usinas de
	Furnas, G.B. Munhoz, Ilha Solteira, Itaparica e Itumbiara em
	2011
TABELA A.34	- Volume de água mensal dos reservatórios das usinas de
	M.Moraes, Marimbondo, Nova Ponte, Promissão e São Simão
	em 2011 171

TABELA A.35 – Volume de água mensal dos reservatórios das usinas de Serra
Mesa, Salto Santiago, Sobradinho, Três Marias e Tucuruí em
2011171
TABELA A.36 – Volume de água mensal dos reservatórios das usinas de Água
Vermelha, Barra Bonita, Capivara, Chavantes e Emborcação
em 2012172
TABELA A.37 - Volume de água mensal dos reservatórios das usinas de
Furnas, G.B. Munhoz, Ilha Solteira, Itaparica e Itumbiara em
2012172
TABELA A.38 - Volume de água mensal dos reservatórios das usinas de
M.Moraes, Marimbondo, Nova Ponte, Promissão e São Simão
em 2012173
TABELA A.39 – Volume de água mensal dos reservatórios das usinas de Serra
Mesa, Salto Santiago, Sobradinho, Três Marias e Tucuruí em
2012173
TABELA A.40 - Volumes úteis mensais em hm3 e % das principais usinas do
SIN - 2009
TABELA A.41 – Volumes úteis mensais em hm3 e % das principais usinas do
SIN - 2010175
TABELA A.42 – Volumes úteis mensais em hm3 e % das principais usinas do
SIN - 2011175
TABELA A.43 – Volumes úteis mensais em hm3 e % das principais usinas do
SIN - 2012176
TABELA A.44 - Energia Natural Afluente - SE/CO - 2009 a 2012 em MWmed
176

TABELA A.45 – Energia Natural Afluente – S – 2009 a 2012 em MWmed 177
TABELA A.46 – Energia Natural Afluente – NE – 2009 a 2012 em MWmed . 177
TABELA A.47 – Energia Natural Afluente – N – 2009 a 2012 em MWmed 178
TABELA A.48 – Energia Natural Afluente total do SIN - 2009 em MWmed 178
TABELA A.49 – Energia Natural Afluente total do SIN - 2010 em MWmed 179
TABELA A.50 – Energia Natural Afluente total do SIN - 2011 em MWmed 179
TABELA A.51 – Energia Natural Afluente total do SIN - 2012 em MWmed 180
TABELA A.52 – Energia Armazenada - SE/CO – 2009 a 2012 em MWmed 180
TABELA A.53 – Energia Armazenada - N – 2009 a 2012 em MWmed 181
TABELA A.54 – Energia Armazenada - S – 2009 a 2012 em MWmed 181
TABELA A.55 – Energia Armazenada - NE – 2009 a 2012 em MWmed 182
TABELA A.56- Energia Total Armazenada - 2009 em MWmed 182
TABELA A.57 – Energia Total Armazenada - 2010 em MWmed 183
TABELA A.58 – Energia Total Armazenada - SE – 2011 em MWmed 183
TABELA A.59 – Energia Total Armazenada - SE – 2012 em MWmed 184

1 INTRODUÇÃO

O hidrogênio é o elemento mais simples e mais abundante de todo o universo e o terceiro mais abundante na Terra. O gás hidrogênio não existe no nosso planeta ou na nossa atmosfera em quantidades significativas, pois reage rapidamente com outros elementos para formar compostos químicos mais estáveis. O hidrogênio pode ser encontrado na água e em combustíveis fósseis.

O hidrogênio é considerado a energia do futuro e diversos estudos e pesquisas vêm sendo realizados em diversos países, especialmente nos EUA, Europa e Japão (Forsberg, 2003; Perry e Green, 1999). Essa grande atividade de pesquisa sobre produção de hidrogênio ocorre em razão de se acreditar que o hidrogênio pode no futuro substituir a eletricidade e os combustíveis fósseis utilizados nos meios de transporte. Contudo, como o hidrogênio puro não está prontamente disponível, como acontece com os combustíveis fósseis, ele não pode ser considerado como uma fonte de energia propriamente dita, mas sim um potencial vetor energético, isto é, um portador de energia. Embora o hidrogênio seja considerado um potencial energético sustentável, para se produzir hidrogênio puro é necessária a existência de outras fontes de energia.

O uso do hidrogênio como fonte de energia pode reduzir drasticamente as emissões de CO₂. O hidrogênio pode ser queimado de uma forma limpa e pode ser usado para produzir eletricidade por meio das células a combustível. A queima do hidrogênio com o oxigênio não gera nenhum tipo de poluição. O único produto da combustão é a água. Isto faz com que o hidrogênio se torne o grande candidato para revolucionar o mercado energético.

Existem muitos métodos para se produzir hidrogênio, tanto a partir de combustíveis fósseis, como a partir da água. Os métodos de produção de hidrogênio convencionais são custosos e a maioria acaba produzindo dióxido de carbono e, portanto, negando o principal benefício do uso do hidrogênio.

Os principais métodos para produzir hidrogênio são: a termólise, (decomposição da água diretamente com o calor); a eletrólise, (decomposição

da água por meio da eletricidade); e processos termoquímicos, que por utilizarem o vapor como reagente são conhecidos na literatura técnica por reforma de vapor.

Uma infraestrutura de energia com base no hidrogênio deve incluir a produção, o armazenamento, as estruturas e sistemas de transporte, e as estações de distribuição do gás, de forma a garantir que o hidrogênio ganhe competitividade no mercado.

A tecnologia energética do futuro deve ser, sem dúvida nenhuma, saudável ao meio ambiente, reduzindo ao máximo a emissão de poluentes e evitando o indesejável efeito do aquecimento global. Necessita-se de esforços para que se superem todas as barreiras da transição dos combustíveis fósseis para a economia do hidrogênio, com o objetivo de que todas as fases do ciclo do hidrogênio, incluindo a sua produção e seu uso final sejam eficientes, isto é, a tecnologia energética do futuro deve ser economicamente viável e sustentável durante todas as fases do seu ciclo.

1.1 Objetivo do Trabalho

O objetivo deste trabalho é realizar um estudo da viabilidade econômica, tecnológica e ambiental da substituição da frota de ônibus da cidade de São Paulo movida a diesel por uma frota de ônibus movida a hidrogênio.

A proposta desse estudo é utilizar somente tecnologias comprovadas e existentes atualmente para produzir, distribuir e abastecer a frota de ônibus utilizada no transporte público da cidade de São Paulo. Assim, primeiramente é realizado um estudo sobre os diversos processos de produção, transporte e armazenamento de hidrogênio existentes, de forma a definir os métodos mais viáveis para o contexto do transporte público da cidade de São Paulo.

A eletrólise é um método comprovado e tecnicamente viável para produção de hidrogênio em grande escala que não gera poluentes. Assim, esse estudo também analisa a viabilidade econômica de se produzir hidrogênio

a partir da disponibilidade de energia elétrica existente no sistema elétrico interligado brasileiro. Contudo, somente as fontes de energia não poluentes são analisadas.

O consumo de óleo diesel pelos ônibus na cidade de São Paulo gera poluição do ar atmosférico, que por sua vez gera custos ambientais e sociais. Esses custos ambientais e sociais são estimados nesse trabalho e comparando-os com os custos de implantação e do uso da tecnologia do hidrogênio é possível verificar se a substituição dos ônibus atuais por ônibus movidos a hidrogênio é viável. Embora a tecnologia do hidrogênio, em primeiro momento, possa parecer mais onerosa, os seus custos ambientais podem ser nulos, conquanto se escolha um método viável de produção, armazenamento e transporte do hidrogênio.

1.2 Delimitação e Escopo do Trabalho

Para alcançar o objetivos proposto, os seguintes itens são abordados nesse trabalho:

- Estudo das tecnologias existentes de produção, armazenamento, transporte e uso final do hidrogênio;
- Análise técnica e econômica da produção, armazenamento e transporte de hidrogênio;
- Viabilidade ambiental da produção, armazenamento e transporte do hidrogênio;
- Análise do impacto ambiental e social causado pela poluição atmosférica gerada pela queima de óleo diesel pelos ônibus utilizados no transporte público na cidade de São Paulo;
- Análise do impacto ambiental causado pela redução da emissão de CO₂ pela substituição de combustíveis fósseis por hidrogênio no transporte coletivo na cidade de São Paulo;

 Cálculo da energia elétrica disponível no sistema elétrico brasileiro gerada de forma não poluidora que pode ser utilizada para produzir hidrogênio.

1.3 Motivação do Trabalho

A utilização do hidrogênio como vetor energético considerando os pontos positivos de seu uso, tais como baixo impacto ambiental, alta densidade energética e possibilidade de ser armazenado e transportado, torna o hidrogênio uma forte possibilidade energética no futuro.

Recentemente, como resultado do Protocolo de Quioto (2013), criou-se o Mercado do Carbono, no qual, as empresas recebem licenças de poluição e, dependendo das suas emissões, podem comercializá-las no mercado.

O conceito de Desenvolvimento Sustentável assenta-se em três pilares fundamentais: sustentabilidade ambiental (proteção do meio ambiente), desenvolvimento econômico e coesão social. O setor energético apresenta fortes impactos e oportunidades para explorar cada um desses. Para satisfazer as necessidades implícitas nesses três pilares, tem-se que realizar uma mudança no paradigma energético da sociedade, fazendo a passagem dos combustíveis fósseis para um novo vetor energético que apresente menores riscos e menores impactos ambientais e sociais.

Pesquisadores acreditam que a transição para a economia do hidrogênio provavelmente levará décadas, porque muitos desafios persistem. Dessa forma, é necessária a união de esforços para superar as barreiras existentes na produção (sem liberação de gases que agravem o efeito estufa), no armazenamento e na distribuição a um custo razoável. Com o progresso das pesquisas, espera-se que o uso do hidrogênio se tornará mais econômico e benéfico ao meio ambiente. Entretanto, é importante que todas as fases de vida do ciclo do hidrogênio sejam eficientes.

A viabilidade econômica da produção do hidrogênio depende fortemente da eficiência do método usado. A eficiência da produção pode ser definida

como a razão da energia resultante do uso do hidrogênio pela energia de entrada no sistema por todas as fontes envolvidas na produção do hidrogênio. Para se comparar os diversos processos deve-se levar em conta os custos de: purificação e estocagem, somados aos de produção. Contudo o maior custo para a produção de hidrogênio concentra-se no consumo de energia de entrada (Ogden, 1999).

A grande motivação desse trabalho é não apenas estudar a viabilidade tecnológica e econômica do uso do hidrogênio no Brasil, mas também a viabilidade ambiental. Para isso estudou-se detalhadamente os vários processos de produção, transporte e armazenamento de hidrogênio, analisando-se suas vantagens e desvantagens e a viabilidade tecnológica e econômica de cada um.

Como o foco deste trabalho é a utilização do hidrogênio como substituto dos combustíveis fósseis, optou-se por uma abordagem na qual se analisa os efeitos e a importância da escolha do tipo de combustível utilizado no transporte público da cidade de São Paulo. Escolheu-se esta cidade pela sua importante representatividade na região metropolitana de São Paulo (RMSP), que é a maior do Brasil, onde afloram de forma significativa os principais problemas relacionados com o transporte urbano (acessibilidade, congestionamentos e alto índice de poluição), que tem grande influência na qualidade de vida da população.

A originalidade desse trabalho consiste no estudo de viabilidade utilizando somente tecnologias existentes atualmente. Assim, os resultados dessa tese podem ser utilizados imediatamente para definir novas políticas públicas com a finalidade de melhorar a qualidade de vida da população dos grandes centros urbanos do país.

Uma das motivações desse trabalho é a substituição dos combustíveis fósseis por uma energia limpa, tendo como foco o desenvolvimento sustentável. Ressalta-se que a produção de hidrogênio usando eletricidade é uma tecnologia já existente, amplamente conhecida, simples e de baixo custo ambiental.

Atualmente muito se tem falado sobre desenvolvimento sustentável, o Relatório Brundtland (2013), elaborado pela Comissão Mundial sobre Meio Ambiente e Desenvolvimento em 1987, assim o define:

"O desenvolvimento que procura satisfazer as necessidades da geração atual, sem comprometer a capacidade das gerações futuras de satisfazerem as suas próprias necessidades, significa possibilitar que as pessoas, agora e no futuro, atinjam um nível satisfatório de desenvolvimento social e econômico e de realização humana e cultural, fazendo, ao mesmo tempo, um uso razoável dos recursos da terra e preservando as espécies e os habitats naturais."

A proposta desta tese é sugerir um meio de transporte urbano movido a hidrogênio, com a finalidade de interferir e melhorar a qualidade de vida da população. Um transporte que melhore a qualidade do ar e interfira na saúde da população de forma positiva, provocando com isso uma redução nos gastos com a saúde pública, satisfazendo as necessidades da geração atual, sem comprometer as gerações futuras.

1.4 Organização do Trabalho

Devido à extensa quantidade de assuntos abordados para atingir o objetivo desta tese, dividiu-se o conteúdo em capítulos. O Capítulo 1 contém a introdução do trabalho, discorre sobre o objetivo, a delimitação e o escopo do trabalho, e a sua motivação.

No Capítulo 2 é feito um estudo sobre a tecnologia do hidrogênio, incluindo: produção, armazenamento, transporte e uso final. São estudados os diversos métodos de produção do hidrogênio, como a termólise, a eletrólise, a reforma do vapor e os ciclos termoquímicos. Além disso, é também estudada a produção de hidrogênio via energia nuclear, assim, é realizada uma análise dos reatores nucleares existentes e uma investigação sobre qual seria o reator ideal para ser utilizado na produção de hidrogênio.

O Capítulo 3 apresenta um panorama atual do transporte público em ônibus na cidade de São Paulo, por meio da descrição da organização do transporte público, custo total da frota de ônibus e dados operacionais da frota, tais como, número de ônibus, velocidade média dos ônibus, número de passageiros transportados, distância percorrida e consumo anual de diesel.

No Capítulo 4 é feita uma análise do custo ambiental e social da frota de ônibus da cidade de São Paulo por meio da quantificação dos principais poluentes emitidos pela queima de diesel. Para isso, é calculado o valor econômico do ar degradado pela emissão de poluentes de efeito local e de efeito estufa. Além disso, são calculadas as externalidades negativas na saúde da população devido ao principal poluente do ar gerado pelos ônibus a diesel: os materiais particulados. Estas externalidades negativas são custos devidos a instalações hospitalares, dias de trabalho perdidos, prontos atendimentos, e mortalidade decorrentes da poluição atmosférica.

No Capítulo 5 é analisado o sistema elétrico brasileiro integrado para determinar se existe energia disponível para produzir hidrogênio pelo método da eletrólise em quantidade suficiente para trocar a frota de ônibus diesel por ônibus a hidrogênio.

No Capítulo 6 é calculado o custo de trocar a frota de ônibus a diesel por ônibus a hidrogênio. Os custos analisados incluem instalação das fábricas de hidrogênio, instalação das estações de abastecimento dos ônibus, preço do ônibus a hidrogênio, investimentos iniciais e custos anuais para mudança da tecnologia do diesel para hidrogênio.

No Capítulo 7 é apresentada a análise dos resultados. Nesse capítulo são comparados os custos da frota de ônibus a diesel, incluindo os custos ambientais e sociais da queima de óleo diesel, com os custos da frota de ônibus a hidrogênio. Essa comparação permite verificar a viabilidade econômica de se trocar a frota de ônibus a diesel por ônibus a hidrogênio na cidade de São Paulo, que é o objetivo desse trabalho.

Finalmente, o Capitulo 8 apresenta as conclusões da tese e sugestões para trabalhos futuros.

2 TECNOLOGIA DO HIDROGÊNIO

Para analisar a viabilidade econômica e tecnológica do uso de hidrogênio para transporte público é necessário um estudo dos processos de produção, transporte, armazenamento e uso final do hidrogênio. Em primeiro lugar são estudados os principais métodos de produção de hidrogênio levandose em consideração as vantagens e desvantagens de cada método; em seguida é realizado um estudo sobre as formas de armazenamento e transporte do hidrogênio. Por último descreve-se a utilização do hidrogênio em células a combustível para uso no transporte público.

2.1 Métodos de produção de hidrogênio

O hidrogênio, apesar de ser o elemento mais abundante do universo, é raramente encontrado na atmosfera terrestre. Por ser um átomo muito pequeno, ele rapidamente se dispersa para fora da atmosfera, ou então, forma rapidamente compostos com outros elementos. O hidrogênio apresenta-se na forma combinada como: água (H₂O), ácidos (H₃O⁺), bases (OH⁻), hidretos e compostos orgânicos. Para se produzir hidrogênio necessita-se de energia.

Os combustíveis fósseis são as principais fontes de energia para a produção mundial atual de hidrogênio: 48% do hidrogênio mundial são produzidos por gás natural, 30% por petróleo e 18% por carvão. Os restantes 4% são produzidos utilizando-se eletricidade. Biocombustíveis e biomassa apresentam uma pequena participação na produção de hidrogênio conforme mostrado na FIG. 2.1 (Yan e Hino, 2011).

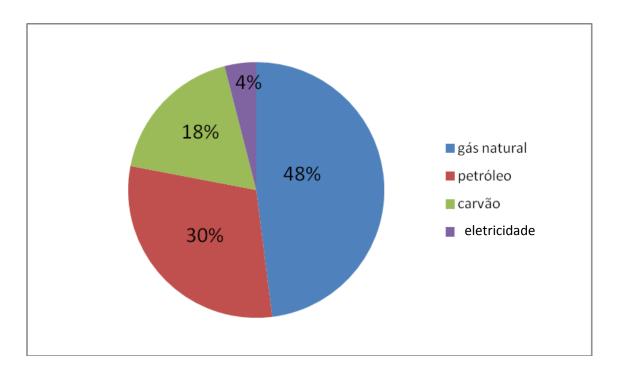


FIGURA 2.1 - Principais fontes de energia usadas para produção de hidrogênio

Os principais métodos de produção de hidrogênio são: termólise, eletrólise, reforma do vapor e processos termoquímicos. A tecnologia de cada processo de produção apresenta suas vantagens e desvantagens.

2.1.1 Termólise

Com o aquecimento da molécula da água em temperaturas elevadas, é possível dissociá-la obtendo-se como produtos o hidrogênio e o oxigênio como mostra a equação 2.1.

$$2H_2O \rightarrow 2H_2 + O_2 \tag{2.1}$$

Para que a reação de dissociação da água ocorra pelo aquecimento e a geração de hidrogênio seja significativa são necessárias temperaturas excessivamente altas. A uma temperatura de 2.775 K (2.502° C) apenas 10% da água é decomposta. Para que essa dissociação alcance 50% a temperatura precisa ser aumentada para 3.500 K (3.227° C). Reduzindo-se a pressão, a

dissociação torna-se mais fácil, por exemplo, a 0,01 atm, para dissociar 10% de H₂ são necessárias temperaturas entre 2.000 e 2.500 K (Silva, 2008).

Além de necessitar de altas temperaturas, a dissociação térmica da água é um processo reversível, por este motivo é importante prevenir a recombinação dos produtos e a consequente formação de água. Uma forma de fazer isso é usar catalisadores que mudam o equilíbrio da reação como o grafite, o tungstênio ou o carboneto de tungstênio, entretanto esses materiais oxidam a altas temperaturas. O uso de materiais cerâmicos como o nitreto de boro é uma alternativa, pois possui um ponto de fusão de 2.973 K, entretanto a sua oxidação também precisa ser controlada (Silva, 2008).

O método da termólise da água não é correntemente utilizado para produção industrial. Os requisitos de temperaturas, materiais e processos necessários para realizar a termólise tornam o método inviável para a produção de hidrogênio.

2.1.2 Eletrólise

A eletrólise é o processo de quebra de moléculas de água gerando hidrogênio e oxigênio por meio da eletricidade. A produção de hidrogênio por meio da eletrólise da água é o método mais conhecido de produção de hidrogênio.

O método da eletrólise consiste em aplicar uma corrente elétrica diretamente à água, resultando na sua separação, conforme a reação da equação 2.2.

$$2H_2O \rightarrow 2H_2 + O_2 \tag{2.2}$$

A eletrólise da água utiliza apenas uma fonte elétrica externa. O processo eletrolítico é mostrado esquematicamente na FIG. 2.2.

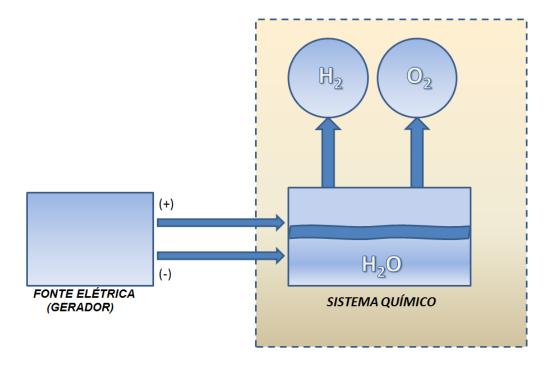


FIGURA 2.2 - Diagrama simplificado do processo eletrolítico

A fonte de energia elétrica é ligada a dois eletrodos, geralmente feitos a partir de metais inertes, como platina ou aço inoxidável, colocados na água. O hidrogênio é formado no cátodo, eletrodo ligado ao terminal positivo da fonte de energia, e o oxigênio é formado no ânodo, eletrodo ligado ao terminal negativo da fonte de energia.

Como a eletrólise utiliza eletricidade a eficiência total do processo inclui a eficiência do gerador elétrico, além da eficiência da própria eletrólise. A eficiência do gerador elétrico depende da fonte de produção elétrica utilizada. A eficiência das usinas hidrelétricas é por volta de 95%, enquanto que das usinas térmicas é da ordem de 30% (Forsberg, 2003; Konopka e Gregory, 1975). A eficiência do processo eletrolítico é geralmente por volta de 75%.

A energia necessária para o processo eletrolítico é teoricamente 237 kJ para a produção de um mol de gás hidrogênio a 25 °C e 101.325 kPa, entretanto, na prática exige-se um consumo de 370 kJ (ou 0,103 kWh) de eletricidade para produzir um mol de gás hidrogênio.

2.1.3 Reforma de vapor

A reforma de vapor é um processo termodinâmico de decomposição do vapor de metano ou gás natural usualmente utilizado na indústria para a produção de hidrogênio. Segundo Gaudernack e Lynum (1998) a reforma de vapor é o método mais comum e mais barato de produção de hidrogênio, sendo que quase 48% do hidrogênio mundial é produzido por esse método. O processo consiste na reação de metano ou gás natural e vapor a alta temperatura.

O processo se realiza por meio de duas reações. A primeira é uma reação altamente endotérmica e ocorre com um catalisador à alta temperatura. A segunda reação é uma reação exotérmica. Após as reações, ocorre o processo de separação que remove o dióxido de carbono e purifica o hidrogênio. As duas reações químicas realizadas quando se usa o metano (CH₄) são as apresentadas nas equações 2.3 e 2.4.

$$CH_4 + H_2O \rightarrow CO + 3H_2 \tag{2.3}$$

$$CO + H_2O \rightarrow CO_2 + H_2 \tag{2.4}$$

O processo convencional ocorre em um reator químico a temperaturas entre 800 e 900°C. Segundo Crosbie e Chapin (2003) a eficiência típica para esse tipo de processo é por volta de 70%.

A pureza do gás resultante desse processo deve ser melhorada usando outros processos. O CO_2 proveniente da reforma de vapor é removido por um contato alcalino com uma solução de amina ou uma solução cáustica e depois o gás rico em hidrogênio é refrigerado a baixas temperaturas e purificado. Esse processo de purificação gera custos e não é, por exemplo, necessário no processo eletrolítico.

2.1.4 Ciclo termoquímico

Os processos termoquímicos utilizados para produzir hidrogênio consistem em três reações químicas, cujo reagente inicial é a água e os produtos finais são o hidrogênio e o oxigênio. As outras substâncias químicas envolvidas no processo são recicladas. O processo requer uma fonte de energia.

As reações do processo termoquímico estão mostradas na equação 2.5. Nessa equação, X representa a substância química envolvida no processo.

$$\begin{cases}
H_2O + X \to XO + H_2 \\
XO \to X + \frac{1}{2}O_2 \\
\overline{H_2O \to H_2 + \frac{1}{2}O_2}
\end{cases}$$
(2.5)

Por volta de cem processos termoquímicos têm sido estudados para produzir hidrogênio. O processo considerado o mais eficiente é o do ciclo enxofre-iodo. O ciclo enxofre-iodo foi desenvolvido pela *General Atomics Inc.* (GA) por volta dos anos setenta. A GA conduziu experimentos que combinavam o processo com as condições de operação de reatores nucleares de alta temperatura, em 1978 e 1980, obtendo eficiências da ordem de 47% e 52% respectivamente (Crosbie e Chapin, 2003).

O processo enxofre-iodo é um exemplo de um processo termoquímico que consiste em três reações químicas. A equação 2.6 apresenta estas três reações químicas e as temperaturas mínimas envolvidas no processo.

$$\begin{cases} H_2SO_4 \to H_2O + SO_2 + \frac{1}{2}O_2(850^{\circ} \text{ min}) \\ I_2 + SO_2 + 2H_2O \to 2HI + H_2SO_4(120^{\circ} \text{ min}) \\ \frac{2HI \to H_2 + I_2(450^{\circ} \text{ min})}{H_2O \to H_2 + \frac{1}{2}O_2} \end{cases}$$
(2.6)

Todos os reagentes do ciclo enxofre-iodo são reciclados. No ciclo termoquímico é necessária uma temperatura mínima de 850 °C para dissociação do ácido sulfúrico, como mostrado na equação 2.6. O ácido

sulfúrico e o iodeto de hidrogênio são formados em uma reação exotérmica de H_2O , SO_2 e I_2 , e o hidrogênio é gerado em uma decomposição brandamente exotérmica da decomposição de iodeto de hidrogênio.

A eficiência do processo enxofre-iodo não é simples de se estimar porque o processo é complexo. Brown et al. (2000) sugerem que a eficiência da produção de hidrogênio é de aproximadamente 50%.

A maior vantagem do ciclo enxofre-iodo, se houver aquecimento com uma fonte nuclear, é que não há nenhuma emissão de gases poluentes resultantes do processo. Esse método pode ser uma solução ideal para a produção de hidrogênio no futuro.

Um problema desse processo é que os componentes do ciclo são muito corrosivos, ambos o ácido sulfúrico e o ácido iodídrico são soluções muito tóxicas e devem ser apropriadamente contidas. Além disso, o controle das condições das reações é uma barreira significativa, o *Japan Atomic Energy Research Institute* (JAERI) tem pesquisado extensivamente e testado o ciclo enxofre-iodo nos últimos vinte anos e os estudos tem provado que este controle é possível pelo menos em escala de laboratório (Crosbie e Chapin, 2003).

2.1.5 Produção de hidrogênio utilizando energia nuclear

Uma quantidade muito grande de energia é necessária para produzir o hidrogênio e para muitos processos de produção de hidrogênio, como já foi visto, é necessário energia em forma de calor. A energia nuclear tem a habilidade de fornecer energia tanto na forma de calor como na forma de eletricidade, além de possibilitar altas temperaturas e, assim, eficiência alta. Dessa forma a combinação dos processos de produção de hidrogênio com a geração de energia nuclear acaba sendo natural. A principal vantagem do hidrogênio produzido por energia nuclear é ambiental, pois não ocorre emissão de poluentes. O hidrogênio pode ser considerado um combustível limpo, pois o

seu subproduto é apenas a água, e seria incoerente gerar um combustível limpo por meio de um combustível que gera poluição.

Atualmente inúmeros trabalhos estão sendo realizados na área nuclear visando à produção do hidrogênio. A partir dos estudos realizados por Forsberg e Peddicord (2001) pode-se concluir que o hidrogênio representa um grande mercado potencial para a energia nuclear e que a tendência é que a produção de hidrogênio se aproxime ou exceda a produção de eletricidade com usinas nucleares. Forsberg (2007) afirma que o futuro da energia nuclear é primeiramente para a produção de hidrogênio, o qual seria o vetor energético para as demandas de combustíveis para transporte.

A Agência Internacional de Energia (IEA, 2006), através do Programa do Hidrogênio, tem reunido diversas nações para discutir e compartilhar os avanços na produção de hidrogênio. O Programa do Hidrogênio considera o hidrogênio como o vetor energético do futuro sendo capaz de fornecer energia de forma segura e sustentável.

A escolha do melhor método para a produção de hidrogênio e do reator nuclear dependem de vários fatores, tais como a escala de operação, a disponibilidade de tecnologia do reator nuclear e as condições existentes de mercado de hidrogênio. As instalações nucleares são econômicas para aplicações industriais apenas quando elas são construídas em grande escala. Se a produção de hidrogênio oriunda da energia nuclear pretende ser viável, a escala de produção deve ser compatível com a escala econômica da produção de energia nuclear. O tamanho do reator nuclear deve ser compatível com a quantidade de hidrogênio que está sendo produzida de tal forma que compense e minimize os custos. Outro requisito para a escolha do reator é a temperatura, todos os processos para produzir hidrogênio, com exceção da eletrólise, necessitam de altas temperaturas (750°C a 900°C).

Diversas pesquisas (Brown et al., 2002), (Verfondern e Lensa, 2005) (Nascimento et al., 2008) e (Yan e Hino, 2011) analisam e comparam os diversos tipos de reatores nucleares em busca do tipo ideal para a produção de

hidrogênio. O elemento comum nesses trabalhos é a busca de reatores que forneçam altas temperaturas.

Yildiz e Kazimi (2005) analisam a eficiência da produção de hidrogênio utilizando reatores nucleares que operam à alta temperatura, tais como os refrigerados a gás, a sal fundido e a metal líquido. Os autores sugerem como alternativa o método da eletrólise do vapor da água à alta temperatura acoplado com um reator a gás que utiliza dióxido de carbono (CO₂) como refrigerante. Este reator é considerado um reator pequeno e rápido em comparação com outros reatores e sua tecnologia é comprovada.

Brown (2002) analisa diversos tipos de reatores nucleares adequados para a produção de hidrogênio por meio do ciclo termoquímico que exige altas temperaturas. Assim a principal exigência para os reatores é atingir altas temperaturas, da ordem de 900°C. Dessa forma, Brown conclui que o reator de água pressurizada (PWR) e o reator de água fervente (BWR) não são recomendados para essa aplicação. Os reatores do tipo PWR são impraticáveis pelo enorme sistema de pressurização necessário para se obter 900°C de temperatura e os BWRs apresentam problemas de corrosão nessas temperaturas.

Segundo Brown et al. (2000) a melhor forma para produzir hidrogênio de forma eficiente e econômica é o ciclo termoquímico do enxofre-iodo combinado com uma fonte de calor proveniente de um reator nuclear de alta temperatura. Os reatores refrigerados a gás, como os reatores refrigerados a hélio, são os que melhor se adéquam para a produção de hidrogênio produzido por energia nuclear. Esses reatores apresentam baixos custos de desenvolvimento e são ideais para os ciclos enxofre-iodo, pois o hélio é quimicamente inerte. Além disso, os reatores refrigerados a gás operam por anos em altas temperaturas.

Atualmente, a GA e o JAERI são os líderes em pesquisa e desenvolvimento do uso do processo enxofre-iodo em conjunto com energia nuclear.

O programa da JAERI consiste no desenvolvimento de um processo de geração de hidrogênio utilizando um reator de alta temperatura refrigerado a

gás que usa hélio como refrigerante (HTGR). Em suas pesquisas independentes, a GA também concluiu que um HTGR é a melhor opção de implementação nuclear desse processo e tem analisado os custos para o ciclo.

Segundo Crosbie e Chapin (2003) embora o ciclo termoquímico enxofreiodo e o reator nuclear sejam ambos completamente bem compreendidos, existem alguns problemas previsíveis envolvidos com a união do reator nuclear e o sistema de produção de hidrogênio.

Mesmo que exista um trocador de calor intermediário para isolar os lados primários e secundários, o hidrogênio pode dispersar-se através da parede metálica resultando na mistura de hidrogênio com o refrigerante hélio. Circulando esse hidrogênio através do núcleo do reator pode-se produzir trítio (isótopo do hidrogênio) que pode se difundir e contaminar o hidrogênio produzido. Se o hidrogênio é introduzido no núcleo pode ocorrer também uma corrosão da grafite (material existente no núcleo). Ainda é necessária muita pesquisa para se resolver todos os problemas existentes nesse processo.

Nesse contexto surgiram diversos programas com objetivo de desenvolvimento de reatores a alta temperatura, específicos para a produção de hidrogênio. Verfondern e Lensa (2005) apresentam o projeto alemão *Prototype Nuclear Process Heat Reactor Project* (PNP) e analisam a viabilidade técnica de um reator de alta temperatura refrigerado a gás (HTGR) para produzir hidrogênio. Afirmam também que a União Europeia, nos próximos 30 anos, deverá enfrentar o crescimento da demanda de energia e ressaltam a importância do hidrogênio como um vetor energético limpo.

Os reatores que operam nos dias de hoje são considerados de segunda ou terceira geração. Atualmente estão em desenvolvimento os chamados reatores de quarta geração. As pesquisas sobre reatores de quarta geração começaram oficialmente no Fórum Internacional da Quarta Geração (GIF) em 2001, coordenado pelo Departamento de Energia dos Estados Unidos. O GIF consiste em uma cooperativa internacional organizada para pesquisa e desenvolvimento destes reatores nucleares e prevê a sua disponibilidade comercial entre 2015 e 2030 para a produção, não apenas de eletricidade, mas

também de hidrogênio (GIF, 2013). Os reatores de quarta geração são reatores seguros e compactos que pretendem revolucionar o mercado energético no futuro. Os reatores de quarta geração estudados pelo GIF são:

- GFR: reator rápido refrigerado a gás hélio;
- VHTR: reator a alta temperatura, moderado a grafite e refrigerado a hélio:
- SCWR reator a água, supercrítico a alta pressão;
- SFR reator rápido refrigerado a sódio;
- LRF reator a metal líquido;
- MSR reator a sal fundido.

Os parâmetros dos principais reatores que podem ser utilizados para produção de hidrogênio em grande escala estão resumidos na TAB.2.1

Os reatores de quarta geração definidos pelo GIF são os ideais para a produção de hidrogênio em grande escala. O Brasil necessita de um programa de desenvolvimento de reatores rápidos de altíssima temperatura, como por exemplo, os reatores refrigerados por chumbo, com combustíveis avançados e temperaturas de 1.000 °C. A tecnologia para a construção deste reator ainda não é conhecida. Diversos países desenvolvidos estão perseguindo essas tecnologias avançadas de reatores nucleares para a produção de hidrogênio em larga escala (Nascimento et al., 2008).

TABELA 2.1 – Parâmetros dos reatores para produção de hidrogênio via energia nuclear

Tipo de Reator	Refrigerante	Forma de Produção de Hidrogênio	Forma de Geração de Energia
Reatores a água leve PWR AP EPR BWR	Água leve	Eletrólise da água	Turbina de vapor
Reatores a água pesada CANDU ACR	Água pesada	Eletrólise da água	Turbina de vapor
Reatores a água supercríticos S-LWR CANDU SCWR SF-	Água leve	Eletrólise da água ciclos termoquímicos	Turbina de vapor
Reatores rápidos a metal líquido SFR LFR	Sódio, chumbo, bismuto	Eletrólise da água ciclos termoquímicos	Turbina de vapor SCO ₂ turbina
Reatores a sal fundido AHTR	Sais Li₂BE	Eletrólise da água ciclos termoquímicos Reforma de vapor	Turbina de vapor
Reatores a gás a alta temperatura	Hélio	Eletrólise da água ciclos termoquímicos Reforma de vapor	Turbina de vapor
Reatores rápidos refrigerados a gás	Hélio	Eletrólise da água	Turbina a gás Turbina de vapor
GFR		ciclos termoquímicos Reforma de vapor	Turbina a gás

Fonte - Yan, 2011.

2.1.6 Comparação dos métodos de produção de hidrogênio

A TAB. 2.2 apresenta um resumo da comparação dos três processos de produção de hidrogênio: eletrólise, reforma de vapor e processos termoquímicos. Essa tabela mostra as vantagens e desvantagens de cada método considerando as práticas usuais de produção, sem a utilização da energia nuclear, mostra também uma breve descrição da matéria prima utilizada, as fontes de energia e as emissões de CO₂.

TABELA 2.2 - Comparação dos três métodos de produção de hidrogênio

Métodos de produção de hidrogênio	Eletrólise	Reforma de vapor	Processo termoquímico
Desvantagens	Necessita de eletricidade	Depende de combustíveis fósseis	Fase inicial de desenvolvimento
Matéria prima usual	Água	Fontes de carvão, hidrocarboneto e gás natural	Água , enxofre e iodo
Fonte de energia usual	Eletricidade	Queima de combustíveis fósseis	Queima de combustíveis fósseis
Emissões	CO ₂ proveniente da queima de combustíveis fósseis quando usados para gerar eletricidade	CO ₂	CO ₂

Comparando-se os métodos de produção existentes para produzir hidrogênio conclui-se que:

- A eletrólise utiliza somente água e eletricidade para produzir hidrogênio e é o método mais simples. A rede elétrica da cidade de São Paulo existe independentemente da produção de hidrogênio, portanto, não existem emissões de gás carbônico provenientes deste método e nem necessidade de se criar uma infraestrutura nova muito diferente da existente.
- A reforma do vapor possui a desvantagem de depender de altas temperaturas e de combustíveis fósseis, como o carvão, hidrocarbonetos e gás natural, provocando a liberação de gás carbônico.
- Os processos termoquímicos, como o ciclo enxofre-iodo, consistem de uma tecnologia que ainda está em desenvolvimento, além de necessitarem de altas temperaturas e assim, caso não seja utilizada como fonte de energia um reator nuclear, acabam gerando gás carbônico.

A comparação dos três processos de produção de hidrogênio encontrase resumida na TAB. 2.3, incluindo a utilização da energia nuclear (Yan e HIno, 2011).

TABELA 2.3 - Comparação dos três métodos de produção de hidrogênio

Formas de produção de hidrogênio	Eletrólise	Reforma de vapor	Processos termoquímicos
Vantagens	 É o método mais simples -Não causa poluição -Tecnologia comprovada -Ideal para produção em locais distantes da geração de energia elétrica - independe de combustíveis fósseis 	-Tecnologia comprovada - oferece os mais baixo custos - Contribui para o desenvolvimento nuclear do ciclo enxofre-iodo	-Alta eficiência -Baixo custo de produção - Não polui se utilizar energia nuclear -Independe de combustíveis fósseis
Desvantagens	-Custo mais alto de produção	Necessita estar instalado na proximidade do reator nuclear Depende de combustíveis fósseis	Necessita estar instalado na proximidade do reator nuclear
Eficiência	75%	70%	50%

Fonte - Crosbie ,2003.

Conforme mostrado na TAB.2.3 a eletrólise é o método mais viável para a produção de hidrogênio em pequena escala. A razão disso é que como a eletrólise utiliza a eletricidade, não existe a necessidade da localização geográfica próxima ao reator nuclear, como acontece com o processo térmico.

Quando a produção de hidrogênio é localizada em um único local para depois ser transportada para os pontos de abastecimento, ela é denominada produção centralizada e quando a produção ocorre no mesmo local de abastecimento é denominada produção distribuída. A produção distribuída

permite uma maior segurança e flexibilidade no transporte e armazenamento do hidrogênio.

A utilização do método da eletrólise para produzir hidrogênio, além de não exigir o desenvolvimento de novos reatores nucleares, é um método que pode ser utilizado no momento atual, pois não exige a instalação de infraestrutura para gerar energia para produção do hidrogênio. Aproveitando-se a energia elétrica disponível no sistema e o fornecimento nos baixos picos de utilização de energia elétrica, pode-se diminuir de maneira significativa o custo da energia e consequentemente o custo da produção por este método.

Segundo Brown at al. (2000), a eficiência da produção de eletricidade por um reator nuclear é por volta de 30% e a eficiência da eletrólise da água é de cerca de 80%. Com melhorias nessas tecnologias a eficiência da produção de eletricidade via reator nuclear e da eletrólise da água podem ser aumentadas para 40% e 90% respectivamente. Se combinadas, a produção de energia via reator nuclear com a produção de hidrogênio via eletrólise, atualmente apresenta uma eficiência global de 24%, que pode ser aumentada no futuro para 36%.

Quanto aos processos termoquímicos, uma das suas vantagens é a maior eficiência energética, pois não tem a perda de energia que a geração de eletricidade apresenta.

O método da reforma de vapor do metano é um processo termoquímico que oferece alta eficiência e baixo custo, mas depende de combustíveis fósseis, não sendo ambientalmente viável. O desenvolvimento deste método resultou no aprimoramento do ciclo enxofre-iodo.

Os métodos termoquímicos, principalmente do ciclo enxofre-iodo, são os mais viáveis, oferecendo vantagens sobre os dois outros métodos, e tudo indica que será o processo mais atraente para a produção de hidrogênio no futuro. A produção de hidrogênio pode ser instalada junto ao reator nuclear, sendo a sugestão ideal para uma produção de grande quantidade de hidrogênio visando o abastecimento de vários e grandes mercados, tais como a

indústria petroquímica e a indústria de fertilizantes, conforme será visto ainda neste capítulo.

Conclui-se pois, que a produção de hidrogênio via energia nuclear depende do desenvolvimento tecnológico dos reatores de quarta geração. Enquanto não se tem o domínio e os recursos para a construção desses reatores, a alternativa mais viável para a produção de hidrogênio no Brasil, é, sem dúvida, utilizar o método da eletrólise.

2.2 Armazenamento e transporte do hidrogênio

O uso do hidrogênio necessita que ele seja armazenado e transportado. Existem várias possibilidades para armazenamento e transporte do hidrogênio. Segundo Capaz e Marvulle (2006), os estados principais em que o hidrogênio pode ser armazenado e transportado são: estado gasoso (gás comprimido), estado líquido (hidrogênio liquefeito) e compostos intermediários (hidreto metálico e sistemas com base de carbono).

2.2.1 Armazenamento e transporte do hidrogênio na forma gasosa

O estado gasoso na forma de gás comprimido é o estado mais frequente em que o hidrogênio é armazenado, transportado e utilizado. O hidrogênio pode ser estocado como gás comprimido em tanques. Esses tanques devem ser resistentes à degradação acarretada pela utilização do hidrogênio. Este fenômeno de degradação é denominado "fragilização pelo hidrogênio" e é decorrente do tamanho da molécula de hidrogênio e da sua capacidade de permeação na estrutura dos materiais e ligas, levando eventualmente ao vazamento do gás. O gás hidrogênio é altamente reativo ao ar, formando misturas gasosas potencialmente explosivas.

Uma das vantagens do armazenamento na forma de gás é que o hidrogênio pode ser armazenado facilmente nos próprios locais de distribuição

e/ou utilização. O armazenamento do gás também pode ser feito em cilindros ou em tubos pressurizados com pressões em torno de 150 a 200 atm.

Segundo Padró e Putsche (1999) para armazenar grandes quantidades de hidrogênio gasoso, a utilização de cavernas ou locais subterrâneos é uma opção, mas depende de fatores locais e geográficos. A desvantagem é que as perdas são grandes devido ao alto coeficiente de difusibilidade do gás hidrogênio. Em geral, os sistemas de armazenamento de gás comprimido abaixo do solo são viáveis para grande quantidade e/ou para estocagem mais demorada.

Segundo Ferreira (2007) o armazenamento do hidrogênio gasoso é a única forma atualmente homologada para aplicação veicular. Assim, armazenar e transportar o hidrogênio gasoso até as estações de abastecimento dos veículos é uma forma bem conveniente, pois não necessita de um processamento posterior para abastecer os veículos.

Uma das formas de transportar o hidrogênio gasoso até as estações de abastecimento é através de gasodutos, a tecnologia é perfeitamente viável e os possíveis problemas, como já mencionados, podem advir da estanqueidade das vedações e da baixa densidade do gás.

2.2.2 Armazenamento e transporte do hidrogênio na forma líquida

Segundo Padró e Putsche (1999) o hidrogênio no estado líquido pode ser armazenado em tanques criogênicos, cujo formato e construção dependem fundamentalmente da capacidade desejada e da pressão de trabalho. Para armazenar hidrogênio líquido é necessário um processo de liquefação do hidrogênio. Em geral os processos de liquefação consistem em sua essência na compressão, resfriamento e expansão do gás, apresentando altos custos.

A principal vantagem do hidrogênio líquido é o aumento da densidade do hidrogênio transportado, sendo cerca de dez vezes maior quando comparada com a forma gasosa sob alta pressão. Essa forma é recomendada para

distâncias mais longas e para quantidades entre 500 kg a 3.000 kg por dia. Entretanto, apresenta algumas desvantagens: a quantidade considerável de energia gasta no processo de liquefação, o custo dos tanques criogênicos, a perda do gás por evaporação e a capacidade de isolamento térmico dos tanques.

- A quantidade de energia gasta no processo de liquefação, de aproximadamente 11 kWh/kg de hidrogênio, representa um gasto de cerca de 33% do conteúdo energético do hidrogênio (Riveros-Godoy, 2008), isto é, o processo de liquefação acaba consumindo no mínimo um terço da energia que está contida no produto final.
- O custo dos tanques criogênicos de hidrogênio é superior ao custo dos tanques destinados a gasolina ou petróleo. Os tanques de hidrogênio de maior capacidade podem armazenar no máximo 3.600 kg de hidrogênio, enquanto os tanques de gasolina ou petróleo podem armazenar até 30.000 kg de combustível (Vargas, 2006).
- A perda do gás por evaporação de 0,5% a 1% ao dia impede o armazenamento do hidrogênio na forma líquida por grandes períodos.
- Os tanques para armazenamento de hidrogênio liquefeito devem ter uma elevada capacidade de isolamento térmico, uma vez que a temperatura deste combustível é de aproximadamente -251°C (Ferreira, 2007).

