• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
https://doi.org/10.11606/D.82.2017.tde-03102017-092907
Document
Auteur
Nom complet
Lívia Contini Massimino
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2016
Directeur
Jury
Yoshioka, Sergio Akinobu (Président)
Horn, Marília Marta
Zucolotto, Valtencir
Titre en portugais
Nanopartículas de curcumina: obtenção e caracterização
Mots-clés en portugais
Caracterização
Curcumina
Nanopartículas
Resumé en portugais
Curcumina é um composto natural presente na Curcuma longa, que apresenta diversas atividades medicinais, porém sua baixa solubilidade limita sua aplicação médica. Para solucionar esse problema e viabilizar seu uso, diversas pesquisas no campo da nanotecnologia estão sendo feitas. Neste estudo foram obtidas nanopartículas de curcumina utilizando como solventes o etanol (E) e o clorofórmio (C), e através dos procedimentos de agitação magnética e sonicação. As nanopartículas foram caracterizadas por espalhamento de luz dinâmico (DLS), potencial Zeta, microscopia de força atômica (AFM) e pelas espectroscopias no infravermelho (FTIR), no ultravioleta/visível (UV-Vis) e de fluorescência. Foram feitos ensaios de solubilidade, fotodegradação e citotoxicidade. As nanopartículas obtidas com o solvente E e pelos processos de agitação e sonicação foram denominadas de NEA e NES, e com o solvente C de NCA e NCS, respectivamente. Teste inicial de liberação in vitro foi feito para a amostra NCA dispersas em gelatina com posterior recobrimento com Eudragit S100®; esse teste foi feito em HCl (pH 2,0) e tampão fosfato (pH 7,5). A morfologia dessas membranas recobertas ou não com Eudragit S100® foram analisadas por microscopia eletrônica de varredura (MEV). As nanopartículas tiveram um rendimento entre 60 e 78%. O resultado de DLS mostrou a obtenção de partículas nanométricas entre 189 e 248 nm para as NEA, NES e NCS e de 591 nm para NCA, com potencial Zeta acima de |25| mV para todas as amostras. As nanopartículas apresentaram uma fotodegradação mais lenta do que o produto comercial. As espectroscopias de FTIR, UV-Vis e fluorescência apresentaram bandas características da curcumina comercial, indicando que as nanopartículas têm as mesmas características químicas e físicas do bioativo. As nanopartículas mostraram um aumento na solubilidade de 37 a 56 vezes em relação à curcumina comercial. Os ensaios de citotoxicidade indicam que as nanopartículas não apresentaram toxicidade para a linhagem VERO, enquanto que para a linhagem HEp-2 ocasionaram morte celular. Assim, os procedimentos utilizados para o preparo das nanopartículas de curcumina foram eficientes, sendo que uso do solvente E mostrou ser o mais indicado para se obter nanopartículas. A morfologia por MEV das membranas de gelatina/NCA mostra um recobrimento uniforme com Eudragit S100®. Os testes iniciais de liberação in vitro mostraram que as nanopartículas de curcumina são protegidas pelo sistema em pH ácido e liberadas apenas quando em pH 7,5.
Titre en anglais
Nanoparticles of curcumin: preparation and characterization
Mots-clés en anglais
Characterization
Curcumin
Nanoparticles
Resumé en anglais
Curcumin is a natural compound present in Curcuma longa, which has several medicinal effects but due to its low solubility, its medical application gets constrained. To solve this problem and make it feasible to use, several studies are being made in the nanotechnology field. In this study curcumin nanoparticles were obtained using different solvents, ethanol (E) and chloroform (C), with two procedures, magnetic stirring and sonication. The nanoparticles were characterized by dynamic light scattering (DLS), Zeta potential, atomic force microscopy (AFM) and by infrared spectroscopy (FTIR), ultraviolet/visible spectroscopy (UV-vis), fluorescence spectroscopy. Solubility, photodegradation and cytotoxicity trials were made. The nanoparticles were named NEA and NES when prepared with E solvent, by magnetic stirring and sonication processes, and named NCA and NCS with C solvent, respectively. A preliminary in vitro release test was made with the NCA sample. It was dispersed in gelatin with the Eudragit S100® coating; this release test was done in HCl (pH 2.0) and phosphate buffer (pH 7.5). The membranes with and without Eudragit S100® coating were morphologically analyzed by scanning electron microscopy (SEM). The nanoparticles yield between 60 and 78%. The DLS results showed nanometric particles between 189 and 248 nm for NEA, NES and NCS samples and 591 nm for NCA sample. Moreover, a Zeta potential superior to |25| mV was obtained for all samples. The nanoparticles showed a slower photodegradation compared to the commercial curcumin. The FTIR, UV-vis and fluorescence spectroscopy resulted in characteristic bands, indicating that these nanoparticles have the same chemical and physical characteristics of the commercial curcumin. Likewise, an increase in solubility of 37 to 56 times was observed in comparison with the commercial product. Furthermore, the cytotoxicity assays suggested no toxicity to VERO cell lineage, while death for HEp-2 cell lineage. The procedures used for the curcumin nanoparticles preparation were efficient; however, the most suitable nanoparticles were obtained with E solvent. The morphology by SEM of gelatin/NCA membranes indicates a uniform coating with Eudragit S100®. In vitro release tests showed that curcumin nanoparticles were protected by this system at acid pH and released at pH 7.5.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2017-10-03
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2024. Tous droits réservés.