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 ABSTRACT 

FRANCISCO, V. Computerized pattern recognition of lung nodules in magnetic 

resonance imaging for lung cancer diagnosis aid. 2019. 70 f. Master (Dissertation) - São 

Carlos School of Engineering; Ribeirão Preto Medical School and São Carlos Chemistry 

Institute of the University of São Paulo, 2019. 

 

 Lung cancer is the type of cancer that takes the most victims around the world and 

often presents a late diagnosis. Computed tomography (CT) is currently the reference imaging 

test for the diagnosis and staging of lung tumors. Recent studies have shown relevance in the 

characterization of lung tumors by different sequences obtained with magnetic resonance 

imaging (MRI). MRI also has the advantage of not exposing the patient to ionizing radiation, 

which occurs in CT scans. This work presents an investigation about the applicability of 

pattern recognition methods to computer-aided diagnosis of lung cancer in MRI exams in 

order to classify lung nodules and masses in benign and malignant. T1-weighted contrast-

enhanced (T1PC) and T2-weighted (T2) MRI images associated with lung lesions were 

acquired retrospectively and prospectively, then semi-automatically segmented. Quantitative 

features were obtained from tumor 2D and 3D segmentation models of T1PC and T2. Each 

segmentation model provided 75 features, totaling 150. T1PC and T2 datasets were combined 

creating the T1PC-T2 dataset with 300 features. Unbalancing problems were solved by 

synthetically oversampling the datasets and by bootstrapping. Tumor classification was based 

on five machine learning classifiers and leave-one-out cross-validation. Relevant feature 

selection was performed using Wrapper. Results showed significant performance on balanced 

datasets, especially after feature selection. Naïve Bayes classifying balanced T2 with selected 

features provided the highest area under the receiver operating characteristic (ROC) curve 

value of 0.944. The most selected features were extracted from gray level co-occurrence 

matrix and shape of the tumor, which these features might indicate good correlation with 

clinical and pathological data. Hence, the investigated approach demonstrates potential for 

computer-aided diagnosis of lung cancer in MRI. 

 

 

Keywords: Pattern recognition. Lung cancer. Magnetic resonance imaging. Machine learning. 

Computer-aided diagnosis. 

 

 



 
 

  



 
 

RESUMO 

FRANCISCO, V.  Reconhecimento computadorizado de padrões de nódulos pulmonares 

em imagens de ressonância magnética para auxílio ao diagnóstico do câncer de pulmão.  

2019.  70 f.  Mestrado (Dissertação) - Escola de Engenharia de São Carlos, Faculdade de 

Medicina de Ribeirão Preto, Instituto de Química de São Carlos, Universidade de São Paulo, 

São Carlos, 2019. 

 

O câncer de pulmão é o tipo de câncer que mais faz vítimas em todo o mundo e muitas 

vezes apresenta diagnóstico tardio. Tomografia computadorizada (TC) é atualmente o exame 

de imagem referência para o diagnóstico de tumores pulmonares. Estudos recentes mostram 

relevância na caracterização de tumores pulmonares por diferentes sequencias obtidas por 

ressonância magnética (RM). A RM também tem a vantagem de não expor o paciente à 

radiação ionizante, como ocorre nas TC. Este trabalho apresenta uma investigação sobre a 

aplicabilidade dos métodos de reconhecimento de padrões ao diagnóstico auxiliado por 

computador de câncer de pulmão em exames de RM a fim de classificar nódulos e massas 

pulmonares em benigno ou maligno. Imagens de RM ponderadas em T1 pós contraste (T1PC) 

e em T2 associadas a lesões pulmonares foram adquiridas retrospectiva e prospectivamente, 

então semi-automaticamente segmentadas. Os atributos quantitativos foram extraídos a partir 

dos modelos 2D e 3D segmentados de T1PC e T2. Cada modelo segmentado forneceu 75 

atributos, totalizando 150. T1PC e T2 foram combinados criando o conjunto de dados T1PC-

T2 com 300 atributos. Problemas de desbalanceamento foram resolvidos aumentando os 

conjuntos de dados de forma sintética e utilizando bootstrapping. A classificação dos tumores 

foi baseada em cinco classificadores de aprendizado de máquina e validados utilizando leave-

one-out. A seleção de atributos mais relevantes foi realizada com Wrapper. Os resultados 

mostraram um desempenho significativo em conjuntos de dados balanceados, especialmente 

após a seleção de atributos. Naive Bayes classificando imagens em T2 com atributos 

relevantes selecionados obteve o maior valor de área sob a curva ROC (receiver operating 

characteristic) de 0,944. Os atributos relevantes mais selecionados foram extraídos da matriz 

de coocorrência de nível de cinza e da forma do tumor, indicando boa correlação com 

características clínicas dos tumores. Além disso, o estudo demonstra potencial para o 

diagnóstico auxiliado por computador para câncer de pulmão em imagens de RM. 

 

Palavras-chave: Reconhecimento de padrões. Câncer de pulmão. Ressonância magnética. 

Aprendizado de máquina. Diagnóstico auxiliado por computador.   
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1 INTRODUCTION 

 

1.1 Lung cancer diagnosis and clinical challenges 

 

Considered a major public health problem, lung cancer is the most deadly type of 

cancer in the world (TARTAR; KILIC; AKAN, 2013a). Lung cancer is a disease where 

diagnosis is often late, and by the time of identifying its clinical manifestation symptoms, a 

poor prognosis is already assumed due to the aggressiveness of the disease. Only 15% of 

patients survive the first five years after diagnosis (WU et al., 2013). Generally, late diagnosis 

prevents curative treatment since the condition is already at an advanced stage (NOVAES et 

al., 2006). In the lung cancer case scenario, its diagnosis is mainly assessed by evaluation of 

lung nodules in computed tomography (CT) (HOLLINGS; SHAW, 2002). 

Lung cancer prognosis is a difficult task because it is directly influenced by the 

variability of the diagnosed stage of the tumor (KOENIGKAM SANTOS et al., 2014). The 

stage at which the tumor is identified is a determinant for the prognosis and definition of the 

therapy to be applied (DETTERBECK; BOFFA; TANOUE, 2009). There is also evidence of 

biological parameters and visual characteristics of the tumor in computed tomography 

imaging that may aid the decision making process (AUSTIN et al., 2013; DUTTA; MAITY, 

2007; OHNO et al., 2012; SAKAO et al., 2010; SHIMIZU et al., 2005). However, such 

characteristics are generally described subjectively and qualitatively (e.g. attenuation 

heterogeneity, spiculated contours) (AERTS et al., 2014). Adversely, qualitative visual 

characteristics similar to those found in benign lesions can be seen in cases of malignant 

tumors (BARTHOLMAI et al., 2015). 

In contrast to the limitations of qualitative evaluations, the computerized image 

analysis allows the objective and precise extraction of quantitative descriptors which can 

potentially be used as a diagnostic support tool, and as predictive biomarkers for therapeutic 

decision making (AERTS et al., 2014). In this context, computerized pattern recognition 

methods have been used in CT scans of lung tumors. This approach has shown promising 

results in aiding lung cancer diagnosis and lung tumor characterization (EL NAQA et al., 

2009; FERREIRA; OLIVEIRA; MARQUES, 2017; FERREIRA JUNIOR et al., 2018; 

VAIDYA et al., 2012). 

Recently, in order to complement CT finding as a way of improving lung cancer 

diagnostic and prognostic accuracy, the use of magnetic resonance imaging (MRI) has 
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gradually increased in clinical practice (LIU et al., 2015). The great advantage in using MRI 

for the study of thoracic diseases is related to the reduction of the patient's exposure to 

ionizing radiation, higher resolution of contrast between different tissue types, and use of 

contrast media with less adverse effects. MRI also permits dynamic studies (perfusion, 

mobility), without adding injury to the patient (there is no greater exposure to radiation, for 

example) (COOLEN et al., 2014; KOENIGKAM-SANTOS et al., 2015). 

 

1.2 Literature search 

 

 Searches were conducted in IEEE Xplore and PubMed online databases to find similar 

works. The following query was applied to “Full Text and Metadata” for IEEE Xplore, and 

“Title/Abstract” for PubMed:  (“lung cancer” OR “lung” OR “nodule”) AND (“mri” OR 

“magnetic resonance imaging”) AND (“machine learning” OR “pattern recognition” OR 

“computer-aided diagnosis” OR “classification”). 

 In order to include papers in the analysis, they must be published in English from 

January 1st 2010 until September 30th 2019, and describe the use of machine learning to 

classify lung cancer or lung nodules in MRI exams. IEEE Xplore showed no results using this 

query, and PubMed results contained 127 possible matches. Through a title and abstract 

screening, none of the 127 PubMed results fit into analysis requirements, showing originality 

in our study. 

    

1.3 Objectives 

 

Considering the potential and advantages of using MRI exams in lung cancer 

evaluation, the purpose of this study is to investigate whether the computerized pattern 

recognition in MRI is clinically useful in the characterization of lung cancer. 

The specific objectives are: 

 Creating a database with benign and malignant cases classified in both T1 post 

contrast and T2 MRI sequences; 

 Investigating shape and texture based features to classify lung tumors in two 

different classes, benign and malignant; 

 Investigating pattern recognition methods for lung tumors imaging 

classification; 
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 Evaluating whether the developed method is clinically useful as a computer-

aided diagnosis tool. 
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2 MATERIAL AND METHODS 

 

2.1 Image acquisition and segmentation 

 

Our institutional research board with a waiver of patients’ informed consent has 

approved this prospective study (HCRP process number: 3733/2017). The clinical chest MRI 

protocol included two different sequences with the aid of patient’s breath hold procedure. 