2.2.3 Armazenamento e transporte do hidrogênio na forma de hidretos

O hidrogênio liga-se quimicamente com inúmeros elementos formando hidretos. Assim, o processo de armazenamento de hidrogênio em um metal é uma forma bastante promissora de acondicioná-lo. O processo de armazenamento é exotérmico e é favorecido com o aumento de pressão, portanto, na utilização do hidrogênio armazenado deve ocorrer um processo de

dissociação do hidrogênio do metal que é um processo endotérmico. O principal requisito para um bom hidreto é que o calor de formação (ou de reação do hidrogênio com o metal) deve ser menor que zero, de forma a manter estável o hidrogênio armazenado. A principal desvantagem desse método é a baixa densidade energética por massa do composto, ou seja, uma alta relação peso do metal/peso do hidrogênio. Outra desvantagem é o custo dos tanques de armazenamento, pois se deve considerar o preço da liga metálica a ser convertida em hidreto.

O armazenamento de hidrogênio na forma metálica é uma das principais linhas de pesquisas do Laboratório de Hidrogênio do Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia (Coppe) da Universidade Federal do Rio de Janeiro (UFRJ). As pesquisas atuais procuram um composto que seja capaz de armazenar uma grande quantidade de hidrogênio com uma elevada densidade energética, liberar o hidrogênio como combustível e possuir um custo acessível.

2.2.4 Comparação entre as diversas formas de armazenamento e transporte do hidrogênio

O hidrogênio deve ser armazenado e transportado de forma compatível com a qual será utilizada em seu uso final, isto é, no caso do hidrogênio veicular, deve-se ressaltar que o hidrogênio será utilizado em estações de abastecimento na forma gasosa.

Como visto, a produção de hidrogênio pela eletrólise permite tanto a produção centralizada como a distribuída. Com a produção centralizada realizada em um único, ou poucos locais, é necessário transportar posteriormente o hidrogênio para as estações de abastecimento. O transporte de hidrogênio exige a instalação de gasodutos e gasto de energia para bombeamento do gás. Isso implica em custos tanto de instalação como de operação. Por outro lado, a produção distribuída, realizada na garagem de cada empresa de ônibus, não exige preocupação com a distribuição do

hidrogênio, ou seja, não é necessário instalar gasodutos na cidade e não envolve custo de bombeamento do gás.

2.3 Uso Final do Hidrogênio

Neste trabalho pretende-se estudar a produção de hidrogênio para utilização em células a combustíveis veiculares, entretanto serão apresentados diversos outros usos, com o propósito de mostrar que existe um mercado muito amplo de utilização do hidrogênio. Atualmente, o hidrogênio é produzido em larga escala por processos que utilizam combustíveis fósseis e liberam grande quantidade de gás carbônico.

Em 2008 o consumo de hidrogênio no mundo era por volta de cinquenta milhões de toneladas. As indústrias são os principais consumidores de hidrogênio. O principal uso final do hidrogênio é a produção de amônia e o refinamento de petróleo. A amônia é muito importante para a fabricação de fertilizantes e para a síntese de produtos farmacêuticos, além de ser a base comercial de produtos de limpeza doméstica. A produção global de amônia em 2006 consumia 26 milhões de toneladas de hidrogênio. Atualmente, o hidrogênio necessário para produção de amônia vem principalmente do método da reforma do vapor do metano com grande quantidade de emissão de gás carbônico.

Segundo Tolmasquim (2003) a utilização na petroquímica é a principal utilização do hidrogênio no Brasil, produzido principalmente a partir da reforma catalítica de nafta e gás natural.

O hidrogênio é utilizado nas refinarias para os seguintes propósitos (Chang, 2000):

 Produção de petróleo leve. O petróleo cru pesado é removido da terra a uma alta temperatura e torna-se altamente viscoso quando esfria. Alguns óleos são tão viscosos que não escoam a menos que sejam aquecidos ou dissolvidos em um petróleo mais leve. Ao se adicionar hidrogênio ao petróleo diminui-se a viscosidade e melhora-se a qualidade do petróleo;

- O petróleo contém uma variedade de componentes cancerígenos como o benzeno (C₆H₆). Essas substâncias são convertidas em combustíveis não cancerígenos através da adição de hidrogênio;
- Um petróleo bruto pode ter 6% de enxofre por peso. O petróleo mais pesado tende a ter mais enxofre. O enxofre é removido pelo uso de hidrogênio, que o converte em ácido sulfídrico (H₂S), que por sua vez é oxidado e vendido como produto final. O enxofre é removido para evitar a interferência no processo de refino. Um combustível com baixo teor de enxofre minimiza a corrosão dos motores, melhorando a eficiência das máquinas.

Outro uso do hidrogênio na indústria de petróleo é a fabricação de combustíveis sintéticos. Os combustíveis sintéticos são líquidos que podem ser obtidos do carvão, gás natural, petróleo ou biomassa, por meio de diversos processos que utilizam hidrogênio. Se o hidrogênio fosse produzido por fontes de energia renováveis, a produção de combustíveis sintéticos poderia se expandir com redução de emissão de gás carbônico. Atualmente os combustíveis sintéticos são produzidos pela reforma do vapor do gás natural ou do carvão gaseificado. Ambos os casos envolvem consideráveis emissões de CO₂.

O hidrogênio também é produzido para: fabricação de semicondutores, produção de vidro, preparação de alimentos (manteigas, margarinas, óleos), hidrogenação de vegetais (soja, girassol, milho), manufaturação química para sabão, plásticos, vinil, poliuretano, pomadas e para produção química de metanol (CH₃OH).

Observa-se que o hidrogênio utilizado atualmente na indústria tem provocado grandes emissões de poluentes e que caso se pretenda produzir hidrogênio em grande escala, como por exemplo, utilizando-se energia nuclear pelos processos termoquímicos, como foi discutido no item 2.1.5 existe um amplo mercado consumidor para o hidrogênio.

2.3.1 Utilização do hidrogênio em células a combustível

O hidrogênio como combustível é utilizado em programas aeroespaciais para alimentar sistemas de naves espaciais. Por exemplo, nos EUA, a *National Aeronautics and Space Administration* (NASA) utiliza hidrogênio líquido para as pesquisas espaciais, incluindo lançamentos de foguetes. O hidrogênio era o combustível utilizado para os motores principais e também para as células a combustíveis dos sistemas elétricos dos ônibus espaciais. Nesse caso, a água gerada como resíduo nas células era usada como água potável pela tripulação.

O hidrogênio é utilizado também como combustível para transporte urbano utilizando-se as células a combustível. Nas células ocorre a oxidação de combustão do hidrogênio segundo a reação química exotérmica da equação 2.7.

$$2H_2 + O_2 \rightarrow 2H_2O + \Delta H \tag{2.7}$$

A entalpia ∆H do produto da combustão é 241,82 kJ/mol para as condições de 25°C e 101,325 kPa.

As células a combustível são dispositivos eletroquímicos que produzem energia elétrica a partir do hidrogênio. As células são semelhantes às baterias e permitem a transformação direta da energia química em energia elétrica. A célula a combustível é geralmente composta por um ânodo, um eletrólito e um cátodo. A célula tem um formato de um sanduíche conforme mostrado na FIG. 2.3.

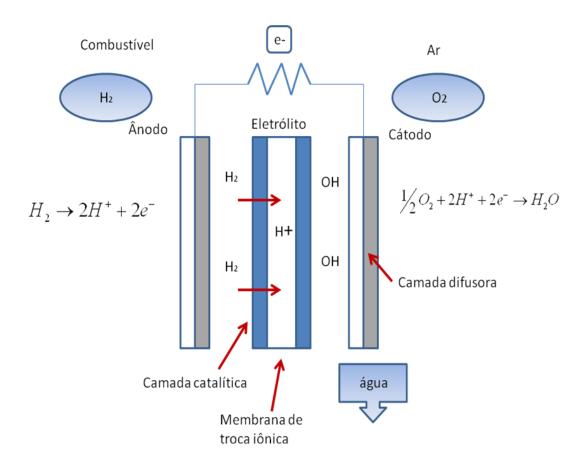
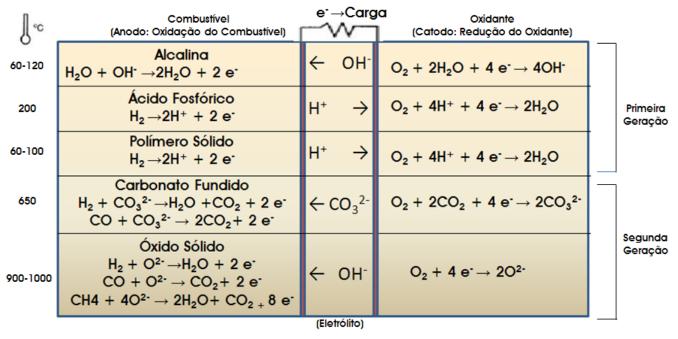


FIGURA 2.3 – Esquema de Célula a Combustível

O hidrogênio fornecido em um dos eletrodos (ânodo) da célula reage eletroquimicamente com o oxigênio fornecido no outro eletrodo (cátodo) na presença de um catalisador, usualmente pó de platina. Entre os eletrodos encontra-se o eletrólito, composto de material isolante que permite o fluxo dos íons entre os eletrodos, mas impede a passagem de elétrons, que são obrigados a percorrer um circuito externo, produzindo assim uma corrente elétrica. Observa-se que o eletrólito é o elemento chave da célula. Os íons e elétrons reagem na presença do catalisador com o oxidante (oxigênio) para produzir como subproduto água quente ou vapor. Na teoria, a eficiência máxima com a qual uma célula combustível pode converter energia química do hidrogênio em eletricidade é de 83%.


Veículos a Célula a Combustível (VCCs) operam duas vezes mais eficientemente do que a maioria dos veículos a gasolina ou diesel, incluindo os carros híbridos, pois emitem menos calor residual (Ferreira, 2007).

A possibilidade de ser armazenado e consumido posteriormente faz com que o hidrogênio seja um possível elo entre diferentes formas de energia. Dessa forma, a energia elétrica é utilizada para fabricar hidrogênio, que pode ser armazenado para posteriormente produzir novamente energia elétrica via célula a combustível. O hidrogênio tem chamado a atenção da ciência em razão do alto rendimento das células em comparação com os motores térmicos.

As cinco principais tecnologias de células a combustível são:

- Células Alcalinas (Alkaline Fuel Cell AFC);
- Células a ácido fosfórico (*Phosforic Acid Fuel Cell* PAFC);
- Células a polímero sólido (Solid Polymer Fuel Cell SPFC);
- Células a carbonato fundido (Molten Carbonate Fuel Cell MCFC);
- Células a óxido sólido (Solid Oxide Fuel Cell SOFC).

Na FIG 2.4 são mostradas as diferenças entre as cinco principais tecnologias de células a combustível. As tecnologias diferem entre si pelo eletrólito utilizado, pelas reações eletroquímicas e pelas temperaturas envolvidas. Com relação à temperatura de operação, as células são divididas em dois grupos: células de primeira geração, que operam em temperaturas de até 200°C; e as células de segunda geração, que trabalham com uma temperatura entre 600 a 1000°C (Ferreira, 2007).

Fonte - Yan e Hino, 2011.

FIGURA 2.4 – Tecnologias de células a combustível

Na TAB. 2.4 são comparados cinco tipos de células a combustível, mostrando suas características e principais aplicações.

Na área de transporte, o tipo de célula a combustível mais utilizado devido às baixas temperaturas de operação e curto tempo de *start-up* é a célula a combustível a polímero sólido ou membrana de troca de prótons PEMFC (*Proton Exchange Membrane Fuel Cell*). Embora a PEMFC seja o tipo de célula que melhor se adapta à utilização em veículos, sua eficiência de conversão é da ordem de 50% e a sua vida útil é de 5.000 horas. Segundo Ferreira (2007) essas características ainda são insuficientes para aplicações veiculares, onde se espera uma vida útil de 15.000 horas e uma eficiência de 57%.

TABELA 2.4 – Comparação entre os tipos de células a combustível

Tipo	Características	Aplicações
Células alcalinas (AFC)	-Não requerem materiais de alto custo na sua construção; -Possuem vida longa (15 mil horas); -Alto custo.	- Aplicações remotas estratégicas (missões espaciais, submarinas e militares)
Células a ácido fosfórico (PAFC)	- Requerem o emprego de catalisadores à base de metais nobres (platina); - Excelente estabilidade térmica, química e eletroquímica.	-Centrais de cogeração com potência de 50 a 1000 kW - Podem ser utilizadas nas dependências do consumidor
Células a polímero sólido (SPFC) (PEMFC)	- Requerem o emprego de catalisadores à base de metais nobres (platina)	- São utilizadas na indústria automotiva em substituição aos motores de combustão interna.
Células a carbonato fundido (MCFC)	 Elevada eficiência energética (combustível/energia elétrica) Quando o calor residual é utilizado a eficiência pode chegar a 85% 	- Centrais de cogeração de médio e grande porte.
Células a óxido sólido (SOFC)	- Elevadas temperaturas, da ordem de 1000°C; - Dispensam a utilização de catalisadores à base de materiais nobres e de alto custo; -Possuem vida longa.	 O calor produzido pode ser utilizado em aplicações de cogeração ou acionar uma turbina a vapor. Pode ser usada em um ciclo combinado (eficiência da ordem de 80%).

Os veículos elétricos a células a combustível utilizam um banco de baterias e/ou banco de supercapacitores, onde a energia elétrica é armazenada.

As principais vantagens da célula a combustível são: a alta eficiência que pode ultrapassar 70%, o baixo nível de ruído, pois não possui partes móveis e a emissão nula de poluentes. As desvantagens atuais são o alto custo da platina ou cerâmicas especiais e o domínio da infra-estrutura de produção e distribuição do hidrogênio, barreiras que podem ser ultrapassadas em um futuro próximo.

2.3.2 Tecnologia de funcionamento do ônibus a hidrogênio

Os ônibus a hidrogênio utilizam células a combustível alimentadas por hidrogênio. Para a substituição da frota de ônibus a diesel por uma frota de ônibus a hidrogênio, pesquisou-se alguns modelos de ônibus a hidrogênio já em funcionamento.

Um exemplo de um ônibus a hidrogênio é o *Daimler Chrysler*. Este modelo de ônibus movido à célula a combustível, produzido na Alemanha, foi utilizado em um projeto internacional envolvendo a Austrália e outros países da Europa (Riveros-Godoy,2007). O Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa e Engenharia (COPPE/UFRJ) desenvolveu o primeiro ônibus a hidrogênio com tecnologia totalmente brasileira (Molina et al., 2011) e em São Paulo a Empresa Metropolitana de Transportes Urbanos (EMTU) também desenvolveu um ônibus movido a hidrogênio. O ônibus da EMTU, que atualmente percorre a linha São Mateus – Jabaquara da cidade de São Paulo, é de fabricação brasileira, mas a tecnologia das células a combustível de hidrogênio são de uma empresa canadense (EMTU, 2013).

A tecnologia de funcionamento dos três modelos é similar. O *Daimler Chysler*, também conhecido como Eco bus, é uma série limitada da *Mercedes-*

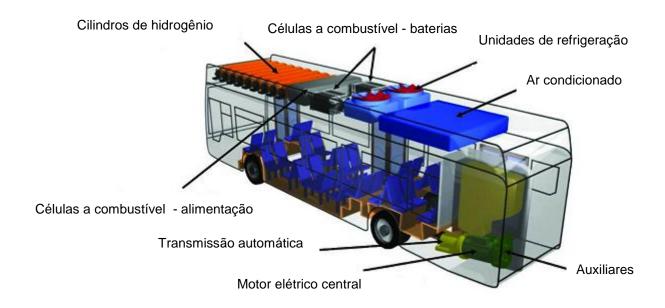

Bens Citaro fuel cell e a FIG.2.5 mostra um exemplo desse ônibus movido a hidrogênio (Cockroft, 2008).

FIGURA 2.5 – Modelo do ônibus a hidrogênio *Daimler Chysler*

A tecnologia de funcionamento do Daimler Chysler é conhecida como sistema híbrido. O hidrogênio nos tanques do ônibus é introduzido na célula a combustível, onde ocorre um processo eletroquímico que produz energia elétrica, liberando água como subproduto. O sistema de célula a combustível não produz nenhum poluente, diferentemente dos ônibus a diesel. A energia elétrica movimenta o motor elétrico de tração (similar ao de um trólebus), instalado no eixo traseiro do ônibus, gerando energia mecânica. O ônibus é, portanto, híbrido, possui a célula a combustível a hidrogênio e mais três baterias de alto desempenho. A FIG. 2.6 ilustra o funcionamento do ônibus a hidrogênio *Daimler Chysler* (Cockroft, 2008).

O consumo de hidrogênio no ônibus a célula combustível segundo Cockroft (2008) é de 22 kg para cada 100 km rodados, quando em rota de congestionamento. Possui autonomia para rodar 300 km com o uso do hidrogênio e consegue rodar mais 40 km utilizando a energia reserva das baterias. O veículo tem capacidade para armazenar 44 kg (15°C, 350 bar) de hidrogênio em nove tanques (Cockroft, 2008).

Fonte - Cockroft (2008)

FIGURA 2.6 – Ilustração de um ônibus a hidrogênio modelo Daimler Chysler

No caso do ônibus da EMTU, ele possui duas células a combustível em paralelo de 68 kW e roda 300 km com 45 kg de hidrogênio. O aproveitamento energético do sistema é por volta de 90%, quase 50% mais eficaz que um motor a diesel convencional. Uma ilustração do modelo da EMTU pode ser vista na FIG. 2.7.

FIGURA 2.7 – Ilustração de um ônibus a hidrogênio EMTU

Os tanques de hidrogênio são compostos por nove cilindros feitos de aço inox e fibra de carbono, como pode ser visto na FIG. 2.7. O conjunto pesa mais de 1.300 kg e tem a capacidade de 45 kg de hidrogênio. O reforço é necessário para suportar a pressão de armazenamento de hidrogênio (350 bar com os cilindros cheios) e para eliminar a tendência de vazamento do gás, que pode escorrer em escala molecular. O ônibus possui um sistema de monitoração em que o motorista pode acompanhar a potência disponível, a quantidade de combustível e monitorar o funcionamento das baterias, células e motores. Possui dois sistemas de injeção e admissão independentes, mas com o mesmo destino: as células a combustível. O sistema de injeção encaminha o hidrogênio dos tanques e o sistema de admissão capta, filtra, umidifica e deixa o ar na temperatura ideal. Possui sensores de impacto, presente nos párachoques do ônibus que cortam o suprimento de hidrogênio em caso de acidente. Os motores elétricos são dois propulsores, sincronizados por um sistema de engrenagens: cada motor gera 85 kW (ou 113 CV) a 10.000 rpm. A transmissão do motor às rodas é direta, sem marchas. A temperatura de funcionamento é em média de 70° C (mais baixa que um motor a combustão). As baterias transformam a corrente elétrica contínua em alternada, para fazer os motores funcionarem e a energia excedente das células é armazenada nas

baterias. Cada bateria pesa 207 kg e gera 600 V. O conjunto de baterias pode alimentar os motores do ônibus por até 50 km.

A eletricidade é gerada nas células a combustível e os produtos dessa reação são: energia elétrica, água líquida e também vapor. Além disso, é utilizado um sistema de regeneração de energia cinética, isto é, a energia da frenagem é revertida em energia elétrica. Ou seja, quando o carro freia, uma proporção da energia cinética é capturada por um motor elétrico/gerador, que converte a energia cinética em elétrica, e é armazenada.

O ônibus da COPPE/UFRJ possui funcionamento similar ao da EMTU. Os dois ônibus possuem tamanho e aparência iguais a de um ônibus urbano convencional, possuem piso baixo, ar-condicionado, espaço para embarque de deficientes físicos, são confortáveis e silenciosos, com eficiência energética maior que a dos ônibus convencionais a diesel e com emissão zero de poluentes. Ressalta-se que o ônibus a hidrogênio tem ar condicionado enquanto que o ônibus a diesel não tem, assim o consumo de combustível do ônibus a hidrogênio é comparativamente maior do que o consumo de combustível diesel. Porém cabe ressaltar que o conforto da população com o ônibus com ar condicionado é muito maior.

2.4 Análise ambiental da produção do hidrogênio

A maior preocupação do ponto de vista ambiental do ciclo do hidrogênio é a sua produção, pois os métodos tradicionais usualmente utilizados acabam por negar os benefícios ambientais do seu uso pois são grandes emissores de gás carbônico. O armazenamento e o transporte do hidrogênio não interferem na qualidade ambiental sendo comparáveis com o armazenamento e transporte de qualquer produto que necessite ser estocado e deslocado. Pode-se considerar que quanto menor for a distância a ser percorrida, isto é, se a produção for realizada próxima ao armazenamento e seu uso final, menores serão os resíduos ambientais.

Atualmente, cerca de 50 milhões de toneladas de hidrogênio são produzidas por ano no mundo. 96% é produzido via reforma química do gás natural, petróleo ou carvão sem praticar a captura e sequestro de gás carbônico gerado. Diversos autores (Okken,1992 e Okken et al.,1995) têm sugerido o uso do hidrogênio como combustível como uma forma de minimizar o efeito estufa, o que acaba sendo contraditório, se a sua produção gerar poluentes.

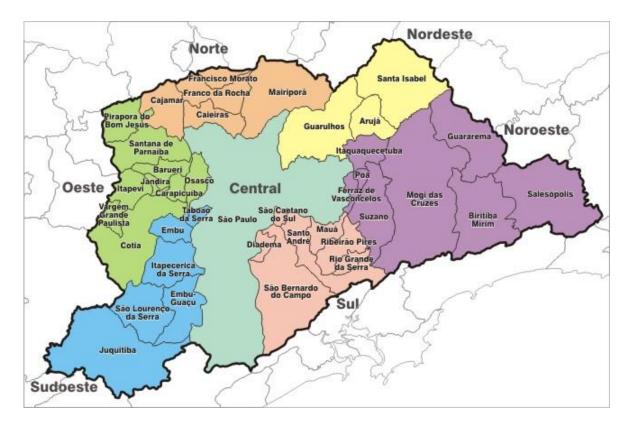
Existem duas alternativas para minimizar a poluição gerada na produção do hidrogênio e tornar viável sua utilização como combustível limpo. Uma alternativa seria a captura e o sequestro do gás carbônico gerado ao se utilizar os métodos tradicionais e a outra seria o uso de novas formas de produção de hidrogênio que não geram gás carbônico, entre elas a energia nuclear e a energia elétrica.

O Sequestro e Armazenamento do Carbono (SAC) é um meio de aprisionar o gás carbônico e armazená-lo, descartando-o efetivamente. As opções de armazenamentos e técnicas de aprisionamento do carbono estão ainda em fase de pesquisa e desenvolvimento. Atualmente tem-se estudado o armazenamento subterrâneo, em aquíferos salinos profundos, reservatórios esgotados de petróleo e gás natural, depósitos de carvão não mináveis e outras formações geológicas. A melhor opção tem sido os campos esgotados de petróleos e gás natural, embora haja um risco de vazamento por conta da corrosão de cimento em poços fechados ou abandonados. O SAC é custoso e acaba onerando ainda mais os custos de geração de energia (Greenpeace, 2007).

Além disso, o SAC exige monitorização e verificação ao longo dos anos para garantir a retenção do carbono armazenado pois os vazamentos representam riscos de danos ambientais. O SAC demanda ainda muita pesquisa para seu desenvolvimento, além de que representa um risco de que investimentos sejam deslocados de pesquisas em avanços de recursos energéticos renováveis e estudos sobre eficiência energética. Em caso de vazamentos, existe a possibilidade de enormes riscos ambientais, tais como a

acidificação da água, a degradação de ecossistemas marinhos e a potencial asfixia de plantas, animais e seres humanos (Greenpeace, 2007).

A IEA estima que os custos de captura de carbono estão entre US\$ 20,00 e US\$ 50,00 por tonelada de CO₂. Os custos incluem a compressão de CO₂, mas não incluem os custos de transporte e armazenamento do CO₂. Se o CO₂ for transportado de uma única usina por uma distância de 300 km e armazenado em um reservatório sem rendimento econômico, o custo adicional pode estar em torno de US\$ 8,00 por tonelada de CO₂ armazenado. Se o CO₂ for transportado a uma distância superior, o custo adicional pode ser mais alto, de até US\$ 20,00 por tonelada de CO₂ equivalente (Greenpeace, 2007).


A melhor forma de produzir hidrogênio de uma forma limpa, seria utilizar tecnologias renováveis. A utilização da energia nuclear por meio da energia térmica ou energia elétrica seria uma opção para produção de hidrogênio sem emissão de gás carbônico, o que poderia ser viável no futuro com o uso de reatores rápidos, como já foi discutido anteriormente. A outra opção seria a utilização da eletricidade disponível no Sistema Interligado Nacional (SIN) para produzir hidrogênio por meio da eletrólise. Utilizando-se a energia elétrica disponível no sistema, não haveria emissões adicionais de poluentes.

3 PANORAMA ATUAL DO TRANSPORTE PÚBLICO NA CIDADE DE SÃO PAULO

Neste capítulo é feita uma análise da situação atual do transporte público na cidade de São Paulo para que se possa analisar a viabilidade de substituir a frota de ônibus a diesel por uma frota de ônibus a hidrogênio. É realizado um levantamento das linhas de ônibus e dos dados operacionais da frota, tais como, quantidade de veículos, velocidade média, quantidade de passageiros transportados, consumo anual de diesel da frota e distância total percorrida por ano. Por meio desses dados pode-se estimar a quantidade de hidrogênio necessária para a substituição do diesel e também a quantidade de energia necessária para produzi-lo. Além disso, é realizado um levantamento das empresas de ônibus do sistema de transporte urbano com a finalidade de estimar o número de estações de abastecimento dos ônibus e, portanto, estimar as possíveis estações de produção e abastecimento de hidrogênio.

3.1 Transportes na cidade de São Paulo

A cidade de São Paulo é a cidade mais populosa do Brasil com uma população de 11.376.685 habitantes (IBGE, 2012) e uma área de 1.523 km². A cidade de São Paulo apresenta intenso processo de conurbação com a região metropolitana de São Paulo (RMSP), que ocupa 8.051 km² e possui a maior densidade demográfica do estado de São Paulo, 2.497,9 habitantes por km². O mapa da RMSP, com os limites dos municípios e a localização da cidade de São Paulo no centro da região é mostrado na FIG.3.1 (Boletim Metropolitano de Conjuntura Social e Econômica, 2011).

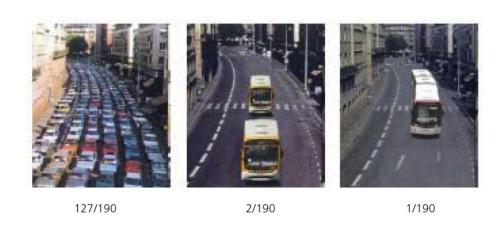

Fonte – SOSRIOS (2013)

FIGURA 3.1 – Mapa da RMSP

Um dos principais problemas da cidade de São Paulo é o deslocamento urbano caracterizado por congestionamentos e pela precariedade do sistema de transporte público. Segundo Ralph (2013) a cidade de São Paulo tem os piores engarrafamentos do mundo. Os problemas de deslocamento interferem na qualidade de vida da população.

Apenas 55% da população que se desloca diariamente em São Paulo utiliza o transporte coletivo, sendo que os 45% restantes preferem automóveis particulares. Estudos realizados pela São Paulo Transporte S.A (SPTrans, 2013) mostram que são necessários 127 automóveis para fazer o mesmo transporte realizado por um ônibus articulado. O consumo de combustível por passageiro transportado em um automóvel é 14 vezes maior que o mesmo transporte em um ônibus operando em corredores. O deslocamento de uma pessoa por automóvel na cidade de São Paulo consome em média 26 vezes mais energia do que o deslocamento médio pelo metrô. Considerando-se a

quantidade de emissão de poluentes por passageiro transportado, os automóveis particulares poluem muito mais do que os ônibus. A utilização do espaço físico ocupado pela quantidade de carros e ônibus transportando o mesmo número de passageiros é ilustrada na FIG.3.2. Percebe-se a importância de propostas que melhorem a qualidade do transporte público, atraindo usuários de automóveis para o transporte coletivo. Quanto maior o número de pessoas utilizando o sistema de transporte público maior será a velocidade média de tráfego, o que ocasiona uma redução do consumo de combustível e uma redução das emissões de poluentes.

Fonte - Volf Steinbaum SVMA (apud, Branco 2009)

FIGURA 3.2 – Espaço público ocupado pela mesma quantidade de passageiros transportados por automóveis, ônibus convencional e ônibus articulado.

3.2 Organização do transporte público na cidade de São Paulo

O transporte público representa um papel fundamental na cidade de São Paulo e conta com uma estrutura de linhas de ônibus operadas por empresas privadas sob gestão da SPTrans. O sistema é operado por 16 consórcios formados por empresas e cooperativas. Além dos ônibus coletivos sob gestão da SPTrans, a cidade é servida pela Companhia do Metropolitano de São Paulo (METRÔ), pela Companhia Paulista de Trens Metropolitanos (CPTM) e pelo sistema metropolitano de ônibus sob responsabilidade da Empresa

Metropolitana de Transportes Urbanos de São Paulo (EMTU). O METRÔ e a CPTM transportam juntos cerca de 3,5 milhões de passageiros por dia. A EMTU, que é subordinada ao Governo Estadual, oferece uma rede de linhas intermunicipais operadas por empresas privadas (SPTrans, 2013).

O sistema municipal de transporte da cidade de São Paulo é composto por uma rede integrada, criada em 2003 pela Secretaria Municipal de Transportes em conjunto com a SPTrans. Esse sistema é composto pelo subsistema estrutural e pelo subsistema local. O subsistema estrutural é formado por linhas operadas por veículos de médio e grande porte (articulados, biarticulados e comuns), destinadas a atender altas demandas e integrar diversas regiões às áreas centrais da cidade. O subsistema local alimenta a malha estrutural e atende aos deslocamentos internos nos subcentros com linhas operadas por ônibus comuns e veículos de médio porte, como micro e mini ônibus.

Para facilitar a organização das linhas, a cidade foi dividida em oito regiões e cada região é operada por um consórcio e uma cooperativa como mostrado na FIG. 3.3. Além disso, cada região apresenta-se dividida em distritos conforme mostrado na FIG. 3.4.

Na TAB.3.1 é mostrada a distribuição das áreas por empresa. O número de empresas de ônibus que operam na cidade sob gestão da SPTrans é importante para estimar o número de estações de abastecimento de hidrogênio.

FIGURA 3.3 – Regiões da cidade de São Paulo definidas para organizar o transporte coletivo

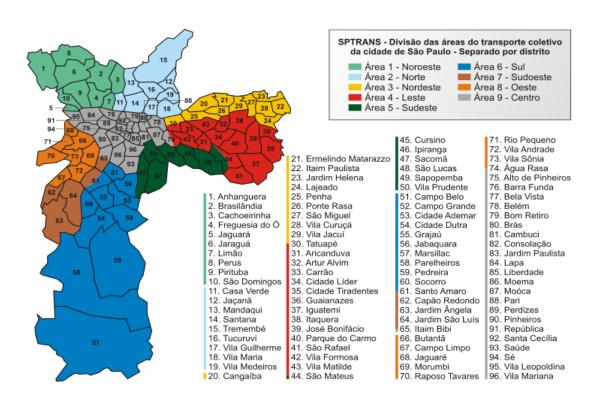


FIGURA 3.4 – Divisão em distritos das regiões do transporte coletivo da cidade de São Paulo

TABELA 3.1 – Divisão das regiões da cidade por empresas e consórcios

Área 1 - verde claro - Zona Noroeste
Cosórcio Bandeirante de Transporte
Santa Brígida
Gato Preto
Cooperativa Transcooper Fênix
Transcooper
Fênix
Área 2 - azul escuro - Zona Norte
Consórcio Sambaíba Transportes Urbanos Ltda
Sambaíba
Cooperativa Transcooper Fênix
Transcooper
Fênix
Área 3 - amarelo - Zona Nordeste
Consórcio Plus
Vip
Expandir
Cooperativa Aliança Paulista
Nova Aliança
Assoc. Paulista
Áreal 4 - vermelho - Zona Leste
Consórcio: Consórcio Leste 4
Novo Horizonte
Cooperativa Transcooper
Transcooper
Área 5 - verde escuro - Zona Sudeste
Consórcio Via Sul Transportes Urbanos Ltda
Via Sul
Cooperativa Aliança Cooperpeope
Coopertranse
Área 6 - azul claro - Zona Su
Consórcio :Consórcio Unisul
Cidade Dutra
Tupi
São Jorge
Vip
Cooperativa: Auto Pam
Cooperpam
Cooper Líder
Área 7
Consórcio: Consórcio Sete
Campo Belo
Transkuba
Gatusa
Vip
Cooperativa: Auto Pam
Cooperpam
Cooper Líder
Cooper Líder Área 8
Área 8
Área 8 Consórcio: Via Sul Transportes Urbanos Ltda.
Área 8 Consórcio: Via Sul Transportes Urbanos Ltda. Transppass
Área 8 Consórcio: Via Sul Transportes Urbanos Ltda. Transppass Cooperativa Unicoopers
Área 8 Consórcio: Via Sul Transportes Urbanos Ltda. Transppass

Fonte - SPTrans,2013

3.3 Dados operacionais da frota de ônibus

Nesta seção são apresentados os dados sobre a frota de ônibus a diesel da cidade de São Paulo, importantes para esse trabalho. Esses dados são: número de ônibus, velocidade média dos ônibus, número de pessoas transportadas, distância total percorrida, quantidade de diesel consumido pela frota, preço do diesel e preço dos ônibus a diesel.

O consumo anual de diesel permite calcular o custo do diesel utilizado e quantificar os poluentes emitidos na atmosfera conforme apresentado no Capítulo 4. O custo do diesel, o custo dos ônibus da frota atual e o custo ambiental da poluição são utilizados para analisar a viabilidade econômica da substituição da frota a diesel pela frota a hidrogênio conforme apresentado no Capitulo 7.

3.3.1 Número de ônibus da frota

A frota contratada pela SPtrans, ou seja, os veículos autorizados a circular prestando serviço de transporte coletivo na cidade, é composta por 14.972 veículos cadastrados (8.973 estrutural e 5.999 local), que operam em um total de 1.332 linhas (SPtrans, 2013). A extensão do sistema viário utilizado pelas linhas municipais é de 4.398 km. Esta extensão representa a soma das extensões de todos os trechos que são utilizados pelas linhas de concessionárias e permissionárias (SPTrans, 2013).

Para as análises realizadas nesse trabalho considera-se somente os ônibus da frota da SPTrans, sendo que não foram considerados os ônibus fretados e nem os ônibus rodoviários e intermunicipais. Assim, a frota total adotada nesse trabalho é de 15.000 ônibus circulando na cidade de São Paulo.

3.3.2 Velocidade média dos ônibus

Desde 2012, todos os 15.000 ônibus da SPTrans estão equipados com localizador via satélite o que possibilita aos usuários acompanhar em tempo real a posição, o tempo de viagem e a velocidade média dos ônibus nos principais corredores e vias da cidade por meio da internet (SPTrans, 2013). Na FIG. 3.5 é mostrada a velocidade média dos ônibus da cidade de São Paulo nos corredores de ônibus e nas outras vias em um dia típico de semana. Com base nesses dados considera-se neste trabalho que a velocidade média dos ônibus na cidade é de 15 km/h.

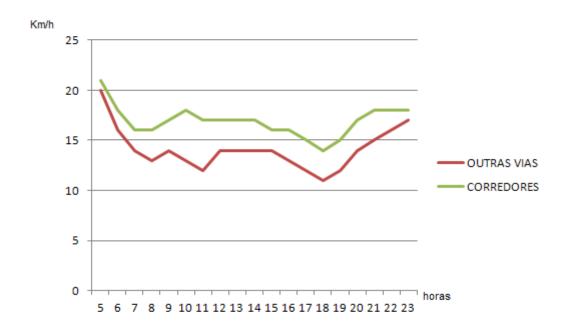


FIGURA 3.5 – Velocidade média dos ônibus na cidade de São Paulo

3.3.3 Número de passageiros transportados

A média de passageiros transportados em ônibus na cidade de São Paulo é de 9,5 milhões de embarques por dia útil, enquanto que a média de passageiros transportados pelo METRÔ é de 3,5 milhões (SPTrans, 2013).

A capacidade de transporte de um ônibus básico (convencional) é em média 75 pessoas (sentadas e em pé). Para o cálculo do número de passageiros em pé, considera-se o índice de 6 passageiros em pé por metro quadrado (SPTrans, 2013). Os ônibus biarticulados conseguem transportar em média 190 passageiros.

3.3.4 Distância percorrida

Considerando que a velocidade média dos ônibus da cidade de São Paulo é de 15 km/h e que os ônibus funcionam em média 18 horas diárias (descontando-se as paradas para troca de motorista e para abastecimento de combustível), então, um ônibus percorre em média 270 km por dia ou aproximadamente 98.550 km por ano. Dessa forma, a frota de ônibus na cidade de São Paulo percorre um total de 1.478.250.000 km por ano.

Somente como ilustração, segundo Pires (2008) em São Paulo um ônibus permanece em média 35% do tempo de operação parado com motor funcionando. Pires (2008) considera um consumo de 2,5 litros de diesel por hora em marcha lenta, ou seja, um consumo de 15 litros de combustível gastos por dia sem percorrer nenhuma distância.

3.3.5 Consumo de Diesel

Observa-se que o número de quilômetros percorridos por litro de diesel depende da velocidade do ônibus. Assim, apesar do consumo dos ônibus a diesel ser em média 8 km/L conforme dados dos fabricantes (Pires, 2008), segundo cálculos efetuados com dados fornecidos pela SPTrans (2013) o consumo médio de diesel dos ônibus urbanos que percorrem a região central da cidade é de aproximadamente 4 km/L, devido à baixa velocidade de tráfego e às paradas constantes.

Como visto, um ônibus percorre na cidade de São Paulo em média 98.550 km por ano, então, considerando um consumo de 4 km/L, cada ônibus consome aproximadamente 24.637,5 litros de diesel por ano. Como o custo atual do litro de diesel é de cerca de R\$ 2,20 (janeiro/2013), então, o custo total anual com diesel é em média R\$ 54.202,50 por ano para cada ônibus da cidade. Portanto, o custo total de combustível da frota de ônibus de São Paulo é de cerca de R\$ 813.037.500,00 no consumo anual de 369.562.500 litros de diesel.

3.4 Custo da frota de ônibus a diesel

A frota de ônibus da cidade de São Paulo é composta por sete categorias de ônibus, que diferem pelo número de passageiros transportados. A quantidade de veículos de cada categoria que compõe a frota e a sua capacidade de transporte são mostradas na TAB. 3.2. Multiplicando-se a quantidade de veículos por sua capacidade e dividindo-se o total pelo número de ônibus da frota, obtém-se uma capacidade média de 71 passageiros por veículo. Assim, para efeito de cálculos, adota-se para a substituição da frota atual por uma nova frota de ônibus a hidrogênio, uma frota composta de 15.000 veículos do tipo básico com capacidade de transporte médio de 75 passageiros por viagem.

Na TAB. 3.3 é mostrado o custo médio de cada tipo de ônibus urbano usado na cidade de São Paulo segundo dados da SPTrans (2013). Observa-se que por não constar na tabela da SPTrans, considera-se que o preço do midi-ônibus é o mesmo preço do miniônibus.

TABELA 3.2 – Quantidade de ônibus da frota da cidade de São Paulo

Categoria	Quantidade (Número de veículos)	Capacidade (número de passageiros)
Básico	4.535	75
Padron	3.830	83
Articulado	1.126	120
Bi-articulado	210	190
Miniônibus	4.349	40
Micro-ônibus	49	21
Midi-ônibus	785	53

Fonte – SPTrans, 2013.

TABELA 3.3 – Custo de cada tipo de ônibus

Categoria	R\$
Micro-ônibus	132.238,00
Miniônibus	165.000,00
Básico (convencional)	220.000,00
Padron	240.000,00
Articulado	518.373,00
Biarticulado	898.516,00

Fonte – SPTrans, 2013.

O custo total da frota de ônibus a diesel da cidade de São Paulo é de RS\$ 3.542.866.020,00 e o seu cálculo encontra-se detalhado na TAB. 3.4. Segundo a SPtrans (2013) a vida útil dos ônibus a diesel da cidade é de aproximadamente 4 anos e 7 meses.

TABELA 3.4 – Custo total da frota de ônibus a diesel da cidade de São Paulo

		Total	3.542.866.020,00
Midiônibus	165.000,00	785	129.525.000,00
Biarticulado	898.516,00	210	188.688.360,00
Articulado	518.373,00	1126	583.687.998,00
Padron	240.000,00	3830	919.200.000,00
Básico (convencional)	220.000,00	4535	997.700.000,00
Miniônibus	165.000,00	4349	717.585.000,00
Micro-ônibus	132.238,00	49	6.479.662.00

3.5 Sumário do Capítulo

Os dados obtidos neste levantamento sobre a frota de ônibus a diesel da cidade de São Paulo e que são utilizados nos próximos capítulos estão sintetizados na TAB. 3.5.

TABELA 3.5 – Dados médios referentes à frota de ônibus a diesel da cidade de São Paulo

Número de ônibus da frota	15.000 veículos
Velocidade média	15 km/h
Vida útil	4,6 anos
Número de embarques de passageiros	9,5 milhões/dia
Autonomia dos ônibus	4 km/L
Consumo total de diesel da frota	369.562.500 L
Custo anual do diesel consumido pela frota	R\$ 813.037.500,00
Custo total da frota (veículos)	R\$ 3.542.866.020,00

4 ANÁLISE DO CUSTO AMBIENTAL DA FROTA DE ÔNIBUS DA CIDADE DE SÃO PAULO

Poluente atmosférico é definido como qualquer forma de matéria ou energia com intensidade e em quantidade, concentração, tempo ou características em desacordo com os níveis estabelecidos e que possam tornar o ar impróprio, nocivo ou ofensivo à saúde; inconveniente ao bem estar público; danoso aos materiais, à fauna ou à flora; prejudicial à segurança, ao uso e gozo da propriedade e às atividades normais da comunidade (CONAMA, 2013).

Um estudo realizado por pesquisadores da Universidade de Berkley (Jerrett et al., 2009) com uma amostra de 500 mil pessoas, mostra que em regiões com alta concentração de poluentes, principalmente de ozônio e de seus precursores, a probabilidade de uma pessoa morrer por problemas respiratórios aumenta em 30% e a cada 10 pontos percentuais de aumento na concentração de ozônio este índice aumenta em 4%. Segundo a pesquisa, são quase 8 milhões de mortes por ano por causas respiratórias no mundo.

De acordo com o Banco Mundial, a redução das concentrações aos níveis recomendados pela Organização Mundial de Saúde (OMS) poderia salvar de 300.000 a 700.000 vidas por ano no mundo.

Segundo estudos do Laboratório de Poluição Atmosférica Experimental da Faculdade de Medicina da Universidade de São Paulo (USP) (Saldiva, 2007) cerca de 3 mil mortes por ano na RMSP estão relacionadas à poluição do ar, representando um custo anual de R\$ 1,5 bilhões para a cidade se somado com o tratamento das cercas de 200 doenças associadas.

O sistema de transporte urbano da cidade de São Paulo apresenta-se desfavorável do ponto de vista ambiental sendo a principal causa da poluição atmosférica da região. Os problemas de qualidade do ar decorrentes principalmente das emissões de poluentes atmosféricos têm causado efeitos prejudiciais à saúde pública e ao meio ambiente. Os efeitos da degradação

ambiental como suas consequências sobre a atividade produtiva são estudados pela economia ambiental. O objetivo da economia ambiental é mensurar monetariamente o valor dos recursos naturais e da degradação ambiental.

Os recursos ambientais não possuem preço reconhecido no mercado, embora o seu valor econômico exista. Externalidades ou economias externas são custos que não são pagos por aqueles que a geram, ou seja, custos que afetam terceiros sem a devida compensação. As externalidades são negativas quando o impacto sobre o terceiro é adverso e geram custos.

A queima de combustíveis fósseis provoca externalidades adversas sendo destacadas a poluição do ar nos grandes centros urbanos e mudanças climáticas. A poluição do ar provoca danos à saúde, além de provocar outros custos ambientais como perda da biodiversidade, perda de sistemas ecológicos, perda do patrimônio cultural e perda estética. A externalidade negativa representa um custo social, sendo que custos sociais não são facilmente observáveis.

Quanto mais se polui o ar, maior será o custo social manifestado através de doenças respiratórias e morbidade. Morbidade é a taxa de portadores de determinada doença em relação à população total estudada, em determinado local e em determinado momento. O cálculo dos custos ambientais é relevante, pois na medida em que se consegue valorar monetariamente estas externalidades negativas, permite-se comparar este custo com outros, justificando a tomada de decisão por meio das análises do tipo custo-benefício, permitindo ao poder público comparar valores similares e, assim, decidir pela alternativa que representa os maiores benefícios e menores custos.

Dessa forma, ao se estimar o custo do transporte urbano levando em consideração o preço do combustível, dos pneus, óleos e manutenção em geral, esse custo estará sendo subestimado. Não são levados em conta todos os custos sociais como o aumento da morbidade, gastos hospitalares e mortalidade associados à poluição do ar. Isto é, ao se comparar o custo de um

ônibus a diesel com um ônibus a hidrogênio, deve-se levar em conta os custos sociais gerados pela poluição atmosférica.

Quando se analisa a poluição gerada pelos ônibus a diesel nos centros urbanos observa-se que são geradas externalidades negativas que podem ser classificadas em três categorias (Knight e Young, 2006):

- efeitos nocivos locais, tais como, redução da visibilidade, névoa (quando os hidrocarbonetos reagem com o dióxido de nitrogênio em presença da radiação solar) e chuva ácida (derivada da emissão de óxidos de enxofre e de nitrogênio que se transformam na atmosfera em ácido sulfúrico e nítrico, sulfatos e nitratos);
- efeitos ambientais globais, tais como, alterações do clima e aquecimento global, que ocorrem quando o nível de emissão de CO₂ e outros gases de efeito estufa é elevado;
- efeitos nocivos à saúde humana, tal como, a exposição a material particulado em níveis elevados causando mortes prematuras e doenças do aparelho respiratório.

