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Resumo

NAGASE, Daniel Arvage. Explicating Logicality. 2017. Dissertação (Mestrado) – Faculdade
de Filosofia, Letras e Ciências Humanas. Departamento de Filosofia, Universidade de São
Paulo, São Paulo, 2017.

O presente estudo tem por objetivo analisar a assim chamada proposta de Tarski, a qual visa
fornecer uma resposta à pergunta: quais objetos são lógicos? Nossa análise consiste em duas
partes: uma primeira, mais histórica, compara a metodologia de Tarski àquela de Carnap
e de Quine, se atentando principalmente às diferentes acepções que cada um deles atribui
à noção de explicação (explication). A segunda parte, mais argumentativa, procura mostrar
que um ambiente natural para essa proposta é uma metafísica platônica de franca inspiração
neo-fregeana.

Palavras-chave: Tarski – Logicalidade – Explicação – Carnap – Quine – Platonismo
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Abstract

NAGASE, Daniel Arvage. Explicating Logicality. 2017. Dissertation (Master Degree) – Facul-
dade de Filosofia, Letras e Ciências Humanas. Departamento de Filosofia, Universidade de
São Paulo, São Paulo, 2017.

The present study aims at analyzing the so-called Tarski proposal, a proposal about which
objects should be considered as logical. My analysis has two parts: the first part, more
historically oriented, compares Tarski’s evolving methodology to Carnap’s and Quine’s, in
particular with the di�erent conceptions of these latter two regarding that which they called
explication. The second, more argumentative part, attempts to show that the most natural
environment for this proposal is a platonic metaphysics of a neo-Fregean variety.

Key words: Tarski – Logicality – Explication – Carnap – Quine – Platonism
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INTRODUCTION 1

Introduction

This study has been occasioned by my reading of a famous lecture by Tarski (1966/1986).1

It is not, however, a close reading or a detailed analysis of this text. Rather, it is best thought
of as a collection of reflections prompted by my engagement with this text. Two of these
pieces are more historical in nature, whereas in the other two I allow myself to indulge in
a bit of philosophical fancy. This is reflected in the organization of this dissertation: the
first part contains the two historical pieces, and the second part contains the more indulgent
reflections. The reader should be aware that such indulgence does not necessarily pay o�,
in order not be disappointed by some of the meager results here collected.

The first chapter of the historical part was occasioned not so much by Tarski’s own piece,
as by the way the relevant literature has constantly ignored many of its key statements. Al-
though I am one of the first to agree that the tales of Tarski’s legendary clarity and precision
are greatly exaggerated, he is nonetheless particularly clear about two things in this lecture:
his proposal should not be judged as a kind of description of some platonic essence and the
target of his proposal are logical objects. Unfortunately, much of the literature proceeds
as if he was proposing just some such description and often takes as his target for analysis
something other than logical objects. Therefore, I proposed in this first chapter to study
some parallels between Tarski’s methodological remarks in this piece with the more fa-
mous methodology of explication as devised by Carnap, in the hopes of contributing to the
dispelling of the first confusion. In the course of researching for this chapter, I was also sur-
prised to discover that there were fundamental di�erences between Tarski’s methodological
outlook in his famous 1936 paper on “The Concept of Truth in Formalized Languages” and
later papers. Given that the story of the evolution of Tarski’s views on this matter has not
yet been told, I decided to include this material in the chapter as well.

The second chapter in a sense grew out of the first. During my research on Tarski’s phi-
losophy, I discovered that not only was he a committed nominalist, but that this nominalism
was expressed in his rejection of higher-order logic. This created a puzzle: the most natural

1Tarski’s lecture is from 1966, but it was only published in 1986 by John Corcoran. As noted by Feferman
(1999), Mautner (1946) can be considered as a kind of forerunner to Tarski’s proposal, though with important
di�erences. Mautner’s article has not been much discussed in the literature.
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setting for the proposal of the 1966 lecture is higher-order logic, in particular type-theory.
How then can one reconcile this setting with Tarski’s nominalism? The chapter explores a
possible answer to this solution, one inspired in part by the more developed thoughts one
finds in Quine’s writings.

Conceptually, then, Tarski seems to be located between Carnap and Quine, sometimes
drawing from one, sometimes from the other. Historically, however, it may be that it is
Carnap and Quine who drew much inspiration from these conflicting strands found in
Tarski’s private philosophy, which would thus justify an in-depth analysis of his rather in-
choate philosophical remarks—if nothing else, as an important prelude to what has been
considered as one of the most important debates of analytic philosophy.

The third chapter, then, which is the first of the more indulgent part, analyzes Tarski’s
proposal itself. The indulgence consists in my attempt to read his proposal against the back-
ground of a platonic metaphysics, thus going completely against Tarski’s own nominalist
inclinations. The result is that I give much greater weight to his reference to Klein than
most critics, using this framework to timidly suggest an alliance with the neo-Fregeans
over these matters. The suggestion is timid, since no more than a brief sketch of the idea
is o�ered—clearly one of the places in which the reader’s hopes for a more fully developed
theory will be disappointed.

The final, short chapter—more a coda to the third chapter than an autonomous piece—
could be considered as an attempt at selling o� my metaphysical approach to an unfortu-
nately naive customer who does not care to check all the details of the product he is buying.
To wit, I try to show some of the advantages of the poorly sketched metaphysical picture
from the previous chapter, by showing that it can at least resist criticism from some of its
most prominent competitors. Perhaps out of shame for such lowly commercial tactics, I
try also to provide the reader with some extra stu� he did not ask for, in the form of three
lengthy technical appendices—another one of my indulgences.

A word, then, about the appendices. First, I decided to append them to each chapter,
instead of collecting them at the end, because some of them were really short and contained
just whatever technical results were mentioned in the main text. Second, I decided to append
them to each chapter, instead of including them in the main text, in order not to clutter the
exposition. That is not to say that they are uninteresting or unimportant. But, this being
a philosophical work after all (however poorly it performs in this task), it seemed fitting to
devote the main text to philosophical points, and hence to leave the juicy mathematical bits to
appendices. Their length is in part because of my desire to make them as self-contained as
possible: a more mathematically inclined reader could get some enjoyment out of reading
just the appendices, referring to the main text just for motivation.

As for the conclusion, since each chapter has its own conclusion, instead of presenting a
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kind of wrap-up of the preceding, it rather points forwards, into directions of research that
were not fully developed in this study. It can be thus thought as a series of promissory notes,
which I hope to one day acquire the necessary funds to honor, if the reader ever decide to
cash them out.





PART I

Tarskian Explication





Chapter 1

Tarski’s Conceptual Analyses

In the course of his career, Tarski proposed three conceptual analyses that would prove
to be enormously influential: his analyses of truth, of logical consequence, and of “logical
notions”. Although proposed at di�erent moments in his career, these analyses are gener-
ally treated as obeying the same overall logic1: starting from a given intuitive notion, Tarski
would proceed to give formal analogs to them, always obeying the twin criteria of “material
adequacy” (glossed as extensional agreement) and “formal correctness” (glossed as consis-
tency of the resulting theory, along with other formal requirements, e.g., on the form of the
definition). Not surprisingly, there is a lot of controversy regarding whether or not Tarski
succeeded in capturing the intuitive counterparts of his analysans; in particular, Tarski has
been charged of failing his “material adequacy” criterion, both by overgenerating (captur-
ing too much) and by undergenerating (capturing too little). Most famous among these is
probably Etchemendy’s claim that:

(...) Tarski’s analysis is wrong, that his account of logical truth and logical con-
sequence does not capture, or even come close to capturing, any pretheoretic
conception of the logical properties. (...) Applying the model-theoretic account
of consequence, I claim, is no more reliable a technique for ferreting out the
genuinely valid arguments of a language than is applying a purely syntactic
definition. Neither technique is guaranteed to yield an extensionally correct
specification of the language’s consequence relation. (Etchemendy 1999, p. 6)

Indeed, even an overall sympathetic account such as Patterson (2012) agrees with Etche-
mendy, saying that “the modal and extensional failings of the analysis [of logical conse-
quence—D.N.] are manifest” (Patterson 2012, p. 220).

The aim of this chapter is to show that this standard story is incorrect. Specifically, I’ll ar-
gue for two claims: (1) Tarski’s groundbreaking analyses do not all obey a unified procedure,

1Cf., e.g., Dutilh Novaes and Reck (2015, Section 1.1), which groups together the analysis of truth and the
analysis of consequence as a kind of “proto-Carnapian” explication.
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but rather they can be distinctly grouped in two separate phases, corresponding, briefly, to
his early acceptance and later abandonment of “intuitionistic formalism”; (2) Tarski’s ma-
ture work, beginning with his analysis of logical consequence, does not intend to capture
some kind of intuitive concept, but rather to replace a vague concept with a formally defined
one. In fact, given (2), it seems there are some similarities between Tarski’s procedure and
Carnap’s. Since Carnap is much more forthright about his project than Tarski, and since
there is already an extensive literature on his concept of explication2, there is some hope that
a comparison with Carnap may help to shed light on Tarski’s own procedure.

Accordingly, this chapter is structured as follows. First, I’ll give a brief account of Car-
nap’s notion of explication, contrasting it with what we may call the “classical picture” of
conceptual analysis. Second, building on Patterson (2012), I’ll analyze Tarski’s approach to
conceptual analysis in his famous truth paper, showing how it conforms to the central tenets
of “intuitionistic formalism”. Finally, I’ll show how Tarski conceives his task in his paper on
logical consequence and other articles written after his abandonment of “intuitionistic for-
malism” in a way that resembles Carnapian explication. My central claim is thus that Tarski
moved from a decidedly un-Carnapian view of conceptual analysis towards an account that
is broadly Carnapian in spirit.

1.1 Carnapian Explication

In his book Logical Foundations of Probability, Carnap characterizes “explication” in the fol-
lowing manner:

According to these considerations, the task of explication may be characterized
as follows. If a concept is given as explicandum, the task consists in finding
another concept as its explicatum which fulfills the following requirements to a
su�cient degree:

1. The explicatum is to be similar to the explicandum in such a way that, in
most cases in which the explicandum has so far been used, the explicatum
can be used; however, close similarity is not required, and considerable
di�erences are permitted.

2. The characterization of the explicatum, that is, the rules of its use (for in-
stance, in the form of a definition), is to be given in an exact form, so as to
introduce the explicatum into a well-connected system of scientific con-
cepts.

2Cf. in particular the book-length study by Carus (2007) and the collection of essays by Wagner (2012).
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3. The explicatum is to be a fruitful concept, that is, useful for the formulation
of many universal statements (empirical laws in the case of a nonlogical
concept, theorems in the case of a logical concept).

4. The explicatum should be as simple as possible; this means as simple as the
more important requirements (1), (2), and (3) permit. (Carnap 1962, p. 7)

In order to understand this better, let’s focus on Carnap’s own example of a success-
ful explication, namely the scientific refinement of the pre-scientific concept of “fish”. As
reflected, e.g., in Linnaeus classification from 1735, most animals that lived under water
were classified as fish, so that whales, dolphins, etc., were considered as fish, in spite of their
similarities to mammals being known since at least Aritstotle. However, by 1758 Linnaeus
refined his classification and included a new type, the “Mammalia”, under which we could
now find whales, dolphins, etc., with the appropriate restriction of the category of “pisces”.3

Thus, the pre-scientific concept of fish, meaning roughly animal living underwater, gave way
to the scientific concept of pisces, meaning roughly sharing anatomical features such as the pres-
ence of gills, etc. (note that the pre-scientific concept of quadruped also gave way to the more
refined scientific concept of mammal). Taking then the concept of fish as the explicandum
and the concept of pisces as the explicatum, we can then see how this proposed explication
sheds light on the Carnapian requirements outlined above.

First, there is a lot of overlap between fish and pisces, so that the new concept passes the
similarity test. Pisces is also an exact concept, since, in order to be a pisci, a specimen must
possess a number of features exactly specified. Being anatomically more precise, the new
concept is also much more fruitful, especially since it connects taxonomy to other branches
of biology. It’s also relatively simple, as features which are not common to all pisces are not
mentioned in the classification. Therefore, we can identify a certain minimal conception of
explication:

Minimal explication: Given a concept C as an explicandum, a successful minimal explication
forC is another conceptC ′which fulfills the similarity, exactness, fruitfulness, and simplicity
criteria.

This conception of explication is already su�cient to distinguish it from the more tra-
ditional “conceptual analysis”, which generally requires some kind of content identity be-
tween analysans and analysandum.4 In contrast to this identity, it’s not necessary for an

3In this he was apparently influenced by John Ray, who had already strongly opposed the classification of
whale as fish. Cf. the instructive quotation from Ray in Raven (2009, p. 366), which can also be taken as a
good contrast between what Ray calls strict and philosophical use of a concept, on the one hand, and common
usage, on the other hand.

4For the more traditional conceptual analysis, specially during the early phase of analytic philosophy, cf.
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explication to be successful that explicatum and explicandum be identical, only that they be
similar (and, as we will see, even this requirement will turn out to be a loose one). Neverthe-
less, it’s still minimal in that it allows very di�erent construals, depending on the philosophy
in which is embedded. So, for instance, a more realist inclined philosopher may also require
that the explication somehow track the essence of the phenomenon in question, whereas
someone impressed by anti-realist considerations may eschew this extra requirement al-
together.5 There are also possible di�erences in the purposes to which someone may put
explication: Quine, for instance, thinks that one of the main tasks of explication is to reduce
ontological commitment, which certainly is not among Carnap’s own worries.6 In the next
sections, I’ll show how this minimal idea is developed by Carnap into a more full-blown
Carnapian explication by focusing first on a puzzle related to the similarity requirement.

1.1.1 A Puzzle about Similarity

Let’s take a deeper look at the biological example introduced by Carnap in order to better
understand the similarity criterion. Clearly the two concepts, fish and pisces, di�er in inten-
sion, so this type of similarity can’t be what Carnap is requiring. On the other hand, when
commenting on their dissimilarity, Carnap says that the concept of pisces “is much narrower
than the [concept of fish]; many kinds of animals which were subsumed under the concept
Fish, for instance, whales and seals, are excluded from the concept Piscis” (Carnap 1962, p.
6).7 So it seems that, by similarity, Carnap has in mind extensional adequacy. Nevertheless,
as this example itself makes clear, one should not expect complete extensional adequacy for
a concept to be similar to another. So how much deviance should one allow? Specifically,
is there any kind of “conceptual core”, be it in the form of important conceptual features or
of paradigmatic instances of the explicandum, which should be preserved?

Unfortunately, Carnap is not very explicit on this matter; as far as I know, this was
simply not discussed by him. Indeed, there appears to be a kind of primacy of the fruitful-
ness criterion over the similarity criterion, insofar as the latter is clearly determined by the
former. That would explain why Carnap slips so easily from one to the other:

The [concept of fish] has been succeeded by [the concept of pisces] in this sense:
the former is no longer necessary in scientific talk; most of what previously was
said with the former can now be said with the help of the latter (though often

the essays collected in the volume edited by Beaney (2007). Cf. also section 1.1.2 for more on the contrast
between conceptual analysis and explication.

5Note that this is independent of the similarity criterion: the similarity in question is between explicatum
and explicandum, not between the explicatum and reality.

6I’ll say more about Quine’s own version of explication in the next chapter.
7Note that “piscis” is the singular of “pisces”.
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in a di�erent from, not simply by replacement). (...) What was their motive for
(...) artificially constructing the new concept Piscis far remote from any concept
in the prescientific language? The reason was that they realized the fact that the
concept Piscis promised to be muchmore fruitful than any concept more similar
to Fish.

Notice how Carnap answers a question about the similarity criterion (why not choose
a concept that tracks more closely the extension of the explicandum) with considerations
about fruitfulness. This is in agreement with Dutilh Novaes and Reck (2015), who also
identify this same primacy operating in Carnap. As they note, however, this creates a prob-
lem for Carnap. Since fruitfulness demands that the new concept shed light on phenomena
not explained by the previous concept, and this entails that there will be a mismatch of some
sort between the two concepts, it follows that the more we push towards fruitfulness, the
more we push away from similarity. So, if we consider similarity a separate requirement
that should be respected at least in some core cases, there seems to be a tension between the
two criteria. That’s why they go so far as to call Carnap’s explication project “inherently
paradoxical”:

In addition, if what accounts for the fruitfulness of an explication is such a mis-
match between explicandum and explicatum, then it becomes clear why fruit-
fulness is at odds with the requirement of similarity. As is evident now, a less-
than-perfect degree of similarity between explicandum and explicatum is not
only a tolerable, contingent upshot of explication—it is the very goal of a fruit-
ful explication. This in turn implies that, insofar as it is accountable both to
similarity and to fruitfulness, Carnapian explication is an inherently paradoxical
enterprise. (Dutilh Novaes and Reck 2015, Section 1.5)

Of course, that may be putting matters too strongly. There may be some cases in which
fruitfulness does not inevitably pull away from similarity considerations. To use a rather
contentious example, but which may help to drive the point home, consider the so-called
“squeezing” arguments.8 This type of argument generally proceeds in the following way.
Suppose we’re given an informal notion I , which we want to analyze as S. Since I is infor-
mal, we may not be able to give a direct proof that I and S agree extensionally; nevertheless,
the concept I may be su�ciently precise that we may confidently state that S is a su�cient
condition for I , i.e. every instance of S is also an instance of I . Moreover, we may also
be able to isolate a precise necessary condition for I , say N , so that I ’s extension is squeezed

8This type of argument was famously developed by Kreisel (1967) and has recently become a renewed
source of interest. For some discussion, cf. Field (2008, chap. 2), Smith (2011), Dutilh Novaes and Andrade-
Lotero (2012), and Smith (2013, chap. 45).
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between the extension of S and the extension ofN . Finally, since S andN are both precise,
it may be possible to show that they’re co-extensional, in which case we also have that S and
I are co-extensional. Here’s an example, taken from Smith (2013, chap. 45): we’re given
the informal notion of e�ective computability, and we want to analyze it in terms of Turing
computability. It’s not di�cult to see that every Turing computable function is e�ectively
computable; in order to obtain the converse, Smith introduces a series of conditions which
collectively define what he calls Kolmogorov-Uspenskii (KU) computability (the exact na-
ture of these conditions are not important for us here). He then argues that every e�ectively
computable function is KU computable and finally that every KU computable function is
Turing computable, completing the squeezing argument. If successful, this would amount
to a vindication of the Turing-Church Thesis. The details of the argument are not really
relevant; what matters is that this type of argument should not be ruled out on principle,
and hence that our concept of explication needs to leave some room for it. Accordingly, it
may be the case that fruitfulness and similarity are not inherently in conflict.

One obvious rejoinder to this reasoning is that it presupposes that extensional agreement
is the only relevant measure of similarity, which may not be the case. Again, Carnap is not
very explicit about this, and his own example seems to point towards this direction, but
that doesn’t mean extensional agreement is the only measure available. Depending on your
favorite semantic theory, it may be possible to think about some kind of partial intensional
overlap. Dutilh Novaes and Reck also bring up “continuity of purposes”, which would in
fact be more in line with Carnap’s pragmatism. Regardless of the measure chosen, however,
it seems to me that there will be cases, such as the above, which won’t deviate much (if at
all) from the original concept, while at the same time being fruitful.

In any case, that doesn’t a�ect Dutilh Novaes and Reck’s main point, which is that in
many cases the requirement of fruitfulness will be in conflict with the similarity require-
ment, thus generating a tension within Carnap’s account. Carnap himself, however, seemed
to be unconcerned with this. In order to understand why, it will be useful to take a closer
look at his pragmatism.

1.1.2 Carnap’s Pragmatism

A remark by his student, Howard Stein, may point us to the right direction. Stein reminds
us that “any question about the relation of the explicatum to the explicandum is an ‘exter-
nal question’; this holds, in particular, of the question whether an explication is adequate”
(Stein 1992, p. 281). This points us to “Empricism, Semantics, and Ontology”, an article
where Carnap (1950/1956) distinguishes between internal or theoretical questions that can
be decided within the framework of a given science, and external questions about which
framework to adopt; the latter can only be solved pragmatically, in accordance with each
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context.9 Perhaps a contrast with whatWilson (2006) calls the “classical picture of concepts”
may help to highlight some of the work this distinction is doing here.10

According to Wilson, the “classical picture of concepts” maintains that each concept
possess a certain core, which gives it its unity:

In the classical tradition, the conceptual content associated to a predicate—the
same stu� that binds it to the world—is intended to serve as an invariant core that
controls the instructive directivities that attach to the predicate. As explained
before, I employ “directivity” as a non-technical means for capturing the loose
bundle of considerations that we might reasonably cite, at various moments in
a predicate’s career, in deciding how the term should be rightly applied. (Wilson
2006, p. 95)

AsWilson emphasizes, it is this belief that each concept carries with it a kind of invariant
core that underwrites the associate belief that exercises of conceptual analysis should bring
this core to the fore, eliminating inessential elements which may get into the way of our
fully grasping it. Something like this belief seems to also underwrite Dutilh Novaes and
Reck’s diagnosis of an “inherent paradox” in Carnap’s explication project. If, as they say,
“some weaker form of ‘faithfulness’ or ‘matching’ remains relevant” (Dutilh Novaes and
Reck 2015, section 3) for the success of an explication, that’s because there must be some
kind of invariant core in the explicandum to which the explicatum must remain faithful.

Going back to the distinction between internal and external questions, since the expli-
candum is generally not part of the scientific framework of the explicatum (otherwise, there
would be no need for explication), the question of how similar they are is not an internal
question, but an external one. It’s a question of which framework to adopt, and, as such, it is
to be solved on pragmatic grounds. To go back to our taxonomic example, which selection
of core features produces the most fruitful results, selecting anatomic or phylogenetic fea-
tures? This obviously depends on the purposes of our classification; moreover, however we
answer that, it’s clear that for Carnap the core thus selected is “not assumed to be somehow
naturally given, or to be discoverable, independently identifiable, as a natural kind within the
total semantic field; it is solely a provisional singling out of certain uses for the purpose of
explication. It is relative to the specific purposes of those who are singling it out.” (Carus
2007, p. 285)

9For a recent defense of this distinction, cf. Warren (2016).
10Wilson’s work is much more complex than the thumbnail sketch I’m using as a springboard here may

suggest. Indeed, taking full measure of his account of the “life of the concepts”, so to speak, would require a
work on its own; here, I won’t even be able to spell out its consequences for Carnap’s project. For an interesting
exchange about these consequences, cf. Carus (2012) and Wilson (2012); the latter, in spite of being printed
before the former, is actually a reply to Carus’s essay.
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Thus, Carnap would reject that there is some kind of given invariant core to which ex-
plication must be faithful. On the contrary, we must choose the features we will treat as
“core”, in part by deciding to which purposes we will put our new, engineered concept
(the explicatum). As Carus, reminds us, this process of coming to an agreement on which
features will be considered as core features, is what Carnap calls “clarification”. Here, it may
be useful to contrast the account developed in this section with the one developed by Du-
tilh Novaes and Reck (2015, section 1.4). Tellingly, although they also put heavy emphasis
on clarification, Dutilh Novaes and Reck reject that it is mostly a question of intersubjec-
tive agreement by claiming that “ultimately more [than intersubjective agreement] is at
stake [in the clarification process], namely an adequate understanding of the explicandum
and its original/intended uses, which will be fed into the explication” (Dutilh Novaes and
Reck 2015, section 1.4). In other words, Dutilh Novaes and Reck apparently think that the
clarification process should bring to light the “original/intended uses” of the explicandum,
which would then form a kind of invariant core according to which the proposed explica-
tion would be judged. They are thus much closer to the classical picture of concepts than
Carnap, who holds that ordinary language concepts generally have many di�erent and not
necessarily compatible uses,11 and hence that in most cases there is no way to capture all
their “original/intended uses”, as those may be in conflict.12 In those cases, we must first
agree on what is the purpose of the explication and, given that purpose, which features or
uses of the target concept are the most relevant, with the understanding that di�erent pur-
poses may call for a di�erent selection of features. This may result in the same explicandum
having several di�erent explicata, all equally successful according to the metric established
in their respective clarifications.

Let’s illustrate the above points by pushing Carnap’s own taxonomic example a bit fur-
ther. Note that the new taxonomy which separated whales from fish was based on certain
anatomical features of these animals. But why should we adopt anatomical features as a ba-
sis for biological taxonomy? In particular, why not adopt, say, common ancestry as the only
relevant criteria? This would result in abandoning the category of pisces in favor of two
other kinds, namely the cartilaginous vertebrates and the bony vertebrates, thus also separating,
e.g., shark from fish, and regrouping fish with other animals such as mammals and birds at
another level. It would also result in grouping together birds and crocodiles, separating the
latter from lizards and snakes, thus also abandoning the concept of reptile. Given such dif-
ferences between the two choices, a natural question to ask is, which is the right framework
to adopt?

11Cf. Carnap (1963), especially his replies to Strawson and Bar-Hillel.
12Carnap would probably then find congenial Waismann’s remarks on the open-texture of concepts as

developed by Shapiro (2006).
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Note that, in a sense, the question of which framework to adopt is prior to the explication
process. It amounts to which features of the concepts to be formalized will be deemed as
core, namely anatomic or phylogenetic features. The explication process, which in this case
is basically the construction of the relevant category, can only really get o� the ground after
this preliminary decision has been made. Now, it’s possible to read this as a debate about
invariant core features of fish: should we privilege anatomic or phylogenetic information in
determining the essence of fish? But I think a more Carnapian way of interpreting it is by
considering it as asking a question about which framework is more useful. And answering
this requires us to get clear on the purposes of biological taxonomy.13 Obviously, we may
wish to fulfill several purposes, to which di�erent frameworks are suited; as Stein makes
clear, Carnap’s talk of tolerating alternative frameworks, embodied in his famous principle
of tolerance, is not idle talk, but is supposed precisely to accommodate this type of situation.
That is, there may be no need for choosing one framework over another once and for all:
rather, we may work with di�erent frameworks at the same time, since those frameworks
may be put to use with di�erent tasks in mind.

An interesting consequence of this pragmatic approach to the clarification process is
that, in a sense, after a new concept has been engineered by the explication process, the old
one drops out of the picture, which is why Carnap emphasizes that we’re replacing the old
concept by the new one. As Stein puts it:

If one asks what such an explicatum is the explication of, more than one re-
ply is possible. One can say that the exact characterization proposed is just the
explication of the very concept in question (as a definition defines the concept
whose definition it is); or that it explicates a presystematic idea, not previously
in general use, but vaguely entertained by the inquirer when groping for clar-
ity. I hope it is clear that all this is peripheral: what counts in the end—still in
Carnap’s view of things—is the clarity and the utility of the proposal; whether
part of that utility has to do with an earlier, vaguer, general usage is distinctly a
secondary matter. (Stein 1992, p. 282)

Let’s take stock. We started with a puzzle about the similarity criterion, as emphasized
by Dutilh Novaes and Reck, according to which there is a tendency for the fruitfulness
criterion to conflict with similarity considerations. In order to solve this, I pointed out,
following Stein, that for Carnap similarity considerations were external considerations, to
be decided following an initial agreement on the purposes of the explication and the relevant

13Which is still hotly debated. For a quick survey, cf. Ereshefsky (2008), and, for a more in-depth treatment,
cf. Ereshefsky (2003, esp. chap. 2). The proposal for taking common ancestry as the sole criterion for
belonging to the same kind goes by the name of “process cladism”.
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features of the concept to be analyzed, in the step called “clarification”. After this step, we
proceed, in Carus’s apt phrase, to some conceptual engineering;14 that is, we create a new
concept that is supposed to better meet that particular need (this is the explication step). The
ultimate standard for the success of our explication is how fruitful the new concept is in
relation to the agreed upon purposes in the clarification step. It’s therefore possible to o�er
the following characterization of a typically Carnapian explication:

Carnapian explication: Given a target concept C (the explicandum) and a community15

of researchers interested in C, the Carnapian explication process has two step:

1. Clarification: in this step, the researchers reach an agreement concerning the goal G
to be reached by the explication and, based on G, on the relevant features F1, . . . , Fn

of C which best serve this goal and what are the best metrics to assess the success of
the new concept to replace C;

2. Conceptual engineering: in this step, the researchers create a new concept C ′ in order
to better achieve G. C ′ is then deemed successful if it fulfills the similarity (with re-
spect to the selected features F1, . . . , Fn), exactness, fruitfulness, and simplicity criteria
according to the metric established in the previous step.

The above will hopefully make clear how deeply embedded in Carnap’s pragmatism is
his own conception of explication and specifically why how successful a particular expli-
cation is is an external question for Carnap: it is an external question because the measure
of success for a given explication is determined by a decision on the part of the researchers
both about the goal of the explication and the metrics to be used. Of course, that is not
to say that such decision is entirely arbitrary or irrational, as if external questions were to
be decided based on the whim of the researchers.16 But it does mean that it is a decision,
and hence not completely determined by the data of the problem, whence there is indeed a
certain voluntarism in Carnap’s way of framing the explication task, to borrow a phrase from
Richard Je�rey (1994). It’s precisely these voluntaristic or pragmatic elements that will be
found lacking in the early Tarski’s conceptual analyses, as we will see in the next sections.

14For an analysis of Carnap that takes seriously this engineering aspect, cf. French (2015) and Richardson
(2013).

15“Community” here is taken in a wide sense, thus allowing a community of just one researcher in extreme
cases.

16For an examination of Carnap’s overarching concept of rationality that is relevant to this point, cf. Carnap
(1958/2015) and Carus (2017).
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1.2 Tarski’s analysis of the concept of truth
In the last section, I briefly described Carnap’s project of explication, highlighting its con-
ceptual engineering aspect and the importance of pragmatic considerations in order to un-
derstand it. In particular, we saw how Carnap defined the task of explication as being the
engineering of a new concept which could better fulfill the purposes of an old, vague one.
Given that some17 have considered Tarski’s strictures concerning his analysis of the concept
of truth forerunners to Carnap’s explication concept, it’ll be interesting to see how much in
common they have. Rather surprisingly, the answer is “ very little”. Indeed, we will see that,
far from being interested in “explicating” or analyzing the ordinary concept of truth, Tarski
was instead interested in expressing this intuitive notion in a formal system. This di�erence
is specially prominent when one takes into account the background philosophical projects
of both philosophers.

In other words, just like there was a need to take into account Carnap’s overall philo-
sophical standpoint to better appreciate what he was getting at with his explication concept,
in this section, I’ll claim that something analogous holds for Tarski’s analysis of the concept
of truth, namely that it’s important to take a step back and see the context in which such an
analysis was embedded. Thus, before analyzing the paper itself, I’ll first make a few remarks
about Tarski’s philosophical views at the time, which are characterized by an adherence to
what Tarski himself called “intuitionistic formalism”. This will allow us to see how di�erent
such a project is from Carnap’s use of explication and also from Tarski’s own later work.

1.2.1 Intuitionistic Formalism

In his paper “Fundamental Concepts of the Methodology of the Deductive Sciences”, Tarski
makes the following intriguing remarks:

In conclusion it should be noted that no particular philosophical standpoint re-
garding the foundations of mathematics is presupposed in the present work.
Only incidentally, therefore[,] I may mention that my personal attitude towards
this question agrees in principle with that which has found emphatic expression
in the writings of S. Leśniewski and which I would call intuitionistic formalism.
(Tarski 1930/1983, p. 62, original emphasis)

This passage is intriguing for a number of reasons. First, there’s the curious fact, noted
by Patterson, that “Tarski insists that certain ‘philosophical’ views are not strictly relevant
to our understanding of certain formal work, yet finds philosophical views worth men-
tioning anyway.” (Patterson 2012, p. 16) Second, he introduces this rather odd term, “in-

17E.g. Dutilh Novaes and Reck (2015).
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tuitionistic formalism”, to describe such views—considering that the opposition between
Brouwer’s intuitionism and Hilbert’s formalism was reaching a boiling point in the early
1930’s, when Tarski wrote the above remarks, this would clearly strike his audience as al-
most an oxymoron. Finally, late Tarski also makes clear his disagreement with young Tarski
in the English edition of the article, by the introduction of a footnote declaring that the
view expressed in this paragraph “does not adequately reflect his present attitude.” (Tarski
1930/1983, p. 62, dagger footnote)

A first clue to a resolution of these questions lies in a footnote Tarski appended to the
above passage, which directs the reader to Leśniewski’s “Fundamentals of a New System of
the Foundations of Mathematics”. Specifically, we are directed to the following passage:

Perhaps I should add that for many months I spent a great deal of time work-
ing systematically towards the formulation of these systems of Protothetic by
means of a clear formulation of their directives using the various auxiliary terms
whose meanings [Bedeutungen] I have fixed in the terminological explanations
given above. Having no predilection for various ‘mathematical games’ that con-
sist in writing out according to one or another conventional rule various more
or less picturesque formulae which need not be meaningful or even—as some
of the ‘mathematical gamers’ might prefer—which should necessarily be mean-
ingless, I would not have taken the trouble to systematize and to often check
quite scrupulously the directives of my system, had I not imputed to its theses
a certain specific and completely determined sense [Sinn], in virtue of which
its axioms, definitions, and final directives (as encoded for SS5), have for me an
irresistible intuitive validity [intuitive Geltung]. I see no contradiction, therefore,
in saying that I advocate a rather radical ‘formalism’ in the construction of my
system even though I am an obdurate ‘intuitionist’.(Leśniewski 1992b, p. 487,
original German expressions supplied by Patterson)

So the source of the term “intuitionistic formalism” is most likely the last sentence of
the above passage. It’s also clear the extent to which Leśniewski considers himself an “in-
tuitionist”: unlike the “mathematical gamers”, he does not consider his systems as formal
calculi, but as interpreted languages (or languages with meaning, to use Sundholm’s turn
of phrase18), that is, languages whose terms have some sort of “intuitive validity”. But why
does he consider himself a formalist? The passage continues:

Having endeavored to express some of my thoughts on various particular topics
by representing them as a series of propositions meaningful [sinnvoller Sätze]

18Cf. Sundholm (2003) for the distinction between “languages with meaning” and “languages without use”.



TARSKI’S CONCEPTUAL ANALYSES 19

in various deductive theories, and to derive one proposition from others in a
way that would harmonize with the way I finally considered “intuitively” bind-
ing [welche Ich “intuitiv” als für mich bindend betrachte], I know no method more
e�ective for acquainting the reader with my “logical intuitions” [“logischen In-
tuitionen”] than the method of formalizing any deductive theory to be set forth.
By no means do theories under the influence of such a formalization cease to
consist of genuinely meaningful propositions which for me are intuitively valid.
(Leśniewski 1992b, p. 487, original German terms supplied by Patterson, scare
quotes restored)

This makes clear the extent to which Leśniewski considers himself a formalist: the best
method to communicate his thoughts (“intuitions”) is simply to set up a formal system, whose
terms are unambiguous. It’s thus possible to give the following initial characterization of
intuitionistic formalism:

Minimal intuitionistic formalism: The (minimal) intuitionistic formalist is committed
to two theses: (a) in order to do any philosophically interesting work, languages should be
considered as interpreted, that is, their terms must have “intuitive validity” (the intuitionistic
thesis); (b) the best way to communicate one’s thoughts is to set up formal languages (the
formalist thesis).

Again, this characterization is minimal in the sense that, although it su�ces to distin-
guish the intuitionistic formalist from the Brouwerian intuitionist (who denies (b)) and
the cartoonish Hilbertian formalist (who denies (a)),19 it nevertheless fails to distinguish
Lesńiewski’s position from that of a Fregean logicist, who would count as an intuitionistic
formalist by the above characterization.20

In any case, the first thing to notice is that, for Leśniewski (as for Frege), the purpose of a
formal system is precisely to express his thoughts in a more exact manner than natural lan-
guage allows. This may sound strange to contemporary ears, accustomed as they are to the
idea that the main purpose of setting up a formal system is to study its properties, or to study
the interaction between certain syntactic properties of its sentences and structural proper-
ties of its models, etc. Indeed, few would today think that the main purpose of formalizing
the theory of algebraic closed fields of characteristic 0 in the first-order predicate calculus
is to “express” one’s thoughts about such structures; rather, what is interesting about such

19I say cartoonish because it seems highly unlikely that the historical Hilbert held anything like the view
Lesńiewski attributes to his “mathematical gamer”.

20The similarity with Frege has also been noted, e.g., by Sundholm (2003). For an in-depth analysis of
Frege that is congenial to this point, cf. Blanchette (2012). Cf. also Betti (2008) on the classical ideal of
science, which could be thought of as a point of convergence between Leśniewski and Frege.
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formalization is what it reveals about these fields themselves (e.g. that any two such fields of
a given cardinality are isomorphic, etc.).

An example might help the reader to better grasp Leśniewski’s position. As remarked by
Kotarbińska (1990, p. 54), Leśniewski attempted in his ontology to establish a new foun-
dation for mathematics by replacing a distributive conception of sets, in which a set is an
abstract object determined by its elements, with a collective conception of sets, according
to which a set is a concrete object having its elements as parts. With this in mind, he set out
to establish some general properties of propositions of the type “A is b”, with “A” as a singu-
lar term (he called those “singular propositions”). Since a symbolic language is “technically
much simpler than the colloquial language and at the same time less prone than that lan-
guage to lead to misunderstandings in the formulation of ideas” (Leśniewski 1992c, p. 365),
Leśniewski formulated his new system in one such language, adopting “ε” as a symbol for
“is”. Notice that this system is not an empty formalism, but has a very clear interpretation
in Leśniewski’s mind, which he wishes to convey to his readers. Unfortunately, this symbol
was already appropriated by the “tradition of ‘mathematical logic’ and ‘the theory of sets”’, so
Leśniewski had to try “very varied methods of appealing to [his readers’—D. N.] intuitions”
(Leśniewski 1992c, p. 375) in order to elicit in them the correct thoughts. Interestingly,
although he does mention among these methods showing his interlocutor the (sole) axiom
which implicitly defined “ε”, most of the explanations take the form of (colloquial equiv-
alents of ) theorems derived from this axiom. Not surprisingly, Leśniewski considers as a
necessary condition for his axiomatization that it implies certain key theses which he asso-
ciates with “ε” (namely, thesis (1)-(6) in Leśniewski (1992c, p. 368)). As Patterson puts
it:

Here, quite clearly, the role of certain theses in the system is to secure agreement
as to the meaning of the primitive terms of the system, and the desired axioma-
tization is held to the standard that they be implied. By contrast, the axiom itself
is simply required to imply (1)–(6) by the directives; it need not be intuitive in
its own right. (Patterson 2012, p. 29)

Another remarkable observation is made by Leśniewski in connection with this example
in the course of preventing further misunderstandings about the meaning of “ε” that he
has in mind. After discussing several passages from Kotarbiński describing other usages
of “is”, Leśniewski observes the “well-known fact that the expression ‘is’ and propositions of
the type ‘A is b’ are used in colloquial language in a highly inconsistent way” (Leśniewski
1992c, p. 378, my emphasis). Notice that he doesn’t say that the concept expressed by
“is” is inconsistent, but rather that some usage of the expression is inconsistent. That’s to be
expected: as the meaning of a term is, for Leśniewski, an associated thought or intuition
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(in any case, a subjective experience), there isn’t much sense in calling such an experience
“inconsistent”.