Post-contrast T1-weighted (T1PC) images is the sequence that closely approximates post-

contrast CT images, with good spatial and contrast resolution. On the other hand, the 

sequence with T2-weighted (T2) images provide different information from tissues where 

abnormal brightness could represent a disease process such as cancer. A 1.5T device 

(Achieva, Phillips) with chest coil obtained images of patients placed on supine position. Prior 

to the acquisition of subjects, we performed an evaluation in the hospital database and found 

15 cases matching the adopted clinical chest MRI protocol. A senior radiologist (M.K.S) 

indicated the lesions on images. Diagnostic was assessed after pathological confirmation of 

clinical treatment/stability. The radiologist also defined a lung window level and width of 800 

and 2000 respectively, to avoid any lack of pattern during his visual analysis. To ensure 

patients’ privacy, all MRI exams were anonymized. 

The full image database consists of 35 cases, 23 malignant and 12 benign. 

Exceptionally, there are two specific benign cases not appearing on T2-weighted images due 

the sequence low resolution and nodule size. Tumors have a size equal to or greater than 1 

cm. Each tumor was semi-automatically segmented by the 3D region growing Fast GrowCut 

algorithm (ZHU et al., 2014), which is an extension of the medical imaging analysis and 

visualization open source platform 3D Slicer v4.7.0-2017-09-05 (r26338) (FEDOROV et al., 

2012). The algorithm workflow requires the user to select two regions on each anatomical 

plane. As shown on Figure 1, the first region is a seed mark within the object of interest, and 

then another selection outside the object is defined for the second region. Chronologically, we 

divided our cases in training/validation and test datasets. The first 21 acquired cases (14 

malignant and 7 benign) compose the training/validation, the other 14 cases (9 malignant and 

5 benign) compose the test dataset. The data division has this format because the 21 first cases 

were acquired prior to the master’s degree qualification process. 

We also proposed a 3D Slicer post-segmentation correction protocol for T1PC images 

to evaluate the difference of performance in segmentation with less noise, calling this set as 
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T1PC-p. For lesions smaller than 3 cm (not masses), we performed an erode effect with 4 

neighbors then a dilate effect with 4 neighbors. For lung masses (lesions equal or greater than 

3 cm) we performed an erode effect with 8 neighbors, followed by two dilate effects of 4 

neighbors, then repeated the whole sequence once more. No post-segmentation correction was 

done on T2 due to the low resolution of this sequence. Once the segmentation is done, 2D and 

3D models of the tumor are created using the Model Maker module (LORENSEN; CLINE, 

1987) on 3D Slicer as well. These two tumor models (2D and 3D) were used as input for the 

feature extraction process. 

 

Figure 1 - Fast GrowCut segmentation of lung nodule on axial plane in T1-weighted contrast-enhanced MRI 
with window level of 800 and width of 2000. (a) Seed marks within the object and outside of it. (b) Fast 

GrowCut growing result. (c) Outside mark removal resulting the 2D segmentation. (d) 3D model boundary 

outline on 2D view. 

 
Source – Author 

 

2.2 Feature extraction 

 

Lesions were characterized based on shape and texture using 75 quantitative features 

extracted from both 2D and 3D models, totalizing 150 features to extract from T1PC, T1PC-p 

and T2. Another feature set was established combining information from both sequences at 

the same time, called T1PC-T2, which has 300 features (150 from T1PC and 150 from T2). 

The extraction process has been done via SlicerRadiomics (VAN GRIETHUYSEN et al., 

2017), an encapsulated version of the pyradiomics library as 3D Slicer extension. 
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At the time of this work, SlicerRadiomics supported the following feature classes: 

First Order Statistics; Shape-based; Gray Level Co-occurence Matrix (GLCM); Gray Level 

Run Length Matrix (GLRLM); and Gray Level Size Zone Matrix (GLSZM). Due the inherent 

issue extracting some quantitative features from MRI, First Order Statistics features were not 

extracted, since MRI voxel intensities do not have fixed meaning. In fact, this is due to the 

possible contrast variance as a consequence of variations in the magnetic field and/or random 

presence of noise, even if the acquisition is done on the same equipment (NYÚL; UDUPA; 

ZHANG, 2000). Appendix A has a table with details of each shape and texture feature. 

 

2.2.1 Shape features 

 

Shapes’ representation is possible by means of geometric features being extracted 

from the image or the segmented object, e.g. edges, contours, joints, curves and polygonal 

regions (BURAK AKGÜL et al., 2011). Some features based on shape were already used to 

characterize radiological lesions, such as volume, surface area, sphericity, convexity, 

compactness, strength, maximum extension, aspect ratio and Fourier descriptor (MARVASTI, 

2013). In addition, 3D geometric features were also extracted from lung nodules imaging, e.g. 

sphericity index, convexity index, intrinsic and extrinsic curvature index, and surface type 

(SILVA; CARVALHO; GATTASS, 2005). 

Features in this class are independent from the gray level intensity distribution in the 

ROI (region of interest), and they are descriptors of the three-dimensional size and shape of 

the ROI. Thus, a total of 16 features were calculated: volume, surface area, surface area to 

volume ratio, sphericity, compactness 1, compactness 2, spherical disproportion, maximum 

3D diameter, maximum 2D diameter (slice), maximum 2D diameter (column), maximum 2D 

diameter (row), major axis, minor axis, least axis, elongation, and flatness. 

 

2.2.2 Gray Level Co-occurrence Matrix (GLCM) features 

 

In the medical field, the ability of texture features to reflect details contained within a 

lesion on an image has been shown to be of great importance (BURAK AKGÜL et al., 2011). 

The statistical texture descriptors proposed by Haralick can be classified as second order 

features, representing one of the most used methods of texture analysis (HARALICK; 

SHANMUGAM; DINSTEIN, 1973). Texture characteristics based on second-order statistics 
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or co-occurrence matrix, obtains information about the positioning and neighborhood of 

pixels (OLIVEIRA; CIRNE; MARQUES, 2007). The co-occurrence matrix depends on the 

estimation of a discrete second-order probability function, which represents the probability of 

occurrence of a pixel pair with gray levels i and j, given a distance d and an orientation θ 

between the pixels in the dimensions x and y, respectively. Co-occurrence matrix calculation 

can be done on a volume of images as well. The three-dimensional co-occurrence matrix 

extends the evaluation of the second-order probability function to the z-axis, and then 

examines the probability of occurrence of pixel pairs between slices of a volume of images 

(MAHMOUD-GHONEIM et al., 2003). Second order statistical functions are applied in the 

co-occurrence matrix producing the texture features. 

In this work, we have extracted 27 features from each lesion, as follows: 

autocorrelation, average intensity, cluster prominence, cluster shade, cluster tendency, 

contrast, correlation, difference average, difference entropy, difference variance, dissimilarity, 

energy, entropy, homogeneity 1, homogeneity 2, informal measure of correlation 1, informal 

measure of correlation 2, inverse difference moment, inverse difference moment normalized, 

inverse difference, inverse difference normalized, inverse variance, maximum probability, 

sum average, sum variance, sum entropy, and sum of squares. 

 

Figure 2 – Example of the calculation of a co-occurrence matrix for a 4x4 image with 4 gray levels for d = 1 and 
θ = 0°. 

 
Source – Thibault et al. (2009) 
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2.2.3 Gray Level Run Length Matrix (GLRLM) features 

 

Texture features extracted from a run-length matrix have demonstrated great 

classification results (TANG, 1998). A GLRLM computes gray level runs, which consist of a 

set of consecutive pixels of the same gray level value (GALLOWAY, 1975). GLRLM is 

formed by the number of runs with gray level i and length j that appear in the image along a 

given angle θ (CHU; SEHGAL; GREENLEAF, 1990; GALLOWAY, 1975). It is possible to 

characterize volumetric texture using run-length statistics too, since volumetric GLRLM are 

able to provide features capable of showing texture primitives’ properties in 3D imaging (XU 

et al., 2004). 

For this class, the following 16 features have been extracted from each lesion: short 

run emphasis, long run emphasis, gray level non-uniformity, gray level non-uniformity 

normalized, run length non-uniformity, run length non-uniformity normalized, run percentage, 

gray level variance, run variance, run entropy, low gray level run emphasis, high gray level 

run emphasis, short run low gray level emphasis, short run high gray level emphasis, long run 

low gray level emphasis, and long run high gray level emphasis. 

 

Figure 3 – Example of the calculation of a run length matrix for a 4x4 image with 4 gray levels for θ = 0°. 

 
Source – Thibault et al. (2009) 

 

2.2.4 Gray Level Size Zone Matrix (GLSZM) features 

 

The idea of a GLSZM is to quantify gray level zones of various sizes in an image, 

rather than calculate the number of voxels with same gray-level intensity on different 
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orientations as the GLRLM does (THIBAULT et al., 2009). Gray-level zone is defined by an 

adjoining region with voxels of same intensity value, and the enclosed voxels determine the 

zone size. For a GLSZM, each (i,j) element represents the number of zones with gray-level i 

and size j. Giving a delineated tumor, the quantity of rows is equivalent to the maximum gray 

level within the tumor, and the quantity of columns is equal to the largest zone size possible 

inside the tumor (YANG et al., 2013). Furthermore, only one matrix is calculated for every 

directions in the ROI, which means GLSZM is rotation independent. 