Para se mensurar monetariamente essas externalidades negativas utiliza-se duas metodologias: a metodologia de valoração econômica dos recursos ambientais (*VERA*) apresentada por Motta (1997) e a metodologia desenvolvida por Lvovsky at al. (2000) para o cálculo dos impactos da poluição atmosférica sobre a saúde da população. Com base nessas metodologias é possível calcular os custos gerados com as doenças relativas aos danos causados pela poluição dos ônibus, tais como, internações, perdas de dias de trabalho e mortalidade.

Segundo Motta (1997) na literatura técnica é comum que se considere o *VERA* como sendo composto pelo Valor de Uso (*VU*) e pelo Valor de Não-Uso (*VNU*), este último é também denominado de Valor de Existência (*VE*). O Valor de Uso é ainda dividido em Valor de Uso Direto (*VUD*), Valor de Uso Indireto (*VUI*) e Valor de Opção (*VO*). Moura (2003) considera a seguinte classificação dos bens ambientais:

- Valor de Uso Direto (VUD) são bens e serviços ambientais apropriados diretamente da exploração do recurso e utilizados no presente, como por exemplo: madeira, minério, água, e alimentos;
- Valor de Uso Indireto (VUI) são bens e serviços ambientais que são gerados de funções ecossistêmicas, apropriados e consumidos indiretamente no presente. Seriam, por exemplo, os bens de uso recreacional, tal como um açude ou barragem utilizado para lazer e bem estar;
- Valor de Opção (VO) são bens e serviços ambientais de usos diretos e indiretos a serem apropriados e consumidos no futuro;
- Valor de Não-Uso (ou valor passivo) representa o valor de existência (VE) de um bem intangível ou de difícil mensuração, tal como a preservação de espécies em extinção, ou questões morais, culturais, éticas ou altruísticas.

A expressão para o cálculo do *VERA* é dada pela equação (4.1) a seguir.

$$VERA = (VUD+VUI+VO) + VE$$
(4.1)

A classificação do *VERA* do ar atmosférico é muito subjetiva, pois o ar possui um valor muito grande, havendo a necessidade de preservá-lo, pois sem ele não há vida. O ar é um valor de uso direto, pois é consumido pela respiração, mas é também um valor de uso indireto, pois o fato do ar estar limpo permite que os raios de luz cheguem à superfície terrestre e sejam refletidos novamente sem interferir na temperatura inicial. O valor de opção do ar está associado ao montante que as pessoas estariam dispostas a pagar para preservar o ar para o futuro. O ar é também um valor de não uso, ou valor de existência, pois um indivíduo deseja sempre poder respirar um ar mais límpido e puro. Nesse trabalho estima-se o *VERA* da poluição do ar causada pela queima do diesel dos ônibus da cidade de São Paulo, isto é, o custo ambiental devido à poluição. Observa-se que este custo é uma externalidade negativa.

4.1 Poluição atmosférica na cidade de São Paulo

Os problemas de qualidade do ar na cidade de São Paulo ocorrem principalmente em função dos poluentes provenientes dos veículos. Segundo CETESB (2011) a qualidade do ar é diretamente influenciada pela distribuição e intensidade das emissões de poluentes atmosféricos de origem veicular e industrial. As emissões veiculares desempenham um papel de destaque no nível de poluição do ar dos grandes centros urbanos, ao passo que as emissões industriais afetam significativamente a qualidade do ar em regiões mais específicas.

Na teoria, a combustão de hidrocarbonetos resulta apenas em água e gás carbônico, mas na prática não ocorre uma combustão completa e a queima parcial do combustível acaba gerando reações indesejáveis, que resultam em compostos poluentes perigosos. Os compostos de emissão dos motores a diesel podem ser divididos em dois tipos, os gases de efeito local, que causam danos à saúde e os gases de efeito global, que não causam danos diretos à saúde, mas causam o efeito estufa e o aquecimento global.

Os principais poluentes do ar emitidos pela queima de diesel da frota de ônibus urbano em São Paulo são: partículas inaláveis, óxidos de enxofre, óxidos de nitrogênio, monóxido de carbono, dióxido de carbono, hidrocarbonetos e ozônio.

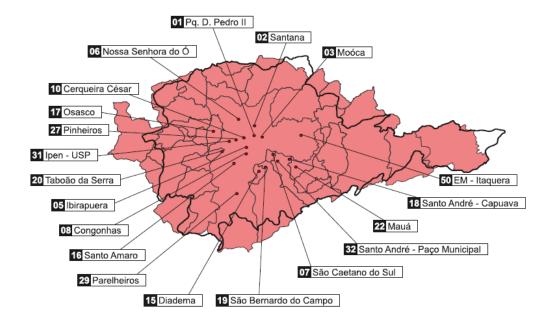
As partículas inaláveis ou materiais particuláveis (MP₁₀) e fumaça, são partículas de material sólido ou líquido que ficam suspensas no ar na forma de poeira, neblina, fumaça ou fuligem, com tamanho menor de 10µm. Os materiais particuláveis são produtos da combustão de veículos movidos a diesel.

Os óxidos de enxofre (SO_x) são decorrentes da oxidação do enxofre contido no óleo diesel. O dióxido de enxofre (SO₂) é um gás incolor, com forte odor, semelhante ao gás produzido na queima de palitos de fósforos. O SO₂ pode ser transformado em trióxido de enxofre (SO₃), que na presença de vapor

de água se transforma rapidamente em ácido sulfúrico (H₂SO₄), levando à formação da chuva ácida. O enxofre é um importante precursor dos sulfatos e um dos principais componentes das partículas inaláveis. A produção de óleo diesel com baixos teores de enxofre tem contribuído para a redução das emissões de SO₂. As reduções dos níveis de enxofre no óleo diesel brasileiro passaram de 1% para 0,2% com a criação do óleo diesel metropolitano, mas está longe de ser um produto não poluente se comparado ao diesel utilizado em países da Europa e nos EUA, que tem 0,001% de teor de enxofre.

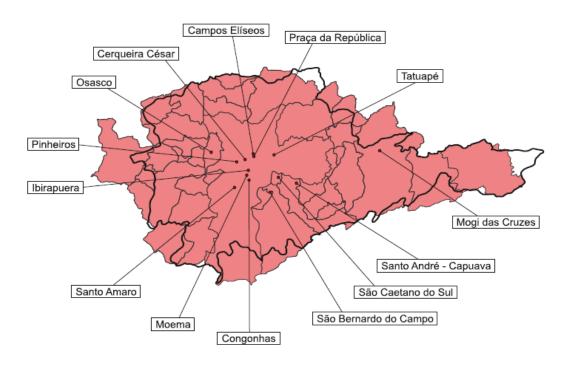
Os óxidos de nitrogênio (NO_x) não são produtos diretos da combustão, são decorrentes da reação química entre o nitrogênio presente no ar e os gases formados na combustão. Os NO_x gerados são principalmente o óxido nítrico (NO) e dióxido de nitrogênio (NO₂). O NO₂ é um gás marrom avermelhado, com odor forte e muito irritante. O NO₂ pode originar a formação de ácido nítrico e nitratos, que contribuem para o aumento das partículas inaláveis na atmosfera, e também compostos orgânicos tóxicos que levam à chuva ácida.

O monóxido de carbono (CO) é um gás incolor, inodoro e insípido que é formado durante o processo de combustão. A exposição por tempo prolongado ao CO pode causar tonturas, dores de cabeça e até asfixia, dependendo da sua concentração. Altas concentrações podem causar problemas cardíacos e respiratórios em crianças e idosos. O CO contribui na formação de ozônio (O₃).


O dióxido de carbono ou gás carbônico (CO₂) é o principal produto da combustão completa. Até a década de 70, o CO₂ não era considerado como poluente por não causar danos diretos à saúde, motivo pelo qual as emissões de gás carbônico nunca foram alvo de preocupação das autoridades e de controles rigorosos. A recente preocupação com o aquecimento global levou a um maior controle dos gases de efeito estufa, entre eles o gás carbônico. O tratado de Kyoto, visando a redução dos gases de efeito estufa, instituiu o mercado de créditos de carbono, unidade métrica utilizada para comparar as emissões de diferente gases de efeito estufa (entre eles o CO₂) com base no seu potencial de aquecimento global. Juntamente com este gás de efeito

estufa, dois outros são abrangidos pelo tratado de Quioto, o metano (CH_4) e o óxido nitroso (N_2O).

Os hidrocarbonetos (HC) são compostos orgânicos voláteis que não contém nitrogênio. Os hidrocarbonetos reagem na presença do NOx e da luz do sol formando ozônio e contribuindo para a névoa fotoquímica.


O ozônio (O₃) é um gás incolor e inodoro nas concentrações ambientais sendo o principal componente da névoa fotoquímica. O gás ozônio forma na estratosfera uma camada protetora contra os raios solares nocivos, mas na superfície terrestre se converte em um inimigo da saúde humana. Além de danos no aparelho respiratório está relacionado com o câncer no pulmão e com mutações genéticas. A exposição continuada ao ozônio inflama os pulmões alterando sua elasticidade, irrita as mucosas e diminui a capacidade de defesa do organismo. O ozônio é o poluente que mais ultrapassa os padrões da qualidade do ar na cidade de São Paulo.

Para a análise da poluição do ar na cidade de São Paulo, adotou-se como referência o Relatório do Ar, desenvolvido pela Companhia de Tecnologia de Saneamento Ambiental (CETESB, 2011). O objetivo deste relatório é apresentar o diagnóstico da qualidade do ar no Estado de São Paulo com dados coletados pela rede de monitoramento da CETESB, que avalia os níveis de poluição atmosférica em diferentes escalas de abrangência. O monitoramento é efetuado por estações manuais e automáticas que permitem o acompanhamento em tempo real. O Estado de São Paulo está dividido, de acordo com a Lei Estadual nº 9.034/94 em 22 Unidades de Gerenciamento de Recursos Hídricos (UGRHIs). A UGRHI está estruturada no conceito de bacia hidrográfica. A cidade de São Paulo pertence à UGRHI 6 – RMSP e conta com estações de rede automática e manual localizadas conforme mostrado nas FIG. 4.1 e 4.2. As principais estações de monitoramento da RMSP encontramse na cidade de São Paulo, desta forma considerou-se para este estudo os dados referentes a esta UGRHI para análise dos dados da poluição na cidade de São Paulo.

Fonte - CETESB, 2011.

FIGURA 4.1 - Localização das estações da rede automática de monitoramento da CETESB.

Fonte – CETESB, 2011.

FIGURA 4.2 - Localização das estações e pontos de amostragem da rede manual de monitoramento da CETESB

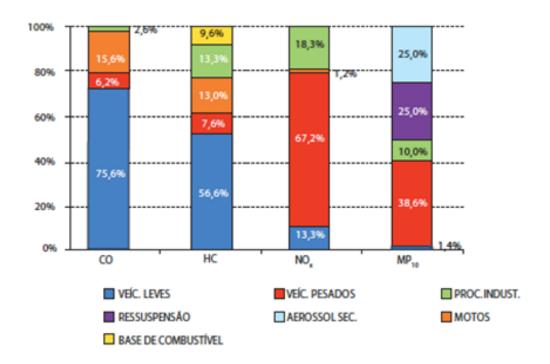
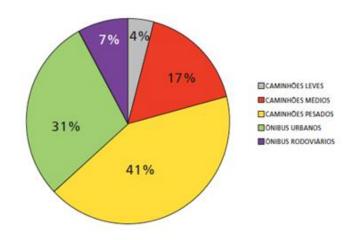

Na TAB.4.1 é mostrada a contribuição relativa das fontes de poluição do ar na RMSP (CETESB, 2011) e na FIG. 4.3 são mostradas as emissões relativas por tipo de fonte.

TABELA 4.1 - Contribuição relativa das fontes de poluição do ar na RMSP

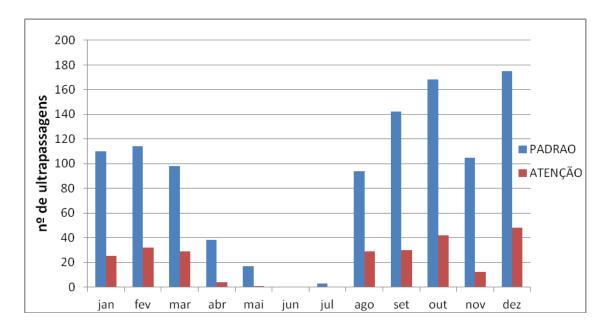
			Poluentes (%)			
Cate	goria	Combustível	СО	НС	NOx	MP ₁₀ ⁽¹⁾
		Gasolina	46.65	14.47	5.72	nd
Autor	nóveis	Etanol	8.6	4.13	1.37	nd
		Flex	13.27	6.81	2.46	nd
Evapo	orativa	-	-	25.59	-	-
	Leves		0.16	0.23	1.77	1.35
Caminhões	Médios	Diesel	0.81	1.15	8.74	6.55
	Pesados		2.92	3.36	32.00	15.90
Ônibus	Urbanos	Diesel	1.87	2.30	19.94	12.01
	Rodoviários		0.43	0.53	4.72	2.77
Motoc	cicletas	Gasolina	15.56	12.92	1.15	nd
		Flex	0.04	0.04	0.01	nd
Operação d	le Processo Ind	ustrial (2008)	2.6	13.29	18.31	10.00
Base de Combustível Líquido (2009)		uido (2009)		9.61		
Ressuspensão de Partículas		ırtículas	-	-	-	25.00
Aerossóis Secundários		ários	-	-	-	25.00
	Total		100.00	100.00	100.00	100.00

¹⁻ Contribuição conforme estudo de modelo receptor para partículas inaláveis. A contribuição dos veículos (40%) foi rateada entre os veículos a diesel de acordo com os dados de emissões disponíveis.


²⁻ Nd: não disponível Fonte – CETESB, 2011.

Fonte – CETESB, 2011.

FIGURA 4.3 - Emissões relativas por tipo de fonte na RMSP


Na FIG.4.4 são mostradas as emissões de material particulado pelos veículos pesados a diesel. Destacam-se os caminhões pesados e os ônibus urbanos, com 41% e 31% das emissões respectivamente.

Fonte – CETESB, 2011.

FIGURA 4.4 - Emissões relativas de material particulado pelos veículos pesados a diesel na RMSP

De acordo com CETESB (2011) na RMSP, durante os anos de 2006 a 2010, o número de ultrapassagens do nível de ozônio foi muito grande, como mostrado na FIG.4.5. Observa-se que o ozônio predomina especialmente a partir de setembro, quando começa a primavera e tem início a escassez de chuvas e nuvens, pois a luz solar é indispensável para a formação desse gás.

Fonte – CETESB, 2011.

FIGURA 4.5 – Número de ultrapassagens do padrão e de nível de atenção por mês (2006 a 2010) – RMSP

Na TAB 4.2 são mostrados os efeitos nocivos dos principais poluentes veiculares locais. Essa tabela não mostra os efeitos do ozônio, por esse não ser um produto direto da emissão, mas sim de reações químicas que envolvem esses poluentes, como os óxidos de nitrogênio e hidrocarbonetos, gerados pela queima do diesel (CETESB, 2011).

TABELA 4.2 - Efeitos nocivos dos principais poluentes veiculares locais

Poluente	Impacto
со	Atua no sangue reduzindo sua oxigenação, podendo causar morte após determinado período de exposição a altas concentrações.
NOx	Atua na formação de dióxido de nitrogênio, formação de névoa fotoquímica e chuva ácida. É um precursor do ozônio.
НС	Atua na formação de névoa fotoquímica e em compostos cancerígenos. É um precursor do ozônio.
MP	Pode penetrar nas defesas do organismo, atingir os alvéolos pulmonares e causar irritações, asma, bronquite e câncer de pulmão. Causa sujeira e degradação de imóveis próximos aos corredores de transporte.
SOx	Precursor do ozônio e formador da chuva ácida que degrada vegetação e imóveis, além de provocar uma série de problemas de saúde.

Fonte – CETESB, 2011.

4.2 Quantificação dos principais poluentes emitidos pela queima de diesel

Para se quantificar os principais poluentes gerados pelos ônibus a diesel na cidade de São Paulo são utilizadas duas metodologias. A primeira metodologia calcula as emissões dos principais compostos diretamente em função da quantidade de diesel consumido, enquanto que a segunda metodologia calcula as emissões em função da demanda pelo transporte público.

A primeira metodologia pode ser considerada mais exata, pois depende apenas da quantidade de diesel consumida, que conforme descrito no Capítulo 3 é de 386.610.000 L/ano. Segundo Oliveira (2011) a emissão de cada poluente na queima de óleo diesel pode ser quantificada em função da quantidade de óleo queimado. Na TAB. 4.3 são apresentados os índices de emissão dos principais poluentes causadores tanto de efeito estufa (GEE) como de efeito local (GEL), gerados na queima do diesel como combustível em gramas por MJ (Oliveira, 2011).

TABELA 4.3 – Índice de emissões dos poluentes gerados pela queima de óleo diesel

Efeitos	Poluente	Diesel (g/MJ)
	CO ₂	74,06670
GEE	CH ₄	0,00500
	N ₂ O	0,00060
	HC	0,20000
	CO	1,00000
GEL	NO _X	0,80000
	SO _X	0,31389
	MP	0,02778

Fonte - OLIVEIRA . 2011.

Com os dados da TAB.4.3 pode-se calcular a emissão de poluentes de acordo com a Equação 4.2.

$$E = (C P_{cal} E_{gás})/10^{15} (4.2)$$

onde E é a emissão do poluente em Mt/ano, C é o consumo anual de diesel pela frota de ônibus da cidade de São Paulo (386.610.000 L/ano), P_{cal} é o poder calorífico do diesel (38.376,21 MJ/m³) e $E_{g\acute{a}s}$ é o índice de emissão dos poluentes provenientes da queima do diesel. Os resultados obtidos são mostrados na TAB. 4.4.

TABELA 4.4 – Emissão de poluentes pela frota de ônibus a diesel na cidade de São Paulo

Tipo de efeitos	Poluente	Emissão (Mt/ano)
	CO ₂	1,099
GEE	CH ₄	7,418x10 ⁻⁵
	N ₂ O	8,902x10 ⁻⁶
	HC	2,970x10 ⁻³
	СО	1,484x10 ⁻²
GEL	NO _X	1,187x10 ⁻²
	SO _X	4,657x10 ⁻³
	MP	4,121x10 ⁻⁴

O Laboratório de Sistemas de Transportes da Universidade Federal do Rio Grande do Sul (LASTRAN) desenvolveu uma metodologia para estimar a quantidade de poluentes emitidos por ano pela queima de combustíveis fósseis em cidades tendo como base a mobilidade urbana (Da Rosa, 2008). Essa metodologia leva em consideração a população urbana e a distância média anual viajada por cada habitante no transporte coletivo. A distância total viajada

por habitante por ano, expressa em passageiros*km (pass.km), é multiplicada pelas taxas de emissão dos poluentes gerados pelo uso do transporte coletivo, resultando na quantidade total emitida ao longo de um ano.

A unidade pass.km é uma medida de demanda de transporte, assim, por exemplo, 10 pass.km significa 1 pessoa se movendo 10km ou 10 pessoas se movendo 1km. O modelo utilizado nessa metodologia é expresso pela equação 4.3 (Da Rosa, 2008).

$$Q = (P d_{te} q_{tc})/10^{12} (4.3)$$

onde Q é a quantidade de poluente emitido (em mega tonelada por ano), P é o número de passageiros que usam o transporte coletivo por dia, d_{te} é a distância média viajada por habitante no transporte coletivo (pass.km/hab.ano) e q_{tc} é a quantidade do poluente emitido para transportar um passageiro por um km (g de poluente/pass.km).

As emissões de ônibus a diesel por pass.km para os poluentes CO_2 , CO, HC, NOx e MP, de acordo com vários estudos e sintetizados por Da Rosa (2008) estão apresentadas na TAB. 4.5. Em razão de serem mais atuais e por serem mais representativos das condições brasileiras, nesse trabalho adota-se os valores de q_{tc} apresentados por ANTP (2009).

TABELA 4.5 - Emissões de poluentes por ônibus a diesel por pass.km

Fonte	CO ₂ (g/pass.km)	CO (g/pass.km)	NO _X (g/pass.km)	MP (g/pass.km)	HC (g/pass.km)
IEA (1999)	72,2	0,15	0,96	0,07	0,09
ANTP (2009)	73,9	0,85	0,62	0,03	0,13
Romilly (1999)	64,1	0,16	0,58	0,02	
EEA (2004)	66,1	0,29	0,92	0,04	

Fonte - Da Rosa, 2008.

Para calcular a quantidade de poluentes emitidos pela frota de ônibus na cidade de São Paulo consideram-se os dados apresentados no Capítulo 3 referentes ao transporte público na cidade. Dessa forma, tem-se que cerca de 6.257.177 pessoas utilizam diariamente o transporte coletivo de ônibus na cidade, ou seja, 55% de 11.376.685 habitantes. Para a mobilidade urbana considera-se o valor determinado por Lascala (2011) de 7 pass.km por habitante por dia, ou seja, por esta unidade de demanda de transporte público entende-se que cada passageiro viaja em média 7 km por dia, ou 2.555 km por ano. Portanto, o valor de d_{te} é de 2.555 pass.km/hab.ano. Aplicando a equação (4.3) com esses dados e as emissões por pass.km fornecidas na TAB. 4.5 por ANTP (2009) têm-se as emissões de poluentes pelos ônibus a diesel na cidade de São Paulo em mega toneladas por ano conforme apresentado na TAB. 4.6.

TABELA 4.6 - Emissões de poluentes na cidade de São Paulo calculada segundo a metodologia que considera a mobilidade urbana

CO ₂	CO	NOx	MP	HC
(MT/ano)	(MT/ano)	(MT/ano)	(MT/ano)	(MT/ano)
1,181	1,359x10 ⁻³	9,912x10 ⁻³	4.796x10 ⁻⁴	2,078x10 ⁻³

Na TAB. 4.7 são apresentados os resultados dos cálculos da emissão de poluentes na cidade de São Paulo pela frota de ônibus a diesel usando as duas metodologias. Na TAB. 4.7 é apresentada também a diferença porcentual entre as emissões de poluentes calculadas segundo as duas metodologias, tendo como referência a metodologia que considera emissões pela quantidade de diesel consumido.

Comparando-se os resultados dos cálculos segundo as duas metodologias observa-se que as duas fornecem valores de emissões de poluentes da mesma ordem de grandeza. Nesse trabalho adota-se os resultados calculados segundo a metodologia que considera emissão pelo consumo de diesel em razão de serem considerados mais exatos.

TABELA 4.7 – Emissão de poluentes pela frota de ônibus a diesel na cidade de São Paulo calculado de acordo com as duas metodologias utilizadas

Tipo de efeitos	Poluente	Emissão calculada pelo consumo de diesel (Mt/ano)	Emissão calculada pela mobilidade urbana (Mt/ano)	Diferença (%)
	CO ₂	1,099	1,181	7,5
GEE	CH ₄	7,418x10 ⁻⁵	-	-
	N ₂ O	8,902x10 ⁻⁶	-	-
	HC	2,970x10 ⁻³	2,078x10 ⁻³	-30,0
	СО	1,484x10 ⁻²	1,359x10 ⁻²	-8,4
GEL	NO _X	1,187x10 ⁻²	0,9912x10 ⁻²	-16,5
	SO _X	4,657x10 ⁻³	-	-
	MP	4,121x10 ⁻⁴	4,796x10 ⁻⁴	16,4

4.3 Valor econômico do ar degradado pelas emissão de poluentes

O valor econômico do ar atmosférico degradado pelas emissões de poluentes liberados pela queima de diesel nos ônibus urbanos na cidade de São Paulo é composto por duas parcelas. A primeira parcela considera o valor econômico da degradação do ar devido aos poluentes de efeito local e a segunda parcela considera a degradação do ar devido aos gases de efeito estufa.

4.3.1 Valor econômico do ar degradado pelos poluentes de efeitos locais

Para calcular o valor do ar degradado pela emissão de poluentes de efeito local são usados os custos diretos de poluição por tipo de poluente apresentados na TAB. 4.8. Esses custos são originados de um estudo feito pelo Instituto de Pesquisas Econômicas Aplicadas (IPEA) e pela Associação

Nacional de Transportes Públicos (ANTP) embasados em fontes internacionais e adaptados a realidade brasileira. Estes valores refletem os custos das sociedades europeias e norte-americanas, e na ausência de estudos específicos sobre as condições brasileiras, foram reduzidos segundo a relação aproximada das rendas *per capta* brasileira e norte americana (Lascala, 2011).

TABELA 4.8 – Custo direto da poluição do ar por tipo de poluente

Poluente	US\$/t
NOx	1.289,91
НС	1.312,95
СО	218,82
MP	1.048,05

Fonte - Lascala, 2011.

Multiplicando a quantidade de poluentes de efeito local emitidos, fornecidos na TAB. 4.4, com o custo da poluição por tonelada de cada poluente tem-se o valor da degradação do ar causada pelos poluentes de efeitos locais emitidos pelo consumo de diesel nos ônibus na cidade de São Paulo apresentados na TAB. 4.9.

TABELA 4.9 – *VERA* da poluição de efeito local causada pelo consumo de diesel nos ônibus da cidade de São Paulo

	Valor	Quantidade	VERA _{ar local}
Poluente	(US\$/t)	(toneladas/ano)	(US\$/ano)
NOx	1289,91	11.867	15.307.361,97
HC	1312,95	2.967	3.895.522,65
СО	218,82	14.837	3.246.632,34
MP	1048,05	412,1	431.901,40
		Total	22.881.418,36

Observa-se que devido à indisponibilidade de dados referentes ao custo da poluição provocada pelos poluentes óxidos de enxofre (SOx) não é possível estimar a parcela relativa ao *VERA* para este poluente.

Dos resultados apresentados na TAB. 4.9, pode-se verificar que o custo ambiental anual decorrente da emissão de poluentes de efeito local gerados pela frota de ônibus a diesel na cidade de São Paulo é de aproximadamente US\$ 23.000.000,00. Esse valor representa o *VERA_{ar local}* do diesel, que consiste na estimativa do custo ambiental da externalidade referente á poluição do ar causada pelos gases de efeito local gerados pelo consumo de diesel.

4.3.2 Valor econômico do ar degradado pelos gases de efeito estufa

Os gases de efeito estufa (GEE) são considerados poluentes globais, ou seja, são gases que quando expelidos para a atmosfera causam efeitos em todo o planeta, tal como, o aquecimento global. O principal GEE é o dióxido de carbono (CO₂), que serve como unidade de equivalência para os demais GEE (Carvalho, 2011).

Os veículos movidos a diesel emitem mais CO₂ por unidade de volume ou peso de combustível do que os demais veículos motorizados. Carvalho (2011) utiliza um fator de emissão médio de 2,6 kg de CO₂ para cada litro de diesel queimado, que somado com o valor médio de 0,5 kg de CO₂ emitidos para produzir e distribuir o combustível chega-se a uma taxa final de emissão em torno de 3,2 kg de CO₂ por litro de diesel. Carvalho (2011) comenta que existe certa variação para esse valor em função das premissas adotadas na caracterização do perfil da frota de veículos. Dessa forma, segundo Carvalho (2011) alguns trabalhos utilizam um valor final de 4 kg, enquanto outros utilizam valores de 2,4 kg de CO₂ por litro. O valor calculado no relatório da *Intergovernmental Panel on Ciimate Change* (IPCC, 2001) é de 2,67 kg de CO₂ por litro de diesel, obtido a partir de dados de emissões de veículos pesados europeus que se assemelham aos veículos brasileiros.

Para padronizar o valor de contribuição dos demais gases de efeito estufa para o aquecimento global foi criado pelo IPCC (IPCC, 2001) um índice chamado Potencial de Aquecimento Global (PAG) (ou *Global Warming Potential*). O PAG é uma medida relativa que compara os efeitos de diversos gases com os efeitos do CO₂, cujo potencial é definido como sendo igual a um. Dessa forma, o PAG representa o potencial que um quilograma de um determinado gás de efeito estufa possui para reter a radiação infravermelha (direta ou indiretamente) quando comparado com um quilograma de CO₂. O PAG é calculado considerando diferentes períodos de tempo (20, 100 e 500 anos) de forma a considerar o efeito do gás na atmosfera ao longo desse período de tempo (IPCC, 2001). A TAB 4.10 apresenta os valores do PAG fornecidos por IPCC (2001) para os diversos gases de efeito estufa.

TABELA 4.10 – Índice PAG dos poluentes de efeitos globais

Período de tempo	CO ₂	CH₄	N₂O	NO ₂
20 anos	1	62	275	30
100 anos	1	23	296	7
500 anos	1	7	156	2

Fonte – IPCC,2001

A denominação Carbono Equivalente é o valor utilizado na compra e venda do "direito de poluir" (IPCC, 2001). Assim, para se calcular o CO₂ equivalente de um determinado gás multiplica-se as quantidades em massa emitida por esse gás pelo valor da tabela. Para fins de análise, adota-se o período referente a 100 anos.

Utilizando a estimativa apresentada na TAB. 4.4 que fornece a emissão de 1,099 Mt de CO_2 , 74 toneladas de CH_4 e 8,9 toneladas de N_2O por ano na cidade de São Paulo pela frota de ônibus a diesel pelo índice PAG para cada um desses gases, tem-se um total de 1.103.136,4 toneladas de carbono equivalente.

O valor estabelecido como preço de compra para aquisições de Reduções Certificadas de Emissões depende dos fundos de financiamentos do mercado de carbono. Existem no mercados vários fundos disponíveis para investimento. O Fundo Holandês de Carbono (*The Netherlands Clean Development Mechanism Facility* – NCDMF) valora a tonelada de dióxido de carbono equivalente em U\$ 6,75 por tonelada de CO_{2eq} (Lascala 2011). Utilizando-se esse dado, estima-se então que 1.103.136,4 toneladas de carbono equivalente representa um valor de aproximadamente US\$ 7.500.000,00. Este valor é considerado como o *VERA_{ar estufa}* do diesel, isto é, o valor econômico da degradação do ar poluído pelos gases de efeito global gerados pelo consumo de diesel nos ônibus na cidade de São Paulo.

4.3.3 Valor econômico total do ar degradado pelas emissões totais de gases pelo diesel

O valor econômico do ar atmosférico degradado pelas emissões totais de poluentes liberados pela queima de diesel nos ônibus urbanos da cidade de São Paulo (*VERA*_{total}) é calculado pela equação 4.4.

$$VERA_{total} = VERA_{ar \, local} + VERA_{ar \, estufa} \tag{4.4}$$

O valor econômico de degradação do ar devido aos gases de efeito local (*VERA_{ar local}*), calculado no item 4.3.1, é de cerca de US\$ 23.000.000,00 e o valor econômico de degradação do ar devido aos gases de efeito estufa (*VERA_{ar estufa}*), calculado no item 4.3.2, é de cerca de US\$ 7.500.000,00. Assim, o *VERA_{total}* da poluição proveniente da frota de ônibus movida a diesel na cidade de São Paulo é de aproximadamente US\$ 30.500.000,00. Considerando

que a frota de ônibus da cidade tem 15.000 veículos, então, tem-se que o custo ambiental de um ônibus movido a diesel é de aproximadamente US\$ 2.000,00 por ano na cidade de São Paulo.

4.4 Cálculo das externalidades negativas na saúde da população

A poluição gerada pela queima de óleo diesel pelo transporte público, principalmente os materiais particulados, causa efeitos nocivos à saúde humana.

Os materiais particulados inaláveis são classificados segundo o tamanho de suas partículas. Assim, os MP $_{10}$ podem ser definidos de maneira simplificada como aqueles materiais particulados inaláveis cujo diâmetro aerodinâmico é menor que 10 μ m. As partículas inaláveis podem ainda ser classificadas como partículas inaláveis finas MP $_{2,5}$ (<2,5 μ m) e partículas inaláveis grossas (2,5 a 10 μ m). As partículas finas, devido ao seu tamanho diminuto podem atingir os alvéolos pulmonares, já as grossas ficam retidas na parte superior do sistema respiratório. Os MP $_{10}$ incluem as partículas finas e as grossas.

Os MP₁₀ são os principais poluentes causadores de riscos à saúde, Sendo que a sua concentração na atmosfera, pode causar tanto morbidades como mortalidades.

No inverno, as condições meteorológicas são mais desfavoráveis à dispersão e diluição dos poluentes na atmosfera. As concentrações mais altas dos poluentes, a exceção do ozônio, ocorrem, via de regra no período compreendido entre os meses de maio a setembro, devido à maior ocorrência de inversões térmicas e de calmarias climáticas (ventos fracos e baixos índices pluviométricos).

A TAB. 4.11 apresenta os padrões nacionais de qualidade de ar definidos pela Resolução do CONAMA nº 03 de 28/06/90 (MMA, 2013) e adotados pela CETESB. Observa-se que o limite máximo para a média anual

de concentração de materiais particuláveis, MP_{10} , permitido é de $50\mu g/m^3$, entretanto, a Organização Mundial de Saúde (OMS) adota como padrão $20\mu g/m^3$.

TABELA 4.11 – Padrões nacionais de qualidade do ar segundo Resolução do CONAMA Nº 03 de 28/06/90

Poluente	Tempo de amostragem	Padrão primário μg/m³	Padrão secundário µg/m³
Partículas totais	24 horas ¹	240	150
em suspensão	MGA ²	80	60
Materiais	24 horas ¹	150	150
particuláveis	MAA ³	50	50
Fumaca	24 horas ¹	150	100
Fumaça	MAA ³	60	40
Dióxido de enxofre	24 horas ¹	365	100
	MAA ³	60	40
Dióxido de	1 hora ¹	320	190
nitrogênio 	MAA ³	100	100
Monóxido de carbono	1 hora ¹	40.000	40.000
		35 ppm	35 ppm
	8 horas ¹	10.000	10.000
		9 ppm	9 ppm
Ozônio	1 hora ¹	160	160

^{1 -} Não deve ser excedido mais que uma vez ao ano.

^{2 -} Média geométrica anual.

^{3 -} Média aritmética anual.

Fonte – CETESB, 2011.

Segundo a CETESB (2011) a média anual de concentração de MP₁₀ na RMSP é de 37,53 µg/m³ e a estimativa de emissão total de MP₁₀ para o ano de 2011 era de 4.800 toneladas. A FIG. 4.6 mostra as concentrações médias anuais de MP₁₀ na RMSP no ano de 2011. Observa-se que em todas as estações de medição da RMSP as médias de classificação da qualidade do ar em 2011 estiveram acima da referência da OMS de 20µg/m³.

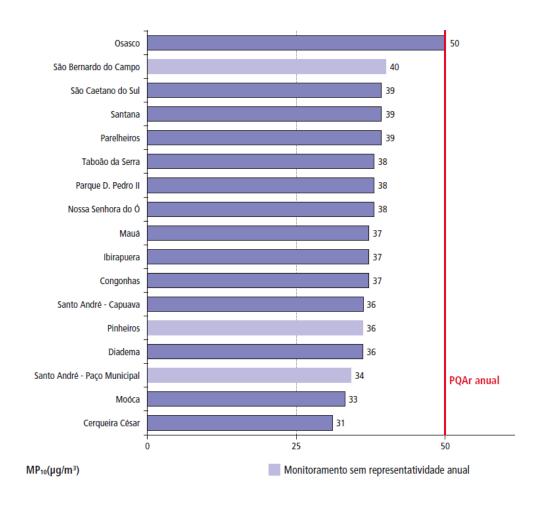


FIGURA 4.6 –Concentrações médias anuais de MP₁₀ em 2011 na RMSP

Conforme resultados da TAB. 4.4 a frota de ônibus a diesel da cidade de São Paulo é responsável pela emissão de 412,1 toneladas de MP₁₀, o que corresponde a 8,58 % das emissões da cidade de São Paulo. Deste modo, os ônibus a diesel da cidade de São Paulo são responsáveis pela concentração de aproximadamente 3,22 µg/m³.

Na TAB. 4.12 são apresentados os resultados de uma pesquisa feita por Lvovsky et al. (2000) para a dose-resposta na população causada por um aumento de 1 μ g/m³ na concentração média anual de MP₁₀. Assim, por exemplo, se a média anual de MP₁₀ aumentar 1μ g/m³ tem-se um aumento de 1,2 internações para cada 100.000 habitantes.

TABELA 4.12 – Função dose-resposta da poluição do ar causada por um aumento de 1 µg/m³ na concentração de MP₁₀ e SO₂

Efeitos na Saúde	MP ₁₀	SO ₂
Mortalidade (aumento percentual da taxa de mortalidade)	0,084	
Bronquite Crônica em uma população de 100.000 adultos	3,06	
Internações hospitalares por problemas respiratórios em uma população de 100.000 habitantes	1,2	
Ataques de asma em uma população de 100.000 asmáticos	3.260	
Consulta médica de pronto atendimento em uma população de 100.000 habitantes	23,54	
Dias de trabalho perdidos em uma população de 100.000 adultos	5.750	
Sintomas respiratórios em uma população de 100.000 adultos	18.300	
Tosse em uma população de 100.000 crianças		1,81
Dias com desconforto no peito em uma população de 100.000 adultos		1.000

Fonte - Lvovsky et al., 2000.

Lvovsky et al. (2000) desenvolveram uma metodologia que permite estimar o custo relacionado à mortalidade, internações hospitalares, consultas médicas e dias de trabalho perdidos na cidade de São Paulo em razão da poluição (presença de materiais inaláveis) causada pela frota de ônibus a diesel. Esse custo representa a morbidade evitada se o ar não fosse poluído. Segundo a metodologia de Lvovsky et al. (2000), esse cálculo é realizado utilizando os dados apresentados na TAB. 4.12 e a equação 4.5. A equação

4.5 calcula as variações na saúde em uma população exposta a um determinado poluente presente no ar.

$$\Delta H = b \, \Delta A \, P \tag{4.5}$$

onde ΔH é o impacto na saúde da população por ano, b é dose-resposta nos efeitos da saúde por exposição a um determinado poluente por ano, P é a população exposta a esse poluente e ΔA é a variação da concentração do poluente no ambiente.

O valor de 1,2 internações hospitalares por problemas respiratórios em uma população de 100.000 habitantes, apresentado na TAB. 4.2, significa que para cada aumento de 1 μg/m³ na concentração de MP₁₀ no ar ocorrem em média 0,000012 internações por problemas respiratórios por habitante. Como a queima de diesel pela frota de ônibus na cidade de São Paulo provoca um aumento na concentração de MP₁₀ no ar de 3,22 μg/m³ e a população exposta é a da cidade de São Paulo, de aproximadamente 11.376.685 habitantes (IBGE, 2012), então, a morbidade evitada por problemas respiratórios é cerca de 440 internações por ano. Considerando o valor médio pago por internação hospitalar no Sistema Único de Saúde (SUS) de R\$ 1.409,84 (valor de dezembro de 2010 segundo SUS (2013)) tem-se um custo médio de R\$ 620.329,00 por ano (ou aproximadamente US\$ 282.000,00) para a saúde pública devido a problemas respiratórios causados pela inalação de MP₁₀ na cidade de São Paulo.

Os dias de trabalho perdidos, isto é, os dias em que as pessoas não puderam comparecer aos seus trabalhos por problemas relacionados à saúde, representam obviamente um custo para a sociedade. A metodologia desenvolvida por Lvovsky et al. (2000) permite estimar o quanto desses dias de trabalho perdidos são decorrentes da concentração elevada de MP₁₀ no ar. Utilizando a equação 4.5 com *b* igual a 0,0575, ΔA igual a 3,22 μg/m³ e considerando a população da cidade, resulta em cerca de 2.106.394 dias de trabalho perdidos por ano. Segundo IBGE (2012) o salário médio em São Paulo era de R\$ 1.522,00 em novembro de 2011, ou seja, R\$ 51,00 por dia. Assim,

2.106.394 dias de trabalho perdidos correspondiam em 2012 a um custo social de cerca de R\$ 107.426.094,00 ou US\$ 48.830.043,00 por ano.

Considerando o aumento de consultas médicas de emergência, ainda segundo a TAB. 4.12 e a equação 4.5, tem-se 23,54 consultas médicas de pronto atendimento em 100.000 habitantes como consequência do aumento de 1 µg/m³ na concentração de MP₁0 no ar, o que corresponde a um aumento de 8.624 consultas médicas decorrentes da poluição causada pelos ônibus urbanos no período de um ano. Segundo SUS (2013) o valor médio de cada consulta de pronto atendimento é de R\$22,00, (incluindo consulta médica e procedimentos como inalação) correspondendo a um custo de R\$ 189.728,00 ou US\$ 86.240,00 por ano.

Segundo Lvovsky et al. (2000) a mortalidade evitada é expressa como sendo a variação porcentual da taxa de mortalidade. A taxa de mortalidade é expressa como sendo o número de óbitos por 1.000 habitantes. Na cidade de São Paulo a taxa de mortalidade é de aproximadamente 6,8 (DATASUS, 2010), representando 77.305 mortes em 2010. Pelo dado da Tabela 4.12 a taxa de mortalidade é diminuída em 0,084% a cada diminuição de 1 μg/m³ na concentração de MP₁₀ no ar. Tem-se, portanto, uma diminuição de 0,018 na taxa de mortalidade na cidade de São Paulo se fosse eliminada a emissão de MP₁₀ pelos ônibus a diesel. Isso corresponde a 208 mortes evitadas por ano com a redução de 3,22 μg/m³ na concentração de MP₁₀ no ar.

Os efeitos da poluição do ar na mortalidade podem ser avaliados usando o valor estatístico da vida. Essa estimativa pressupõe que a perda de uma vida precocemente representa um custo para a sociedade em um montante equivalente ao valor presente da produção futura que se esperaria de tal indivíduo. De acordo com esta teoria, o óbito precoce de crianças não ocasionaria uma perda de produção futura, pois não chegaram a ocorrer investimentos em educação e treinamento profissional. Assim, a inexistência destes gastos compensaria o sacrifício futuro da produção, na medida em que o salário representa o retorno destes investimentos.

Neste trabalho adotou-se um valor médio de US\$ 19.550,00 por indivíduo, independente da idade de óbito e gastos hospitalares de US\$ 5.647,00 por óbito, totalizando US\$ 25.197,00 por óbito (Motta e Mendes, 1994). Assim, 208 mortes por ano correspondem a um custo social de US\$ 5.240.976,00 por ano.

Efetuando-se a soma dos custos sociais resultantes das internações hospitalares, dias de trabalho perdidos, atendimentos de emergência e mortalidade, obtém-se o valor de cerca de US\$ 54.439.259,00 por ano devido à poluição dos ônibus a diesel na cidade de São Paulo, ou cerca de US\$ 3.630,00 por ônibus por ano.

4.5 Custo ambiental e social da poluição

Neste capítulo percebe-se que um ônibus movido a diesel apresenta um custo ambiental e social devido à emissão de poluentes de efeitos locais e globais. Calculou-se o custo ambiental dos gases de efeito local (CO, NO_x, MP e HC), o custo ambiental dos gases de efeito estufa (CO₂, CH₄ e N₂O) e o custo das externalidades negativas geradas pela emissão de MP₁₀, associadas à saúde e mortalidade da população. O custo social e ambiental de um ônibus é, portanto, segundo as estimativas calculadas nesse capítulo de cerca de US\$ 5.630,00 por ano. A frota de 15.000 veículos a diesel gera um custo anual estimado de US\$ 85.000.000,00. Ressalta-se que este custo deve ser considerado ao se analisar a viabilidade de substituir a frota de ônibus a diesel por ônibus a hidrogênio.

5 SISTEMA ELÉTRICO BRASILEIRO E DISPONIBILIDADE DE ENERGIA

Neste capítulo é analisada a disponibilidade de energia elétrica para produção de hidrogênio com o objetivo de substituir a frota de ônibus a diesel da cidade de São Paulo por ônibus a hidrogênio. Somente a energia gerada de forma não poluente é verificada, pois como foi visto nos capítulos anteriores pretende-se substituir os combustíveis fósseis por hidrogênio para evitar a emissão de gases poluentes gerados pelo diesel, portanto, não é considerada a energia das termoelétricas.

Assim, primeiramente é calculada a quantidade de energia elétrica necessária para produzir hidrogênio para a frota de ônibus da cidade de São Paulo. Então é apresentado o sistema elétrico brasileiro, o consumo de energia elétrica atual e as formas de geração de energia, a fim de que se possa verificar se existe disponibilidade de energia elétrica no Brasil.

A energia elétrica no Brasil pode ser encontrada em três setores do sistema elétrico, no setor de geração de energia, no setor de distribuição pelas concessionárias e no setor de comércio de energia.

Para se estudar a disponibilidade de energia no setor de geração é feita uma análise do comportamento das bacias hidrográficas, da energia afluente, da energia armazenada e da energia vertida turbinável nas principais usinas hidrelétricas do Brasil. Além disso, é realizado um estudo sobre a energia disponível nas usinas nucleares de Angra dos Reis. Todos os dados utilizados neste estudo são fornecidos pelo Operador Nacional do Sistema Elétrico (ONS).

O estudo da disponibilidade de energia na distribuição e comercialização de energia é feito por meio de um levantamento bibliográfico, incluindo artigos publicados pelas associações ligadas à distribuição e ao comércio de energia elétrica, como a Associação Brasileira de Distribuidores de Energia Elétrica (ABRADEE) e a Associação Nacional dos Consumidores de Energia (ANACE).

5.1 Energia necessária para produzir hidrogênio

De acordo com Espínola (2008) para produzir 1 kg de hidrogênio a 25° C e 1 atm (CNTP) são necessários, com 100% de eficiência, 39 kWh de energia elétrica e 8,9 litros de água. Contudo, as eficiências típicas dos eletrolisadores comerciais estão entre 56% a 73% correspondendo a 70,1 kWh/kg a 53,4 kWh/kg de hidrogênio produzido. De forma a realizar uma análise conservativa, neste trabalho é adotado um consumo de 70,1 kWh para produzir 1kg de hidrogênio nas CNTP.