In order to account then for the inconsistencies to be found in association with the or-
dinary language correlate of “ε”, Leśniewski explicitly follows Kotarbiński, in particular his
doctrine of “indirect” or “secondary” usage of an expression. The idea seems to be this:
Kotarbiński has agreed to use sentences of the grammatical form “A is b” as the colloquial
equivalent of “Aεb”, which implies, in particular, that A is always a singular term. So, in
his system, a sentence such as “man is mammal” expresses the fact that a particular man is a
mammal. However, certain conventions (Kotarbiński’s expression) of the English language
associate the use of the singular term in that sentence with a generic reading, not a singular
one, as in “every man is a mammal”. Therefore, although (as written by Kotarbiński) the
sentence directly expresses Kotarbiński’s thought that a particular man is a mammal, it in-
directly expresses the thought that every man is a mammal; alternatively, its secondary usage
is to express the thought that every man is a mammal. Now, it may be the case that there
are several, conflicting conventions associated with a di�erent term, resulting in inconsis-
tent usages. That does not mean that the subjective experience associated with the term is
inconsistent, but it does mean, if one assumes that language is in part constituted by those
conventions, that colloquial language is inconsistent.

If, on the one hand, such linguistic conventions can be an inconvenience, by tacitly in-
voking unwanted associations in the mind of one’s interlocutors, nevertheless they can also
work to one’s advantage. In particular, if one explicitly states a set of conventions governing
a symbol’s usage, one can override the tacit conventions operative in colloquial language.
So, for instance, in order to avoid ambiguity, Kotarbiński establishes the convention that all
propositions of the form “A is b” should be taken as singular propositions, and that proposi-
tions such as (the generic reading of ) “man is mammal” will always be expressed as “every
man is a mammal”, thus avoiding the ambiguity; this strategy is quoted with approval by
Leśniewski (1992c, p. 379), who proceeds to extend it to other cases. Moreover, and this is
particularly relevant to the next section, in setting up an artificial language, one can employ
certain explicit conventions in order to constrain one’s interlocutor’s reading of certain ex-
pressions; that is, one can set up explicit conventions which, in a sense, close the gap between
direct and indirect usage, so that the conventions make each sentence of the system say ex-
actly what the system’s deviser wants it to say. Since conventions determine the indirect
meaning of an expression in virtue of its shape or form, this means that in such systems the
syntactic form of an expression will exactly match its intended meaning.21 That Leśniewski
had something like this in mind is clear from the following quotation:

I have more than once pointed out that a system of linguistic symbols, just as
21I emphasize this here because this will be precisely the point of Convention (T).
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any other system of symbols, e.g., the system of railway signals, requires the ex-
istence of certain rules for constructing the symbols and keys for reading them.
(...) Taking into account the need so specified for a precise language, I estab-
lished, in my previous papers, various linguistic conventions indicating on what
rules the system of linguistic symbols is based and how to understand statements
about some constructions which I used in analysis. (Leśniewski 1992d, p. 56)

There follows a reference to another passage from a previous essay, in which, after re-
marking that it is “inevitable to appeal to linguistic conventions when some doubts arise as
to the way in which an object can be symbolized or as to the way in which an expression
can be understood” (Leśniewski 1992a, p. 36), Leśniewski lists four conventions, of which
he observes:

Conventions II, III, and IV indirectly determine the role of the word ‘not’ in
the system of linguistic symbols. If the role of the word ‘not’ were not deter-
mined, it would not be possible to decipher the system of linguistic symbols
which employs this word. (Leśniewski 1992a, p. 37)

So the point of those conventions is precisely to avoid misunderstandings by laying out
precise rules governing the use of certain signs. These quotations appear in Leśniewski’s
early work, so some care must be taken with them, given his later rejection of such juve-
nilia.22 Indeed, as far as I could determine, there’s no explicit mention of such conventions
in Leśniewski’s later works; however, that doesn’t mean that they are not doing any work
there. As Patterson remarks, it seems that their role has been taken by the “directives” of
Leśniewski’s systems:

On Leśniewski’s mature view conventions that determine the intuitive thoughts
expressed by sentences are conceived of as the “directives” governing a system,
rules for adding new theses to it. The determination of sub-sentential meanings
expressed is then an indirect matter of the role of a sign as established by the
theorems in which it appears, and it is this determination that comes to be the
central issue, as with the example of “ε” above. (Patterson 2012, p. 29)

In other words, the conventions from Leśniewski’s early work eventually become the
axioms and rules of inference (“directives”) of his formal systems. This ties in with our
comments above regarding the role played by theorems in constraining a term’s associated
intuition, which results in the fact that, for Leśniewski, the meaning of a term is given by
the whole theory in which it appears, i.e. his is a holistic, non-compositional theory of

22Cf. Betti (2004) for a more precise account of the relationship between early and late Leśniewski.
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meaning. The overall strategy is clear: by the use of conventions, such as in the form of
axioms and “directives”, Leśniewski intends to close the gap between his own intuitions
and his readers’; since these directives constrain the intuitions which we associate with a
sentence’s shape, as Patterson remarks, the idea is to make the sentences’ syntactic forms “go
proxy for their meanings” (Patterson 2012, p. 32).

There are a couple of lessons to be drawn from the above discussion. First, Leśniewski
adopted what, in connection with Kotarbiński, Gawroński (1990) calls “strong psycholo-
gism in semantics”, namely the thesis that the main function of any language is to express
the subjective experience of the speaker. Given the di�culty of communicating such sub-
jective experiences to another, it’s not surprising that one of Leśniewski’s main worries was
to avoid misunderstandings; hence his interest in setting up formal systems devised to avoid
all ambiguity. This also explains his obsession with reducing the number of primitives of
his systems: the less primitives, the less expressions are there to be misunderstood, the more
chances he has of communicating e�ectively. Second, we have the importance of “con-
ventions” in establishing the meaning of a term, where a convention is a (not necessarily
explicit) rule which determines the way a term or a symbol is to be understood. Finally,
although Leśniewski paid lip-service to the importance of compositionality in setting up a
deductive system, his preferred account of how terms or symbols are endowed with mean-
ing is actually holistic and inferential: a term or symbol’s interpretation is given not by its
(implicit or explicit) definition alone, but by certain theorems in which it figures. In other
words, a term or symbol’s meaning is constrained by the theorems in which it appears, in
such a way that it is actually such theorems that bear the weight of determining the term or
symbol’s intuitive interpretation. This allows us to give more substance to the Leśniewskian
variety of intuitionistic formalism:

Leśniewskian intuitionistic formalism: TheLeśniewskian intuitionistic formalist is com-
mitted to two theses: (i) strong psychologism about semantics, which entails that non-
interpreted “languages” (if they can be considered as such) do not serve any philosophically
interesting purpose and (ii) that the best way to communicate one’s thoughts is to set up
conventions governing formal languages that work in such a way that the theorems of such
languages constrain the meaning of their terms.

This is much more substantial than the minimal intuitionistic formalism delineated ear-
lier. In particular, (i) alone is su�cient to distinguish Leśniewski from Frege: although
the latter’s terminology is somewhat misleading, it’s clear that, unlike Leśniewski’s intu-
itions, Fregean thoughts are objective entities, and so that Frege rejects strong semantic
psychologism.23 One important feature of Leśniewskian intuitionistic formalism that will

23Indeed, Haddock (2012, chap. 1) lambasts a number of Frege scholars precisely for failing to recognize
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be important in the sequel is that the Leśniewskian has very di�erent priorities from the
Carnapian pragmatist, which is reflected in the marked di�erence on how they conceive
the role of formal tools: whereas Carnap wants to use formal tools in order to attain greater
precision in his conceptual engineering task, Leśniewski wants to use formal tools in order
to better express his own concepts and propositions, which he deems as precise enough. In
the one case, one of the most important philosophical tasks is to replace vague concepts by
precise counterparts (explication), in the other case, one of the most important philosophical
tasks is to non-ambiguously express concepts which are already precise.

1.2.2 Tarski as an Intuitionistic Formalist

In the last section, I distinguished minimal intuitionistic formalism from Leśniewskian intu-
itionistic formalism. The latter was associated with three important doctrines: (i) strong
psychologism about semantics, (ii) the importance of conventions, and (iii) the holistic pic-
ture of meaning thus entailed. Now, given the quotation from “Fundamental Concepts of
the Methodology of Sciences”, it’s clear that at the time Tarski endorsed at least the mini-
mal version of intuitionistic formalism. Unfortunately, since the passage cited by Tarski can
only be adduced in support of this minimal version, it’s not entirely clear whether he also
endorsed Leśniewski’s version. In this section, I want to consider some circumstantial evi-
dence from Tarski’s early work that indicated that he also accepted (i)-(iii) above, and hence
Leśniewskian intuitionistic formalism. This is relevant for our assessment of whether Tarski
is engaged in explication in his early work: if Tarski was indeed a Leśniewskian intuition-
istic formalist, then it’s likely that he would also consider as one of his main philosophical
tasks the expression of certain concepts in a formal language, and that (proto-)explication
would thus receive a minor role in his work, if any.

There are four papers that can be taken to be in line with the basic intuitionistic formal-
ism project: “Fundamental Concepts of theMethodology of the Deductive Sciences” (Tarski
1930/1983), “On Definable Sets of Real Numbers” (Tarski 1931/1983), “On the Concept
of Truth in Formalized Languages” (Tarski 1933/1983) and “Some Methodological Inves-
tigations on the Definability of Concepts”. Given the limited scope of this chapter, I won’t
be able to analyze these four papers (they receive a detailed treatment in Patterson’s book),
instead concentrating just on the points that may help to illustrate Tarski’s commitment to
the above doctrines.

Let’s start with semantic psychologism. Some clues as to Tarski’s position in this re-
gard can be gathered from the following passage, though Woodger’s translation, following
Blaunstein, unfortunately obscures this by dropping the key adjective:

or in some sense hide this point.
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It is perhaps unnecessary to add that we are not interested here in languages
and sciences which are ‘formal’ in a certain specific sense of this term, namely
such sciences that one attaches no intuitive meaning to the signs and expres-
sions occurring in them; in regard to such sciences the issue raised here ceases
to apply and it becomes no longer intelligible. To the signs occurring in the
languages considered here we shall always ascribe quite concrete and, for us,
intelligible meaning. (Tarski 1933/1983, pp. 166-167, translation by Gruber
slightly amended)

The reading here proposed is straightforward: it parallels Leśniewski’s point made in the
passage quoted in the last section, namely that such formal languages are not to be considered
as devoid of meaning, but, on the contrary, are supposed to facilitate the expression of an
intuitive content, taken in the sense of the previous passage, namely as associated subjective
experiences. In this sense, it’s unfortunate that the adjective “intuitive” was dropped in
the translation, for it occasioned the confusion that Tarski was here talking about model-
theoretic interpreted languages—i.e. formal languages coupled with a structure and an
interpretation function—, when that’s clearly not the point.24

Similar appeals to intuitive content or meaning can be found in numerous instances
throughout Tarski’s writings of the period, e.g., Tarski (1933/1983, pp 153, 157, 160, 161,
166, among many others just in the paper on truth). However, this can be obscured be-
cause, as noted by Patterson (2012, p. 47), like in the previous passage, Tarski doctored such
appeals to intuition already in the German translation of his paper, changing it to an appeal
to “linguistic usage” or simply dropping it. The reader should therefore check the relevant
sections in Gruber (2016) in order to find such appeals.25 Especially relevant here is also the
section on “Intuition” in the introduction to Gruber (2016) for comment on these changes:
according to Gruber, it seems that Tarski was guided here by caution over the logical pos-
itivists distrust of that concept (the “linguistic usage” locution was apparently a suggestion
from Ajdukiewicz). So, although the evidence is tentative, it seems that Tarski intentionally
doctored such passages in order not to cause trouble with the positivists, which indicates
that he did consider the expression to be both philosophically significant and moreover
contentious.

A more important piece of evidence that Tarski was a Leśniewskian comes from the
following passage:

24For an example of this kind of mistake, cf. the remarks in Hodges (1986, p. 147). Even without the
key adjective in mind, however, Raatikainen (2003, p. 46n7) had already warned against this reading. An-
other reading of the passage is furnished by Fernández-Moreno (1994), who proposes that we should explain
“meaning” in terms of truth-conditions. Again, this does not seem to cohere well with the “intuitive” qualifier.

25Incidentally, considering the complexity of the issues, translational or otherwise, involved in that paper,
it seems to me that Gruber’s commentary is invaluable for a historical reconstruction of Tarski’s views.
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We are interested in a term of which we have a more or less precise account in
relation to its intuitive content, but whose significance hasn’t been (at least in the
mathematical domain) until now rigorously established. We will then attempt
to construct a definition of this term which, while satisfying the postulates of
methodological rigor, will at the same time capture, justly and precisely, its
“found” meaning. (Tarski 1931, p. 212, my translation)

There are two important features of the above passage. First, there is the appeal to “intu-
itive content”. It may be possible to read the above allusion to an “intuitive content” associ-
ated with a term in a more neutral manner, perhaps by taking it to mean whatever content
the term has in colloquial language. However, the continuation of the passage makes clear
that Tarski takes “intuition” here to mean something subjective: “[In the case of geometry]
the idea is to capture spatial intuitions, acquired empirically during the course of one’s life,
and which are, by the very nature of things, vague and confused (...)” (Tarski 1931, p. 212,
my translation). Second, the definition Tarski seeks to construct is not a replacement of a
vague concept, but rather one that will attempt to “capture, justly and precisely, its ‘found’
meaning”. So the focus here is on expressing an intuitive content in a precisely constructed
definition: exactly what we would expect of a Leśniewskian, but not of a Carnapian prag-
matist. As we saw in the first section, both Carnapian explication and classical conceptual
analysis aim at clarifying or, at the limit, replacing a vague, ordinary term with a more
precisely specified concept. In other words, these projects presuppose that the target ordi-
nary concept is more or less vague, and aim at improving this vagueness through conceptual
analysis. But, as we have seen, the Leśniewskian intuitionistic formalist conceives her task
in a very di�erent way: we start with a “quite clear and intelligible” “intuitive meaning”26,
and the aim is to express this “intutive meaning” unambiguously in a deductive system.

In fact, in “On the Concept of Truth in Formalized Languages”, Tarski is explicit that
he is not interested in analyzing or replacing the concept of truth27:

A thorough analysis of the meaning current in everyday life of the term ‘true’ is
not intended here. Every reader possesses in greater or lesser degree an intuitive
knowledge of the concept of truth and he can find detailed discussions of it in
works on the theory of knowledge. (Tarski 1933/1983, p. 153)

However, at this point a natural question arises: if Tarski was not interested in analyzing
the concept of truth (or definable set), then why o�er definitions of these concepts? Why

26This is how Tarski generally characterizes the targets of his conceptual analyses in his intuitionistic for-
malist phase: cf., e.g., Tarski (1931/1983, p. 112), Tarski (1933/1983, p. 152).

27Indeed, the context of the passage also suggests that such analysis had already been accomplished by Kotar-
biński, as remarked by Patterson (2012, p. 12).
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not proceed like Leśniewski himself, that is, by introducing a primitive term (say, “Tr”) ax-
iomatically and then using the theorems of the system to constrain its intended meaning?28

Notice that this procedure is not alien to Tarski: in “Fundamental Concepts of the Method-
ology of the Deductive Sciences”, he proceeded exactly in this way, introducing the term
“Cn” (for syntactic consequence) axiomatically and then constraining its meaning through
a series of theorems. So, again, why not proceed in this way in the other papers? The prob-
lem is that both the concepts of definable and truth give rise to antinomies (Richard’s and the
liar, respectively, both mentioned by Tarski in the introduction to each paper). As a result,
Tarski must first show that such concepts are “safe”, that is, free from contradictions, and
he does this by introducing formally correct definitions. After this preliminary step has been
taken care of, he can then proceed in the way of the Leśniewskian intuitionistic formalist
and show how the theorems derived on the basis of the definition make sure that it captures
or expresses the target intuitive notion. This procedure is described in the following passage:

Now, the question arises if the definition which has been constructed and whose
formal rigor is not up for objection is equally just from the material point of view;
in other words, does it indeed capture the ordinary and intuitively known sense of
the notion? This question does not contain, let it be understood, any problem of
a purely mathematical nature, but is nevertheless of capital importance for our
considerations. (Tarski 1931, p. 229, my translation, original emphasis)

This brings us to point (ii) above, since, like in Leśniewski and Kotarbiński, an impor-
tant role is played by conventions in capturing an intuitive meaning in a deductive system.
We saw in the last section how Kotarbiński considered a convention to be a (perhaps im-
plicit) rule which indirectly determined the meaning of a symbolic expression, and that
Leśniewski put this to use by devising his axioms and rules of inference to constrain the
intuitive meaning of a given expression. The idea was to close the gap between a person’s
subjective associations with a given expression and the expression’s indirect meaning by
making a sentence’s syntactic form “go proxy” for its meaning. Tarski also inherited this
Leśniewskian strategy of making the meaning of a term be constrained by the whole theory
in which it appears, as can be seen by his use of Convention (T)29 to constrain the meaning
of the truth predicate:

A formally correct definition of the symbol ‘Tr’, formulated in the metalan-
guage, will be called an adequate definition of truth if it has the following conse-
quences:

28Incidentally, something like this has been the focus of much work recently. Cf. Horsten (2011) and
Halbach (2011) for good summaries.

29Tarski doesn’t use the Polish for “convention”, but rather an expression that could be best translated as
“agreement”. I concur with Gruber (2016, p. 49) that nothing important hinges on this, however.
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(α) all sentences which are obtained from the expression ‘x ∈ Tr if and only if p’
by substituting for the symbol ‘x’ a structural-descriptive name of any sentence
of the language in question and for the symbol ‘p’ the expression which forms
the translation of this sentence into the metalanguage;

(β) the sentence ‘for any x, if x ∈ Tr, then x ∈ S’ (in other words ‘Tr ⊆ S’).
(Tarski 1933/1983, pp. 187-188, original emphasis)

Condition (β) basically says that every truth is a sentence, i.e. sentences are the only
truth-bearers.30 Togetherwith (α), it worksmuch like Leśniewski’s directives for ‘ε’, namely
it forces the reader to associate the correct intuition with the symbol ‘Tr’.31 If this reading is
correct, then Tarski is not defining a new concept, say “formal truth”, which he then claims
captures the essential core of ordinary truth, with Convention (T) providing a kind of proto-
Carnapian similarity test.32 Rather, Convention (T) is a convention governing the use of a
symbol, making sure that this symbol is correctly interpreted.33 Moreover, this corroborates
Tarski’s acceptance of point (iii) above, namely meaning holism, since the meaning of the
symbol “Tr” is to be given not only by its defining clause, but rather by the consequences of
the defining clause, something that is emphasized in Convention (T) itself.

The above thus makes clear that Tarski did employ conventions in the positive role as-
signed to them by Leśniewski. But, again like Leśniewski, he also emphasized their negative
role in generating inconsistencies in ordinary languages:

(...) the very possibility of a consistent use of the expression ‘true sentence’ which is
in harmony with the laws of logic and the spirit of everyday language seems to
be very questionable, and consequently the same doubt attaches to the possibility
of constructing a correct definition of this expression. (Tarski 1933/1983, p. 165,
my emphasis; the whole passage was in italics in the original)

Notice the parallels with Leśniewski’s remarks about “is”: both emphasize that it is the use
of a certain expression which is inconsistent, not the concept associated with the expression.
This explains Tarski’s remarks to the e�ect that ordinary language is inconsistent (Tarski

30Tarski goes on to remark, however, that this condition is inessential, something that has puzzled some
commentators. Cf. Corcoran and Weber (2015) for discussion.

31Early interpreters, such as Field (1972/2001) and Corcoran (1999), took the point of Convention (T) to
be a kind of guarantee of extensional adequacy, conflating material adequacy with extensional adequacy. It’s
clear from our discussion, however, that Tarski is after intuitive adequacy, not extensional adequacy; Corcoran
later corrected himself in this regard, cf. Corcoran and Weber (2015, p. 10).

32As claimed, e.g., by Dutilh Novaes and Reck (2015).
33Incidentally, this strongly suggests that, for Tarski, there is only one concept of truth, against more stan-

dard interpretations which take Tarski to hold that, for each language L, there is a concept “truth-in-L”. Cf.
Smid (2014) for discussion.
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1933/1983, pp. 164-165): if a language is partially constituted by the (tacit) conventions
underlying it, then it follows that, if these conventions are in conflict, then the language will
be inconsistent. This doesn’t have the seemingly absurd implication that it is “a condition
of my speaking English that I be willing to assert things that are not true” (Soames 1999,
p. 64), for, unlike the conventions in Lewis (1983), the conventions appealed to by Tarski
need not be “willingly assented to”, i.e. I may be party to a linguistic convention (in Tarski’s
sense) without knowing that I am.

It should be clear by now that the Tarski from “The Concept of Truth in Formalized
Languages” is not a proto-Carnapian philosopher, but rather a Leśniewskian one.34 In this
connection, it’s possible to make a broader point regarding Tarski’s overall philosophy of
language in this period. In a number of writings, Robert Brandom has drawn a suggestive
distinction between two types of semantic theories, based on whether they privilege the
notion of representation or that of expression.35 Basically, whereas representational semantics
understands language as being primarily a tool for representing the world, the expressivist
paradigm understands language as being primarily a tool for expressing one’s particular
thoughts. As Patterson (2012, p. 2) remarks, within this division, Tarski work is traditionally
thought to lie squarely in the representational side.36

However, and this is again noted by Patterson, the findings of this section should make
us suspicious of this traditional picture. In fact, given that he shared with Leśniewski the
picture according to which the basic function of a formal language is to express intuitive
meanings construed as intuitive, private experiences, it seems that Tarski was actually more
aligned with the expressivist side of the above divide by the time of “The Concept of Truth
in Formalized Languages”. This is all the more surprising, because Tarski’s semantic tech-
niques could be readily used to develop a non-psychologist theory of meaning, thus neatly
aligning his formal developments with a representational picture of language, to which they
seem to be much more congenial. In other words, Tarski’s semantics, however paradoxical
this might sound, was completely dissociated from his theory of meaning.37 It was only

34That’s not to say he was in agreement with Leśniewski about everything, or even that they shared an
overall project, but merely to point out that many of their key commitments are the same. Cf. Betti (2008)
for a clear picture of their di�erences.

35Cf. the introduction to Brandom (2000), esp. section 4, for a clear—by Brandom’s standards—statement
of the distinction. Note that although Brandom portrays the contrast in rather dramatic terms in that section,
in his more sober moments he tends to think of these not as opposed, but as complementary, as can be seen
in Brandom (2008, p. 8).

36For instance, by Brandom himself, in fact. Cf. Brandom (2000, p. 7).
37In this sense, it is interesting to note that, when Tarski (1933/1983, p. 252) lists a series of semantic

concepts, the concept of meaning is conspicuous by its absence. I owe this observation to Burgess and Burgess
(2011, p. 18). Compare this absence to the explicit mention of meaning and other related concepts in Tarski
(1944, p. 354).
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when he realized that the semantics techniques he had developed could be used to supply
this theory of meaning that he left intuitionistic formalism behind.38

1.3 Tarskian Explication

Tarski’s abandonment of intuitionistic formalism had as a consequence that he also aban-
doned the three doctrines expounded in the previous section, namely (i) strong semantic
psychologism, (ii) the importance of conventions and (iii) semantic holism. This move seems
to follow his realization that the semantic apparatus he had developed in the serve of intu-
itionistic formalism could actually stand on its own. This is particularly evident in the case
of logical consequence. As Patterson (2012, p. 178) remarks, whereas in his intuitionistic
formalist phase, Tarski used the concept of (proof-theoretic) consequence to constrain the
interpretation of his defined expressions (most notably, the expression “Tr” gets its intuitive
meaning in part by its set of consequences), one of the first uses to which Tarski will put
his newly defined semantic apparatus is precisely to define the notion of consequence. Not
surprisingly, the way he approached this task is markedly di�erent from his intuitionistic
formalist approach.

Such change is apparently the result of his replacing strong semantic psychologism by
his own semantic techniques, as expounded in “The Establishment of Scientific Semantics”.
In other words, instead of buying into a theory that considered the main function of a
language to be the expression of thoughts, he now considered this function to be mainly
representational, in line with the now rehabilitated semantic concepts of denotation, satis-
faction, etc. This allows him to give a compositional account of the meaning of well formed
compound expressions by exploiting the recursive clauses of the relevant semantic concepts,
which thus leads him to abandon both the role of conventions and semantic holism by a
bottom-up approach to meaning. This will lead to a more pessimistic outlook regarding
the ordinary concepts to be explained: previously, he could attribute the problems with an
ordinary concept to the inconsistent conventions governing its usage. Now, such problems
are located in the concepts themselves. Indeed, already in the opening paragraphs of “On
the Concept of Logical Consequence” we find the following remarks:

With respect to the clarity of its content the common concept of consequence is
in no way superior to other concepts of everyday language [my emphasis—D.N.]. Its
extension is not sharply bounded and its usage fluctuates. Any attempt to bring

38For more on this development, which I won’t treat here, cf., among others, Co�a (1991, chap. 15 and 16)
and Patterson (2012, chap. 6 and 7), both of which emphasize how the crucial step for Tarski was his reading
of Carnap’s Logical Syntax of Language, especially its definition of consequence. For a detailed analysis of this
definition, comparing it with Tarski’s, cf. de Rouilhan (2009).
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into harmony all possible vague, sometimes contradictory, tendencies which are
connected with the use of this concept, is certainly doomed to failure. (Tarski
1983, p. 409)

Noticeable here is the change of attitude concerning the “ordinary” concept to be de-
fined. In “OnDefinable Sets of Real Numbers” and “On the Concept of Truth in Formalized
Languages” Tarski would say about the ordinary concept to be analyzed, respectively, that
“the arbitrariness of establishing the content of the term is reduced almost to zero” (Tarski
1931/1983, p. 112) and that its meaning in colloquial language “seems to be quite clear and
intelligible” (Tarski 1933/1983, p. 152). In the above passage, on the contrary, not only
is the concept associated with contradictory tendencies, but also the concepts of everyday
language are declared vague and unstable. This di�erence is significant, as it points to an
abandonment of the semantic psychologism characteristic of intuitionistic formalism.

Another noteworthy di�erence between this paper and the previous ones concerns the
role of conventions. First, Tarski does formulate a condition which he considers to be nec-
essary in order for a definition of logical consequence to be considered adequate, but he
names it “Condition (F)”, not “Convention (F)”. This may seem like a mere cosmetic change
(though it’s not a mere slip: in “On the Semantic Conception of Truth and the Foundations
of Semantics”, Convention (T) is now renamed as “equivalence of the form (T)”); neverthe-
less, there does seem to be a change, which is also indicated by the fact that, whereas in “On
the Concept of Truth in Formalized Languages” the conventions of a language rendered it
inconsistent, without, however, thereby impugning the concept of truth itself, here it is the
concept itself which is associated with “contradictory tendencies”.

This marks a significant change from his previous work and helps to explain why, in
“The Semantic Conception of Truth and the Foundations of Semantics”, Tarski writes
that “the problem of consistency has no exact meaning with respect to [natural] language”
(Tarski 1944, p. 349). As we saw in the previous section, in “On the Concept of Truth in
Formalized Languages”, Tarski appealed to the constitutive role of conventions in a lan-
guage in order to claim that ordinary language was inconsistent. Hence, his rejection now
of this conclusion is further evidence that he also rejected this premise (that conventions
are constitutive of a language), thus making clear his further distance from intuitionistic
formalism.39

In any case, it seems clear that this pessimistic outlook on ordinary language concepts
would become his considered view from then on. Another striking example concerns
Tarski’s remarks about the classical definition of truth associated with Aristotle: “a true sen-

39I thus agree with Ray (2003) (contra Patterson (2012, p. 248n2)) that the di�erence between “On the
Concept of Truth in Formalized Languages” and “The Semantic Conception of Truth and the Foundations
of Semantics” on this point is very significant, though we disagree on the reasons for the change.
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tence is one which says that the state of a�airs is so and so, and the state of a�airs is so and
so”. In “On the Concept of Truth in Formalized Languages”, this is deemed an intuitively
adequate definition (though not a formally correct one), and moreover “seem[s] to be quite
clear and intelligible”, echoing Tarski’s characterization of our intuition associated with this
concept (Tarski 1933/1983, p. 155). On the other hand, in “The Semantic Conception of
Truth and the Foundations of Semantics”, this same formulation is said not to be “precise
and clear” (Tarski 1944, pp. 343, 359).40

This new pessimistic outlook has obvious relevance for the way Tarski conceives his task.
Before, the idea was to express an intuitive concept in a deductive system. Now, however,
this task is considered as “doomed to failure”. Unfortunately, Tarski isn’t terribly clear about
how he conceives of his new task, something that has generated a fair amount of debate;41

it seems that his views actually evolved over the years.
In “On the Concept of Logical Consequence”, although he recognizes that any “precise

definition of this concept will show arbitrary features to a greater or lesser degree” (Tarski
1983, p. 409), he still seems reluctant to admit that his proposal departs in any significant way
from the “common concept”.42 Perhaps Tarski’s point was that he had captured the essential
core of the concept, as suggested by the following quotation from his logic textbook:

If a scientist wants to introduce a concept from everyday life into a science and to
establish general laws concerning this concept, he must always make its content
clearer, more precise and simpler, and free it from inessential attributes (...).
(Tarski 1941, p. 27�)

In other words, Tarski may have thought that the “common concept” of logical conse-
quence was a mongrel, yet that it had an essential core that was best captured by the concept
Jané and Betti attribute to formal axiomatics.43 Be that as it may be, there’s in any case an
obvious tension between Tarski’s declaration in the opening paragraph that it’s impossible

40Barnard and Ulatowski (2016) also note this di�erence between the two texts, attributing this change
to a possible influence of Naess. However, as I hope to show here, this change is actually a reflection of a
broader change in Tarski’s philosophy which can already be seen in the consequence paper, thus earlier than
his awareness of Naess’s work.

41Cf. especially Jané (2006) and Betti (2008) for those who defend that Tarski was only interested in cap-
turing a very specific concept of consequence, namely the one related to formal axiomatics, and Patterson
(2012, chap. 7) for the opposite view, according to which Tarski was interested in the “ordinary” concept of
consequence.

42Whatever that is. I’m not convinced by Etchemendy (1999, 2008) that there is something like the “prethe-
oretic” notion of logical consequence. Rather, the notion of consequence appears to be a decidely theoretical
notion, one that has evolved over the years to accomplish multiple tasks, so that it’s perhaps dubious to expect
it to have any unifying core.

43Another possibility is that he doesn’t even realize that the “common concept” and the concept that comes
from the tradition of formal axiomatics are di�erent.
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to capture the “common concept” of logical consequence and his repeated insistence that his
analysis conforms to the “common concept”. This tension is reminiscent of the one identi-
fied by Dutilh Novaes and Reck (2015) with regards to Carnap’s account of explication: the
more Tarski pushed towards precision, the less like the ordinary concept his own definition
would become.

This tension begins to be resolved in “The Semantic Conception of Truth and the Foun-
dation of Semantics”, where Tarski begins to lean towards a more pragmatic viewpoint. The
decisive section here is section 14. There, he first distances himself from the standpoint ac-
cording to which there could be an essential core to the concept of “truth”, by disparaging
the idea that there might be a “right conception” of truth as some kind of mysticism:

In fact, it seems to me that the sense in which the phrase “the right conception”
is used has never been made clear. In most cases one gets the impression that the
phrase is used in an almost mystical sense based upon the belief that every word
has only one “real” meaning (a kind of Platonic or Aristotelian idea), and that
all the competing conceptions really attempt to catch hold of this one meaning;
since, however, they contradict each other, only one attempt can be successful,
and hence only one conception the “right” one. (Tarski 1944, p. 355)

So we are at one further remove from intuitionistic formalism. In “On the Concept of
Truth in Formalized Languages”, it was a question of expressing or capturing the intuitive
conception of truth which every person possess to a greater or lesser degree. In “On the
Concept of Logical Consequence”, this intuitive conception is gone, and in its place we have
a kind of mongrel of contradictory tendencies, of which Tarski will attempt to capture the
common core. In “The Semantic Conception of Truth and the Foundations of Semantics”,
even this idea has receded into the background. Whether there is a common core or not,
that’s largely irrelevant. The above passage continues:

It seems to me obvious that the only rational approach to such problems would
be the following: We should reconcile ourselves with the fact that we are con-
fronted, not with one concept, but with several di�erent concepts which are
denoted by one word; we should try to make these concepts as clear as possible
(by means of definition, or of an axiomatic procedure, or in some other way);
to avoid further confusions, we should agree to use di�erent terms for di�erent
concepts; and then we may proceed to a quiet and systematic study of all con-
cepts involved, which will exhibit their main properties and mutual relations.
(Tarski 1944, p. 355)

Indeed, in spite of the aggressive tone of his remarks, Tarski agrees with Carnap that
the correct procedure is simply to put forward the di�erent proposals for explication and
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see where they lead. It’s actually quite likely that the influence here is direct. As Mancosu
(2010d, sec. 15.8) relates, Carnap, Neurath, Tarski, and Kokoszyńska met in 1937 to dis-
cuss Neurath’s objections to Tarski’s and Kokoszyńska’s account of truth. In this meeting,
Carnap presented a paper which basically ended with the suggestion that each party to the
dispute should be free to pursue their own systematic projects, without engaging in pro-
longed polemics one against the other. It’s highly possible that Tarski had those remarks in
mind when he wrote the above passage.

This Carnapian pragmatism is expressed also in section 17, where Tarski says that, al-
though he still holds the belief that his account is in agreement with the “common usage”
of the word “truth”, he “readily admit[s] [he] may be mistaken” (Tarski 1944, p. 360). That
he does not remark further on the consequences of this concession to his own account is
indicative that he does not consider the point very relevant.44

This pragmatist element is somewhat inchoate in this paper, however, becoming only
fully explicit in the papers from the 60’s, namely “Truth and Proof” (Tarski 1969) and “What
are Logical Notions?”(Tarski 1966/1986). In those papers, Tarski is much clearer on what
he considers to be a successful conceptual analysis:

Whenever one explains the meaning of any term drawn from everyday lan-
guage, he should bear in mind that the goal and the logical status of such an
explanation may vary from one case to another. For instance, the explanation
may be intended as an account of the actual use of the term involved, and is thus
subject to questioning whether the account is indeed correct. At some other
time an explanation may be of a normative nature, that is, it may be o�ered as a
suggestion that the term be used in some definite way, without claiming that the
suggestion conforms to the way in which the term is actually used; such an ex-
planation can be evaluated, for instance, from the point of view of its usefulness
but not of its correctness. Some further alternatives could also be listed.

The explanation we wish to give in the present case is, to an extent, of mixed
character. What will be o�ered can be treated in principle as a suggestion for
a definite way of using the term “true”, but the o�ering will be accompanied
by the belief that it is in agreement with the prevailing usage of this term in
everyday language. (Tarski 1969, p. 63)

44Against Patterson (2012, p. 231), who thinks that there is a “plain inconsistency” between sections 14 and
17. There only seems to be an inconsistency if you think that the “common usage” is the “right” one, but it
seems clear that Tarski himself is not of that opinion. Similarly for the supposed inconsistency between section
14 and 18. Although Tarski pokes fun at conceptions that deny the (T) sentences, accepting the (T) sentences
is not tantamount to accepting Tarski’s conception, and moreover to remark on the apparent paradox of
accepting the negation of an instance of the (T) schema is not to say that any such a view is inherently absurd,
as Tarski himself makes clear.
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Let me tell you in advance that in answering the question ’What are logical
notions?’ what I shall do is make a suggestion or proposal about a possible use
of the term ‘logical notion’. This suggestion seems to me to be in agreement, if
not with all prevailing usage of the term ‘logical notion’, at least with one usage
which actually is encountered in practice. I think the term is used in several
di�erent senses and that my suggestion gives an account of one of them. (Tarski
1966/1986, p. 145)

Even though Tarski still retains the belief that his analyses conform to some usage of
the term he is analyzing (the “prevailing” one in the case of truth, an unspecified one in
the case of logical notions), it’s clear that the pragmatic element prevails. In both cases, the
agreement with a pre-existing usage is mentioned as an aside, almost like a “bonus feature”
of his account, instead of occupying center stage. Thus, in both cases he makes clear that
what he is o�ering is a suggestion or proposal (which should thus be evaluated in terms of
its usefulness), and that there is an accompanying “belief” that this proposal happens to agree
with a pre-existing usage, but he doesn’t pursue the topic further. Capturing the “intuitive
meaning” of a concept has become, as Stein would put it, a secondary matter.

1.4 Conclusion

In this chapter, we have traced the evolution of Tarski’s philosophy as a background to his
famous articles on truth and consequence. In particular, we have seen howTarski progressed
from a position closely tied to views he inherited from Leśniewski (or what he called “in-
tuitionistic formalism”), according to which one of his main tasks is to capture an intuitive
meaning into a deductive system, to a much more Carnapian view, according to which his
task was to propose or suggest how to use a given term from then on. In one case, success
should be judged by how close his definition comes to capturing the target intuitive con-
tent, something that can be measured in part by the consequences of the proposed definition.
In the other case, success should be measured by the usefulness of the proposal: what kind
of question it elicits, what new areas it opens to exploration, what theorems it allows one to
formulate and prove. The latter is also a more tolerant attitude: proposals should be put for-
ward and explored, to see where they lead.45 In this respect, it’s not without importance to
highlight, as does Betti, that Leśniewski was the least tolerant of the Lvov-Warsaw school:

Leśniewski’s uncompromising stance was rather the exception in the Lvov-
Warsaw School. For, generally speaking, the Lvov-Warsaw School at its zenith

45This Tarskian pragmatism is especially emphasized by Sinaceur (2009), whose conclusions are much con-
genial to mine.
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was marked by a liberal attitude towards the use of all admissible mathemati-
cal methods, non-constructive ones included, and it was not committed to any
particular philosophical position (Betti 2008, p. 50)

Tarski’s influence on Carnap is well-documented; Carnap’s influence on Tarski, less
so, though we are definitely beginning to understand this relation better.46 It’s a curious
relationship: just like Tarski’s semantics opened Carnap’s eyes to techniques which were
already latent, so to speak, in his work, Carnap’s influence on Tarski also seemed to be of this
liberatory sort, allowing him to shed o� the Leśniewskian baggage and adopt a philosophical
attitude more in tune with his mathematical practice.