Sixteen GLSZM features have been extracted from each lesion: small area emphasis, 

large area emphasis, gray level non-uniformity, gray level non-uniformity normalized, size-

zone non-uniformity, size-zone non-uniformity normalized, zone percentage, gray level 

variance, zone variance, zone entropy, low gray level zone emphasis, high gray level zone 

emphasis, small area low gray level emphasis, small area high gray level emphasis, large area 

low gray level emphasis, and large area high gray level emphasis. 

 

Figure 4 – Example of the calculation of a size zone matrix for a 4x4 image with 4 gray levels. 

 
Source – Thibault et al. (2009) 

 

2.3 Unbalanced data problem 

 

Typically, machine learning methods’ performance is evaluated by predictive 

accuracy. However, if the dataset is unbalanced, this method becomes unappropriated 

considering a resultant high accuracy if the strategy is to classify all examples as the majority 

class. 

Acknowledging the fact that our dataset is unbalanced (23 malignant vs. 12 benign), 

we performed analysis based on unbalanced and balanced dataset. The balancing procedure 
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was done by oversampling the minority class using the synthetic minority over-sampling 

technique (SMOTE) (CHAWLA et al., 2002). The insertion of synthetic instances in the 

dataset occurs after: (i) computing the difference among a sample feature vector and its 

closest neighbor; (ii) given a random number between 0 and 1, multiply this number by the 

difference calculated previously; and (iii) adding the result to the feature vector. This method 

effectively turns the minority class’ decision region more general (CHAWLA et al., 2002). 

Furthermore, a significant advantage using SMOTE has been shown in radiomics studies to 

balance dataset generating synthetic data (EMAMINEJAD et al., 2016). SMOTE is 

implemented in the data mining and machine learning Weka v3.8.0 application programming 

interface (API) (WITTEN et al., 2016). At the end, the unbalanced training/validation dataset 

stays with 21 instances for T1PC and T1PC-p (14 malignant vs 7 benign), 20 instances for T2 

and T1PC-T2 (14 malignant vs. 6 benign), while all balanced datasets have 28 (14 malignant 

vs. 14 benign) for training purposes. 

Besides oversampling techniques, another work around for unbalancing problems is 

by means of re-sampling methods such as Bootstrap (EFRON, 1979). This technique helps to 

reduce overfitting and variance of the classifier by randomly selecting with replacement n 

samples from the dataset (DUPRET; KODA, 2001; LIU et al., 2013). In our case, we are 

considering the Bootstrap Aggregating (Bagging) implementation, which aggregates the 

predictions from the n created models by averaging or voting their outputs (BREIMAN, 

1996). As we are using Bagging, every instance has same probability of appearing in the 

subsampled datasets, possibly reducing noise, bias and variance. This method is implemented 

in Weka as a classifier, and then we select a base learner to create the models. 

 

2.4 Feature selection 

 

Aiming a robust analysis, and in order to increase the chance to avoid overfitting, we 

performed a relevant feature selection using two different algorithms. In this case, the feature 

vector can be reduced to the most relevant features only which produced promising results, as 

shown in (FERREIRA JUNIOR et al., 2018) for lung cancer histopathology and metastases 

classification. 

First, we used the ReliefF algorithm with a ranking search function (KIRA; 

RENDELL, 1992; KONONENKO, 1994), both implemented in Weka (WITTEN et al., 

2016). The ReliefF method works estimating features based on their values to discriminate 

nearest instances from each other. Instances are chosen randomly then their relevance 
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(weight) is updated according to the nearest neighbor instances from all classes 

(KONONENKO, 1994). 

Then, features were selected by Wrapper (KOHAVI; JOHN, 1997) with Best First 

search method, both implemented in Weka (WITTEN et al., 2016) as well. The feature 

selection algorithm selects the most relevant features based on a specific classifier, and then 

Best First uses greedy hill climbing augmented algorithm with backtracking to search the 

feature subsets space. 

 

2.5 Tumor classification 

 

Tumors were classified using methods of machine learning. In artificial intelligence, 

machine learning is an area intending the development of systems capable of acquiring 

knowledge automatically, and the development of computational techniques on learning as 

well (REZENDE, 2003). Classification was evaluated using the leave-one-out (LOO) cross-

validation method, which splits the dataset in n folds, where n is the number of instances in 

the dataset, then n – 1 folds are used for training and 1 fold is used for testing. This procedure 

repeats until all instances are tested, then an average performance is calculated across all 

folds. For balanced dataset classification, in specific, synthetic data was exclusively used 

during training, and all testing data represents real data. Every classifier used in this work is 

implemented in Weka (WITTEN et al., 2016), and they are listed as follows: 

 

2.5.1 Naive Bayes (NB) 

 

Naive Bayes is a probabilistic classifier based on Bayes’ theorem and it assumes that 

numeric features are described by a unique Gaussian distribution, which provides a good 

estimative of real-world distributions (JOHN; LANGLEY, 1995). Notwithstanding the 

assumption of predictive features are independent (JOHN; LANGLEY, 1995), some 

radiomics studies have shown to effectively use non-independent features (EMAMINEJAD et 

al., 2016; WU et al., 2016). In addition, NB requires less training data to estimate each 

parameter (WU et al., 2016). 
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2.5.2 J48 Decision Tree 

 

J48 implements the C4.5 decision tree method (QUINLAN, 1994). It is a classifier 

that selects the most descriptive features and use them as tree nodes, representing a function 

which result is used to decide what branch to follow from that node. For the same tree, branch 

and leaf nodes denote, respectively, the test outcome and classes (TARTAR; KILIC; AKAN, 

2013b). Therefore, the method provides more information than just a view of how the 

machine got the results (QUINLAN, 1994). 

 

2.5.3 Random Forest (RF) 

 

By definition, RF is a method that builds a forest of decision trees randomly 

generated, which each tree votes for the most popular class (BREIMAN, 2001). RF can work 

better than other ensemble classifiers because it achieves variance reduction by means of 

averaging over learners, and its randomized stages decrease the correlation between 

distinctive learners in the set (LEE; KOUZANI; HU, 2010). In addition, RF classifier is a 

promising tool for lung nodule detection (TARTAR; KILIC; AKAN, 2013b). 

 

2.5.4 K-nearest Neighbors (KNN) 

 

KNN, known as instance-based algorithm as well, is a method for classifying objects 

based on training examples closer to it in the attributes’ space domain (SARMENTO; 

DUTRA; ERTHAL, 2012). The KNN’s concept involves query by similarity, which returns 

the k most similar objects of a reference object (SOUZA, 2012). This algorithm has been 

applied in solving image classification problems and it is one of the most effective methods 

already proposed (SANTOS, 2009). In this work, we used the IBk classifier on Weka 

(WITTEN et al., 2016), which implements the Instance-based Learning (IBL) variant of the 

KNN algorithm (AHA; KIBLER; ALBERT, 1991). 

 

2.5.5 Multilayer Perceptron (MLP) 

 

MLP is an artificial neural network composed of simple interconnected nodes 

arranged in a variety of layers. The first layer represents the input vector, the last one 



28 
 

represents the output vector (classes), and layers between those two are called hidden, which 

take the input and weights producing output to next layer through activation functions. The 

connection of nodes are weights and output signals, which suffer influence from inputs to the 

node that are modified by an activation function (GARDNER; DORLING, 1998). Many 

computer-aided diagnosis (CAD) systems have incorporated neural networks to distinguish 

cancerous signs from normal tissues (JIANG; TRUNDLE; REN, 2008). 

 

The classification assessment was done by the area under the receiver operating 

characteristic curve (AUC), measures of sensitivity (SENS), and specificity (SPEC). 

Unbalanced (n = 21 for T1PC; n = 21 for T1PC-p; n = 20 for T2; n = 20 for T1PC-T2) and 

balanced (n = 28 for all cases) dataset classifications were evaluated using the LOO cross-

validation method and predictions were done using the test dataset (n = 14). Despite bootstrap 

was performed using the bagging classifier in Weka, we did not use any cross-validation in 

this case, but we still made predictions using the test dataset. 

Fine parameter tuning was made for all classifiers. In the case of MLP, Table 1, we 

selected the top 3 MLP performances (MLP-1, MLP-2, and MLP-3) for parameter 

combination where we combined values of momentum (-m) and learning rate (-l), considering 

training time with 500 epochs and one hidden layer with (features + classes)/2 nodes for all 

datasets. Momentum and learning rate varied from 0.01 to 1.00, every 0.10 and 0.05, 

respectively. 

For others classifiers, we had RF generating 100 decision trees, J48 with confidence 

factor of 0.25 and no pruning process, NB without kernel estimator, and KNN assuming k 

equals to 1 (KNN-1), 3 (KNN-3), 5 (KNN-5), 7 (KNN-7), and 9 (KNN-9). 

 

Table 1 – Selected MLP parameters for all datasets. 