Considerando o consumo de hidrogênio em rotas de congestionamento com paradas frequentes, de acordo com as informações sobre o ônibus a hidrogênio da EMTU que atualmente percorre a linha São Mateus – Jabaquara da cidade de São Paulo, o consumo de hidrogênio é de 45 kg por 300 km. Assim, para percorrer 1.478.250.000 km, total percorrido pelos ônibus da cidade de São Paulo em um ano, necessita-se de 221.737.500 kg de hidrogênio ou seja, necessita-se de 15.543.800 MWh de energia por ano para produzir hidrogênio por eletrólise a fim de abastecer a frota de ônibus da cidade de São Paulo. Sendo que um ano possui 8.760 horas, necessita-se de uma potência de 1.774,4 MW para produção de hidrogênio para abastecer uma frota de 15.000 ônibus sem interrupção, ou seja, 0,118 MW por ônibus sem interrupção. Nota-se que o consumo dos ônibus a diesel de 4 km/L equivale a um consumo de cerca de 21 kg a cada 100 km. Assim, considerando o poder calorífico do diesel (43 MJ/kg) e o poder calorífico do hidrogênio (118 MJ/kg), está sendo considerado que o gasto energético do ônibus a hidrogênio é cerca de duas vezes maior que o do ônibus a diesel. Essa diferença provavelmente é decorrente do ar condicionado presente no ônibus a hidrogênio, o que não existe nos atuais ônibus a diesel da frota da cidade de São Paulo.

5.2 Sistema elétrico brasileiro

Ao se estudar o funcionamento do sistema elétrico atual percebe-se a complexidade das relações que envolvem os setores de geração, transmissão, distribuição e comercialização da energia, além dos interesses econômicos e políticos que permeiam este setor.

Ramalho (2002) fez uma análise das características técnicas e comerciais do mercado brasileiro de energia elétrica, afirmando que até a metade da década de 90, o setor elétrico era composto por grandes empresas estatais, passando então pela privatização das empresas, que levou a uma radical transformação em sua estrutura. A privatização teve como consequência o fracionamento do sistema em quatro grandes blocos: geração, transmissão, distribuição e comercialização. Além disso, a privatização instituiu a competição nos segmentos de geração e comercialização e manteve a estrutura de integralização da transmissão.

Entre 2003 e 2004 o governo federal lançou as bases de um novo modelo para o Setor Elétrico Brasileiro (SEB). Em termos institucionais, o novo modelo definiu a criação da Empresa de Pesquisa Energética (EPE), que é responsável pelo planejamento do setor elétrico em longo prazo, a criação do Comitê de Monitoramento do Setor Elétrico (CMSE), cuja função é avaliar permanentemente a segurança do suprimento de energia elétrica, e a criação da Câmara de Comercialização de Energia Elétrica (CCEE), cuja função é dar continuidade às atividades do Mercado Atacadista de Energia (MAE), que tem a função de comercializar a energia elétrica no Sistema Interligado. Além disso, outras alterações importantes incluíram a definição do exercício do Poder Concedente ao Ministério de Minas e Energia (MME) e a ampliação da autonomia do Operador Nacional do Sistema Elétrico (ONS).

Em relação à comercialização de energia, foram instituídos dois ambientes para celebrar contratos de compra e venda: o Ambiente de Contratação Regulada (ACR), do qual participam agentes de geração e de distribuição de energia; e o Ambiente de Contratação Livre (ACL), do qual

participam agentes de geração, comercializadores, importadores e exportadores de energia e consumidores livres (MME, 2013).

O Operador Nacional do Sistema Elétrico (ONS) é o órgão responsável pela coordenação e controle da operação das instalações de geração e transmissão de energia elétrica no Sistema Interligado Nacional (SIN), sob a fiscalização e regulação da Agência Nacional de Energia Elétrica (ANEEL). O ONS desenvolve uma série de estudos e ações a serem exercidas sobre o sistema e seus agentes para manejar o estoque de energia de forma a garantir a segurança do suprimento contínuo em todo o País. O ONS é constituído por membros associados e membros participantes, que são empresas de geração, transmissão, distribuição e consumidores livres de grande porte. Também participam importadores e exportadores de energia, além do Ministério de Minas e Energia (MME) (ONS, 2013).

O Sistema Interligado Nacional (SIN) é um sistema que integra o fornecimento da energia gerada pelas empresas das regiões sul, sudeste, centro-oeste e parte da região norte. O SIN faz parte do sistema de produção e transmissão de energia elétrica do Brasil, porém, apenas 3,4% da capacidade de produção de eletricidade do país encontram-se fora do SIN, localizada em pequenos sistemas isolados principalmente na região amazônica.

A TAB. 5.1 mostra as mudanças que ocorreram na estrutura e regulamentação do Sistema Elétrico Brasileiro desde 1995.

Em 2011 a geração de energia do SIN foi de 493.761.860 GWh, incluindo a parcela de Itaipu. A TAB. 5.2 e a FIG. 5.1 mostram que no Brasil a energia hidrelétrica predomina e responde por mais de 90% da geração de energia do sistema interligado.

TABELA 5.1 – Mudanças no setor elétrico brasileiro

Modelo Antigo (até 1995)	Modelo de Livre Mercado (1995 a 2003)	Novo Modelo (2004)
Financiamento através de	Financiamento através de	Financiamento através de
recursos públicos	recursos públicos e privados	recursos públicos e privados
Empresas verticalizadas	Empresas divididas por atividade: geração, transmissão, distribuição e comercialização.	Empresas divididas por atividade: geração, transmissão, distribuição, comercialização, importação e exportação.
Empresas	Abertura e ênfase na	Convivência entre empresas
predominantemente estatais	privatização das empresas	estatais e privadas
Monopólios - competição inexistente	Competição na geração e comercialização	Competição na geração e comercialização
Consumidores cativos	Consumidores livres e cativos	Consumidores livres e cativos
Tarifas reguladas em todos os segmentos	Preços livremente negociados na geração e comercialização	No ambiente livre: preços livremente negociados na geração e comercialização. No ambiente regulado: leilão e licitação pela menor tarifa
Mercado regulado	Mercado livre	Convivência entre mercados livre e regulado
Planejamento determinativo - Grupo coordenador do Planejamento dos Sistemas Elétricos (GCPS)	Planejamento indicativo pelo Conselho Nacional de Política Energética (CNPE)	Planejamento pela Empresa de Pesquisa Energética (EPE)
Sobras e déficits do balanço energético rateado entre compradores	Sobras e déficits do balanço energético liquidados no MAE	Sobras e déficits do balanço energético liquidados na CCEE. Mecanismo de compensação de sobras e déficits (MCSD) para as distribuidoras.

TABELA 5.2 – Geração de energia do SIN (dados de janeiro/2011 a dezembro/2011)

Tipo de Usina	Geração	o Total	Geração Térmica
	(GWh)	(%)	(%)
Hidráulica	450.233.052	91,18	-
Nuclear	15.644.251	3,17	37,58
Gás	11.775.167	2,38	28,28
Carvão	5.663.579	1,15	13.60
Óleo	4.759.186	0,96	11,43
Biomassa	3.792.244	0,77	9,11
Eólica	1.894.381	0,38	-
Total térmicas	41.634.427	8,43	100,0
Total do SIN	493.761.860	100,0	-

Fonte - ANEEL, 2011.

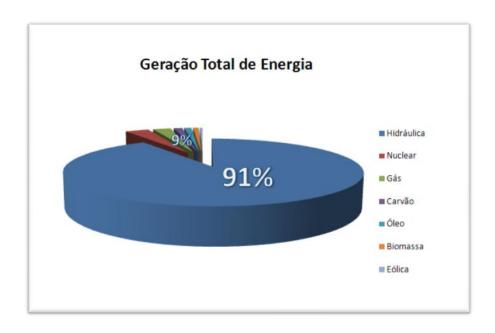


FIGURA 5.1 – Geração total de energia no SIN em 2011.

Observa-se que no Brasil pela predominância de usinas hidrelétricas, a operação do sistema elétrico depende de quanto e onde chove no país, ou seja, da natureza. A vazão dos rios varia nas estações do ano e períodos secos ocorrem em ciclos de cinco a dez anos.

Quanto à energia nuclear, observa-se que a geração de eletricidade no Brasil por meio das centrais nucleares não é motivada pelo esgotamento do potencial hídrico, mas para fazer frente aos riscos hidrológicos. Além disso, o Brasil possui uma das maiores reservas mundiais de urânio e o domínio do conhecimento do ciclo completo de fabricação do combustível nuclear, o que justifica os investimentos nesta área.

Partindo-se da hipótese de que existe uma disponibilidade de energia elétrica no Brasil que pode ser utilizada para a produção de hidrogênio, as próximas seções analisam esta disponibilidade de energia elétrica tanto nas usinas geradoras, como nas distribuidoras de energia (concessionárias) e no mercado livre de energia. Essas "sobras" de energia podem ser utilizadas para fabricar hidrogênio pelo processo de eletrólise. Nota-se que fabricar hidrogênio pode ser considerado uma forma de se armazenar essa energia disponível.

5.3 Consumo

O consumo ou demanda total de energia elétrica no SIN utilizado neste trabalho é considerado como sendo a somatória das cargas de demanda do sistema. Na TAB 5.3 e na FIG. 5.2 é mostrada a carga de demanda no SIN em MW médio (MWmed), mês a mês, para os anos de 2009 a 2012. A carga de demanda mostrada é a potência elétrica média solicitada pelo sistema elétrico durante o mês. Observa-se que a unidade MWmed refere-se a uma unidade de energia convencionada, expressa pelo valor médio da potência ativa, que multiplicada pelo intervalo de tempo considerado define a energia ativa consumida nesse mesmo intervalo.

Pelos dados apresentados na TAB. 5.3 e na FIG. 5.2 observa-se que a demanda de energia elétrica no país cresceu durante os anos de 2009 a 2012 cerca de 5% por ano. Além disso, pode-se observar que o consumo de energia elétrica aumenta nos períodos de calor em razão do consumo de energia no setor residencial e comercial aumentar devido à utilização de equipamentos de ar condicionado (ONS, 2013).

TABELA 5.3 – Carga de demanda do SIN em MWmed nos anos de 2009 a 2012

	2009	2010	2011	2012
Jan	61131.09	66766.46	70461.07	71701.02
Fev	62614.18	70478.14	70661.29	76261.88
Mar	64810.32	69675.31	68780.28	75340.37
Abr	61510.25	65477.85	68993.57	72883.31
Mai	62430.50	65448.27	67014.48	69908.78
Jun	61035.39	64737.02	66268.20	69752.69
Jul	61511.67	64718.64	66533.82	68280.90
Ago	62063.73	65578.12	68542.03	68068.43
Set	62536.23	65572.02	69257.63	72524.36
Out	62031.53	65005.52	68665.91	75124.05
Nov	67227.00	68083.60	69957.76	72140.78
Dez	65845.00	68823.30	71135.29	76028.66

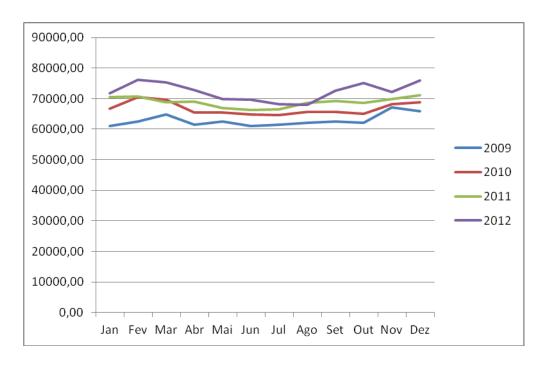
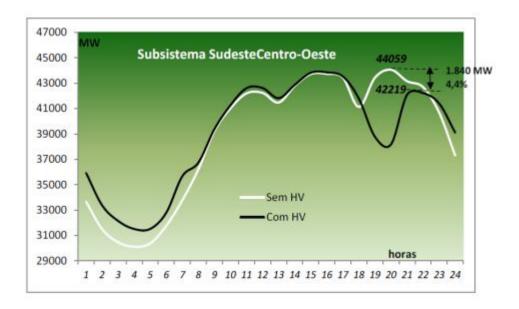



FIGURA 5.2 – Carga de demanda do SIN (Mwmed) nos anos de 2009 a 2012

Observa-se também que a carga de demanda varia em função do horário durante o dia. A FIG.5.3 ilustra a variação da demanda durante os horários do dia, com horário de verão e sem horário de verão. O horário de verão tem como objetivo principal reduzir a demanda do SIN no período de ponta. Observa-se que em horários de pico a carga de demanda chega a 44.059 MW (sem horário de verão) às 20 horas no subsistema sudeste centro-oeste, enquanto que a carga de demanda é de aproximadamente 30.000 MW (sem horário de verão) às 4 horas da manhã. Neste horário tem-se uma diferença de 11.059 MW no sistema elétrico, lembrando que, seria necessário um total de 1.774,4 MW sem interrupção para abastecer a frota de 15.000 ônibus, e se o hidrogênio fosse produzido somente nos horários entre 23 e 7 horas da manhã, ou seja, durante 8 horas por dia então seria necessária uma potência de 5.323,2 MW.

Pela FIG. 5.3 observa-se que uma potência de 5.323,2 MW, em princípio, está disponível no SIN durante o horário de baixa demanda de energia. Contudo, ressalta-se que o uso dessa energia pode causar uma diminuição dos níveis dos reservatórios das usinas hidrelétricas, provocando ao

longo do ano uma diminuição da energia armazenada no sistema e, assim, uma diminuição da energia disponível.

Fonte -ONS, 2013.

FIGURA 5.3 – Demanda do subsistema SE/CE por hora em MW.

5.4 Geração e disponibilidade de energia

Nesta seção é estudada a geração e a disponibilidade de energia elétrica nas usinas eólicas, nucleares e hidrelétricas que são as formas de geração de energia elétrica que não emitem poluentes.

5.4.1 Energia elétrica eólica

A energia eólica tem ganhado importância no Brasil como sendo uma alternativa viável para os períodos de seca através da complementaridade entre os regimes naturais relacionados aos períodos de vento e chuva. Esta complementaridade pode ser observada na TAB.5.4 e na FIG. 5.4 que mostram o crescente desenvolvimento do fornecimento de energia pelas usinas eólicas e o aumento da participação no SIN, principalmente durante os períodos de

seca (inverno e primavera) em que a energia hidrelétrica diminui sua participação no sistema. A energia eólica é importante, por se tratar de uma fonte renovável, limpa e em grande potencial de expansão no Brasil.

TABELA 5.4 – Geração de energia eólica do SIN em MWmed

Geração d	e Energia -	Eólica	MWmed	
	2010	2011	2012	
Jan	110.72	95.29	354.99	
Fev	163.40	94.57	265.44	
Mar	146.06	146.06 101.62		
Abr	105.73	59.29	256.89	
Mai	140.73	88.84	289.32	
Jun	151.03	156.96	290.25	
Jul	145.81	201.79	380.88	
Ago	207.13	322.32	456.01	
Set	268.29	340.94	494.05	
Out	191.09	352.65	445.10	
Nov	219.35	408.91	412.03	
Dez	168.19	374.39	476.69	

FIGURA 5.4 – Geração de energia eólica em MW nos anos de 2010, 2011 e 2012

Segundo dados da ANEEL (2013) 48 projetos de usinas eólicas localizados na região Nordeste, que somam 1.158 MW, estão prontos para gerar e disponibilizar energia elétrica ao sistema.

5.4.2 Energia elétrica nuclear

De maneira semelhante à energia eólica, a energia nuclear também tem feito frente a complementaridade do fornecimento de energia hidrelétrica nos períodos de seca. O Brasil conta com a Central Nuclear Almirante Álvaro Alberto, localizada no estado do Rio de Janeiro, que é formada pelo conjunto das usinas nucleares Angra 1, Angra 2 e Angra 3, esta última, ainda em construção.

A usina de Angra 1 é do tipo PWR, onde o núcleo é refrigerado a água. Em 1982 Angra 1 foi conectada à rede pela primeira vez e iniciou sua operação comercial em 1985. A potência elétrica nominal de Angra 1 é 640 MW. A usina de Angra 2 é resultado de um acordo nuclear entre o Brasil e a Alemanha. Angra 2 opera com um reator alemão Siemens/KWU (atual Areva NP) cuja potência elétrica nominal é 1.350 MW. A usina de Angra 3 esteve com as obras paralisadas durante alguns anos e em 2007 sua construção foi retomada. Angra 3 é praticamente uma réplica de Angra 2, incorporando os avanços tecnológicos ocorridos desde a construção desta, e está prevista para gerar 1.405 MW.

A geração de energia nuclear durante o período de 2010 a 2012 é mostrada nas FIG. 5.5 a 5.7.

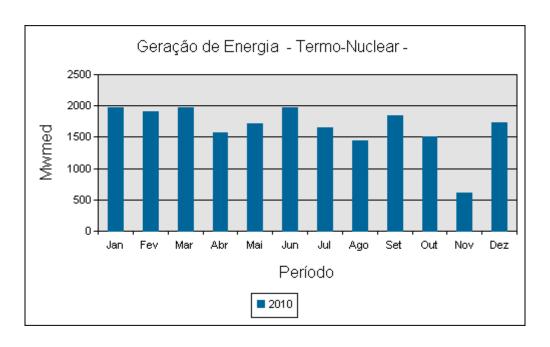


FIGURA 5.5 – Geração de energia nuclear no ano de 2010

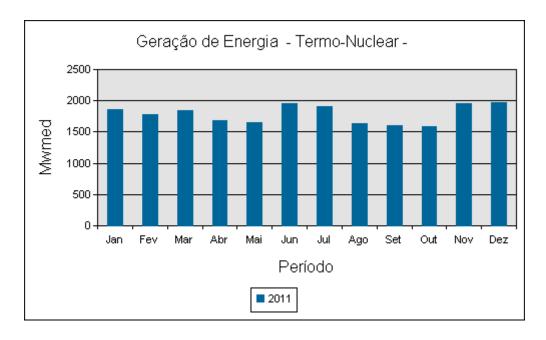


FIGURA 5.6 - Geração de energia nuclear no ano de 2011

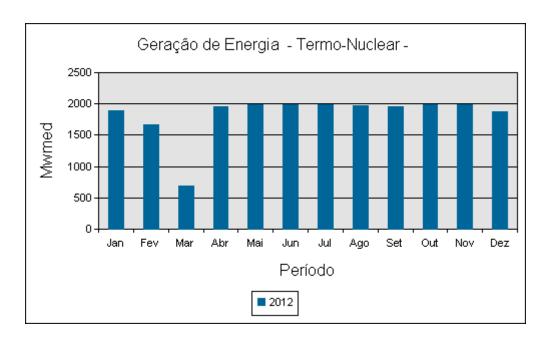


FIGURA 5.7 – Geração de energia nuclear no ano de 2012

A análise destes dados mostra que as usinas nucleares de Angra 1 e Angra 2 que possuem uma capacidade total de 1.990 MW, sendo 640 MW de Angra I e 1350 MW de Angra 2, não operaram com capacidade máxima.

A TAB. 5.5 e a FIG. 5.8 mostram a geração de energia nuclear total nas usinas nos anos de 2010, 2011 e 2012. Excetuando-se os casos de paradas programadas, como por exemplo, no mês de março de 2012 quando a usina de Angra 2 foi desligada para o reabastecimento de combustível, observa-se que as usinas nucleares apresentam uma disponibilidade de energia que pode ser utilizada na produção de hidrogênio por meio de energia elétrica no SIN. A TAB. 5.6 mostra essa disponibilidade de energia nuclear nos anos de 2010 a 2012.

TABELA 5.5 – Geração de energia nuclear do SIN em MWmed

Geração d	e Energia -	Nuclear -	MWmed	
	2010		2012	
Jan	1967.27	1852.62	1894.79	
Fev	1901.43	1779.12	1665.69	
Mar	Mar 1968.70		689.38	
Abr	1569.84	1679.53	1953.84	
Mai	Mai 1713.73		1984.62	
Jun	1979.07	1962.02	1979.97	
Jul	Jul 1643.38		1984.40	
Ago	1441.80	1642.39	1974.09	
Set	1850.45	1601.02	1949.70	
Out	Out 1512.64		1988.32	
Nov	Nov 603.38		1984.27	
Dez	1732.96	1978.33	1869.75	

FIGURA 5.8 – Geração de energia nuclear em MW nos anos de 2010, 2011 e 2012

TABELA 5.6 – Disponibilidade de energia nuclear do SIN em MWmed

Disponibilidade de energia -		Nuclear -	MWmed
	2010	2011	2012
Jan	22.73	137.38	95.21
Fev	88.57	210.88	324.31
Mar	21.30	144.10	1300.62
Abr	420.16	310.47	36.16
Mai	276.27	340.66	5.38
Jun	10.93	27.98	10.03
Jul	346.62	77.45	5.60
Ago	548.20	347.61	15.91
Set	139.55	388.98	40.30
Out	477.36	399.75	1.68
Nov	1386.62	31.97	5.73
Dez	257.04	11.67	120.25

5.4.3 Energia hidrelétrica

Conforme visto anteriormente, 91 % do fornecimento total de energia elétrica do SIN é proveniente das usinas hidrelétricas. A TAB 5.7 e a FIG.5.9 mostram a potência gerada pelas usinas hidrelétricas do sistema a cada mês nos anos de 2010, 2011 e 2012. Observa-se pela FiG. 5.9 que a geração de energia hidrelétrica não tem permanecido constante. Em 2012 a geração de energia hidrelétrica foi menor que em 2011, durante alguns meses, em razão de um período maior de seca.

TABELA 5.7 – Geração de energia hidrelétrica do SIN em MWmed

Geração de energia -		Hidráulica -	MWmed
	2010	2011	2012
Jan	50519.52	52128.16	53248.63
Fev	52647.65	54567.39	56484.95
Mar	52821.46	52747.46	57261.83
Abr	50048.80	52458.10	51277.66
Mai	48052.30	50003.04	48905.08
Jun	45993.57	48670.04	49199.27
Jul	47508.52	49362.85	49720.28
Ago	45567.63	51904.43	50472.62
Set	45053.00	51829.94	47864.80
Out	45734.49	50778.16	47449.98
Nov	46617.00	50834.00	44080.08
Dez	48920.55	51723.02	46855.46

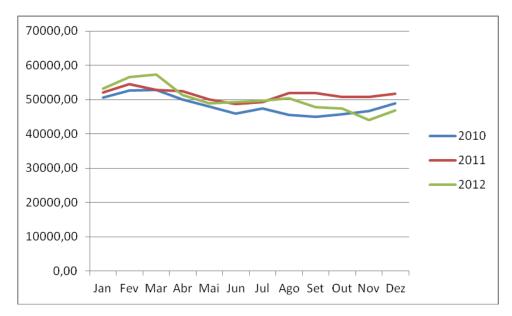
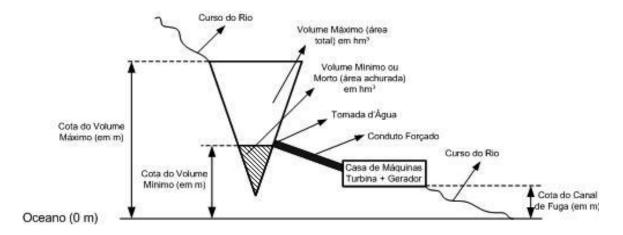


FIGURA 5.9 – Geração de energia hidráulica em MW nos anos de 2010, 2011 e 2012

Ao se pretender utilizar a energia elétrica disponível para produção de hidrogênio, faz-se necessário um estudo do comportamento das bacias hidrográficas, utilizando-se os dados de energia armazenada, energia natural afluente e energia vertida turbinável descritos a seguir.


5.4.3.1 Energia armazenada e energia natural afluente

A capacidade de armazenamento de água ou volume útil de uma usina hidrelétrica é calculada por meio do volume mínimo e do volume máximo do reservatório da usina. O volume mínimo, ou volume morto, corresponde à menor quantidade de água que deve estar armazenada num determinado reservatório e, ainda assim, a usina preserva a sua capacidade de geração. Se o volume de água armazenado no reservatório for inferior ao volume mínimo, a usina não é capaz de gerar energia (Marcato, 2011).

O volume máximo corresponde à quantidade total de água que pode ser armazenada no reservatório incluindo o volume mínimo. O volume útil do reservatório (V_u) é calculado a partir da equação 5.1, onde V_{Max} é o volume máximo do reservatório e V_{Min} é o volume mínimo do reservatório.

$$V_u = V_{Max} - V_{Min} \tag{5.1}$$

Tanto para o volume máximo, como para o volume mínimo, têm-se as cotas de nível de água relacionadas. Essas cotas são as diferenças verticais em metros entre a superfície do reservatório e a superfície do oceano. A diferença de altura entre a superfície do leito do rio imediatamente após a saída da turbina e a superfície do oceano é denominada cota de canal de fuga. A FiG. 5.10 mostra um esquema das principais variáveis de um aproveitamento hidrelétrico de uma usina, as cotas de volume, a cota de fuga e os volumes máximo e mínimo.

Fonte -MARCATO, 2011.

FIGURA 5.10 – Esquema do aproveitamento hidrelétrico

A energia armazenada (EAr) é a quantidade de energia associada a um reservatório que depende da quantidade de água armazenada. Ao somar a energia armazenada máxima à energia hidrelétrica natural afluente obtém-se a capacidade máxima total de geração de uma usina hidrelétrica.

A vazão natural afluente de uma usina hidrelétrica é a vazão considerando o rio na sua condição natural, ou seja, imaginando que não existe nenhum reservatório capaz de regularizar nenhum ponto do rio. A vazão natural afluente é responsável pela geração da energia natural afluente (ENA) que é a energia que se obtém sem se utilizar o reservatório.

5.4.3.2 Volume de água nos reservatórios

O volume de água armazenado no reservatório é importante para suprir a demanda de água em um período seco. Quando há um período de seca, os rios perdem volume e o nível do reservatório cai, diminuindo a força da queda d'água. Essa capacidade de armazenamento funciona também como uma reserva de energia.

Para analisar o comportamento da produção de energia hidrelétrica no SIN calculou-se também o volume de água armazenada nos reservatórios mês a mês, para os anos de 2009 a 2012 das principais usinas brasileiras. O Brasil possui 198 usinas hidrelétricas incluindo as pequenas centrais hidrelétricas. Os principais dados destas usinas encontram-se no Apêndice A deste trabalho. Para esta análise escolheu-se as 21 usinas com maior capacidade de produção de energia e com reservatório de armazenamento.

A TAB.5.8 apresenta os dados dos reservatórios de água das usinas estudadas, incluindo volume máximo, volume mínimo, cota máxima e cota mínima, fornecidos pelo ONS (2011). Nesta tabela calcula-se o volume útil de cada usina de acordo com a equação 5.1.

TABELA 5.8 – Dados de referência das principais usinas do SIN

Usina	Sistema	Vol.Máx.(hm³)	Vol.min. (hm³)	Cota Máx.(m)	Cota min.(m)	Vol.útil (hm³)
A. VERMELHA	1 - Sudeste	11025.00	5856.00	383.30	373.30	5169.00
BARRA BONITA	1 - Sudeste	3135.00	569.00	451.50	439.50	2566.00
CAPIVARA	1 - Sudeste	10540.00	4816.00	334.00	321.00	5724.00
CHAVANTES	1 - Sudeste	8795.00	5754.00	474.00	465.23	3041.00
EMBORCACAO	1 - Sudeste	17725.00	4669.00	661.00	615.00	13056.00
FURNAS	1 - Sudeste	22950.00	5733.00	768.00	750.00	17217.00
G.B. MUNHOZ	2 - Sul	5779.00	1974.00	742.00	700.00	3805.00
I. SOLTEIRA	1 - Sudeste	21060.00	8232.00	328.00	314.00	12828.00
ITAPARICA	3 - Nordeste	10782.00	7234.00	304.00	299.00	3548.00
ITUMBIARA	1 - Sudeste	17027.00	4573.00	520.00	495.00	12454.00
M. DE MORAES	1 - Sudeste	4040.00	1540.00	666.12	653.12	2500.00
MARIMBONDO	1 - Sudeste	6150.00	890.00	446.30	426.00	5260.00
NOVA PONTE	1 - Sudeste	12792.00	2412.00	815.00	775.50	10380.00
PROMISSAO	1 - Sudeste	7408.00	5280.00	384.00	379.70	2128.00
SAO SIMAO	1 - Sudeste	12540.00	7000.00	401.00	390.50	5540.00
SERRA MESA	1 - Sudeste	54400.00	11150.00	460.00	417.30	43250.00
SLT.SANTIAGO	2 - Sul	6775.00	2662.00	506.00	481.00	4113.00
SOBRADINHO	3 - Nordeste	34116.00	5447.00	392.50	380.50	28669.00
TRES IRMAOS	1 - Sudeste	13372.00	9923.00	328.00	323.00	3449.00
TRES MARIAS	1 - Sudeste	19528.00	4250.00	572.50	549.20	15278.00
TUCURUI	4 - Norte	50275.00	11293.00	74.00	51.60	38982.00

O ONS (2013) fornece a variação em porcentagem do volume de água dos reservatórios de cada uma das 21 usinas estudadas, nos anos de 2009, 2010, 2011 e 2012, mês a mês. A partir do volume útil calculado na TAB. 5.8 obteve-se o volume de água armazenado mensalmente em cada usina. Como

exemplo do trabalho realizado pode-se observar a TAB. 5.9 que apresenta a variação percentual mensal do volume de água da Usina de Furnas para os anos em estudo. Considerando o volume útil de Furnas, 17.217 hm³, conforme calculado na TAB. 5.8, e a porcentagem de volume de água mostrada na TAB.5.9, calculou-se o volume de água em hm³ mensalmente para os anos de 2009 a 2012, como mostrado na TAB. 5 10. Por ser um trabalho muito extenso, os dados para as outras usinas encontram-se no Apêndice A deste trabalho. Observa-se que a Usina de Três Irmãos, apesar de ser a maior usina hidrelétrica construída no Rio Tietê, não foi considerada nesta análise por falta de dados.

TABELA 5.9 – Volume de água do reservatório da Usina de Furnas – 2009 a 2012 em % do volume útil

Furnas	2009	2010	2011	2012
Jan	96.40	94.02	91.34	94.10
Fev	97.46	94.10	95.50	94.84
Mar	99.26	98.36	98.12	89.68
Abr	98.85	96.89	99.02	84.24
Mai	98.28	93.78	99.10	78.66
Jun	95.50	87.63	94.02	77.08
Jul	91.10	80.54	89.45	71.08
Ago	86.37	71.29	81.45	60.94
Set	84.87	61.33	72.30	48.45
Out	84.95	53.13	66.34	28.10
Nov	81.97	52.20	59.03	15.96
Dez	91.10	58.11	71.44	12.35

TABELA 5.10– Volume de água do reservatório da usina de Furnas de 2009 a 2012 em hm³

	2009	2010	2011	2012
Jan	16597,19	16187,42	15726,01	16201,20
Fev	16779,69	16201,20	16442,24	16328,60
Mar	17089,59	16934,64	16893,32	15440,21
Abr	17019,00	16681,55	17048,27	14503,60
Mai	16920,87	16146,10	17062,05	13542,89
Jun	16442,24	15087,26	16187,42	13270,86
Jul	15684,69	13866,57	15400,61	12237,84
Ago	14870,32	12274,00	14023,25	10492,04
Set	14612,07	10559,19	12447,89	8341,64
Out	14625,84	9147,39	11421,76	4837,98
Nov	14112,77	8987,27	10163,20	2747,83
Dez	15684,69	10004,80	12299,82	2126,30

Após o cálculo da variação do volume de água em hm³ para todas as 21 usinas consideradas, foi encontrada a somatória de todos os volumes de água dos reservatórios e calculada a porcentagem sobre o total, resultando na TAB. 5.11 e na FIG. 5.11. Estes resultados permitem concluir que a situação do armazenamento de água nos reservatórios encontra-se acima de 40 % em quase todos os meses do ano. A situação apresentou-se favorável durante todo o ano de 2009 e 2011. Entretanto, em alguns meses de 2010 e 2012 os reservatórios apresentaram volume de água entre 35 e 40%, que podem ser considerados baixos. Observa-se que o volume de água é mais baixo nos meses de setembro, outubro, novembro e dezembro em razão do período de seca que se inicia em maio.

TABELA 5.11– Variação do volume útil dos reservatórios estudados – 2009 a 2012 - em %

volume	útil	%
--------	------	---

	Volume dili 70				
	2009	2010	2011	2012	
Jan	53.08	72.45	56.51	72.48	
Fev	65.51	75.79	68.11	79.37	
Mar	77.16	80.14	79.95	77.86	
Abr	81.02	79.78	85.45	75.78	
Mai	79.56	77.64	84.89	73.46	
Jun	76.59	72.62	80.67	73.40	
Jul	72.60	65.05	77.27	65.47	
Ago	66.59	55.66	68.45	53.55	
Set	61.86	45.23	58.05	42.65	
Out	58.23	38.69	51.94	33.11	
Nov	57.53	35.30	49.83	30.36	
Dez	60.54	41.47	52.87	29.19	

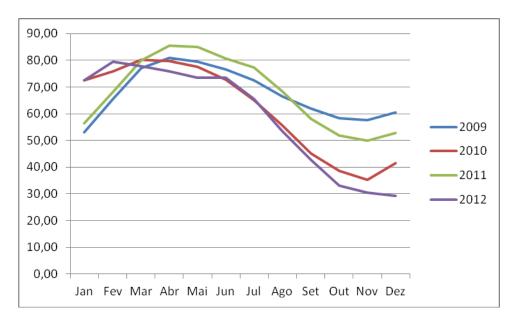


FIGURA 5.11 – Variação do volume útil dos reservatórios estudados – 2009 a 2012 em %

A análise da ENA do SIN levou em consideração os dados obtidos do ONS (2013) que se encontram detalhados no Apêndice A. Os dados obtidos mês a mês para os anos de 2009 a 2012, encontram-se sintetizados na TAB. 5.12. A FIG. 5.12 mostra a variação da ENA nesse período.

TABELA 5.12 – Energia Natural Afluente do SIN – 2009 a 2012 em MWmed

Energia	Natural	Afluente	total SIN	Mwmed
	2009	2010	2011	2012
Jan	79161.2	103170	106775.3	107837.3
Fev	90622.75	84526.69	87178.04	83968.79
Mar	70434.94	79074	124608.4	60711
Abr	74899.36	81954.04	96664	51386.72
Mai	56975.64	58374.74	56659.86	43610.2
Jun	39757.8	38226.16	43629.64	58752
Jul	44315.55	34499.07	52088.94	40039.03
Ago	43923	27022.84	57492.51	28279
Set	60164	22238.27	44616.04	22572
Out	63683.94	30823.94	40523.23	24784
Nov	59686.23	40662.61	40803	34485.27
Dez	85198.68	70710.09	64133	43261.03
total	768823.1	671282.5	815171.9	599686.3

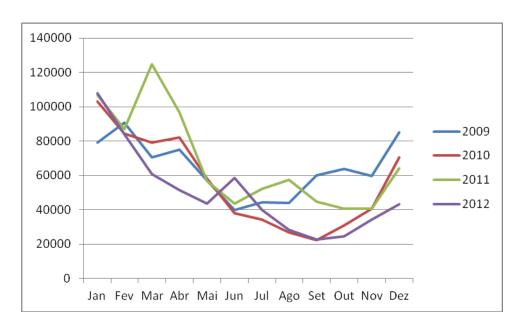


FIGURA 5.12 – Energia Natural Afluente do SIN – 2009 a 2012 em MWmed

A mesma análise foi realizada para EAr do SIN para os anos de 2009 a 2012. As tabelas também se encontram no Apêndice A deste trabalho e a síntese dos resultados é mostrada na TAB. 5.13. A FIG. 5.13 mostra o gráfico da variação da EAr em MWmed durante os meses de 2009 a 2012.

TABELA 5.13 – Energia Armazenada do SIN – 2009 a 2012 em MWmed

Energia	Armazenada		total SIN	MWmês
	2009	2010	2011	2012
Jan	174764	212705	177960	214159
Fev	202072	214418	194214	227794
Mar	218187	225477	232894	219620
Abr	229575	225558	249313	213906
Mai	226642	218683	246789	205295
Jun	218171	209080	240140	207127
Jul	211996	190867	232510	198890.8
Ago	201789	166806	212593	163949
Set	193653	139897	186845	134573
Out	188010	119924	172882	106065
Nov	184888	112213	164649	94947
Dez	196913	130185	168904	87802
total	2446660	2165813	2479693	2074128

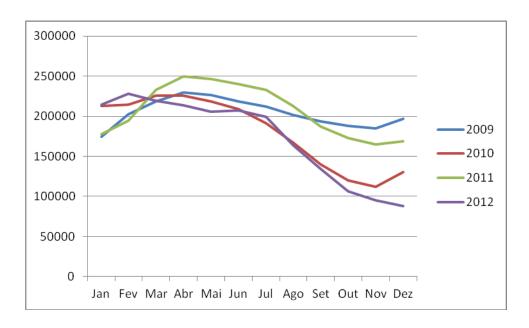


FIGURA 5.13 – Energia Armazenada do SIN – 2009 a 2012 em MWmed

5.4.3.3 Disponibilidade de energia nas usinas hidrelétricas

Os dados obtidos fornecem parâmetros para a verificação mês a mês, da disponibilidade de energia elétrica fornecida pelas usinas hidrelétricas do SIN. Considerando-se a demanda do sistema pode-se verificar se existem "sobras" ou "falta" de energia no sistema.

A TAB 5.14 mostra os cálculos para esta avaliação para os anos de 2009 a 2012. Esta tabela mostra um resumo de todos os dados obtidos: ENA, EAr, demanda e porcentagem de volume útil nos reservatórios. A partir destes dados calcula-se a diferença entre ENA e a demanda e a EAr e a demanda. Os valores negativos da diferença entre a ENA e a demanda mostram os meses em que foi necessária a utilização da energia armazenada nos reservatórios. Ao se calcular a diferença entre a EAr e a demanda, observa-se que a quantidade de energia armazenada consegue suprir a demanda em todos os meses do ano, mesmo em períodos críticos de seca quando o volume útil dos reservatórios encontra-se abaixo de 40 %.

TABELA 5.14 – Avaliação de disponibilidade de energia hidrelétrica – 2009 a 2012 em MWmed

2009	ENA (MW)	EAR (MW)	CARGA (MW)	ENA-carga	EAR-carga	%VU
Jan	79161.2	174764	61131.09	18030.11	113632.91	53.08
Fev	90622.75	202072	62614.18	28008.57	139457.82	65.51
Mar	70434.94	218187	64810.32	5624.62	153376.68	77.16
Abr	74899.36	229575	61510.25	13389.11	168064.75	81.02
Mai	56975.64	226642	62430.50	-5454.86	164211.50	79.56
Jun	39757.8	218171	61035.39	-21277.59	157135.61	76.59
Jul	44315.55	211996	61511.67	-17196.12	150484.33	72.60
Ago	43923	201789	62063.73	-18140.73	139725.27	66.59
Set	60164	193653	62536.23	-2372.23	131116.77	61.86
Out	63683.94	188010	62031.53	1652.41	125978.47	58.23
Nov	59686.23	184888	67227.00	-7540.77	117661.00	57.53
Dez	85198.68	196913	65845.00	19353.68	131068.00	60.54

2010	ENA (MW)	EAR (MW)	CARGA (MW)	ENA-carga	EAR-carga	%VU
Jan	103170	212705	66766.46	36403.54	145938.54	72.45
Fev	84526.69	214418	70478.14	14048.55	143939.86	75.79
Mar	79074	225477	69675.31	9398.69	155801.69	80.14
Abr	81954.04	225558	65477.85	16476.19	160080.15	79.78
Mai	58374.74	218683	65448.27	-7073.53	153234.73	77.64
Jun	38226.16	209080	64737.02	-26510.86	144342.98	72.62
Jul	34499.07	190867	64718.64	-30219.57	126148.36	65.05
Ago	27022.84	166806	65578.12	-38555.28	101227.88	55.66
Set	22238.27	139897	65572.02	-43333.75	74324.98	45.23
Out	30823.94	119924	65005.52	-34181.58	54918.48	38.69
Nov	40662.61	112213	68083.60	-27420.99	44129.40	35.30
Dez	70710.09	130185	68823.30	1886.79	61361.70	41.47

2011	ENA (MW)	EAR (MW)	CARGA (MW)	ENA-carga	EAR-carga	%VU
Jan	106775.29	177960	70461.07	36314.22	107498.93	56.51
Fev	87178.04	194214	70661.29	16516.75	123552.71	68.11
Mar	124608.36	232894	68780.28	55828.08	164113.72	79.95
Abr	96664	249313	68993.57	27670.43	180319.43	85.45
Mai	56659.86	246789	67014.48	-10354.62	179774.52	84.89
Jun	43629.64	240140	66268.20	-22638.56	173871.80	80.67
Jul	52088.94	232510	66533.82	-14444.88	165976.18	77.27
Ago	57492.51	212593	68542.03	-11049.52	144050.97	68.45
Set	44616.04	186845	69257.63	-24641.59	117587.37	58.05
Out	40523.23	172882	68665.91	-28142.68	104216.09	51.94
Nov	40803	164649	69957.76	-29154.76	94691.24	49.83
Dez	64133	168904	71135.29	-7002.29	97768.71	52.87

2012	ENA (MW)	EAR (MW)	CARGA (MW)	ENA-carga	EAR-carga	%VU
Jan	107837.29	214159	71701.02	36136.27	142457.98	72.48
Fev	83968.79	227794	76261.88	7706.91	151532.12	79.37
Mar	60711	219620	75340.37	-14629.37	144279.63	77.86
Abr	51386.72	213906	72883.31	-21496.59	141022.69	75.78
Mai	43610.2	205295	69908.78	-26298.58	135386.22	73.46
Jun	58752	207127	69752.69	-11000.69	137374.31	73.40
Jul	40039.03	198890.84	68280.90	-28241.87	130609.94	65.47
Ago	28279	163949	68068.43	-39789.43	95880.57	53.55
Set	22572	134573	72524.36	-49952.36	62048.64	42.65
Out	24784	106065	75124.05	-50340.05	30940.95	33.11
Nov	34485.27	94947	72140.78	-37655.51	22806.22	30.36
Dez	43261.03	87802	76028.66	-32767.63	11773.34	29.19

As FIG. 5.14 a 5.17 mostra a variação da ENA, da EAr e da demanda nos anos de 2009 a 2012. Observa-se os meses de seca, e também os meses de chuva em que os reservatórios estão cheios. Observa-se também que no ano de 2012 o período de seca foi mais prolongado em relação aos outros anos.

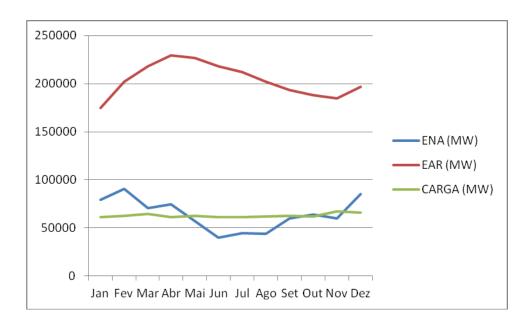


FIGURA 5.14 – ENA, EAr, e carga de demanda do SIN – 2009 em MWmed

FIGURA 5.15 – ENA, EAr, e carga de demanda do SIN – 2010 em MWmed

FIGURA 5.16 – ENA, EAr, e carga de demanda do SIN – 2011 em MWmed

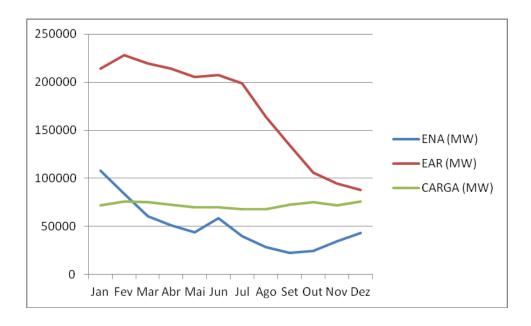


FIGURA 5.17 – ENA, EAr, e carga de demanda do SIN – 2012 em MWmed

As FIG. 5.18 a 5.21 ilustram a diferença entre a EAr e a carga de demanda e a ENA e a carga de demanda nos anos de 2009 a 2012. Quando a demanda é maior que a ENA, utiliza-se a EAR. Observa-se que para todos os meses do ano, a EAR é sempre maior que a demanda. A sazonalidade do nível dos reservatórios é importante para que se possa dimensionar a produção de energia ao longo do ano. Em alguns meses de chuva, os reservatórios

encontram-se tão cheios que ocorre o vertimento, que será descrito no próxima seção.

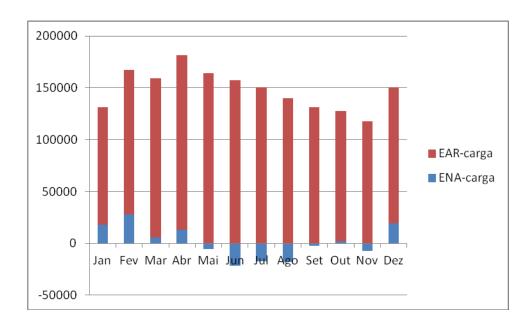


FIGURA 5.18 – Relação entre ENA, EAr, e carga de demanda do SIN – 2009 em MWmed

FIGURA 5.19 – Relação entre ENA, EAr, e carga de demanda do SIN – 2010 em MWmed

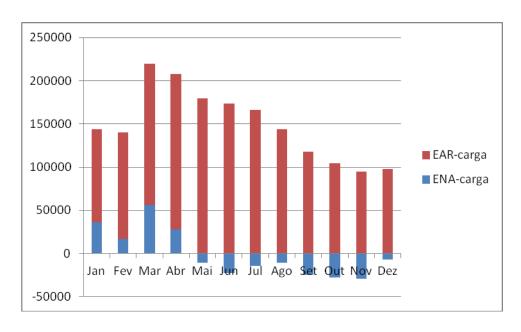


FIGURA 5.20 – Relação entre ENA, EAr, e carga de demanda do SIN – 2011 em MWmed

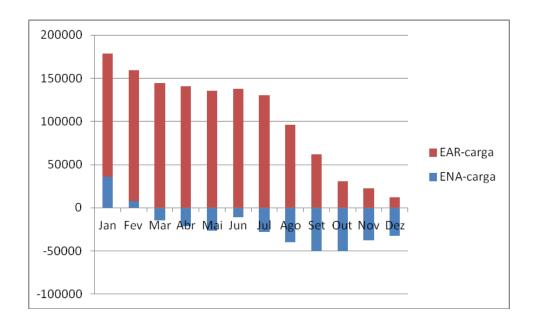
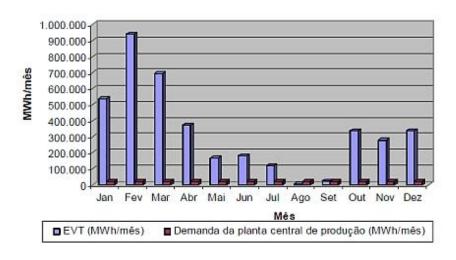


FIGURA 5.21 – Relação entre ENA, EAr, e carga de demanda do SIN – 2012 em MWmed

5.4.3.4 Energia vertida turbinável

A vazão defluente de uma usina hidrelétrica é composta pela vazão turbinada e pela vazão vertida. A vazão turbinada passa pelas turbinas e gera energia enquanto que a vazão vertida é aquela que passa pelos vertedouros da usina e não gera energia. No vertimento, uma determinada quantidade de água que poderia ser utilizada para gerar energia retorna ao rio por um caminho alternativo sem acionar as turbinas. O vertimento é necessário quando não existe mais capacidade de armazenamento no reservatório e a vazão afluente é superior a capacidade de turbinamento, ou seja, quando não existe mais espaço para armazenar a disponibilidade de água no reservatório.