46In particular, the works of Co�a (1991), de Rouilhan (2009), Patterson (2012) have done much to better
understand how Carnap’s Logical Syntax of Language, for instance, was pivotal for Tarski’s development.
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Chapter 2

Tarski’s Nominalism

In the first chapter, I argued that Tarski moved from a broadly Leśniewskian position to
a position much more congenial to Carnapian pragmatism. In doing this, I showed how
this perspective helped us to assess Tarski’s puzzling remarks concerning his own proposed
definitions, as well as furnishing us with his own criterion for a successful definition. I also
discussed how this should be read not necessarily as a question of (reciprocal) influence, but
perhaps of confluence between their respective pragmatist temperaments.

In spite of this confluence, however, there is a stark contrast between the two philoso-
phers in at least one respect. Tarski, unlike Carnap, consistently defended a particular meta-
physical outlook, namely physicalism, which sometimes led him in the direction of finitism.1

This is surprising, since Tarski actively pursued research involving large cardinals, which
is plainly at odds with this finitistic tendency. Moreover, he routinely employed in his in-
vestigations, when it suited him, higher-order logic, and even infinitary logic, which again
went against his finitistic strictures, particularly as laid out in his conversations with Car-
nap. Especially relevant for us is his condemnation of higher-order logic as embodying
some kind of platonism: this is puzzling, for his proposed definition of logical notions is
more naturally interpreted against a type-theoretical background. So, in this chapter, I will
examine his nominalistic tendencies more closely, focusing on how they might harmonize
with his reliance on type-theory. If in the first chapter Carnap was the main contrasting
figure, here I want to draw attention to certain similarities between Quine and Tarski, es-
pecially considering the way the first philosopher introduced his own notion of explication
as a way of reducing the ontological commitments of the targeted theories.

Accordingly, the first part of the chapter discusses Quine’s well-known explication doc-
trine, emphasizing its di�erences fromCarnap’s own project. This is done by first sketching
a quick review of their extended polemic, using this as a fodder for discussing Quine’s own

1Even ultrafinitism, as Givant told Rodríguez-Consuegra, and as appears in Tarski’s conversations with
Carnap. Cf. Rodríguez-Consuegra (2005, p. 255) and Frost-Arnold (2013, p. 153).
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version of explication in detail in the next section. Finally, in the second part of the chapter,
I analyze Tarski’s nominalism, in particular how he developed a strategy strikingly similar
to Quine already in the early 1940’s. The technical appendix discusses a result connected
with the nominalist strategy pursued by Tarski.

2.1 Quine and Carnap on explication

2.1.1 Quine’s Polemic with Carnap

Quine’s extended polemic with Carnap has been the subject of numerous studies.2 It’s not
our purposes here to review this extensive literature; rather, I just want to make salient
some points that will help to clarify Quine’s own notion of explication and how it di�ers
from Carnap. Particularly important here, given its overall relevance to Tarski’s nominalist
strategy, will be their di�ering views on the importance of ontological reduction.

Recall from the last chapter that Carnap (1950/1956) distinguished between two types
of questions, questions internal to a given linguistic framework and questions external to a
given linguistic framework. Very briefly, questions internal to a given framework should be
answered according to the framework’s rules, whereas questions external to a given frame-
work, especially questions about which framework to adopt for a given purpose, are a matter
of pragmatic evaluation. There, I focused on how this distinction impacted his conception
of explication; specifically, I argued, following Stein (1992), that the measure of a successful
explication was an external question, to be solved on pragmatic grounds. Here, however,
I want to focus more narrowly on the impact of this distinction for ontological questions,
which were the context of its original introduction in “Empiricism, Semantics, and Ontol-
ogy”. In particular, I want to focus on two theses advanced by Carnap:

Linguistic thesis: General ontological questions should be replaced by questions regard-
ing the utility of linguistic frameworks;

Tolerance: Di�erent linguistic frameworks may be adequate for di�erent purposes.

Both theses are familiar enough. The linguistic thesis expresses Carnap’s well-known
attempt to deflate ontological questions by (in a sense) trivializing them. Roughly put,
Carnap’s argument is the following. We are given certain linguistic frameworks which are

2The classical essays from this debate are Quine (1935/1966, 1952/2004, 1963) and Carnap (1955, 1963).
For some important studies, cf., among many others, Stein (1992), Richardson (1997), Ricketts (2004, 2009),
Creath (1990, 1991, 2003, 2007, 2017), Friedman (2006, 2012b), Hylton (2007, esp. chaps. 2 and 9), Soames
(2014), Ebbs (2014), Gustafsson (2014). My own approach here has been heavily influenced by Stein, Richard-
son, Friedman, and, on the specific issue of explication, by Gustafsson.
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somewhat like interpreted languages, plus some methodological guidelines (in the form of
rules of inference, for instance). Questions about the existence of certain types of entity can
be of two sorts: in one case, the question is not trivial (e.g. about the existence of the Higgs
boson, or about certain functions in a given Banach space), but are then supposed to be
settled by the methods allowed for by the framework in which they are raised (e.g. by the
methods, whatever they are, which guide particle physics or functional analysis). These are
internal questions. On the other hand, we have certain general existence questions which
apparently cannot be settled by employing the methodological canons of the framework in
which they are raised (e.g. about the existence of abstract entities). Such questions, Carnap
maintains, are ambiguous: they are either trivial, following in a straightforward way from
the rules of logic, in particular existential generalization (e.g. five is a number, so there is
something which is a number, i.e. there are numbers), or else they are nontrivial, that is,
they are not questions raised inside a framework, but rather questions about the adequacy
of the framework itself (e.g. “Is a framework which implies the existence of abstract entities
an adequate one?”). Since, interpreted in the latter way, general existence questions, being
external to any framework, are not amenable to treatment by any methodological canon
(as these are tied to this or that framework), there is in general no systematic method for
settling them. It follows that they are largely pragmatic. As Carnap famously puts it:

We may still speak (and have done so) of “the acceptance of the new entities”
since this form of speech is customary; but onemust keep inmind that this phrase
does not mean for us anythingmore than acceptance of the new framework, i.e.,
of the new linguistic forms. Above all, it must not be interpreted as referring
to an assumption, belief, or assertion of “the reality of the entities”. There is no
such assertion. An alleged statement of the reality of the system of entities is a
pseudo-statement without cognitive content. To be sure, we have to face at this
point an important question; but it is a practical, not a theoretical question; it is
the question of whether or not to accept new linguistic forms. The acceptance
cannot be judged as being either true or false because it is not an assertion. It
can only be judged as being more or less expedient, fruitful, conducive to the
aim for which the language is intended. (Carnap 1950/1956, p. 214)

The last sentence takes us into the tolerance thesis. Since there may be di�erent purposes
for which di�erent languages may be more or less adequate, it follows that we should not
exclude certain linguistic forms merely on the basis of philosophical prejudice. On the
contrary, the basic task of the philosopher, according to Carnap, is precisely the invention
and exploration of di�erent linguistic frameworks, supplying suitable linguistic forms for
the scientist. It is the ideal of the philosopher as an engineer, creating useful tools for the
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progress of science. Again, it is in light of this ideal that Carnap’s notion of explication
should be seen: explication, insofar as it is a piece of conceptual engineering, is one of the
most valuable contributions that the Carnapian philosopher can give to the scientist.

Notice that this is not to say that such external questions are unimportant or not amenable
to rational treatment. On the contrary, relative to certain values, some choices may appear
as entirely rational or irrational, so we are very far from a crude relativism that could be
thought of as the upshot of tolerance.3 Indeed, as Stein (1992, p. 279) makes clear, Carnap
thought of his own theses not as assertions, but as proposals, so that his controversy with
Quine is also subject to rational evaluation, if they could be given enough time to verify
which one enjoyed the most pragmatic success.

Turning now to Quine, he famously rejects the tolerance thesis. According to Quine,
there is just one overarching goal of science: “As an empiricist I continue to think of the
conceptual scheme of science as a tool ultimately, for predicting future experience in the
light of past experience” (Quine 1952/2004, pp. 51-2). Since this is the main underlying
purpose of our scientific theories, such theories should be judged according to this single
standard, that is, how well they predict future experience from past experience. There is
thus correspondingly no tolerance for those theories which do not fare well in this test, or
fare worse than other competing theories.

As for Carnap’s linguistic thesis, Quine accepts it, but transformed by his rejection of
tolerance. Like Carnap, Quine agrees that ontological questions are in a sense relative to a
given framework—indeed, they even agree that a good indication of a theory’s ontologi-
cal commitment is the values taken by the existentially quantified variables of the theory.4

Since, however, di�erent frameworks can all be judged according to the same standard,
the best framework gives us the best ontology. Hence, ontological questions, even general
ones, are not devoid of cognitive content, as Carnap wanted. Rather, they are settled as any
other scientific matter, namely by analyzing our best scientific theory. That’s why Quine
says that “[o]ntological questions then end up on a par with questions of natural science”
(Quine 1951/2004, p. 256). Quine thus replaces Carnap’s engineering task with a, let us
say, tidying up task:

3For more on this important theme that I will not be able to develop here, cf. Carnap (1958/2015) and the
commentary by Carus (2017).

4In fact, this agreement may also indicate a tension inside both Carnap’s and Quine’s views. In the late
1950’s, Carnap devised an ingenious device for separating a theory’s factual content from its analytical content:
the factual content is given by the Ramsey sentence of the theory and its analytical content by the Carnap
sentence, which is a conditional which takes the Ramsey sentence of the theory as its antecedent and the
theory itself as its consequent. This introduces tensions because, as Quine (1984/2008, pp. 124-5) himself
recognizes, this does seem to give Carnap a working definition of analyticity. On the other hand, this may
also push Carnap in the direction of realism, thus closer to Quine’s position. For discussion of this last point,
cf. Psillos (1999, chap. 3), Friedman (2012a), and Demopoulos (2013).
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Science, though it seeks traits of reality independent of language, can neither
get on without language nor aspire linguistic neutrality. To some degree, nev-
ertheless, the scientist can enhance objectivity and diminish the interference
of language, by his very choice of language. And we, concerned to distill the
essence of scientific discourse, can profitably purify the language of science be-
yond what might reasonably be urged upon the practicing scientist. (Quine
1954/2001, p. 199)

To reiterate, as this quotation makes clear, Quine agrees with Carnap that existence
questions are framework-relative. However, he thinks that, insofar as we are constrained to
choose one best framework, this by itself endows ontological questions with cognitive con-
tent. The philosopher’s task is then to “distill the essence of scientific discourse” by tidying
up, so to speak, our current best scientific theory in order to make explicit its ontological
commitments. In a sense, then, Quine replaces the two Carnapian theses outlined above
with:

Quinean Linguistic Thesis: The ontological commitments of a theory are to be “read
o�” the range of its existentially quantified variables.

Intolerance: There is a single set of standards against which to judge our theories, whence
we can (ideally) select a single best one.

Notice that the Quinean linguistic thesis is in a sense very similar to Carnap’s own lin-
guistic thesis. Both agree that the entities to which a theory is committed should be read
o� the range of its existentially quantified variables. The di�erence is that Quine takes such
commitments seriously (in part due to his adherence to intolerance), whereas Carnap de-
flates them with his own brand of tolerance. Quine’s own version of explication should
therefore be understood against this background. It is to this version that I turn to in the
next section.

2.1.2 Quinean Explication

As mentioned in the last section, Quine believes that it is the philosopher’s job to distill the
essence of a scientific theory. This is rather vague, but Quine actually has some precise
indications about how to proceed. The first thing the philosopher should do in order to
reveal the structural underpinnings of a scientific theory is to regiment it into a canonical
language, typically the first-order predicate calculus. Quine’s idea is simple: he, like Carnap,
is aware of the many ambiguities of natural languages. It is therefore desirable to have a
special language which is as unambiguous as possible, especially if such a language wears
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its structure in its sleeve, so to speak. In any case, Quine has quite some grandiose things
to say about this seemingly pedestrian activity of paraphrasing certain theories into a more
perspicuous language:

The same motives that impel scientists to seek ever simpler and clearer theories
adequate to the subject matter of their special sciences are motives for simpli-
fication and clarification of the broader framework shared by all the sciences.
Here the objective is called philosophical, because of the breadth of the frame-
work concerned; but the motivation is the same. The quest of a simplest, clearest
overall pattern of canonical notation is not to be distinguished from a quest of
ultimate categories, a limning of the most general traits of reality. Nor let it
be retorted that such constructions are conventional a�airs not dictated by real-
ity; for may not the same be said of a physical theory? True, such is the nature
of reality that one physical theory will get us around better than another; but
similarly for canonical notations. (Quine 2013, p. 147)

Quine’s thought seems to be this: sometimes, during our scientific investigations, we
arrive at certain formulations that, while they may get us going for the moment, are less
than ideally clear. One of the philosopher’s job is then to paraphrase such formulations
into something more acceptable. In particular, some paraphrases may replace a formula-
tion containing an obscure notion by one free of such obscurity. As Quine himself says,
“the simplification and clarification of logical theory to which a canonical logical notation
contributes is not only algorithmic; it is also conceptual” (Quine 2013, p. 146). That is,
paraphrase does not help only in achieving clarity merely for the sake of communication,
such as in the elimination of ambiguity; in showing how we can make do with a simpler
formulation than the original one, paraphrasing may also make our theories simpler, be it
by reducing our stock of primitive predicates (say, by showing how every sentence coin-
taining a certain predicate may be paraphrased into one that does not contain it) or even
in reducing our ontology (say, by showing how we can avoid certain ontological commit-
ments by paraphrasing them away). That’s why Quine takes this activity to be a “limning
of the most general traits of reality”.

This takes us into his own account of explication, which, not surprisingly given the
preceding, is most fully elaborated in the chapter about “Ontic Decision” ofWord and Object.
There, after o�ering the ordered pair as a paradigm of explication, Quine defines it by saying
that:

We do not claim synonymy. We do not claim to make clear and explicit what
the users of the unclear expression had unconsciously in mind all along. We
do not expose hidden meanings, as the words ‘analysis’ and ‘explication’ would
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suggest; we supply lacks. We fix on the particular functions of the unclear ex-
pression that make it worth troubling about, and then devise a substitute, clear
and couched in terms to our liking, that fills those functions. Beyond those con-
ditions of partial agreement, dictated by our interests and purposes, any traits of
the explicans come under the head of “don’t-cares” (Quine 2013, p. 238)

Superficially, this may seem like the Carnapian concept, and indeed Quine references
Carnap’s Meaning and Necessity at this juncture. However, as should be clear from the pre-
vious section, I will argue that Quinean explication is importantly di�erent from Carnap’s.
Of course, as mentioned in the previous chapter, there is a certain minimal version of the
concept of explication which is su�ciently neutral to cover the Quinean and the Carnapian
variety. Let’s recall its definition:

Minimal explication: Given a concept C as an explicandum, a successful minimal explication
forC is another conceptC ′which fulfills the similarity, exactness, fruitfulness, and simplicity
criteria.

As we saw in the previous section, Carnap takes this to be essentially an engineering
task. Not surprisingly, he thinks this task typically involves the creation of new linguistic
frameworks that in some sense contain a formalized version of the explicandum—for in-
stance, his own work in the development of an inductive logic. As we also discussed there,
Quine has no place for this engineering activity. For him, “explication” is basically another
form of paraphrase, as becomes clear from his analysis of the ordered pair as a paradigm.

In this analysis, Quine points out that the ordered pair is a very useful mathematical
notion, which allows us to reduce, e.g., properties, relations, and functions to sets of ordered
pairs. Since ordered pairs function in these reductions as elements of sets, they are to be
treated on a par with other objects. But what type of object is an ordered pair?

One thought would be to take the ordered pair as a sui generis object, subject only to
the following constrain (below, 〈x, y〉 is the traditional notation for the ordered pair of x, y):

〈x, y〉 = 〈w, z〉 i� x = w and y = z.

Unfortunately, however, as clear as this postulate is (in particular, it furnishes us with
a clear cut identity criterion for ordered pairs), it is bound to generate some perplexities;
Quine cites here Peirce’s convoluted definition as an example of such confusion, but he
could have cited, e.g., Frege and Russell as well for some complicated attempts at a defi-
nition.5 If we could therefore find a suitable substitute, couched in a more innocent lan-

5Both Frege and Russell took the ordered pair to be derived from relations, and not vice versa. It took some
considerable time and clarity over set-theoretical foundational issues—such as the distinction between set-
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guage, that would perhaps eliminate any lingering anxiety over these peculiar entities. For-
tunately, there is not just one, but two such substitutes: Wiener’s definition of 〈x, y〉 as
{{{x},∅}, {{y}}} and Kuratowski’s definition of the same object as {{x}, {x, y}}. This
may seem one definition too many: how should we choose between them? Which one is
the real definition, the one which captures the essence of the ordered pair?

As I hope is clear by now, Quine evidently rejects these questions. That is not to say that
one definition is as good as any other: there may be pragmatic criteria for deciding in favor
of one over the other (indeed, Kuratowski’s definition is slightly simpler, since it (a) requires
sets of a lower rank and (b) does not employ the empty set, but only sets constructed using
only x, y). But that is not the crux of the matter. The real issue is that whatever perplexities
we had about ordered pairs are dissolved by such a definition, which is couched entirely
in terms of sets. Before we discovered such definitions, we needed to make use of at least
two types of entities, namely ordered pairs and sets, the former being the source of some
misguided philosophical doctrines. The definitions shows us that we can proceed with only
one type of entity, by eliminating every mention of ordered pairs in favor of sets. This is
the main goal of explication for Quine: to reduce philosophical perplexities by reducing or
eliminating certain entities by o�ering innocent paraphrases of every context in which the
suspect entities occur:

A similar view can be taken of every case of explication: explication is elimination.
We have, to begin with, an expression or form of expression that is somehow
troublesome. It behaves partly like a term but not enough so, or it is vague in
ways that bother us, or it puts kinks in a theory or encourages one or another
confusion. But also it serves certain purposes that are not to be abandoned. Then
we find a way of accomplishing those same purposes through other channels,
using other and less troublesome forms of expression. The old perplexities are
resolved. (Quine 2013, p. 240)6

Summing up, we arrive at the following definition:

Quinean explication: Given a target concept C and a community of researchers inter-
ested in C, but still somehow perplexed by C, a concept C ′ is an explication for C i�:

(i) C ′ fulfills the same relevant purposes O1, . . . , On as C;

membership and set inclusion—for the current definition to emerge. Cf. Kanamori (2003) for an account of
this development; incidentally, Kanamori mentions, but does not analyze, the passages from Quine in which
he uses the ordered pair as a prime example of explication.

6This statement is typical of Quine. Here is another clear statement of this idea: “To define is to eliminate,
to excuse, to exonerate. Statements containing the defined term import no content, no risk of error, not
already present in statements lacking the term” (Quine 1984/2008, p. 124).
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(ii) C ′ is stated in a canonical notation, typically the first-order predicate language;

(iii) C ′ contains in its definition only notions which the researchers agree are ontologically
innocent, or at least more ontologically innocent than the notions contained in C.

As observed by Carus (2007, p. 266), requirements (ii) and (iii) above introduce new,
philosophical requirements that were not to be found in the Carnapian definition.7 It is pre-
cisely those features that explain the nominalist strategy of paraphrasing away ontologically
inflated theories into more innocent counterparts. From our point of view, these strate-
gies, such as the one famously pursued by Field (2016), are thus best viewed as attempts at
Quinean explication. In the next section, we will see how Tarski develops one such strategy,
thus making him a forerunner of this type of project.

2.2 Tarski’s Nominalism

2.2.1 Tarski’s nominalist and physicalist tendencies

Tarski’s nominalist and physicalist leanings are well documented.8 Tarski himself was quite
forthright about it, even jocosely so:

I happen to be, you know, a much more extreme anti-platonist. (...) So, you
see, I am much more extreme; I would not accept the challenge of Platonism.
You agree that continuum hypothesis has good sense; it is understandable. No,
I would say, it’s not understandable to me at all. (...) I represent this very rude
kind of anti-Platonism, one thing which I could describe as materialism, or
nominalism with some materialistic taint, and it is very di�cult for a man to live
his whole life with this philosophical attitude, especially if he is a mathematician,
especially if, for some reasons, he has a hobby which is called set-theory, and
worse—very di�cult. (Tarski 2007, pp. 259-260)9

7As also observed by Carus in the same place, this also brings Quine closer to the Carnap of theAufbau and
introduces a certain tension within Quine’s naturalism, insofar as such requirements appear to be demands
imposed by the first philosopher on the activities of the scientist. But I will not dwell on such matters here.

8Cf., in particular, Mancosu (2010b,c) and Frost-Arnold (2013).
9It’s not entirely clearwhat are Tarski’s criteria for something to be “understandable”. This issue also appears

in the conversations with Carnap and Quine, when Tarski says that he only “understands” certain types of
finitistic, nominalist language; the intended contrast is obviously that between an uninterpreted calculus, on
the one hand, and a language to which we can attach concrete meanings, but that’s not an explanation of
what constitutes understanding. Cf. Frost-Arnold (2013), p. 153 for the Tarski quotation and pp. 27-37 for
an analysis. Cf. also the recent discussion around Frost-Arnold’s book, some of which revolves around this
specific point: Creath (2015) and the reply by Frost-Arnold (2015).
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How should we interpret such nominalism? Some clues can be found in Tarski’s con-
versations with Carnap during his stay at Harvard in the early 1940’s. According to Carnap,
Tarski says that he can only understand a language which (1) talks only about a finite num-
ber of individuals,10 (2) in which the individuals are assumed to be physical things, and (3)
does not refer to universals or classes (Frost-Arnold 2013, p. 153). Accordingly, Tarski’s
nominalism is one that does not assume an infinite number of individuals (and actually leans
towards a kind of finitism), assumes a certain physicalism (Tarski refers here to Kotarbiński’s
“reism”), and does not accept universals such as sets,11 properties, etc. It is important to note
how Tarski links his nominalism with the type of language which he can understand; I will
come back to this linguistic thesis in the next section; for now, let us examine some other
ideas that he associated with nominalism.

The above picture has clear implications for how we interpret its key term “the world”
in the 1966 lecture. Given the above, it seems safe to conclude that, for Tarski, “the world”
is meant to refer to the universe of physical objects, in agreement with his professed nomi-
nalism. Thus, when, in the lecture, he speaks of the “world”, he intends it literally. This can
be obscured by the fact that several times when mentioning the term “the world” (such as in
the quotation above), Tarski mentions it together with “universe of discourse”, which may
give the impression that he is talking metaphorically, as if “the world” was merely a non-
empty set whose elements are considered as basic from the point of view of the hierarchy
of types.12 Considered this way, it’s natural to ask what happens when we consider dif-
ferent “universes of discourse”, that is, when we consider di�erent sets as possible domains
for a typed hierarchy. But that doesn’t seem to be Tarski’s point of view. In a revealing
parenthetical remark, he says:

When we speak of transformations of the ’world’ onto itself we mean only
transformations of the basic universe of discourse, of the universe of individ-
uals (which we may interpret as the universe of physical objects, although there
is nothing in Principia Mathematica which compels us to accept such an inter-
pretation). (Tarski 1966/1986, p. 152)13

10This was later relaxed to (1’) does not refer to an infinite number of individuals; cf. Frost-Arnold (2013,
p. 156). Although the informal tone of the remarks may suggest that this is merely a stylistic variant, I would
say that (1) implies that they are explicitly adding to the meta-theory a statement to the e�ect that there are
only finitely many individuals, whereas with (1’) they merely not adding an axiom of infinity.

11Incidentally, this last point already casts doubt on Rodríguez-Consuegra’s interpretation according to
which Tarski thought we could somehow physically perceive (finite) sets; cf. Rodríguez-Consuegra (2005,
esp. p. 256). I’ll come back to this when I discuss Tarski’s preference for a type-theoretical formulation of his
proposal.

12This seems to be view taken, e.g., by Hitchcock in his introduction to (Tarski 1936/2002); cf. his gloss
on the term “the world” on p. 169 of the aforementioned introduction.

13The hedge about Principia Mathematica is curious—obviously, there’s nothing there that forces this inter-
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Interestingly, this connects with another important controversy surrounding Tarski’s
work, especially his account of logical consequence; in particular, there is a debate as to
whether he employs a fixed domain or a variable domain approach.14 From the available
evidence, it’s a tentative conclusion that he employed a fixed domain approach, where the
domain in question is the class of all (physical) individuals. This will thus point, for better or
worse, to a remarkable coherence throughout Tarski’s career: although during the 50’s he
started using a multiple domains approach, as it’s technically more convenient, philosophi-
cally he seems to have always been inclined towards a fixed domain approach. As we have
seen, there’s a philosophical reason for that: Tarski has always been inclined towards both
physicalism and nominalism, and a fixed domain approach can model those ideas better than
a variable domain one.15

2.2.2 Nominalism and Type-Theory

We have seen in the preceding section how Tarski endorsed a rather strong anti-platonism
with a characteristic commitment to nominalism. Specifically, we have seen how Tarski
tied his own nominalism with certain linguistic considerations, mentioning that he could
not understand languages which quantified over sets, properties, etc.. Indeed, in his conver-
sations with Carnap, he even expresses the “wish” for the future disappearance of set theory:
“It would be a wish and a guess that the entirety of general set theory, as beautiful as it is, will
disappear in the future. With the higher types, Platonism begins.” (Frost-Arnold 2013, p. 141,
original emphasis) Further evidence can be found in his rejection of Corcoran’s work on
concatenation theory as “meaningless”, precisely because it relied on second-order logic.16

This rejection tale is told by Corcoran and Sagüilo (2011, p. 372) as part of a developmental
story according to which there is a radical discontinuity between the Tarski from Warsaw
(mid-1930’s) and the Tarski from Berkeley (mid-1940’s onward). It is thus clear that Tarski
accepted the Quinean linguistic thesis: a theory’s ontological commitment should be read
o� the range of its existentially quantified variables.

This creates a puzzle. As Bellotti (2003) argues, the most natural environment in which

pretation, though it may be of interest to remark that Russell andWhitehead also worked with a fixed domain
approach, the di�erence being that their domain didn’t consist just of physical objects.

14Cf. Mancosu (2010a) for a summary of the debate, including the most important references.
15This seems to be in agreement with Bellotti (2003), who also comments on this coherence throughout

Tarski’s career.
16Thework in question is Corcoran et al. 1974. On the other hand, Tarski also made some remarks in Tarski

(2007, p. 263) that may be relevant here. Basically, he says there that, due to the uncertainty in the foundations
of set theory, any categoricity result which relied on “artificial assumptions” (e.g. the non-existence of large
cardinals) is some “kind of deception”. I haven’t examined Corcoran et al’s result in depth (it apparently shows
that string theory is bi-interpretable with second-order Peano Arithmetic), but maybe Tarski had something
like this in mind?
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to couch Tarski’s proposal is type theory. Although he suggests towards the end of the lec-
ture that the proposal could be recast in terms of first-order set-theory, there’s considerable
evidence that he considered the type-theoretical approach more natural. Firstly, as we have
already seen, Tarski defines the term “notion” by reference to type theory:

I use the term ‘notion’ in a rather loose and general sense, to mean, roughly
speaking, objects of all possible types in some hierarchy of types like that in
Principia Mathematica. Thus notions include individuals (points in the present
context), classes of individuals, relations of individuals, classes of classes of indi-
viduals, and so on. (Tarski 1966/1986, p. 147)

Secondly, most of the examples he gives are most naturally interpreted inside a hierarchy
of types (not surprisingly, that’s exactly how most commentators have interpreted them),
especially given the way he talks about “levels”. Thirdly, in the only other place in which
he discusses the matter (Tarski and Givant 1988, §3.5), the discussion is explicitly couched
in type-theoretical terms. Does that mean we should reject Tarski’s thesis as “meaningless”
as well, like he himself rejected Corcoran et al. 1974? And, if Tarski preferred working in a
first-order framework, why didn’t he do so? The last question is particularly pressing, given
that he himself indicates at the end of the article that it’s possible to do so. So why did he
opt for type theory?

The answer is a bit speculative, but I believe that the reason is related to his nominalism,
as analyzed in the last section. We saw there that the problem with type theory was that it
quantified over classes, and that it was this quantification that brought with it a commitment
to abstract entities. If this is the problem, merely shifting to a first-order theory such as
ZFC would not solve the problem, because then, as Tarski puts it, “individuals and sets are
considered as belonging to the same universe of discourse”(Tarski 1966/1986, p. 153), so that
they are considered to be on a par. Therefore, if Tarski had adopted a first-order approach,
then the platonistic commitment to sets would have been unavoidable, since they would
be in the range of existentially quantified variables. This conclusion is probably the reason
why he didn’t opt for this approach. On the other hand, adopting type theory has, as an
attractive feature, that “only the basic universe, the universe of individuals, is fundamental”
(Tarski 1966/1986, p. 152). Hence, if it were possible to construe type theory in such a way
to make it nominalistically acceptable, this would probably explain why Tarski adopted a
type-theoretical approach.

Of course, another possibility is just that, in the 1966 lecture, Tarski was merely pre-
senting a working hypothesis, so to speak. That is, he would be operating under a tacit
“if-thenism”: if sets are real and if it makes sense to quantify over them, then the logical
operations are the invariant under all permutations of the base domain. Type theory would
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then be chosen as the basic framework in which to develop this suggestion simply because
it was more convenient to work within it, especially since Tarski had already proven, in an
article with Lindenbaum (Tarski and Lindenbaum 1935/1983), a number of the type theo-
retic results he appeals to in the article, including that every notion definable in the simple
theory of types is invariant under all permutations of the domain. Indeed, some parts of the
lecture are extracted almost verbatim from that article. From a historical point of view, this
points to a further hypothesis: perhaps this lecture is similar to Tarski (1969), which Patter-
son describes as “clearly a set of mothballed remarks from the 1930’s” which show that “to
the extent he had given the topics [of the article—D.N.] any thought at all, his views had not
changed” (Patterson 2012, p. 229). That Tarski thought of the two lectures as companion
pieces could be taken as indicative of this similarity; more than anything, such repetition
would just confirm that, after Tarski’s experiences with the positivists in the late 1930’s, he
thought it better to remain silent over philosophical matters.

We have already seen in the first chapter, however, how Tarski’s views on definitions
changed from the 1930’s to the 1960’s, so these pieces are not just “mothballed remarks” from
the 1930’s. So the historical picture sketched in the last paragraph is implausible. As for the
proposal that Tarski was only using “working hypothesis” in the 1966 lecture, it does seem
plausible, and it would corroborate the interpretation of those like Sinaceur (2009), who see
a distinction between Tarski’s philosophical inclinations as revealed by his pronouncements
and his philosophical inclinations as revealed by his practice, the latter being much more
open-ended and exploratory than the former. That is, Tarski’s mathematical practice would
be much more driven by pragmatic considerations than his philosophical inclinations would
show.17 Nevertheless, if it were possible to square the 1966 lecture’s commitment to type
theory and Tarski’s nominalism, that would surely be an interesting investigation on its
own, particularly if it followed a procedure suggested by Tarski himself.

And, in fact, Tarski does suggest at least two procedures for interpreting type theory in
a nominalistic way, which could perhaps be used in this context. In the next section, I will
explore these strategies and their viability.

2.2.3 Two Nominalist Strategies

In his conversations with Carnap, right after the above quoted remark according to which
platonism begins with the higher types, Tarski makes the following observation:

17Something that would make Corcoran suggest, half-jestingly, that maybe Sinaceur got things reversed
and that “perhaps Tarski’s most basic philosophical temperament was a Platonism that led him into fields
requiring Platonist premises while his avowed materialism was pragmatically motivated to make his work
more palatable to positivists and to preserve at least an appearance of loyalty to humanism and to his mentor
[Kotarbiński—D.N.].” (Corcoran 2011). If that were true, then the platonic considerations in the next chapter
would actually be congenial to Tarski, and the 1966 lecture would be much easier to interpret.
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The tendencies of Chwistek and others (“Nominalism”) to talk only about desig-
natable things are healthy. The only problem is finding a good implementation.
Perhaps roughly of this kind: in the first language numbers as individuals, as in
language I, but perhaps with unrestricted operators; in the second language in-
dividuals that are identical with or correspond to the sentential functions in the
first language, so properties of natural numbers expressible in the first language;
in the third language, as individuals those properties expressible in the second
language, and so forth. Then one has in each language only individual variables,
albeit dealing with entities of di�erent types. (Frost-Arnold 2013, p. 141)

The procedure described in the above quotation seems to be an instance of what Burgess
and Rosen (1997) call a substitutional strategy for defending nominalism: the idea is to try to
avoid certain ontological commitments by employing substitutional quantification (hence
the name).18 This strategy exploits the fact that truth has already been defined in a given
language L0 to construct a truth definition for a new language L1 that does not employ the
notion of satisfaction, but instead defines truth directly using as a basis for the definition the
set of true sentences from L0. I describe this procedure more formally in the appendix to
this chapter, building on Kripke (1976); here, I will just sketch the overall idea.

According to this strategy, our Tarskian nominalist starts with a nominalistically ac-
ceptable language L0 and a nominalistcally acceptable theory T0 (closed under logical con-
sequence) stated in L0.19 For simplicity, suppose the logical vocabulary of L0 consists of
the standard first-order quantifier ∃, and two propositional connectives, say ∧ and ¬, with
the other symbols defined in their usual way. We then introduce a new language, L1, with
a new quantifier, say ∃1, and new propositional connectives, say ∧1,¬1.20, along with in-
finitely many variables not in L0, such as x1

0, x
1
1, . . . . These variables will range over the

formulas of L0. The intuitive idea is that, e.g., ∃1x
1
ix

1
i (t

0) is true i� there is a formula φ from
L0 such that φ(t0) is true (t0 is a term from L0); Kripke (1976) shows that this intuitive idea
can be rigorously formulated so that truth for L1 is well defined (again, for an outline of his
procedure, cf. the appendix).

Apparently, then, Tarski’s idea is to extend this construction further, so that L2 has its

18Interestingly, they connect this strategy with Tarski’s teacher, Leśniewski. For some support for this
attribution, Tarski himself mentions Leśniewski in this connection in a 1953 lecture on nominalism, if we are
to trust Beth’s report. Cf. the quotation from Beth by Mancosu (2010c, p. 406).

19In their conversations, Carnap, Quine, and Tarski apparently opted for a very weak form of arithmetic
as a “toy” theory, preferably one that couldn’t decide even whether the domain was finite or infinite. This
means that the theory would be weaker than the theory R studied by Tarski et al. (1953/2010).

20Generally, the new quantifier is denoted by Σ or some other symbol; it’s important that the chosen symbol
be di�erent from the symbol chosen in the original language. Since we will be working with a hierarchy of
languages, I thought it simpler to add a subscript.
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own existential quantifier ∃2 ranging over formulas of L1, L3 has ∃3 ranging over formulas
from L2, etc. Presumably, he wanted to consider Lω in which one would have existential
quantifiers of all types, resulting in a substitutional version of the finite simple theory of
types. The basic idea is to trade an ontology of sets for the linguistic device of substitutional
quantification. How plausible is this strategy?

As Burgess and Rosen (1997) mention, one problem is that the above approach is com-
mitted to there being infinitely many expressions, perhaps even infinitely many expression
types. This is, of course, a general problem for any nominalist strategy: since most specifica-
tions of formal languages allow for the concatenation of any expression with any expression,
and this operation can also be iterated, it’s clear that in general formal languages will con-
tain infinitely many expressions. Indeed, in light of this obvious fact, Quine and Goodman
(1947, p. 106) adopt the rather eccentric strategy of considering as expressions “all appro-
priately shaped spatio-temporal regions even though they be indistinguishable from their
surroundings in color, sound, textture, etc.”, and, similarly, Tarski (1933/1983, p. 174n2)
suggests that “we could consider all physical bodies of a particular form and size as expres-
sions”. AsWetzel (2009, p. 101) notes, this has the bizarre consequence that, if the Goldbach
conjecture is provable, then there is a proof of it written somewhere (perhaps as an arrange-
ment of certain subatomic particles), although nobody has written it yet. Be that as it may,
it’s not entirely clear that this strategy will produce infinitely many expressions; as Quine
and Goodman (and also Tarski) note, this essentially depends on whether the universe is
itself infinite or not. Moreover, even leaving this problem to the side, and despite Quine
and Goodman’s e�orts, it’s not obvious that this construction is able to avoid commitment
to expression types—for instance, in specifying the syntax of the language, we employed lo-
cutions such as “the quantifier, the propositional connective”, etc. (the obvious idea of using
a relation of “likeness of shape” isn’t useful here, since shape is presumably an abstract type).
Perhaps this commitment can be avoided by adopting some form of resemblance nominalism,
i.e. for two individuals to be of the same type is for them to resemble each other in some
way, with resemblance being a primitive relation.21

In any case, whether or not the Tarskian nominalist can eliminate types may be consid-
ered beside the point. After all, we have traded an allegedly obscure ontology of sets for one
of types, which may be taken to be a good deal, provided that types are less obscure than
sets. Moreover, some of the problems may be mitigated by some suggestions from Tarski’s
second nominalization strategy.

A sketch of this second Tarskian strategy can be found in the writings of Evert Beth. As
told in Mancosu (2010c), in the summer of 1953 Beth organized a meeting in Amersfoort

21An important recent defense of resemblance nominalism is Rodriguez-Pereyra (2002). For discussion, cf.
Guigon and Rodriguez-Pereyra (2015).
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to discuss “Nominalism and Platonism in Contemporary Logic”, whose main speakers were
Tarski and Quine. Although apparently no extant typescript of Tarski’s lecture survives,22

it’s possible to extract the content of such lecture from Beth’s writings; in particular, Beth
(1970, p. 94-6) proposes the following program for developing a nominalistic acceptable
reconstruction of mathematics, which he claims follows “in the main lines the exposition
given by Tarski in Amersfoort” (Beth 1970, p. 100n16).

The program proceeds in three basic steps. In the first step, we identify the domain of
objects with the individuals, that is, the basic objects which we will admit in our ontol-
ogy; this domain can be called, for convenience, S1, whose elements will be identified with
material bodies. In the second step, we build a (finite) type hierarchy, but instead of taking
the full power set of the previous domain, at each level we add only the definable subsets
of the previous set. The construction seems to be very similar to Gödel’s procedure and
indeed Beth mentions his papers in this connection.23 Now, in order to obtain the whole
of mathematics, we need to appeal to a “cosmological hypothesis” which asserts that there
are infinitely (countably) many material bodies. Since this hypothesis is highly contentious,
the final step consists of stating every theorem that depends on it in a conditional form; i.e.,
we use the deduction theorem to “eliminate” the assumption of such hypothesis and replace
it by the respective conditional (a kind of “if-thenism”). Almost as an aside, Beth mentions
the objection that, since this hierarchy will produce at most a countable set (as, assuming
choice, the countable union of countable sets is itself countable), and since mathematics
requires uncountable sets, this won’t su�ce as a nominalist reconstruction of mathematics.
Beth’s answer is an appeal to the Löwenheim-Skolem theorem: the needed uncountable sets
are uncountable inside the model, but the fact that a model is countable can only be assessed
from outside the model. Thus, there could be relatively uncountable objects living inside
the type hierarchy, and these are all we need in order to get mathematics going.24

It is not entirely clear how successful such strategies are. First, there are the worries raised
by Burgess and Rosen (1997), for instance that these strategies privilege the simplicity virtue
to the detriment of other dimensions that may be more relevant in theory assessment, such
as fruitfulness, technical expediency, etc. Indeed, as we have seen, Tarski himself is sensitive
to this fact: not surprisingly, when it came to his own mathematical practice, he eventually

22As Mancosu (2010c, p. 559n4) notes, it’s likely that Tarski never wrote the text of his lecture. Cf. the
letter from Tarski to Quine quoted by Mancosu, in which Tarski states that “it would be too late” for him to
“prepare any formal talk”. Interestingly, the excerpt quoted by Mancosu of this letter ends with Tarski saying
to Quine that he wants to examine the “possibility of a semantic interpretation of quantifiers with variables of
higher orders”.