  MLP-1 MLP-2 MLP-3 

  -m -l -m -l -m -l 

T1PC Unbalanced 0.80 0.96 0.90 0.61 0.90 0.76 

Balanced 0.70 0.96 0.70 0.81 0.20 0.01 

T1PC-p Unbalanced 0.90 0.76 0.90 0.96 0.90 0.91 

Balanced 0.30 0.71 0.50 0.46 0.60 0.41 

T2 Unbalanced 1.00 0.01 0.90 0.36 0.90 0.41 

Balanced 0.20 0.06 0.30 0.06 0.04 0.06 

T1PC-T2 Unbalanced 0.90 0.41 0.90 0.36 1.00 0.06 

Balanced 0.70 0.31 0.60 0.51 0.10 0.31 
Source - Author 
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3 RESULTS AND DISCUSSION 

 

Initial results during this work showed low performance using post segmentation 

correction and selecting features using ReliefF. Thus, the results related to these cases were 

rejected in the following analyses. T1PC-p dataset had lower performance for every classifier 

compared to T1PC, T2 and T1PC-T2. In the ReliefF case, results using Wrapper to select 

relevant features seemed more robust and reliable to execute a second classification using 

only the selected features since we are using 5 different classifiers and a few different 

configurations for some of them. 

Tables 2 and 3 present the performance of every classifier according to AUC, SENS, 

and SPEC, for unbalanced and balanced T1PC datasets. 

MLP1 had the most uniform performance, showing some of the highest values during 

validation and test phase considering unbalanced data. The lack of performance regarding  

SPEC values is noticeable for every classifier for either phase, being 0.571 and 0.600 the 

highest SPEC values in validation and test, respectively. 

In relation to the balanced dataset, KNN-3 had the best performance with the highest 

values for all three measures during validation. Moreover, it achieved a fair performance on 

testing showing AUC and SENS above 0.750, but only 0.600 for SPEC. RF was the only 

classifier with more than one higher value (AUC and SENS) during the test phase, but coming 

up short classifying benign cases with SPEC values of 0.400. 
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Table 2 – Classifiers’ performance for T1PC unbalanced data. Highest observations for AUC, SENS and SPEC 

are highlighted as bold values. 

 VALIDATION TEST 

  AUC SENS SPEC AUC SENS SPEC 

NB 0.571 0.428 0.571 0.444 0.889 0.000 

J48 0.658 0.642 0.428 0.644 0.889 0.400 

RF 0.642 0.857 0.571 0.800 0.889 0.200 

KNN-1 0.571 0.714 0.428 0.644 0.889 0.400 

KNN-3 0.647 0.785 0.285 0.800 0.778 0.600 

KNN-5 0.505 0.714 0.142 0.711 0.778 0.200 

KNN-7 0.561 0.785 0.142 0.878 0.889 0.600 

KNN-9 0.520 0.857 0.000 0.856 0.889 0.200 

MLP-1 0.693 0.785 0.571 0.800 0.889 0.600 

MLP-2 0.673 0.857 0.000 0.311 1.000 0.000 

MLP-3 0.612 1.000 0.142 0.311 1.000 0.000 

Source – Author 
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Table 3 – Classifiers’ performance for T1PC balanced data. Highest observations for AUC, SENS and SPEC are 

highlighted as bold values. 

 VALIDATION TEST 

  AUC SENS SPEC AUC SENS SPEC 

NB 0.704 0.500 0.857 0.444 0.889 0.000 

J48 0.811 0.642 0.857 0.689 0.778 0.600 

RF 0.765 0.714 0.642 0.833 0.889 0.400 

KNN-1 0.750 0.642 0.857 0.644 0.889 0.400 

KNN-3 0.836 0.714 1.000 0.767 0.778 0.600 

KNN-5 0.729 0.571 0.714 0.767 0.778 0.600 

KNN-7 0.696 0.571 0.714 0.778 0.667 0.800 

KNN-9 0.688 0.500 0.857 0.789 0.667 1.000 

MLP-1 0.816 0.642 0.785 0.689 0.889 0.600 

MLP-2 0.811 0.571 0.785 0.756 0.889 0.400 

MLP-3 0.801 0.714 0.785 0.711 0.889 0.400 

Source – Author 

 

Tables 4 and 5 present the performance of every classifier according to AUC, SENS, 

and SPEC, for unbalanced and balanced T2 datasets. 

Unbalanced T2 data did not obtain good results in the validation phase. The majority 

of the classifiers had AUC values lower than 0.500 and for SPEC, the values did not even 

pass that value. Despite not having the highest AUC value, KNN-1 and MLP-2 showed 

interesting results with the highest SPEC value of 0.750 toward the test phase. 

Balancing the T2 dataset, all MLP performances had equally higher values of 0.908 

for AUC, 0.714 for SENS e 0.857 for SPEC during validation. However, their performance on 

testing did not follow the same path, which AUC and SPEC had lower values. 
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Table 4 – Classifiers’ performance for T2 unbalanced data. Highest observations for AUC, SENS and SPEC are 

highlighted as bold values. 

 VALIDATION TEST 

  AUC SENS SPEC AUC SENS SPEC 

NB 0.369 0.357 0.333 0.792 1.000 0.250 

J48 0.666 0.714 0.333 0.569 0.889 0.250 

RF 0.411 0.857 0.000 0.625 0.778 0.250 

KNN-1 0.380 0.428 0.333 0.764 0.778 0.750 

KNN-3 0.261 0.785 0.000 0.708 1.000 0.250 

KNN-5 0.523 1.000 0.000 0.472 0.889 0.250 

KNN-7 0.380 1.000 0.000 0.500 1.000 0.000 

KNN-9 0.261 1.000 0.000 0.694 1.000 0.000 

MLP-1 0.750 0.857 0.500 0.639 0.778 0.500 

MLP-2 0.726 0.714 0.500 0.778 0.778 0.750 

MLP-3 0.714 0.857 0.333 0.750 0.889 0.500 

Source – Author 
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Table 5 – Classifiers’ performance for T2 balanced data. Highest observations for AUC, SENS and SPEC are 

highlighted as bold values. 

 VALIDATION TEST 

  AUC SENS SPEC AUC SENS SPEC 

NB 0.714 0.571 0.785 0.764 1.000 0.000 

J48 0.563 0.642 0.571 0.528 0.556 0.500 

RF 0.778 0.642 0.785 0.722 0.556 0.500 

KNN-1 0.535 0.357 0.714 0.708 0.667 0.750 

KNN-3 0.706 0.571 0.785 0.653 0.667 0.500 

KNN-5 0.676 0.571 0.785 0.694 0.333 1.000 

KNN-7 0.653 0.571 0.785 0.806 0.444 1.000 

KNN-9 0.676 0.428 0.785 0.792 0.333 1.000 

MLP-1 0.908 0.714 0.857 0.694 0.778 0.500 

MLP-2 0.908 0.714 0.857 0.667 0.778 0.500 

MLP-3 0.908 0.714 0.857 0.667 0.778 0.500 

Source – Author 

 

Tables 6 and 7 present the performance of every classifier according to AUC, SENS, 

and SPEC, for unbalanced and balanced T1PC-T2 datasets. 

Considering unbalanced data, MLP-1 had 0.726 as the highest AUC value during 

validation. It is worth mentioning that the highest SPEC value in this phase is 0.500, which 

shows a lower performance of all classifiers during validation with this unbalanced dataset. 

On test phase, the highest AUC value is seen by RF (0.833), but it lacks on performance to 

classify benign cases with SPEC values of 0.000. 

The balanced T1PC-T2 had the highest overall AUC value during validation, which is 

0.959 for MLP-1. This dataset presents the highest values of SPEC as well. Surprisingly, 

KNN-7 had the highest performance on test phase regarding AUC and SPEC, 0.833 and 

0.750, respectively. MLP-1 is just right behind, achieving SPEC of 0.750, AUC of 0.722, and 
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the same 0.778 SENS as KNN-7. NB had the highest SENS of 0.889, but it lacks on SPEC 

where it achieved 0.000. 

 

Table 6 – Classifiers’ performance for T1PC-T2 unbalanced data. Highest observations for AUC, SENS and 

SPEC are highlighted as bold values. 

 VALIDATION TEST 

  AUC SENS SPEC AUC SENS SPEC 

NB 0.428 0.500 0.333 0.556 0.889 0.000 

J48 0.523 0.642 0.166 0.569 0.889 0.250 

RF 0.559 0.928 0.333 0.833 0.889 0.000 

KNN-1 0.571 0.642 0.500 0.764 0.778 0.750 

KNN-3 0.440 0.714 0.166 0.736 0.889 0.250 

KNN-5 0.464 0.928 0.000 0.819 1.000 0.250 

KNN-7 0.488 1.000 0.000 0.750 1.000 0.500 

KNN-9 0.494 0.928 0.000 0.806 1.000 0.000 

MLP-1 0.726 0.928 0.333 0.722 0.000 1.000 

MLP-2 0.690 0.928 0.333 0.806 0.778 0.500 

MLP-3 0.589 0.928 0.166 0.500 1.000 0.000 

Source – Author 
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Table 7 – Classifiers’ performance for T1PC-T2 balanced data. Highest observations for AUC, SENS and SPEC 

are highlighted as bold values. 