A Energia Vertida Turbinável (EVT) ou energia secundária é a energia desperdiçada. Na maioria das usinas hidrelétricas, quando as afluências são maiores que a demanda de energia e o reservatório está no nível máximo, uma parcela de água que ainda poderia ser utilizada para gerar eletricidade é desviada para o vertedouro. Nesta época os reservatórios estão cheios.

Recentemente alguns autores estudaram o uso da EVT junto às usinas hidrelétricas geradoras no Brasil. Souza (2000) estudou a utilização da EVT junto à usina hidrelétrica de Itaipu para a síntese de amônia para fertilizantes nitrogenados. Riveros-Godoy (2008) fez uma comparação técnica-econômica de modelos de produção e abastecimento de hidrogênio obtido pelo processo de eletrólise da água aproveitando a Energia Vertida Turbinável (EVT) da Usina Hidrelétrica de Itaipu, destinada para o setor de transportes.

Como exemplo da utilização da EVT, podemos considerar a usina de Itaipu. A potência instalada nesta usina é de 12.600 MW, com 18 unidades geradoras de 700 MW cada. A produção recorde no ano de 2000, foi de 93,4 bilhões kWh, responsável pelo suprimento de 95% da energia elétrica consumida no Paraguai e 24% de toda a demanda do mercado brasileiro.

Segundo Ferreira (2007) no ano de 1999 a usina hidrelétrica de Itaipu verteu 4.806.000 MWh/ano, o que representou 11,6% da sua capacidade de produção. A EVT de Itaipu pode ser convertida em hidrogênio através de

eletrólise. A FIG. 5.22 mostra o estudo de consumo de energia elétrica total de uma planta eletrolítica de produção de hidrogênio. Trata-se de um modelo de produção centralizada de hidrogênio, utilizando 22.743 MWh/mês (Riveros-Godoy, 2008).

Fonte - RIVEROS-GODOY,

FIGURA 5.22 - Disponibilidade média mensal de EVT e consumo elétrico da planta de produção de hidrogênio

A FIG 5.22 mostra que apenas no mês de agosto não haverá EVT suficiente para atender o consumo elétrico da produção de hidrogênio, o que implica em complementar com energia firme para que não haja a paralisação da planta de eletrólise. No mês de setembro ,a disponibilidade média de EVT é cerca de 14% superior a demanda da planta. (Riveros-Godoy 2008).

Outras usinas do SIN também apresentam EVT. A TAB. 5.15 mostra a quantidade de EVT total no SIN de 2006 a 2011 em GWh. Observa-se que o valor da EVT em 2011 é maior, pois a partir de 2011, a Usina de Itaipu passou a integrar o sistema sudeste. A TAB. 5.16 mostra a geração total de energia em GWh e a FIG. 5.23 apresenta a comparação entre a energia total gerada e a EVT no SIN. Observa-se pela FIG. 5.23 que a quantidade de EVT no SIN é significativa e poderia ser utilizada para fabricar hidrogênio durante alguns meses do ano.

TABELA 5.15- Energia vertida turbinável no SIN - 2006 a 2011 em GWh

	2006	2007	2008	2009	2010	2011
Sul	1628.70	5064.80	564.80	60.00	5964.55	2605.47
Sudeste/Centro Oeste	5861.20	6149.50	857.35	1376.00	2074.94	16606.82
Nordeste			0.95	48.00		1.60
Norte	4056.50	292.30	1597.00	1876.00	1517.16	1336.60
TOTAL	11546.40	11506.60	3020.10	3360.00	9556.65	20550.48

TABELA 5.16 – Geração de Energia total GWh (hidráulica) no SIN – 2009 a 2012 em GWh

	2009	2010	2011	2012
Jan	14760.93	17714.44	16551.82	18330.14
Fev	14735.62	15691.80	14039.48	17661.26
Mar	16320.09	17120.21	16376.09	19278.13
Abr	15737.10	15773.09	15760.63	16899.30
Mai	14939.05	14573.55	14482.41	17373.29
Jun	14024.25	13244.27	14753.64	15427.45
Jul	14250.04	14729.62	14779.64	15907.98
Ago	13458.40	14229.39	15369.65	16570.64
Set	13837.36	14692.32	15099.81	15876.61
Out	14682.42	14935.93	15384.48	16846.60
Nov	16350.60	15812.19	16192.60	16135.04
Dez	16525.16	16256.41	17692.67	16707.14
TOTAL	179621.02	184773.22	186482.92	203013.58

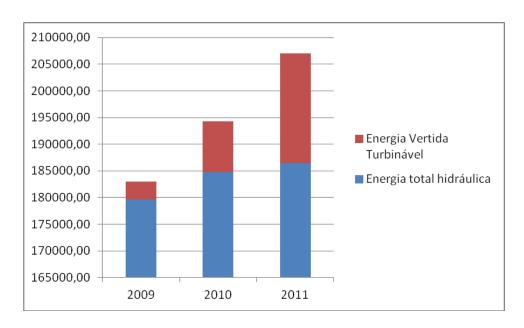


FIGURA 5.23 - Energia vertida turbinável e energia total gerada no SIN – 2009, 2010 e 2011 (GWh)

5.5 Disponibilidade de energia elétrica nas distribuidoras

De acordo com a legislação brasileira as empresas distribuidoras de energia elétrica precisam estar com a totalidade da demanda contratada com antecedência de até cinco anos. Assim, as empresas trabalham com projeções de demanda que muitas vezes acabam não se concretizando e ficam com sobra de eletricidade. Nos anos de 2011 e 2012 as projeções de consumo de energia elétrica feitas pelas distribuidoras de energia elétrica ficaram bem acima da demanda registrada.

Essa sobra de energia contratada pode representar uma diminuição dos lucros das empresas ou até mesmo um prejuízo para os acionistas e consumidores. Até o nível de 103% de sobrecontratação, os custos da sobra podem ser repassados para a conta de luz do consumidor. Acima desse nível o prejuízo vai para as empresas. Para minimizar prejuízos de sobrecontratação as regras do setor elétrico permitem um ajuste de contas entre as distribuidoras, isto é, quem está subcontratado negocia com quem tem sobras de energia.

Segundo Pereira (2012) pelos dados da ANEEL em 2011, 20 concessionárias tiveram sobras de no mínimo 104,13 MW médios e em 2012, 27 concessionárias tiveram sobras de 230,85 MW médios. Segundo a Associação Brasileira de Distribuidores de Energia Elétrica (ABRADEE) o principal fator que levou a isso foi a piora da crise mundial que afetou o consumo das indústrias. Em 2011 o consumo de energia elétrica pela indústria cresceu apenas 2,3%, enquanto que os consumos residencial e comercial continuaram com o mesmo crescimento de 4,6% e 6,3% respectivamente, que vinham tendo em anos anteriores. Outro fator que provocou sobra de energia contratada pelas distribuidoras em 2011 foi a migração de consumidores abaixo de 3 MW para o mercado livre (ACL), onde o cliente contrata sua energia sem a interferência da distribuidora. Esses clientes podem deixar as distribuidoras a qualquer momento para firmar contratos com outros fornecedores, desde que comprem energia alternativa como a eólica ou a

biomassa. Esse mercado tem crescido muito nos últimos anos (PEREIRA, 2012).

Segundo a Resolução Normativa (RN) 482 de 17 de abril de 2012, publicada pela ANEEL que regulamenta a micro produção (até 100 kW) e a mini produção de energia (de 100 kW a 1MW), proprietários de residências, comércio e indústria podem produzir sua própria energia. Essa resolução introduz um novo componente com potencial de aumentar a incerteza das projeções de demanda das distribuidoras e com isso causar um aumento ainda maior da sobrecontratação de energia.

Em novembro de 2011, a ANEEL aprovou o sistema de cobrança diferenciada de energia. Assim, a eletricidade consumida nos horários de menor demanda da rede, conhecida como "tarifa branca", custa cinco vezes menos que os preços cobrados no pico de consumo e três vezes menos que os praticados nos horários intermediários. Segundo Santos (2011) o objetivo deste sistema é a otimização do carregamento das redes de distribuição de energia elétrica gerando eficiência energética, redução de perdas técnicas e redução de custos com a expansão das redes.

Visando viabilizar a implantação dessas duas medidas, a ANEEL aprovou em agosto de 2012 o regulamento dos medidores eletrônicos digitais de consumo de energia. Esse equipamento permite a cobrança dessas tarifas diferenciadas conforme o horário e permite também que as distribuidoras ofereçam energia pré-paga e vendam o excedente de energia.

Com essas duas resoluções recentes da ANEEL, foi criada a oportunidade de se ter no Brasil as chamadas *smart grids*. *Smart grid* ou rede inteligente é a aplicação da tecnologia da informação na rede elétrica, integrando através de sensores, grandes e pequenos produtores e consumidores de energia.

Com isso o mercado de energia elétrica no Brasil se tornará mais dinâmico e na medida em que pequenos produtores entrarão no mercado a disponibilidade de energia elétrica deve aumentar no país. Essas novas resoluções vão aumentar a disponibilidade de energia no país e assim podem assegurar o aumento da demanda de energia para a produção de hidrogênio.

Observa-se também que a energia contratada pelas distribuidoras é uma energia que já existe e está disponível no sistema, embora não se possa garantir que ela tenha sido gerada por uma fonte não poluidora, pode ser considerada uma energia disponível na rede, que pode ser usada para produzir hidrogênio.

5.6 Disponibilidade de energia elétrica no comércio de energia

Esta seção apresenta as formas como a energia elétrica é comercializada e a possibilidade de utilização da energia disponível neste setor para a produção de hidrogênio.

Atualmente os leilões são a principal forma de contratação de energia elétrica no Brasil. Por meio desse mecanismo, concessionárias, permissionárias e autorizadas de serviço público de distribuição de energia elétrica do SIN garantem o atendimento à totalidade de seu mercado no Ambiente de Contratação Regulada (ACR). Quem realiza os leilões de energia elétrica é a CCEE por delegação da ANEEL. O critério de menor tarifa é utilizado para definir os vencedores do leilão, visando a eficiência na contratação de energia.

A partir de 1995, caracterizaram-se dois tipos de mercados e de consumidores: livres e cativos. Para os consumidores livres é possível a negociação dos preços da energia, enquanto para os consumidores cativos as tarifas são reguladas pela Agência Nacional de Energia Elétrica (ANEEL). O mercado livre, ou Ambiente de Contratação Livre (ACL), é um segmento alternativo ao mercado cativo, no qual os consumidores têm contrato fixo com um fornecedor. A energia disponível no mercado livre consiste de sobras, ou disponibilidades de energia das empresas geradores e distribuidoras. O mercado livre é muito utilizado por grandes condomínios residenciais, empresas de médio e grande porte, centros comerciais e grandes indústrias.

Atualmente o mercado livre representa cerca de 25% do consumo industrial de energia no Brasil.

Segundo Fiorezzi (2009) com a criação do mercado livre de energia, a energia elétrica passou a ser uma mercadoria, comprada em um mercado da mesma forma que se adquire qualquer outro insumo de produção. O consumidor livre tem a opção de comprar energia de uma comercializadora, de um produtor independente, do mercado ou de autogerar energia. Contudo, a principal questão a ser compreendida é o funcionamento do mercado livre de energia.

Para um contrato de fornecimento de energia elétrica expressar a melhor opção tarifária horo-sazonal, o empreendedor deve conhecer o regime de operação de seus equipamentos e os remanejamentos possíveis da operação sem comprometimento da capacidade de produção, de forma a permitir deslocamentos de parte do consumo do horário de ponta e do período de seca. Caso isto não ocorra, o consumidor livre pode acabar contratando uma demanda maior ou menor do que a necessária, pagando, assim, por uma demanda contratada superior à necessária, ou tarifas de ultrapassagem pela utilização maior do que o contratado. A tarifa de ultrapassagem é aplicada quando a demanda máxima registrada no mês é superior a 10% do valor contratado. A tarifa de ultrapassagem é cerca de quatro vezes superior à tarifa normal do posto tarifário (ponta ou fora de ponta).

Devido à complexidade do problema de análise das opções de operação dos consumidores livres no Mercado Brasileiro de Energia (MBE) e das negociações necessárias para alcançar contratos que sejam razoáveis, Ramalho (2002) conclui ser necessário que os negócios tenham suporte de empresas especializadas em contratação de energia ou, que se inclua um gerente de energia nas empresas de maneira a negociar melhor com as empresas comercializadoras.

Até 2012, ao final de cada mês, depois que o usuário utilizava a energia contratada no mercado livre, verificava-se o consumo e os contratos eram ajustados e registrados (*ex-post*). Se o usuário utilizava mais que o contratado

podia acertar as contas com o preço *spot* (à vista), ou pelo preço de liquidação das diferenças (PLD) somado a um ágio. O PLD é publicado pela Câmara de Comercialização de Energia Elétrica (CCEE). Há anos o mercado solicita ao governo que permita aos usuários venderem os volumes comprados que excedem ao utilizado Atualmente esse excedente só pode ser vendido ao preço de mercado de curto prazo, normalmente bem mais baixo.

Em 2012, segundo Nogueira (2012), em razão da escassez de chuvas e o consequente baixo nível dos reservatórios das hidrelétricas ocorreu um grande aumento no preço de referência da energia elétrica comercializada no mercado livre. Com a possibilidade das empresas renegociarem as sobras de energia que não consomem, ou mesmo a energia contratada no mercado livre, algumas empresas autogeradoras preferiram paralisar sua produção industrial para vender a disponibilidade de energia. Isso ocorreu, por exemplo, no segmento das indústrias de ferro-gusa. Além disso, algumas empresas que compraram energia no mercado livre, diante da disparada dos preços, pararam suas atividades para vender essa energia. Diante desse quadro, o governo temendo que as indústrias especulassem com energia, define novas regras para o mercado livre.

A portaria 455 de 2 de agosto de 2012 do Ministério de Minas e Energia (MME), (MME, 2013) determinou que os contratos não podem mais ser registrados depois do uso (*ex-post*). Além disso, mudou a frequência de registro dos contratos. No período de 1/11/2012 até 30/06/2013 os registros passam a ser mensais, quando então passam a serem registrados semanalmente. Mudou também a possibilidade de alterar o montante de energia contratado, que agora somente pode ser feita até o início da semana da entrega da energia. A compra sendo semanal facilita ao usuário estimar o consumo com exatidão, mas ao mesmo tempo a nova resolução dificulta a renegociação do montante contratado. Com essas medidas o risco do consumidor passa a ser precificado nos contratos, não garantindo que este poderá vender seus excedentes.

A Lei 12.783 de 11/01/2013 dispõe sobre o vencimento das concessões de energia elétrica e sobre os encargos setoriais com objetivo de reduzir as tarifas finais para os consumidores, além de prever mudanças no prazo para o consumidor migrar do mercado cativo para o livre. Antes dessa lei as empresas que quisessem passar a comprar a energia no mercado livre deveriam mostrar seu interesse em até seis meses de antecedência. A lei muda este prazo para cinco anos.

Observa-se que com as novas regras do mercado livre de energia, que entrarão em vigor plenamente entre 2013 e 2014, provavelmente a disponibilidade de energia nesse mercado será pequena, pois o registro semanal dos contratos e a proibição de alterar a quantidade contratada inibe a geração de sobras. Entretanto, a introdução de uma maior quantidade de fontes alternativas de energia (solar e principalmente eólica) no sistema, em razão dos atuais incentivos políticos e econômicos dados às fontes de energia alternativas e a de pequenos produtores independentes, eleva a quantidade de energia disponível.

5.7 Sumário do capítulo

Após a análise realizada nas seções anteriores, pode-se concluir que para produção de hidrogênio, como foi visto, necessita-se de 1.774,4 MW e existe disponibilidade de energia elétrica no SIN:

- Existe uma disponibilidade de cerca de 11.000 MW nos horários entre 23 horas e 7 horas da manhã, horários de baixa demanda.
- A energia eólica gerará em breve, 1.158 MW de energia elétrica ao sistema.
- A ordem de grandeza de energia nuclear disponível foi de 200 MW médios em 2010 e 2011, sendo que em 2012 não houve energia nuclear disponível.
- Nos anos de 2009 a 2012 a energia disponível nos reservatórios das principais usinas hidrelétricas foi da ordem de 100.000 MW médios.

- A EVT disponível em 2011 foi da ordem de 2.000 MW médios.
- A energia disponível nas distribuidoras em 2001 foi de 104,13 MW médios e em 2012 foi de 230,85 MW médios.

Salienta-se que em 2012, diversas regiões do Brasil, principalmente o norte e nordeste do país, foram castigados com os efeitos da falta de chuvas. O nordeste brasileiro enfrentou a maior seca dos últimos 50 anos. Entretanto, apesar de ser um efeito natural, uma estiagem dessa magnitude não é comum e de acordo com especialistas, as secas mais intensas ocorrem de 10 em 10 anos em média. Isso reforça ainda mais a conclusão de que existe disponibilidade no Brasil da energia necessária para produzir hidrogênio sem gerar emissão de poluentes.

6 ANÁLISE DE CUSTOS PARA INSTALAÇÃO E OPERAÇÃO DA FROTA DE ÔNIBUS A HIDROGÊNIO

Para analisar a viabilidade econômica da substituição da frota de ônibus a diesel por uma frota de ônibus a hidrogênio na cidade de São Paulo é feita uma análise dos custos de produção, armazenamento e transporte do hidrogênio. Em seguida é realizado o cálculo do custo de instalação da fábrica de hidrogênio, custo de instalação das estações de abastecimento, estimativa de preço dos ônibus a hidrogênio e custo do consumo de combustível pela frota.

6.1 Avaliação de custos para a produção de hidrogênio

Para avaliar os custos de produção de hidrogênio são utilizados dados da literatura técnica. Yan e Hino (2011) realizaram uma comparação dos custos estimados de diferentes formas de produção de hidrogênio, incluindo métodos que utilizam formas de energia alternativa, tais como, geração de eletricidade por centrais eólicas e utilização de biomassa obtida a partir de algas. A produção de energia por meio da biomassa de algas está atualmente em desenvolvimento, e poderia ser uma opção viável para a produção de hidrogênio. Um sumário dos resultados de Yan e Hino (2011) encontra-se na TAB. 6.1 e na FIG. 6.1.

TABELA 6.1- Custo estimado de diversas tecnologias da produção de hidrogênio

	Custo da	capacida	ade		Custo da produção de hidrogênio (US\$/kg)			
Tecnologia e combustível	Capacidade 1000 kg/dia	Milhões de dólares	Dólares por 1000 kg/dia	Fator de capacidade (%)	Instalação	Matéria prima	O&M	Total
Reforma do gás natural centralizado	379.387	181	477	90	0,18	1,15	0,14	1,47
Reforma do gás natural distribuído	1500	1,14	760	70	0,40	1,72	0,51	2,63
Gaseificação de carvão central com SAC	307.673	691	2246	90	0,83	0,56	0,43	1,82
Gaseificação de carvão central semSAC	283.830	436	1536	90	0,57	0,56	0,09	1,21
Gaseificação de biomassa	155.236	155	998	90	0,37	0,52	0,55	1,44
Eletrólise distribuída	1500	2,74	1827	70	0,96	5,06	0,73	6,75
Centrais eólicas (eletrólise) ^g	124.474	500	4017	90	1,48	1,69	0,65	3,82
Central nuclear termoquímica ⁱ	1.200.000	2,468	2057	90	0,76	0,20	0,43	1,39

SAC = Sequestro e Armazenamento do gás carbônico do Carbono; O&M = operação e manutenção.

Fonte – Yan e Hino, 2011

A TAB. 6.1 apresenta apenas os custos de instalação da fábrica e custos com produção, excluindo os custos com armazenamento, transporte, compressão e distribuição. Para todos os casos a taxa de desconto adotada é de 12%. A vida útil para as tecnologias distribuídas é estimada em 20 anos e a vida útil das tecnologias centralizadas é estimada em 40 anos.

Na TAB. 6.1 Yan e Hino (2011) assumem que o preço do gás natural industrial para o método da reforma do gás natural centralizado é de US\$ 7,40 por milhão de Btu (250.000 Kcal) e o preço industrial da eletricidade é de US\$ 0,64 por kWh enquanto que para o método da reforma do gás natural distribuído assumem para o gás natural comercial o preço de US\$ 11,00 por milhão de Btu e para a eletricidade o preço comercial de US\$ 0,95 por kWh. Para o carvão o preço assumido é de US\$ 2,50 por milhão de Btu. O preço da biomassa considerado é de US\$ 37,80 por tonelada. Para o método da eletrólise distribuída assume-se o preço comercial da eletricidade de US\$ 0,95 por kWh.

Por meio da FIG. 6.1 pode-se comparar o preço do hidrogênio produzido pelos diferentes métodos e observa-se que as alternativas mais baratas são as que utilizam combustível fóssil e, portanto, as que mais poluem.

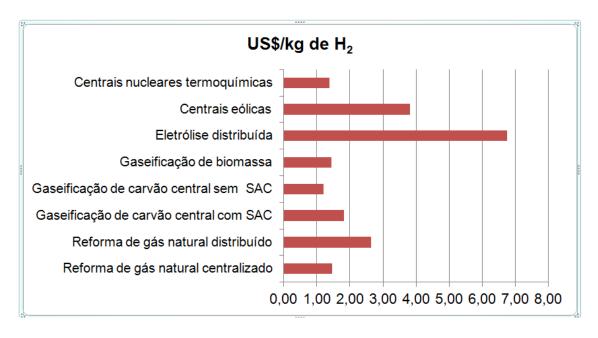


FIGURA 6.1 – Custo das diferentes tecnologias de produção de hidrogênio segundo Yan e Hino (2011)

Segundo Yan e Hino (2011) a *General Atomics* (GA) estimou o custo de produção de hidrogênio por meio da energia nuclear associada ao ciclo termoquímico do enxofre-iodo em US\$ 1,53 por kg de hidrogênio. Essa estimativa foi obtida utilizando um reator tipo HTGR operando a 850°C com 42% de eficiência global e com taxa de desconto de 10,5%. Além disso, a GA estimou o custo de produção de hidrogênio de uma planta comercial de reforma de vapor de gás natural em US\$ 1,40 por kg de hidrogênio e US\$ 1,60 por kg de H₂ com SAC.

Atualmente o método da reforma do vapor é o mais eficiente para produzir hidrogênio, pois possui tecnologia comprovada e apresenta os custos mais baixos. Contudo, o método apresenta desvantagens por depender de combustíveis fósseis e produzir gás carbônico. Segundo Yan e Hino (2011) o custo de produção do hidrogênio por esse método é de US\$ 0,92 por kg. A eficiência desse método é de 70% resultando em um custo final da energia de US\$ 8,00 por GJ.

O método dos ciclos termoquímicos do enxofre-iodo é um processo de alta eficiência com baixo custo e independe de combustíveis fósseis quando associado a um reator nuclear. Porém, é um método que ainda está em desenvolvimento e o hidrogênio precisa ser produzido próximo às usinas nucleares. Segundo Yan e Hino (2011) a eficiência do processo é de 50% e a estimativa de custo é de US\$ 1,22 por kg de H₂, resultando em um custo final da energia de US\$ 10,00 por GJ.

Yan e Hino (2011) concluíram que a produção de hidrogênio centralizado, produzido por um reator nuclear do tipo HTGR combinado com processos termoquímicos é o método mais econômico de se produzir hidrogênio em grande escala. Yan e Hino (2011) consideram que a energia térmica proveniente de fontes nucleares é mais barata que a energia elétrica proveniente de outras fontes. Além disso, a eficiência da produção de hidrogênio pelos métodos termoquímicos é uma das mais altas e este processo permite uma facilidade de controle do dimensionamento da produção. Os pesquisadores consideram o reator do tipo HTGR como sendo o sistema mais

adequado e em estágio de desenvolvimento mais avançado entre os reatores de quarta geração. Por outro lado, ao se utilizar uma produção centralizada, e assim tirar proveito da economia de grande escala, (matéria prima e energia mais barata) existe a necessidade de se incorporar custos de armazenamento e transporte do hidrogênio.

No caso da produção de hidrogênio para substituição da frota de ônibus da cidade de São Paulo, deve-se considerar os seguintes aspectos:

- A tecnologia energética do futuro orienta-se, sem dúvida nenhuma, para um meio ambiente saudável e assim, visa reduzir ao máximo a emissão de poluentes bem como o indesejável efeito do aquecimento global. Esforços estão sendo feitos na tentativa de superar as barreiras para a transição dos combustíveis fósseis para a economia do hidrogênio, de forma que todas as fases do ciclo do hidrogênio, incluindo a sua produção e seu uso final sejam viáveis. Ressalta-se que a tecnologia energética do futuro terá de ser ao mesmo tempo viável economicamente e sustentável em todas as fases do seu ciclo, o que inviabiliza os métodos de reforma do vapor tanto centralizada como distribuída.
- O SIN apresenta energia elétrica disponível, como foi visto no Capitulo 5. Dessa forma, a energia encontra-se disponível na rede, sem que haja necessidade de investimentos na construção de novas usinas nucleares e usinas termoquímicas.
- A utilização da energia nuclear é economicamente não atrativa comparativamente aos outros métodos de produção de hidrogênio. Entretanto essa tecnologia ainda não está totalmente desenvolvida e, portanto, não é uma alternativa viável no momento, porém pode ser uma alternativa para as próximas décadas.
- O método da eletrólise possui a vantagem de ser o método mais simples, que requer apenas água e eletricidade, além de não produzir gás carbônico e sua tecnologia ser totalmente

comprovada. O método da eletrólise é ideal para ser utilizado longe das usinas geradoras de energia, não depende de combustíveis fósseis, e pode ser realizado com energia elétrica disponível na rede, por exemplo nos horários de baixo consumo de eletricidade.

Como referência para a realidade brasileira destaca-se o estudo de Souza e Silva (2000), que mostra a viabilidade de produção de hidrogênio com a energia excedente da usina de Itaipu. Conforme os dados obtidos, o custo mínimo do hidrogênio foi de US\$ 0,246/m³ (US\$ 2,750/kg). Este valor foi obtido para uma planta eletrolítica de 55.000 m³/h de capacidade e 247,7 MW de potência, sendo alimentada com 82% de energia vertida turbinável e 18% de energia firme do sistema.

Ainda conforme Souza e Silva (2000) o custo de produção de hidrogênio produzido por eletrólise é dividido da seguinte forma, 48,7 % representa o custo de capital; 19,3% representa o custo com eletricidade, 16,6% consiste em operação e manutenção dos eletrolisadores; 0,3% representa o custo com operação e manutenção do compressor; e 15,1% o custo com água e eletrólito.

6.2 Avaliação de custos de armazenamento e transporte do hidrogênio

Amos (1998) avaliou e analisou os custos de armazenamento de hidrogênio. Os métodos analisados incluem gás comprimido, hidrogênio líquido, hidretos de metal e estocagem subterrânea. Em todos os casos avaliados concluiu que a estocagem subterrânea é o método mais barato, embora dependa da geografia do local, já que nesse caso o hidrogênio é armazenado em cavernas.

Na TAB. 6.2 é apresentado um resumo da análise realizada por Padró e Pusche (1999) sobre os custos de armazenamento para os três sistemas, (gasoso, líquido e hidretos) levando-se em consideração o tempo de armazenamento e a quantidade a ser armazenada. Considerou-se como

"tempo curto" de armazenamento, 1 a 3 dias e como "tempo longo" de armazenamento, acima de 30 dias. As unidades dos custos de armazenamento do hidrogênio estão em US\$/GJ. Nota-se que cada 100 GJ corresponde a aproximadamente 8.300 kg de hidrogênio.

TABELA 6.2 - Estimativa de custos de armazenamento de gás comprimido

Armazenamento 1 – 3 dias (US\$/GJ)								
GJ	gás comprimido	hidrogênio líquido	hidretos					
131	4,21	17,12	2,89					
13.100	1,99	6,68	6,68					
20.300	1,84	5,13	5,13					
130.600	1,53	5,26	7,46					
	Armazenamento	30 dias (US\$/GJ)						
GJ	gás comprimido	hidrogênio líquido	hidretos					
3.900	36,93	22,81	205,31					
391.900	12,34	8,09	205,31					
3.919.000	7,35	7,35	205,31					

Fonte - Padró e Pusche, 1999.

Conforme os custos de armazenamento apresentados na TAB. 6.2 conclui-se que a escolha da forma de armazenamento do hidrogênio depende da aplicação que se deseja, do local que se dispõe, do período de tempo que se deseja estocá-lo e das restrições econômicas.

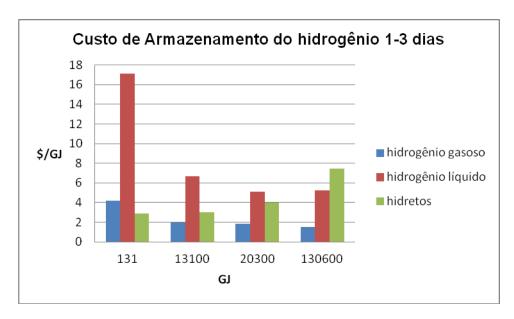


FIGURA 6.2 - Custo de armazenamento do hidrogênio a curto prazo

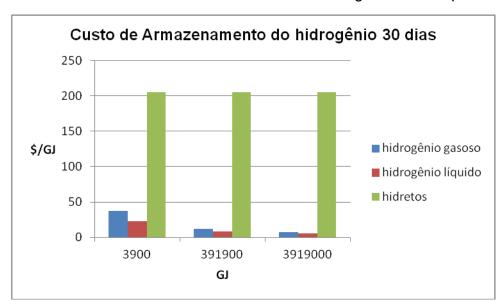


FIGURA 6.3 - Custo de armazenamento do hidrogênio a longo prazo

As FIG. 6.2 e 6.3 apresentam graficamente os dados da TAB.6.2. Por meio dessas figuras é fácil observar que armazenar hidrogênio na forma líquida só é viável quando se pretende armazenar grandes quantidades por longos períodos. Além disso, observa-se que a forma mais econômica de se armazenar hidrogênio por curtos períodos é a forma gasosa.

O hidrogênio pode ser transportado como gás comprimido, como líquido criogênico, ou como hidreto metálico. O método mais barato de transporte

depende da quantidade e da distância que se deseja transportá-lo. Os métodos de transporte do hidrogênio podem ser: caminhão, trem, navio ou gasodutos.

O cálculo dos custos de transporte de hidrogênio é complexo por envolver vários fatores, tais como, equipamentos e distâncias a serem percorridas. O transporte de hidrogênio por caminhão é inviável do ponto de vista ambiental, pois a principal razão de usar hidrogênio para substituir o diesel nos ônibus urbanos é diminuir a poluição atmosférica, assim, seria contraditório transportar o hidrogênio usando caminhões que consomem combustíveis fósseis, que por sua vez causam poluição no meio ambiente.

Os gasodutos para transporte de hidrogênio são construídos com aço comercial de 0,25 - 0,30 m de diâmetro e trabalham com pressões de 1 a 3 MPa. Como comparação, os gasodutos para gás natural são construídos com 2,5 m de diâmetro e trabalham com pressões de 7,5 MPa. O custo principal de um gasoduto para hidrogênio é a sua instalação e esta é da mesma ordem de grandeza do custo do gasoduto para gás natural. A construção de um gasoduto de gás natural de 40 km de extensão custa cerca de US\$ 132.000,00 por km. O maior custo de operação dos gasodutos são o compressor e a manutenção (Padró e Pusche, 1999).

Amos (1998) estudou os meios de transporte do hidrogênio na forma de gás comprimido, hidrogênio líquido, hidretos de metal e gasodutos. Foram considerados os transportes por rodovia e ferrovia para gás comprimido e hidretos de metal. Para o hidrogênio líquido foram investigados os transportes fluviais como uma alternativa adicional aos rodoviários e ferroviários. Os custos com o transporte foram estimados levando-se em conta as distâncias. Para grandes quantidades de hidrogênio a opção por gasodutos foi a mais barata e para quantidades menores o hidrogênio líquido ofereceu vantagens sobre os outros métodos, principalmente quando transportado por longas distâncias.

Segundo Amos (1998) uma estimativa de custo de transporte de longa distância de hidrogênio líquido da África para a Europa usando navios é de US\$ 1,80 a 2,10 por kg.

Para o transporte de hidrogênio usando hidreto, o maior custo é o tanque e depende da distância e do peso do hidrogênio a ser transportado, conforme visto em Amós (1998).

Para grandes quantidades de hidrogênio o transporte por gasodutos é o meio de transporte mais barato exceto nos casos de transporte oceânico em que o hidrogênio líquido é mais barato. Segundo Amos (1998) para pequenas quantidades, se as distâncias forem relativamente curtas e a quantidade de hidrogênio transportada for pequena, o hidrogênio gasoso por meio de transporte rodoviário é o mais viável.

Observa-se que no modelo de produção de hidrogênio centralizado na forma de gás comprimido, tem-se como principal desvantagem, o transporte do hidrogênio desde a planta central até as estações de abastecimento. No caso do modelo de produção de hidrogênio distribuído, não existem gastos com transporte de hidrogênio.

6.3 Custo da planta de eletrólise

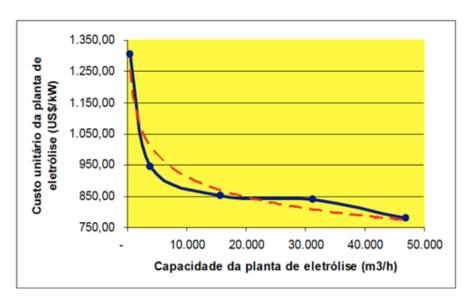
Conforme foi visto no capítulo 5, para produzir 1 kg de hidrogênio a 25°C e 1 atm, são necessários, adotando-se 56% de eficiência do eletrolisador, 70,1 kWh de energia elétrica. O consumo de água durante a eletrólise é de aproximadamente 1 L /m³ de hidrogênio produzido, levando-se em conta as perdas por evaporação. A água utilizada na eletrólise possui baixo custo, assim, o principal insumo para a produção de hidrogênio por eletrólise é a energia elétrica e o preço do eletrolisador.

A produção do hidrogênio ocorre nos eletrolisadores. Os principais produtores de eletrolisadores são a Itália, a Noruega, os EUA e o Canadá. Assim, a solução para a viabilidade da eletrólise no Brasil, não é apenas a busca por eletricidade mais barata ou produção com maior eficiência elétrica, mas também a pesquisa e o desenvolvimento de equipamentos com menores custos e uma tecnologia nacional.

O custo unitário da planta de eletrólise de hidrogênio depende da capacidade de produção de hidrogênio da planta. Quanto maior a capacidade

de produção menor o custo por kW conforme mostrado na TAB.6.3 (Espínola, 2008).

TABELA 6.3– Custo unitário de capital da planta de eletrólise em função da capacidade de produção


Capacidade de produção	Potência da planta de	Custo unitário da planta
de H ₂ (m ³ /h)	eletrólise (MW)	de eletrólise (US\$/kW)
485	2,3	1.304
3.907	18,6	945
15.627	74,5	853
31.254	149,0	841
46.880	223,5	780

Fonte – Espínola, 2008.

A FIG. 6.4 representa graficamente os dados da TAB 6.3. Conforme se aumenta a capacidade de produção da planta eletrolítica, o custo unitário de hidrogênio eletrolítico tende a diminuir e a curva gerada é representada pela equação 6.1 (Espínola, 2008).

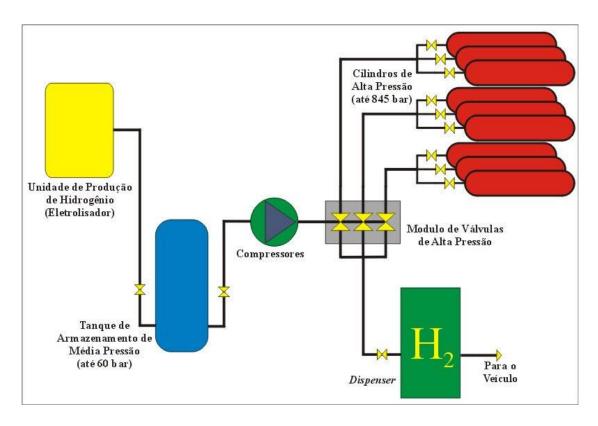
$$C_{el} = 2.424.9 \times C_p^{(-0.1062)}$$
 (6.1)

Onde C_p é a capacidade da planta em m³/h e C_{el} é o custo unitário da planta de eletrólise em US\$/kW.

Fonte – Espínola, 2008.

FIGURA 6.4 - Custo unitário de planta eletrolítica e capacidade da planta de eletrólise

Uma vez conhecida a capacidade da planta eletrolítica, utilizando a equação 6.1 é possível estimar-se o custo unitário de capital da planta por kW.


6.4 Estações de abastecimento de hidrogênio

Atualmente existem no mundo cerca de 350 estações de abastecimento de hidrogênio. A maioria das estações de abastecimento de hidrogênio em operação encontra-se situada na costa oeste dos EUA, na Alemanha e no Japão.

Segundo Ferreira (2007) a grande maioria das estações de abastecimento de hidrogênio foi projetada ou para atendimento de ônibus ou para atendimento de automóveis, havendo poucos casos conhecidos de estações que atendam ao mesmo tempo aos dois tipos de veículos. Isto se deve ao fato de que tais estações fazem parte de projetos integrados de demonstração de tecnologia envolvendo parceiros específicos que, quase sempre atuam num único setor: ou veículos de passeio ou de transporte coletivo por meio de ônibus. A maioria das estações de abastecimento de hidrogênio encontra-se nos Estados Unidos e destinam-se quase sempre ao

abastecimento de automóveis, enquanto que na Europa as estações de abastecimento são destinadas aos ônibus. Quanto à tecnologia de produção, as estações usam principalmente a reforma de vapor de gás natural e a eletrólise da água, sendo que algumas não produzem o hidrogênio, apenas distribuem, implicando em uma tecnologia mais simples.

Um esquema de uma estação de abastecimento com produção de hidrogênio é mostrado na FIG. 6.5.

Fonte – Ferreira, 2007.

FIGURA 6.5 – Esquema de uma estação de abastecimento de hidrogênio

As estações de abastecimento que produzem hidrogênio possuem tanques de média pressão para armazenamento intermediário, uma vez que as taxas de produção são inferiores às quantidades demandadas para compressão e posterior abastecimento de veículos. A capacidade desses tanques depende das características dos compressores de alta pressão.

Os compressores podem ser de três tipos: diafragma, hidráulicos e de pistão, utilizando um ou dois estágios de compressão. Em alguns casos, dependendo do tipo do compressor é necessária a purificação do hidrogênio, pois pode haver traços que comprometam a célula a combustível.

Após a compressão, o hidrogênio é armazenado em cilindros de alta pressão. As quantidades armazenadas são determinadas pelo número de abastecimentos diários e a quantidade máxima de hidrogênio produzida pela unidade de produção. Por fim, a estação de abastecimento deve ter uma bomba. Segundo Ferreira (2007) o abastecimento completo dos tanques de ônibus deve ser realizado em menos de 12 minutos.

No Brasil existem duas estações de abastecimento de hidrogênio (*H2 Stations*, 2012). Uma na Universidade Estadual de Campinas (UNICAMP) que está em operação desde 2006 com caráter experimental destinada a pesquisas, e outra estação de abastecimento, em São Paulo, construída em 2009, resultante de um convênio entre o Ministério de Minas e Energia (MME), o Departamento Nacional de Águas e Energia Elétrica (DNAEE), a Companhia Energética de São Paulo (CESP), a Empresa Metropolitana de Transportes Urbanos de São Paulo (EMTU/SP) e a Universidade de São Paulo (USP). Este convênio realizou a elaboração, implantação e análise dos resultados de um projeto piloto na cidade de São Paulo para implantação de ônibus movido a hidrogênio para transporte público, conforme foi descrito no Capítulo 2.

As projeções realizadas mostram que a montagem de uma estação de abastecimento de hidrogênio com produção de 40 m³/h tem custo compatível com as instalações de uma estação de gás natural veicular, que hoje é de aproximadamente U\$ 500.000,00 (Ferreira, 2007).

6.5 Custo do ônibus a hidrogênio

Segundo a EMTU (2013) existem apenas quatro empresas no mundo que possuem a capacidade de produzir ônibus com a tecnologia do hidrogênio e o Brasil encontra-se em posição de destaque nesse setor. O projeto e a

fabricação do ônibus a hidrogênio da EMTU foram desenvolvidos por um consórcio formado por oito empresas nacionais e internacionais coordenadas pela EMTU. O ônibus a hidrogênio brasileiro é o mais barato entre os ônibus produzidos no mundo.

Segundo Riveros-Godoy (2007), o preço do ônibus Daimler Chysler, também conhecido como Eco bus, série limitada da *Mercedes-Bens Citaro fuel cell*, produzido na Alemanha custa aproximadamente US\$ 700.000,00 enquanto que o custo médio de um ônibus a hidrogênio, no Brasil, é de R\$ 1.000.000,00, aproximadamente US\$ 455.000,00 (Fonseca, 2010).

Os três modelos de ônibus estudados, possuem características semelhantes, são ônibus confortáveis, com ar condicionado e, além de não emitirem poluentes, pois o único resíduo é a água, são muito silenciosos. Possuem capacidade para 70 passageiros (sendo 30 sentados) e a estimativa de vida útil é de 15 anos.

6.6 Custos da substituição da frota a diesel pela frota a hidrogênio

Analisando a frota atual de ônibus urbanos na cidade de São Paulo, conforme estudo feito no capítulo 3 pode-se avaliar o custo da substituição da frota a diesel pela frota a hidrogênio.

O ônibus a hidrogênio possui a mesma capacidade de transporte de passageiros que o ônibus a diesel, assim a quantidade de veículos é a mesma: 15.000 ônibus, portanto como cada ônibus a hidrogênio custa em torno de U\$ 455.000,00 o custo total da frota é de US\$ 6.825.000.000,00.

Este custo está superestimado pois não considera a produção dos ônibus em série. Na indústria automotiva é utilizado com frequência o princípio da Curva de Maxcy - Silberston. De acordo com esse princípio de produção em massa, embora haja limites para a amplitude de redução de custos, o custo de um automóvel diminui drasticamente em proporção ao aumento das quantidades produzidas (Ohno,1997). A FIG.6.6 mostra a Curva de Maxcy-Silberston.

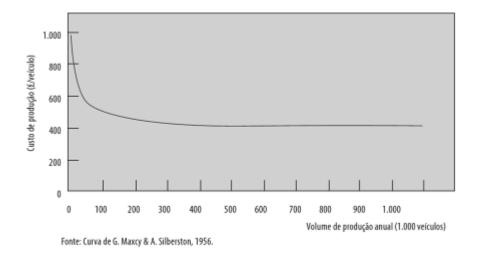


FIGURA 6.6 - Curva Maxcy-Silberston

Assim, para a produção de 15.000 ônibus, de acordo com a curva de Maxcy – Silberston o custo do ônibus a hidrogênio produzido em série custaria cerca de 40% do preço atual. O custo do ônibus seria por volta de US\$ 182.000,00 e o valor da frota passaria a ser US\$ 2.730.000.000,00.

Um ônibus a diesel percorre diariamente na cidade de São Paulo, 270 km, assim, o ônibus a hidrogênio necessita de apenas um abastecimento diário, pois sua autonomia é de 300 km. Este abastecimento pode ser feito na própria garagem da viação. O custo de cada estação de abastecimento é de US\$ 500.000,00. Ao todo a cidade de São Paulo possui 23 garagens, portanto o investimento é de US\$ 11.500.000,00.

Considerando o consumo de hidrogênio em rotas de congestionamento com paradas frequentes, de acordo com as informações sobre o ônibus a hidrogênio da EMTU que atualmente percorre a linha São Mateus — Jabaquara da cidade de São Paulo, o consumo de hidrogênio é de 45 kg por 300 km. Assim, para percorrer 1.478.250.000 km, total percorrido pelos ônibus da cidade de São Paulo em um ano, necessita-se de 221.737.500 kg de hidrogênio ou seja, necessita-se de 15.543.800 MWh de energia por ano para produzir hidrogênio por eletrólise a fim de abastecer a frota de ônibus da cidade de São Paulo. Sendo que um ano possui 8.760 horas, necessita-se de uma potência de 1.774,4 MW para produção de hidrogênio para abastecer uma frota

de 15.000 ônibus sem interrupção, ou seja, 0,118 MW por ônibus sem interrupção, como foi visto no capítulo 5.