23For an in-depth exposition of the constructible universe, cf. Devlin (1984).
24Actually, a stronger result is possible: there are models of ZFC in which every set is definable without

parameters. For a discussion with this result in relation to a similar argument, viz. that there are undefinable
reals because there are only countably many formulas, cf. Hamkins et al. (2012).
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came to adopt ZFC as his preferred environment, in large part because doing so proved to
be technically much more expedient than working even with the simple theory of types.
Second, as we have seen, it seems that commitment to some abstract entities is unavoidable
(especially to types). But if you are willing to admit types, why not go all the way and
embrace a technically more expedient ontology of sets?

I won’t explore here these questions further, however.25 My purpose in this section was
merely to indicate a possible rationale for Tarski’s preference for type-theory in his 1966
lecture, when it seems so much at odds with the rest of his philosophical inclinations. It may
very well be that Tarski himself was not entirely convinced of such strategies—which would
also explain why he never bothered to put them into more definitive form, relegating them
to private conversations and unpublished remarks.

2.3 Conclusion
In an intriguing article, McGee (2004) explores what he considers to be “Tarski’s staggering
existential assumptions”. In the article, McGee concludes that Tarski’s proposal requires that,
if it’s possible for there to be a model for a given theory, then there is a model for that theory.
In other words, consistency implies existence, so that, if “there is a supercompact cardinal” is
consistent relative to ZFC, then there really is a supercompact cardinal (McGee’s example).

In this chapter, we have seen that Tarski may have indeed “staggering existential as-
sumptions”, but in the opposite direction: while McGee credits Tarski with the assumption
of too many abstract entities, I have argued that, in fact, at least in his more “philosophi-
cal” moments, he shares Quine’s taste for desert landscapes, even outlining his own strategy
for a nominalist reduction of mathematics. It would be interesting to see the consequences
of this assumption for his account both of logical consequence and logical notions, which
are the main concern of McGee’s paper. In any case, what is striking here is precisely this
contrast between the staggering existential assumptions of his mathematical work and his
nominalist inclinations. It is not surprising, therefore, that Tarski’s preferred description of
his own philosophical views was as a “tortured platonist”.

Another striking feature of Tarski’s inchoate remarks about nominalism which I tried
to highlight here was how in tune he was with two leading giants of the analytic tradition,
namely Carnap and Quine, and how his own tortured outlook seemed to be in a sense torn
between those two. In the previous chapter, we saw how close his own conception of his
conceptual analysis was to Carnap’s, in particular after 1937. Similarly, in this chapter we
have seen how Tarski shared with Quine the latter’s perspective on ontological questions,

25Beth himself seems to think they are answerable, as he comments that: “That the nominalistic interpreta-
tion of the di�erent forms of contemporary set theory is tenable can hardly be disputed from the above.” (Beth
1970, p. 96, original emphasis).
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both in taking them seriously and in considering that the best way to deal with them is by
investigating the language in which our best theories are couched. In this respect, we have
also seen howTarski anticipated Quine and Goodman’s paraphrasing strategy for defending
nominalism, a strategy that would latter become ubiquitous in the nominalist literature.26

A Appendix: Kripke on substitutional quantification
The account here is basically the one presented in Kripke (1976) (indeed, the following is
basically a paraphrase of Kripke’s account).

By way of introduction, let me note that the essential idea behind substitutional quan-
tification seems to be that, instead of using satisfaction conditions in order to recursively
establish a truth definition for the language in question, these languages instead exploit di-
rectly the notion of truth. The idea is that, certain sentences of a base language L0 being
given as true, it’s possible to expand this language into a language L whose variables will
range over those sentences. Let’s see how to work this out more formally.

In the larger language L1, the sentences from L0 will be the atomic sentences. Now
separate some subset of expressions from L0 as the subset C. This subset will be called the
substitution class of L; the elements of C will be the terms of L. In our case, C will be the set
of all formulas from L0.

Now let x1
0, x

1
1, . . . be an infinite list of variables not in L0. Let φ be a sentence from L0.

We call an expression φ′ obtained from φ by replacing zero or more terms in φ by variables
an (atomic) preformula, or simply preform. If the result of replacing variables by arbitrary
terms in an atomic preform is always itself a sentence of L0, the preform is an (atomic) form.

In order to expand L0 into L1, specify some given set of forms as atomic formulae. These
will include all the sentences of L0, and, if φ(x1

i1
, . . . , x1

in) is an atomic formula, so is the
result of replacing the listed variables with others. Given this definition of atomic formulae
for L1, it’s now possible to recursively specify the set of well-formed formulas (w�s) of L1:

1. an atomic formula is a formula;

2. if φ and ψ are formula, then so is φ ∧ ψ;

3. if φ is a formula, so is ¬φ;

4. if φ is a formula, so is (∃1x
1
i )φ for any i ∈ ω.

W�s without free variables are called sentences of L. In contrast to the case where the
language has objectual quantifiers, in whichw�swhich are not sentences can be ‘satisfied’ by

26Though it may now be receding. Cf., e.g., Field’s second thoughts on the matter in the “Preface” to the
second edition of Science Without Numbers (Field 2016).
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sequences, here, w�s which are not sentences won’t be assigned any semantic interpretation,
playing thus a merely auxiliary role.

Finally, we characterize truth for L1, assuming that truth has already been characterized for
L0. So let S0 be the set of true sentences of L0, we define the set S1 of true sentences of L1

as the set which obeys the following conditions:

1. S0 ⊆ S1;

2. (¬φ) ∈ S1 i� φ 6∈ S1;

3. (φ ∧ ψ) ∈ S1 i� φ, ψ ∈ S1;

4. (∃1x
1
i )φ ∈ S1 i� there is a term t such that φ′ ∈ S1, where φ′ comes from φ by replacing

all free occurrences of x1
i by t.

Given these conditions, Kripke proves the following theorem, which shows that the
above is well-defined:

Theorem A.1. Given a set S0 of true sentences from L0, there is a unique extension S1 in L1 that
obeys the above conditions.

Proof. There are two parts to the theorem: one involves uniqueness, the other existence.
Let’s start with the uniqueness part, which we will prove by induction on the complexity

of the sentences of L. Suppose S ′ and S ′′ are two extensions of S in L that obey the above
conditions. The base case is trivial: since the true atomic sentences of L are taken from
L0, an atomic formula φ ∈ S ′ ⇐⇒ φ ∈ S ⇐⇒ φ ∈ S ′′. Now suppose (the induction
hypothesis) that θ, ψ ∈ S ′ ⇐⇒ θ, ψ ∈ S ′′ and let φ = θ ∧ ψ. Given these equivalences
and condition (3), it follows that φ ∈ S ′ ⇐⇒ φ ∈ S ′′; similarly for φ = ¬ψ. Finally,
let φ = (∃1x

1
i )ψ and suppose, without loss of generality, that φ ∈ S ′. This means that, for

some formula ψ′, ψ′ ∈ S ′. But, by the induction hypothesis, ψ′ ∈ S ′′. Thus, φ ∈ S ′′ as well
(the converse is established in a similar way). From the preceding, we can conclude that a
sentence φ ∈ S ′ ⇐⇒ φ ∈ S ′′, whence, by extensionality, S ′ = S ′′.

The existence claim is a bit more complicated. We need to recursively specify a way
of expanding the given set S into S ′ (this will be similar to constructing a Hintikka set).
First, arrange all the w�s of L in a list φ0, φ1, . . . (for simplicity, I will assume here that L is
countable; the uncountable case is anyway similar). Set S0 = S and, assuming as given Sn,
define Sn+1 depending on the w� φn:

• Case 1: φn is an atomic formula. Then this is already covered by S0;

• Case 2: φn = ψ ∧ θ. If ψ, θ ∈ Sn, set Sn+1 = Sn ∪ {φn}. Otherwise, set Sn+1 = Sn;
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• Case 3: φn = ¬ψ. If ψ ∈ Sn, then set Sn+1 = Sn. Otherwise, set Sn+1 = Sn ∪ {φn};

• Case 4: φn = (∃1x
1
i )ψ. If there is a ψ′ ∈ Sn such that ψ′ is the result of substituting

a term t for all free occurrences of xi in ψ, set Sn+1 = Sn ∪ {φn}. Otherwise, set
Sn+1 = Sn.

Now set S ′ =
⋃
n∈ω

Sn. It’s clear that S ′ is the desired set: S ⊆ S ′ and every true sentence

φ from L will be in S. This last claim is provable by induction on the complexity of φ: if φ
is atomic, then φ ∈ S, whence φ ∈ S ′. If φ = ψ∧ θ, since our enumeration listed all the w�s
of L, it will eventually fall under Case 2 above; similarly for the negation and existential
case. �

Note that, as Kripke (1976, pp. 331-2) observes, the proof above crucially uses the
assumption that L0 does not contain the same connectives and quantifiers as L. Otherwise,
t could be a term containing one of those, and the substitution of t for xi in ψ could result
in a formula ψ′ of greater complexity than ψ or even (∃1x

1
i )ψ.27

Finally, since we are only interested here in its use in elucidating Tarski’s nominalistic
strategy, we will not further develop the semantics for this language. The interested reader
should consult Kripke’s insightful article.

27As noted in Kripke (1976, p. 332, esp. the digression), that’s not to say that our theorem would then be
impossible to prove; rather, it’s just to say that the above proof, which relies on an induction on the complexity
of the sentences of L, would not work. There could be other ways of proving the theorem, and Kripke himself
sketches some conditions for alternative proofs in the passage mentioned.
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Chapter 3

The Proposal

In this chapter, I will explore some metaphysical themes that emerge out of Tarski’s 1966
lecture, in particular his extension of Klein’s Erlangen Program. This development will
be distinctly non-Tarskian, in that it will involve both an elaborate metaphysical picture
(against the Carnapian strand in Tarski’s thought) and a defense of robust platonism to boot
(against his Quinean tendencies). Nevertheless, there is a sense in which Tarski’s work
actually encourages this picture, both because of his focus on notions and his recourse to
Klein’s ideas. Let’s start by discussing the first topic.

A natural question to ask regarding Tarski’s lecture is: what are these notions mentioned
in the lecture’s title? Are they concepts, expressions, or objects? One important piece of data
here is the fact that the use of this term “notion” is remarkably stable throughout Tarski’s
career. Besides figuring in the 1966 lecture, it also figures in the title of Tarski and Linden-
baum (1926), it is at work at least implicitly in Tarski and Lindenbaum (1935/1983), and
also in Tarski’s paper “On a General Theorem Concerning Primitive Notions of Euclidean
Geometry” (Tarski 1956).1 In all those papers, the usage is ambiguous between two closely
connected readings: on the one hand, a notion is an object in a type-theoretical hierarchy; call
this the object reading. On the other hand, the term can also refer to an interpreted expression
whose meaning is an object in a type-theoretical hierarchy; call this the concept reading.2

This double meaning is most clear in the last of the previously mentioned papers. In the
course of the paper, Tarski repeatedly makes use of the following proposition:

(I) If the notionN is definable in terms of the notionsN1, . . . , Nm within a given theory,
then N is invariant under every one-to-one transformation of the universe of discourse

1Interestingly, all of these papers deal with geometrical notions in one way or another.
2Villegas-Forero andMaciaszek (1997) argue that there is a distinction between logical notions, as what they

call “Fregean concepts” (which are objective entities), and logical entities, which would be akin to a Fregean
object. They don’t develop the distinction further, however, so it’s unclear how to relate their discussion to
mine. In any case, the analogy with Fregean concepts is suggestive, so that’s why I called this the concept
reading.
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of this theory onto itself under which all the notions N1, . . . , Nm are invariant. (Tarski
1956, p. 469, original italics)

Appended to this passage is the following footnote:

In this formulation (I) applies to interpreted theories, i.e., to theories which are
provided with definite interpretations of symbols occurring in them; moreover,
each such theory is assumed to have a well determined universe of discourse—a
set U such that all the notions of the theories are intrinsic with respect to U (i.e.,
they are subsets of U or relations between elements of U or relations between
these subsets and relations, etc.). The formulation of (I) must be modified if (I) is
to apply to non-interpreted theories. In this case we speak of the definability of
a constant C in terms of other constants C1, . . . , Cm; we consider all the models
of a given theory—each such modelM is formed by a set U(M) and by certain
notions [emphasis mine—D. N.] N(M), N1(M), . . . , Nm(M), . . . which are in-
trinsic with respect to U(M) and which (because of their logical structure) can
serve as interpretations of the constants C,C1, . . . , Cm. (Tarski 1956, p. 469n)

It’s thus clear that “notion” can’t mean the same thing in (I) and in the footnote. In (I),N
is an expression from an interpreted theory (the concept reading), whereas in the footnote
“notion” is used to refer to objects in a type theoretic hierarchy (the object reading). As
mentioned, all papers above alternate between the two readings of “notion”, and sometimes
the expression is rather ambiguous between them. In any case, it’s clear that the object
reading is the fundamental one: an expression N is considered as a “notion” in the concept
reading because it refers to a “notion” N(M) in the object reading, as the above footnote
makes clear. This makes the ambiguity pointed out here mostly harmless; nevertheless,
drawing attention to it helps to bring to the forefront an apparently neglected aspect of the
1966 lecture, which is precisely that the target of Tarski’s explication is the logical notions.

In his lecture, Tarski again makes clear that he privileges the object reading of “notion”:
“I use the term ‘notion’ in a rather loose and general sense, to mean, roughly speaking, ob-
jects of all possible types in some hierarchy of types like that in Principia mathematica” (Tarski
1966/1986, p. 147). Here Tarski’s previous discussion of Klein’s project is illuminating. As
we will see when analyzing Klein’s proposal in more detail, there is a kind of abstraction
principle implicitly at work in Klein’s analysis, which allows him both to move from object
tokens (e.g. a specific triangle) to object types (e.g. triangle), as well as to distinguish be-
tween which properties of an object belong to that object qua object of a certain type and
which properties hold of an object merely accidentally, so to speak. Given the relevance of
this Kleinian element for my reading of Tarski’s proposal, the first sections of this chapter
will be dedicated to a detailed analysis of these ideas.
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3.1 Klein’s Strategy and the Nature of Types

In order to best appreciate the power of Klein’s approach, I will first sketch a geometrical
problem about reasoning with diagrams that can be solved by his group-theoretic methods.
This will allowme to introduce the concept of a projectible property, which will play a relevant
role later on.

3.1.1 A Kantian Predicament

Kant infamously remarked that all mathematics rests on intuition;3 in the case of geometry,
Kant thought that geometrical proofs essentially involved spatial intuition, mostly in the
forms of diagrams, that were either imagined or drawn in a piece of paper (cf. the first
chapter of the Transcendental Doctrine of Method).4 Take, for instance, his discussion (A
716/B 744) of the Euclidean proof that the angles of a triangle sum to two right angles.
As Kant describes it, the geometer’s demonstration amounts to constructing a triangle and
some auxiliary figures (such as auxiliary lines), and then “reading o�” the fact that its angles
sum to two right angles from the resulting figure. This creates a puzzle: since the drawing or
imagined figure is always a singular representation, how can one read o� general conclusions
from such representations? Note that Kant clearly recognizes that (Euclidean) geometry
deals not with properties of this or that particular representation (or token) of a triangle,
but rather with properties that belong to the triangle figure as a type. It’s then possible to
restate the above puzzle as: how is it possible to derive properties of the type from a given
token? As Co�a (1991, p. 46) notes, the puzzle puts Kant in a dilemma: either we can reason
directly about the type, thus making the reference to its tokens (or intuitions) otiose, or else
we need some criterion to select the properties to which we can be indi�erent, and then
it’s no use saying that we must be indi�erent to the properties that don’t make a di�erence
when reasoning about triangles. Let’s call this puzzle the Kantian predicament.

Of course, current mathematical practice makes it easy to solve the Kantian predicament:
we attend precisely to those properties that follow strictly from the axioms and definitions,
so that reference to intuitions is indeed otiose, and this is the end of the matter. But I want
here to explore this issue a bit further, since I believe it reveals interesting features of the
type-token relationship, features that will be relevant in our examination of Klein. Let’s
start with a definition:

3Co�a (1991) is a good account of how much of post-Kantian philosophy arose as an attempt to show that
that claim is false. In fact, the present account owes much to his observations in chapter 3 of that book.

4I’ll cite Kant according to the standard practice of citing the pages of the first (A) and second (B) editions
of the Critique of Pure Reason; the edition I’m using is (Kant 1998). Since my aim here is not Kant’s exegesis,
I’ll not engage in the controversy surrounding Kant’s account of geometrical reasoning. For an up-to-date
account and defense of the Kantian line, cf. Vinci (2015).
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Projectible properties: Consider a property F and a type T . The property F is said to
be projectible across the type T if, and only if, for every token a of T there is some kind of
principle connected with T that necessitates that Fa.5

This is a provisional definition, of course, since it is extremely vague. What does it
mean for a principle to be connected with a type? And what kind of necessity is involved in
the definition? In fact, the next sections will be devoted precisely to the task of spelling out
these details, beginning in the next section, in which I argue that this problem has important
connections to neo-Fregean abstractionism.

3.1.2 Bromberger’s account

The Kantian predicament, as analyzed in the last section, bears a striking similarity to the
problem that Bromberger (1992, chap. 8) deals with in “Types and Tokens in Linguistics”.6

In that essay, Bromberger (1992, p. 176) calls the Platonic Relationship Principle the principle
that allows one to infer properties of types (which are “platonic” entities) from properties of
tokens (which are empirical). This problem is a version of the Kantian predicament, as it
can be rephrased as the question of how to detect which properties of linguistic tokens are
projectible across their types.7 Bromberger’s own answer to this problem is too complicated
to be rehearsed here (especially given its reliance on his peculiar account of questions), but
nevertheless I want to retain two of its aspects that may be relevant for what follows.

The first is his emphasis on quasi-natural kinds, one of his technical terms that I will
parse here very loosely as a set of entities which share some characteristics as a matter of
nomological necessity;8 notice that, in spite of the moniker, this notion does not exclude
natural kinds from its purview—natural kinds are a subset of quasi-natural kinds, and in fact
Bromberger’s favored example of a quasi-natural kind, samples of mercury, is a natural kind.
In any case, the important point to note here is Bromberger’s appeal to nomological necessity
in order to account for natural kinds: it is this component that specifies which properties
are projectible across the type, namely those that somehow follow from the nomological
connections among them.9 Indeed, this points to the explanatory role of nomological ne-

5This definition is inspired by Heck (2017). I’m grateful to prof. Heck for clarifying some of the issues
surrounding it via electronic correspondence.

6I am grateful to Richard Heck for calling my attention to Bromberger’s work.
7As the vocabulary employed here makes clear, this problem also has connections to Goodman (1983),

especially to what he calls “the new riddle of induction”. I won’t be able to explore these connections here,
however. Indeed, if Hirsch (1993, chap. 2) is right that Goodman is worried more with projectible terms than
properties, it may be that my problem here is slightly di�erent than his.

8Cf. Bromberger (1992, p. 183) for the more technical definition.
9Hence, Bromberger’s strategy is actually an inversion of Goodman’s: whereas Goodman wanted to ex-

plain laws in terms of counterfactuals and these in terms of projectible qualities, Bromberger wants to appeal
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cessity in Bromberger’s account: it is because these properties follow from certain laws that
we may take them to be projectible. Thus, going back to the problem of the last section, it
is tempting to say that Bromberger would modify our provisional definition of projectible
property into something like this:

Proto-Brombergerian definition of projectible properties: For any type T and prop-
erty F , we say that F is projectible across T if, and only if, for every token a of T , it is
nomologically necessary that Fa.10

This would be a bit premature, though. To see why, remember that Bromberger is
interested in the Platonic Relationship Principle, namely how to determine properties of
the types from properties of the tokens. But not every property projectible across a type
according to the above Proto-Brombergian definition is a property of the type itself. Con-
sider a word type, say Arial. Every token of this type necessarily has a certain length, if we
assume that complex11 spatial objects all have some length; does it follow that the word type
Arial has a certain length?

In order to deal with this kind of problem, Bromberger introduces a distinction between
projectible properties, w-projectible properties, and individuating properties. The former
are properties which not only are projectible in the above “Proto-Brombergerian” sense, but
also which assume a specific, nomologically determined value for every token, e.g. the boiling
point of a specific substance. On the other hand, w-projectible properties are determinable
properties, which all tokens share, but whose values may vary, even though this variation is
also nomologically determined, e.g. the length or temperature of a sample of a substance at a
given time. Finally, individuating properties are those properties which vary for each token,
this variation not being nomologically determined, e.g. their spatio-temporal location.

Using this new distinction, Bromberger then proposes that the Platonic Relationship
Principle holds only for projectible properties, not w-projectible properties. Thus, since
having a certain length is a w-projectible property, it follows that the type Arial does not
have a certain length. There is still a problem, however, with determinate properties that
are too general, such as being concrete: they are clearly shared by all tokens of Arial, but the
type itself, being abstract, is not concrete! This generality itself may be a clue to solving
the problem: projectible properties are in a sense characteristic of a type, so they are shared
only by tokens of that type. Being concrete is not a characteristic property in this sense, so

to laws in order to explain projectible qualities.
10Notice that Brombeger himself does not define projectible properties; this is an extrapolation based on his

account of quasi-natural kinds.
11The adjective “complex” is there in order not to rule out the possibility that points are spatial objects with

no length.
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we can rule it out. Thus, we can state the following definition of projectible property along
Brombergerian lines:

Brombergerian projectible property: A property F is Brombergerian projectible across a
type T if, and only if, the following holds: (i) for every token a of T , it is nomologically
necessary that Fa; (ii) if F is a determinable property, then the specific value of F is nomo-
logically determined to be the same for every token a of T ; (iii) if b is not a token of F , then
F does not hold of b.

Recall that, in the last section, I provisionally defined a property to be projectible across
a type i� there was some kind of principle connected with the type and which necessitated
the property. It’s now possible to replace this vague idea with something more precise: the
necessitation in question is nomological necessity, and this is connected to the type insofar
as there is a law which explains why the tokens of the type, and only tokens of that type,
have this specific property.

Unfortunately, however, this means that at least this part of his strategy cannot be
straightforwardly adapted to our context.12 The reason is that most accounts of nomo-
logical connections rely on counterfactuals to spell out such connections, but it’s generally
accepted (and I endorse this view) that mathematical objects exist and have their properties
out of metaphysical necessity. So they either satisfy or fail to satisfy counterfactuals triv-
ially, which is why this type of reasoning does not reveal much about them. Nevertheless,
Bromberger’s account has provided us with some important clues as to the shape of the
desired definition. What we need is to replace nomological necessity in the above account
for some other kind of principle that, like the relevant nomological claims, explain why
these properties are projectible. In the next two sections, I will argue that two important
ingredients in answering these questions are equivalence relations and natural properties.

3.1.3 Types, Equivalence Relations, Abstraction

In the last section, I argued that the identification of the projectible properties should be tied
to some kind of explanatory principle which gave us an account of why these properties,
and no others, belong to a particular type. In the case of empirical properties, Bromberger’s
appeal to nomological necessity seemed to do the job, but when it came to mathematical
properties, some other principle was called for. In order to uncover such a principle, I want

12Tappenden (2008a,b) gestures at such an adaptation, suggesting that there may be some unified account of
causal or ontological dependence that applies to both physical and mathematical entities. He does not provide
for one, however, and I myself am skeptical that such an account can be provided.
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to take a closer look at the nature of mathematical types.13 It is here that I believe the neo-
Fregean tradition has some important insights.

As should be clear from our emphasis on projectible properties, one of the key features
of a type is the fact that its tokens share certain properties qua tokens of the type (precisely
the properties we are here calling projectible) and do not share certain other properties,
which can thus be safely ignored. For instance, tokens of the type Euclidean triangle all share
the property of having their internal angles sum two right angles, but they do not share
their coordinates with respect to a given coordinate system. In particular, given that the
properties we are here calling projectible are shared exactly by tokens of a given type, it is
clear that the domain of objects is partitioned into those which share the properties and those
which do not. To put it another way, there is an equivalence relation which holds precisely
among objects of a given type.14

It should not be surprising that there is a strict connection between types and equiv-
alence relations. Historically, equivalence relations were introduced precisely in order to
abstract away from irrelevant features and identify distinct objects which are nevertheless
indistinguishable from the point of view of some salient characteristic.15 That is, equiva-
lence relations allowed mathematicians to treat as one object distinct objects which belonged
to the same equivalence class. Of course, some care must be taken here in order not to end
in confusion. As Frege (1884/1960, §34) himself remarks, distinct objects are, well, distinct,
and therefore we would incur in error if we treated them literally as identical; moreover,
ignoring an object’s properties does not make them go away, so something more has to
be said about what it means to treat distinct objects as being somehow identical. As much
as Frege deplores this imprecise way of thinking, however, I prefer to view it as groping
towards something significant, namely that mathematicians use equivalence relations to rea-
son about the type instead of the tokens. In order to clarify the situation, let’s consider the
matter a little more formally.

The basic idea is this: let ∼ be an equivalence relation on a given domain. Then it’s
possible to define a function f on the domain such that the following holds:

(AP): For any a, b in the domain, f(a) = f(b) if, and only if, a ∼ b.

Suppose for a moment that this best captures the mathematician’s practice of treating
distinct objects as somehow indistinguishable from the point of view of a salient property,

13Perhaps the argument here could be generalized to other kinds of types, but for simplicity I will restrict
myself here to the mathematical context.

14That is because every equivalence relation gives rise to a partition and, conversely, every partition is
associated with an equivalence relation.

15For a detailed historical account of the emergence of definitions by abstraction and their connection to
equivalence relations, cf. Mancosu (2016, chaps. 1 and 2).
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i.e. that in doing this they are actually reasoning about f(a) instead of a.16 The question
then arises about how to interpret the range of this function. Historically, there were three
options:

Option 1: The first option, especially prominent in number theory, is to consider the value
f(a) to be a canonical representative of the equivalence class of a. Ideally, one would want the
function f to be explicitly given, so that one can obtain the canonical representative from
any member of its equivalence class by some sort of algorithm (e.g. Kronecker’s treatment
of binary quadratic forms, as emphasized by Mancosu (2016, chap. 1)).

Option 2: The second option is to take the value of f(a) to be simply the equivalence
class of a under ∼, i.e. the canonical or natural projection of a set to its quotient set by the
equivalence relation. Historically, this has been less favored than the first option, since one
may lose computational information by taking this route; e.g. the function f defined in
the first option gives an explicit procedure for computing the greatest common divisor of
two numbers, whereas the canonical projection does not encode this information. Still,
especially when dealing with more abstract, algebraic objects (e.g. quotients of a group by
a normal subgroup), this is the only sensible option.

Option 3: The last option is to consider the range of f to be a set of new entities, abstracted
from the given equivalence relation. Thus, to use Frege’s famous example, one may define
a relation ∼ between two lines a, b as holding if, an only if, they are parallel. From this
relation, one then abstracts a new object, called the direction of a given line, whose identity
conditions are given by dir(a) = dir(b) if, and only if, a ∼ b. More interestingly, although
traditional set theoretical treatments generally treat the real numbers as, say, equivalence
classes of Cauchy sequences or as Dedekind cuts, Dedekind himself took them to be new
entities associated with such classes or cuts.17

Notice that there is a certain asymmetry between the first two options and the third
one. Whereas the first two options arguably do not introduce any genuinely new objects

16Some historical support for this suggestion is again to be found in Mancosu (2016, chaps. 1 and 2).
17“Whenever, then, we have to do with a a cut (A1, A2) produced by no rational number, we create a new,

an irrational number a, which we regard as completely defined by this cut (A1, A2).” (Dedekind 1872/1963,
p. 15, first emphasis added). Although this may be taken to be mere rhetorical flourish, it’s clear from other
texts by Dedekind that this is not so: responding to a similar suggestion by Weber to simply identify the
natural numbers with (what we call today) Frege-Russell cardinals, he flatly rejects it, insisting that they are
new objects: “If one wishes to pursue your approach I should advise not to take the class itself (the system of
mutually similar systems) as the number, but rather something new (corresponding to this class), something
the mind creates.” (Dedekind 1932, p. 489 apud Reck [2003, p. 385]) Thus Dedekind’s approach is an instance
of option 3, even though contemporary practice generally uses his techniques in the service of option 2.
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(if we assume that the equivalence class can be eliminated in favor of its defining relation),
the third establishes a new range of entities as the function’s values. Given this, one may
reasonably ask: when is one justified in introducing new abstract entities? Why not rest
content with just canonical representatives and equivalence classes? In order to answer
these questions, I will first make a quick excursus through the theory of concept settings
and domain extensions as developed by Manders (1987, 1989). This will in turn give us a
deeper insight into the nature of types.

3.1.4 Carving Nature at Its Joints

In two important papers, Manders (1987, 1989) considers a question that is in many respects
similar to our own, namely the fruitfulness of domain extensions: in general, why is it fruitful
to introduce new entities, extending the domain of objects? It is well-known, for instance,
that the introduction of points at infinity not only greatly simplifies many geometrical the-
orems, but also gives deeper insight into the reasons why such theorems hold.18 Likewise,
the introduction of complex numbers also allows for deeper insight into why, e.g., certain
series converge, by giving uniform conditions for convergence. In fact, this last example is
illuminating of the general features of the situation, so we might as well develop it a little
further in order to bring out such features.

Consider the way the complex numbers were introduced as a way of obtaining solutions
to equations with coe�cients in the real numbers. For instance, x2 + 1 = 0 has no solutions
in the real numbers, but it does have solutions in the complex numbers, namely x = i.
Manders highlights three noteworthy features of this situation, which he thinks is typical:
first, the old elements are preserved, that is, we have an extension, not merely a change of
subject. Second, some properties of the original situation will be preserved, while others
will be dropped. So, for instance, in this case, just as there was no r 6= 0 in the real numbers
such that r · 1 = 0, there will be no complex number c 6= 0 such that c · 1 = 0 (i.e. the
characteristic of the field will remain invariant). On the other hand, the real numbers are an
ordered field, whereas the complex numbers are not. The preserved properties are called by
Manders invariant conditions. Finally, given an invariant condition φ(x), one may also wish
to preserve the universal closure of this condition, e.g. the associativity laws for addition
and multiplication.

Next, he calls a solvability condition a formula ∃yφ(x, y), where xmay be a parameter from
the original domain. If there is any y which makes this formula true, then y is a solution
to the formula. If every such a formula of a given type has a solution in a given structure,
this structure is called existentially closed.19 The domain extensions that interest Manders are

18For a particularly enlightening case study, cf. Lange (2015), which deals with Desargues’s theorem.
19A more formal, textbook treatment may be found in Hodges (2004, chap. 8).
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then the existential closures of an initial structure, that is, an extension which makes every
solvability condition of a given type (for instance, every quadratic equation) satisfiable in
the new domain, while at the same time satisfying the three above desiderata.

After this preliminary analysis, Manders proceeds to give some technical constraints on
the logical features of the formulas expressing solvability conditions, constraints which will
give a criterion as to when a given extension will be fruitful. The technical details of his
discussion are unimportant here.20 The upshot of his discussion is that two things may occur
after the extension: either the complexity of the structure will greatly diminish, resulting in
an overall simplification of the theory, or else it will increase to the point of making it very
di�cult to handle.21

What is interesting about the first case is that the simplification results in greater con-
ceptual unity, by erasing certain complications of the original setting. To go back to the
extension of the real numbers to the complex numbers, in the original setting the existence
of solutions to the equation ax2 + bx+ c = 0 depended on whether b2 − 4ac ≥ 0 (in which
case it has at least one solution) or b2−4ac < 0 (in which case it has no solutions). In the new
setting, however, order is not expressible anymore, so these case distinctions disappear and,
in fact, every such equation has now exactly two solutions. Indeed, whereas in the original
setting, the existence of solutions (and their number) for a given polynomial equation had
to be treated on a case by case basis, now they all follow from the Fundamental Theorem of
Algebra, which asserts that every polynomial equation with complex coe�cients and degree
n has exactly n solutions in the complex field. In other words, the domain extension unifies
all the diverse cases of the original setting into one fundamental theorem that encompasses
all such cases, resulting in greater unity.

This last feature is the key to the whole procedure. It shows that there are certain domain
extensions which shed more light on certain phenomena, or bring conceptual unity to
disparate areas, such as the extension of the real numbers to the complex numbers. That is,
such extensions erase distinctions that are irrelevant and classify together cases that naturally
belong together, sharing important salient features. Dramatically speaking, we can say, to
employ the old Platonic metaphor, that those extensions which posses these virtues carve
nature at its joints, that is, are in some sense natural. Of course, the criteria for naturalness
may vary from situation to situation: in the case of domain extensions which are existentially
closed, Manders’s criteria may apply. But there is no reason to expect that the same criteria
will work in every situation (nor, for the matter, does Manders suggest this—quite the

20They basically amount to a set of criteria that will ensure that, after the extension, the resulting structure
admits quantifier elimination, among other things.

21In the second case, Manders remarks that the solvability condition will express a condition that was pre-
viously expressible by an infinitary condition.
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contrary).22

But why should the naturalness of a certain object be a criterion for its ontological re-
spectability? Here, Mark Lange’s (2017, p. 334) is revealing. Lange’s argument, recast using
the language of naturalness, is:

P1: Natural objects or properties explain certain facts about the objects in the original
domain (e.g. the complex number field’s structure explains certain facts about the real
number field);

P2: What explains a fact about some entities must be on an ontological par with those
entities (as he puts it, “only facts about what exists can explain facts about what exists”);

C: Natural objects or properties are ontologically on a par with objects on the original
domain.

In other words, it is in virtue of 23 the structure of the new objects that certain properties
hold of the original objects. Hence, if we are willing to accept the objects in the original
domain, we should also be willing to accept the objects in the extension.

Let’s take stock. I started this chapter with a discussion of what I called the Kantian
predicament, namely how to identify which properties are projectible across a given type.
I then argued that the answer to this problem should come with an account as to what
makes such properties projectible, taking my cue from Bromberger’s analysis of linguistic
types. In the last section, I proposed that an important role in this explanation was played by
equivalence relations, since typically types are abstracted from such equivalence relations.
Since, however, not every equivalence relation gives rise to an associated abstract object, the
question arose as to which equivalence relations do so. My proposal in this section, then,
has been to consider natural equivalence relations, in the sense of relations which somehow
bring more conceptual unity to a given subject matter. In the next section, I will argue that
Klein’s central insight in the Erlangen Program allows us to articulate precisely why (for
instance) geometrical types are natural, thus finally answering the Kantian predicament.

22Importantly, however, there is a sense in which, on my view, such criteria are intrinsic to the theory or
structure being analyzed. My proposal is thus distinct from Lange’s (2015; 2017), according to which the
criteria for naturalness are tied to the way a given property figures in mathematical explanations. Although
I agree with Lange that this is generally a useful heuristic for establishing that a property is natural, I don’t
think it is su�cient to establish why it is natural.

23This is suggestive of the language of grounding, at least as developed, e.g., by Fine (2012).
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3.1.5 Klein’s Insight

I will not give a full account of Klein’s celebrated paper here, but, instead, I will consider
only points that are directly relevant to our discussion.24 As is well-known, one of the main
innovations of Klein’s paper was his use of the group concept as tool to classify and unify
the disparate geometries of his time. My main interest here is in how this use of groups can
help us to see types as natural objects.

It’s important to remember that, at the time of Klein’s address, not only were there
many di�erent styles (e.g. synthetic and analytic), but also many apparent disparate types
of geometry, each with its own distinct character, so to speak. Especially troublesome was
the status of projective geometry, which had come to dominate the scene by then; as Mark
Wilson notes, “the world of the so-called ‘projective geometer’ is considerably more bizarre
than non-Euclidean geometry per se” (Wilson 1995, p. 113).25 Part of the problem was the
seeming incompatibility of projective geometry with a metric, as Klein himself highlights
in the opening paragraph of his essay.26 One of the main goals of his paper, then, was to
organize these di�erent strands into a coherent whole.

Famously, Klein’s ingenious solution was to use the group of transformations behind
the geometry as the main tool of his classification. Specifically, given a space and a set of
primitive notions, Klein looked to the group of transformations that preserved these notions.
So, for instance, given the Euclidean plane and the primitive notions of angle and length,
we obtain the group of transformations that preserves these notions, namely the group of
isometric transformations. On the other hand, if we’re given the projective plane and the
primitive notion of the cross-ratio, we obtain the group of projective transformations. I will
call this central idea Klein’s insight:

Klein’s Insight: In order to identify the natural notions of a given geometry, one should
look at the group of transformations behind the geometry. Or, as he himself puts it, “ge-
ometric properties are characterized by their remaining invariant under the transformations of their

24I am here greatly indebted to the discussion byYaglom (1988, chap. 7) and especially Marquis (2009,
chap. 1). Indeed, the initial spark for reading Klein as providing an answer for the Kantian predicament
was occasioned by my reading of Marquis. For further discussion of Klein’s Erlangen Program, cf., among
others,Wussing (2007, Part III), Gray (1992), Rowe (1992), Hawkins (1984), and Birkho� and Bennett (1988).
Hawkins (2000), although more focused on Lie, provides a rich analysis of Klein’s ideas and background in
the first chapter. Curiously, as can be gathered from Hawkins (1984), it seems that Klein’s Erlangen Program
itself was not very influential, even though retrospectively many mathematicians (e.g. Cartan) would find in
it key ideas that oriented their work.

25The first sections of Wilson’s article furnish a nice picture of the development of geometry in the first half
of the 19th century, with special emphasis on the work of Poncelet and von Staudt.

26This may be especially important in connection with Riemann’s views. According to Gray, for Riemann,
“all geometry is based on specific metrical considerations” (Gray 2011, p. 201).
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principal group” (Klein 1892-1893, p. 218), where the “principal group” is simply the group
of transformations associated with a given geometry.

This may not sound very enlightening, especially since it still relies on the some unde-
fined way of identifying those primitive notions.27 So Klein actually turns the idea sketched
on the above paragraph on its head: instead of identifying the group of the transformations
by the properties it preserves, he had the idea of identifying the primitive notions as being
the properties preserved by the group of transformations. That is, one would not say that
the isometric transformations are the transformations which preserve the Euclidean notions,
but rather that the Euclidean notions are the notions preserved by the isometric group, thus
reversing the direction of explanation.

