• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
10.11606/D.85.2015.tde-05062015-140631
Documento
Autor
Nombre completo
Kelly de Paula Cunha
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2015
Director
Tribunal
Mesquita, Roberto Navarro de (Presidente)
Barbosa, Paulo Roberto
Okazaki, Kayo
Título en portugués
Aplicação de mapas auto-organizáveis na classificação de aberrações cromossômicas utilizando imagens de cromossomos humanos submetidos à radiação ionizante
Palabras clave en portugués
aberrações cromossômicas
classificação cromossômica
diagnóstico por imagem
mapas auto-organizáveis
redes de Kohonen
redes neurais artificiais
Resumen en portugués
O presente trabalho é resultado da colaboração de pesquisadores do Centro de Engenharia Nuclear (CEN) e de pesquisadores do Centro de Biotecnologia (CB), ambos pertencentes ao IPEN, para o desenvolvimento de uma metodologia que visa auxiliar os profissionais citogeneticistas fornecendo uma ferramenta que automatize parte da rotina necessária para a avaliação qualitativa e quantitativa de danos biológicos em termos de aberração cromossômica. A técnica citogenética, sobre a qual esta ferramenta é desenvolvida, é a técnica de aberrações cromossômicas. Nela, são realizadas preparações citológicas de linfócitos de sangue periférico para que metáfases sejam analisadas e fotografadas ao microscópio e, com base na morfologia dos cromossomos, anomalias sejam investigadas. Quando esta tarefa é realizada manualmente, os cromossomos são analisados visualmente um a um pelo profissional citogeneticista, logo, trata-se de um processo minucioso em virtude da variação geral na aparência do cromossomo, do seu tamanho pequeno e do grande número de cromossomos por célula. Para um diagnóstico confiável, é necessário que várias células sejam analisadas, tornando-se uma tarefa repetitiva e demorada. Neste contexto, foi proposto o uso dos mapas auto-organizáveis para o reconhecimento automático de padrões morfológicos referentes às imagens de cromossomos humanos. Para isso, foi desenvolvido um método de extração de características por meio do qual é possível classificar os cromossomos em: dicêntricos, anéis, acrocêntricos, submetacêntricos e metacêntricos, com acerto de 93,4 % em relação ao diagnóstico dado por um profissional citogeneticista.
Título en inglés
Application of self-organizing maps for the classification of chromosomal aberrations using images of human chromosomes subjected to ionizing radiation
Palabras clave en inglés
artificial neural networks
chromosomal aberrations
chromosome classification
diagnostic imaging
Kohonen networks
self-organizing maps
Resumen en inglés
This work is a joint collaboration between Nuclear Energy Research Institute (IPEN), Nuclear Engineering Center and Biotechnology Center to develop a methodology aiming to assist cytogenetic professionals by providing a tool to automate part of the required routine to perform qualitative and quantitative evaluation of biological damage in terms of chromosomal aberration. The cytogenetic technique upon which this tool was developed, is the chromosome aberrations technique, in which cytological preparations of peripheral blood lymphocyte metaphases are performed to be analyzed and photographed under a microscope in order to investigating chromosomal aberration. Performed manually, the chromosomes are analyzed visually one by one by a cytogenetic professional, so it is a painstaking process due to the great deal of variation in the appearance of each chromosome, their small sizes and not to mention the high density of chromosomes per cell. In order to obtain a reliable diagnosis it is necessary that many cells be analyzed, which makes this a repetitive and time consuming process. In this context, the use of self-organizing maps for the automatic recognition of patterns relating to morphological pictures of human chromosomes has been proposed. For this, we developed a feature extraction method by which is possible to classify chromosomes in: dicentrics, ring-shaped, acrocentric, submetacentric and metacentric with 93.4% accuracy compared to diagnostic given by a professional cytogeneticist.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2015-06-11
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
Centro de Informática de São Carlos
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2019. Todos los derechos reservados.