Considerando que existem 23 viações de ônibus na cidade de São Paulo, cada qual com a sua estação de abastecimento, cada uma produziria aproximadamente 9.640.760 kg de hidrogênio ou 107.238.720 m³ por ano. Dividindo-se por 365 dias, tem-se 294.000 m³ por dia. Se o abastecimento for feito apenas durante a noite (8 horas por dia), necessita-se de cerca de 36.725 m³ por hora, enquanto que se o abastecimento for feito ininterruptamente, necessita-se de 12.250 m³ por hora. Utilizando a equação 6.1 obtém-se o seguinte resultado: Para uma unidade de produção de 36.725 m³/h o custo unitário da planta de eletrólise é de US\$ 794,14 por kW e para uma unidade de produção de 12.250 m³/h , o custo da planta de eletrólise é de US\$ 892,34 por KW.

Observa-se que quanto maior a produção de hidrogênio o custo da planta por kW decresce, e que, conforme foi visto no capitulo 5, nos horários de "tarifa branca" o preço da energia elétrica é cerca de cinco vezes menor. A melhor alternativa caso se tivesse energia disponível, seria produzir hidrogênio durante os horários de baixa demanda de consumo. Isto é produzir 36.725 m³ /h durante as 8 horas da noite.

Para se estimar o custo de instalação da planta de produção de hidrogênio, utilizou-se a TAB. 6.4. Assim, para produzir hidrogênio para abastecer a frota de ônibus da cidade de São Paulo, necessita-se de 23 unidades de produção com capacidade aproximada de 31.254 m³/h e uma potência de 149 MW a um custo de US\$ 841,00 por kW. O custo de cada planta de produção de hidrogênio é estimado em US\$ 125.309.000,00 e o custo total de instalação das 23 unidades produtoras é de US\$ 2.882.107.000,00.

O consumo anual de hidrogênio pela frota de 15.000 veículos é de 221.737.500 kg. Assim, considerando 2,66 US\$/Kg (incluindo o preço da eletricidade) (Riveros-Godoy, 2008) o gasto com hidrogênio para

abastecimento da frota da cidade de São Paulo é de US\$ 589.821.750,00 por ano. Como este valor inclui o preço da eletricidade, ele pode ser reduzido.

6.7 Sumário do capitulo

Os dados obtidos neste levantamento sobre a frota de ônibus a hidrogênio da cidade de São Paulo estão sintetizados na TAB. 6.5 incluindo o custo das unidades produtoras de hidrogênio pelo método da eletrólise, as estações de abastecimento e a frota de ônibus a hidrogênio, com vida útil de 15 anos. A tabela mostra também os custos anuais com o combustível e com os custos sócio-ambientais da frota de ônibus a hidrogênio, que são nulos, pois não há emissão de poluentes, o único resíduo é a água.

TABELA 6.4 – Dados médios referentes à frota de ônibus a hidrogênio da cidade de São Paulo.

Investimentos em US\$							
Unidades produtoras	2.882.107.000,00						
Estações de Abastecimento	11.500.000,00						
Frota de ônibus (15.000 unidades)	2.730.000.000,00						
Total	5.623.607.000,00						
Custos anuais em US\$							
Combustível	589.821.750,00						
Custos ambientais e sociais	0,00						

A FIG. 6.7 mostra os investimentos iniciais a serem feitos para a substituição dos ônibus a diesel pelos ônibus a hidrogênio.

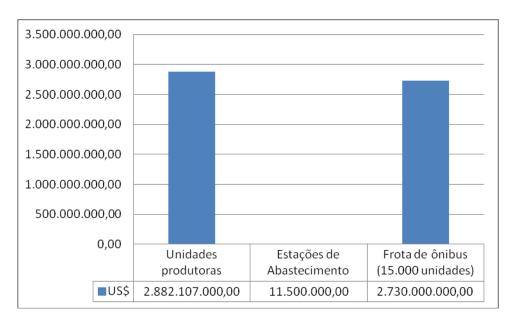


FIGURA 6.7 – Investimentos para substituição da frota de ônibus a diesel pela frota a hidrogênio

7 ANÁLISE DOS RESULTADOS

Neste capítulo é feita uma comparação dos custos da frota de ônibus a hidrogênio com os custos da frota de ônibus a diesel, considerando o custo anual equivalente dos dois investimentos.

7.1 Investimentos Iniciais

Considerando-se que os investimentos iniciais para implantação da frota a hidrogênio são: construção e instalação das plantas de eletrólise no valor de US\$ 2,88 bilhões, construção e instalação das estações de abastecimento no valor de US\$ 11,5 milhões e o custo da frota de ônibus a hidrogênio no valor de US\$ 2,73 bilhões, têm-se um valor total de investimento inicial de U\$ 5,62 bilhões.

Para a frota de ônibus a diesel não são considerados investimentos iniciais, pois a frota já está em funcionamento.

7.2 Custos anuais

O custo anual da frota de ônibus a hidrogênio considerando apenas o consumo de combustível é de US\$ 589 milhões, enquanto que o custo anual da frota de ônibus a diesel é de aproximadamente US\$ 454 milhões. Foram considerados nos cálculos do custo anual do diesel, o consumo deste combustível e seus respectivos custos socioambientais decorrentes da poluição do ar atmosférico. Os ônibus a hidrogênio não geram poluição, portanto o custo socioambiental é nulo. O custo de manutenção dos ônibus a hidrogênio foi considerado equivalente ao custo de manutenção dos ônibus a diesel. Os custos anuais da frota a hidrogênio e da frota a diesel são mostrados na TAB. 7.1

TABELA 7.1 - Custos anuais do funcionamento dos ônibus a hidrogênio e dos ônibus a diesel (US\$)

Combustível (US\$) Custos ambientais e sociais (US\$)	589.821.750,00	369.562.500,00 85.000.000,00
Total – Anual (US\$)	589.821.750,00	454.562.500,00

7.3 Viabilidade econômica da substituição dos ônibus a diesel por ônibus a hidrogênio.

Para avaliar a viabilidade econômica da substituição dos ônibus a diesel por ônibus a hidrogênio, utilizou-se o método do custo anual equivalente.

O método do custo anual equivalente é utilizado para se comparar projetos com benefícios de difícil valoração. Este método permite identificar a alternativa de menor custo para se chegar a determinados resultados. O custo anual equivalente pode ser considerado um valor que atualiza "todos" os custos do projeto, incluindo os custos de investimentos. Resulta da transformação do fluxo de todos os custos num fluxo anual uniforme, de tal forma que seja possível comparar o custo e a viabilidade dos dois projetos.

Para este cálculo é necessário o levantamento de todos os custos em um determinado período de tempo e a taxa de juros de atualização do capital. O cálculo do custo anual equivalente é apresentado na equação 7.1.

$$CAE = VPC \frac{(1+i)^n i}{(1+i)^n - 1}$$
(7.1)

Onde *CAE* é o custo anual equivalente, *VPC* é o valor presente dos custos, *n* é o tempo de duração dos investimentos e *i* é a taxa de juros.

A vida útil dos ônibus a hidrogênio é de aproximadamente 15 anos e a vida útil dos ônibus a diesel é de 4 anos e 7 meses. Assim, partindo-se de um instante inicial sabe-se que daqui a 4,6 anos, toda a frota de ônibus a diesel já foi substituída com um investimento de US\$ 1,6104 bilhões na compra de novos ônibus a diesel, enquanto que a substituição da frota de ônibus a hidrogênio ocorre 15 anos depois, no valor de US\$ 2,73 bilhões.

Utilizando a equação 7.1 calculou-se o *CAE* da frota de ônibus a hidrogênio e o *CAE* da frota de ônibus a diesel.

A taxa SELIC é uma taxa básica de juros da economia brasileira e é utilizada como referência para o cálculo das demais taxas de juros cobradas pelo mercado e para definição da política monetária praticada pelo Governo Federal do Brasil. A taxa SELIC de 2012 foi de 7,25% ao ano e a taxa atual é de 7,5% ao ano (Banco Central, 2013).

Para o cálculo do custo anual equivalente (*CAE*) da frota de ônibus a hidrogênio considerou-se o investimento inicial de U\$ 5,6236 bilhões (custo da planta de eletrólise, estações de abastecimento e frota de ônibus) em um período de 15 anos e taxas de 6%, 6,5%, 7%, 7,25% e 7,5%. O *CAE* foi somado ao Custo Anual Fixo (*CAF*), resultando em um Custo Anual Equivalente Total (*CAET*). O custo anual fixo da frota de hidrogênio é somente o custo do combustível hidrogênio, US\$ 0,5898 bilhões.

Para o cálculo do custo anual equivalente (*CAE*) da frota de ônibus a diesel considerou-se o custo da frota de ônibus de US\$ 1,6 bilhões em um período de 5 anos e taxas de 6%, 6,5%, 7%, 7,25% e 7,5 %. O *CAE* foi somado ao Custo Anual Fixo (*CAF*), resultando em um Custo Anual Equivalente Total (*CAET*). O custo anual fixo da frota a diesel é a soma do custo do combustível diesel com os custos gerados pelas externalidades negativas calculadas no capítulo 4. Os resultados obtidos encontram-se na TAB. 7.2.

TABELA 7.2- Custos anuais do funcionamento dos ônibus a hidrogênio e dos ônibus a diesel (bilhões de US\$) para os15 primeiros anos

	Hid	Irogênio	Diesel			
taxa %	CAF	CAE	CAET	CAT	CAE	CAET
i = 6,00	0,5898	0,57902	1,16882	0,4545	0,3823	0,8368
i = 6,50	0,5898	0,59809	1,18789	0,4545	0,3875	0,8420
i = 7,00	0,5898	0,61744	1,20724	0,4545	0,3927	0,8472
<i>i</i> = 7,25	0,5898	0,62723	1,21703	0,4545	0,3953	0,8498
i = 7,50	0,5898	0,63708	1,22688	0,4545	0,3980	0,8525

Pelos dados obtidos, pode-se concluir que para os primeiros quinze anos de substituição da frota de ônibus a diesel pela frota de ônibus a hidrogênio, considerando-se para o diesel a taxa SELIC de 7,5% e, a possibilidade de taxas de juros mais baixas, subsidiadas pelo governo, para implantação dos ônibus a hidrogênio, por volta de 6%, o custo anual efetivo total da frota a hidrogênio é 1,3 vezes maior que o custo da frota a diesel.

Entretanto, se forem considerados os quinze anos seguintes, em que o único investimento para o hidrogênio será a renovação da frota de veículos, US\$ 2,73 bilhões, pois não haverá investimento com as unidades produtoras de hidrogênio. O mesmo irá ocorrer com a fabricação do diesel, ou seja, em algum momento ocorrerá a substituição das fábricas produtoras deste combustível. Observa-se que se forem comparados o custo anual efetivo total do hidrogênio, a juros de 6% com custo anual efetivo total do diesel a juros de 7,5% (taxa SELIC), observa-se que o custo do hidrogênio é apenas 2% maior que o custo da frota de ônibus a diesel. E se a taxa for de 5% os dois custos poderiam ser considerados equivalentes. Esses dados são apresentados na TAB. 7.3.

Nas TAB. 7.2 e 7.3 é feito o cálculo do custos efetivos totais do diesel com taxas de juros inferiores a taxa SELIC, apenas para efeito de observação, pois, para o diesel não haveria diminuição na taxa de juros.

TABELA 7.3 - Custos anuais do funcionamento dos ônibus a hidrogênio e dos ônibus a diesel (bilhões de US\$) – 15 a 30 anos

	Hidr	ogênio	Diesel			
taxa %	CAF	CAE	CAET	CAT	CAE	CAET
i = 5,00	0,5898	0,2630	0,8528	0,4545	0,3695	0,8240
i = 6,00	0,5898	0,2810	0,8708	0,4545	0,3823	0,8368
i = 6,50	0,5898	0,2903	0,8801	0,4545	0,3875	0,8420
i = 7,00	0,5898	0,2997	0,8895	0,4545	0,3927	0,8472
<i>i</i> = 7,25	0,5898	0,3045	0,8943	0,4545	0,3953	0,8498
<i>i</i> = 7,50	0,5898	0.3092	0,8990	0,4545	0,3980	0,8525

Observando-se os valores obtidos nas tabelas 7.2 e 7.3, comprova-se a viabilidade da substituição da frota a diesel pela frota a hidrogênio. O custo do investimento é baixo considerando-se a importância ambiental da transição de uma tecnologia para outra, além disso, podem ser estudadas propostas para minimizar as taxas de juros e os insumos, principalmente o custo da energia elétrica, incentivos e subsídios do Banco Mundial e isenções de impostos.

8 CONCLUSÃO

A partir deste trabalho mostra-se a viabilidade tecnológica, ambiental e econômica da substituição da frota de ônibus da cidade de São Paulo movida a diesel por uma frota de ônibus movida a hidrogênio, utilizando somente tecnologias existentes atualmente. Assim, os resultados dessa tese podem ser utilizados imediatamente para definir novas políticas públicas com a finalidade de melhorar a qualidade de vida da população dos grandes centros urbanos do país.

De acordo com o que foi visto, embora o hidrogênio seja considerado um potencial energético sustentável, para se produzir hidrogênio puro é necessária a existência de outras fontes de energia. O hidrogênio pode ser queimado de uma forma limpa e pode ser usado para produzir eletricidade por meio das células a combustível. O uso do hidrogênio como fonte de energia reduz drasticamente as emissões de poluição, pois a queima de hidrogênio com o oxigênio não gera nenhum tipo de poluição. O único produto da combustão é a água.

A produção de hidrogênio via energia nuclear é uma alternativa viável para o futuro, entretanto, depende do desenvolvimento tecnológico dos reatores de quarta geração e enquanto não se tem o domínio e os recursos para a construção desses reatores, a alternativa mais viável para a produção de hidrogênio no Brasil, é, sem dúvida, utilizar o método da eletrólise.

A utilização do método da eletrólise para produzir hidrogênio, além de não exigir o desenvolvimento de novas tecnologias, é um método que pode ser utilizado no momento atual, pois não exige a instalação de infraestrutura para gerar energia para produção do hidrogênio. Existe disponibilidade, no Brasil, da energia necessária para produzir hidrogênio sem gerar emissão de poluentes. Aproveitando-se essa energia elétrica disponível no sistema e o fornecimento nos baixos picos de consumo, pode-se diminuir de maneira significativa o custo da energia e consequentemente o custo da produção por este método. O hidrogênio pode ser produzido pela eletrólise de forma distribuída, isto é, na garagem de cada empresa de ônibus, não exigindo preocupação com a

distribuição do hidrogênio, ou seja, não é necessário instalar gasodutos na cidade e não envolve custo de bombeamento do gás.

A cidade de São Paulo é caracterizada pelos congestionamentos e pela precariedade do sistema de transporte público. Os problemas de deslocamento interferem na qualidade de vida e na saúde da população. Os ônibus movidos a diesel apresentam um custo ambiental e social devido à emissão de poluentes de efeitos locais e globais e externalidades negativas geradas pela emissão de materiais particulados - MP₁₀, associadas à saúde e mortalidade da população. O custo social e ambiental de um ônibus a diesel gera custos anuais que foram considerados ao se analisar a viabilidade econômica de substituir a frota de ônibus a diesel por ônibus a hidrogênio.

Mostra-se que é viável substituir a frota de ônibus a diesel pela frota de ônibus a hidrogênio na cidade de São Paulo, pois embora a tecnologia do hidrogênio, em primeiro momento, possa parecer mais onerosa, os seus custos ambientais são nulos. Além disso, a vida útil do ônibus a hidrogênio é maior que a vida útil do ônibus a diesel. O conforto oferecido pelos ônibus a hidrogênio é bem superior ao dos ônibus a diesel, além de serem ônibus silenciosos e não emitirem poluentes atmosféricos, possuem ar condicionado e pretende-se também pessoas que utilizam automóveis passem a utilizar o transporte coletivo.

Segundo a Mercedes Benz (2013) o Brasil é o principal centro mundial de desenvolvimento de carrocerias e chassis e por dominar a tecnologia do ônibus a hidrogênio pode também se tornar futuramente um exportador em potencial e com isso diminuir o custo deste tipo de ônibus no Brasil.

8.1 Sugestões para trabalhos futuros

Sugere-se os seguintes trabalhos para dar continuidade nesta área de pesquisa:

- verificar se o volume de água dos reservatórios das usinas hidrelétricas quando utilizada a energia elétrica nos horários de baixo consumo, isto, de madrugada, permanecem suficientes para suprir a demanda;
- estudar a viabilidade de comercialização do oxigênio produzido nas unidades de produção de hidrogênio, já que o oxigênio é também produto da eletrólise da água. Isso diminuirá os custos da produção de hidrogênio;
- fazer uma análise mais realista dos custos considerando que os ônibus a diesel tenham também ar condicionado para que a comparação seja mais equilibrada;
- aprofundar e detalhar a produção de hidrogênio a partir de reatores nucleares da IV Geração.

APÊNDICE A

Neste apêndice encontram-se os dados referentes à energia elétrica gerada pelas usinas hidráulicas, descritas no capítulo 5 deste trabalho. Todos os valores de referência foram obtidos no ONS (2013). Na TAB. A.1 encontram-se as informações sobre as usinas hidrelétricas pertencentes ao SIN. Estas informações são: nome da usina, sistema regional, volume máximo, volume mínimo, cota máxima, cota mínima, volume vertido, volume desviado, volume de referência e volume de água. Destas usinas foram escolhidas 21 usinas para estudo.

Para cada usina estudada, foi organizada uma tabela com a porcentagem de volume de água disponível nos reservatórios mês a mês, nos anos de 2009 a 2012. Estes dados são apresentados nas TAB. A.2 a A.23.

Na TAB. A.13 pode-se observar que não foram encontrados os dados referentes à usina Três Irmãos para os anos de 2009 e 2010.

TABELA A.1- Dados de referência das usinas do SIN

Haina	C:-t	\/al 844 /b2\)/al: /h2\	Cata Natur (an)	Cata: ()	Val Vant (hus 2)	\/al Dan. /h3\	Val Def	Valore Stil
Usina	Sistema	Vol.Máx.(hm3)		Cota Máx.(m)		Vol.Vert.(hm3)	Vol.Desv.(hm3)	Vol.Ref.	Volume útil
A. VERMELHA	1 - Sudeste	11025.00	5856.00	383.30	373.30	5856.00	5856.00	11025.00	5169.00
BARRA BONITA	1 - Sudeste	3135.00	569.00	451.50	439.50	1028.06	569.00	3135.00	2566.00
CAPIVARA	1 - Sudeste	10540.00	4816.00	334.00	321.00	4816.00	4816.00	10540.00	5724.00
CHAVANTES	1 - Sudeste	8795.00	5754.00	474.00	465.23	5754.00	5754.00	8795.00	3041.00
EMBORCACAO	1 - Sudeste	17725.00	4669.00	661.00	615.00	10626.45	4669.00	17725.00	13056.00
FURNAS	1 - Sudeste	22950.00	5733.00	768.00	750.00	6173.76	5733.00	22950.00	17217.00
G.B. MUNHOZ	2 - Sul	5779.00	1974.00	742.00	700.00	3898.00	1974.00	5779.00	3805.00
I. SOLTEIRA	1 - Sudeste	21060.00	8232.00	328.00	314.00	15543.00	8232.00	21060.00	12828.00
ITAPARICA	3 - Nordeste	10782.00	7234.00	304.00	299.00	7234.00	7234.00	10782.00	3548.00
ITUMBIARA	1 - Sudeste	17027.00	4573.00	520.00	495.00	6915.60	4573.00	17027.00	12454.00
M. DE MORAES	1 - Sudeste	4040.00	1540.00	666.12	653.12	1895.00	1540.00	4040.00	2500.00
MARIMBONDO	1 - Sudeste	6150.00	890.00	446.30	426.00	1175.09	890.00	5887.00	5260.00
NOVA PONTE	1 - Sudeste	12792.00	2412.00	815.00	775.50	5500.05	2412.00	12792.00	10380.00
PROMISSAO	1 - Sudeste	7408.00	5280.00	384.00	379.70	5280.00	5280.00	7408.00	2128.00
SAO SIMAO	1 - Sudeste	12540.00	7000.00	401.00	390.50	7000.00	7000.00	12540.00	5540.00
SERRA MESA	1 - Sudeste	54400.00	11150.00	460.00	417.30	28100.00	11150.00	54400.00	43250.00
SLT.SANTIAGO	2 - Sul	6775.00	2662.00	506.00	481.00	3317.20	2662.00	6775.00	4113.00
SOBRADINHO	3 - Nordeste	34116.00	5447.00	392.50	380.50	5447.00	5447.00	34116.00	28669.00
TRES IRMAOS	1 - Sudeste	13372.00	9923.00	328.00	323.00	9923.00	9923.00	13372.00	3449.00
TRES MARIAS	1 - Sudeste	19528.00	4250.00	572.50	549.20	8526.31	4250.00	19528.00	15278.00
TUCURUI	4 - Norte	50275.00	11293.00	74.00	51.60	11293.00	11293.00	50275.00	38982.00
14 DE JULHO	2 - Sul	55.00	49.31	104.00	103.00	49.31	49.31	55.00	5.69
A.A. LAYDNER	1 - Sudeste	7008.00	3843.00	568.00	559.70	3939.85	3843.00	7008.00	3165.00
A.S. LIMA	1 - Sudeste	544.00	544.00	427.50	427.50	544.00	544.00	544.00	0.00
A.S.OLIVEIRA	1 - Sudeste	25.00	25.00	573.00	573.00	25.00	25.00	25.00	0.00
AIMORES	1 - Sudeste	185.52	156.55	90.00	89.00	156.55	156.55	185.52	28.97
B. COQUEIROS	1 - Sudeste	347.80	300.00	448.00	446.00	300.00	300.00	347.80	47.80
B. ESPERANCA	3 - Nordeste	5085.00	3173.00	304.00	298.00	3173.00	3173.00	5085.00	1912.00
B.MONTE COMP	4 - Norte	4802.30	4802.30	97.00	97.00	4802.30	4802.30	4802.30	0.00
BAGUARI	1 - Sudeste	38.07	31.42	185.00	184.50	31.42	31.42	38.07	6.65
BAIXO IGUACU	2 - Sul	211.92	183.00	259.00	258.00	183.00	183.00	211.92	28.92
BALBINA	4 - Norte	19959.00	9735.00	51.00	46.00	9735.00	9735.00	19959.00	10224.00
BARRA GRANDE	2 - Sul	4904.45	2711.79	647.00	617.00	3350.95	2711.79	4904.45	2192.66
BATALHA	1 - Sudeste	1781.61	430.05	800.00	785.00	613.94	430.05	1781.61	1351.56
BAUI	1 - Sudeste	150.00	147.00	367.00	366.70	147.00	147.00	150.00	3.00
BELO MONTE	4 - Norte	4802.30	4802.30	97.00	97.00	4802.30	4802.30	4802.30	0.00
BILLINGS	1 - Sudeste	1132.65	0.98	746.50	728.00	0.98	0.98	1132.65	1131.67
BOCAINA	1 - Sudeste	9010.00	2186.00	750.00	725.00	2186.00	2186.00	9010.00	6824.00
CACH.DOURADA	1 - Sudeste	460.00	460.00	434.12	434.12	460.00	460.00	460.00	0.00
CACHOEIRINHA	2 - Sul	76.21	76.21	603.00	603.00	76.21	76.21	76.21	0.00
CACONDE	1 - Sudeste	555.00	51.00	855.00	825.00	363.98	51.00	555.00	504.00
CACU	1 - Sudeste	231.77	197.27	477.00	475.00	197.27	197.27	231.77	34.50
CACO	1 - Sudeste	792.00		913.00	899.00	418.97		792.00	672.00
CAMPOS NOVOS	2 - Sul	1477.00	120.00 1320.00	660.00	655.00	1320.00	120.00 1320.00	1477.00	157.00
								2300.00	1
CANDONICA	1 - Sudeste	2300.00	2300.00	333.00	330.00	2300.00	2300.00		0.00
CANDONGA	1 - Sudeste	54.44	54.44	327.50	327.50	54.44	54.44 212.00	54.44	0.00
CANOAS II	1 - Sudeste	212.00	212.00	351.00	351.00	212.00		212.00	0.00
CANOAS II	1 - Sudeste	151.00	151.00	366.00	366.00	151.00	151.00	151.00	0.00
CAPIM BRANC1	1 - Sudeste	241.13	228.27	624.00	623.30	228.27	228.27	241.13	12.86
CAPIM BRANC2	1 - Sudeste	879.00	878.00	565.00	564.99	878.00	878.00	879.00	1.00
CASTRO ALVES	2 - Sul	92.00	87.00	240.00	239.00	87.00	87.00	92.00	5.00
COARACY NUNE	4 - Norte	138.50	25.00	42.14	35.14	25.00	25.00	138.50	113.50
COLIDER	1 - Sudeste	1525.00	1525.00	272.00	272.00	1525.00	1525.00	1525.00	0.00
COMP PAF-MOX	3 - Nordeste	1226.00	1226.00	251.50	251.50	1226.00	1226.00	1226.00	0.00

TABELA A.1 – Dados de referência das usinas do SIN

			1			1	1	1	
CORUMBA I	1 - Sudeste	1500.00	470.00	595.00	570.00	739.04	470.00	1500.00	1030.00
CORUMBA III	1 - Sudeste	972.00	709.00	772.00	768.00	709.00	709.00	972.00	263.00
CORUMBA IV	1 - Sudeste	3624.40	2936.60	842.00	837.00	2936.60	2936.60	3624.40	687.80
COUTO MAGALH	1 - Sudeste	70.99	70.99	623.00	623.00	70.99	70.99	70.99	0.00
CUBATAO	2 - Sul	58.00	21.00	800.00	789.00	58.00	21.00	58.00	37.00
CURUA-UNA	4 - Norte	530.00	130.00	68.00	61.00	130.00	130.00	530.00	400.00
D. FRANCISCA	2 - Sul	330.00	330.00	94.50	94.50	330.00	330.00	330.00	0.00
DARDANELOS	1 - Sudeste	0.12	0.12	213.50	213.50	0.12	0.12	0.12	0.00
E. DA CUNHA	1 - Sudeste	14.00	14.00	665.00	665.00	14.00	14.00	14.00	0.00
EDGARD SOUZA	1 - Sudeste	1.00	0.10	717.15	706.15	1.00	0.10	1.00	0.90
ERNESTINA	2 - Sul	259.00	21.00	489.50	482.50	21.00	21.00	259.00	238.00
ESPORA	1 - Sudeste	209.00	71.00	583.50	576.50	71.00	71.00	209.00	138.00
ESTREITO	1 - Sudeste	1423.00	1423.00	622.50	622.50	1423.00	1423.00	1423.00	0.00
ESTREITO TOC	4 - Norte	5400.00	5400.00	156.00	156.00	5400.00	5400.00	5400.00	0.00
FERREIRA GOM	4 - Norte	137.31	137.31	21.30	21.30	137.31	137.31	137.31	0.00
FICT.CANA BR	4 - Norte	2300.00	2300.00	333.00	330.00	2300.00	2300.00	2300.00	0.00
FICT.COUTO M	4 - Norte	70.99	70.99	623.00	623.00	70.99	70.99	70.99	0.00
FICT.IRAPE	3 - Nordeste	5964.00	2268.00	510.00	470.80	2268.00	2268.00	5964.00	3696.00
FICT.LAJEADO	4 - Norte	4940.00	4940.00	212.00	212.00	4940.00	4940.00	4940.00	0.00
FICT.MAUA	1 - Sudeste	2137.00	1473.00	635.00	626.00	1473.00	1473.00	2137.00	664.00
FICT.MAUA FICT.MURTA	3 - Nordeste	340.00	339.00	329.85	329.80	339.00	339.00	340.00	1.00
			2212.70					2741.00	528.30
FICT. PEIXE A	4 - Norte	2741.00		263.00	261.00	2212.70	2212.70		
FICT DETUDO	3 - Nordeste	557.00	95.25	829.00	811.00	95.25	95.25	557.00	461.75
FICT.RETIRO	3 - Nordeste	241.59	200.72	616.00	614.00	200.72	200.72	241.59	40.87
FICT.SAO JER	1 - Sudeste	2045.00	1617.00	515.00	508.00	1617.00	1617.00	2045.00	428.00
FICT.SAO SAL	4 - Norte	952.00	952.00	287.00	287.00	952.00	952.00	952.00	0.00
FICT.SERRA M	4 - Norte	54400.00	11150.00	460.00	417.30	11150.00	11150.00	54400.00	43250.00
FICT.TRES MA	3 - Nordeste	19528.00	4250.00	572.50	549.20	4250.00	4250.00	19528.00	15278.00
FONTES	1 - Sudeste	445.35	445.35	415.00	415.00	445.35	445.35	445.35	0.00
FONTES A	1 - Sudeste	467.00	467.00	415.00	415.00	467.00	467.00	467.00	0.00
FONTES BC	1 - Sudeste	38.00	38.00	399.00	399.00	38.00	38.00	38.00	0.00
FOZ CHAPECO	2 - Sul	1501.80	1427.50	265.00	264.00	1427.50	1427.50	1501.80	74.30
FOZ R. CLARO	1 - Sudeste	95.33	95.33	354.00	354.00	95.33	95.33	95.33	0.00
FUNDAO	2 - Sul	35.00	35.00	705.50	705.50	35.00	35.00	35.00	0.00
FUNIL	1 - Sudeste	888.00	283.00	466.50	444.00	405.03	283.00	888.00	605.00
FUNIL-GRANDE	1 - Sudeste	304.00	304.00	808.00	808.00	304.00	304.00	304.00	0.00
G.P. SOUZA	2 - Sul	179.00	23.00	845.00	822.00	105.00	23.00	179.00	156.00
GARIBALDI	2 - Sul	295.55	295.55	705.00	705.00	295.55	295.55	295.55	0.00
GUAPORE	1 - Sudeste	21.00	21.00	479.20	479.20	21.00	21.00	21.00	0.00
GUARAPIRANGA	1 - Sudeste	189.96	0.77	736.62	724.50	138.80	0.77	189.96	189.19
GUILMAN-AMOR	1 - Sudeste	12.00	12.00	495.00	495.00	12.00	12.00	12.00	0.00
HENRY BORDEN	1 - Sudeste	1.00	1.00	728.75	728.75	1.00	1.00	1.00	0.00
I. SOLT. EQV	1 - Sudeste	34432.00	25467.00	328.00	323.00	25467.00	25467.00	34432.00	8965.00
IBITINGA	1 - Sudeste	985.00	985.00	404.00	404.00	985.00	985.00	985.00	0.00
IGARAPAVA	1 - Sudeste	480.00	480.00	512.00	512.00	480.00	480.00	480.00	0.00
ILHA POMBOS	1 - Sudeste	8.00	8.00	135.60	135.60	8.00	8.00	8.00	0.00
IRAPE	1 - Sudeste	5964.00	2268.00	510.00	470.80	2268.00	2268.00	5964.00	3696.00
ITA	2 - Sul	5100.00	5100.00	370.00	370.00	5100.00	5100.00	5100.00	0.00
ITAGUACU	1 - Sudeste	1793.90	1793.90	411.50	411.50	1793.90	1793.90	1793.90	0.00
ITAIPU	1 - Sudeste	29000.00	29000.00	220.00	220.00	29000.00	29000.00	29000.00	0.00
ITAOCARA	1 - Sudeste	1164.00	1163.00	102.00	101.99	1163.00	1163.00	1164.00	1.00
				110.00		1634.00			
ITAPEBI	3 - Nordeste	1634.00	1634.00		110.00		1634.00	1634.00	0.00
ITAUBA	2 - Sul	620.00	620.00	184.00	184.00	620.00	620.00	620.00	0.00
ITIQUIRA I	1 - Sudeste	5.00	5.00	412.00	412.00	5.00	5.00	5.00	0.00
ITIQUIRA II	1 - Sudeste	1.00	1.00	320.00	320.00	1.00	1.00	1.00	0.00
ITUMIRIM	1 - Sudeste	319.00	319.00	680.00	680.00	319.00	319.00	319.00	0.00

TABELA A.1 – Dados de referência das usinas do SIN

	1			1	1	ı	ı	ı	1
ITUTINGA	1 - Sudeste	11.00	11.00	886.00	886.00	11.00	11.00	11.00	0.00
JACUI	2 - Sul	29.00	29.00	279.89	279.89	29.00	29.00	29.00	0.00
JAGUARA	1 - Sudeste	450.00	450.00	558.50	558.50	450.00	450.00	450.00	0.00
JAGUARI	1 - Sudeste	1236.00	443.00	623.00	603.20	1236.00	443.00	1236.00	793.00
JAURU	1 - Sudeste	17.15	16.17	355.00	354.70	17.15	16.17	17.15	0.98
JIRAU	1 - Sudeste	2746.70	2746.70	90.00	90.00	2746.70	2746.70	2746.70	0.00
JORDAO	2 - Sul	110.00	85.00	610.00	602.00	110.00	85.00	110.00	25.00
JUPIA	1 - Sudeste	3354.00	3354.00	280.00	280.00	3354.00	3354.00	3354.00	0.00
L.N. GARCEZ	1 - Sudeste	45.00	45.00	384.67	384.67	45.00	45.00	45.00	0.00
LAJEADO	1 - Sudeste	4940.00	4940.00	212.00	212.00	4940.00	4940.00	4940.00	0.00
LAJES	1 - Sudeste	445.35	0.01	415.00	386.50	120.00	120.00	445.35	445.34
MACHADINHO	2 - Sul	3340.00	2283.00	480.00	465.00	2283.00	2283.00	3340.00	1057.00
MANSO	1 - Sudeste	7337.00	4386.00	287.00	278.00	4386.00	4386.00	7337.00	2951.00
MASCARENHAS	1 - Sudeste	21.68	21.68	60.70	60.70	21.68	21.68	21.68	0.00
MAUA	2 - Sul	2137.00	1473.00	635.00	626.00	1473.00	1473.00	2137.00	664.00
MIRANDA	1 - Sudeste	1120.00	974.00	696.00	693.00	975.00	974.00	1120.00	146.00
MONJOLINHO	2 - Sul	150.48	150.48	328.50	328.50	150.48	150.48	150.48	0.00
MONTE CLARO	2 - Sul	11.28	10.10	148.00	147.00	10.10	10.10	11.28	1.18
МОХОТО	3 - Nordeste	1226.00	1226.00	251.50	251.50	1226.00	1226.00	1226.00	0.00
MURTA	1 - Sudeste	340.00	339.00	329.85	329.80	339.00	339.00	340.00	1.00
NAVANHANDAVA	1 - Sudeste	2720.00	2720.00	358.00	358.00	2720.00	2720.00	2720.00	0.00
NILO PECANHA	1 - Sudeste	38.00	38.00	399.00	399.00	38.00	38.00	38.00	0.00
OLHO DAGUA	1 - Sudeste	480.00	480.00	490.00	490.00	480.00	480.00	480.00	0.00
OURINHOS	1 - Sudeste	20.82	20.82	398.00	398.00	20.82	20.82	20.82	0.00
P. CAVALO	3 - Nordeste	3072.00	2192.00	114.00	106.00	2192.00	2192.00	3072.00	880.00
P. COLOMBIA	1 - Sudeste	1524.00	1524.00	467.20	467.20	1524.00	1524.00	1524.00	0.00
P. ESTRELA	1 - Sudeste	89.00	56.00	255.00	246.00	56.00	56.00	89.00	33.00
P. PASSOS	1 - Sudeste	17.00	17.00	86.50	86.50	17.00	17.00	17.00	0.00
P. PRIMAVERA	1 - Sudeste	20000.00	14400.00	259.00	257.00	14400.00	14400.00	20000.00	5600.00
P.AFONSO 123	3 - Nordeste	26.00	26.00	230.30	230.30	26.00	26.00	26.00	0.00
P.AFONSO 4	3 - Nordeste	121.00	121.00	251.50	251.50	121.00	121.00	121.00	0.00
PAI QUERE	2 - Sul	2588.00	1044.00	797.00	762.00	1524.00	1044.00	2588.00	1544.00
PARAIBUNA	1 - Sudeste	4732.00	2096.00	714.00	694.60	4732.00	2096.00	4732.00	2636.00
PASSO FUNDO	2 - Sul	1589.00	185.00	598.00	584.00	870.00	185.00	1589.00	1404.00
PASSO REAL	2 - Sul	3646.00	289.00	327.00	300.00	1668.06	289.00	3646.00	3357.00
PASSO S JOAO	2 - Sul	102.40	102.40	128.35	128.35	102.40	102.40	102.40	0.00
PEDREIRA	1 - Sudeste	1.00	0.10	722.15	720.35	1.00	0.10	1.00	0.90
PEIXE ANGIC	1 - Sudeste	2741.00	2212.70	263.00	261.00	2212.70	2212.70	2741.00	528.30
PICADA	1 - Sudeste	7.00	6.00	659.22	658.76	6.00	6.00	7.00	1.00
PIRAJU	1 - Sudeste	84.00	84.00	531.50	531.50	84.00	84.00	84.00	0.00
PONTE NOVA	1 - Sudeste	2.00	2.00	110.00	110.00	2.00	2.00	2.00	0.00
PONTE PEDRA	1 - Sudeste	199.00	199.00	396.00	396.00	199.00	199.00	199.00	0.00
QUEBRA QUEIX	2 - Sul	137.00	111.00	549.00	544.00	111.00	111.00	137.00	26.00
QUEIMADO	1 - Sudeste	557.00	95.25	829.00	811.00	212.12	95.25	557.00	461.75
RETIRO BAIXO	1 - Sudeste	241.59	200.72	616.00	614.00	200.72	200.72	241.59	40.87
RONDON II	1 - Sudeste	478.29	192.17	268.00	264.00	476.29	192.17	478.29	286.12
ROSAL	1 - Sudeste	11.00	11.00	555.00	555.00	11.00	11.00	11.00	0.00
ROSANA	1 - Sudeste	1918.00	1918.00	258.00	258.00	1918.00	1918.00	1918.00	0.00
S GDE CHOPIM	2 - Sul	186.08	186.08	507.00	507.00	186.08	186.08	186.08	0.00
S. QUEBRADA	4 - Norte	4130.00	4130.00	134.00	134.00	4130.00	4130.00	4130.00	0.00
SA CARVALHO	1 - Sudeste	1.00	1.00	369.50	369.50	1.00	1.00	1.00	0.00
SALTO	1 - Sudeste	826.06	826.06	446.50	446.50	826.06	826.06	826.06	0.00
SALTO CAXIAS	2 - Sul	3573.00	3573.00	325.00	325.00	3573.00	3573.00	3573.00	0.00
SALTO GRANDE	1 - Sudeste	78.00	78.00	356.00	356.00	78.00	78.00	78.00	0.00
SALTO GRANDE SALTO OSORIO	2 - Sul	1124.00	1124.00	397.00	397.00	1124.00	1124.00	1124.00	0.00
SALTO OSORIO	2 - Sul	0.26	0.12	319.00	318.00	0.26	0.12	0.26	0.00
	1 - Sudeste								
SAMUEL SANTA BRANCA		3493.44	943.23	87.40 622.00	80.00	943.23	943.23	3493.44	2550.21
SANTA BRANCA	1 - Sudeste	439.00	131.00	622.00	605.00	131.00	131.00	439.00	308.00
SANTA ISABEL	4 - Norte	1850.00	1850.00	125.00	125.00	1850.00	1850.00	1850.00	0.00
SANTANA	1 - Sudeste	12.00	12.00	363.00	363.00	12.00	12.00	12.00	0.00

TABELA A.1 – Dados de referência das usinas do SIN

SAO DOMINGOS	1 - Sudeste	131.30	116.45	345.00	344.00	116.45	116.45	131.30	14.85
SAO JERONIMO	2 - Sul	2045.00	1617.00	515.00	508.00	1617.00	1617.00	2045.00	428.00
SAO JOAO	2 - Sul	82.29	82.29	692.00	692.00	82.29	82.29	82.29	0.00
SAO JOSE	2 - Sul	186.33	186.33	154.67	154.67	186.33	186.33	186.33	0.00
SAO ROQUE	2 - Sul	795.67	336.72	760.00	746.00	336.72	336.72	795.67	458.95
SAO SALVADOR	1 - Sudeste	952.00	952.00	287.00	287.00	952.00	952.00	952.00	0.00
SEGREDO	2 - Sul	2950.00	2562.00	607.00	602.00	2562.00	2562.00	2950.00	388.00
SERRA FACAO	1 - Sudeste	5199.00	1752.00	756.00	732.50	2777.00	1752.00	5199.00	3447.00
SIMPLICIO	1 - Sudeste	126.50	126.50	251.50	251.50	126.50	126.50	126.50	0.00
SLT VERDINHO	1 - Sudeste	264.48	264.48	370.50	370.50	264.48	264.48	264.48	0.00
SOBRAGI	1 - Sudeste	1.00	1.00	436.50	436.50	1.00	1.00	1.00	0.00
STA CECILIA	1 - Sudeste	6.00	6.00	352.95	352.95	6.00	6.00	6.00	0.00
STA CLARA MG	1 - Sudeste	146.00	146.00	86.00	86.00	146.00	146.00	146.00	0.00
STA CLARA PR	2 - Sul	431.00	169.00	805.00	787.50	431.00	169.00	431.00	262.00
STO ANT JARI	4 - Norte	133.39	104.61	30.00	29.10	104.61	104.61	133.39	28.78
STO ANTONIO	1 - Sudeste	2075.13	2075.13	70.50	70.50	2075.13	2075.13	2075.13	0.00
TAQUARUCU	1 - Sudeste	677.00	677.00	284.00	284.00	677.00	677.00	677.00	0.00
TELES PIRES	1 - Sudeste	904.50	904.50	220.00	220.00	904.50	904.50	904.50	0.00
TOCOS	1 - Sudeste	2.00	2.00	448.00	448.00	2.00	2.00	2.00	0.00
TRAICAO	1 - Sudeste	1.00	0.10	717.15	715.35	1.00	0.10	1.00	0.90
TRAIRA II	1 - Sudeste	19.07	16.76	435.00	433.20	16.76	16.76	19.07	2.31
VIGARIO	1 - Sudeste	38.00	38.00	399.00	399.00	38.00	38.00	38.00	0.00
VOLTA GRANDE	1 - Sudeste	2244.00	2244.00	494.87	494.87	2244.00	2244.00	2244.00	0.00
XINGO	3 - Nordeste	3800.00	3800.00	138.00	138.00	3800.00	3800.00	3800.00	0.00

TABELA A.2 – Volume de água do reservatório da usina de Furnas em % (2009 a 2012)

Furnas	2009	2010	2011	2012
Jan	96.40	94.02	91.34	94.10
Fev	97.46	94.10	95.50	94.84
Mar	99.26	98.36	98.12	89.68
Abr	98.85	96.89	99.02	84.24
Mai	98.28	93.78	99.10	78.66
Jun	95.50	87.63	94.02	77.08
Jul	91.10	80.54	89.45	71.08
Ago	86.37	71.29	81.45	60.94
Set	84.87	61.33	72.30	48.45
Out	84.95	53.13	66.34	28.10
Nov	81.97	52.20	59.03	15.96
Dez	91.10	58.11	71.44	12.35

TABELA A.3 – Volume de água do reservatório da usina de Mascarenhas em % (2009 a 2012)

Marcarenhas	2009	2010	2011	2012
Jan	90.33	90.91	89.46	90.13
Fev	89.55	94.19	80.64	91.10
Mar	92.45	97.58	97.09	88.33
Abr	97.67	97.77	98.83	93.42
Mai	85.92	81.11	90.33	99.03
Jun	81.94	87.31	93.13	92.26
Jul	83.23	81.29	83.51	82.96
Ago	84.35	85.09	81.19	76.31
Set	81.56	80.92	79.99	78.42
Out	90.62	81.38	78.42	89.08
Nov	94.87	80.92	47.47	80.17
Dez	87.96	85.74	82.12	75.66

TABELA A.4 – Volume de água do reservatório da usina de Marimbondo em % (2009 a 2012)

Marimbondo	2009	2010	2011	2012
Jan	82.28	80.34	64.77	81.83
Fev	89.05	88.75	77.30	80.27
Mar	87.91	87.91	89.90	70.75
Abr	86.69	83.65	89.90	71.52
Mai	88.75	87.53	87.91	62.98
Jun	78.86	72.65	87.22	68.21
Jul	71.87	56.18	83.19	58.06
Ago	65.90	42.86	76.11	33.22
Set	65.37	28.15	62.84	20.42
Out	60.21	13.63	52.70	17.93
Nov	56.90	11.88	38.24	10.57
Dez	72.22	25.05	34.60	16.13

TABELA A.5 – Volume de água do reservatório da usina de Água Vermelha em %(2009 a 2012)

Água Vermelha	2009	2010	2011	2012
Jan	42.41	80.72	53.57	61.31
Fev	100.00	96.77	77.10	79.90
Mar	99.88	99.63	99.25	93.93
Abr	96.15	96.02	99.50	80.01
Mai	92.83	92.58	95.53	72.27
Jun	85.46	84.03	96.52	64.40
Jul	78.03	69.54	93.56	61.09
Ago	62.08	60.66	73.41	51.58
Set	68.86	26.02	66.51	21.33
Out	77.45	18.92	66.29	16.88
Nov	82.60	9.26	55.59	14.80
Dez	75.48	22.38	48.58	15.96

TABELA A.6 – Volume de água do reservatório da usina de Emborcação em % (2009 a 2012)

Emborcação	2009	2010	2011	2012
Jan	61.85	56.00	40.22	79.88
Fev	73.06	54.21	42.25	86.49
Mar	74.46	54.73	59.60	84.30
Abr	78.76	53.62	68.92	82.63
Mai	80.81	50.81	73.00	78.17
Jun	78.70	47.48	72.30	75.32
Jul	72.83	45.66	69.98	70.48
Ago	66.49	41.33	64.44	63.73
Set	60.32	34.84	59.94	56.05
Out	55.48	27.30	58.33	46.99
Nov	51.65	23.45	56.35	44.25
Dez	53.49	24.19	63.76	35.03

TABELA A.7 – Volume de água do reservatório da usina de Nova Ponte em % (2009 a 2012)