This move looks like a mere trick or sleight of hand, but it has profound consequences.
Klein’s shift to groups acting on a space emphasizes that the orbits of an element of space
under a group action is precisely an equivalence class, which can then be identified with the
type of that element. The idea is simple: from the point of view of Euclidean geometry, two
line segments are indistinguishable as long as they have the same length; they can therefore
be considered as tokens of the same object type. But the isometries of the space will precisely
carry a line segment of a given length to another one of the same length, and will not carry
a line segment of a given length to another one of di�erent length. That is, the orbit of a
line segment under the group of isometries will be precisely the congruent line segments.
Therefore, one can treat the equivalence class of a given line segment generated by the
action of the group of transformations on the space as being precisely the type of the line
segment. If necessary, this process can be iterated: if lines are sets of points, then a figure
can be considered as a set of lines. Again, the type of figure will be the equivalence class of
certain lines by the induced group action along the type-hierarchy.

The notions of metric Euclidean geometry (lines, triangles, etc.) are therefore precisely
the equivalence classes induced by the group action of the isometric transformations.28 This
is a completely general criterion: given a space S and a group of transformation G, the
notions corresponding to the geometry (S,G) are precisely the objects of the corresponding
type-hierarchy U(S)29 left invariant under the action of G on U(S). in other words, the
notions will correspond rather precisely to the object types obtained by abstracting from
the equivalence classes generated by the group action.

27Not surprisingly, according to Gray (2011, p. 236), many mathematicians, including Cayley, thought
that Klein’s argument was viciously circular.

28The idea of using the group structure of the isometric transformations as a criterion for object identity
comes from Yaglom (1988); the helpful use of the type-token distinction in this context comes from Marquis
(2009). Also relevant in this connection is Wilson (1995, 2005), whose papers, although focused on Frege,
deal with abstraction principles in the context of projective geometry.

29This is the type-hierarchy having S as its domain.
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As should be clear, this key idea will also allows us to define rather precisely which
properties are projectible across the type: the projectible properties are exactly the properties
left invariant by the group of transformations associated with the geometry. So, for instance,
in the previous examples, being of a certain length is invariant under isometric transformations,
whence it is a property projectible across the type of a given line segment. Similarly, given
that length is invariant, being equilateral is also invariant, so this is a property projectible across
the triangle type. Hence, focusing on the group of transformations allows us to formulate a
precise criterion for when a given object or property is natural: an object a or property P
is natural if, and only if, it is invariant under the relevant group of transformations.

This criterion of naturalness agrees with the considerations put forward in the last sec-
tion. As I mentioned in the beginning of this subsection, Klein developed his framework,
among other reasons, to conceptually clarify the notions involved in the geometry of his time.
The first step was to find a common background which could reveal what all these di�er-
ent subjects (Euclidean, a�ne, projective geometry) had in common. These he found in
the group concept: these di�erent areas are all concerned with the study of properties left
invariant by transformations of the space. This allowed him to take the second step, namely
to show how this conceptual unity revealed the precise relations each geometry entertained
with each other. It is this step that I want to analyze now.

The idea that geometry is essentially the study of invariants under certain transforma-
tions allowed Klein to organize and classify the di�erent geometries in a neat hierarchy,
using two basic principles: (i) it’s possible to identify what are apparently di�erent geome-
tries by identifying their respective transformation groups. For instance, the real projective
line and the complex upper half-plane may look like completely di�erent geometrical ob-
jects, yet they can give rise to isomorphic transformation groups (the transformations which
preserve the cross-ratio in the case of the real projective line, the Möbius transformations
in the case of the complex upper half-plane), so they are identified as being essentially the
same. This allows one to work with one object and then transfer this work via a canonical
map from one object to the other, which greatly facilitates some proofs.30 Equally impor-
tantly, (ii) if a geometry’s transformation group is a subgroup of another’s, then the first
geometry can be considered a sub-geometry of the second. This means that every theorem
valid in the second setting is also valid in the first setting. Moreover, it allows one to build
a nice hierarchy of geometries, which fulfills the classification goal.31 This hierarchy also
makes possible to classify one geometry as more general than another, an idea that will be

30It also makes possible to endow the real projective line with a non-Euclidean metric, as Klein himself
realized.

31A picture of which can be found in Kline (1972, p. 919). Although Kline includes a�ne geometry in the
picture, which was not known to Klein at the time, it fits so nicely into the scheme that this anachronism is
justified. Another, di�erent picture can be found in Marquis (2009, p. 32).
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important for Tarski later on: a geometry A is said to be more general than geometry B i�
the group of transformations of B is a subgroup of the group of transformations of A. So,
for instance, a�ne geometries are less general than projective geometries, since the group
of a�ne transformations is a subgroup of the projective transformations.

Using these ideas, we can finally solve the Kantian predicament. To recapitulate, we
started with the problem of identifying the properties which are projectible across a given
type. Bromberger’s analysis gave us a clue, namely to look for explanatory principles that
not only identified those properties, but at the same time explained why they are projectible.
Neo-Fregean abstractionism provided a further ingredient: types are associated with equiv-
alence relations, so if we could somehow sort the “good” equivalence relations from the
“bad” ones, that could go some way towards solving our problem. A way of sorting out the
“good” equivalence relations came from Manders’s work on domain extensions: the “good”
equivalence relations were those that cut nature at its joints, that are somehow natural. Now,
Klein’s insight gave us a criterion for when an equivalence relation is natural in the context
of (homogeneous)32 spaces. An equivalence relation is natural in the context of homoge-
neous spaces if, and only if, it is invariant under the transformation group associated with
the space. So a type in this context will be an object abstracted from these equivalence rela-
tions, and the properties which are projectible across a type will be exactly those invariant
under the group of transformations. In the next section, I’ll show how these ideas can be
put to use when considering Tarski’s logicality proposal.

3.2 Tarski’s Extension of Klein’s Erlangen Program
In the last section, I argued that Klein’s insight allowed us to identify the geometrical notions
in a very precise way. In particular, I argued that a notion, for Klein, should be (anachronis-
tically!) understood as an object in a type-theoretical hierarchy, and that the type of notion
(Euclidean, a�ne, projective) was to be specified by considering the transformation group
associated with the space. In this section, I want to show how Tarski incorporates and ex-
tends this viewpoint in order to answer his question, “What are logical notions?”. Again,
I’ll tackle this in two separate sections, first explaining Tarski’s strategy and then what he
understood by “notions”.

3.2.1 Logical notions

One point that is important to note about Klein’s project is that it only works for homo-
geneous spaces, that is, spaces in which no point is distinguishable from any other. While
somemay consider this as a defect, because it implies that his project only works for spaces of

32I will get to this qualification in the next section.
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constant curvature,33 it can also be seen as an asset, since it characterizes precisely such spaces.
If that is so, then the first step towards Tarski’s proposal is the idea that, from a logical point
of view, the world itself is a homogeneous space, that is, no individual is distinguishable by
logical means. This allows Tarski to apply Klein’s methods to the situation at hand.

Tarski’s idea is rather simple. Recall from the last section that Klein used the fact that
the subgroups of a given group form a lattice in order to establish a unified, hierarchical
picture of the di�erent geometries, with projective geometry at the top. He also tentatively
mentioned higher groups in the hierarchy, such as the group of all homeomorphisms (con-
tinuous transformations), but didn’t develop this idea in his paper. Of course, extending this
idea further, the result is the group of all transformations from the space onto itself. This is
precisely the group of all permutations of the space. This give us Tarski’s proposal:

Tarski’s proposal: The logical notions are exactly the notions invariant under all permutations
of the world onto itself.

We can reconstruct Tarski’s reasoning as follows. First, notice that the relation “is a sub-
group of” is a partial order in the set of all subgroups of a given groupG, so we can say that a
group H is smaller than H ′ i� H is a subgroup of H ′ (of course, there will be incomparable
groups according to this relation). Moreover, this partial order has a maximum element,
namely G itself. Given this, Tarski’s reasoning can be roughly summarized like this:34

(P1): The logical notions are the most general notions.

(P2): The most general notions are those invariant under the largest transformation group.

(P3): The largest transformation group is the full permutation group.

(C): The logical notions are those invariant under the full permutation group.

The argument above is clearly valid. Is it sound? Tarski apparently considers (P1) as
given, since he doesn’t argue for it. (P3) is a mathematical fact: the largest group of mappings
from a set to itself is the full symmetric group of the set.35 So the whole argument seems to
rest on (P2). Let’s take a closer look at this premise.

33For some comments on the situation, including a discussion of the Helmholtz-Lie theorem, cf. Stein
(1977, p.36n29) and Friedman (2002, pp. 196�).

34Bonnay (2008, p. 5) contains a similar reconstruction. It will be clear in the sequence that my reading is
somewhat di�erent from Bonnay’s, however.

35There are groups of mappings over a set which are not subgroups of the symmetric group of the set.
However, if a group of mappings over a set contains one injective mapping, then it is a subgroup of the
symmetric group of the set.
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Tarski seems to have in mind the following line of argument for supporting (P2). Let’s
say that a notion is relevant for a given science (or the science is about that notion, in a rather
weak sense of aboutness) if, and only if, the associated group of transformations distinguishes
the notion (i.e. the notion is invariant under the group action). It’s now possible to define a
partial order among notions in the following way: a notion N is more general than another
notion N ′ if, and only if, N is relevant for more sciences than N ′. Hence, the most general
notions are the notions invariant under the largest group of transformations, and (P2) is
vindicated—if one accepts this definition of “more general”, that is, and always relative to a
give space, a point that I will come back to below.36

Note how the concept of group is essential to the above line of thought. It’s essential for
defining “notion” in an appropriate way, as we have seen in the last section, a definition on
which the subsequent arguments depend. In this regard, there’s a historical curiosity that
should be mentioned. The idea of using Klein’s classification as a criterion for logicality
apparently comes from the Polish mathematician Alexander Wundheiler, himself inspired
by a previous paper by Tarski and Lindenbaum (1935/1983). If we are to trust Carnap’s
journal, Wundheiler mentioned this idea to Carnap, Tarski, and Quine in a conversation
of the “logic group” at Harvard on January 10th, 1941. Here’s Frost-Arnold’s translation of
the relevant transcript by Carnap, which contains a surprising remark by Tarski:

Wundheiler: Can we perhaps characterize the di�erence between logic, mathe-
matics, and physics through transformation groups, just as we characterize pro-
jective, a�ne, and metrical geometry through transformation groups?

Tarski: It is doubtful whether the concept of group helps much in this context.
(Frost-Arnold 2013, pp. 152-3, original emphasis).

The above exchange is definitely surprising, given how essential the group concept has
proven to be in foregoing discussion. Maybe Tarski only had inmind that the group concept
is not of much help in distinguishing logic from mathematics. Tarski was consistently skeptical
of this distinction;37 even in Tarski (1966/1986), Tarski closes the text by noting that his
proposal does not imply an absolute distinction between logic and mathematics. So this may
explain Tarski’s skepticism as registered by Carnap. I will comment further on this point
in the next section, so let me now concentrate on another point, namely whether Tarski’s
proposal covers only relative logicality or if it can also be used to define absolute logicality.

36This conception of relevance is too coarse, of course. Notice that it’s not necessary to take that as a
definition of “more general”; the right-to-left implication would su�ce.

37Cf., among others, the closing paragraphs of Tarski (1983), as well as Tarski (1944). Also, in the conversa-
tions registered by Carnap and presented by Frost-Arnold (2013), there are scattered many skeptical remarks
by Tarski about this distinction.
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To understand this issue better, note that a group of transformations is quite obviously
the group of transformations of some space, or, alternatively, that the invariant objects of the
corresponding type-hierarchy are all defined relative to some initial domain. The natural
conclusion here is that being logical is always thus domain relative, and then one may ask
for an absolute conception of logicality, one that would be domain independent.38 There
are two ways of resisting this conclusion, however. One way would be to treat being logical
in a way that resembled Kaplan’s treatment of indexical expressions, such as “I”. According
to this view, being logical would always have the same content, namely being invariant under
all transformations of the domain, but the specification of its extension would depend on a
further parameter, that is, which domain we are taking into account. On this reading, being
logical would be absolute in the sense that the content of the concept would not be relative,
but which notions are logical would be relative. This would accord with some readings of
his definition of truth for formalized languages, according to which Tarski is authorized in
claiming that he defined the concept of truth precisely because he was able to capture the
content of this concept, even though its extension shifted from language to language.39

Nonetheless, this seems unsatisfactory, since then which notions are logical is still rela-
tive, so we may inquire whether it’s possible to read the proposal in such a way to avoid this
problem. And here, I believe that some of the comments I made on Chapter 2 regarding
Tarski’s metaphysical views are relevant. In particular, in that chapter I stressed how Tarski
always favored a single domain approach, one that took as its domain the world itself. Of
course, as pointed out in that chapter, Tarski unfortunately coupled this idea with a dubi-
ous attempt at defending nominalism by way of a paraphrasing strategy. In contrast, here I
want to suggest that the best way to advance his proposal may be to embrace platonism and
develop one’s ontology accordingly. Indeed, we can directly apply the ideas developed in
this chapter to Tarski’s proposal. Here is a rough sketch of such an application.

We start with our world, a (logically)40 homogeneous space populated by concrete indi-
viduals and abstract objects. Among these, a certain class is rather special, namely the logical
ones. To identify these, we turn to the equivalence relations that ground them in some way.
Since the world is homogeneous, Klein’s ideas find a natural extension in Tarski’s proposal,
which identifies the relevant equivalence relations with those that are invariant under the
action of the group of all transformations of the world onto itself. The objects associated
with those equivalence relations would be “absolutely logical”, that is, they would be the
logical objects, those that inhabit our world.

There are two ways that I think can be developed further, though the di�erences be-

38Some of Feferman’s criticisms may be interpreted in this direction, though I believe he has something
more specific in mind. I discuss Feferman’s position more fully in the next chapter.

39For this interpretation of Tarski’s definition of truth, cf. Patterson (2012, pp. 60-1).
40That is, from a logical point of view. From a physical point of view, the world is not homogeneous!
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tween them may turn out to be merely cosmetic. One is to consider as given only the
domain of individuals and build a hierarchy of abstract objects using only a certain class
of permissible abstraction principles.41 This would generate a hierarchy similar to the one
outlined by Hale (1987, Appendix 1 to Chap. 3). Another approach would be to start with
the whole type-theoretical hierarchy and then to expand the initial domain by introducing
new objects by way of abstraction principles, in a way reminiscent to the domain extensions
analyzed byManders. The first way seems more promising to me, but regardless, the overall
idea is that the logical objects would be those introduced by abstraction principles whose
equivalence relations would be precisely those invariant under the action of the full group
of transformations of the domain. In other words, instead of taking Tarski’s proposal to
“select” among the objects in a type-theoretical hierarchy which ones are logical, we would
use the corresponding abstraction principles to introduce new, sui generis objects, namely
the logical objects.

3.3 Consequences of the proposal
In the last section, I analyzed in some detail Tarski’s proposal and the metaphysical picture
which I find most congenial to it. In this section, I want to discuss a couple of consequences
of his proposal. There are three topics I want to highlight: (i) Tarski’s remarks on cardinal-
ity properties; (ii) the consequences of the proposal for the distinction between logic and
mathematics; (iii) the light the proposal may shed on which are the logical constants.

3.3.1 Cardinality properties

These consequences are interesting froma historical point of view, given that Tarski’s ob-
servations here point to a a surprising continuity in his thought about these matters. First,
note that it’s not di�cult to see that, if we construe the cardinality of a given class as the
class of all classes equinumerous to it, this property will come out as logical under Tarski’s
proposal, as he himself remarks in his lecture. From this, Tarski draws a striking conclusion:

This result seems to me rather interesting because in the nineteenth century
there were discussions about whether our logic is the logic of extensions or the
logic of intensions. It was said many times, especially by mathematical logicians,
that our logic is really a logic of extension. This means that two notions cannot
be logically distinguished if they have the same extension, even if their intensions

41The qualification is necessary because some abstraction principles give rise to contradictions, as Frege’s
infamous Basic Law V. Actually the problem is worse, since there may be consistent abstraction principles
which are nonetheless inconsistent together. For a detailed exploration of this type of problem, cf. Fine
(2002).
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are di�erent. As it is usually put, we cannot logically distinguish properties from
classes. Now in the light of our suggestion it turns out that our logic is even less
than a logic of extension, it is a logic of number, of numerical relations. We
cannot logically distinguish two classes from each other if each of them has
exactly two individuals, because if you have two classes, each of which consists
of two individuals, you can always find a transformation of the universe under
which one of these classes is transformed into the other. Every logical property
which belongs to one class of two individuals belongs to every class containing
exactly two individuals. (Tarski 1966/1986, p. 151)

Interestingly, the same conclusion was already drawn in his 1935 article with Lindenbaum, in
almost the same words:

It is customary to say that our logic is a logic of extensions and not of intensions,
since two concepts with di�erent intensions but identical extensions are logi-
cally indistinguishable. In the light of Th. 5 [which asserts that no two classes of
individuals of the same cardinality are logically distinguishable—D. N.] this as-
sertion can be sharpened: our logic is not even a logic of extensions, but merely
a logic of cardinality, since two concepts with di�erent extensions are still log-
ically indistinguishable if only the cardinal number of their extensions and the
cardinal number of the extensions of the complementary concepts are also equal.
(Tarski and Lindenbaum 1935/1983, p. 388)

Incidentally, this shows that already in 1935 Tarski was willing to draw consequences
about the nature of logic notions from their permutation invariance. I mention this because
Patterson (2012, p. 212) argues that there is no continuity here between the two papers,
since “the very fact” that Tarski announces as a theorem what he later took to be a definition
“gives the game away”. This is bizarre. Suppose that I were able to show that pairs (Γ, φ),
where Γ is a set of sentences, and φ is a sentence, satisfy a certain property if, and only if,
φ is a logical consequence of Γ. This is a theorem, which I take to be revealing about the
nature of logical consequence. Later, I am so impressed by the naturalness of this property
that I decided to make it into a definition of logical consequence, using the theorem to
buttress my claim that the property should enjoy definitional status. Although there has
obviously been some change in my attitude towards my theorem, it seems certain that there
is a notable continuity between my attitude towards the property I have discovered, and
that this continuity is much more important than the noted discontinuity. In this respect, it
seems that the 1966 lecture is, like its companion article, “Truth and Proof” (Tarski 1969),
an update of old papers, incorporating old views into the new perspective Tarski attained
after his break with intuitionistic formalism.



THE PROPOSAL 79

In any case, the suggestion that “our logic is even less a logic of extension”, but it is
instead “a logic of number, of numerical relations” may seem to imply that Tarski is here
assimilating logic to mathematics, which brings us to our next topic.

3.3.2 Mathematics as logic?

We saw in the last section how Wundheiler introduced the idea of using transformation
groups to identify the logical notions, and thus establish a line between logic and mathe-
matics. In that context, we also saw how Tarski surprisingly expressed skepticism regarding
Wundheiler’s proposal. So, has Tarski changed his mind in the intervening years? The an-
swer seems to be negative, that is, he is still skeptical of a principled demarcation between
logic and mathematics. That does not mean that he assimilates one to the other; rather, he
thinks the distinction is relative.

A comparisonwith Carnapmay again prove to be instructive.42 As emphasized in the last
chapter, Carnap had a rather radical pragmatist outlook, in which philosophical frameworks
should be evaluated in terms of their scientific fruitfulness. There, we saw in particular
how this pragmatism guided his discussion of explication, by providing the appropriate
benchmark against which to judge a purported explication. Here, I want to emphasize a
di�erent aspect of this pragmatism, namely his famous Principle of Tolerance:

In logic, there are no morals. Everyone is at liberty to build up his own logic, i.e.
his own form of language, as he wishes. All that is required of him is that, if
he wishes to discuss it, he must state his methods clearly, and give syntactical
rules instead of philosophical arguments. (Carnap 1937/2001, p. 52, original
emphasis)

Carnap’s tolerance is tied with his explication project. Recall from the last chapter that
sometimes di�erent explications of a same concept are possible: thus, the concept fish can be
explicated both in a more traditional Linnean taxonomy (which would result in sharks being
classified as fish) or in a cladistic one (excluding shark from the fish), the choice between
one or the other being an external question, that is, one to be decided on pragmatic grounds.
In some cases, however, there could be doubts even about the logical framework in which
we couch our explications; the principle of tolerance provides an answer to this worry.
Instead of fixing one logical framework once and for all, Carnap insists that the adoption of
a framework must be based on pragmatical considerations. Thus, for instance, the choice
between intuitionism, predicativism, or simple type theory is deflated as a pragmatic choice,

42Again, a full analysis of Carnap’s position is not intended here. For a detailed analysis, cf. Carus (2007,
chap. 10), as well as many of the essays in Wagner (2009), in particular the ones by Richard Creath, Thomas
Ricketts, and Michael Friedman. Creath’s essay is particularly congenial to the viewpoint adopted here.
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so that one can change logics based on the purpose at hand. This shows the remarkable
extent to which Carnap became a pragmatist.43

This line of thought seems to be congenial to the late Tarski. In the previous chap-
ter, I argued that Tarski moved from a traditional position associated with Leśniewski to
a pragmatic position, more in the spirit of the Lvov-Warsaw school of mathematics. For
instance, in a contribution to a Chicago meeting of the Association for Symbolic Logic and
the American Philosophical Society in 1965, Tarski made the following remarks:

(...) maybe the notion of truth is simply not proper, this classical notion of truth,
for mathematical sentences. I think that this is the negative conclusion which
one could draw from these developments starting with Gödel, and therefore I
am quite interested in attempts of [at?] constructing set theory on the basis of
some non-classical logics, simply as an experiment. We shall see to what it will
lead. (Tarski 2007, p. 261)

So Tarski is at least not opposed to considering alternative logics as “an experiment”;
presumably the last line indicates that such a logic could end up being preferable to classical
logic, if it provedmore fruitful, indicating his pragmatic attitude towards suchmatters. Such
an attitude is in evidence also in his abandonment of type theory in favor of an untyped
language for set theory, e.g. first-order ZFC. Here’s how Carnap recalls his conversation
from February 13th, 1941, with Tarski on this matter:

The Warsaw Logicians, especially Leśniewski and Kotarbiński, considered a system
like PM [[Principia Mathematica]] (but with a simple theory of types) completely
self-evident as a formal system. This limitation worked strongly and sugges-
tively on all the students, and on T. himself until “Wahrheitsbegri� ” (where nei-
ther transfinite types nor a system without types is considered, and finitude
of types is implicitly presupposed; they were first articulated in the appendix,
added later). But then Tarski saw that an entirely di�erent system-form is used
in set theory with great success. So he finally came to consider this system-form
without types as more natural and simpler.(Frost-Arnold 2013, p. 160, original
emphasis, insertion in the double brackets by Frost-Arnold)

43In this connection, I cannot agree with Co�a (1991, pp. 320�) that Carnap adopted a “second-level
semantic factualism”, i.e. that he thought his principle of tolerance was somehow “true”. As remarked by
Stein (1992), Carnap himself pointed out that the divergences between him and Quine could (only?) be solved
on pragmatic grounds. Since these include his principle of tolerance, it seems that Carnap was thoroughly
pragmatist about philosophy: the dispute between him and someone who denied tolerance is not an internal
dispute, but an external one, also to be decided based on the fruitfulness of the respective projects. In other
words, I think Co�a underestimates both the extent and the cogency of Carnap’s pragmatism.
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This passage is especially revealing given that, before (e.g. in a conversation with Carnap
from October of the previous year), Tarski had remarked (i) that higher-order logic was
implicitly committed to platonism and (ii) that he rejected platonism, so, if metaphysical
considerations of this sort were driving him, this would be the perfect place to remark on it.
Instead, Tarski gives as his main reason for adopting a system like first-order ZFC its “great
success”, once again emphasizing pragmatic considerations.44

Therefore, if the adoption of a logical framework is itself subjected to pragmatic con-
siderations, it’s no surprise that the question of whether we should distinguish logic from
mathematics is also relative to this type of approach. So we find Tarski tellingMortonWhite
in a letter from 1944:

(...) sometimes it seems to me convenient to include mathematical terms, like the
∈-relation, in the class of logical ones, and sometimes I prefer to restrict myself
to terms of ‘elementary logic’. Is any problem involved here? (Tarski 1944, p.
29)

Since Tarski considered that all of mathematics could be reduced to the membership
relation, the above quotation is basically saying that whether or not mathematics is reducible
to logic is a matter of convenience. This is exactly the view we find also expressed in the 1966
lecture. After raising the question of the reducibility of mathematical notions to logical
notions under his proposal, Tarski remarks:

Are set-theoretical notions logical notions or not? Again, since it is known that
all usual set-theoretical notions can be defined in terms of one, the notion of
belonging, or the membership relation, the final form of our question is whether
the membership relation is a logical one in the sense of my suggestion. The
answer will seem disappointing. For we can develop set theory, the theory of the
membership relation, in such away that the answer to this question is a�rmative,
or we can proceed in such a way that the answer is negative. (Tarski 1966/1986,
p. 152)

Or, as he himself glosses the above in the very next line, “So the answer is: ‘As you
wish’!”. Of course, this jocose remark should not be taken too literally; as per the letter to
Morton White, it’s not like Tarski thinks the distinction between logic and mathematics
is completely arbitrary or up to a person’s whim. Rather, he thinks such a distinction is a
matter of convenience or technical expediency.

44Indeed, Tarski himself would adopt a type-theoretical framework if that suited his purposed. Cf., for
example, the discussion of logicality in Tarski and Givant (1988) and the comments on that work by Bellotti
(2003).
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There are nevertheless some problems with this answer. The first is that there is a cer-
tain incongruity between it and the Kleinian motivation behind Tarski’s proposal. For the
motivation to that proposal was precisely the realization that certain geometrical notions
are less general than the logical notions. If, now, geometrical and logical notions are on
a par, this seems to undercut that line of reasoning.45 Of course, this only happens be-
cause we seem to be operating with two di�erent sets of objects: the ones that correspond
roughly to the orbits of the action of the geometric groups and the ones corresponding to
their, let us say, set-theoretical surrogates constructed inside the type-theoretical hierar-
chy. Seem in this light, the problem dissolves itself: the geometrical objects generated by
the geometrical groups are not logical, whereas their surrogates are. This is not surprising:
the type-theoretical hierarchy was developed precisely to show that mathematics could be
modeled inside it. This does not mean that mathematics is logic, anymore than the fact that
we can model the real numbers in the cumulative hierarchy means that analysis is really ZFC
in disguise.

3.3.3 Logical constants

As I argued in the beginning of this chapter, Tarski’s proposal is essentially a proposal about
notions, taken as objects, properties of or relations between objects, and not about logical
constants, that is, linguistic items. Nevertheless, there may be someway of translating claims
about logical to logical constants, some bridge principles that allows us to cross over the two
domains. I want here to examine Tarski’s proposal in light of some candidate bridge princi-
ples. The results will be largely negative, though I do try to point in the direction of further
work in this area.

The first bridge principle was proposed by Tarski himself, together with Givant. Fix a
domain D and suppose S is a symbol from a type-theoretical language. Tarski and Givant
(1988, p. 57) provide the following definition for logical constants:

(BP1): A symbol S from a type-theoretical language is said to be a logical constant i� for every
interpretation SD of S with domain D, SD is a logical notion or operation.

Of course, given that the principle makes reference to every interpretation, it implicitly
assumes a list of basic logical constants (otherwise no constant would come out as logical), so
this defines at best relative logicality. One way to try to fix this is to work with interpreted

45This is related to an objection by Bonnay (2008, pp.8-10), according to which Tarski’s proposal is faulty
since any mathematical structure can be made into an invariant object by employing certain tricks. I don’t
find the line pursued by Bonnay convincing, however, since his point is that this undermines our “intuitive”
picture according to which logic is more basic than mathematics; I personally don’t find this “intuitive” at all,
and I certainly don’t see the relevance of such brute “intuitions” to the discussion.
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languages. So supposing a type-theoretical language and its corresponding interpretation
as given, one could propose:

(BP2): An expression S of an interpreted type-theoretical language is a logical constant i� it denotes
a logical notion.

This still has problems, though. To see this, consider an arbitrary predicate P . Then,
according to (BP2), the expression Px ∨ ¬Px will come out as logical, since it will denote
the universal set. As intuitively non-logical predicates such as “is blue or isn’t blue” count
as logical according to this principle, it might be better to search for a better one. Here’s a
tentative suggestion.46

BP3: An expression S of a given language L is a logical constant i� it analytically denotes a
logical notion or operation.

Evidently this depends on whether or not we can define “analytically” in a satisfactory
way. It seems to me that this is possible, but, again, I will content myself here with only a
very rough sketch. The idea is to employ the general semantics framework developed by
Lewis (1970/1983) for this purpose.47 Roughly put, we use a categorial grammar to sort our
expressions into certain basic types and then show how certain semantic values are attributed
to the expressions of the language based on their “construction tree”. These values are basic
functions which take as values items from a certain category, plus certain parameters, and
give another semantic value as output. An expression then analytically denotes a value if,
for every relevant parameter, it denotes that value.48 If this rough sketch could be fleshed
out, then we would have a working definition of “analytic” that we could use to work out
our bridge principle. Without such a definition, I personally don’t see how such a principle
can be sensibly constructed. This is a task for a further work, however.49

3.4 Conclusion
In the first part of this chapter, I analyzed Klein’s proposal and how it could be used as an
answer to the problem of identifying projectible properties, a problem which I called the

46This is similar to the suggestion made by McGee (1996) at the end of his paper.
47A similar idea is developed by MacFarlane (2000, Chap. 6), though I would personally pursue another

direction, one more directly tied with what Lewis calls “meaning”—note that MacFarlane (2000, p. 189)
explicitly says he will not “venture into the theory of meaning”.

48Compare with the discussion about meaning and being analytically true in Lewis (1970/1983, pp. 200-3).
49In a recent talk at our department, my colleague André Quirino remarked that a possible definition for

“analytic” would be that it is essential for the word to have that particular semantic value. “Essential” here
would be cashed out in terms of necessary qualities and supervenience. Again, however, these ideas are too
inchoate for me to evaluate whether they can be made to work in the present context.
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Kantian predicament. In summary, Klein’s idea was to employ the concept of invariance to
simultaneously define an object-type and identify which properties are projectible across
the type. I then showed how this framework was extended by Tarski in his proposal for the
logical notions, with some observations on how certain “metaphysical adjustments” could
be made so that the proposal would be more attractive. Finally, I analyzed three specific
consequences from the proposal, showing how some of the criticism leveled against it could
be met.

A Appendix: Group Actions and Homogeneous Spaces
Given the central importance of group actions and homogeneous spaces in this chapter, I
decided to include here in the Appendix the basic results and definitions related to these
notions. They are, of course, not an introduction to the subject, but merely pointers for the
curious reader who may be puzzled by my use of these notions in the text. The exposition
is hence very informal.

Let’s start with the definition of a group:

Definition A.1. A group is a set G together with a binary operation ◦, a unary function −1,
and a distinguished element e satisfying the following three axioms:

1. ∀x∀y∀z(x ◦ (y ◦ z) = (x ◦ y) ◦ z) (Associativity);

2. ∀x(x ◦ e = x) (e is the identity);

3. ∀x(x ◦ x−1 = e) (x−1 is the inverse of x).

Example: If X is a set, let Sym(X) be the set of all bijections from X to itself. Then
Sym(X), together with function composition ◦, the unary operation −1 which takes every
function to its inverse, and e as the identity function, is a group.

The reader who is wondering where this “load of easily-forgettable axioms” (Arnol’d
1998, p. 234) comes from may consult Hans Wussing (2007) interesting book on their ori-
gins; and the diligent reader will easily verify that any group satisfies the following propo-
sitions:

Proposition A.1. If G is a group, then G satisfies both the left and the right cancellation laws: for
any a, b, c ∈ G, a ◦ b = a ◦ c and b ◦ a = c ◦ a each implies that b = c.

Proposition A.2. If G is a group, then the identity element and the inverse of a given element are
both unique, i.e. if there is e′ ∈ G such that x ◦ e′ = x, then e′ = e and, moreover, for any x′ ∈ G
such that x ◦ x′ = e, x′ = x−1.

Definition A.2. An abelian group G is a group such that, for any a, b ∈ G, a ◦ b = b ◦ a.
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Example: The integers Z with the operation of addition +, the unary function − which
takes every integer to its negative, and 0, is an abelian group.

We will use this notational abbreviation: we write xn for
n times︷ ︸︸ ︷

x ◦ x ◦ · · · ◦ x, where n is a
natural number; x0 is defined to be the identity of the group for any x in the group. As
another abbreviation, we will often write x ◦ y as simply xy.

Using those conventions, the reader may also show the following proposition:

Proposition A.3. G is an abelian group if, and only if, either, for any natural number n and for
any x, y ∈ G, (x ◦ y)n = xn ◦ yn or, for any x, y ∈ G, (x ◦ y)−1 = x−1 ◦ y−1.

Definition A.3. If G is a group and H ⊆ G, then H is a subgroup of G, in symbols H ≤ G,
if, and only if, it satisfies the following conditions:

1. For any a, b ∈ H , a ◦ b ∈ H ;

2. For any a ∈ H , a−1 ∈ H .

Note that these conditions imply that e ∈ H : take any a ∈ H . By 2, a−1 ∈ H , so, by 1,
a ◦ a−1 = e ∈ H .

Definition A.4. Let G be a group and H ≤ G. The right and left cosets of H in G for a
given g ∈ G are defined, respectively, as Hg = {hg | h ∈ H} and gH = {gh | h ∈ H}.
Similarly, we also have gHg′ = {ghg′ | h ∈ H}.

Here is another easy exercise for the reader:

Proposition A.4. Let G be a group and H ≤ G. Define a relation ∼ on G by setting a ∼ b i�
b ∈ aH . Then ∼ is an equivalence relation.

The above proposition remains valid if we exchange left cosets for right cosets, as the
reader may readily verify.

Definition A.5. Let G be a group and H ≤ G. H is said to be a normal subgroup of G, in
symbols H / G, i� for every a ∈ G, aH = Ha.

The concept defined of normal subgroup, as we will see, is central to group theory. Here
are a couple of equivalent characterizations:

Proposition A.5. Let G be a group and H ≤ G. The following are equivalent:

1. H / G;

2. For any g ∈ G, gHg−1 = H;
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3. For any g ∈ G, gHg−1 ⊆ H .

Proof. Suppose 1. Then g(Hg−1) = g(g−1h) = (gg−1)H = H ; the first equality follows by
normality and the second by associativity. So 1 implies 2 and 2 obviously implies 3, hence
it remains to be seen that 3 implies 1. So suppose 3 and let a ∈ gH be arbitrary, i.e. a = gh

for some h ∈ H . We need to show that a ∈ Hg. By the hypothesis, ag−1 = ghg−1 ∈ H ,
so ag−1g = a ∈ Hg. as required. A similar argument shows that, for arbitrary a ∈ Hg,
a ∈ gH . Therefore, gH = Hg for any g ∈ G, i.e. H is normal. So 3 implies 1. �

Proposition A.6. Let G be a group and H / G. Then the operation aH ◦ bH = (ab)H is well
defined.

Proof. Let a′ ∈ aH and b′ ∈ bH . I claim a′b′ ∈ (ab)H . Since H is normal, by hypothesis b′ ∈
Hb, so a′ = ah1 for some h1 ∈ H and b′ = h2b for some h2 ∈ H . Hence, a′b′ = ah1h2b. But
h1, h2 ∈ H , so h1h2 ∈ H as well, whence h1h2b ∈ Hb. By normality again, this means that
h1h2b ∈ bH , i.e. there is h ∈ H such that h1h2b = bh. Thus, a′b′ = ah1h2b = abh ∈ (ab)H ,
as required. �

Using this result, it’s possible to define the important concept of a quotient group:

Definition A.6. Let G be a group and H / G. Set G/H = {aH | a ∈ G}. Then it’s clear
that the operation aH ◦ bH = (ab)H inherits the properties of the group operation in G,
so that the structure (G/H, ◦) is also a group, with eH = H as the identity element. This
group is called the quotient group of G by H .

Finally, we can define a group homomorphism:

Definition A.7. Let G,H be groups and f : G → H a function. Then f is a group homo-
morphism if it takes the identity inG to the identity inH and, moreover, f(gg′) = f(g)f(g′)

for any g, g′ ∈ G. If f is an injective homomorphism, it is an embedding and if it is a bijective
homomorphism it is an isomorphism. The set ker(f) = {g ∈ G | f(g) = eH}, where eH is
the identity of H , is called the kernel of f .

This allows us to give another nice characterization of the normal subgroups of G.

Proposition A.7. Let G be a group. Then H / G if, and only if, H = ker(f) for some homo-
morphism f .

Proof. Suppose that H /G. Consider G/H and the canonical projection of G onto G/H , i.e.
the function f : G → G/H such that f(g) = gH . It’s not di�cult to see that f is a group
homomorphism, and that ker(f) = H .
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Conversely, if f : G → H is a homomorphism, let K = ker(f). In order to show that
K / G, it su�ces, by Proposition A.5, to show that gKg−1 ⊆ K for any g ∈ G. So suppose
a ∈ gKg−1 for an arbitrary g. Then a = gkg−1 for some k ∈ K, whence f(a) = f(gkg−1) =

f(g)f(k)f(g−1) = f(g)f(g)−1 = eH , that is, a ∈ K, as required. �

We are now almost ready to define the concept of group action. We just need one more
result about the set of all bijections from a set to itself.

Definition A.8. Let S be any set. Then SS is the set of all functions from S to itself.

Proposition A.8. Let S be an arbitrary set. Then the set Sym(S) = {f ∈ SS | f is a bijection}
is a group under function composition.

Proof. Just take the identity function on S as the group identity and the inverse functions as
the group inverses. �

Definition A.9. The group Sym(S) is called the symmetric group of S.

We are now ready to define a group action:

Definition A.10. LetG be a group and S a set. A group action is a homomorphism f : G→
Sym(S). If there is such an action, we say that G acts on S and that S is a G-set.

For convenience, if there is no risk of confusion, given an action f : G → Sym(S), I
will write f(g)(s) for g ∈ G and s ∈ S as simply g · s (corresponding to the left action).

The next three definitions will be important in the sequel:

Definition A.11. Let f : G→ Sym(S) be an action and s ∈ S an arbitrary element. Then
the orbit of s under this action is the set orb(s) = {g · s | g ∈ G}.

Definition A.12. Let f : G→ S be an action and s ∈ S arbitrary. Then the stabilizer of s
under the action is the set Stab(s) = {g ∈ G | g · s = s}.

Definition A.13. Let f : G → Sym(S) be an action. This action is said to be transitive if,
for some s ∈ S, orb(s) = S. In this case, G is also said to act transitively on S.