 VALIDATION TEST 

  AUC SENS SPEC AUC SENS SPEC 

NB 0.750 0.571 0.857 0.444 0.889 0.000 

J48 0.663 0.857 0.714 0.583 0.667 0.500 

RF 0.757 0.642 0.785 0.750 0.778 0.500 

KNN-1 0.571 0.500 0.642 0.764 0.778 0.750 

KNN-3 0.732 0.500 0.857 0.750 0.778 0.500 

KNN-5 0.744 0.500 0.857 0.778 0.556 0.750 

KNN-7 0.709 0.500 0.785 0.833 0.778 0.750 

KNN-9 0.719 0.428 0.785 0.833 0.667 0.750 

MLP-1 0.959 0.785 0.928 0.722 0.778 0.750 

MLP-2 0.954 0.571 0.928 0.722 0.778 0.500 

MLP-3 0.948 0.785 0.928 0.722 0.778 0.500 

Source – Author 

 

Since the AUC values distribution is unknown, a parametric test such as Student’s t-

test is not feasible to evaluate if our balancing solution improved classification performance. 

Therefore, the non-parametric Mann-Whitney Two Sample test has been done for every 

dataset pair (balanced vs. unbalanced) with an alternative hypothesis that balanced AUC 

values are greater than the unbalanced dataset. The test showed that in balancing our datasets 

we achieved AUC values statistically greater than unbalanced datasets for the validation 

phase. The test p-values for every dataset pair, for a significance level of 5%, are: 4.629e-05 

(T1PC); 7.444e-03 (T2); and 2.496e-04 (T1PC-T2). On the other hand, no statistically 

improvement was found for AUC values on testing results as performing the same statistical 

test for a significance level of 5%. The p-values obtained in this case are 0.4869 (T1PC); 

0.2345 (T2); and 0.5395 (T1PC-T2). 
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Following, Figures 5-7 are representing an overview of the classification performance 

using the test dataset according to AUC, SENS, and SPEC, respectively. These figures are 

composed of results using unbalanced and balanced dataset before and after Wrapper feature 

selection. Feature selection was done by Wrapper with Best First search method, considering 

LOO cross-validation for both Wrapper (28 folds) and classifier validation (27 folds). In 

addition, we selected for each classifier every feature considered at least in one fold. We also 

included the results from unbalanced datasets classified with bootstrapping technique using 

the Bagging classifier implemented in Weka. In this last case, we had two different 

configurations. For both configurations we considered the same 5 classifiers and its 

configurations as base learner and 100 iterations, but one configuration had bag size of 100% 

and another using only 66%. In this way, having a situation where bag size is 66%, we assure 

that at least 34% of the instances were not randomly selected in the iteration, thus iteration 

tests will evaluate with some instances unknown by the model. Every other table 

corresponding to classifiers' performance for each dataset can be found in the Appendices B 

and C at the end. 

Figure 5 illustrates AUC values showing higher variance in the unbalanced dataset 

before and after feature selection. The highest AUC values with low variance is seen using the 

unbalanced T1PC dataset on Bagging classification with bag size of 100%. However, the 

highest isolated value was performed by KNN-7 classifying unbalanced T2 cases with 66% 

bag size bootstrapping. 

 

  



37 
 

Figure 5 – Boxplot for AUC values of test dataset classification. 

 

Source – Author 

 

 Regarding SENS (Figure 6), the highest values can be found mostly in unbalanced 

dataset cases, which indicates the classifiers prioritizing the majority class. This phenomenon 

is more expressed considering the Bagging classifier and it can be explained by its own 

bootstrapping method, which may create a subsample randomly picking a large number of 

malignant cases in many iterations. 
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Figure 6 – Boxplot for SENS values of test dataset classification. 

 

Source – Author 

 

When it comes to SPEC performance (Figure 7), the bootstrap approach using 

Bagging showed the lowest values, especially the 66% bag size configuration. In general, 

most classifiers had a poor performance as regards this metric. We can see a few cases 

reaching values as high as 1.000, and these cases are the most consistent classifiers 

considering AUC and SENS as well, showing fair/good results. Thus, we can notice the 

importance of balancing data for machine learning and how it might affect your results. 
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Figure 7 – Boxplot for SPEC values of test dataset classification. 

 

Source – Author 

 

Considering now the three metrics (AUC, SENS and SPEC), the datasets having the 

highest and consistent results (assuming consistency as the fact of achieving more values 

above 0.500) are the balanced datasets after Wrapper feature selection. In this case, we should 

highlight the most notable performances. For balanced T1PC with feature selection, MLP-3 

showed good results on test phase with AUC = 0.844, SENS = 0.778, and SPEC = 0.800. 

Balanced T2 data after feature selection had impressive results using NB for both validation 

(AUC = 0.929; SENS = 0.929; SPEC = 0.786) and testing (AUC = 0.944; SENS = 1.000; 

SPEC = 0.750). Regarding T1PC-T2 balanced data with feature selection, testing results 

showed MLP-1 (AUC = 0.778; SENS = 0.778; SPEC = 0.750), MLP-3 (AUC = 0.889; SENS 

= 0.889; SPEC = 0.750) and KNN-7 (AUC = 0.917; SENS = 0.778; SPEC = 1.000) having 

the highest performances. These three classifiers had high performances during validation as 
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well, they achieved AUC, SENS and SPEC values above 0.850, except for KNN-7 value of 

0.643 for SENS. 

It is worth mentioning the KNN-1 performance on Bagging cases. This classifier 

achieved the value of 1.000 for AUC, SENS and SPEC in almost every validation case. Its 

lower performance was classifying T2 cases with bag size of 66%, showing AUC of 0.952, 

SENS of 1.000, and SPEC of 0.500. During the test phase, KNN-1 seemed the most 

consistent classifier considering all three metrics. Classifying the test dataset of T1PC-T2 

using Bagging with bag size of 100%, KNN-1 had AUC of 0.861. SENS of 0.778, and SPEC 

of 0.750. 

Returning to the subject of feature selection, Figures 5-10 represent an overview of the 

selected features and how many times they were selected during Wrapper’s iterations for each 

classifier. In Appendix C contains the tables for each case of feature selection classification. 

Considering the unbalanced T1PC dataset, the most selected features by Wrapper are 

GLCM texture features. Informal Measure of Correlation 2 from both 2D and 3D models, and 

Correlation (2D) were selected by 7, 6 and 5 different classifiers, respectively. Assuming a 

threshold of 70% of the possible folds in the selection process: IMC 1 (2D) is present in NB 

selected feature vector; GLN (2D) is present for KNN-3 case; VOL (2D) is seen in J48 

selected feature vector; MJA (3D) for both RF and KNN-1; and IMC 2 (3D) is present both 

MLP-2 and KNN-5 cases. The classifier that obtained the highest number of selected features 

was KNN-9, with 12 different features. On the other hand, MLP-1 and MLP-2 had only 3 

selected features. 
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Figure 8 – Heatmap for unbalanced T1PC feature selection for each classifier according to the number of folds 

the feature is picked as relevant by Wrapper. 

 

Source – Author 

 

The balanced T1PC had predominance of texture features as well as regards frequency 

of selection by all classifier using Wrapper. IMC 1 (2D) was selected by all classifiers, and 

IMC 2 (2D) was selected by 10. We should highlight the selection of shape features as well, 

which ELG (2D) and VOL (2D) are present in selected feature vectors of 7 different 

classifiers. Considering the 70% threshold again, Wrapper for KNN-9, MLP-1 and MLP-2 

selected IMC 1 (2D) in all 28 folds. The same feature was selected in 20 folds for KNN-5 and 

in 25 folds for NB. IMC 2 (2D) seemed relevant for Wrapper in 27 folds of J48 feature 

selection, and VOL (2D) was selected in more than 70% of the folds for RF and KNN-1 

selection. MLP- 3 has the highest number of selected features being 44, oppositely J48 has 9 

being the smaller selected feature vector in this case.  
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Figure 9 – Heatmap for balanced T1PC feature selection for each classifier according to the number of folds the 

feature is picked as relevant by Wrapper. 

 

Source – Author 

 

As concerns unbalanced T2 data, Wrapper showed COR (3D) and IDN (3D) being the 

two most relevant features across all 11 classifiers, which the first one was selected by 9 

classifiers and the later one 7. Another fact in relation to COR (3D) in this case, is its 

predominance in number of folds it was selected regarding the 70% threshold. For KNN-3, 

MLP-2 and MLP-3, Wrapper selected it 18 out of 21 folds. It is worth mentioning that the 

same feature is present in 16 folds for J48 and KNN-5 Wrapper feature selection as well. 

About selected feature vector size, RF has 29 selected features as highest number against 

KNN-9 with only 1 feature. 
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Figure 10 – Heatmap for unbalanced T2 feature selection for each classifier according to the number of folds the 

feature is picked as relevant by Wrapper. 

 

Source – Author 

 

In turn, balanced T2 data had feature selection resulting in IDN (3D) and COR (3D) as 

the two most selected features like unbalanced data. However, in contrast to unbalanced data, 

IDN (3D) was selected at least in one fold for all 11 classifiers, while COR (3D) appears in 10 

different feature vectors after selection. For this dataset, IDN (3D) had the same 

predominance that COR (3D) had with unbalanced data in relation to the 70% of folds. The 

Inverse Difference Normalized feature was selected in 26, 22, 21, and 20 folds for NB, MLP-

1, MLP-2, KNN-9 and MLP-3, respectively, where both of these last two classifiers selected 

it in 20 folds. As we analyse the final feature vector size, RF has size of 41 features, while NB 

has the smallest vector with 8 features. 
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Figure 11 – Heatmap for balanced T2 feature selection for each classifier according to the number of folds the 

feature is picked as relevant by Wrapper. 