Nova Ponte	2009	2010	2011	2012
Jan	84.74	80.17	58.78	73.52
Fev	91.46	79.51	59.56	75.11
Mar	96.01	83.32	72.80	73.14
Abr	99.88	83.16	79.96	72.83
Mai	99.60	81.58	83.32	68.43
Jun	99.76	79.13	81.03	65.73
Jul	96.80	74.53	76.98	60.07
Ago	93.08	68.36	72.24	54.21
Set	87.19	60.52	66.49	48.61
Out	81.19	54.48	62.51	41.74
Nov	76.53	52.88	58.93	35.15
Dez	77.88	52.37	62.21	28.83

TABELA A.8 – Volume de água do reservatório da usina de Itumbiara em % (2009 a 2012)

Itumbiara	2009	2010	2011	2012
Jan	49.34	86.81	34.37	54.79
Fev	62.95	80.94	41.34	61.57
Mar	69.54	80.55	85.78	58.92
Abr	81.43	81.87	99.27	56.67
Mai	82.77	78.81	97.93	50.88
Jun	70.31	73.01	98.23	45.73
Jul	64.67	54.03	94.81	42.24
Ago	58.96	36.97	81.98	34.89
Set	56.01	23.28	60.43	23.41
Out	61.96	12.65	50.75	9.93
Nov	70.25	11.27	38.77	13.40
Dez	86.81	15.99	36.03	10.01

TABELA A.9 – Volume de água do reservatório da usina de São Simão em % (2009 a 2012)

São Simão	2009	2010	2011	2012
Jan	38.42	83.70	34.37	54.79
Fev	66.11	99.44	41.34	61.57
Mar	91.55	96.84	85.78	58.92
Abr	89.99	87.24	99.27	56.67
Mai	89.43	92.01	97.93	50.88
Jun	96.50	97.97	98.23	45.73
Jul	82.59	93.45	94.81	42.24
Ago	65.10	64.29	81.98	34.89
Set	79.66	53.48	60.43	23.41
Out	86.73	43.47	50.75	9.93
Nov	93.79	47.41	38.77	13.40
Dez	63.48	29.27	36.03	10.01

TABELA A.10 – Volume de água do reservatório da usina de Ilha Solteira em % (2009 a 2012)

Ilha Solteira	2009	2010	2011	2012
Jan	55.50	57.33	76.34	63.47
Fev	76.13	66.15	88.18	76.34
Mar	98.05	104.13	90.74	83.72
Abr	96.76	91.38	99.13	69.88
Mai	78.23	81.39	92.88	80.12
Jun	60.19	68.42	89.03	92.24
Jul	58.96	70.29	73.21	81.81
Ago	69.46	67.80	59.37	62.03
Set	73.21	60.39	64.91	61.83
Out	63.88	73.21	58.15	50.85
Nov	56.11	66.56	68.42	53.27
Dez	57.74	64.09	57.94	45.83

TABELA A.11 – Volume de água do reservatório da usina de Barra Bonita em % (2009 a 2012)

Barra Bonita	2009	2010	2011	2012
Jan	60.45	73.91	81.11	76.35
Fev	76.89	99.76	87.80	88.94
Mar	94.27	93.81	89.63	92.40
Abr	92.99	96.28	94.27	97.36
Mai	90.66	93.92	99.15	96.52
Jun	86.78	84.42	95.10	94.98
Jul	89.40	74.44	85.32	77.00
Ago	79.80	63.99	81.44	66.19
Set	75.50	59.48	61.72	65.78
Out	60.45	55.20	66.89	60.06
Nov	67.70	54.83	54.55	53.89
Dez	60.55	72.45	49.42	67.70

TABELA A.12 – Volume de água do reservatório da usina de Promissão em % (2009 a 2012)

Promissão	2009	2010	2011	2012
Jan	59.47	87.15	81.29	74.99
Fev	92.56	89.85	96.27	82.51
Mar	98.26	95.53	100.00	78.37
Abr	94.54	98.76	99.25	92.31
Mai	91.33	94.54	99.75	93.55
Jun	91.82	97.51	94.04	97.02
Jul	82.99	88.13	77.89	79.59
Ago	85.43	71.38	65.88	51.95
Set	91.82	57.82	65.64	52.88
Out	75.95	44.27	74.27	42.43
Nov	64.21	33.49	47.05	34.86
Dez	84.70	43.12	33.72	47.75

TABELA A.13 – Volume de água do reservatório da usina de Três Irmãos em % (2009 a 2012)

Três Irmãos	2009	2010	2011	2012
Jan			81.29	74.99
Fev			96.27	82.51
Mar			100.00	78.37
Abr			99.25	92.31
Mai			99.75	93.55
Jun			94.04	97.02
Jul			77.89	79.59
Ago			65.88	51.95
Set			65.64	52.88
Out			74.27	42.43
Nov			47.05	34.86
Dez			33.72	47.75

TABELA A.14 – Volume de água do reservatório da usina de Jurumirim em % (2009 a 2012)

Jurumirim	2009	2010	2011	2012
Jan	58.49	82.06	70.32	79.12
Fev	73.18	80.72	78.06	80.46
Mar	78.19	91.60	86.53	78.46
Abr	75.02	92.99	89.12	70.71
Mai	72.27	84.09	83.82	57.25
Jun	68.77	82.20	79.92	75.68
Jul	86.26	82.60	73.84	75.81
Ago	89.54	78.72	70.45	67.61
Set	90.22	72.53	62.64	52.80
Out	87.21	62.76	73.45	41.38
Nov	78.59	48.78	72.27	32.31
Dez	76.34	53.66	66.71	30.49

TABELA A.15 – Volume de água do reservatório da usina de Chavantes em % (2009 a 2012)

Chavantes	2009	2010	2011	2012
Jan	69.36	80.10	61.41	64.64
Fev	72.41	81.23	78.72	63.80
Mar	67.66	87.18	89.09	54.57
Abr	69.23	88.32	92.95	51.78
Mai	70.70	82.99	85.27	55.16
Jun	73.03	82.23	85.14	75.99
Jul	88.84	76.24	81.48	78.60
Ago	88.20	67.90	77.23	71.31
Set	82.11	52.48	66.33	56.68
Out	81.35	48.10	74.50	39.95
Nov	76.73	41.07	71.19	28.44
Dez	70.33	47.64	61.29	27.47

TABELA A.16 – Volume de água do reservatório da usina de Capivara em % (2009 a 2012)

Capivara	2009	2010	2011	2012
Jan	75.54	85.59	81.11	78.72
Fev	96.21	96.31	98.10	68.11
Mar	95.13	97.70	96.91	50.23
Abr	84.18	94.15	98.40	39.90
Mai	63.46	97.11	95.43	41.78
Jun	44.99	96.91	83.53	94.44
Jul	75.72	89.69	82.69	89.78
Ago	96.02	74.55	97.80	72.41
Set	94.74	58.01	93.76	59.26
Out	95.52	58.51	97.70	43.15
Nov	90.17	46.93	89.97	31.50
Dez	82.04	53.44	76.26	28.39

TABELA A.17 – Volume de água do reservatório da usina de Bento Munhoz em % (2009 a 2012)

Bento Munhoz	2009	2010	2011	2012
Jan	51.54	96.39	98.03	75.09
Fev	49.10	99.75	95.80	57.00
Mar	41.15	97.86	95.13	25.06
Abr	34.18	81.38	91.62	40.28
Mai	34.90	99.64	56.94	81.35
Jun	43.59	95.03	42.53	99.14
Jul	75.68	83.75	97.35	98.28
Ago	86.41	73.06	93.60	78.09
Set	89.63	33.87	99.29	33.68
Out	97.86	29.72	99.50	32.01
Nov	99.25	17.34	79.15	25.81
Dez	100.07	86.41	55.58	19.02

TABELA A.18 – Volume de água do reservatório da usina de Salto Santiago em % (2009 a 2012)

Salto Santiago	2009	2010	2011	2012
Jan	59.21	100.05	82.42	61.50
Fev	41.41	99.54	99.59	54.82
Mar	37.24	100.20	99.44	62.15
Abr	31.47	99.54	97.48	58.44
Mai	34.26	96.32	94.97	67.27
Jun	46.72	88.82	78.23	99.65
Jul	79.87	95.42	95.47	98.53
Ago	90.58	94.87	99.24	91.51
Set	99.19	91.56	88.77	68.48
Out	100.10	51.81	100.05	27.97
Nov	99.09	31.40	95.77	24.93
Dez	99.39	58.69	72.96	16.32

TABELA A.19 – Volume de água do reservatório da usina de Três Marias em % (2009 a 2012)

Três Marias	2009	2010	2011	2012
Jan	87.68	72.14	77.80	83.69
Fev	93.49	67.80	77.46	89.22
Mar	100.00	76.35	98.33	90.20
Abr	99.92	76.40	99.01	90.51
Mai	99.70	70.21	98.33	87.19
Jun	96.31	66.01	92.98	82.62
Jul	90.32	60.52	88.35	76.91
Ago	81.61	53.52	79.92	69.50
Set	72.41	47.14	70.43	59.01
Out	66.39	42.83	63.84	47.05
Nov	60.26	47.78	59.50	44.79
Dez	68.07	57.60	78.19	39.20

TABELA A.20 – Volume de água do reservatório da usina de Sobradinho em % (2009 a 2012)

Sobradinho	2009	2010	2011	2012
Jan	51.17	75.29	53.24	68.97
Fev	71.75	71.05	53.74	87.98
Mar	81.66	74.22	67.04	80.29
Abr	100.00	77.59	85.48	76.01
Mai	98.26	73.15	85.48	63.82
Jun	92.19	69.78	81.29	54.64
Jul	81.78	62.29	75.05	48.10
Ago	74.46	53.94	63.93	38.51
Set	66.93	44.84	53.04	29.65
Out	60.25	33.91	41.44	23.98
Nov	64.25	33.19	37.33	27.79
Dez	67.15	37.41	46.88	27.35

TABELA A.21 – Volume de água do reservatório da usina de Serra da Mesa em % (2009 a 2012)

Serra da Mesa	2009	2010	2011	2012
Jan	39.70	65.49	57.90	72.02
Fev	44.17	66.64	61.63	76.76
Mar	47.32	69.92	72.28	78.22
Abr	53.08	71.28	77.08	77.42
Mai	54.97	68.39	77.60	73.78
Jun	55.36	65.76	76.14	71.57
Jul	54.61	62.18	73.82	68.77
Ago	53.50	58.65	70.23	64.44
Set	52.80	52.75	63.90	56.63
Out	54.08	47.07	58.83	47.02
Nov	54.08	44.15	56.72	42.32
Dez	59.01	45.34	61.44	39.68

TABELA A.22 – Volume de água do reservatório da usina de Gonzaga em % (2009 a 2012)

Gonzaga Itaparica	2009	2010	2011	2012
Jan	54.89	46.21	42.83	49.42
Fev	59.20	48.99	54.27	55.90
Mar	60.23	52.66	55.31	69.29
Abr	88.22	80.70	88.42	63.37
Mai	95.86	94.28	96.56	88.87
Jun	95.86	95.86	95.65	96.79
Jul	95.41	91.12	89.32	94.96
Ago	88.22	89.54	96.79	91.57
Set	84.64	86.87	90.90	83.32
Out	81.57	81.35	91.35	63.79
Nov	52.44	59.43	67.79	44.41
Dez	47.82	58.38	54.89	41.05

TABELA A.23- Volume de água do reservatório da usina de Tucuruí em % (2009 a 2012)

Tucuruí	2009	2010	2011	2012
Jan	30.93	86.24	36.73	87.17
Fev	53.57	98.24	82.58	98.92
Mar	97.25	98.69	98.62	99.08
Abr	99.54	99.38	98.77	99.92
Mai	98.92	99.46	100.00	97.02
Jun	96.72	88.68	91.00	92.40
Jul	80.50	68.22	85.96	69.80
Ago	57.51	45.44	63.69	42.09
Set	39.01	27.18	35.23	23.30
Out	28.16	18.30	21.44	16.06
Nov	31.96	13.16	32.92	17.36
Dez	38.35	26.18	35.73	25.35

Sabendo-se o volume de útil em hectômetro cúbico de cada usina, dados pela TAB.A.1 e a porcentagem deste volume mês a mês, foi calculado o volume de água em hectômetro cúbico para cada usina conforme mostrado nas TAB. A.24 a TAB. A.39.

TABELA A.24 – Volume de água mensal dos reservatórios das usinas de Água Vermelha, Barra Bonita, Capivara, Chavantes e Emborcação em 2009

2009										
usina	A. VERMELHA		BARRA BONITA		CAPIVARA		CHAVANTES		EMBORCACAO	
vol.útil (hm³)	5169	vol.útil (hm³)	2566	vol.útil (hm³)	5724	vol.útil (hm³)	3041	vol.útil (hm³)	13056	vol.útil (hm³)
Jan	42.41	2192.1729	60.45	1551.147	75.54	4323.9096	69.36	2109.2376	61.85	8075.136
Fev	100	5169	76.89	1972.9974	96.21	5507.0604	72.41	2201.9881	73.06	9538.7136
Mar	99.88	5162.7972	94.27	2418.9682	95.13	5445.2412	67.66	2057.5406	74.46	9721.4976
Abr	96.15	4969.9935	92.99	2386.1234	84.18	4818.4632	69.23	2105.2843	78.76	10282.9056
Mai	92.83	4798.3827	90.66	2326.3356	63.46	3632.4504	70.7	2149.987	80.81	10550.5536
Jun	85.46	4417.4274	86.78	2226.7748	44.99	2575.2276	73.03	2220.8423	78.7	10275.072
Jul	78.03	4033.3707	89.4	2294.004	75.72	4334.2128	88.84	2701.6244	72.83	9508.6848
Ago	62.08	3208.9152	79.8	2047.668	96.02	5496.1848	88.2	2682.162	66.49	8680.9344
Set	68.86	3559.3734	75.5	1937.33	94.74	5422.9176	82.11	2496.9651	60.32	7875.3792
Out	77.45	4003.3905	60.45	1551.147	95.52	5467.5648	81.35	2473.8535	55.48	7243.4688
Nov	82.6	4269.594	67.7	1737.182	90.17	5161.3308	76.73	2333.3593	51.65	6743.424
Dez	75.48	3901.5612	60.55	1553.713	82.04	4695.9696	70.33	2138.7353	53.49	6983.6544

TABELA A.25 – Volume de água mensal dos reservatórios das usinas de Furnas, G.B. Munhoz, Ilha Solteira, Itaparica e Itumbiara em 2009

2009										
usina	FURNAS		G.B. MUNHOZ		I. SOLTEIRA		ITAPARICA		ITUMBIARA	
vol.útil (hm³)	17217	vol.útil (hm³)	3805	vol.útil (hm³)	12828	vol.útil (hm³)	3548	vol.útil (hm³)	12454	vol.útil (hm³)
Jan	96,4	16597,188	51,54	1961,097	55,5	7119,54	54,89	1947,4972	49,34	618,7236
Fev	97,46	16779,6882	49,1	1868,255	76,13	9765,9564	59,2	2100,416	62,95	789,393
Mar	99,26	17089,5942	41,15	1565,7575	98,05	12577,854	60,23	2136,9604	69,54	872,0316
Abr	98,85	17019,0045	34,18	1300,549	96,76	12412,3728	88,22	3130,0456	81,43	1021,1322
Mai	98,28	16920,8676	34,9	1327,945	78,23	10035,3444	95,86	3401,1128	82,77	1037,9358
Jun	95,5	16442,235	43,59	1658,5995	60,19	7721,1732	95,86	3401,1128	70,31	881,6874
Jul	91,1	15684,687	75,68	2879,624	58,96	7563,3888	95,41	3385,1468	64,67	810,9618
Ago	86,37	14870,3229	86,41	3287,9005	69,46	8910,3288	88,22	3130,0456	58,96	739,3584
Set	84,87	14612,0679	89,63	3410,4215	73,21	9391,3788	84,64	3003,0272	56,01	702,3654
Out	84,95	14625,8415	97,86	3723,573	63,88	8194,5264	81,57	2894,1036	61,96	776,9784
Nov	81,97	14112,7749	99,25	3776,4625	56,11	7197,7908	52,44	1860,5712	70,25	880,935
Dez	91,1	15684,687	100,07	3807,6635	57,74	7406,8872	47,82	1696,6536	86,81	1088,5974

TABELA A.26 – Volume de água mensal dos reservatórios das usinas de M.Moraes, Marimbondo, Nova Ponte, Promissão e São Simão em 2009

2009										
usina	M. DE MORAES		MARIMBONDO		NOVA PONTE		PROMISSAO		SAO SIMAO	
vol.útil (hm³)	2500	vol.útil (hm³)	5260	vol.útil (hm³)	10380	vol.útil (hm³)	2128	vol.útil (hm³)	5540	vol.útil (hm³)
Jan	90.33	2258.25	82.28	4327.928	84.74	8796.012	59.47	1265.5216	38.42	2128.468
Fev	89.55	2238.75	89.05	4684.03	91.46	9493.548	92.56	1969.6768	66.11	3662.494
Mar	92.45	2311.25	87.91	4624.066	96.01	9965.838	98.26	2090.9728	91.55	5071.87
Abr	97.67	2441.75	86.69	4559.894	99.88	10367.544	94.54	2011.8112	89.99	4985.446
Mai	85.92	2148	88.75	4668.25	99.6	10338.48	91.33	1943.5024	89.43	4954.422
Jun	81.94	2048.5	78.86	4148.036	99.76	10355.088	91.82	1953.9296	96.5	5346.1
Jul	83.23	2080.75	71.87	3780.362	96.8	10047.84	82.99	1766.0272	82.59	4575.486
Ago	84.35	2108.75	65.9	3466.34	93.08	9661.704	85.43	1817.9504	65.1	3606.54
Set	81.56	2039	65.37	3438.462	87.19	9050.322	91.82	1953.9296	79.66	4413.164
Out	90.62	2265.5	60.21	3167.046	81.19	8427.522	75.95	1616.216	86.73	4804.842
Nov	94.87	2371.75	56.9	2992.94	76.53	7943.814	64.21	1366.3888	93.79	5195.966
Dez	87.96	2199	72.22	3798.772	77.88	8083.944	84.7	1802.416	63.48	3516.792

TABELA A.27 – Volume de água mensal dos reservatórios das usinas de Serra Mesa, Salto Santiago, Sobradinho, Três Marias e Tucuruí em 2009

2009										
usina	SERRA MESA		SLT.SANTIAGO		SOBRAI	DINHO	TRES MAR	IAS	TUCURUI	
vol.útil (hm³)	43250	vol.útil (hm³)	4113	vol.útil (hm³)	28669	vol.útil (hm³)	15278	vol.útil (hm³)	38982	vol.útil (hm³)
Jan	39.7	17170.25	59.21	2435.3073	51.17	14669.9273	87.68	13395.7504	30.93	12057.1326
Fev	44.17	19103.525	41.41	1703.1933	71.75	20570.0075	93.49	14283.4022	53.57	20882.6574
Mar	47.32	20465.9	37.24	1531.6812	81.66	23411.1054	100	15278	97.25	37909.995
Abr	53.08	22957.1	31.47	1294.3611	100	28669	99.92	15265.7776	99.54	38802.6828
Mai	54.97	23774.525	34.26	1409.1138	98.26	28170.1594	99.7	15232.166	98.92	38560.9944
Jun	55.36	23943.2	46.72	1921.5936	92.19	26429.9511	96.31	14714.2418	96.72	37703.3904
Jul	54.61	23618.825	79.87	3285.0531	81.78	23445.5082	90.32	13799.0896	80.5	31380.51
Ago	53.5	23138.75	90.58	3725.5554	74.46	21346.9374	81.61	12468.3758	57.51	22418.5482
Set	52.8	22836	99.19	4079.6847	66.93	19188.1617	72.41	11062.7998	39.01	15206.8782
Out	54.08	23389.6	100.1	4117.113	60.25	17273.0725	66.39	10143.0642	28.16	10977.3312
Nov	54.08	23389.6	99.09	4075.5717	64.25	18419.8325	60.26	9206.5228	31.96	12458.6472
Dez	59.01	25521.825	99.39	4087.9107	67.15	19251.2335	68.07	10399.7346	38.35	14949.597

TABELA A.28 – Volume de água mensal dos reservatórios das usinas de Água Vermelha, Barra Bonita, Capivara, Chavantes e Emborcação em 2010

2010										
usina	A. VERMELHA		BARRA BONITA		CAPIVARA		CHAVANTES		EMBORCACAO	
vol.útil (hm³)	5169	vol.útil (hm³)	2566	vol.útil (hm³)	5724	vol.útil (hm³)	3041	vol.útil (hm³)	13056	vol.útil (hm³)
Jan	80.72	4172.4168	73.91	1896.5306	85.59	4899.1716	80.1	2435.841	56	7311.36
Fev	96.77	5002.0413	99.76	2559.8416	96.31	5512.7844	81.23	2470.2043	54.21	7077.6576
Mar	99.63	5149.8747	93.81	2407.1646	97.7	5592.348	87.18	2651.1438	54.73	7145.5488
Abr	96.02	4963.2738	96.28	2470.5448	94.15	5389.146	88.32	2685.8112	53.62	7000.6272
Mai	92.58	4785.4602	93.92	2409.9872	97.11	5558.5764	82.99	2523.7259	50.81	6633.7536
Jun	84.03	4343.5107	84.42	2166.2172	96.91	5547.1284	82.23	2500.6143	47.48	6198.9888
Jul	69.54	3594.5226	74.44	1910.1304	89.69	5133.8556	76.24	2318.4584	45.66	5961.3696
Ago	60.66	3135.5154	63.99	1641.9834	74.55	4267.242	67.9	2064.839	41.33	5396.0448
Set	26.02	1344.9738	59.48	1526.2568	58.01	3320.4924	52.48	1595.9168	34.84	4548.7104
Out	18.92	977.9748	55.2	1416.432	58.51	3349.1124	48.1	1462.721	27.3	3564.288
Nov	9.26	478.6494	54.83	1406.9378	46.93	2686.2732	41.07	1248.9387	23.45	3061.632
Dez	22.38	1156.8222	72.45	1859.067	53.44	3058.9056	47.64	1448.7324	24.19	3158.2464

TABELA A.29 – Volume de água mensal dos reservatórios das usinas de Furnas, G.B. Munhoz, Ilha Solteira, Itaparica e Itumbiara em 2010

2010										
usina	FURNAS		G.B. MUNHOZ		I. SOLTEIRA		ITAPARICA		ITUMBIARA	
vol.útil (hm³)	17217	vol.útil (hm³)	3805	vol.útil (hm³)	12828	vol.útil (hm³)	3548	vol.útil (hm³)	12454	vol.útil (hm³)
Jan	94.02	16187.4234	96.39	3667.6395	57.33	7354.2924	46.21	1639.5308	86.81	1088.5974
Fev	94.1	16201.197	99.75	3795.4875	66.15	8485.722	48.99	1738.1652	80.94	1014.9876
Mar	98.36	16934.6412	97.86	3723.573	104.13	13357.7964	52.66	1868.3768	80.55	1010.097
Abr	96.89	16681.5513	81.38	3096.509	91.38	11722.2264	80.7	2863.236	81.87	1026.6498
Mai	93.78	16146.1026	99.64	3791.302	81.39	10440.7092	94.28	3345.0544	78.81	988.2774
Jun	87.63	15087.2571	95.03	3615.8915	68.42	8776.9176	95.86	3401.1128	73.01	915.5454
Jul	80.54	13866.5718	83.75	3186.6875	70.29	9016.8012	91.12	3232.9376	54.03	677.5362
Ago	71.29	12273.9993	73.06	2779.933	67.8	8697.384	89.54	3176.8792	36.97	463.6038
Set	61.33	10559.1861	33.87	1288.7535	60.39	7746.8292	86.87	3082.1476	23.28	291.9312
Out	53.13	9147.3921	29.72	1130.846	73.21	9391.3788	81.35	2886.298	12.65	158.631
Nov	52.2	8987.274	17.34	659.787	66.56	8538.3168	59.43	2108.5764	11.27	141.3258
Dez	58.11	10004.7987	86.41	3287.9005	64.09	8221.4652	58.38	2071.3224	15.99	200.5146

TABELA A.30 – Volume de água mensal dos reservatórios das usinas de M.Moraes, Marimbondo, Nova Ponte, Promissão e São Simão em 2010

2010										
usina	M. DE MORAES		MARIMBONDO	_	NOVA PONTE		PROMISSAO		SAO SIMAO	
vol.útil (hm³)	2500	vol.útil (hm³)	5260	vol.útil (hm³)	10380	vol.útil (hm³)	2128	vol.útil (hm³)	5540	vol.útil (hm³)
Jan	90.91	2272.75	80.34	4225.884	80.17	8321.646	87.15	1854.552	83.7	4636.98
Fev	94.19	2354.75	88.75	4668.25	79.51	8253.138	89.85	1912.008	99.44	5508.976
Mar	97.58	2439.5	87.91	4624.066	83.32	8648.616	95.53	2032.8784	96.84	5364.936
Abr	97.77	2444.25	83.65	4399.99	83.16	8632.008	98.76	2101.6128	87.24	4833.096
Mai	81.11	2027.75	87.53	4604.078	81.58	8468.004	94.54	2011.8112	92.01	5097.354
Jun	87.31	2182.75	72.65	3821.39	79.13	8213.694	97.51	2075.0128	97.97	5427.538
Jul	81.29	2032.25	56.18	2955.068	74.53	7736.214	88.13	1875.4064	93.45	5177.13
Ago	85.09	2127.25	42.86	2254.436	68.36	7095.768	71.38	1518.9664	64.29	3561.666
Set	80.92	2023	28.15	1480.69	60.52	6281.976	57.82	1230.4096	53.48	2962.792
Out	81.38	2034.5	13.63	716.938	54.48	5655.024	44.27	942.0656	43.47	2408.238
Nov	80.92	2023	11.88	624.888	52.88	5488.944	33.49	712.6672	47.41	2626.514
Dez	85.74	2143.5	25.05	1317.63	52.37	5436.006	43.12	917.5936	29.27	1621.558

TABELA A.31 – Volume de água mensal dos reservatórios das usinas de Serra Mesa, Salto Santiago, Sobradinho, Três Marias e Tucuruí em 2010

2010										
usina	SERRA MESA		SLT.SANTIAGO		SOBRADINHO		TRES MARIAS		TUCURUI	
vol.útil (hm³)	43250	vol.útil (hm³)	4113	vol.útil (hm³)	28669	vol.útil (hm³)	15278	vol.útil (hm³)	38982	vol.útil (hm³)
Jan	65.49	28324.425	100.05	4115.0565	75.29	21584.8901	72.14	11021.5492	86.24	33618.0768
Fev	66.64	28821.8	99.54	4094.0802	71.05	20369.3245	67.8	10358.484	98.24	38295.9168
Mar	69.92	30240.4	100.2	4121.226	74.22	21278.1318	76.35	11664.753	98.69	38471.3358
Abr	71.28	30828.6	99.54	4094.0802	77.59	22244.2771	76.4	11672.392	99.38	38740.3116
Mai	68.39	29578.675	96.32	3961.6416	73.15	20971.3735	70.21	10726.6838	99.46	38771.4972
Jun	65.76	28441.2	88.82	3653.1666	69.78	20005.2282	66.01	10085.0078	88.68	34569.2376
Jul	62.18	26892.85	95.42	3924.6246	62.29	17857.9201	60.52	9246.2456	68.22	26593.5204
Ago	58.65	25366.125	94.87	3902.0031	53.94	15464.0586	53.52	8176.7856	45.44	17713.4208
Set	52.75	22814.375	91.56	3765.8628	44.84	12855.1796	47.14	7202.0492	27.18	10595.3076
Out	47.07	20357.775	51.81	2130.9453	33.91	9721.6579	42.83	6543.5674	18.3	7133.706
Nov	44.15	19094.875	31.4	1291.482	33.19	9515.2411	47.78	7299.8284	13.16	5130.0312
Dez	45.34	19609.55	58.69	2413.9197	37.41	10725.0729	57.6	8800.128	26.18	10205.4876

TABELA A.32 – Volume de água mensal dos reservatórios das usinas de Água Vermelha, Barra Bonita, Capivara, Chavantes e Emborcação em 2011

2011										
usina	A. VERMELHA		BARRA BONITA	_	CAPIVARA		CHAVANTES	_	EMBORCACAO	
vol.útil (hm³)	5169	vol.útil (hm³)	2566	vol.útil (hm³)	5724	vol.útil (hm³)	3041	vol.útil (hm³)	13056	vol.útil (hm³)
Jan	53.57	2769.0333	81.11	2081.2826	81.11	4642.7364	61.41	1867.4781	40.22	5251.1232
Fev	77.1	3985.299	87.8	2252.948	98.1	5615.244	78.72	2393.8752	42.25	5516.16
Mar	99.25	5130.2325	89.63	2299.9058	96.91	5547.1284	89.09	2709.2269	59.6	7781.376
Abr	99.5	5143.155	94.27	2418.9682	98.4	5632.416	92.95	2826.6095	68.92	8998.1952
Mai	95.53	4937.9457	99.15	2544.189	95.43	5462.4132	85.27	2593.0607	73	9530.88
Jun	96.52	4989.1188	95.1	2440.266	83.53	4781.2572	85.14	2589.1074	72.3	9439.488
Jul	93.56	4836.1164	85.32	2189.3112	82.69	4733.1756	81.48	2477.8068	69.98	9136.5888
Ago	73.41	3794.5629	81.44	2089.7504	97.8	5598.072	77.23	2348.5643	64.44	8413.2864
Set	66.51	3437.9019	61.72	1583.7352	93.76	5366.8224	66.33	2017.0953	59.94	7825.7664
Out	66.29	3426.5301	66.89	1716.3974	97.7	5592.348	74.5	2265.545	58.33	7615.5648
Nov	55.59	2873.4471	54.55	1399.753	89.97	5149.8828	71.19	2164.8879	56.35	7357.056
Dez	48.58	2511.1002	49.42	1268.1172	76.26	4365.1224	61.29	1863.8289	63.76	8324.5056

TABELA A.33 – Volume de água mensal dos reservatórios das usinas de Furnas, G.B. Munhoz, Ilha Solteira, Itaparica e Itumbiara em 2011

2011										
usina	FURNAS		G.B. MUNHOZ		I. SOLTEIRA		ITAPARICA		ITUMBIARA	
vol.útil (hm³)	17217	vol.útil (hm³)	3805	vol.útil (hm³)	12828	vol.útil (hm³)	3548	vol.útil (hm³)	12454	vol.útil (hm³)
Jan	91.34	15726.0078	98.03	3730.0415	76.34	9792.8952	42.83	1519.6084	34.37	430.9998
Fev	95.5	16442.235	95.8	3645.19	88.18	11311.7304	54.27	1925.4996	41.34	518.4036
Mar	98.12	16893.3204	95.13	3619.6965	90.74	11640.1272	55.31	1962.3988	85.78	1075.6812
Abr	99.02	17048.2734	91.62	3486.141	99.13	12716.3964	88.42	3137.1416	99.27	1244.8458
Mai	99.1	17062.047	56.94	2166.567	92.88	11914.6464	96.56	3425.9488	97.93	1228.0422
Jun	94.02	16187.4234	42.53	1618.2665	89.03	11420.7684	95.65	3393.662	98.23	1231.8042
Jul	89.45	15400.6065	97.35	3704.1675	73.21	9391.3788	89.32	3169.0736	94.81	1188.9174
Ago	81.45	14023.2465	93.6	3561.48	59.37	7615.9836	96.79	3434.1092	81.98	1028.0292
Set	72.3	12447.891	99.29	3777.9845	64.91	8326.6548	90.9	3225.132	60.43	757.7922
Out	66.34	11421.7578	99.5	3785.975	58.15	7459.482	91.35	3241.098	50.75	636.405
Nov	59.03	10163.1951	79.15	3011.6575	68.42	8776.9176	67.79	2405.1892	38.77	486.1758
Dez	71.44	12299.8248	55.58	2114.819	57.94	7432.5432	54.89	1947.4972	36.03	451.8162

TABELA A.34 – Volume de água mensal dos reservatórios das usinas de M.Moraes, Marimbondo, Nova Ponte, Promissão e São Simão em 2011

2011										
usina	M. DE MORAES	_	MARIMBONDO		NOVA PONTE		PROMISSAO		SAO SIMAO	
vol.útil (hm³)	2500	vol.útil (hm³)	5260	vol.útil (hm³)	10380	vol.útil (hm³)	2128	vol.útil (hm³)	5540	vol.útil (hm³)
Jan	89.46	2236.5	64.77	3406.902	58.78	6101.364	81.29	1729.8512	34.37	1904.098
Fev	80.64	2016	77.3	4065.98	59.56	6182.328	96.27	2048.6256	41.34	2290.236
Mar	97.09	2427.25	89.9	4728.74	72.8	7556.64	100	2128	85.78	4752.212
Abr	98.83	2470.75	89.9	4728.74	79.96	8299.848	99.25	2112.04	99.27	5499.558
Mai	90.33	2258.25	87.91	4624.066	83.32	8648.616	99.75	2122.68	97.93	5425.322
Jun	93.13	2328.25	87.22	4587.772	81.03	8410.914	94.04	2001.1712	98.23	5441.942
Jul	83.51	2087.75	83.19	4375.794	76.98	7990.524	77.89	1657.4992	94.81	5252.474
Ago	81.19	2029.75	76.11	4003.386	72.24	7498.512	65.88	1401.9264	81.98	4541.692
Set	79.99	1999.75	62.84	3305.384	66.49	6901.662	65.64	1396.8192	60.43	3347.822
Out	78.42	1960.5	52.7	2772.02	62.51	6488.538	74.27	1580.4656	50.75	2811.55
Nov	47.47	1186.75	38.24	2011.424	58.93	6116.934	47.05	1001.224	38.77	2147.858
Dez	82.12	2053	34.6	1819.96	62.21	6457.398	33.72	717.5616	36.03	1996.062

TABELA A.35 – Volume de água mensal dos reservatórios das usinas de Serra Mesa, Salto Santiago, Sobradinho, Três Marias e Tucuruí em 2011

2011										
usina	SERRA MESA		SLT.SANTIAGO		SOBRADINHO	_	TRES MARIAS	_	TUCURUI	
vol.útil (hm³)	43250	vol.útil (hm³)	4113	vol.útil (hm³)	28669	vol.útil (hm³)	15278	vol.útil (hm³)	38982	vol.útil (hm³)
Jan	57.9	25041.75	82.42	3389.9346	53.24	15263.3756	77.8	11886.284	36.73	14318.0886
Fev	61.63	26654.975	99.59	4096.1367	53.74	15406.7206	77.46	11834.3388	82.58	32191.3356
Mar	72.28	31261.1	99.44	4089.9672	67.04	19219.6976	98.33	15022.8574	98.62	38444.0484
Abr	77.08	33337.1	97.48	4009.3524	85.48	24506.2612	99.01	15126.7478	98.77	38502.5214
Mai	77.6	33562	94.97	3906.1161	85.48	24506.2612	98.33	15022.8574	100	38982
Jun	76.14	32930.55	78.23	3217.5999	81.29	23305.0301	92.98	14205.4844	91	35473.62
Jul	73.82	31927.15	95.47	3926.6811	75.05	21516.0845	88.35	13498.113	85.96	33508.9272
Ago	70.23	30374.475	99.24	4081.7412	63.93	18328.0917	79.92	12210.1776	63.69	24827.6358
Set	63.9	27636.75	88.77	3651.1101	53.04	15206.0376	70.43	10760.2954	35.23	13733.3586
Out	58.83	25443.975	100.05	4115.0565	41.44	11880.4336	63.84	9753.4752	21.44	8357.7408
Nov	56.72	24531.4	95.77	3939.0201	37.33	10702.1377	59.5	9090.41	32.92	12832.8744
Dez	61.44	26572.8	72.96	3000.8448	46.88	13440.0272	78.19	11945.8682	35.73	13928.2686

TABELA A.36 – Volume de água mensal dos reservatórios das usinas de Água Vermelha, Barra Bonita, Capivara, Chavantes e Emborcação em 2012

2012										
usina	A. VERMELHA		BARRA BONITA		CAPIVARA		CHAVANTES		EMBORCACAO	
vol.útil (hm³)	5169	vol.útil (hm³)	2566	vol.útil (hm³)	5724	vol.útil (hm³)	3041	vol.útil (hm³)	13056	vol.útil (hm³)
Jan	61.31	3169.1139	76.35	1959.141	78.72	4505.9328	64.64	1965.7024	79.88	10429.1328
Fev	79.9	4130.031	88.94	2282.2004	68.11	3898.6164	63.8	1940.158	86.49	11292.1344
Mar	93.93	4855.2417	92.4	2370.984	50.23	2875.1652	54.57	1659.4737	84.3	11006.208
Abr	80.01	4135.7169	97.36	2498.2576	39.9	2283.876	51.78	1574.6298	82.63	10788.1728
Mai	72.27	3735.6363	96.52	2476.7032	41.78	2391.4872	55.16	1677.4156	78.17	10205.8752
Jun	64.4	3328.836	94.98	2437.1868	94.44	5405.7456	75.99	2310.8559	75.32	9833.7792
Jul	61.09	3157.7421	77	1975.82	89.78	5139.0072	78.6	2390.226	70.48	9201.8688
Ago	51.58	2666.1702	66.19	1698.4354	72.41	4144.7484	71.31	2168.5371	63.73	8320.5888
Set	21.33	1102.5477	65.78	1687.9148	59.26	3392.0424	56.68	1723.6388	56.05	7317.888
Out	16.88	872.5272	60.06	1541.1396	43.15	2469.906	39.95	1214.8795	46.99	6135.0144
Nov	14.8	765.012	53.89	1382.8174	31.5	1803.06	28.44	864.8604	44.25	5777.28
Dez	15.96	824.9724	67.7	1737.182	28.39	1625.0436	27.47	835.3627	35.03	4573.5168

TABELA A.37 – Volume de água mensal dos reservatórios das usinas de Furnas, G.B. Munhoz, Ilha Solteira, Itaparica e Itumbiara em 2012

2012										
usina	FURNAS		G.B. MUNHOZ		I. SOLTEIRA		ITAPARICA		ITUMBIARA	
vol.útil (hm³)	17217	vol.útil (hm³)	3805	vol.útil (hm³)	12828	vol.útil (hm³)	3548	vol.útil (hm³)	12454	vol.útil (hm³)
Jan	94.1	16201.197	75.09	2857.1745	63.47	8141.9316	49.42	1753.4216	54.79	687.07
Fev	94.84	16328.6028	57	2168.85	76.34	9792.8952	55.9	1983.332	61.57	772.09
Mar	89.68	15440.2056	25.06	953.533	83.72	10739.6016	69.29	2458.4092	58.92	738.86
Abr	84.24	14503.6008	40.28	1532.654	69.88	8964.2064	63.37	2248.3676	56.67	710.64
Mai	78.66	13542.8922	81.35	3095.3675	80.12	10277.7936	88.87	3153.1076	50.88	638.04
Jun	77.08	13270.8636	99.14	3772.277	92.24	11832.5472	96.79	3434.1092	45.73	573.45
Jul	71.08	12237.8436	98.28	3739.554	81.81	10494.5868	94.96	3369.1808	42.24	529.69
Ago	60.94	10492.0398	78.09	2971.3245	62.03	7957.2084	91.57	3248.9036	34.89	437.52
Set	48.45	8341.6365	33.68	1281.524	61.83	7931.5524	83.32	2956.1936	23.41	293.56
Out	28.1	4837.977	32.01	1217.9805	50.85	6523.038	63.79	2263.2692	9.93	124.52
Nov	15.96	2747.8332	25.81	982.0705	53.27	6833.4756	44.41	1575.6668	13.4	168.04
Dez	12.35	2126.2995	19.02	723.711	45.83	5879.0724	41.05	1456.454	10.01	125.53

TABELA A.38 – Volume de água mensal dos reservatórios das usinas de M.Moraes, Marimbondo, Nova Ponte, Promissão e São Simão em 2012

2012										
usina	M. DE MORAES		MARIMBONDO		NOVA PONTE	_	PROMISSAO		SAO SIMAO	
vol.útil (hm³)	2500	vol.útil (hm³)	5260	vol.útil (hm³)	10380	vol.útil (hm³)	2128	vol.útil (hm³)	5540	vol.útil (hm³)
Jan	90.13	2253.25	81.83	4304.258	73.52	7631.376	74.99	1595.7872	54.79	3035.366
Fev	91.1	2277.5	80.27	4222.202	75.11	7796.418	82.51	1755.8128	61.57	3410.978
Mar	88.33	2208.25	70.75	3721.45	73.14	7591.932	78.37	1667.7136	58.92	3264.168
Abr	93.42	2335.5	71.52	3761.952	72.83	7559.754	92.31	1964.3568	56.67	3139.518
Mai	99.03	2475.75	62.98	3312.748	68.43	7103.034	93.55	1990.744	50.88	2818.752
Jun	92.26	2306.5	68.21	3587.846	65.73	6822.774	97.02	2064.5856	45.73	2533.442
Jul	82.96	2074	58.06	3053.956	60.07	6235.266	79.59	1693.6752	42.24	2340.096
Ago	76.31	1907.75	33.22	1747.372	54.21	5626.998	51.95	1105.496	34.89	1932.906
Set	78.42	1960.5	20.42	1074.092	48.61	5045.718	52.88	1125.2864	23.41	1296.914
Out	89.08	2227	17.93	943.118	41.74	4332.612	42.43	902.9104	9.93	550.122
Nov	80.17	2004.25	10.57	555.982	35.15	3648.57	34.86	741.8208	13.4	742.36
Dez	75.66	1891.5	16.13	848.438	28.83	2992.554	47.75	1016.12	10.01	554.554

TABELA A.39 – Volume de água mensal dos reservatórios das usinas de Serra Mesa, Salto Santiago, Sobradinho, Três Marias e Tucuruí em 2012

2012										
usina	SERRA MESA	_	SLT.SANTIAGO	_	SOBRADINHO	_	TRES MARIAS	_	TUCURUI	
vol.útil (hm³)	43250	vol.útil (hm³)	4113	vol.útil (hm³)	28669	vol.útil (hm³)	15278	vol.útil (hm³)	38982	vol.útil (hm³)
Jan	72.02	31148.65	61.5	2529.495	68.97	19773.0093	83.69	12786.1582	87.17	33980.6094
Fev	76.76	33198.7	54.82	2254.7466	87.98	25222.9862	89.22	13631.0316	98.92	38560.9944
Mar	78.22	33830.15	62.15	2556.2295	80.29	23018.3401	90.2	13780.756	99.08	38623.3656
Abr	77.42	33484.15	58.44	2403.6372	76.01	21791.3069	90.51	13828.1178	99.92	38950.8144
Mai	73.78	31909.85	67.27	2766.8151	63.82	18296.5558	87.19	13320.8882	97.02	37820.3364
Jun	71.57	30954.025	99.65	4098.6045	54.64	15664.7416	82.62	12622.6836	92.4	36019.368
Jul	68.77	29743.025	98.53	4052.5389	48.1	13789.789	76.91	11750.3098	69.8	27209.436
Ago	64.44	27870.3	91.51	3763.8063	38.51	11040.4319	69.5	10618.21	42.09	16407.5238
Set	56.63	24492.475	68.48	2816.5824	29.65	8500.3585	59.01	9015.5478	23.3	9082.806
Out	47.02	20336.15	27.97	1150.4061	23.98	6874.8262	47.05	7188.299	16.06	6260.5092
Nov	42.32	18303.4	24.93	1025.3709	27.79	7967.1151	44.79	6843.0162	17.36	6767.2752
Dez	39.68	17161.6	16.32	671.2416	27.35	7840.9715	39.2	5988.976	25.35	9881.937

Calculou-se então a somatória de todos os volumes úteis dessas usinas e a somatória de volume encontrado em cada mês para o cálculo da porcentagem total mensal de volume disponível nos reservatórios. Os resultados obtidos encontram-se nas TAB. A.40 a A.43.