First, note that a group action has three important properties:

Proposition A.9. Let f : G→ S be an action, e the identity inG, and id the identity in Sym(S).
Then:

1. e · s = s for any s ∈ S;

2. g · (g′ · s) = (gg′) · s;
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3. (g)−1 · s = (g−1) · s (the left side is the inverse of the image of g under the action, whereas
the right side has the image of the inverse of g under the action).

Proof. Since f is a homomorphism, it must take the identity to the identity. Thus, e · s =

id(s) = s, as required. Moreover, g ·(g′ ·s) = f(g)(f(g′)(s)) = f(g)◦f(g′)(s) = f(gg′)(s) =

(gg′) · s. Finally, (g)−1 · s = (f(g))−1(s) = f(g)−1(s) = f(g−1)(s) = g−1 · s. �

In the text, I mentioned that equivalence relations correspond to orbits of elements under
group actions. It’s time to prove this basic result.

Proposition A.10. Let f : G→ Sym(S) be an action. Then the relation∼ on S given by s ∼ s′

if, and only if, s′ ∈ orb(s) is an equivalence relation. Conversely, given an equivalence relation ∼
on S , there is a group action f : G → Sym(S) such that the orbit of a given point is precisely its
equivalence class.

Proof. Suppose f : G → Sym(S) is a group action and define the relation ∼ as in the state-
ment of the proposition. Using Proposition A.9, then, for any s ∈ S, s ∼ s, since e · s = s,
where e is the identity in G. So ∼ is reflexive. If s ∈ orb(s′), then, by definition, there is
g ∈ G such that g · s′ = f(g) = s. But then, g−1 · s = s. So ∼ is symmetric. Finally, if s ∼ t

and t ∼ u, then g · s = t and g′ · t = u, so u = g′ · (g · s) = g′g · s, so s ∼ u as well, that is, ∼
is transitive.

To show the converse, letG ⊆ Sym(S) be the subset of permutations of S which respect
the given equivalence relation, i.e. such that for any g ∈ G, s ∼ s′ i� g(s) ∼ g(s′). It’s
not di�cult to show that this is a subgroup of Sym(S). The action is then defined to be the
inclusion map. �

This also means that if G acts on S, then the action partitions S, i.e. divide it into disjoint
blocks.

Definition A.14. Let G be a group and H < G, not necessarily normal. Then we can
define the coset space of H in G to be the set G/H of left cosets of H in G.

Proposition A.11. If G/H is a coset space, the function f : G → Sym(G/H) given by left
multiplication, so that f(g)(aH) = (ga)H for aH ∈ G/H , is an action.

Proof. Clearly f takes the identity to the identity. Next, suppose g, h ∈ H and consider an
arbitrary aH . Then f(gh)(aH) = (gha)H = g(ha)H = f(g)(haH) = f(g)(f(h)(aH)), as
required. �

Proposition A.12. Let f : G → Sym(S) be a transitive action. Then, for any s ∈ S there is a
bijection between G/Stab(s) and S .
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Proof. For each left coset choose a representative g and define a map πs : G/Stab(s) → S

such that πs(gStab(s)) = g · s. This is well defined, since if g′ ∈ gStab(s), then g′ = gh

for some h ∈ Stab(s). Thus πs(g′) = g′ · s = (gh) · s = g · (h · s) = g · s. Since the
action is transitive, πs is surjective. Moreover, πs(gStab(s)) = πs(g

′Stab(s)) implies that
g · s = g′ · s, so (g−1g′) · s) = g−1 · (g′ · s) = g−1 · (g · s) = s, so g−1g′ ∈ Stab(s). Thus,
g′ = g(g−1g′) ∈ gStab(s), so gStab(s) = g′Stab(s), which is what we wanted to prove. �

A rigorous definition of homogeneous spaces and, more importantly, Klein geometries,
would require too much technical machinery for me to give a self-contained exposition
here. So instead I’ll just make some quick observations, mostly following the discussion in
Reid and Szendrői (2005, chap. 9). Note that the conception according to which a space
is homogeneous if every point is indistinguishable from every other point can be precisely
captured using our framework: a space is homogeneous if, and only if, the group action
associated with the space is transitive. Furthermore, by the last proposition proven above,
it will in general be possible to recover the entire space from the group G and a subgroup
H < G such thatH is the stabilizer of some point of the space. In fact, this allows us to define
the space to be the coset space of G/H .
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Chapter 4

Coda: Criticism of Tarski’s Proposal

In the last chapter, I proposed a more metaphysical reading of Tarski’s proposal than what
is customary in the literature. In this chapter, I want to show how this reading allows one
to answer a number of criticisms leveled against the proposal. In particular, I propose to
deal with three famous critiques, by, respectively, Solomon Feferman, Denis Bonnay, and
Catarina Dutilh Novaes. The reason why I focus on these critics is admittedly selfish: I
believe that answering their criticism may help to bring to focus some of the advantages of
my metaphysical reading. Additionally, I want also to deal with a criticism that could be
raised specifically against my proposal, coming from the nominalist camp.

The fact, however, that I reject the philosophical basis for their criticism of Tarski’s pro-
posal should not lead one to think that I dismiss their results as unimportant or uninteresting.
Indeed, quite apart from their philosophical merits, I believe their own positive proposals lead
to some very interesting mathematical results. To illustrate this, I dedicate three lengthy ap-
pendices to this chapter to developing some lines of thought present in Feferman’s approach.
The reason for choosing Feferman as the main case study for this more technical part is sim-
ple: it requires less mathematical background from the reader than Bonnay’s work, which
makes use of Galois theory and other results from oligomorphic structures. On her turn,
Dutilh Novaes o�ers as a tentative proposal the idea of using invariance under bisimulation
as a criterion for logicality, bringing her somewhat close to Bonnay’s own proposal, which
uses partial isomorphisms; she does not, however, develop these ideas further, so I preferred
to focus on the more developed proposal of Feferman.

4.1 Eliminativism

The eliminativist tendency I have in mind is related to the link I have established between
projectible properties and properties of the type.1 Suppose for a moment that we have a

1I am here following the general strategy pursued by Heck (2011).
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plausible account of such properties. Then, one may ask, isn’t it possible to eliminate refer-
ence to the type altogether, relying onwhatever principle explains such properties to explain
away our type-theoretical language? Take, for instance, Bromberger’s quasi-natural kinds.
Suppose we have a sentence φ(τ) which predicates a certain property to a quasi-natural kind
τ . By hypothesis, such a property is projectible across τ , and hence every token a of τ shares
the property. Moreover, also by hypothesis, we have some kind of nomological principle,
say ψ(x), which accounts for this property. We can thus explain away references to τ by
paraphrasing φ into a universally quantified sentence ∀x(ψ(x) → φ(x)). Given that, in the
account I want to propose, there will be in general to every type τ an explanatory principle
ψ(x), this strategy should be applicable across the board.2

There is reason to resist this broad eliminativist strategy, however. 3 As a consequence of
pursuing such a strategy, the resources employed in the elimination of such entities must be
of the kind acceptable to the eliminativist, say, physical objects and properties in the case of
the physicalist. But this means that the reduction will only work if the explanatory principle
involved in the account given of projectible properties will not be able to have recourse to
types or other undesirable entities. This means that the eliminativist will generally have to
paraphrase the explanatory principles themselves using only sparse resources, a formidable
task in most cases.4

To go back to an example from the last section, consider word types. How can we
account for the unity of the word tokens without having recourse to types? In fact, it’s not
even clear that there are any nominalistically acceptable properties which are projectible
across a given word type, since even being very stringent about what kind of inscriptions
or sound patterns count as a token of a type will still result in a wide variety of tokens:
consider a token of a word as a series of taps in Morse code and a token of a word as typical
inscription in a blackboard. The type theoretician can have recourse to properties such
as their character length, their shared characters, their function in a linguistic system, etc.
But what about the eliminativist? What properties can he appeal to? Similarly, the type
theoretician can explain that these properties are projectible because of, say, the role these
words play in given linguistic systems, which themselves are formulated by appeal to types.

2Heck (2011) calls this position “syntactic reductionism”.
3The reader should consult Heck (2011, 2017) for a more detailed case against these types of eliminativist

strategies, as well as Wetzel (2009) for a sustained case against nominalism about types.The reader of those
texts will notice how much my position owns to both author’s cases against nominalism, even if my own
positive proposals di�er from theirs.

4This type of objection seems to me decisive against proposals such as Klement (2017), which attempt to
use higher-order resources in the service of syntactic reductionism. Klement also exploits the fact that types
are generally defined by way of equivalence relations, but he does not say how to account for these relations
themselves without making recourse to types.
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It’s not clear how the eliminativist would proceed here.5

Of course, as the old cliché goes, absence of evidence is not necessarily evidence of ab-
sence, and the above considerations are a far cry from forming a decisive argument against
such eliminativism. Nonetheless, they do suggest that there is a certain naturalness in ad-
mitting types, and that theories which make use of them will most likely turn out to be
simpler and more elegant than those which avoid them, since they will avoid cumbersome
paraphrases and implausible principles.

4.2 Feferman’s criticism

Feferman (1999) raises three criticisms against Tarski’s proposal:

(a) The thesis assimilates logic to mathematics, more specifically to set-theory.

(b) The set-theoretical notions involved in explaining the semantics of L∞,∞ are not ro-
bust.

(c) No natural explanation is given by it of what constitutes the same logical operation
over arbitrary basic domains.

We have dealt with (a) in the previous chapter. Criticism (b) is more delicate; it obviously
depends onwhat wemean by “robust”. Feferman glosses this as being relatively independent
of features of the surrounding set-theoretical universe. For instance, the property of being
uncountable is not robust, since a set which is uncountable in a given set-theoretical universe
may not be uncountable in a generic extension. More precisely, Feferman proposes to gloss
“robust” as absolute; of course, since being absolute is relative to a given theory, one may ask
which set theory Feferman has in mind. Feferman (2010) proposes to assume as background
theoryKripke-Platekwithout the axiom of infinity and allowing for urelements(KPU− Inf);
the reasoning being that this is a theory which does not “encapsulate any problematic set-
theoretical content” (Feferman 2010, p. 17). Or, as Feferman (1999, p. 38) also makes clear,
the point is that considerations about logicality should ideally be independent of “what there
is”: the more robust a notion, the less ontologically committed it is. Assuming this definition
of robustness, by a theorem of Manders we have that finitary first-order predicate logic is
the only logic which is absolute with respect to KPU− Inf.6 Thus, accepting Feferman’s
criticism is tantamount to accepting the notions definable in first-order logic as the only
logical notions.

5Again, cf. Wetzel (2009) for consideration of some nominalist proposals and why they are unconvincing
absent some recourse to types.

6Cf. Appendix A for the technical details, including a proof of the theorem due to Väänänen.
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As for criticism (c), considered by him as the strongest reason to reject Tarski’s proposal,
Feferman’s idea is the following. Define a connective ∨∨ as the “wombat disjunction”:7 the
sentence P ∨∨Q is true i� either there are wombats in the universe and one or both of P and
Q are true, or else there are no wombats in the universe and P andQ are both true. In other
words, ∨∨ behaves like the typical disjunction in domains with wombats and like the typical
conjunction in domains in which there are no wombats. Since in each domain ∨∨ behaves
like a logical constant, it’s clear that, in each domain, ∨∨ is invariant under any permutations
of the universe, so it apparently counts as logical according to Tarski’s criterion. But (a) the
definition of ∨∨ essentially involves a reference to a non-logical notion, namely wombats, so
it shouldn’t be counted as logical; (b) even disregarding (a), it’s still the case that∨∨ has a very
di�erent behavior depending on the domain on which it’s applied. According to Feferman,
however, there’s a sense in which the logical operations (and this is certainly true of the
typical logical operations, such as the ones from the first-order predicate calculus) have the
same meaning across domains, in such a way that any (successful) logicality criterion should
be able to explain how di�erent applications of the same operation “connect naturally” (the
expression is Feferman’s) with each other.8

Observe that “unnatural” operators such as McGee’s wombat disjunction would still ap-
pear even if we adopted the generalization of Tarski’s thesis proposed by Sher, i.e. if instead
of permutations of a single domain we considered bijections between domains. Instead of
defining wombat disjunction, one could still define, e.g. an operator that would behave
as disjunction in domains with countable cardinality and as conjunction in domains with
uncountable cardinality.

Why Feferman considers this the “strongest reason” for rejecting Tarski’s criterion is a
mystery tome. First, as Sher (2008, p. 333) points out, one could similarly define a quantifier
Q such thatQ behaved like ∀ in domains of cardinality< 101, as ∃ in domains of cardinality
101−745 and as¬∃ in all other cardinalities. Why should this quantifier not count as logical?
Or one could define a set theoretical operation, say ∩∩, which behaved like ∩ in domains of
countable cardinality and as ∪ in domains of uncountable cardinality. Clearly, the latter is
still a set-theoretical operation, though, perhaps, not a very natural one. This seems to show,
as Sher rightly concludes, that the issue of “naturalness” is entirely separate from the issue
of “logicalness”, so to speak. Moreover, considering our analysis of the proposal from the
previous chapter, it rather misses the mark: as discussed then, Tarski’s proposal is better read
not as domain-relative, but rather as concerning which objects are logical in our world. Of
course, this means that the proposal is best read as a metaphysical thesis, one that coheres

7The example is McGee’s. Cf. McGee (1996, 2004).
8In the second Appendix, I examine Feferman’s own proposal for meeting this requirement, whereas in

the third Appendix I present Casanovas’s analysis of why Feferman’s proposal is problematic.
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well with a platonist ontology, and such an ontology is anathema to Feferman, who is well-
known for his predicativist and anti-platonist standpoint. This brings us back to criticism
(b).

As he states quite clearly in the conclusion of his article, Feferman (1999, p. 51) believes
that any proposal about logical notions should be related to the “more empirical study of
the role of logic in the exercise of human rationality”. Therefore, it’s not surprising that
he eschews metaphysical considerations in discussions about logicality; if logicality is in-
timately tied to human rationality, it would seem to depend more on epistemological or
broadly formal considerations than on ontological matters. Briefly put, if there is a divide
between mind and world, then logicality falls on the “mind” side of the divide. But this just
means that Feferman’s concerns are not the same concerns whichmotivate Tarski’s proposal.
On my reading, Tarski’s proposal is not concerned with logic as somehow related to “hu-
man reasoning”, but rather with which objects and properties can be considered “logical”—
dramatically speaking, which objects and properties are in a sense a fundamental part (the
logical part) of the structure of the world. This inquiry is obviously concerned with “what
there is”, and hence metaphysical considerations, instead of being some kind of stain which
contaminates it, are precisely what constitutes it. Therefore, ontological assumptions are not
inherently problematic, at least insofar as they cohere with the overall metaphysical picture
being described. We are thus free to employ whatever mathematical theory adequately fits
in with our scheme.

This reveals a theme that will see recur in our examination of certain criticisms of Tarski’s
proposal: they often seem to presuppose that the proposal has as its target something other
than describing which objects or properties are logical (a metaphysical endeavor), and hence
fail to meet it on its own ground. To use the terminology from Chapter 1, it is as if critics
did not pay attention to the crucial clarification step of Tarski’s explication, finding fault
with his explicatum for not matching a concept which simply isn’t his explicandum.

4.3 Bonnay’s criticism

The main objection raised by Bonnay (2008) is that targeted at Tarski’s generality argu-
ment. Recall from the last chapter that the argument rests on the premise that the most
general notions are those invariant under the biggest transformation group, which, as we
mentioned, is simply the group of all permutations of the domain. Bonnay raises two objec-
tions to this characterization: first, why restrict such notions to intra-domain notions? This
first objection has already been answered in the previous chapter, where I noted that Tarski’s
proposal is best construed as a proposal about our world, not just any domain. But Bonnay
also has a second objection: why restrict oneself to permutations of the domain? Why not
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allow for other kinds of functions or even relations? As he himself puts it:

Now there are a lot of other concepts of similarity between structures which
are used in model theory and in algebra which are far less demanding [than
permutation invariance—D.N.]. Instead of requiring the structure to be fully
preserved, they lower the requirement to some kind of approximate preserva-
tion. Why should we refrain from resorting to these other concepts? To sum
up, even if one grants that generality is a good way to approach logicality, there
is no evidence that the class of all permutations is the best applicant for the job.
(Bonnay 2008, p. 10)

If one approaches the question with a purely mathematical framework, then indeed the
generality argument seems to beg the question against more general proposals, as Bonnay
makes clear. But if one approaches the question from a metaphysical perspective, then the
group concept becomes entirely relevant, and this will allow us to allay Bonnay’s worries.
As we saw in the previous chapter, one metaphysical picture that coheres well with Tarski’s
proposal is the neo-Fregean platonist picture, according to which we are able to introduce
or describe certain abstract objects by considering their identity conditions, which are given
by equivalence relations. Notice that, since we are working with equivalence relations, we
are also implicitly working with groups, as every equivalence relation can be considered as
generated by a group action. Since we are working with groups, it is inevitable then that
the most general group will be the full symmetric group of the domain; aside from very
artificial examples, for a set of functions to form a group under composition they must all
be bijections.

So Bonnay has, like Feferman, misunderstood the motivation behind Tarski’s proposal.
He seems to think that the proposal is purely mathematical, so that it becomes a puzzle why
Tarski does not contemplate more general similarity relations. On my reading, however,
the proposal is not purely mathematical. It aims at describing the identity conditions for the
logical objects and properties. It is clear, under this proposal, that such identity conditions will
be connected to equivalence relations, so it’s only natural that we should look at the groups
which generate such relations in order to gain better insight into them. Once one adopts this
perspective, the class of all permutations, endowed with a binary operation of composition,
is the most general class—it is, in Bonnay’s words, the “best applicant for the job”.

4.4 Dutilh Novaes

In a recent paper, Dutilh Novaes (2014) argues that Tarski’s proposal is inadequate on two
fronts: it counts too much and too little as logical to be a good proposal. The former charge
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is basically the charge leveled by Feferman and Bonnay against the proposal, namely that it
assimilates logic to mathematics. The latter charge is novel: it basically amounts to the claim
that certain obvious logical notions are not counted as such by the proposal. In particular,
Dutilh Novaes argues that the criterion excludes modal notions from counting as logical;
since she considers modal notions to be logical, she concludes that the proposal must then
be rejected.

Why does Dutilh Novaes considers modal notions to be logical, however? The reason
she gives is connected to her adoption of the “practices” point of view:

Thus, I submit that the failure of the permutation invariance criterion to count
these modal operators as logical should make us reconsider the whole idea of
permutation invariance as a criterion for logicality. After all, modal logics and
their descendants are currently among the most widely studied logical systems;
they are highly influential both for the interface of logic with computer science
and for philosophical discussions on modalities and related topics. If a criterion
for logicality deems the corresponding modal operators to be non-logical, this
seems to be a real case of undergeneration from the point of view of practices.
(Dutilh Novaes 2014, p. 95)

Otherwise put, there is already a well-established subject called “logic”, just as there is
a well-established practice of mathematics. Just as it would be strange for the philosopher
to propose a definition of mathematics that excluded from its extension already entrenched
subjects such as, say, algebraic geometry or higher set-theory, it is equally strange for a
philosopher to put forward a definition of “logic” that excluded certain entrenched subjects,
such as modal logic. The philosopher should thus occupy the role of the second philosopher,
who is only allowed to make explicit what is already implicit in the practices of the scientists,
and who can never contradict this practice.

Indeed, Dutilh Novaes’s language in certain phrases almost makes it sound as if such
pretensions of first philosophy are akin to a kind of hubris: “I am here suggesting that, if we
[do not count modal logic as logic], as philosophers we will be excluding a vibrant portion
of logical practices from the realm of analysis, which I take not to be recommended” (Dutilh
Novaes 2014, p. 94n14). That is, it’s not in our position qua philosophers to question the
status of these vibrant portions of logical practices.

It should not come as a surprise if I say that this seems to be a confusion. Tarski’s proposal
is not a proposal about how to best describe whatever is studied in the logic departments, or
to make explicit what is implicit in the practice of professional logicians. Similarly, the pro-
posal should not lead to practical decisions of excluding modal logic from the logic courses
and textbooks, under the pretense that such notions do not pass out test. Rather, it is a pro-
posal about the fundamental structure of the world: which objects and properties should
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count as logical? It is not surprising then that some objects and properties typically studied
by the logicians should not be found among these, as they may not even be fundamental ob-
jects and properties to begin with. So, for instance, logicians may be interested in the study
of epistemic logic, which contains a modal epistemic operator, say “knows”. Why should
this notion be counted as logical, as opposed to epistemic? The mere fact that we are able
to model an object in what we call a logical system is no reason to suppose that this object
is logical, anymore than the fact that we can model a DJ’s vinyl scratching using Fourier
transforms means that such scratching is a mathematical object.9 We thus need some inde-
pendent argument as to why modal notions should be considered as logical; Dutilh Novaes,
however, does not provide any.

4.5 Conclusion

In this chapter, I have analyzed the three di�erent criticisms against Tarski’s proposal by
Feferman, Bonnay, and Dutilh Novaes. In all three cases, I argued that such authors were
aiming at di�erent targets than Tarski: Feferman for something close to logic as human
reasoning, Bonnay at a purely mathematical criterion for logicality, and Dutilh Novaes at
an account of our logical practice. Indeed, at some points one gets the impression that
these authors start with their own “intuitions” about what logic is, and then try to argue
that Tarski’s proposal is “counterintuitive” for not matching these intuitions. There are two
problems here: the first is that such reliance on intuitions is out of place in this kind of
investigation. An old term such as “logical” is bound to elicit diverse intuitions in di�erent
people, many of them conflicting; why should we trust one over the other? Moreover, and
this is the second point, on my reading, Tarski’s proposal is not a proposal about logic, it is a
proposal about logical objects.

How could such eminent critiques havemissed the true target of Tarski’s proposal? Leav-
ing aside personal prejudice against metaphysical inquiries (which is acute in the case of
Feferman), another possible (I dare not say plausible) explanation is that the technical trap-
pings of the proposal may have served to obscure the matter. In particular, it is not di�cult
to connect logical objects to logical operators (see the previous chapter), and then to infer
that Tarski was after a characterization of which languages are logical. Since the framework
proposed in Tarski’s lecture is inadequate for tackling this question in its full generality,
one is then led to search for broader frameworks. This is exactly the program initiated by
Feferman and developed, in a somewhat di�erent direction, by Bonnay. Once one is amidst
this wealth of mathematical material, it is easy to get lost in technical minutiae and miss the
forest for the trees.

9The reader intrigued by this Fourier scratching should consult Amiot (2016, pp. 149-151).
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A Appendix: On the Absoluteness of First-Order Logic
In this appendix, I would like to focus on one of Feferman’s objections, namely, that the
logic L∞∞ is not “robust” in a certain demanding sense. Feferman (1999, p. 38) explains
that a notion is “robust” if it has the “same meaning independent of the exact extent of the
set-theoretical universe”. This is rather vague, as no particular set theory is specified with
which to cash out this specification. Later, Feferman (2010) gave a more precise criterion: a
notion is “robust” i� it’s absolute relative to KPU-Inf.10 In particular, a logic is itself robust
i� its syntax and satisfaction relation are robust. One result that is specially important, as it
characterizes these “robust” notions, is the following theorem by Väänänen (1985), which I
will call the “Main Theorem”:

Theorem A.1 (Main Theorem). Lωω is the only logic which is represented in HF and is ab-
solute relative to KPU-Inf .

I will proceed as follows: in the Section 1, I will provide the necessary set-theoretical
backgroundwithin which the theorem is proven; in particular, I’ll defineKPU-Inf and prove
a series of useful theorems, as well as providing a general characterization of absolute formu-
las. In Section 2, I provide further background for the theorem, this time analyzing some
model-theoretic notions that will play a key role in the argument. Specifically, Feferman’s
notion of adequate to truth is presented and explained. Finally, in section 3, the Main The-
orem is proved. The proof itself is divided into two parts: the first part shows that Lωω is
indeed absolute (by showing that its syntax set and its satisfaction relation are defined by ∆0

formulas), while the second part shows that, if a logic is represented in HF and is absolute
relative to KPU-Inf, then it’s weaker than Lωω in a sense to be defined (since among regular
logics Lωω is the weakest logic, it follows that it is the only logic to satisfy the conditions of
the theorem).

A.1 Set-Theoretical Background

In this section, I’ll present the theory KPU-Inf and also prove some results which will be
needed later; most of this section is based on the material found in Barwise (1975). Let L be a
first order language; the theory KPU-Inf will be formulated in a language L∗ = L∪{∈, . . . }.
A structure AM = 〈M;A,E, . . . 〉 consists in:

(i) a structure M = 〈M, . . . 〉 for the language L, with possibly M = ∅; the elements of
M are called urelements;

(ii) a set A 6= ∅ and such that A ∩M = ∅; the elements of A are called sets;
10These notions will be explained in the following sections.
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(iii) a relation E ⊆ (M ∪ A)× A, which will interpret the membership symbol ∈;

(iv) possibly other relations, functions, and constants onM ∪A, as needed to interpret L∗.

Next, I define the collection of ∆0 formulas of L∗ as the smallest collection Y containing
the atomic formulas and also closed under:

(i) if φ ∈ Y , then ¬φ ∈ Y ;

(ii) if φ, ψ ∈ Y , then φ ∧ ψ ∈ Y and φ ∨ ψ ∈ Y ;

(iii) if φ ∈ Y , then ∀u ∈ vφ and ∃u ∈ vφ are also in Y for any variables u and v.

It’s now possible to state the KPU-Inf axioms. They consist in the universal closure of
the following formulas:

Extensionality: ∀x(x ∈ a↔ x ∈ b)→ a = b;

Foundation: ∃xφ(x)→ ∃x[φ(x)∧ ∀y ∈ x¬φ(y)] for all formulas φ(x) in which y does not
occur free;

Pair: ∃a(x ∈ a ∧ y ∈ a);

Union: ∃b∀y ∈ a∀x ∈ y(x ∈ b);

∆0 Separation: ∃b∀x(x ∈ b↔ x ∈ a∧φ(x)) for all ∆0 formulas in which b does not occur
free;

∆0 Collection: ∀x ∈ a∃yφ(x, y) → ∃b∀x ∈ a∃y ∈ bφ(x, y) for all ∆0 formulas in which b
does not occur free.

Characterization of Absolute Formulas

Let AM be a structure for L∗. For a ∈ A, aE is defined as: aE = {y ∈M | yEa}.

Definition A.1. Given another L∗-structure BN, we say that BN is an extension of AM, in
symbols AM ⊆ BN, if M ⊆ N (as L structures), A ⊆ B, and if the interpretations of E, . . .
are just the restrictions toM ∪ A of the corresponding relations in BN.

Definition A.2. BN is an end extension of AM, in symbols, AM ⊆end BN, if AM ⊆ BN and,
for each a ∈ A, aE = a′E , where E ′ is relation corresponding to E in BN.



CODA: CRITICISM OF TARSKI’S PROPOSAL 101

Given the above, it’s possible now to define the notion of persistence and absoluteness for
a formula. If φ(u1, . . . , un) is a formula of L∗, we say that φ(u1, . . . , un) is persistent relative
to a theory T of L∗ if for all models AM,BN of T such that A ⊆end BN and x1, . . . , xn

in AM, AM |= φ[x1, . . . , xn] implies BN |= φ[x1, . . . , xn]; if BN |= φ[x1, . . . , xn] implies
AM |= φ[x1, . . . , xn], then φ(u1, . . . , un) is downward persistent, and if AM |= φ[x1, . . . , xn] i�
BN |= φ[x1, . . . , xn], then φ(u1, . . . , un) is said to be absolute.

Recall that a formula φ is Σ1 if it is equivalent to a formula ψ such that ψ is ∃xθ such that
θ is ∆0. Analogously, φ is Π1 if it is equivalent to a formula ψ such that ψ is ∀xθ and θ is ∆0.
Finally, a formula φ is ∆1 if it is equivalent to formulas ψ, θ such that ψ is Σ1 and θ is Π1.

We can now prove a theorem that will later be useful. Let T be an arbitrary theory and
φ a formula in the language of this theory. Then:

Theorem A.2. φ is absolute relative to T i� φ is ∆1.

The proof here will follow the outline given in Robinson (1965, pp. 70-5). In order to
prove this theorem, we will first prove two lemmas which jointly entail it.

Lemma A.1. φ is downward persistent relative to T i� it is Π1.

Lemma A.2. φ is persistent relative to T i� it is Σ1.

Proof of Lemma A.1. In one direction, let φ be a Π1 sentence in the language of T , A andB

two T -structures such that A ⊆ B, and suppose B |= φ. Since φ is Π1, there is a universal
sentence, say θ, such that T ` θ ↔ φ. Thus, as B |= φ, it follows that B |= θ. By definition,
this means that every sequence 〈b1, . . . , bn〉 ∈ B satisfies θ. Let then 〈a1, . . . , an〉 ∈ A be
an arbitrary sequence. Since A ⊆ B, this means that 〈a1, . . . , an〉 ∈ B, whence, by the
hypothesis, 〈a1, . . . , an〉 satisfies θ. Since this sequence was arbitrary, we may conclude that
every such sequence from A also satisfies θ. Therefore, A |= θ, whence A |= φ.

For the other direction, let Γ be the set of all universal sentences γ in the language of T
such that T ` φ → γ.11 Consider now the set Λ = T ∪ Γ ∪ {¬φ}. Suppose, for reductio,
that Λ is consistent. By the completeness theorem for first-order logic, it follows that Λ has
a model, say,M. Since φ is downward persistent, it follows that there are no end-extensions
M′ of M such that M′ is a model for T and such that φ holds in M′, otherwise φ would
hold in M as well. Let ∆M be the diagram of M. It’s clear that T ∪∆M ` ¬φ. Thus, since
only finitely many formulas were used in the proof, there is a finite subset ∆∗M of ∆M such
that T ∪ ∆∗M ` ¬φ. Let δ(a1, . . . , ak) be the conjunction of every formula in ∆∗M, with
a1, . . . , ak individual constants not contained in T (if any). Since T ∪ {δ(a1, . . . , ak)} ` ¬φ,
it follows by the Deduction Theorem that T ` δ(a1, . . . , ak) → ¬φ, so, by contraposition,

11Γ is never empty, as any tautological universal sentence will belong to it.
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T ` φ → ¬δ(a1, . . . , ak). As a1, . . . , ak are not contained in T , they are also not contained
in φ, whence T ` φ → ∀x1, . . . , xn(¬δ(x1, . . . , xn)) (with x1, . . . , xn not free in δ). Now,
∀x1, . . . , xn(¬δ(x1, . . . , xn)) is a universal sentence implied by φ, so it belongs to Γ. Call this
universal sentence γ. SinceM is a model for Γ, it follows thatM |= γ. Notice, however, that
¬γ is ¬∀x1, . . . , xn¬δ(x1, . . . , xn), which is equivalent to ∃x1, . . . , xnδ(x1, . . . , xn), which is
clearly true in M, as δ(a1, . . . , ak) is a conjunction of elements of ∆M and hence holds in
M. Thus, both γ and ¬γ hold in M, which is absurd; therefore, Λ must be inconsistent.

Again, only finitely many formulas are used in the derivation of the inconsistency, so
it follows that there is a finite Γ∗ ⊆ Γ such that T ∪ Γ∗ ∪ {¬φ} is inconsistent. Since Γ∗ is
finite, let θ be a universal sentence equivalent to the conjunction of every sentence in Γ∗

(we know that such a θ exists by simple prenex equivalences). It’s clear that θ ∈ Γ and that
T ` ¬(θ ∧ ¬φ). But ¬(θ ∧ ¬φ) is equivalent to θ → φ, whence T ` θ → φ. Since θ ∈ Γ, it
follows that T ` φ↔ θ, and, since θ is universal, it is Π1, concluding the proof. �

Proof of Lemma A.2. Suppose first that φ is Σ1 relative to T , A ⊆ B are two T -structures,
and A |= φ. Since φ is Σ1, it follows that there is an existential sentence, say θ, such that T `
φ↔ θ. As A |= φ, A |= θ. By definition, this means that there is a sequence 〈a1, . . . , an〉 ∈ A
which satisfies θ. But A ⊆ B, so this sequence is also in B. Therefore, there is a sequence in
B (the same sequence) which satisfies θ, whence B |= θ. Therefore, B |= φ.

Suppose now that φ is persistent relative to T . I claim that ¬φ is downward persistent
relative to T . For suppose otherwise. Then there are models AM andBN such that AM ⊆end

BN andBN |= ¬φ but AM 6|= ¬φ. Hence, AM |= φ. But then, since φ is persistent,BN |= φ,
a contradiction. Thus, ¬φ is downward persistent. By Lemma A.1, this means that ¬φ is
equivalent to a Π1 sentence, say θ. From this, it follows that φ↔ ¬¬φ↔ ¬θ. Since θ is Π1,
¬θ is Σ1, concluding the proof. �

Proof of Theorem A.2. A formula φ is absolute i� it is both persistent and downward persis-
tent. So suppose it is absolute. Since it is persistent, by Lemma A.2, it is equivalent to a Σ1

formula. Since it is downward persistent, by Lemma A.1, it is equivalent to a Π1 formula.
Thus, φ is ∆1. �

The Truncation Lemma

Another result which will be used here is the Truncation Lemma. Before stating the lemma,
a few definitions are in order:

Definition A.3. Let AM = (M;A,E, . . . ) be any structure and consider W = {BM ⊆end

AM | BM is well-founded}. The largestBM ∈ W , i.e. theBM such that it’s an end extension
of all the other members of W , is called the well-founded part of AM.12

12That there is such a largest BM is a lemma proved in Barwise (1975, p. 72). The basic idea of the proof
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Notice that, ifBM is the well-founded part of a structure, then there is a unique isomor-
phism between it and a transitive structure in which the E relation is the real membership
relation.13 From now on, we will identify the well-founded part of a structure with its
image under such an isomorphism.

Lemma A.3 (Truncation Lemma). Let AM = (M;A,E, . . . ) and BM = (M;B,∈, . . . )
be L∗-structures with AM |= KPU and BM ⊆end AM, where (M;B,∈) is the well-founded part
of AM. Then BM |= KPU.

I’ll reproduce here the proof found in Barwise (1975, pp. 72-3). In order to prove this
lemma, another lemma is needed:

Lemma A.4. Let AM ⊆end BM, with BM |= KPU. Suppose that, whenever BM |= rk(a) = α,
a ∈ A i� α ∈ A. Suppose also that there is no ordinal β ∈ B such that β is a least upper bound for
the ordinals in A. Then, with the possible exception of foundation, all the axioms of KPU hold in
AM.

The proof of Lemma A.3 then becomes merely a matter of showing that BM satisfies
the hypothesis of Lemma A.4. Before proving Lemma A.4, the following observation will
prove useful:

Remark A.1. If a, b ∈ B, rk(a) ≤ rk(b) and rk(b) ∈ A, then rk(a) ∈ A.

Proof. If β = rk(b) and α = rk(a), then α ≤ β, whence, by definition, α ∈ β. But this
means that α ∈ βE′ , so, by Definition A.2, α ∈ βE . Again, by definition, this means that
α ∈M ∪A; butM is the set of urelements and, since α is not an urelement (it’s an ordinal,
and being an ordinal is absolute), α ∈ A.14 So rk(a) ∈ A. �

Proof of Lemma A.4. Let’s check each of the axioms in turn:

Extensionality: Suppose there are sets a, b ∈ A such thatAM |= ∀x(x ∈ a↔ x ∈ b). Since
this is a ∆0 formula,15 it’s absolute, so BM |= ∀x(x ∈ a ↔ x ∈ b). As extensionality is true
inBM, it follows thatBM |= a = b; again, since this is absolute, it follows that AM |= a = b.

is to consider the union of all structures in W and show that it’s such that it’s well founded and that AM is an
end-extension of it.

13A proof of this fact is again to be found in Barwise (1975, p. 72).
14In particular, this shows that the ordinals in A are an initial segment of the ordinals in B.
15It’s equivalent to ∀x(x ∈ a→ x ∈ b) ∧ ∀x(x ∈ b→ x ∈ a).
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Pair: Suppose that x, y ∈ AM and let α, β ∈ A be such that BM |= rk(x) = α ∧ rk(y) = β.
Now, if BM |= γ = (α + 1) ∪ (β + 1), then γ ∈ A, otherwise γ would be the least upper
bound for the ordinals in A. Consider now the set b such that BM |= b = {x, y}. Clearly,
BM |= rk(b) = γ. But then, since γ ∈ A, by the hypothesis, b ∈ A. Now, the formula
b = {x, y} is ∆0,16 thus absolute, so AM |= b = {x, y}.

Union: Suppose a ∈ A; the objective is to find b ∈ A such that b =
⋃
a. By hypothesis,

a ∈ B, so BM |= b =
⋃
a for some b. Let α = rk(a). It’s clear that, for every x ∈ b,

BM |= rk(x) ≤ rk(a), so BM |= rk(b) ≤ rk(a). Thus, rk(b) ∈ A, whence, by hypothesis,
b ∈ A. Since the formula b =

⋃
a is absolute,17 AM |= b =

⋃
a.

∆0 Separation: Suppose a, y ∈ AM. Let φ(x, y) be ∆0. The objective is to find a, b ∈ AM

such that b = {x ∈ a | φ(x, y)}. In order to do so, we will use ∆0 separation on BM and
then “transfer” the result to AM. So let b ∈ B be such that it satisfies the above formula. It’s
clear that BM |= rk(b) ≤ rk(a), so, as a ∈ A, rk(a) ∈ A, whence rk(b) ∈ A. By hypothesis,
this means that b ∈ A. Since φ(x, y) is absolute, it follows that AM |= b = {x ∈ a | φ(x, y)}.

∆0 Collection: In order to prove that this axiom holds in AM, I’ll need a theorem which
I’ll state but not prove, as it won’t be used further:

Theorem A.3 (The Σ Reflection Principle). For all Σ fomulas φ we have the following:

KPU ` φ↔ ∃aφ(a)

where a is a variable for sets not occurring in φ. In particular, every Σ formula is equivalent to a Σ1

formula in KPU.

A proof sketch can be found in Barwise (1975, p. 16-7); the proof is by induction on
the complexity of φ.

Now suppose the antecedent of the axiom, i.e. that a ∈ AM, the formula φ(x, y) is ∆0

with parameters from AM and that ∀x ∈ a∃yφ(x, y) holds in AM. Thus, since y ∈ A, by
hypothesisBM |= rk(y) = α and α ∈ A. Consider an arbitrary x ∈ a and the corresponding
y; it’s clear that AM |= φ(x, y). Since φ(x, y) is ∆0, by absoluteness, BM |= φ(x, y). Since
x was arbitrary, it follows that BM |= ∀x ∈ a∃α∃y(rk(y) = α ∧ φ(x, y)). As the initial
quantifier is bounded, this is a Σ formula. Hence, by Theorem A.3, it’s equivalent to a Σ1

formula, that is, we can bound the second quantifier. Therefore, there is a β ∈ B such that
BM |= ∀x ∈ a∃α < β∃y(rk(y) = α ∧ φ(x, y)).