 

Source – Author 

 

The unbalanced T1PC-T2 results after Wrapper feature selection seems to be affected 

by the combination of datasets, as expected. The top 2 selected features by Wrapper for all 

classifiers have FeatureID 256 and 39, which means the COR (3D) of the T2 portion and the 

IMC 2 (2D) from T1PC portion were selected by 9 and 6 classifiers, respectively. Taking into 

account the features selected in more than 70% of the folds, COR (3D, Feature ID 256) was 

preferred in 15 folds of KNN-5 feature selection, while IMC 1 (3D, FeatureID 115) for NB, 

IMC 2 (2D, FeatureID 39) for MLP-2, and VOL (2D, FeatureID 9) for J48 were preferred in 

15 folds during Wrapper for their respective classifier. The final feature vectors’ size has RF 

being the larger with 15 features, and KNN-9 the smaller with 1 feature. 
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Figure 12 – Heatmap for unbalanced T1PC-T2 feature selection for each classifier according to the number of 

folds the feature is picked as relevant by Wrapper. 

 

Source – Author 

 

In the matter of feature selection from balanced T1PC-T2 data, we can see a similar 

aspect analysing the influence of having T1PC and T2 data at the same time during 

classification. The two most selected features across all classifiers are related to T2 portion of 

the dataset. The texture features IDN (3D, FeatureID 254) and COR (3D, FeatureID 256) 

were selected by Wrapper for 11 and 8 classifiers, respectively. The next features in the list 

are mostly from the portion corresponding to T1PC, such as ELG (2D, FeatureID 7), which 

was selected for 7 classifiers. The 70% threshold analysis for this case shows all MLP 

configurations having both IDN (3D, FeatureID 254) and M3DD (2D, FeatureID 151) being 

selected in more than 20 folds. In addition, IDN (3D, FeatureID 254) was more prevalent in 

the KNN-7 feature selection, which as picked in 25 out of 28 folds. NB also had a more than 
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20 folds selecting IDN (3D, FeatureID 254) and the MP (3D, FeatureID 96). Surface Area 

(3D, FeatureID 89) was a common feature selected between RF (23 folds) and KNN-1 (22 

folds). Taking into consideration the final feature vector for theses cases, KNN-5 has the 

larger vector with 34 features and in the opposite side there is NB with 13 features. 

 

Figure 13 – Heatmap for balanced T1PC-T2 feature selection for each classifier according to the number of folds 

the feature is picked as relevant by Wrapper. 

 

Source – Author 

 

Thus, after an overview on selected features, it seems interesting to correlate the most 

relevant features with clinical information. In general, the more aggressive the tumor, the 

more heterogeneous it will be, and the higher chance of necrosis and hemorrhage. In these 

situations, the predominance of GLCM features such as IMC1, IMC2 and COR can indicate 

the machine capacity to differentiate tumor tissue. On the other hand, shape features like 
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M3DD, MP, ELG and SA, which seemed relevant for balanced T1PC-T2, could indicate 

potential in mathematically representing tumor as regards its form, if it is more irregular, 

spiculated and infiltrative. 

Another interesting point to take in consideration is the fact that selecting features for 

unbalanced T1PC data, which has good spatial resolution, we can see VOL and MJA as 

relevant shape features. These features are directly related to tumor classification when comes 

to medical visual analysis. 

Since no similar work using MRI was found in the literature, a comparison with recent 

similar works using CT seems feasible. Ferreira Junior et al. (2018) uses radiomics-based 

features for pattern recognition of lung cancer histopathology and metastases. So we can 

make a parallel, we are comparing only his results regarding histopathological classification 

using computer features. It is worth noting that what Ferreira Junior et al. (2018) calls as 

testing, corresponds to our validation step, and he performed a LOO on a dataset with 52 

instances. His validation process corresponds to our testing step, where he used a dataset with 

16 instances to evaluate the model created by LOO with the highest performance. Then, we 

will adopt our nomenclature for this steps to avoid any misinterpretation. Thus, NB had the 

highest performances in his study showing AUC values of 0.810 for both unbalanced and 

oversampled (using SMOTE) datasets during test. Our MLP-2 for T1PC-T2 unbalanced 

dataset gets close to his results with AUC of 0.806. Now, comparing balanced data results, 

KNN-7 for T1PC-T2 dataset surpasses his NB results with AUC of 0.833. 

We can go further in the comparison if we take in consideration our results using 

Bagging and feature selection. In these cases, the difference of performance increases in our 

favor. For example, NB in our case using T2 balanced data after feature selection showed 

AUC = 0.944 during test. Another example is KNN-1 as base learner of Bagging with bag 

size of 100% to classify T1PC-T2 images, which test results showed AUC = 0.861. 

We should highlight some limitations of this work. First, the datasets’ size is still 

small and led us to choose two different approaches to overcome this problem, the leave-one-

out cross-validation and bootstrapping method. Another limitation is the lack of biopsy 

confirmation for some malignant cases. In future works, we suggest the use of larger datasets, 

the comparison between methods using CT imaging, plus the addition of malignancy 

confirmation from histopathological exams of biopsies. 
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4 CONCLUSION 

 

In this study, we assessed quantitative features for lung tumor classification. Lesions 

were semi-automatically segmented in T1-weighted contrast-enhanced and T2-weighted MR 

images. Different classes of features, such as shape and texture, were extracted from 2D and 

3D models of tumor images. Five of the most common machine learning classifiers, NB, J48, 

RF, KNN, and MLP were used to classify unbalanced and balanced datasets. Post-

segmentation correction protocol was performed on T1PC images. Combination of T1PC and 

T2 feature vectors was done as well. Four different datasets were evaluated: T1PC (150 

features), T1PC-p (150 features), T2 (150 features), and T1PC-T2 (300 features). Datasets 

were validated by leave-one-out cross-validation. The unbalancing problem was solved using 

the SMOTE filter in Weka. We also performed analysis by bootstrapping our unbalanced 

datasets. 

Post-segmentation correction did not seem to improve classification, instead it showed 

less performance in comparison to the original segmentation. The combination of T1PC and 

T2 feature vectors presented interesting results with classification improvements. Prior feature 

selection, T1PC-T2 dataset presented the most consistent classification results in general. For 

this case, we should highlight the performance of KNN-7 and MLP-1. Even bootstrapping our 

data with Bagging did not improve our results to surpass the results of T1PC-T2 balanced 

dataset. Bagging results had great performance during validation, with KNN-1 being the top 

performer, but most classifiers lack the performance to predict the test dataset. 

Relevant feature selection was done with ReliefF and Wrapper. The first method, 

ReliefF, showed low performance and high variation of selected features, thus we decided not 

to take the results into consideration. On the other hand, Wrapper seemed robust to our needs 

and delivered interesting results. As part of the classification with selected features, the 

highest AUC value predicting test data was performed by NB classifying balanced T2 

(validation AUC = 0.929; SENS = 0.929; SPEC = 0.786; and testing AUC = 0.944; SENS = 

1.000, SPEC = 0.750). In terms of validation phase, balanced T1PC-T2 data had the highest 

performances, for example MLP-3 (validation AUC = 0.995; SENS = 0.929; SPEC = 0.929; 

testing AUC = 0.889; SENS = 0.889; SPEC = 0.750). 

In relation to most selected features, Wrapper selected features leading to some 

clinical correlation. The texture features selected are mostly extracted from gray level co-

occurrence that might be related to pathological indicators such as necrosis and hemorrhage, 

which cause anomalies in tumor tissue texture. Shape features, such as volume, surface area, 
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and major axis were also picked as relevant by Wrapper, and they are directly correlated to 

malignancy of lung tumors. 

After all, pattern recognition on MRI to aid lung cancer characterization seems 

feasible. We propose for future researches the enhancement of the semi-automatically 

segmentation, increase of both benign and malignant lung tumor cases, biopsy confirmation 

for every malignant case, the association of clinical features to improve classification 

performance, and the comparison of performances between methods using CT imaging. 
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APPENDIX A 

 

Appendix A contains Table 8 regarding features information. 