TABELA A.40 – Volumes úteis mensais em hm3 e % das principais usinas do SIN - 2009

2009							•		•	•
usina	A. VERMELHA	BARRA BONITA	CAPIVARA	CHAVANTES	EMBORCACAO	FURNAS	G.B. MUNHOZ	I. SOLTEIRA	ITAPARICA	ITUMBIARA
vol.útil (hm³)	5169.00	2566.00	5724.00	3041.00	13056.00	17217.00	3805.00	12828.00	3548.00	12454.00
Jan	2192.17	1551.15	4323.91	2109.24	8075.14	16597.19	1961.10	7119.54	1947.50	618.72
Fev	5169.00	1973.00	5507.06	2201.99	9538.71	16779.69	1868.26	9765.96	2100.42	789.39
Mar	5162.80	2418.97	5445.24	2057.54	9721.50	17089.59	1565.76	12577.85	2136.96	872.03
Abr	4969.99	2386.12	4818.46	2105.28	10282.91	17019.00	1300.55	12412.37	3130.05	1021.13
Mai	4798.38	2326.34	3632.45	2149.99	10550.55	16920.87	1327.95	10035.34	3401.11	1037.94
Jun	4417.43	2226.77	2575.23	2220.84	10275.07	16442.24	1658.60	7721.17	3401.11	881.69
Jul	4033.37	2294.00	4334.21	2701.62	9508.68	15684.69	2879.62	7563.39	3385.15	810.96
Ago	3208.92	2047.67	5496.18	2682.16	8680.93	14870.32	3287.90	8910.33	3130.05	739.36
Set	3559.37	1937.33	5422.92	2496.97	7875.38	14612.07	3410.42	9391.38	3003.03	702.37
Out	4003.39	1551.15	5467.56	2473.85	7243.47	14625.84	3723.57	8194.53	2894.10	776.98
Nov	4269.59	1737.18	5161.33	2333.36	6743.42	14112.77	3776.46	7197.79	1860.57	880.94
Dez	3901.56	1553.71	4695.97	2138.74	6983.65	15684.69	3807.66	7406.89	1696.65	1088.60

%	total	TUCURUI	TRES MARIAS	SOBRADINHO	SLT.SANTIAGO	SERRA MESA	SAO SIMAO	PROMISSAO	NOVA PONTE	MARIMBONDO	M. DE MORAES
100.00	235508.00	38982.00	15278.00	28669.00	4113.00	43250.00	5540.00	2128.00	10380.00	5260.00	2500.00
53.08	125000.20	12057.13	13395.75	14669.93	2435.31	17170.25	2128.47	1265.52	8796.01	4327.93	2258.25
65.51	154284.75	20882.66	14283.40	20570.01	1703.19	19103.53	3662.49	1969.68	9493.55	4684.03	2238.75
77.16	181708.92	37910.00	15278.00	23411.11	1531.68	20465.90	5071.87	2090.97	9965.84	4624.07	2311.25
81.02	190801.24	38802.68	15265.78	28669.00	1294.36	22957.10	4985.45	2011.81	10367.54	4559.89	2441.75
79.56	187380.53	38560.99	15232.17	28170.16	1409.11	23774.53	4954.42	1943.50	10338.48	4668.25	2148.00
76.59	180384.18	37703.39	14714.24	26429.95	1921.59	23943.20	5346.10	1953.93	10355.09	4148.04	2048.50
72.60	170975.16	31380.51	13799.09	23445.51	3285.05	23618.83	4575.49	1766.03	10047.84	3780.36	2080.75
66.59	156813.27	22418.55	12468.38	21346.94	3725.56	23138.75	3606.54	1817.95	9661.70	3466.34	2108.75
61.86	145679.63	15206.88	11062.80	19188.16	4079.68	22836.00	4413.16	1953.93	9050.32	3438.46	2039.00
58.23	137135.75	10977.33	10143.06	17273.07	4117.11	23389.60	4804.84	1616.22	8427.52	3167.05	2265.50
57.53	135494.46	12458.65	9206.52	18419.83	4075.57	23389.60	5195.97	1366.39	7943.81	2992.94	2371.75
60.54	142569.35	14949.60	10399.73	19251.23	4087.91	25521.83	3516.79	1802.42	8083.94	3798.77	2199.00

TABELA A.41 – Volumes úteis mensais em hm3 e % das principais usinas do SIN - 2010

|--|

usina	A. VERMELHA	BARRA BONITA	CAPIVARA	CHAVANTES	EMBORCACAO	FURNAS	G.B. MUNHOZ	I. SOLTEIRA	ITAPARICA	ITUMBIARA
vol.útil (hm³)	5169.00	2566.00	5724.00	3041.00	13056.00	17217.00	3805.00	12828.00	3548.00	12454.00
Jan	4172.42	1896.53	4899.17	2435.84	7311.36	16187.42	3667.64	7354.29	1639.53	1088.60
Fev	5002.04	2559.84	5512.78	2470.20	7077.66	16201.20	3795.49	8485.72	1738.17	1014.99
Mar	5149.87	2407.16	5592.35	2651.14	7145.55	16934.64	3723.57	13357.80	1868.38	1010.10
Abr	4963.27	2470.54	5389.15	2685.81	7000.63	16681.55	3096.51	11722.23	2863.24	1026.65
Mai	4785.46	2409.99	5558.58	2523.73	6633.75	16146.10	3791.30	10440.71	3345.05	988.28
Jun	4343.51	2166.22	5547.13	2500.61	6198.99	15087.26	3615.89	8776.92	3401.11	915.55
Jul	3594.52	1910.13	5133.86	2318.46	5961.37	13866.57	3186.69	9016.80	3232.94	677.54
Ago	3135.52	1641.98	4267.24	2064.84	5396.04	12274.00	2779.93	8697.38	3176.88	463.60
Set	1344.97	1526.26	3320.49	1595.92	4548.71	10559.19	1288.75	7746.83	3082.15	291.93
Out	977.97	1416.43	3349.11	1462.72	3564.29	9147.39	1130.85	9391.38	2886.30	158.63
Nov	478.65	1406.94	2686.27	1248.94	3061.63	8987.27	659.79	8538.32	2108.58	141.33
Dez	1156.82	1859.07	3058.91	1448.73	3158.25	10004.80	3287.90	8221.47	2071.32	200.51

M. DE MORAES	MARIMBONDO	NOVA PONTE	PROMISSAO	SAO SIMAO	SERRA MESA	SLT.SANTIAGO	SOBRADINHO	TRES MARIAS	TUCURUI	total	%
2500.00	5260.00	10380.00	2128.00	5540.00	43250.00	4113.00	28669.00	15278.00	38982.00	235508.00	100.00
2272.75	4225.88	8321.65	1854.55	4636.98	28324.43	4115.06	21584.89	11021.55	33618.08	170628.61	72.45
2354.75	4668.25	8253.14	1912.01	5508.98	28821.80	4094.08	20369.32	10358.48	38295.92	178494.82	75.79
2439.50	4624.07	8648.62	2032.88	5364.94	30240.40	4121.23	21278.13	11664.75	38471.34	188726.41	80.14
2444.25	4399.99	8632.01	2101.61	4833.10	30828.60	4094.08	22244.28	11672.39	38740.31	187890.19	79.78
2027.75	4604.08	8468.00	2011.81	5097.35	29578.68	3961.64	20971.37	10726.68	38771.50	182841.82	77.64
2182.75	3821.39	8213.69	2075.01	5427.54	28441.20	3653.17	20005.23	10085.01	34569.24	171027.41	72.62
2032.25	2955.07	7736.21	1875.41	5177.13	26892.85	3924.62	17857.92	9246.25	26593.52	153190.10	65.05
2127.25	2254.44	7095.77	1518.97	3561.67	25366.13	3902.00	15464.06	8176.79	17713.42	131077.90	55.66
2023.00	1480.69	6281.98	1230.41	2962.79	22814.38	3765.86	12855.18	7202.05	10595.31	106516.84	45.23
2034.50	716.94	5655.02	942.07	2408.24	20357.78	2130.95	9721.66	6543.57	7133.71	91129.49	38.69
2023.00	624.89	5488.94	712.67	2626.51	19094.88	1291.48	9515.24	7299.83	5130.03	83125.18	35.30
2143.50	1317.63	5436.01	917.59	1621.56	19609.55	2413.92	10725.07	8800.13	10205.49	97658.22	41.47

TABELA A.42 – Volumes úteis mensais em hm3 e % das principais usinas do SIN - 2011

2011

usina	A. VERMELHA	BARRA BONITA	CAPIVARA	CHAVANTES	EMBORCACAO	FURNAS	G.B. MUNHOZ	I. SOLTEIRA	ITAPARICA	ITUMBIARA
vol.útil (hm³)	5169.00	2566.00	5724.00	3041.00	13056.00	17217.00	3805.00	12828.00	3548.00	12454.00
Jan	2769.03	2081.28	4642.74	1867.48	5251.12	15726.01	3730.04	9792.90	1519.61	431.00
Fev	3985.30	2252.95	5615.24	2393.88	5516.16	16442.24	3645.19	11311.73	1925.50	518.40
Mar	5130.23	2299.91	5547.13	2709.23	7781.38	16893.32	3619.70	11640.13	1962.40	1075.68
Abr	5143.16	2418.97	5632.42	2826.61	8998.20	17048.27	3486.14	12716.40	3137.14	1244.85
Mai	4937.95	2544.19	5462.41	2593.06	9530.88	17062.05	2166.57	11914.65	3425.95	1228.04
Jun	4989.12	2440.27	4781.26	2589.11	9439.49	16187.42	1618.27	11420.77	3393.66	1231.80
Jul	4836.12	2189.31	4733.18	2477.81	9136.59	15400.61	3704.17	9391.38	3169.07	1188.92
Ago	3794.56	2089.75	5598.07	2348.56	8413.29	14023.25	3561.48	7615.98	3434.11	1028.03
Set	3437.90	1583.74	5366.82	2017.10	7825.77	12447.89	3777.98	8326.65	3225.13	757.79
Out	3426.53	1716.40	5592.35	2265.55	7615.56	11421.76	3785.98	7459.48	3241.10	636.41
Nov	2873.45	1399.75	5149.88	2164.89	7357.06	10163.20	3011.66	8776.92	2405.19	486.18
Dez	2511.10	1268.12	4365.12	1863.83	8324.51	12299.82	2114.82	7432.54	1947.50	451.82

M. DE MORAES	MARIMBONDO	NOVA PONTE	PROMISSAO	SAO SIMAO	SERRA MESA	SLT.SANTIAGO	SOBRADINHO	TRES MARIAS	TUCURUI	total	%
2500.00	5260.00	10380.00	2128.00	5540.00	43250.00	4113.00	28669.00	15278.00	38982.00	235508.00	100.00
2236.50	3406.90	6101.36	1729.85	1904.10	25041.75	3389.93	15263.38	11886.28	14318.09	133089.35	56.51
2016.00	4065.98	6182.33	2048.63	2290.24	26654.98	4096.14	15406.72	11834.34	32191.34	160393.26	68.11
2427.25	4728.74	7556.64	2128.00	4752.21	31261.10	4089.97	19219.70	15022.86	38444.05	188289.61	79.95
2470.75	4728.74	8299.85	2112.04	5499.56	33337.10	4009.35	24506.26	15126.75	38502.52	201245.06	85.45
2258.25	4624.07	8648.62	2122.68	5425.32	33562.00	3906.12	24506.26	15022.86	38982.00	199923.91	84.89
2328.25	4587.77	8410.91	2001.17	5441.94	32930.55	3217.60	23305.03	14205.48	35473.62	189993.50	80.67
2087.75	4375.79	7990.52	1657.50	5252.47	31927.15	3926.68	21516.08	13498.11	33508.93	181968.14	77.27
2029.75	4003.39	7498.51	1401.93	4541.69	30374.48	4081.74	18328.09	12210.18	24827.64	161204.47	68.45
1999.75	3305.38	6901.66	1396.82	3347.82	27636.75	3651.11	15206.04	10760.30	13733.36	136705.76	58.05
1960.50	2772.02	6488.54	1580.47	2811.55	25443.98	4115.06	11880.43	9753.48	8357.74	122324.86	51.94
1186.75	2011.42	6116.93	1001.22	2147.86	24531.40	3939.02	10702.14	9090.41	12832.87	117348.19	49.83
2053.00	1819.96	6457.40	717.56	1996.06	26572.80	3000.84	13440.03	11945.87	13928.27	124510.97	52.87

TABELA A.43 – Volumes úteis mensais em hm3 e % das principais usinas do SIN - 2012

2012											
usina	A. VERMELHA	BARRA BONITA	CAPIVARA	CHAVANTES	EMBORCACAO	FURNAS	G.B. MUNHOZ	I. SOLTEIR	A ITAP	ARICA	ITUMBIARA
vol.útil (hm³)	5169.00	2566.00	5724.00	3041.00	13056.00	17217.00	3805.00	12828.00		48.00	12454.00
Jan	3169.11	1959.14	4505.93	1965.70	10429.13	16201.20	2857.17	8141.93		53.42	687.07
Fev	4130.03	2282.20	3898.62	1940.16	11292.13	16328.60	2168.85	9792.90	19	83.33	772.09
Mar	4855.24	2370.98	2875.17	1659.47	11006.21	15440.21	953.53	10739.60) 24	58.41	738.86
Abr	4135.72	2498.26	2283.88	1574.63	10788.17	14503.60	1532.65	8964.21	22	48.37	710.64
Mai	3735.64	2476.70	2391.49	1677.42	10205.88	13542.89	3095.37	10277.79	31	53.11	638.04
Jun	3328.84	2437.19	5405.75	2310.86	9833.78	13270.86	3772.28	11832.55	34	34.11	573.45
Jul	3157.74	1975.82	5139.01	2390.23	9201.87	12237.84	3739.55	10494.59	33	69.18	529.69
Ago	2666.17	1698.44	4144.75	2168.54	8320.59	10492.04	2971.32	7957.21	32	48.90	437.52
Set	1102.55	1687.91	3392.04	1723.64	7317.89	8341.64	1281.52	7931.55	29	56.19	293.56
Out	872.53	1541.14	2469.91	1214.88	6135.01	4837.98	1217.98	6523.04	22	63.27	124.52
Nov	765.01	1382.82	1803.06	864.86	5777.28	2747.83	982.07	6833.48	15	75.67	168.04
Dez	824.97	1737.18	1625.04	835.36	4573.52	2126.30	723.71	5879.07	14	56.45	125.53
M. DE MORAES	MARIMBONDO	NOVA PONTE	PROMISSAO	SAO SIMAO	SERRA MESA	SLT.SANTIAGO	SOBRADINHO	TRES MARIAS	TUCURUI	total	%
2500.00	5260.00	10380.00	2128.00	5540.00	43250.00	4113.00	28669.00	15278.00	38982.00	235508.0	0
2253.25	4304.26	7631.38	1595.79	3035.37	31148.65	2529.50	19773.01	12786.16	33980.61	170707.7	7 72.48
2277.50	4222.20	7796.42	1755.81	3410.98	33198.70	2254.75	25222.99	13631.03	38560.99	186920.2	8 79.37
2208.25	3721.45	7591.93	1667.71	3264.17	33830.15	2556.23	23018.34	13780.76	38623.37	183360.0	3 77.86
2335.50	3761.95	7559.75	1964.36	3139.52	33484.15	2403.64	21791.31	13828.12	38950.81	178459.2	3 75.78
2475.75	3312.75	7103.03	1990.74	2818.75	31909.85	2766.82	18296.56	13320.89	37820.34	173009.7	9 73.46
2306.50	3587.85	6822.77	2064.59	2533.44	30954.03	4098.60	15664.74	12622.68	36019.37	172874.2	3 73.40
2074.00	3053.96	6235.27	1693.68	2340.10	29743.03	4052.54	13789.79	11750.31	27209.44	154177.6	1 65.47
1907.75	1747.37	5627.00	1105.50	1932.91	27870.30	3763.81	11040.43	10618.21	16407.52	126126.2	7 53.55
1960.50	1074.09	5045.72	1125.29	1296.91	24492.48	2816.58	8500.36	9015.55	9082.81	100438.7	8 42.65
2227.00	943.12	4332.61	902.91	550.12	20336.15	1150.41	6874.83	7188.30	6260.51	77966.2	33.11
2004.25	555.98	3648.57	741.82	742.36	18303.40	1025.37	7967.12	6843.02	6767.28	71499.2	30.36
1891.50	848.44	2992.55	1016.12	554.55	17161.60	671.24	7840.97	5988.98	9881.94	68755.0	29.19

Nas TAB. A.44 a A.47 é apresentada a Energia Natural Afluente mensal nos sistemas SE/CO, S, NE, e N para os anos de 2009 a 2012.

TABELA A.44 – Energia Natural Afluente – SE/CO – 2009 a 2012 em MWmed

Energia Natural Afluente - SE/CO			MWmed	
	2009	2010	2011	2012
Jan	52078	68114	75144.77	72278.19
Fev	63115.07	55109.79	48286.68	48945.31
Mar	45433.55	51983	85018.03	36757
Abr	46142.33	42538.5	54555	31966.93
Mai	29672.48	27593.16	33250.45	29683.29
Jun	24698.27	22815.5	27945.93	38526
Jul	27191.26	20069.39	24500.45	25728.06
Ago	23592	15562.77	23994.42	17020
Set	30724	13650.27	16752.37	14914
Out	36397.94	21537	25268.52	14803
Nov	35882.37	28494.97	26983	22883.67
Dez	62197.9	42874.9	43800	26868.39

TABELA A.45 – Energia Natural Afluente – S – 2009 a 2012 em MWmed

Energia Na	Energia Natural Afluente - S MWmed					
	2009	2010	2011	2012		
Jan	4470.87	14754	11054.81	6612.9		
Fev	3911.36	13444.04	18834.5	5362.34		
Mar	3594.45	8895	12010.26	3845		
Abr	1521.33	17759.57	10760	3714.43		
Mai	2151.19	21395.48	5980.9	5443.39		
Jun	3256.2	9696.73	8020.87	14061		
Jul	10341.71	10295.71	22145.71	9672.77		
Ago	15449	8261.94	29581.03	7865		
Set	24803	5962	24834.43	4750		
Out	21493.29	6001.16	11020.29	7399		
Nov	12452.63	5002.77	6865	4683		
Dez	10342	14914.06	3663	4510.06		

TABELA A.46 – Energia Natural Afluente – NE – 2009 a 2012 em MWmed

Energia Na	Energia Natural Afluente - NE MWmed					
	2009	2010	2011	2012		
Jan	16191.39	10401	13089.48	17452.23		
Fev	14533.89	5713.93	8829.75	15452.9		
Mar	10115.65	7742	11159.42	6639		
Abr	13548.4	8330.9	15532	6392.93		
Mai	8536.16	3634.68	5898.9	3628.26		
Jun	4636.93	3057.3	3700.37	3286		
Jul	3825.39	2607.45	3247.13	2564.55		
Ago	3189	2138.19	2570.9	2115		
Set	3248	1784.37	2047.27	1843		
Out	4079	2242.39	2779.94	1443		
Nov	7956.3	5226.97	3867	4595.87		
Dez	7340.84	9038.61	10815	6958.13		

TABELA A.47 – Energia Natural Afluente – N – 2009 a 2012 em MWmed

Energia Na	Energia Natural Afluente - N MWmed					
	2009	2010	2011	2012		
Jan	6420.94	9901	7486.23	11493.97		
Fev	9062.43	10258.93	11227.11	14208.24		
Mar	11291.29	10454	16420.65	13470		
Abr	13687.3	13325.07	15817	9312.43		
Mai	16615.81	5751.42	11529.61	4855.26		
Jun	7166.4	2656.63	3962.47	2879		
Jul	2957.19	1526.52	2195.65	2073.65		
Ago	1693	1059.94	1346.16	1279		
Set	1389	841.63	981.97	1065		
Out	1713.71	1043.39	1454.48	1139		
Nov	3394.93	1937.9	3088	2322.73		
Dez	5317.94	3882.52	5855	4924.45		

Nas TAB. A.48 a A.51 é apresentada a Energia Natural Afluente total nos anos de 2009 a 2012.

TABELA A.48 – Energia Natural Afluente total do SIN - 2009 em MWmed

2009	SE	S	NE	N	total
Jan	52078	4470.87	16191.39	6420.94	79161.2
Fev	63115.07	3911.36	14533.89	9062.43	90622.75
Mar	45433.55	3594.45	10115.65	11291.29	70434.94
Abr	46142.33	1521.33	13548.4	13687.3	74899.36
Mai	29672.48	2151.19	8536.16	16615.81	56975.64
Jun	24698.27	3256.2	4636.93	7166.4	39757.8
Jul	27191.26	10341.71	3825.39	2957.19	44315.55
Ago	23592	15449	3189	1693	43923
Set	30724	24803	3248	1389	60164
Out	36397.94	21493.29	4079	1713.71	63683.94
Nov	35882.37	12452.63	7956.3	3394.93	59686.23
Dez	62197.9	10342	7340.84	5317.94	85198.68

TABELA A.49 – Energia Natural Afluente total do SIN - 2010 em MWmed

2010	SE	S	NE	N	total
Jan	68114	14754	10401	9901	103170
Fev	55109.79	13444.04	5713.93	10258.93	84526.69
Mar	51983	8895	7742	10454	79074
Abr	42538.5	17759.57	8330.9	13325.07	81954.04
Mai	27593.16	21395.48	3634.68	5751.42	58374.74
Jun	22815.5	9696.73	3057.3	2656.63	38226.16
Jul	20069.39	10295.71	2607.45	1526.52	34499.07
Ago	15562.77	8261.94	2138.19	1059.94	27022.84
Set	13650.27	5962	1784.37	841.63	22238.27
Out	21537	6001.16	2242.39	1043.39	30823.94
Nov	28494.97	5002.77	5226.97	1937.9	40662.61
Dez	42874.9	14914.06	9038.61	3882.52	70710.09

TABELA A.50 – Energia Natural Afluente total do SIN - 2011 em MWmed

2011	SE	S	NE	N	total
Jan	75144.77	11054.81	13089.48	7486.23	106775.29
Fev	48286.68	18834.5	8829.75	11227.11	87178.04
Mar	85018.03	12010.26	11159.42	16420.65	124608.36
Abr	54555	10760	15532	15817	96664
Mai	33250.45	5980.9	5898.9	11529.61	56659.86
Jun	27945.93	8020.87	3700.37	3962.47	43629.64
Jul	24500.45	22145.71	3247.13	2195.65	52088.94
Ago	23994.42	29581.03	2570.9	1346.16	57492.51
Set	16752.37	24834.43	2047.27	981.97	44616.04
Out	25268.52	11020.29	2779.94	1454.48	40523.23
Nov	26983	6865	3867	3088	40803
Dez	43800	3663	10815	5855	64133

TABELA A.51 – Energia Natural Afluente total do SIN - 2012 em MWmed

2012	SE	S	NE	N	total
Jan	72278.19	6612.9	17452.23	11493.97	107837.29
Fev	48945.31	5362.34	15452.9	14208.24	83968.79
Mar	36757	3845	6639	13470	60711
Abr	31966.93	3714.43	6392.93	9312.43	51386.72
Mai	29683.29	5443.39	3628.26	4855.26	43610.2
Jun	38526	14061	3286	2879	58752
Jul	25728.06	9672.77	2564.55	2073.65	40039.03
Ago	17020	7865	2115	1279	28279
Set	14914	4750	1843	1065	22572
Out	14803	7399	1443	1139	24784
Nov	22883.67	4683	4595.87	2322.73	34485.27
Dez	26868.39	4510.06	6958.13	4924.45	43261.03

Nas TAB. A.52 a A.55 é apresentada a Energia Armazenada mensal nos sistemas SE/CO, S, NE, e N para os anos de 2009 a 2012.

TABELA A.52 - Energia Armazenada - SE/CO - 2009 a 2012 em MWmed

Energia Ar	Energia Armazenada - SE/CO MWmês						
	2009	2010	2011	2012			
Jan	126033	146919	124892	153414			
Fev	144958	149225	134938	161269			
Mar	153902	158401	164255	158030			
Abr	159298	156806	174172	153142			
Mai	156711	150722	174172	145716			
Jun	149958	144854	171602	145924			
Jul	145182	132189	162327	140294			
Ago	138039	115754	149146	115658			
Set	133892	97415	131543	96377			
Out	131861	85147	123719	74472			
Nov	128831	80298	118221	64217			
Dez	138368	88395	121951	58077			

TABELA A.53 – Energia Armazenada – N – 2009 a 2012 em MWmed

Energia Ar	mazenada -	N	MWmês	
	2009	2010	2011	2012
Jan	5006	11094	6620	11175
Fev	7230	12204	10752	12296
Mar	11476	12277	12271	12274
Abr	12197	12332	12273	12345
Mai	12251	12322	12384	12088
Jun	12052	11300	11500	13461
Jul	10491	9429	11043	12368.03
Ago	8314	7366	8969	8888
Set	6636	5624	6478	7303
Out	5846	4481	5310	5898
Nov	6155	3890	5967	5555
Dez	6771	5026	6544	5879

TABELA A.54 – Energia Armazenada - S – 2009 a 2012 em MWmed

Energia Ar	rmazenada -	S	MWmês	
	2009	2010	2011	2012
Jan	11201	17743	15375	12414
Fev	9962	17944	16919	10110
Mar	8722	17064	17028	6789
Abr	7103	16505	16444	7258
Mai	7012	17610	13622	9758
Jun	7959	16656	12725	13364
Jul	12435	16427	17903	13359.68
Ago	15612	14694	17945	12435
Set	17396	11870	17580	8784
Out	17624	9563	17245	8134
Nov	18036	7463	15646	7382
Dez	17900	13334	10738	7161

TABELA A.55 – Energia Armazenada - NE – 2009 a 2012 em MWmed

Energia Ar	Energia Armazenada - NE MWmês				
	2009	2010	2011	2012	
Jan	32524	36949	31073	37156	
Fev	39922	35045	31605	44119	
Mar	44087	37735	39340	42527	
Abr	50977	39915	46424	41161	
Mai	50668	38029	46611	37733	
Jun	48202	36270	44313	34378	
Jul	43888	32822	41237	32869.13	
Ago	39824	28992	36533	26968	
Set	35729	24988	31244	22109	
Out	32679	20733	26608	17561	
Nov	31866	20562	24815	17793	
Dez	33874	23430	29671	16685	

Nas TAB. A.56 a A.59 é apresentada a Energia Natural Afluente total nos anos de 2009 a 2012. Todos os dados apresentados neste apêndice foram utilizados no capítulo 5.

TABELA A.56- Energia Total Armazenada - 2009 em MWmed

2009	SE/CO	N	S	NE	total
Jan	126033	5006	11201	32524	174764
Fev	144958	7230	9962	39922	202072
Mar	153902	11476	8722	44087	218187
Abr	159298	12197	7103	50977	229575
Mai	156711	12251	7012	50668	226642
Jun	149958	12052	7959	48202	218171
Jul	145182	10491	12435	43888	211996
Ago	138039	8314	15612	39824	201789
Set	133892	6636	17396	35729	193653
Out	131861	5846	17624	32679	188010
Nov	128831	6155	18036	31866	184888
Dez	138368	6771	17900	33874	196913

TABELA A.57 – Energia Total Armazenada - 2010 em MWmed

2010	SE/CO	N	S	NE	total
Jan	146919	11094	17743	36949	212705
Fev	149225	12204	17944	35045	214418
Mar	158401	12277	17064	37735	225477
Abr	156806	12332	16505	39915	225558
Mai	150722	12322	17610	38029	218683
Jun	144854	11300	16656	36270	209080
Jul	132189	9429	16427	32822	190867
Ago	115754	7366	14694	28992	166806
Set	97415	5624	11870	24988	139897
Out	85147	4481	9563	20733	119924
Nov	80298	3890	7463	20562	112213
Dez	88395	5026	13334	23430	130185

TABELA A.58 – Energia Total Armazenada - SE – 2011 em MWmed

2011	SE/CO	N	S	NE	total
Jan	124892	6620	15375	31073	177960
Fev	134938	10752	16919	31605	194214
Mar	164255	12271	17028	39340	232894
Abr	174172	12273	16444	46424	249313
Mai	174172	12384	13622	46611	246789
Jun	171602	11500	12725	44313	240140
Jul	162327	11043	17903	41237	232510
Ago	149146	8969	17945	36533	212593
Set	131543	6478	17580	31244	186845
Out	123719	5310	17245	26608	172882
Nov	118221	5967	15646	24815	164649
Dez	121951	6544	10738	29671	168904

TABELA A.59 – Energia Total Armazenada - SE – 2012 em MWmed

2012	SE/CO	N	S	NE	total
Jan	153414	11175	12414	37156	214159
Fev	161269	12296	10110	44119	227794
Mar	158030	12274	6789	42527	219620
Abr	153142	12345	7258	41161	213906
Mai	145716	12088	9758	37733	205295
Jun	145924	13461	13364	34378	207127
Jul	140294	12368.03	13359.68	32869.13	198890.84
Ago	115658	8888	12435	26968	163949
Set	96377	7303	8784	22109	134573
Out	74472	5898	8134	17561	106065
Nov	64217	5555	7382	17793	94947
Dez	58077	5879	7161	16685	87802

REFERÊNCIAS BIBLIOGRÁFICAS

- ABRADEE **Associação Brasileira de Distribuidores de Energia Elétrica.**Disponível em: http://www.abradee.com.br/> Acesso em: jan.2013.
- AMOS, W.A. **Costs of storing and transporting hydrogen**. National Energy Laboratory. NREL National Renewable Energy Laboratory. Colorado, USA, 1998.
- ANACE **Associação Nacional dos Consumidores de Energia**. Disponível em:<http://www.anacebrasil.org.br/portal/index.php?option=com_k2&view=it emlist&task=tag&tag=Legisla%C3%A7%C3%A3o&Itemid=325&Iimitstart=84 > Acesso em: jan.2013.
- ANEEL **Agência Nacional de Energia Elétrica.** Disponível em http://www.aneel.gov.br/ Acesso em: jan.2013.
- ANTP Associação Nacional de Transportes Públicos; A pesquisa de imagem dos transportes na região metropolitana de São Paulo. Toledo & Associados. São Paulo, 2009.
- BANCO CENTRAL **Taxa SELIC**. Disponível em http://www.bcb.gov.br/?SELICDESCRICAO Acesso: em maio 2013
- BOLETIM METROPOLITANO DE CONJUNTURA SOCIAL E ECONÔMICA Câmara Municipal Outubro, 2011 disponível em: http://sosriosdobrasil.blogspot.com.br/2011/10/o-saneamento-basico-na-regiao.html. Acesso em: jan.2013.
- BRAGA, A.L.F.; PEREIRA, L.A.A.; PROCÓPIO, M; ANDRÉ, P.; SALDIVA, P.H.N.; Associação entre poluição atmosférica e doenças respiratórias e cardiovasculares na cidade de Itabira, Minas Gerais, Brasil. In: Cad. Saúde Pública. vol. 23 supl. 4. Rio de Janeiro, 2007.
- BROWN, C. L; FUNK J. F.; SHOWALTER S. K. *High efficiency generation of hydrogen fuels using nuclear power, GA A 23451, General Atomics Corp. San Diego*, California. July, 2000.

- BROWN, G. E.; BESENBRUCH, K. R.; SCHULTZ; MARSHALL, A. C. SHOWALTER, S. K.; PICKARD, P.S.; FUNK, J. F. *Nuclear production of hydrogen using thermochemical water splitting cycles.* International Congress of Advanced Nuclear Power Plants ICAPP. Embedded Topical Meeting: June 9-13, 2002. Hollywood, Florida, 2002.
- CAPAZ, R.S.; MARVULLE, V. **Arte e tecnologia do hidrogênio**. Review. 2006.
- CARVALHO, H.R. Emissões relativas de poluentes do transporte motorizado de passageiros nos grandes centros urbanos brasileiros. IPEA, Brasília, 2011.
- CETESB Companhia Ambiental do Estado de São Paulo; **Relatórios de avaliação da qualidade do ar: 2005 e 2009.** Disponível em: http://www.cetesb.sp.gov.br/ar/qualidade-do-ar/31-publicacoes-e-relatorios/>. Acesso em: set. 2011.
- CETESB Companhia Ambiental do Estado de São Paulo; **Relatórios de avaliação da qualidade do ar: 2011.** Disponível em: http://www.cetesb.sp.gov.br/ar/qualidade-do-ar/31-publicacoes-e-relatorios/>. Acesso em: jan.2013 .
- CETESB Companhia Ambiental do Estado de São Paulo; Qualidade do ar no Estado de São Paulo. Governo do Estado de São Paulo. Governo do Estado de São Paulo Secretaria do Meio Ambiente. Série Relatórios. CETESB. São Paulo. 2010.
- CHANG, T.; Worldwide refining capacity, Oil and Gas Journal, p.56-120, 2000.
- COCKROFT, C. **Perth fuel cell bus trial 2004 2007** Final operational report to the Department for Planning and Infrastructure junho, 2008.
- CONAMA Conselho Nacional do Meio Ambiente; **Resoluções.** Disponível em: http://www.mma.gov.br/port/conama/res/res90/res0390.html/. Acesso em: março/ 2013.

- CROSBIE, L.; CHAPIN, D. *Hydrogen production by nuclear heat.* GNES4/ANP 2003, Kyoto, Japão 2003.
- DA ROSA, M.V.F.; OBELHEIRO, M.R.; BOTTESINI G.; LINDAU, L.A. Estimando as emissões atuais e futuras de transporte urbano no Brasil. Laboratório de Sistema de Transportes LASTRAN Universidade Federal do Rio Grande do Sul, 2008.
- DATASUS Ministério da Saúde. Disponível em: http://www2.datasus.gov.br/DATASUS/index.php Acesso em: março 2013.
- EMPLASA Empresa Paulista De Planejamento Metropolitano; Por dentro da Região Metropolitana de São Paulo – RMSP. Secretaria de Estado de Desenvolvimento Metropolitano. 2009.
- EMTU Empresa Metropolitana de Transportes Urbanos de Cidade de São Paulo. Disponível em: http://www.emtu.sp.gov.br/EMTU/home.fss>. Acesso em: março/ 2013.
- ESTEVES, R. Uma contribuição à avaliação dos impactos do sistema de transporte no meio ambiente urbano com ênfase para a intrusão visual e a segregação urbana. Dissertação de Mestrado, Programa de Pós-Graduação em Engenharia da Universidade Federal do Rio de Janeiro, Rio de Janeiro, 1985.
- ESPÍNOLA, G.M.O. Estudo da viabilidade técnica e econômica do aproveitamente da energa vertida turbinável da usina hidrelétrica de Itaipu para a síntese de amônia Dissertação de mestrado Campinas, 2008.
- FERREIRA, P.F.P. Infra-estrutura para uso energético do hidrogênio: estações de abastecimento para veículos com célula a combustível.

 Tese de Doutorado. Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica. 2007.

- FERREIRA P.F.P.; ARAÚJO, P.D.; LOPES, G.; SILVA, E.P. Produção de hidrogênio utilizando energia vertida turbinável de Itaipu: cálculo de custos e comparação com o gás natural na cidade de São Paulo. UNICAMP, 2007.
- FONSECA, A.C.B.; FINETO, B.; PAULA, M.C.D.; MARTINI, R.S. Substituição dos ônibus movidos a diesel por ônibus não-poluentes movidos a hidrogênio na UNICAMP Revista Ciências do Ambiente On-Line, Dezembro, 2010 Volume 6, número 2. Campinas, 2010.
- FIOREZZI, Guilherme; **Consumidores livres de energia elétrica: uma visão prática.** Dissertação de Mestrado São Paulo, 2009.
- FORSBERG, C.W.; Peddicord, K.L. *Hydrogen production as major nuclear energy application Discussion Paper Prepared for Non-Classical Technical Working Group. Generation IV Roadmap. U.S. Department of Energy.* June 2001.
- FORSBERG, C.W.; *Hydrogen production process requirements and nuclear reactor options* 2^{nd} *Topical Conference on Fuel Cell Technology* (*Embedded Topical*) *Spring National Meeting; American Institute of Chemical Engineers*, New Orleans, Louisiana. 2003.
- FORSBERG, C.W. *Is Hydrogen the future of nuclear energy?* Conference Plenary Paper: Invited talk American Nuclear Society Embedded Topical: International Topical Meeting on the Safety and Technology of Nuclear Hydrogen Production, Control and Management, Oak Ridge National Laboratory, Boston, 2007.
- FORSBERG, C.W. Nuclear hydrogen for production os liquid hydrocarbon transport fuels. Oak Ridge National Laboratory. 2005 American Institute of Chemical Engineers fall meeting, Cincinnati, Ohio, 2005.
- GAMBETTA, F. Análise técnica e econômica de retificadores de corrente para produção de hidrogênio eletrolítico: estudo de caso aproveitando a EVT de UHE de Itaipu Dissertação de Mestrado Campinas, 2010.

- GAUDERNACK, B.; LYNUM, S.; *Hydrogen from natural gas without release* of CO₂ the atmosphere. Institute for Energy Tecnology, Kvrrner Oil and Gas A.S. Norway. 1998.
- GIF *The Generation IV International Forum.* **Geração IV.** Disponível em: http://www.gen-4.org/. > Acesso em: janeiro, 2013.
- GREENPEACE; **Sequestro de armazenamento de carbono**; 2007 Disponível em: <<u>www.greenpeace.org/brasil/pt/Notícias/></u>. Acesso em: julho, 2012.
- H2STATIONS; *Hydrogen Filling Stations Worldwide* Disponível em: http://www.netinform.net/h2/H2Stations/Default.aspx/. Acesso em: julho, 2012.
- IBGE Instituto Brasileiro de Geografia e Estatística; **CENSO 2010**. Disponível em: <www.ibge.gov.br/censo2010/>. Acesso em: junho, 2012.
- IEA International Energy Agency; World energy outlook: assessing today's supplies to fuel tomorrow's growth. Insights, 2001. OECD/IEA, Paris, França, 2001.
- IEA International Energy Agency; World energy outlook. Insights, 2003. OECD/IEA, Paris, França, 2003.
- IEA International Energy Agency; **Hydrogen production and storage**. IEA Hydrogen Co-Ordination Group. OECD/IEA, 2006.
- IPEA Instituto de Pesquisa Econômica Aplicada; **Textos para Discussão**.
 Disponível em: <http://www.ipea.gov.br/pub/td/td.html/. Acesso em: janeiro,
 2012
- IPCC Intergovernmental Panel on Climate Change; Global Warming

 Potential GWP, 2001. Disponível em:

 http://www.ipcc.ch/publications_and_data/ar4/wg1/en/ch2s2-10-2.html
 Acesso em: dezembro, 2011.

- JERRETT, M. et al. A Cohort study of traffic-related air pollution and mortality in Toronto, Ontario, Canada Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, 2009.
- KNIGHT, V.M.; YOUNG, C.E.F. Análise custo benefício da substituição do diesel por gás natural veicular em ônibus na Região Metropolitana de São Paulo, Boletim Infopetro Petróleo & Gás Brasil. Instituto de Economia – UFRJ. Fevereiro, 2006.
- KONOPKA, A.J., GREGORY, D. P. Hydrogen production by eletrolysis: present and future. Institute of Gas Technology, Chicago, Illinois 60616 IECEC Record, 1975.
- LASCALA, T.L.S. Externalidades da substituição do diesel pelo etanol no transporte público da Região Metropolitana de São Paulo USP Programa de Pós Graduação em Energia. Tese de doutorado. São Paulo, 2011.
- LVOVSKY, K., HUGHES, G., MADDISON, D., OSTRO, B. PEARCE, D. environmental costs of fossil fuels a rapid assesment method with application to six cities. Environment Department Paper no 78 Toward Environmentally and Socially Sustainable Development Pollution Management Series. The World Bank Environment Department. Outubro, 2000.
- MARCATO, A. **Apostila dados usinas hidrelétricas**. Disponível em: http://www.ufjf.br/andre_marcato/files/2010/06/Apostila-Parte-II.pdf> Acesso: Janeiro, 2013.
- MERCEDES BENZ Disponível em: http://www.mercedes-benz.com.br/homeInterna.aspx?categoria=5 Acesso: Maio, 2013.
- MMA Ministério do Meio Ambiente. Disponível em: http://www.mma.gov.br Acesso: Janeiro, 2013.

- MME Ministério de Minas e Energia. Disponível em: http://www.mme.gov.br/mme> Acesso: Janeiro, 2013.
- MOLINA, L.R.S.; MIRANDA, R.W.G.; MORAES, R.I. Implantação de ônibus movido a hidrogênio no campus da UNICAMP. Revista Ciências do Ambiente On Line Volume 7, Número 1 Julho, 2011.
- MOTTA, R.S. Manual para valoração econômica de recursos ambientais. IPEA/MMA/PNUD/CNPq, Rio de Janeiro, 1997.
- MOTTA, R.S.; MENDES, A.P.F. Custos de Saúde Associados à Poluição do ar no Brasil, Texto para discussão, nº 332, IPEA, Rio de Janeiro, 1994.
- MOURA, L.A.A. **Economia Ambiental: Gestão de Custos e Investimentos**. 2ª Edição, Editora Juarez de Oliveira, São Paulo, 2003.
- NAKAGAWA, L.; COMARÚ, F.A.; TRIGOSO, F. B. M.; Impactos na qualidade do ar e na saúde humana da poluição atmosférica na Região Metropolitana de São Paulo. São Paulo, 2010.
- NASCIMENTO, J; ONO, S. e GUIMARÃES, L.; Reator Nuclear rápido de altíssima temperatura para produção de hidrogênio no Brasil Instituto de Estudos Avançados (IEAv), São José dos Campos, SP. 2008.
- NOGUEIRA, D.: ORDOEZ, R.: Com seca, dispara tarifa elétrica para indústrias no mercado livre. O Globo 12/11/12 disponível em : http://oglobo.globo.com/economia/com-seca-dispara-tarifa-eletrica-para-industrias-no-mercado-livre-6712154#ixzz2S3Mn2ziu Acesso: Janeiro, 2013.
- OHNO, T. O sistema Toyota de produção. Além da produção em larga escala, Bookman, Porto Alegre, 1997.
- ONS **Operador Nacional de Sistema Elétrico**. Disponível em: http://www.ons.org.br/home/<a href="http://www.ons.org.br/hom
- OGDEN, J. M. Prospects for Building a Hydrogen Energy Infrastructure.

 Annual Review of Energy and Environment Vol. 24. p. 227-279. 1999.

- OKKEN, P.A. Costs of reducting CO₂ emissions by means of hydrogen energy International Journal of Hydrogen Energy, Vol.18 No 4 p.319-323 1992.
- OKKEN, P.A.; LAKO P., YBEMA, J.R. Costs Effective Integration of Hydrogen in Energy Systems with CO2 Constraints International Journal of Hydrogen Energy, Vol.20 No 12 p 975-985 1994.
- OLIVEIRA, J.A. Estimativa da emissão dos gases de efeito local GEL's de Efeito estufa GEE's da frota a diesel do sistema integrado de transportes de Fortaleza SIT-FOR Departamento de Engenharia de Transportes DET Universidade Federal do Ceará UFC; 2011. disponível em: http://www.cbtu.gov.br/estudos/pesquisa/antp_15congr/pdf/DU-025.pdf > Acesso em: janeiro, 2013.
- ORDENEZ, D.N.; Com seca dispara tarifa elétrica para indústrias in "O Globo" 13/11/2012.
- PADRÓ, G.C.E.; PUTSCHE, V.; Survey of the Economics of Hydrogen Technologies. NREL National Renewable Energy Laboratory. Colorado. 1999.
- PEREIRA, R. Sobras de energia pode encarecer conta de luz. Disponível em:http://exame.abril.com.br/meio-ambiente-e-energia-pode-encarecer-contas-de-luz Acesso em: janeiro, 2013.
- PERRY, R.H.; GREEN, D.W.; *Perry's chemical engineers handbook*Seventh Edition, McGraw-Hill, 1999.
- PIRES, R. Aspectos Operacionais ônibus urbanos na cidade de São Paulo Fórum VDI Brasil Câmara Brasil Alemanha São Paulo SP *Trends in Public Transportation*, 2008.
- PROTOCOLO DE QUIOTO. Editado e traduzido pelo Ministério da Ciência e Tecnologia. Disponível em:
 - http://www.mct.gov.br/index.php/content/view/28739/Texto do Protocolo de Quioto

- <u>a Convenção Quadro das Nacoes Unidas sobre Mudança do Clima.html</u> > Acesso em: janeiro, 2013.
- RAMALHO, E.L.; ANDRADE, M.T.O.; O mercado brasileiro de energia elétrica, lições e perspectivas decorrentes do racionamento; IV Encontro de Energia e Meio Rural, 2002.
- RIVEROS-GODOY, G. Análise de modelos de produção e abastecimento de hidrogênio para transporte coletivo urbano: Estudo de caso de Foz de Iguaçu. NREL National Renewable Energy Laboratory. Colorado. 2008.
- RELATÓRIO BRUNDTLAND disponível em:

 http://ambiente.files.wordpress.com/2011/03/brundtland-report-our-common-future.pdf Acesso em: janeiro, 2013.
- RALPH, E.F. **The world's traffic jams** abril/2013 disponível em: http://www.foreignpolicy.com/articles/2013/04/01/the_world_s_worst_traffic_j ams Acesso em: maio, 2013.
- ROMILLY, P. Substitution of bus for car travel in urban Britain: an economic evaluation of bus and car exhaust emission and other costs.

 Transportation Research Part D, v. 4, n.2, p. 109-125. 1999.
- SALDIVA. P. Emissões de poluentes atmosféricos por fontes móveis e estimativa dos efeitos em saúde em 6 regiões metropolitanas brasileiras. LPAE Laboratório de Poluição Atmosférica Experimental da Faculdade de Medicina da Universidade de São Paulo. Versão 3, 2007.
- SANTOS, A.C.J. I Ciclo de Conferências "Hidrogênio e o Futuro Energético Sustentável do Estado do Ceará". Fortaleza, 2011.
- SEESP Sindicato dos Engenheiros do Estado de São Paulo, 2013 Disponível em: http://www.seesp.org.br/site/imprensa/noticias/itemlist/tag/lei%2012783.html Acesso: Janeiro, 2013.

- SILVA, D.T.T.; Tecnologias de termólise da água e purificação do hidrogênio. Tese de Mestrado Integrado, Instituto de Engenharia Mecânica e Gestão Industrial (INEGI), Universidade do Porto, 2008.
- SOS RIOS disponível em: http://sosriosdobrasil.blogspot.com.br/2011/10/o-saneamento-basico-na-regiao.html. Acesso em: janeiro, 2013.
- SOUZA, S.N.M e SILVA, E.P.; Utilização da energia excedente junto a usina hidrelétrica de Itaipu para a síntese de amônia para fertilizantes nitrogenados. In: ENCONTRO DE ENERGIA NO MEIO RURAL, 3. Campinas, 2000.
- SPTRANS disponível em: < http://www.sptrans.com.br/>. Acesso em: janeiro, 2013.
- SUS Sistema Único de Saúde Disponível em http://www.brasil.gov.br/sobre/saude/atendimento >. Acesso em: março, 2013.
- TOLMASQUIM, M.T. Fontes renováveis de energia no Brasil 1ª ED. Editora Interciência, 2003.
- U.S. DEPARTMENT OF ENERGY; A Technology Road for Generation IV Nuclear Systems, Washington D.C., 2002.
- VARGAS, Reinaldo A. et al. **Hidrogênio: O Vetor Energético do Futuro?** 1 Congresso de Administração da Faculdade Alfacastelo Alphavile São Paulo 16/05 18/05/2006 p 01 -12 2006.
- VERFONDERN, K, e LENSA, W.; *Past and present research in Europe on the production of Nuclear Hydrogen with HTGR.* Institute for Safety Research and Reactor Tecnology, Research Center Juelich, Germany, *Progress in Nuclear Energy*, v. 47, p. 472 483. 2005.
- YAN, X. L. e HINO, R. *Handbook Nuclear Hydrogen Production. Green Chemistry and Chemical Engineering*. *CRC Press Taylor & Francis Group*. Ohio, USA. 2011.

YILDIZ, B.; KAZIMI, M.; Eficiência de hidrogênio sistemas de produção utilizando tecnologias alternativas de energia nuclear. Revista Internacional de Energia do Hidrogênio.,v. 31, p. 77 – 92. 2005.