16Its defining formula is given by x ∈ b ∧ y ∈ b ∧ ∀z ∈ b(z = x ∨ z = y).
17This formula is equivalent to the ∆0 formula ∀x ∈ b∀y ∈ x(y ∈ a) ∧ ∀y ∈ a∃x ∈ b(y ∈ x).
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From the above, it follows that BM |= ∀x ∈ a∃y(rk(y) < β ∧ φ(x, y). As the ordinals
are well-founded in BM, we can choose the least ordinal β which satisfies this condition.
Clearly, β ∈ A, otherwise it would be a least upper bound for the ordinals in A, contra-
dicting the hypothesis. Now, applying ∆0 collection in BM, there is a set b ∈ B such that
BM |= ∀x ∈ a∃y ∈ b(rk(y) < β ∧ φ(x, y). Now, for every y ∈ b, rk(y) < β, whence
rk(b) ≤ β. Therefore, b ∈ A. But ∀x ∈ a∃y ∈ b(rk(y) < β ∧ φ(x, y) is a ∆0 formula, hence
absolute, and all its parameters are in AM, so it holds in AM. It follows that there is a set b
satisfying the consequent of the axiom, concluding the proof. �

It’s now possible to prove Lemma A.3. Observe first that, since BM is the well-founded
part of AM, it clearly satisfies Foundation. It remains to be seen then that it satisfies the
remaining axioms. As noted above, in order to show this, instead of proving each axiom
directly, it’ll su�ce to show that BM satisfies the hypothesis of Lemma A.4. The following
proposition will be useful in this proof:

Proposition A.1. If a ∈ A and aE ⊆ B, then a ∈ B.

Proof. Suppose, for reductio, that a 6∈ B and consider the structure B′M = (M;B′,∈, . . . )
such that B′ = B ∪ {a}. But B′M is also well-founded, for suppose it’s not; then there is an
infinite descending ∈-chain inB′M. But the only set which is inB′M that is not inBM is a, so
this chain must have already been inBM, contradicting the hypothesis. Thus,BM ⊆end B′M

and B′M is well-founded, contradicting the maximality of BM. Therefore, a ∈ B. �

Proof of Lemma A.3. Let a ∈ B and suppose that AM |= rk(a) = α. We will show that
α ∈ B by ∈-induction on a. First, it’s clear that rk(∅) = ∅ ∈ B. Now suppose that, for
every x ∈ a, rk(x) ∈ B. Consider an arbitrary y ∈ α. By definition, we know that rk(a) =

sup{rk(x) + 1 | x ∈ a}, so y ∈ rk(x) + 1 for some x ∈ a. Thus, y ∈ rk(x) ∪ {rk(x)}, that is,
y ≤ rk(x). By Remark A.1, it follows that y ∈ B. Therefore, α ⊆ B. By Proposition A.1,
α ∈ B.

Suppose now that α ∈ B and that AM |= rk(a) = α. We’ll show that a ∈ B by
∈-induction on α. The base case is obvious: if rk(a) = ∅, then a = ∅, whence a ∈ B.
Assuming the induction hypothesis, consider an arbitrary b ∈ a. Since b ∈ a, rk(b) < rk(a),
whence, by the induction hypothesis, b ∈ B. Since b was arbitrary, it follows that a ⊆ B.
Thus, by Proposition A.1, a ∈ B.

Therefore, ifAM |= rk(a) = α, then a ∈ B i�α ∈ B. It remains to be seen that there is no
least upper bound inA for the ordinals inB. But this follows clearly from Proposition A.1.18

Therefore, BM satisfies the hypothesis of Lemma A.4, whence BM |= KPU. �
18Suppose there is a least upper bound, say α. Then α = sup{β | β ∈ B}. Thus, for every β ∈ α, β ∈ B,

whence, by Proposition A.1, α ∈ B, contradicting the hypothesis.
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Sets of Hereditary Cardinality less than a Cardinal κ

In this section, we will develop a bit of the theory of H(κ) for infinite κ. The importance
of these sets is that eachH(κ) is a model for KPU, a fact that will be used in the proof of our
main theorem. First, we define by recursion the sets Vα; remember that our metatheory is
ZFC, thatM is the set of urelements and P(X) is the powerset of X

V0 = ∅
Vα+1 = P(M ∪ Vα)

Vα =
⋃
β<α

Vβ for α limit.

We also define VM =
⋃
Vα. Obviously, VM is not a set, yet it will be a useful abbreviation.

Given this definition, it’s possible to define H(κ):

Definition A.4. For any infinite cardinal κ, we define the set of hereditary cardinality less
than κ, H(κ), as follows: H(κ) = {a ∈ VM | TC(a) has cardinality less than κ}, where
TC(a) is the transitive closure of a.

The main theorem of this section is the following:

Theorem A.4. For all infinite cardinals κ > ω, the set H(κ)M = (M;H(κ),∈) is a model for
KPU. If κ = ω, then H(ω) is a model for KPU-Inf .

Proof of Theorem A.4. LetH(κ) be as in the hypothesis. Wewill show that each of the axioms
holds in H(κ). Most of the axioms are rather straightforward; the only one which is a bit
more involved is ∆0 Collection, whose proof is di�erent depending on whether κ is regular
or singular.

Extensionality: We need to show that, ∀z ∈ H(κ)∀x ∈ H(κ)∀y ∈ H(κ)[(z ∈ x ↔ z ∈
y) → x = y]. So consider arbitrary x, y ∈ H(κ) and let z ∈ x. Since H(κ) is transitive,
z ∈ H(κ), which implies that z ∈ y, that is, x ⊆ y. Similarly, for y, that is, y ⊆ x. Therefore,
x = y.

Pair: Let x, y ∈ H(κ). Consider the set b = {x, y}. Notice that TC(b) = TC(x)∪TC(y)∪
{x} ∪ {y}, thus |TC(b)| < κ, that is, b ∈ H(κ).

Union: Let x ∈ H(κ) be arbitrary and consider
⋃
x. It’s clear that

⋃
x ⊆ TC(x), whence

|TC(
⋃
x)| ≤ |TC(x)|, so

⋃
x ∈ H(κ).

Foundation: Notice that H(κ) ⊆ Vα for some α. Therefore, since each Vα is well-
founded, it follows that H(κ) is well-founded as well.
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∆0 Separation: Consider x ∈ H(κ) and y ⊆ x. Since y ⊆ x, TC(y) ⊆ TC(x), whence
|TC(y)| ≤ |TC(x)| < κ, so that y ∈ H(κ). Observe that this gives us a stronger result,
namely, that H(κ) actually satisfies full separation.

∆0 Collection: Consider x ∈ H(κ) and suppose that, for every y ∈ x, there is a z ∈
H(κ) such that φ(y, z). We need to show that there is a set b ∈ H(κ) such that b = {z ∈
H(κ) | φ(y, z)}. As mentioned above, the proof is divided by cases. Suppose first that
κ is regular. Since x ∈ H(κ), its cardinality is less than κ. Thus, there are less than κ

zs satisfying the hypothesis. Let b be as desired. For every z ∈ H(κ), TC(z) < κ. Thus
|TC(b)| = sup{|TC(z)| |z ∈ b}. As κ is regular, it’s clear that |TC(b)| < κ. Thus, b ∈ H(κ).
Notice that we didn’t use in the preceding the hypothesis that φ is ∆0, so, for κ regular,
we actually obtain full comprehension. This is not surprising, as it is known that H(κ)

for κ regular is a model for the Replacement axioms, and full collection is equivalent to
Replacement.

If κ is singular, consider κ+1. SupposeH(κ)M |= ∀y ∈ x∃zφ(y, z). Since every successor
cardinal is regular, it follows by the above thatH(κ+1) |= KPU. SinceH(κ) ⊆end H(κ+1),
and ∀y ∈ x∃zφ(y, z) is a Σ1 formula, it is persistent, thus H(κ + 1) |= ∀y ∈ x∃zφ(y, z).
Now φ has only a finite number of symbols, so we can consider the reduction of L∗ to the
language of φ. Since this language is countable, we may apply the Löwenheim-Skolem
theorem19 to H(κ + 1)M to obtain a structure AM with |AM| < κ such that AM |= KPU

and AM |= ∀y ∈ x∃zφ(y, z). Consider now the transitive collapse20 of AM, say, A′M. As A′M
is transitive and with cardinality less than κ, every set a ∈ A is such that |TC(a)| < κ, so
A ∪M ⊆ H(κ), whence A′M ⊆end H(κ)M. Since A′M |= KPU and A′M |= ∀y ∈ x∃zφ(y, z),
we can apply ∆0 Collection to obtain A′M |= ∃b∀y ∈ x∃z ∈ bφ(y, z). But this formula is Σ1,
thus persistent. Therefore, H(κ)M |= ∃b∀y ∈ x∃z ∈ bφ(y, z). �

A.2 Model-theoretic Background

In order to prove our main theorem, we will need some tools from model theory. Particu-
larly important will be the notions involved in the comparison between given logics and the
notion of adequacy to truth, first developed by Feferman (1974), but used here as formulated
by Väänänen (1985). We divide this section into three sub-sections: in the first, we will
develop general model-theoretic tools needed for the proof. In the second, we will develop

19We rely here on the fact that KPU is a first-order theory and that the cardinality of the language in
question is countable to apply the theorem and get a structure with the desired cardinality. For a proof of this
theorem specific to the context of KPU, cf. Barwise (1975, p. 52-3).

20This technique is applicable in KPU. I won’t prove this result here, as it would lengthen an already
lengthy appendix. For a proof, cf. Barwise (1975, pp. 30-33). Note that AM is a model for Extensionality, so
the transitive collapse is applicable here.
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the notion of adequacy to truth, which is also crucial for the proof. Finally, in the third, we
develop some further notions that will also be employed in the proof of the main theorem.

For completeness sake, we include here some standard definitions that will be used
throughout the rest of the appendix.21

Definition A.5. Wedefine amulti-sorted vocabulary as a non-empty set τ consisting of sort
symbols r, s, t, . . . , finitary relation symbols P,R, S, . . . , finitary function symbols f, g, . . . ,
and constants c, d, . . . . Each constant and function symbol of a vocabulary τ is associated
with a sort symbol from τ , as are the argument places of the relation and function symbols;
the one-sorted case is a special case of the many-sorted, in which we simply drop the sort
symbols. StructuresA are denoted in the obvious way, if necessary subscripting the domains,
function, and relations with their respective sorts (e.g. the sort s domain is denoted by As,
etc.); the class of τ-structures is denoted by Str[τ ].

Definition A.6. By the reduct of A to vocabulary σ, in symbols A � σ, we denote the result
of restricting a τ structure A to the σ structure (σ ⊆ τ ) which arises by “forgetting” the
sorts, relations, etc., not in σ. If τ is one-sorted, the relativized reduct of A toσ and PA, in
symbols (A � σ) | PA, we denote the reduct of A to σ relativized to PA, where PA is a unary
relation symbol in τ and is such that PA is σ-closed in A � σ; i.e. if cA ∈ PA for c ∈ σ, and
PA is closed under fA for f ∈ σ.

Definition A.7. A logic is a pair (L, |=L), where L is a mapping defined on vocabularies
τ such that L[τ ] is a class (the class of L-sentences of vocabulary τ ) and |=L is a relation
between structures and L-sentences. Generally, a logic is also required to obey further
properties, such as the reduct, isomorphism, and renaming properties, but those will not be
all too important here. For more details, cf. Ebbinghaus (1985, p. 28).

Comparing Logics

In this section, wewill deal mainlywith the notions of elementary classes, projective classes,22

and relativized projective classes.23 Most of the definitions in this section can be found, al-
most verbatim, in Ebbinghaus (1985). The proofs, however, unless otherwise noted, are our
own.

Definition A.8. Let L be a logic and K a class of τ-structures. We say that:

1. K is an elementary class in L, in symbols K ∈ ECL, i� there is φ ∈ L[τ ] such that
K = ModτL(φ).

21Most such definitions can be found in Ebbinghaus (1985, §1.1).
22In the current literature, one often sees the nomenclature pseudo-elementary class. Cf., e.g., Hodges (2004,

p. 206).
23Sometimes also referred to as PC′

∆. Cf. Hodges (2004, p. 208).
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2. K is a projective class in L, in symbols, K ∈ PCL, i� there is τ ′ ⊇ τ having the same
sort symbols as τ and a class K ′ of τ ′-structures, K ′ ∈ ECL, such that K = {A �

τ | A ∈ K ′}, the class of τ-reducts of K ′.

3. K is a relativized projective class in L, in symbols K ∈ RPCL i�, in the one-sorted
case, there is τ ′ ⊇ τ , a unary relation symbol U ∈ τ ′ \ τ , and a class K ′ of vocabulary
τ ′, K ∈ ECL, such that K = {(A � τ) | UA | A ∈ K and UA is τ-closed in A}, or,
in the many sorted case, i� there is τ ′ ⊇ τ and a class K ′ of τ ′-structures, K ′ ∈ ECL,
such that K = {A � τ | A ∈ K ′}. Here, (A � τ) | UA is the relativized reduct of A.

Definition A.9. Let L and L∗ be logics. We say that L∗ is as strong as L, in symbols L ≤ L∗,
i� every class EC in L is EC in L∗. Similarly, L and L∗ are equally strong or equivalent, in
symbols L ≡ L∗, i� both L ≤ L∗ and L∗ ≤ L. Finally, we say that L∗ is stronger than L, in
symbols L < L∗, i� L ≤ L∗ and not L∗ ≡ L. The notions of L ≤(R)PC L∗, L ≡(R)PC L∗,
and L <(R)PC L∗ are defined in an analogous way.

Definition A.10. A class K of τ-structures is said to be ∆ in L i� K and K̄ = Str[τ ]\K
are (R)PC in L. A logic L has the ∆-interpolation property i� every ∆ class of L is EC in
L. The ∆-closure of L, in symbols ∆(L), is the logic that has as elementary classes just the
classes that are ∆ in L.

With these definitions, we can now prove the following lemmas:

Lemma A.5. L′ ≤RPC L i� L′ ≤ ∆(L).

Lemma A.6. Lωω ≡ ∆(Lωω)

Proof of Lemma A.5. Observe first that, if K ∈ ECL for some L, then K̄ ∈ ECL as well.24

It’s also clear that every EC class is also a (R)PC class.25 So suppose L′ ≤RPC L and let K ∈
ECL′ . From this it follows that K , K̄ ∈ (R)PCL′ , whence, by the hypothesis, K , K̄ ∈
(R)PCL. But then, by definition, K is ∆ in L, whence K ∈ EC∆(L).26

Conversely, suppose L′ ≤ ∆(L) and let K ∈ RPCL′ . This means that there is a
K ′ ∈ ECL′ such that K = {(A � τ) | UA | A ∈ K and UA is τ-closed in A}. But
then, since K ′ ∈ ECL′ , by the hypothesis, K ′ ∈ EC∆(L), whence, by definition, K ′ ∈
(R)PCL. It follows that there is a K ′′ ∈ ECL such that K ′ = {(A′ � τ ′) | PA′ | A′ ∈
K ′′ and PA′ is τ ′-closed in A′}. Let’s abbreviate (A′ � τ ′) | PA′ to A′P . Thus, K = {(A′P �

τ) | UA′P | A′P ∈ K and UA′P is τ-closed in A′P}. Therefore, K ∈ (R)PCL, as desired. �
24Proof: If K ∈ ECL, then there is a sentence φ ∈ L such that K is the class of all models of φ. Thus, K̄

is the class of all structures A ∈ Str[τ ] such that A 6|= φ. But then, if A ∈ K̄ , it follows that A |= ¬φ, so K̄ is
the class of all models of ¬φ. Therefore, K ∈ ECL.

25One can always consider the reduct of each structure A ∈ K (K ∈ EC) to the basic vocabulary of φ; if
the logic in question also contains sentences such as ∀xUx, then every PC class can be made into a RPC class.

26This part of the proof is based on the one found in Makowski et al. (1976, p. 168).
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Proof of Lemma A.6. That Lωω ≤ ∆(Lωω) is clear from the definition of ∆-closure. For the
other direction, observe first that EC∆(Lωω) = ECLωω ∪{K ∈ PCLωω | K̄ ∈ PCLωω}. Thus,
in order to show that ∆(Lωω) ≤ Lωω, one needs to show that every ∆ class in Lωω is also an
elementary class. But that is just the Souslin-Kleene property, which follows from Craig’s
interpolation theorem.27 Therefore, ∆(Lωω) ≤ Lωω, which ends the proof of the lemma.�

Adequacy to Truth

We can now deal with adequacy to truth and related notions. First, a few definitions are in
order:

Definition A.11. Consider any set a. Define µa(x) by recursion as the possibly infinitary
formula in the vocabulary τset = {∈}:

µa(x) = ∀y(y ∈ x↔
∨
b∈a

µb(y)).

The idea is that µa(x)↔ x = a, or, at least, that x has the same set-theoretical structure
as a (x = a will indeed take place in any transitive set containing TC({a})). Define now by
recursion πa(x) as follows:

πa(x) = µa(x) ∧
∧

b∈TC(a)

∃yµb(y).

LetB = (B,E) be a model for extensionality and considerB0, the well-founded part of
B (cf. Definition A.3). Since B is extensional and B0 is well-founded, it’s possible to apply
the transitive collapse theorem to obtain an isomorphism i : B0 → A (A being a transitive
set) and such that B |= πa(x) i� x ∈ B0, a ∈ A, and i(x) = a.

Definition A.12. Throughout this appendix, we will simply assume that associated with
each logic L there is a transitive set A such that L[τ ] ⊆ A for all τ considered. This set will
be called the syntax set of L. If A is closed under primitive recursive set functions, we say
that the syntax of L is represented on A. The idea is, roughly, if A is primitive recursively
closed, it has “enough” functions to code the syntax of L.28 Finally, we assume that the
logic L is strong enough to fix each element of A, i.e. Mod(πa(x)) ∈ ECL[τset] for a ∈ A. It’s
possible to impose further constraints on the syntax set, yet here those won’t be necessary.
As a matter of convention, we generally useA,A′,A′′, . . . for the syntax sets of, respectively,
L,L′,L′′, . . . .

27For a proof of Craig’s theorem for Lωω, cf. Bell and Slomson (1974, p. 153-7).
28For a definition of primitive recursive set functions, cf. e.g.Simpson (1978) and Jensen and Karp (1971);

here, however, since we’re dealing with Lωω, we will be mostly dealing with ordinary primitive recursive
functions, which are enough to code its syntax.
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Definition A.13. A logic L is said to be adequate to truth in L′ if for every τ there is τ+ =

[τ, τset,Th, τ ′] and θ ∈ L[τ+] such that for every M ∈ Str[τ ], the following conditions hold:

(AT1) (M,A′,ThL′(M),N) |=L θ for some N;

(AT2) If (M,B, T,N) |=L θ ∧ πφ(b), then b ∈ T i� M |=L′ φ, whatever φ ∈ A′ and b ∈ B.

Some observations: first, the role of τ ′ is to provide us with auxiliary symbols necessary,
for instance, to write the definition of satisfaction for L′. Second, A′ in (AT1) is the syntax
set of L′, whereas B is a set theoretical structure B = (B,E) which is used to “pin down”
the sentence φ and its subformulas regarded as set-theoretical objects, i.e. B |= πφ(b) i�
b = i(φ), following Definition A.11.29 ThL′(M) is defined in the usual way as ThL′(M) =

{φ ∈ L′[τM] |M |=L′ φ}. Finally,Nwill serve as a sort of “interpretation function”, mapping
sequences of elements fromM into their α coordinate.

As for the symbol Th in τ+, it is used in the definition of θ. In fact, as emphasized by
Feferman (1974, p. 218), θ above will need to contain: (i) formalizations of the recursive
equations needed to code much of the information above; the auxiliary symbols for those are
mainly contained in τ ′; (ii) elementary statements about sequences used in the satisfaction
clauses; (iii) the satisfaction clauses for L′ themselves; (iv) the definition of Th, the truth
predicate, in terms of the satisfaction predicate. Here, the satisfaction predicate, S(x, y), is
such that S(φ, s) i� there is a sequence s from the modelM such that s satisfies φ. Thus, if η
is the sentence containing all the information from (i)-(iii) above, we can make (iv) explicit
by writing θ as:

η ∧ ∀x(Th(x)↔ ∃sS(x, s)).

Thus, what (AT1) is saying is that θ is basically a sentence providing a satisfaction def-
inition for L′ in L, whereas (AT2) is providing L′ with a truth definition representable in
L.

Our next lemma will relate the above notions to the notion of ∆ closure from the pre-
ceding section:

Lemma A.7. If L is adequate to truth in L′ and A′ ⊆ A, then L′ ≤ ∆(L).

Proof of Lemma A.7. Suppose the hypothesis. Observe first that, as A′ ⊆ A, πφ is RPCL

definable. Let K ∈ ECL′ . By definition, this means that there is a φ ∈ L′ such that
K = {M |M |= φ}. Consider now the sentence θ as in Definition A.13. By hypothesis, it
follows from (AT2) that the following conditions are equivalent:

29Notice that the class Mod(πφ) will generally not be an ECL class, but merely a RPCL class.
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(a) M |=L′ φ;

(b) (M,B,N) |= θ ∧ πφ(b) ∧ Th(b) for some b ∈ B, B, and N;

(c) (M,B,N |= θ ∧ πφ(b)→ Th(b) for all b ∈ B, M, and N.

Thus, by substituting the RPCL definition of πφ in (b) and (c), we obtain a RPC-
definition of Mod(φ), that is, K is RPC in L. Since K was arbitrary, it follows that all
ECL′ ⊆ RPCL; since the complement of an elementary class is also an elementary class, it
follows that every pair K , K̄ is RPCL, whence they are all ∆ in L. Therefore, they are
elementary classes in ∆(L).30 �

Corollary A.1. If L is adequate to truth in L′ and A′ ⊆ A, then L′ ≤RPC L.

Proof. Suppose the hypothesis. By LemmaA.7,L′ ≤ ∆(L). Thus, by LemmaA.5,L′ ≤RPC.�

Some further notions

In this section, we will prove two more lemmas that are necessary in order to demonstrate
our main theorem. In order to state the lemmas, one more definition is necessary.

Definition A.14. A logic L is said to capture a set-theoretical predicate R if there is an
RPCL-class K of set-theoretical structures such that:

(C1) For any set a there is a transitive setM such that a ∈M , and (M,∈ |M) ∈ K ;

(C2) If M ∈ K and M |= πai(mi)(i = 1, . . . , n), then R(a1, . . . , an) if and only if M |=
R(m1, . . . ,mn).

In the above, πai(mi) is defined as in Definition A.11.

We can now state and prove the lemma:

Lemma A.8. If R is a predicate which is ∆1 in KPU-Inf , then Lωω captures R.

Proof of Lemma A.8. LetL be theECLω,ω-class of a large enough finite fragment ofKPU-Inf.
Now, by Theorem A.4, for each κ, Hκ ∈ K , thus (C1) above is satisfied.

In order to see that (C2) holds, suppose M ∈ K and M |= πai(mi)(i = 1, . . . , n)

and let R(x1, . . . , xn) be a ∆1 predicate in KPU-Inf. Let N be the well-founded part of
M; by Lemma A.3, N ∈ K as well, so consider its transitive collapse, N′. Suppose that
R(a1, . . . , an). SinceR is a∆1 predicate, byTheoremA.2 it’s absolute, soN′ |= R(a1, . . . , an).
But N′ ' N, whence N |= R(m1, . . . ,mn). Since R is absolute, it follows that M |=

30The preceding proof is based on the one in Väänänen (1985, p. 604).
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R(m1, . . . ,mn). Conversely, if M |= R(m1, . . . ,mn), then, by the absoluteness of R, N |=
R(m1, . . . ,mn). Using again the fact that N′ ' N, it follows that N′ |= R(a1, . . . , an) so, by
the absoluteness of R, R(a1, . . . , an).31 �

Now comes our main lemma, whose proof is a bit more involved:

Lemma A.9. Let L and L′ be arbitrary logics and suppose L captures the predicate S(x, y) such
that

S(M, φ) if and only if φ ∈ L′ and M |=L′ φ,

for all φ and all M. Then L is adequate to truth in L′.

Proof of Lemma A.9. By the hypothesis, there’s a RPCL class K such that:

(C1) For any set a there’s a transitive setM such that a ∈M and 〈M,∈|M〉 ∈ K ;

(C2) If C ∈ K and C |= πai(mi) (i = 1, 2), then S(a1, a2) i� C |= S(m1,m2).

Our goal is to show that, given these conditions, for every τ there is a τ+ = [τ, τset,Th, τ ′]

and θ ∈ L[τ+] such that for every M ∈ Str[τ ], both (AT1) and (AT2) from Definition A.13
hold.32

So let τ ′set be the vocabulary of K , disjoint from τset, and consider an arbitrary type τ .
In order to simplify the proof, we will assume throughout that τ is one-sorted and contains
only one binary predicateR, yet nothing hinges on this (the proof is obviously generalizable
to the more complex case). Define τ+ = [τ, τset, T, τ

′], with τ ′ containing τ ′set, plus three
constant symbols, m,n, and r of the sort of τ ′set, and whatever additional vocabulary we
may need. Let S ′(x, y) be the predicate S(x, y) in the language of τ ′set (that there is such a
predicate is ensured by (C2)).

Consider now the structures M ∈ Str[τ ] and define K ′ as the class of τ+-structures
M′ = [M,B, T,N,m, n, r, f ] obeying the following strictures:

(a) N ∈ K ;

(b) B ⊆end N;

(c) N |= “m is a structure (n, r) of type 〈2〉 and n is a set of urelements”;

(d) ∀x(x ∈M ↔ N |= f(x) ∈ n) and f is a bijection betweenM and n;

(e) ∀x, y ∈M(R(x, y))↔ N |= 〈f(x), f(y)〉 ∈ r;
31The preceding proof is based on the one in Väänänen (1985, p. 620).
32What follows is essentially the proof found in Väänänen (1985, p. 620-1).
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(f ) ∀x ∈ B(T (x)↔ S ′(m,x));

As Väänänen puts it, the idea behind K ′ is this: the first condition ensures that N is
the set-theoretical universe in which S(x, y) is captured, whereas the second marks B o�
as the syntax set for L. Inside N, there is a structure m = (n, r) which, by conditions, (d)
and (e), is exactly likeM, whose true sentences we’re trying to define. That n (and thusM )
is a set of urelements helps to “filter out” any extra-elements that could come into the the
picture when taking transitive closures, something that, although not necessary in general,
is actually crucial in the case of Lωω.33 As for condition (f ), it defines the truth-predicate T
in a natural way.

It’s clear that the class K ′ consists exactly of the projections to τ+ of the structures
satisfying θ (as defined in Definition A.13), being thus RPCL. Suppose now M ∈ Str[τ ].
By (C1), there is a transitive set N such that A′,M ∈ N and N = (N,∈| N) ∈ K . Define
M′ = [M,A,ThL′(M),N, n,m, r, f ] in such a way to make conditions (a)-(e) true. By (C2),
it follows that N |= S ′(M, φ) ⇐⇒ S(M, φ) ⇐⇒ φ ∈ ThL′(M) ⇐⇒ T (φ), thus
satisfying condition (f ). Therefore, M′ ∈ K ′, whence, by the preceding, it expands to a
model of θ. Thus, (AT1) holds.

Let now M′ be such that M′ |= θ ∧ πφ(b) for φ ∈ A′ and b ∈ B. Consider the well-
founded partN′ ofN, with i : N′ → (N,∈) its transitive collapse. By hypothesis,B |= πφ(b),
so, by the definition of πφ, b ∈ N ′ and i(b) = φ. As n is a set of urelements,m = (n, r) ∈ N ′

(because the collapsing function fixes the urelements by definition; cf. Barwise (1975, p.
30)), whence i(m) is a structurem isomorphic toM. We are thus able to prove the following
equivalences:

b ∈ T ⇐⇒ N |= S ′(m, b); (4.1)

⇐⇒ S(m, φ); (4.2)

⇐⇒ φ ∈ L′ and m |=L′ φ; (4.3)

⇐⇒ φ ∈ L′ and M |=L′ φ. (4.4)

(1) is justified by condition (f ) above; (2) and (4) by the isomorphism condition outlined
in the last paragraph; (3) by the definition of S.

Thus, (AT2) also holds. �

A.3 Proof of the Main Theorem

In this section, I’ll prove Theorem A.1, as stated in the Introduction. We begin with a more
rigorous definition of a logic being absolute relative to a theory T :

33I thank Väänänen for clarifying this point to me through written communication.
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Definition A.15. Let L be a logic and T a set theory, generally an extension of KPU. We
say that L is absolute relative to T i� there is a ∆1 predicate S(x, y) such that for any φ ∈ A
and for any M,

S(M, φ) ⇐⇒ φ ∈ L and M |= φ.

We also require that the syntactic operations be ∆1 with respect to T .

The proof of the theorem is basically the one found in Väänänen (1985) and can be
divided into two parts. First, one shows that Lωω does have the required properties, i.e. it is
represented in HF and is absolute relative to KPU-Inf. Secondly, one shows that if L′ also
has these properties, then L′ ≤ Lωω. Here, however, I’ll focus only on the more di�cult
second part; for a summary of how to proceed with the first part, the reader is directed to
Barwise (1975, p. 78-83).34 The result is actually incredibly simple given the work done in
the previous sections.

Proof. Suppose the hypothesis. By hypothesis, the predicate S(x, y), which defines the satis-
faction relation in L, is ∆1 in KPU-Inf, whence, by Lemma A.8, Lωω captures this predicate.
Thus, by Lemma A.9, Lωω is adequate to truth in L. By Lemma A.7 and Corollary A.1,
it follows that L ≤RPC Lωω, so, by Lemma A.5, L ≤ ∆(Lωω). Therefore, by Lemma A.6,
L ≤ Lωω. �

B Appendix: Feferman’s Proposal
In his 1999 paper, “Logic, Logics, and Logicism” (Feferman 1999), Feferman proposed an
interesting modification of Tarski’s criterion. Instead of considering only those notions
which are invariant under all permutations of the domain of individuals, Feferman proposes
to consider the notions which are invariant under all similarity relations between domains
of individuals. The main goal of this chapter is to explain and evaluate this proposal. Thus,
in the first section, I present the formalism underlying the proposal; since, as shown by
Casanovas (2007), there are some subtle questions here in the choice of the formalism, I will
be very detailed in its presentation. In the next appendix, I will also present Casanovas’s
analysis of this proposal.

B.1 Preliminary remarks and definitions

Definition B.1. I will use TS for the set of types. This set is defined recursively as follows:
34That the syntax ofLωω is represented onHF is a simple result, once we note that ω is primitive recursively

closed. One only needs then to prove that the satisfaction relation for Lωω is absolute, which is a tedious, but
not too complicated result.
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1. 0, b ∈ TS (where 0 is the type of the individuals and b is the type of the truth values);

2. For any natural number n, if τ1, . . . , τn, σ ∈ TS, then 〈τ1, . . . , τn → σ〉 ∈ TS (intu-
itively, the new type is for an n-ary function from types τ1, . . . , τn to σ).

Definition B.2. Given now a non-empty set D, for each τ ∈ TS, we associate a domain
Dτ as follows:

1. D0 = D and Db = {T, F};

2. D〈τ1,...,τn→σ〉 = Dτ1×···×DτnDσ (where AB is the set of all functions from A to B).35

Definition B.3. A functional finite type structure overD is defined asD = 〈D,Dt〈Dτ 〉τ∈TS〉.

Observe that, aside from the basic types, all other types consist of functions. Therefore,
if we want to consider relations in such a functional finite type structure, we need to identify
themwith their characteristic functions, e.g., the identity relation overD0, I = {〈x, x〉 | x ∈
D0} is identified with the function fI of type 〈0, 0→ t〉 such that f(x, y) = T i� x = y.

Since Feferman makes an essential use of the lambda calculus in the proof of his main
theorem, it will be convenient to supply a definition of this language as well.

Definition B.4. The terms of the language are defined by the following clauses:

1. For each τ ∈ TS, xnτ (n ∈ ω) is a term (in practice, in order not to overload notation,
I will drop the superscript and use variables x, y, z instead);

2. If s, t are terms of types 〈τ → σ〉 and τ , respectively, then s(t) is a term of type σ;

3. If s is a term of type σ and xτ a variable of type τ , then λxτ (s) is a term of type τ → σ.

The denotation of terms is defined by variable assignments in the usual way:

Definition B.5. Let α be a function from the set of variables to D. The denotation of each
term under α, [[t]]D[α], is defined as follows:

1. If xτ is a variable of type τ , then [[xτ ]]
D[α] = α(xτ );

2. If s, t are terms of types 〈τ → σ〉, τ , then [[s(t)]]D[α] = [[s]]D[α]([[t]]D[α]);

3. If s is a term of type σ and xτ is a variable of τ , then [[λxτ (s)]]
D[α] is a function

f ∈Dτ Dσ such that, for any d ∈ Dτ , f(d) = [[s]]D[αxτd ], where αxτd is a variable
assignment such that αxτd (xτ ) = d and is otherwise the same as α.

35As Feferman indicates, it’s not necessary, at each level, to take all such functions: it’s possible to take only,
e.g., the recursive functions—cf. Mitchell (1990, p. 371-2) for discussion. When we do take all functions, the
hierarchy thus generated is called maximal. I’ll follow Feferman in considering only maximal hierarchies.
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Sometimes I will employ constants of a given type, whose denotation will be the obvious
one. I’ll also write image of the variables under α instead of α in [α] if that’s more convenient.

We saw in the main body of the chapter how one of Feferman’s main criticisms of
Tarski’s proposal was that it didn’t allow for cross-domain operations. Thus, it’s not very
surprising that his framework is designed to allow for a precise definition of such operations.
I’ll quote his definition verbatim:

Definition B.6. An operationO is of type τ across domains if, for each functional type struc-
ture D, we have an associated OD ∈ Dτ .

In other words, an operation of type τ across domains is a function that takes as ar-
guments functional type structures and gives as values objects of type τ . Next, let’s define
definability:

Definition B.7. An operationO is said to be definable from operationsO1, . . . , Ok if it is given
by a definition from them uniformly over each D, i.e. if there’s a term t(x1, . . . , xn) such
that each xi is of the same type as Oi(i ≤ k), t is of the same type as O, and, in each D,
OD = [[t(x1, . . . , xn)]]D[OD1 , . . . , O

D
k ].

Finally, I’ll also consider operations determined by formulas. As I will be concerned
mostly with the first-order predicate calculus without identity, I’ll restrict my definition to
formulas from that language.

Definition B.8. A formula φ of the first-order predicate calculus without identity is said to
determine an operationO if, whenever φ contains exactly n predicate variables P1, . . . , Pn and
exactlym free variables x1, . . . , xm, then (D, P1, . . . , Pn) |= φ[a1, . . . , an] i�OD(p1, . . . , pn, a1, . . . , am) =

1, where p1, . . . , pn are the characteristic functions of P1, . . . , Pn.

B.2 The main theorem

In the previous chapter, I analyzed how Tarski’s proposal depended heavily on his strong
metaphysical assumptions. I also raised the question of what would happen if we chose a
larger class of transformations in the formulation of our proposal. Here, I’ll examine Fefer-
man’s proposal and main result, namely, that we take as the class of transformations the class
of all surjections between domains of the functional type structures defined above. Let’s
state this more precisely.

Definition B.9. Let D = 〈D0, Dt〈Dτ 〉τ∈TS〉 and D′ = 〈D′0, Dt〈D′τ 〉τ∈TS〉. By a similarity
relation ∼ between D and D′ we mean a collection of relations ∼τ for each τ ∈ TS such
that, if τ = 〈τ1, . . . , τn → σ〉, then:

1. ∀x ∈ D0∃x′ ∈ D′0(x ∼0 x
′) ∧ ∀x′ ∈ D′0∃x ∈ D0(x ∼0 x

′);
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2. ∀x ∈ Db∀x′ ∈ D′b(x ∼b x′ ⇐⇒ x = x′);

3. For each τ = 〈τ1, . . . , τn → σ〉 and p ∈ Dτ and p′ ∈ D′τ , we have:

p ∼τ p′ ⇐⇒ ∀x̄ ∈ Dτ x̄′D
′
τ ((x̄ ∼τ x̄′ → p(x̄) ∼σ p′(x̄′))).

where x̄ abbreviates x1, . . . , xn and x̄ ∼τ x̄′ abbreviates x1 ∼τ1 x′1 ∧ · · · ∧ xn ∼τn x′n.

Clause 1 above basically states that∼0 is total and surjective, clause 2 that the truth values
are always invariant, and clause 3 gives a recursive definition of ∼τ for the higher types.

Given a surjective function h : D0 → D′0, it’s possible to define a partial extension hτ to
the other types that satisfy the clauses for a similarity relation. Here’s the definition:

Definition B.10. Given a surjective function h : D0 → D′0, it’s partial extension hτ is
defined recursively as:

1. h0 = h;

2. hb(x) = x for x ∈ Db;

3. If τ = 〈τ1, . . . , τn → σ〉 and every hτi(i ≤ n) is surjective, then we define hτ as follows.

(a) Its domain is the subset of Dτ consisting of all mappings p which satisfy the fol-
lowing two conditions: (i) p(x1, . . . , xn) ∈ dom(hσ) for all xi ∈ dom(hτi)(i ≤ n),
and (ii) for all xi, x′i ∈ dom(hτi)(i ≤ n), if hτi(xi) = hτi(x

′
i), then hσ(p(x1, . . . , xn)) =

hσ(p(x′1, . . . , x
′
n)).

(b) For any p ∈ Dτ which satisfies the above conditions, we define hτ (p) as the
mapping from D′τ such that, for all xi ∈ dom(hτi)(i ≤ n),

hτ (p)(hτ1(x1), . . . , hτn(xn)) = hσ(p(x1, . . . , xn)).

On the other hand, given that every surjective function h will be total in D0 and sur-
jective over D′0, it’s also possible to use Clauses 2, 3 above to define directly the similarity
relation induced by h, ∼h, by setting x0 ∼ x′0 i� h(x0) = x′0 and then extending the relation
to the higher types using clauses 2 and 3. In fact, as the next theorem shows, these are re-
ally di�erent ways of doing the same thing, so that every surjective function between base
domains is actually a similarity relation:

Theorem B.1. If τ = 〈τ1, . . . , τn → σ〉 is a functional type and h : D0 → D′0 is a surjective
function, then ∼hτ= hτ .
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Proof. The proof is by induction on the complexity of τ . The base case, for 0 and b, is imme-
diate. So let τ be given and suppose the hypothesis is true for all types of lower complexity
than τ . I must show that, given p ∈ Dτ and p′ ∈ D′τ , p ∼hτ p′ i� hτ (p) = p′.