 

Table 8 – Full list of shape and texture features with their respective Feature ID, Acronym and class. (Table 

continues in the next page) 

Feature 
Class 

Feature Name Acronym T1PC-T2 (T1PC 
portion) 

T1PC-T2 (T2 portion) 

Feature 

ID (2D) 

Feature 

ID (3D) 

Feature 

ID (2D) 

Feature 

ID (3D) 

shape Maximum 3D 

Diameter 

M3DD 1 76 151 226 

shape Compactness 2 C2 2 77 152 227 

shape Maximum 2D 

Diameter Slice 

M2DDS 3 78 153 228 

shape Sphericity SPT 4 79 154 229 

shape Minor Axis MNA 5 80 155 230 

shape Compactness 1 C1 6 81 156 231 

shape Elongation ELG 7 82 157 232 

shape Surface-Volume 

Ratio 

SFR 8 83 158 233 

shape Volume VOL 9 84 159 234 

shape Spherical 

Disproportion 

SD 10 85 160 235 

shape Major Axis MJA 11 86 161 236 

shape Least Axis LA 12 87 162 237 

shape Flatness FTN 13 88 163 238 

shape Surface Area SA 14 89 164 239 

shape Maximum 2D 

Diameter Column 

M2DDC 15 90 165 240 

shape Maximum 2D 

Diamenter Row 

M2DDR 16 91 166 241 

glcm Sum Variance SV 17 92 167 242 

glcm Homogeneity 1 HM1 18 93 168 243 

glcm Homogeneity 2 HM2 19 94 169 244 

glcm Cluster Shade CS 20 95 170 245 

glcm Maximum Probability MP 21 96 171 246 

glcm Inverse Difference 
Moment Normalized 

IDMN 22 97 172 247 

glcm Contrast CNT 23 98 173 248 

glcm Difference Entropy DE 24 99 174 249 

glcm Inverse Variance IV 25 100 175 250 
Source – Author  
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Table 8 – Full list of shape and texture features with their respective Feature ID, Acronym and class. (Table 

continues in the next page) 

Feature 

Class 

Feature Name Acronym T1PC-T2 (T1PC 

portion) 

T1PC-T2 (T2 portion) 

Feature 

ID (2D) 

Feature 

ID (3D) 

Feature 

ID (2D) 

Feature 

ID (3D) 

glcm Dissimilarity DSS 26 101 176 251 

glcm Sum Avarage SAVG 27 102 177 252 

glcm Difference Variance DV 28 103 178 253 

glcm Inverse Difference 

Normalized 

IDN 29 104 179 254 

glcm Inverse Difference 
Moment 

IDM 30 105 180 255 

glcm Correlation COR 31 106 181 256 

glcm Autocorrelation ACOR 32 107 182 257 

glcm Sum Entropy SE 33 108 183 258 

glcm Avarage Intensity AVGI 34 109 184 259 

glcm Energy ENG 35 110 185 260 

glcm Sum Squares SS 36 111 186 261 

glcm Cluster Prominence CP 37 112 187 262 

glcm Entropy ETP 38 113 188 263 

glcm Informal Measure of 

Correlation 2 

IMC2 39 114 189 264 

glcm Informal Measure of 

Correlation 1 

IMC1 40 115 190 265 

glcm Difference Average DAVG 41 116 191 266 

glcm Inverse Difference ID 42 117 192 267 

glcm Cluster Tendency CT 43 118 193 268 

glrlm Short Run Low Gray 

Level Emphasis 

SRLGLE 44 119 194 269 

glrlm Gray Level Variance GLV 45 120 195 270 

glrlm Low Gray Level Run 

Emphasis 

LGLRE 46 121 196 271 

glrlm Gray Level Non 

Uniformity 
Normalized 

GLNN 47 122 197 272 

glrlm Run Variance RV 48 123 198 273 

glrlm Gray Level Non 
Uniformity 

GLN 49 124 199 274 

glrlm Long Run Emphasis LRE 50 125 200 275 

glrlm Short Run High Gray 

Level Emphasis 

SRHGLE 51 126 201 276 

glrlm Run Length Non 

Uniformity 

RLN 52 127 202 277 

Source – Author 
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Table 8 – Full list of shape and texture features with their respective Feature ID, Acronym and class. (End of 

table) 
Feature 

Class 

Feature Name Acronym T1PC-T2 (T1PC 

portion) 

T1PC-T2 (T2 portion) 

Feature 

ID (2D) 

Feature 

ID (3D) 

Feature 

ID (2D) 

Feature 

ID (3D) 

glrlm Short Run Emphasis SRE 53 128 203 278 

glrlm Long Run High Gray 

Level Emphasis 

LRHGLE 54 129 204 279 

glrlm Run Percentage RP 55 130 205 280 

glrlm Long Run Low Gray 

Level Emphasis 

LRLGLE 56 131 206 281 

glrlm Run Entropy RE 57 132 207 282 

glrlm High Gray Level 

Run Emphasis 

HGLRE 58 133 208 283 

glrlm Run Length Non 
Uniformity 

Normalized 

RLNN 59 134 209 284 

glszm Gray Level Variance GLVSZ 60 135 210 285 

glszm Small Area High 

Gray Level 

Emphasis 

SAHGLE 61 136 211 286 

glszm Gray Level Non 
Uniformity 

Normalized 

GLNNSZ 62 137 212 287 

glszm Size Zone Non 
Uniformity 

Normalized 

SZNN 63 138 213 288 

glszm Size Zone Non 

Uniformity 

SZN 64 139 214 289 

glszm Gray Level Non 

Uniformity 

GLNSZ 65 140 215 290 

glszm Large Area 

Emphasis 

LAE 66 141 216 291 

glszm Zone Variance ZV 67 142 217 292 

glszm Zone Percentage ZP 68 143 218 293 

glszm Large Area Low 
Gray Level 

Emphasis 

LALGLE 69 144 219 294 

glszm Large Area High 
Gray Level 

Emphasis 

LAHGLE 70 145 220 295 

glszm High Gray Level 

Zone Emphasis 

HGLZE 71 146 221 296 

glszm Small Area 

Emphasis 

SAE 72 147 222 297 

glszm Low Gray Level 

Zone Emphasis 

LGLZE 73 148 223 298 

glszm Zone Entropy ZE 74 149 224 299 

glszm Small Area Low 

Gray Level 
Emphasis 

SALGLE 75 150 225 300 

Source – Author 
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APPENDIX B 

 

Appendix B contains Tables 9-14 representing the classifiers’ performance for each 

unbalanced dataset using Bagging as bootstrapping method. 

 

Table 9 – Classifiers’ performance for T1PC unbalanced data on Bagging method with bag size of 100%. 

Highest observations for AUC, SENS and SPEC are highlighted as bold values. 

 VALIDATION TEST 

  AUC SENS SPEC AUC SENS SPEC 

NB 0.806 0.643 0.857 0.811 0.889 0.000 

J48 1.000 1.000 0.857 0.800 0.778 0.200 

RF 1.000 1.000 0.857 0.800 0.889 0.200 

KNN-1 1.000 1.000 1.000 0.822 0.889 0.400 

KNN-3 0.857 0.786 0.714 0.822 0.778 0.400 

KNN-5 0.796 0.929 0.429 0.800 0.889 0.400 

KNN-7 0.735 0.929 0.286 0.844 0.889 0.000 

KNN-9 0.755 1.000 0.000 0.822 1.000 0.000 

MLP-1 1.000 0.929 1.000 0.867 0.889 0.400 

MLP-2 0.990 1.000 0.143 0.822 1.000 0.000 

MLP-3 0.990 1.000 0.000 0.844 1.000 0.000 

Source – Author 
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Table 10 – Classifiers’ performance for T1PC unbalanced data on Bagging method with bag size of 66%. 

Highest observations for AUC, SENS and SPEC are highlighted as bold values. 

 VALIDATION TEST 

  AUC SENS SPEC AUC SENS SPEC 

NB 0.878 0.857 0.714 0.844 1.000 0.000 

J48 0.990 1.000 0.714 0.800 0.889 0.000 

RF 0.980 1.000 0.714 0.800 0.889 0.000 

KNN-1 1.000 1.000 1.000 0.822 0.889 0.400 

KNN-3 0.827 0.929 0.429 0.778 0.778 0.200 

KNN-5 0.745 1.000 0.143 0.778 0.889 0.000 

KNN-7 0.776 1.000 0.000 0.867 1.000 0.000 

KNN-9 0.827 1.000 0.000 0.800 1.000 0.000 

MLP-1 1.000 1.000 0.857 0.822 1.000 0.000 

MLP-2 0.980 1.000 0.000 0.778 1.000 0.000 

MLP-3 0.980 1.000 0.000 0.844 1.000 0.000 

Source – Author 
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Table 11 – Classifiers’ performance for T2 unbalanced data on Bagging method with bag size of 100%. Highest 

observations for AUC, SENS and SPEC are highlighted as bold values. 

 VALIDATION TEST 

  AUC SENS SPEC AUC SENS SPEC 

NB 0.881 0.857 0.667 0.917 1.000 0.000 

J48 1.000 1.000 0.667 0.694 0.778 0.250 

RF 1.000 1.000 0.833 0.722 0.889 0.500 

KNN-1 1.000 1.000 1.000 0.833 0.778 0.750 

KNN-3 0.833 0.929 0.333 0.722 1.000 0.250 

KNN-5 0.738 1.000 0.167 0.667 1.000 0.250 

KNN-7 0.750 1.000 0.000 0.694 1.000 0.000 

KNN-9 0.714 1.000 0.000 0.861 1.000 0.000 

MLP-1 1.000 1.000 0.667 0.861 1.000 0.000 

MLP-2 1.000 1.000 0.500 0.833 1.000 0.000 

MLP-3 1.000 1.000 0.500 0.833 1.000 0.000 

Source – Author 
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Table 12 – Classifiers’ performance for T2 unbalanced data on Bagging method with bag size of 66%. Highest 

observations for AUC, SENS and SPEC are highlighted as bold values. 

 VALIDATION TEST 

  AUC SENS SPEC AUC SENS SPEC 

NB 0.952 1.000 0.500 0.833 1.000 0.000 

J48 0.988 1.000 0.667 0.722 0.889 0.250 

RF 0.976 1.000 0.667 0.722 0.889 0.250 

KNN-1 0.952 1.000 0.500 0.806 1.000 0.500 

KNN-3 0.726 1.000 0.167 0.750 1.000 0.250 

KNN-5 0.738 1.000 0.000 0.750 1.000 0.000 

KNN-7 0.762 1.000 0.000 1.000 1.000 0.000 

KNN-9 0.762 1.000 0.000 0.944 1.000 0.000 

MLP-1 0.952 1.000 0.500 0.778 1.000 0.000 

MLP-2 0.952 1.000 0.500 0.833 1.000 0.000 

MLP-3 0.976 1.000 0.500 0.889 1.000 0.000 

Source – Author 
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Table 13 – Classifiers’ performance for T1PC-T2 unbalanced data on Bagging method with bag size of 100%. 

Highest observations for AUC, SENS and SPEC are highlighted as bold values. 

 VALIDATION TEST 

  AUC SENS SPEC AUC SENS SPEC 

NB 0.917 0.786 0.833 0.764 0.889 0.000 

J48 1.000 1.000 0.833 0.778 0.778 0.000 

RF 1.000 1.000 1.000 0.778 0.889 0.000 

KNN-1 1.000 1.000 1.000 0.861 0.778 0.750 

KNN-3 0.940 1.000 0.500 0.889 1.000 0.250 

KNN-5 0.833 1.000 0.167 0.861 1.000 0.250 

KNN-7 0.821 1.000 0.000 0.833 1.000 0.000 

KNN-9 0.762 1.000 0.000 0.917 1.000 0.000 

MLP-1 1.000 1.000 0.000 0.833 1.000 0.000 

MLP-2 1.000 1.000 0.000 0.833 1.000 0.000 

MLP-3 0.589 0.928 0.166 0.806 1.000 0.000 

Source – Author 
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Table 14 – Classifiers’ performance for T1PC-T2 unbalanced data on Bagging method with bag size of 66%. 

Highest observations for AUC, SENS and SPEC are highlighted as bold values. 

 VALIDATION TEST 

  AUC SENS SPEC AUC SENS SPEC 

NB 0.964 1.000 0.500 0.792 1.000 0.000 

J48 1.000 1.000 0.833 0.722 0.889 0.000 

RF 0.988 1.000 0.833 0.778 0.889 0.000 

KNN-1 1.000 1.000 1.000 0.861 0.889 0.250 

KNN-3 0.845 1.000 0.167 0.833 1.000 0.000 

KNN-5 0.774 1.000 0.000 0.917 1.000 0.000 

KNN-7 0.762 1.000 0.000 0.889 1.000 0.000 

KNN-9 0.655 1.000 0.000 0.778 1.000 0.000 

MLP-1 1.000 1.000 0.000 0.750 1.000 0.000 

MLP-2 0.988 1.000 0.000 0.694 1.000 0.000 

MLP-3 1.000 1.000 0.000 0.889 1.000 0.000 

Source – Author 
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APPENDIX C 

 

Appendix C contains Tables 15-20 representing the classifiers’ performance for each dataset 

after feature selection using Wrapper. 

  

Table 15 – Classifiers’ performance for T1PC unbalanced data after Wrapper feature selection. Highest 

observations for AUC, SENS and SPEC are highlighted as bold values. 

 VALIDATION TEST 

  AUC SENS SPEC AUC SENS SPEC 

NB 0.796 0.929 0.714 0.689 0.667 0.800 

J48 0.383 0.786 0.429 0.544 0.889 0.200 

RF 0.847 0.929 0.714 0.844 0.889 0.200 

KNN-1 0.643 0.714 0.571 0.589 0.778 0.400 

KNN-3 0.709 1.000 0.571 0.544 0.778 0.200 

KNN-5 0.679 1.000 0.429 0.611 0.778 0.200 

KNN-7 0.587 0.714 0.286 0.767 0.778 0.400 

KNN-9 0.520 0.857 0.000 0.833 0.889 0.000 

MLP-1 0.724 0.929 0.571 0.667 0.778 0.600 

MLP-2 0.704 0.929 0.571 0.667 0.778 0.600 

MLP-3 0.714 0.929 0.571 0.711 0.778 0.600 

Source – Author 
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Table 16 – Classifiers’ performance for T1PC balanced data after Wrapper feature selection. Highest 

observations for AUC, SENS and SPEC are highlighted as bold values. 

 VALIDATION TEST 

  AUC SENS SPEC AUC SENS SPEC 

NB 0.867 0.929 0.714 0.689 0.222 0.800 

J48 0.883 0.786 0.857 0.689 0.778 0.600 

RF 0.916 0.929 0.786 0.833 0.778 0.800 

KNN-1 0.821 0.714 0.929 0.733 0.667 0.800 

KNN-3 0.842 0.786 0.786 0.844 0.778 0.400 

KNN-5 0.885 0.714 0.857 0.778 0.778 0.800 

KNN-7 0.786 0.643 0.857 0.756 0.667 0.800 

KNN-9 0.839 0.571 0.929 0.756 0.667 0.800 

MLP-1 0.883 0.786 0.786 0.844 1.000 0.400 

MLP-2 0.898 0.786 0.929 0.800 0.889 0.200 

MLP-3 0.867 0.714 0.857 0.844 0.778 0.800 

Source – Author 
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Table 17 – Classifiers’ performance for T2 unbalanced data after Wrapper feature selection. Highest 

observations for AUC, SENS and SPEC are highlighted as bold values. 

 VALIDATION TEST 

  AUC SENS SPEC AUC SENS SPEC 

NB 0.738 0.857 0.667 0.722 0.667 0.750 

J48 0.405 0.857 0.333 0.569 0.889 0.250 

RF 0.571 0.857 0.333 0.722 0.778 0.500 

KNN-1 0.583 0.500 0.667 0.708 0.667 0.750 

KNN-3 0.655 1.000 0.500 0.542 0.889 0.500 

KNN-5 0.613 1.000 0.167 0.778 0.778 0.500 

KNN-7 0.601 1.000 0.333 0.819 0.778 0.750 

KNN-9 0.726 1.000 0.333 0.639 0.667 0.500 

MLP-1 0.732 0.929 0.500 0.764 0.778 0.750 

MLP-2 0.619 0.643 0.667 0.583 0.444 0.750 

MLP-3 0.571 0.786 0.500 0.611 0.667 0.500 

Source – Author 
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Table 18 – Classifiers’ performance for T2 balanced data after Wrapper feature selection. Highest observations 

for AUC, SENS and SPEC are highlighted as bold values. 

 VALIDATION TEST 

  AUC SENS SPEC AUC SENS SPEC 

NB 0.929 0.929 0.786 0.944 1.000 0.750 

J48 0.587 0.643 0.786 0.528 0.556 0.500 

RF 0.870 0.857 0.786 0.694 0.889 0.500 

KNN-1 0.750 0.643 0.857 0.639 0.778 0.500 

KNN-3 0.793 0.643 0.857 0.583 0.556 0.500 

KNN-5 0.852 1.000 0.786 0.750 0.778 0.750 

KNN-7 0.781 0.857 0.786 0.764 0.778 0.750 

KNN-9 0.770 0.786 0.786 0.819 0.667 0.750 

MLP-1 0.985 0.929 0.929 0.556 0.556 0.750 

MLP-2 0.949 0.786 0.857 0.639 0.556 0.750 

MLP-3 0.959 0.857 0.857 0.611 0.556 0.750 

Source – Author 
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Table 19 – Classifiers’ performance for T1PC-T2 unbalanced data after Wrapper feature selection. Highest 

observations for AUC, SENS and SPEC are highlighted as bold values. 

 VALIDATION TEST 

  AUC SENS SPEC AUC SENS SPEC 

NB 0.810 0.857 0.667 0.194 0.333 0.250 

J48 0.149 0.786 0.167 0.444 0.889 0.000 

RF 0.875 1.000 0.500 0.833 0.889 0.000 

KNN-1 0.917 1.000 0.833 0.514 0.778 0.250 

KNN-3 0.655 1.000 0.167 0.389 0.889 0.250 

KNN-5 0.845 1.000 0.167 0.722 0.889 0.250 

KNN-7 0.619 0.786 0.333 0.694 0.778 0.000 

KNN-9 0.726 1.000 0.333 0.639 0.667 0.500 

MLP-1 0.857 1.000 0.333 0.833 0.778 0.500 

MLP-2 0.845 1.000 0.333 0.833 0.778 0.500 

MLP-3 0.702 0.929 0.167 0.833 0.667 1.000 

Source – Author 
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Table 20 – Classifiers’ performance for T1PC-T2 balanced data after Wrapper feature selection. Highest 

observations for AUC, SENS and SPEC are highlighted as bold values. 

 VALIDATION TEST 

  AUC SENS SPEC AUC SENS SPEC 

NB 0.959 0.959 0.857 0.306 0.778 0.250 

J48 0.689 0.929 0.714 0.583 0.667 0.500 

RF 0.934 0.786 0.857 0.667 0.778 0.500 

KNN-1 0.964 0.929 1.000 0.458 0.667 0.250 

KNN-3 0.926 0.643 1.000 0.611 0.667 0.750 

KNN-5 0.888 0.714 0.857 0.764 0.778 0.500 

KNN-7 0.895 0.643 1.000 0.917 0.778 1.000 

KNN-9 0.898 0.500 0.929 0.819 0.667 0.750 

MLP-1 0.985 0.929 0.857 0.778 0.778 0.750 

MLP-2 0.980 0.857 0.929 0.639 0.778 0.500 

MLP-3 0.995 0.929 0.929 0.889 0.889 0.750 

Source – Author 