Suppose first that p ∼hτ p′. I’ll show (a) p ∈ dom(hτ ) and (b) hτ (p) = p′. To see (a),
consider first xi ∈ dom(hτi)(i ≤ n). Let hτi(xi) = yi(i ≤ n) for some yi ∈ Dτi . By the
induction hypothesis, xi ∼τi yi for i ≤ n, so, by Clause 3 of the definition of a similarity re-
lation, p(x1, . . . , xn) ∼σ p′(y1, . . . , yn). Therefore, applying the induction hypothesis again,
hσ(p(x1, . . . , xn)) = p′(y1, . . . , yn), so p(x1, . . . , xn) ∈ dom(hσ) for any xi ∈ dom(hτi).
Suppose now hτi(xi) = hτi(x

′
i) = yi(i ≤ n) for xi, x′i ∈ dom(hτi) and yi ∈ Dτi(i ≤ n).

By the induction hypothesis, xi ∼hτi yi and x
′
i ∼hτi yi(i ≤ n). Therefore, by Clause 3,

p(x1, . . . , xn) ∼hσ p′(y1, . . . , yn) and p(x′1, . . . , x′n) = p′(y1, . . . , yn). Applying the induction
hypothesis again, this means that hσ(p(x1, . . . , xn)) = p′(y1, . . . , yn) = hσ(p(x′1, . . . , x

′
n)), as

required. So p ∈ dom(hτ ). It remains to be seen that hτ (p) = p′.
This is easy. Let x1 ∈ Dτ1 , . . . , xn ∈ Dτn be given such that hτi(xi) = yi(i ≤ n).

By the induction hypothesis, xi ∼hτi yi(i ≤ n), so, by Clause 3 and the hypothesis that
p ∼hτ p′, p(x1, . . . , xn) ∼hσ p′(y1, . . . , yn). But then, by the induction hypothesis again,
hσ(p(x1, . . . , xn)) = p′(hτ1(x1), . . . , hτn(xn)). Therefore, by clause 3.b of Definition B.10,
hτ (p) = p′.

Conversely, suppose hτ (p) = p′ and that xi ∼τi yi(i ≤ n). By the induction hypothesis,
for each i ≤ n, hτi(xi) = yi. Thus, by Definition B.10, hσ(p(x1, . . . , xn)) = p′(y1, . . . , yn),
whence, by the induction hypothesis, p(x1, . . . , xn) ∼hσ p′(y1, . . . , yn). Therefore, p ∼hτ p′,
as required. �

I’ll adopt for this section Feferman’s terminology and call surjective functions between
base domains and their extensions homomorphisms. Now comes the main definition of this
chapter.

Definition B.11. An operation O of type τ across domains is said to be similarity invariant
if, for each D,D′ and similarity relation ∼ between D and D′, we have OD ∼ OD

′ . It is said
to be homomorphism invariant if we only require O to be invariant under similarity relations
determined by homomorphisms.

Considering that homomorphisms are a subset of similarity relations, it could seem that
homomorphism invariance is actually a weaker notion than similarity invariance. In reality,
however, as shown by Casanovas (2007), every similarity relation can be decomposed into
surjective mappings, so that homomorphism invariance and similarity invariance coincide.
However, as the result is more naturally stated using Casanovas’s terminology, I’ll postpone
its analysis for the section on his article.
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Moving on, it’s possible to show that some operations are not homomorphism invariant.
In particular, almost none of the cardinality quantifiers and the equality function turn out
to be homomorphism invariant.

Theorem B.2. Let I be the operation of type 〈0, 0→ b〉 defined at each D by

ID(x, y) = T if x=y, and F otherwise.

Then I is not homomorphism invariant.

Proof. LetD0 = {a, b} andD′0 = {c} and consider the homomorphism h : D0 → D′0 defined
pointwise as h(a) = h(b) = c. Thus, a ∼0 c and b ∼0 c. However, ID(a, b) = F , whereas
ID
′
(c, c) = T , that is, ID(a, b) 6∼ ID(c, c). Therefore, by clause 3, ID 6∼ ID

′ , whence I is not
homomorphism invariant. �

Theorem B.3. For each non-zero cardinal κ, the quantifier Eκ of type 〈〈0→ b〉 → b〉 is defined
by

EDκ (p) = T if there are at least κ distinct x such that p(x) = T , and F otherwise.

Then, for κ ≥ 2, Eκ is not homomorphism invariant.

Proof. Let D0 be any domain of cardinality κ, D′0 = {a}, and p be such that EDκ (pD) = T

with κ ≥ 2. Set pD′(a) = T and consider the homomorphism h defined as, for every x ∈ D0,
h(x) = a. By definition, for every x ∈ D0, x ∼0 a and, by hypothesis, pD(x) ∼ pD

′
(a). But

ED
′

κ (pD
′
) = F , so EDκ 6∼ ED

′
κ , that is, Eκ is not similarity invariant. �

On the other hand, given invariant operations O1, . . . , On, it’s possible to build further
invariant operations.

Lemma B.1. Let t be a term of the typed-lambda calculus, D,D′ two type hierarchies and ∼⊆
D0 ×D′0 a similarity relation. Then, if α ∼ α′, [[t]]D[α] ∼ [[t]]D

′
[α′].

Proof. By induction on the complexity of t. �

Lemma B.2. If an operation O is defined by operations O1, . . . , On, all of which are similarity
invariant, then O itself is similarity invariant.

Proof. Suppose the hypothesis, i.e. that O is defined by invariant operations O1, . . . , On. Let
D,D′ be arbitrary and consider a similarity relation ∼. By the hypothesis, ODi ∼ OD

′
i , so,

by Lemma B.1, OD = [[t]]D[OD1 , . . . , O
D
n ] ∼ [[t]]D

′
[OD

′
1 , . . . , OD

′
n ] = OD

′ , as required. �
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Definition B.12. Take π for the type 〈0 → b〉, i.e. for the type of monadic predicates. A
type τ = 〈τ1, . . . , τn → σ〉 is said to be monadic if σ = b and, for each τi(i ≤ n), τi is either
π, or b, or 0. τ is said to be pure monadic if it has the form 〈πn → b〉.

As noted by Feferman, the following monadic operations are homomorphism invariant:

Proposition B.1. The operationN of negation of type 〈b→ b〉, defined byND(p) = F if p = T ,
T otherwise, is similarity invariant.

Proposition B.2. The operation C of conjunction of type 〈b, b → b〉, defined by CD(p, q) = T

if p = q = T and F otherwise, is similarity invariant.

Proposition B.3. The operation E of existential quantification over the domain of individuals of
type 〈〈0→ b〉 → b〉, defined by ED(p) = T if there is an x ∈ D0 such that p(x) = T , F otherwise,
is similarity invariant.

The first two propositions follow immediately from clause 2. As for the third, here’s the
proof:

Proof. Our goal is to show that, if p and p′ are arbitrary operations of type 〈0 → b〉 over D
and D′, respectively, such that p ∼ p′, then ED(p) ∼ ED

′ . If we show this, then, by clause
3, ED ∼ ED

′ .
So let p, p′ be as desired. As p ∼ p′, this means that, whenever x ∈ D0 and x′ ∈ D′0 are

such that x ∼ x′, then p(x) = p′(x′). Suppose now ED(p) = T . Then, by definition, there is
x ∈ D0 such that p(x) = T . Applying the first similarity condition, there must be x′ ∈ D′0
such that x ∼ x′, so, by the hypothesis, p′(x′) = T , whence, by definition, ED′(p′) = T . An
analogous reason shows that, if ED′ = T , then ED(p) = T . Therefore, ED(p) = ED

′
(p′) for

any such p, which is what we wanted to prove. �

The above three propositions are useful because of the following theorem:

Theorem B.4. Every formula φ of the first-order predicate calculus without identity determines
an operation O which is definable in the typed λ-calculus from N,C,E , and λ-abstraction, plus the
characteristic functions of whatever predicates appear in φ.

Proof. The proof is by induction on the complexity of φ. For the base case, suppose φ is
atomic. Since the language doesn’t contain equality, φ must be of the form P (x1, . . . , xm).
Thus, φ determines p(x1, . . . , xm), where p is the characteristic function of P .

Assuming now the theorem is true for formulas of lesser complexity, if φ is of the form
¬ψ, then ψ must determine an operation O which satisfies the theorem. Thus, φ determines
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an operation definable by N(O). Similarly, if φ is ψ ∧ θ, then φ determines an operation
definable by C(O,O′), where O,O′ are the operations determined by ψ, θ, respectively.

Finally, if φ is of the form ∃xψ, then, ifO is the operation defined byψ, then φ determines
an operation definable by E(λxO). �

Here’s an example from Feferman. Consider the formula ∀x(P (x, z) ∧ ∃yQ(x, y, z)).
This determines an operation O of type 〈〈0, 0 → b〉, 〈0, 0, 0 → b〉, 0 → b〉, i.e. for each
domainD an operation of the formOD(p, q, z), where p and q are the characteristic functions
of P and Q, respectively. This is definable by:

OD(p, q, z) = N(E(λx(C(p(x, z), N(E(λy(q(x, y, z)))))))).

I come now to the main theorem:

Theorem B.5. Let O be of monadic type and homomorphism invariant. Then O is definable by
a formula of the first-order predicate calculus without equality.

Proof. I’ll first prove the pure monadic case, which is simpler. For convenience, I’ll make a
slight change of notation and take Db = {0, 1} from now on, with 0 taking the place of
F and 1 the place of T . The basic idea of the proof is to show that the operation O can
be completely determined by considering its behavior only over finite structures and then
using this information to construct a first-order formula corresponding to such behavior.

So let O be a pure monadic homomorphism invariant operation of type 〈πn → b〉.
Consider a structure of the form (D, p1, . . . , pn), where each pi(i ≤ n) is of type π. Let p̄(y)

abbreviate p1(y) . . . pn(y) and let k̄ be an n-termed sequence of 0s and 1s, in such a way that
p̄(y) = k̄ for some k̄. Define on D0 an equivalence relation as follows:

y ≡ z ⇐⇒ p̄(y) = p̄(z)

.
Denote by [y] the equivalence class of y under ≡. Note that, since there are exactly 2n

n-termed sequences of 0s and 1s, there will be at most 2n equivalence classes under≡. Thus,
we can use these equivalence classes to construct the desired finite domain. Define then a
new structure (D′, p̄′) such that D′0 = {[y] | y ∈ D0} and such that p̄′([y]) = p̄(y). Set
h : M0 → M ′

0 by h(y) = [y]. Further, set ∆(D, p̄) = {k̄ | ∃yp̄(y) = k} (this works like a
diagram of D under p̄) and set [[k̄]] = {y | p̄(y) = k̄}. Note that:

Claim 1: [[k̄]] 6= ∅ ⇐⇒ k̄ ∈ ∆(D, p̄).

Proof. Suppose [[k̄]] 6= ∅. Then there’s y ∈ [[k̄]], that is, by definition, p̄(y) = k̄, whence
k̄ ∈ ∆(D, p̄). On the other hand, if k̄ ∈ ∆(D, p̄), by definition there’s y ∈ D0 such that
p̄(y) = k̄, so y ∈ [[k̄]], whence [[k̄]] 6= ∅.
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Claim 2: if [[k̄]] 6= ∅, then y ∈ [[k̄]] ⇐⇒ [[k̄]] = [y].

Proof. Suppose the hypothesis and let y ∈ [[k̄]], i.e. p̄(y) = k̄. I’ll show that [[k̄]] = [y]. If
x ∈ [[k̄]], then p̄(x) = k̄ = p̄(y), so x ∈ [y], and if x ∈ [y], then p̄(x) = p̄(y) = k̄, so x ∈ [[k̄]].
On the other hand, if [[k̄]] = [y], then, since y ∈ [y], y ∈ [[k̄]].

The above result shows that the equivalence classes are completely determined by the
k̄s, so that we can consider them instead of working directly with the elements from D0.

Claim 3: If k̄ 6= l̄, then [[k̄]] ∩ [[l̄]] = ∅.

Proof. Suppose y ∈ [[k̄]] ∩ [[l̄]]. Then k̄ = p̄(y) = l̄. The claim then follows by contraposition.

Therefore, there’s a bijective function f : ∆(D, p̄)→ D′0 defined as f [k̄] = [[k̄]].

Claim 4: OD(p̄) = OD
′
(p̄′).

Proof. Suppose towards a contradiction that OD(p̄) 6= OD
′
(p̄′). Let h be as defined above, i.e.

h(y) = [y]. Clearly h is surjective, so it determines a similarity relation induced by y ∼0 [y].
Since, by construction, p̄(y) = p̄′([y]), it follows that p̄ ∼ p̄′. But then, by the hypothesis,
OD 6∼ OD

′ , contradicting the fact that O is similarity invariant.

Let now (D∗, p̄∗) be such that ∆(D∗, p̄∗) = ∆(D, p̄). Define (D∗′ , p̄∗′) in the same way
as above.

Claim 5: (D′, p̄′) ' (D∗′ , p̄∗′).

Proof. By the above, there are functions f : ∆(D, p̄) → D′0 and g : ∆(D∗, p̄∗) → D∗
′

0 such
that both f, g are bijections. As∆(D∗, p̄∗) = ∆(D, p̄), f and g have the same domain, whence
we can take the composition θ = g ◦ f−1, which will be a function θ : D′0 → D∗

′
0 . I claim θ

is the desired isomorphism. It’s clearly a bijection, since the composition of bijections is still
a bijection. Further, if p̄′([y]) = k̄, then f [k̄] = [y], so, since f−1([y]) = k̄ and g(k̄) = [y∗], it
follows that p̄′([y]) = k̄ i� p̄∗′(θ[y]) = k̄, which concludes the proof.

Hence, OD(p̄) = OD
′
(p̄′) = OD

∗′
(p̄∗

′
) = OD

∗
(p̄∗), so that the behavior of O at a structure

is completely determined by its diagram. Define now O+ = {∆(D, p̄) | OD(p̄) = 1} and
O− = {∆(D, p̄) | OD(p̄) = 0}. Since each ∆(D, P̄ ) is a subset of n2, and |n2| = 2n, and
|P(n2)| = 22n , it follows that there are at max 22n such ∆s, whence each O+ and O− are
finite. Enumerate them each as O+ = {∆1, . . . ,∆r} and O− = {∆r+1, . . . ,∆s}, setting
O∗ = O+ ∪O−. It follows that:

OD(p̄) =

1 if ∆(D, p̄) = ∆i for 1 ≤ i ≤ r

0 if ∆(D, p̄) = ∆i for r + 1 ≤ i ≤ s.
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But, for a given ∆i, ∆(D, p̄) = ∆i is definable as follows. Enumerate each k̄ ∈n 2 as
k̄1, . . . , k̄m. For each such k̄j , set

φjl :=

Pl(y) if 1 = l ∈ k̄j

¬Pl(y) if 0 = l ∈ k̄j.

Then, for each k̄j , let ψj be defined as:

ψj :=


∃ȳ

∧
l≤n

φjl if k̄j ∈ ∆i

¬∃ȳ
∧
l≤n

φjl if k̄j 6∈ ∆i

Finally, set ψ∆i :=
∧
j≤m

ψj , so that ψ∆i = 1 i� ∆i = ∆(D, p̄) for some D and OD(p̄) = 1.

Define θ :=
∨

∆i∈O∗
ψ∆i . Then θ completely describes the operation in question. �

C Appendix: Casanovas’s Analysis of Feferman’s Proposal

As mentioned in the previous appendix, Casanovas (2007) provides a detailed analysis of Fe-
ferman’s theorem. Specifically, building on the work of Casanovas et al. (1996), he provides
suitable definitions for similarity invariance in a relational type setting, instead of Feferman’s
functional type setting. Strikingly, this change of setting results in a remarkably di�erent
analysis: whereas Feferman is able to prove that the operations determined by first-order
formulas in a language without equality are similarity invariant, Casanovas shows that, in
this new setting, the operations determined by negation, conjunction, and universal quan-
tification are not similarity invariant. Since these results are very surprising, I’ll focus in
this section on Casanovas’s analysis of the main di�erences between his and Feferman’s ap-
proaches.

C.1 Types of similarity

In this section, I want to analyze closely the di�erent types of invariance proposed by both
Feferman and Casanovas, as well as state a few results concerning their relations. For com-
pleteness sake, I’ll restate here the definitions from the Appendix to the first chapter regard-
ing finite relational type structures.

Definition C.1. Define a hierarchy of types in the following way, using TS as the set of
types:

1. 0 ∈ TS (we take 0 as the type of individuals);
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2. For any natural number n, if τ1, . . . , τn ∈ TS, then 〈τ1, . . . , τn〉 ∈ TS (the new type is
for n-ary relations among types τ1, . . . , τn).

Definition C.2. Given now a non-empty set D, we associate, for each type τ , a domain
Dτ in the following way:

1. D0 = D;

2. D〈τ1,...,τn〉 = P(Dτ1 × · · · ×Dτn).

In the same way that permutations of the base domain can be extended to all types, so
do mappings between domains:

Definition C.3. Let f : D → E be a mapping between base domains D,E and let τ be a
relational type. The induced mapping fτ can be defined recursively as follows:

1. f0 = f ;

2. fτ : Dτ → Eτ , with τ = 〈τ1, . . . , τn〉 is defined as:

fτ (a) = {〈fτ1(a1), . . . , fτn(an)〉 | 〈a1, . . . , an〉 ∈ a}.

Given the di�erences between a functional type structure and a relational type structure,
we need to adapt the definition of similarity relation to this new context. One way of doing
it is by straightforwardly adapting Clauses 1 and 3 of Feferman’s definition (Cluase 2 is
omitted, as there is no boolean type in the relational context).

Definition C.4. A relation π betweenD0 andD′0 is a similarity relation i� for every a ∈ D0

there is b ∈ D′0 such that π(a, b) and for every b ∈ D′0 there is a ∈ D0 such that π(a, b). In
other words, dom(π) = D0 and rng(π) = D′0.

The above is the natural adaptation of Clause 1. Clause 3 is adapted in the following
way:

Definition C.5. Let π be a similarity relation between base domains D,E and let τ be a
relational type. The induced similarity relation πτ is defined recursively as follows:

1. π0 = π;

2. If τ = 〈τ1, . . . , τn〉, then the similarity πτ betweenDτ and Eτ is given, for a ∈ Dτ and
b ∈ Eτ , by: πτ (a, b) i�:

(a) for each 〈a1, . . . , an〉 ∈ a, there’s 〈b1, . . . , bn〉 ∈ b such that πτi(ai, bi)(i ≤ n) and



126 APPENDIX: CASANOVAS’S ANALYSIS OF FEFERMAN’S PROPOSAL

(b) for each 〈b1, . . . , bn〉 ∈ b, there’s 〈a1, . . . , an〉 ∈ a such that πτi(ai, bi)(i ≤ n).

That’s not, however, the definitions provided by Casanovas. Instead of working directly
with the similarity relations, he provides definitions by way of compositions of surjective
mappings. Although seemingly more complicated, Casanovas’s definition actually helps to
simplify the proof of a few theorems, as we will see. Here’s his analogue to Clause 1:

Definition C.6. A relation π ⊆ D×E is a similarity relation between D and E i� for some
n ≥ 2, there are setsD1, . . . , Dn and mappings f1, . . . , fn−1 such thatD1 = D, Dn = E, and
for every i = 1, . . . , n, fi is a mapping fromDi ontoDi+1 or it is a mapping fromDi+1 onto
Di, and π is the relational composition R1 ◦ · · · ◦ Rn−1 where Ri = fi if fi is from Di onto
Di+1, and Ri = f−1

i if it is from Di+1 onto Di.

And here’s his analogue to Clause 3:

Definition C.7. Given a similarity relation π : D0 → D′0, there are, by Definition C.6,
sets D1, . . . , Dn and mappings f1, . . . , fn−1, such that D1 = D0, Dn = D′0, and, for each
fi, fi is either a mapping from Di onto Di+1, or from Di+1 onto Di, and π is the relational
composition R1 ◦ · · · ◦Rn−1 where each Ri = fi if the former holds, or else Ri = f−1

i if the
latter holds. We already know, by Definition C.3, how to extend each fi to fiτ , so we can
use this to define πτ : let πτ be the relational product R1τ ◦ · · · ◦ Rn−1τ , where each Riτ has
the obvious definition.

It’s not too di�cult to show that these definitions are actually equivalent. The proof is
by induction on the complexity of types. The next theorem will take care of the base case:

Theorem C.1. A binary relation π between D0 and D′0 is a similarity relation according to Def-
inition C.4 i� it is a similarity relation according to Definition C.6.

Proof. Suppose first that π is a similarity relation between D0 and D′0 according to Defini-
tion C.4. I’ll show that it is a similarity relation between D0 and D′0 according to Defini-
tion C.6 by providing a decomposition of π into surjective mappings or inverses thereof.

First, define an equivalence relation ≡ on D′0 as follows:

b ≡ b′ i� π(a, b) and π(a, b′) for some a ∈ D0.

Let D0/≡ be the set of all equivalence classes of D0 by ≡. Define f1 : D0 → D0/≡ by
setting f1(a) = [b] i� π(a, b). By construction, this will be a function, and by the hypothesis,
for every b ∈ D′0 there’s a ∈ D′0 such that π(a, b), so f1 is surjective. Next, let f2 be the
canonical mapping from D′0 to D′0/≡. This mapping is obviously surjective. I claim that
π = f−1

2 ◦ f1. To see this, suppose 〈a, b〉 ∈ π. Then f1(a) = [b] and, since 〈[b], b〉 ∈ f−1
2 , it
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follows that 〈a, b〉 ∈ f−1
2 ◦ f1. On the other hand, suppose 〈a, b〉 ∈ f−1

2 ◦ f1. Then there’s a
[c] such that 〈[c], b〉 ∈ f−1

2 and f1(a) = [c]. But then, by the definition of f−1
2 , [c] = [b], so

f1(a) = [b], whence π(a, b).
The proof in the other direction is by induction on the length n of sequence of sets

D1, . . . , Dn in Definition C.6.
The base case is n = 2. In that case, either π = f1 or π = f−1

1 . If the former, then f1 is a
function fromD0 ontoD′0, so dom(π) = D0 and rng(π) = D′0, as required. If the latter, then
f1 is a function from D′0 onto D0, whence f−1

1 is a relation whose domain is D0 (because f1

is surjective) and whose range is D′0 (because f1 is a function). Thus, either way π will be a
total surjective relation, which is what we wanted to prove.

Suppose now the hypothesis is true for n and consider n + 1. By definition, π = R1 ◦
· · ·◦Rn. Let π′ = R1 ◦· · ·◦Rn−1. Notice that π′ is also a similarity relation betweenD1 = D

and Dn, so the induction hypothesis applies and dom(π′) = D and rng(π′) = Dn. But then,
as π = π′ ◦ Rn, it follows that dom(π) = dom(π′) = D and rng(π) = rng(Rn) = D′0 (by the
definition of Rn), as desired. �

Next comes the induction step.

Theorem C.2. Let π be a similarity relation between base domains D0, D
′
0, πτ be the extension

for τ according to Definition C.5 and π′τ be the extension for τ according to Definition C.7. Then
πτ = π′τ .

Proof. The induction hypothesis is that the theorem is true for all types of lower complexity
than τ . Suppose first that π′τ (a, b). I’ll show that πτ (a, b), whence π′τ ⊆ πτ . In order to do
this, I’ll show that a, b satisfy conditions (a) and (b) laid out in Definition C.5.

By definition, there are f1, . . . , fn such that, for each fi and d ∈ Di or d ∈ Di+1 (accord-
ingly as fi : Di → Di+1 or fi : Di+1 → Di), we have:

fi(d) = {〈fiτ1 (d1), . . . , fiτn (dn)〉 | 〈d1, . . . , dn〉 ∈ d}

.
Therefore, for each 〈a1, . . . , an〉 ∈ a, there will be, for each aj , a sequence of surjective

mappings or inverse of surjective mappings taking aj to bj , whence π′τj(aj, bj). By the
induction hypothesis, π′τj = πτj , so πτj(aj, bj). Hence, for each 〈a1, . . . , an〉 ∈ a, there’s a
〈b1, . . . , bn〉 such that πτj(aj, bj). A similar reasoning shows that, for each 〈b1, . . . , bn〉 ∈ b,
there will be 〈a1, . . . , an〉 ∈ a such that πτj(aj, bj). Thus, π′τ ⊆ πτ .

In the other direction, suppose πτ (a, b). Again, this means that, for each 〈a1, . . . , an〉 ∈ a,
there’s 〈b1, . . . , bn〉 ∈ b such that πτj(aj, bj)(j ≤ n) and similarly with the roles of a and b
reversed. Thus, by the induction hypothesis, for each aj, bj , there will be a sequence of
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mappings fiτj and their inverses taking aj to bj . Taking the extension of each fiτj to fiτ will
thus give a sequence of mappings and their inverses taking a to b, that is, π′τ (a, b). �

The fact that every similarity relation can be decomposed into a sequence of surjective
mappings and their inverses is rather surprising, as it implies that invariance under surjec-
tive mappings and invariance under similarity relations actually coincide. In other words,
as remarked in the previous section, Feferman’s distinction between homomorphism in-
variance and similarity invariance actually collapses. The proof here was presented in a
relational type setting, but its adaptation to the functional type setting used by Feferman is
straightforward.36 This fact will be useful later on.

C.2 Types of invariance

This section will be concerned with types of invariance. I’ll first present Casanovas’s defi-
nition of mapping-invariance and, afterwards, present the natural translation of Feferman’s
definition to a relational setting. I’ll then present Casanovas’s proof that it coincides with an-
other type of invariance, what he calls preimage-invariance. The proof that these last type of
invariance does not coincide with mapping-invariance will be postponed to the next section,
when I’ll present Casanovas’s characterization of the mapping-invariant objects.

As in Feferman’s case, we define an object a of type τ to be a function which associates,
with every D, a corresponding aD ∈ Dτ . As remarked above, by Theorem C.2, mapping-
invariance and similarity-invariance actually coincide. However, since both versions will
be useful, I’ll present the two definitions below.

Definition C.8. An object a of type τ is said to be similarity invariant if, for every D,D′

and every similarity relation π between D0, D
′
0, πτ (aD, aD′).

Definition C.9. An object a of type τ is said to be mapping-invariant i� for every Dτ , D
′
τ

and surjective mapping fτ : Dτ → D′τ , f(aD) = aD′ .

Let τ1, . . . , τn, τ be relational types. A 〈τ1, . . . , τn → τ〉-ary operator is a function F such
that, for any D, gives a mapping

FD : Dτ1 × · · · ×Dτn → Dτ .

Definition C.10. A 〈τ1, . . . , τn → τ〉-ary operator F is similarity invariant if for everyD,D′

and every similarity relation π between D0, D
′
0, for every ai ∈ Dτi(i ≤ n) and every bi ∈

Dτi(i ≤ n), if πτi(ai, bi)(i ≤ n), then:

πτ (FD(a1, . . . , an), FD′(b1, . . . , bn)).
36For a somewhat di�erent proof, cf. Casanovas (2007, section 7).
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Definition C.11. A 〈τ1, . . . , τn → τ〉-ary operator F is mapping-invariant if, for all D0, D
′
0

and surjective mapping f : D0 → D′0, for all a1 ∈ Dτ1 , . . . , an ∈ Dτn , we have:

fτ (FD(a1, . . . , an)) = FD′(fτ1(a1), . . . , fτn(an)).

Let now TS be a set of relational type symbols and D a relational type hierarchy. I’ll
present a way of translating every type τ ∈ TS to a type τ ∗ in a functional type hierarchy
and, similarly, every object a ∈ Dτ to an object a∗ ∈ Dτ∗ . For the type symbols, define ∗

recursively as follows:

1. 0∗ = 0;

2. 〈τ1, . . . , τn〉∗ = 〈τ ∗1 , . . . , τ ∗n → b〉.

For objects, ∗ can also be defined recursively in the following way:

1. If a ∈ D0, then a∗ = a;

2. If τ = 〈τ1, . . . , τn〉 and a ∈ Dτ , let χa be the characteristic function of a. Then a∗ is a
function from Dτ1 × · · · ×Dτn to b such that:

a∗(a∗1, . . . , a
∗
n) = χa(a1, . . . , an).

Finally, if F is an operator, then we have:

F ∗D∗(a
∗
1, . . . , a

∗
n) = (FD(a1, . . . , an))∗

Notice that the above function is a bijection betweenDτ andDτ∗ . Using this translation,
it’s possible to translate Feferman’s homomorphism invariance into the relational setting. Let
f : D0 → D′0 be a surjective mapping.For any type τ , the Feferman extension of f , fFeτ , is
defined recursively as follows:

Definition C.12. 1. fFe0 = f ;

2. For the other types, the definition will proceed in two steps: first, we will specify the
domain of fFeτ , and then we will specify its behavior. Let τ = 〈τ1, . . . , τn〉.

(a) The domain of fFeτ will consist of all a ⊆ Dτ1 × · · · × Dτn such that, for all
ai ∈ dom(fFeτi ), a′i ∈ dom(fFeτi )(i ≤ n), if fFeτi (ai) = fFeτi (a′i)(i ≤ n), then
(a1, . . . , an) ∈ a i� (a′1, . . . , a

′
n) ∈ a.

(b) For any a that satisfies the above condition, fFeτ (a) is defined as:

{(fFeτ1 (a1), . . . , fFeτn (an)) | (a1, . . . , an) ∈ a ∩ dom(fFeτ1 )× · · · × dom(fFeτn )}
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Notice that, in general, the Feferman extension of a given surjective mapping will only
be a partial surjective mapping. This corresponds to the fact that, over functional type
settings, in general the extension of a surjective mapping is also only partially defined (recall
Definition B.10). The notion of Feferman-invariance is defined in the following way:

Definition C.13. An object a of type τ is Feferman-invariant i� for any surjective mapping
f : D0 → D′0, aD ∈ dom(fFeτ ) and fFeτ (aD) = aD′ .

Definition C.14. A 〈τ1, . . . , τn → σ〉-operator F is Feferman-invariant i� for any surjective
mapping f : D0 → D′0 and a1, . . . , an of type τ1, . . . , τn, respectively, FD(a1, . . . , an) ∈
dom(fFeσ ) and fFeσ (FD(a1, . . . , an)) = FD′(f

Fe
τ1

(a1), . . . , fFeτn (an)).

In order to show that Feferman-invariance is the exact relational counterpart of (what
Feferman calls) homomorphism-invariance in the functional setting, I’ll need the following
lemma:

Lemma C.1. Let f : D0 → D0 be a surjective mapping, τ be a relational type and suppose
a ∈ Dτ . Then:

1. a ∈ dom(fFeτ ) i� a∗ ∈ dom(fτ∗);

2. If a ∈ dom(fFeτ ), then fFeτ (a) = fτ∗(a
∗).

Proof. The proof is by induction on the complexity of τ . The base case is immediate. So
suppose that both 1 and 2 from the theorem are true for all types of lower complexity than
τ .

Let a ∈ dom(fFeτ ) and a∗i ∈ dom(fτ∗i )(i ≤ n). By the definition of ∗, a∗(a∗1, . . . , a∗n) will
be either 0 or 1. But, by Definition B.10, 0, 1 ∈ dom(fb), so a∗(a∗1, . . . , a∗n) ∈ dom(fb). On
the other hand, suppose a∗1, b∗1 ∈ dom(fτ∗1 ), . . . , a∗n, b

∗
n ∈ dom(fτ∗n) are such that fτ∗i (a∗i ) =

fτ∗i (b∗i ). By the induction hypothesis, fFeτi (ai) = fFeτi (b1)(i ≤ n), whence byDefinition C.12,
(a1, . . . , an) ∈ a i� (b1, . . . , bn) ∈ a. By the definition of ∗, this means that a∗(a∗1, . . . , a∗n) =

a∗(b∗1, . . . , b
∗
n), so, by Definition B.10, fb(a∗(a∗1, . . . , a∗n)) = fb(a

∗(b∗1, . . . , b
∗
n)). Therefore, a∗

meets the two conditions from clause 3 of Definition B.10, that is, a∗ ∈ dom(fτ∗).
Conversely, suppose a∗ ∈ dom(fτ∗). Consider ai, bi(i ≤ n) such that fFeτi (ai) = fFeτi (bi).

By the induction hypothesis, a∗i , b∗i ∈ dom(fτ∗i ) and, moreover, fτ∗i (a∗i ) = fτ∗i (b∗i ). But
then, by Definition B.10, fb(a∗(a∗1, . . . , a∗n)) = fb(a

∗(b∗1, . . . , b
∗
n)). By the definition of ∗,

this means that (a1, . . . , an) ∈ a i� (b1, . . . , bn) ∈ a. Therefore, by Definition C.12, a ∈
dom(fFeτ ). This takes care of 1.

To see that 2 also holds, suppose a ∈ dom(fFeτ ) and let fFeτ (a) = b. Thus, by Defini-
tion C.12, we have:
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b = {(fFeτ1 (a1), . . . , fFeτn (an)) | (a1, . . . , an) ∈ a ∩ dom(fFeτ1 )× · · · × dom(fFeτn )}.

Consider thus b∗. I’ll show that, for any (a∗1, . . . , a
∗
n), we have b∗(fτ∗i (a∗1), . . . , fτ∗n(a∗n)) =

fb(a
∗(a∗1, . . . , a

∗
n)). Notice that:

fb(a
∗(a∗1, . . . , a

∗
n)) = 1 ⇐⇒ a∗(a∗1, . . . , a

∗
n)) = 1

⇐⇒ (a1, . . . , an) ∈ a

⇐⇒ (fFeτ1 (a1), . . . , fFeτn (an)) ∈ b

⇐⇒ b∗(fFeτ1 (a1), . . . , fFeτn (an)) = 1

This concludes the proof. �

Corollary C.1. An object a is Feferman-invariant i� a∗ is homomorphism-invariant (in the sense
of Feferman).

The proof of the corollary is immediate from the lemma.

Theorem C.3. An operator F is Feferman-invariant i� its corresponding operator F ∗ in the func-
tional type-setting is homomorphism invariant.

Proof. Let F be a 〈τ1, . . . , τn → σ〉-operator and f : D0 → D0 be a surjective mapping. Sup-
pose first thatF is Feferman-invariant and let a1, . . . , an be such that a∗1,∈ dom(fτ∗1 ), . . . , a∗n ∈
dom(fτ∗n). By the above lemma, for each ai, ai ∈ dom(fτi) and, moreover, fτi(ai)∗ = fτ∗i (a∗i ).
By the definition of Feferman-invariance, FD(a1, . . . , an) ∈ fFeσ and:

fFeσ (FD(a1, . . . , an)) = FD′(f
Fe
τ1

(a1), . . . , fFeτn (an))

Hence, since, by the above lemma, F ∗D(a∗1, . . . , a
∗
n) = FD(a1, . . . , an)∗ ∈ fσ∗ and

fσ∗(F
∗
D(a∗1, . . . , a

∗
n)) = fFeσ (FD(a1, . . . , an))∗,

it follows by Feferman-invariance and the above lemma again that

fσ∗(F
∗
D(a∗1, . . . , a

∗
n)) = FD′(f

Fe
τ1

(a1), . . . , fFeτn (an))

= F ∗D′(fτ∗1 (a∗1), . . . , fτ∗n(a∗n)),

as required.
The proof of the converse is very similar. Suppose F ∗ is homomorphism invariant and

let a∗1, . . . , an∗ be such that ai ∈ dom(fFeτi ) for each i ≤ n. By the lemma, a∗i ∈ dom(fτ∗i ) and,



132 APPENDIX: CASANOVAS’S ANALYSIS OF FEFERMAN’S PROPOSAL

moreover, fτ∗i (ai) = fFeτi (ai). By homomorphism-invariance, F ∗D(a∗1, . . . , a
∗
n) ∈ dom(fσ∗).

Therefore, we have:

FD′(f
Fe
τ1

(a1), . . . , fτn(an))∗ = F ∗D′(fτ∗1 (a1), . . . , fτ∗n(an))

= fσ∗(F
∗
D(a∗1, . . . , a

∗
n))

= fσ∗(FD(a1, . . . , an)∗)

= fFeσ (FD(a1, . . . , an))∗

Since ∗ is a bijection, this gives the desired result. �

The last type of invariance introduced by Casanovas is what he calls preimage invariance.
Again, we start with a basic surjective function f : D0 → D′0 and then we define recursively
the preimage extension of f as follows:

Definition C.15. Let f : D0 → D′0 be a surjective function. Define fpτ as follows:

1. f0 = f ;

2. If τ = 〈τ1, . . . , τn〉, then:

(a) The domain of fpτ consists of all relations a ⊆Mτi ×Mτn for which there’s some
b ⊆ Nτ1 × · · · ×Nτn such that

a = {(a1, . . . , an) ∈ dom(fpτ1)× dom(fpτn) | (fpτ1(a1), . . . , f pτn(an)) ∈ b}.

(b) For each such a ∈ dom(fpτ ), set

fpτ (a) = {(fpτ1(a1), . . . , f pτn(an)) | (a1, . . . , an) ∈ a}.

The name “preimage extension” should be clear: this essentially consists in taking the
preimages of the extensions of f defined at previous levels of the hierarchy. The definitions
of preimage invariance for objects and operators is as expected:

Definition C.16. An object a of type τ is preimage-invariant i� for any surjective function
f : D0 → D′0, aD ∈ dom(fpτ ) and fpτ (aD) = aD′ .

Definition C.17. A 〈τ1, . . . , τn → σ〉-operator F is preimage-invariant i� for any surjective
function f : D0 → D′0, if ai ∈ dom(fpτi)(i ≤ n), then FD(a1, . . . , an) ∈ dom(fpσ) and
fpσ(FD(a1, . . . , an)) = FD′(f

p
τ1

(a1), . . . , f pτn(an)).
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The next result shows that preimage invariance in a relational type and homomorphism
invariance over a functional type coincide over the basic levels, which were the focus of
Feferman’s analysis. In the following, I’ll abbreviate 〈01, . . . , 0n〉 as 0n and 〈0m1 , . . . , 0mn →
n〉 as 〈m1, . . . ,mr → n〉. I’ll make use of the following lemma:

Lemma C.2. If τ = 0n and f : D0 → D′0 is surjective, then fFeτ = fpτ .

Proof. I’ll prove the lemma by showing, firstly, that dom(fpτ ) = dom(fFeτ ) and, secondly,
that fFeτ (a) = fpτ (a) for every a ∈ dom(fFeτ ).

Suppose first that a ∈ dom(fFeτ ). By Definition C.12, we have the following equality:

fFeτ (a) = {(fFe0 (a1), . . . , fFe0 (an)) | (a1, . . . , an) ∈ a ∩ (dom(fFe0 × · · · × dom(fFe0 ))}

Let fFeτ (a) = b. Since f0 = f and f is total, it follows that the above can be simplified to:

fFeτ (a) = b = {(f(a1), . . . , f(an)) | (a1, . . . , an) ∈ a}.

But then, it follows immediately that:

a = {(a1, . . . , an) ∈ dom(fp0 )× dom(fp0 ) | (fp0 (a1), . . . , f p0 (an)) ∈ b}

whence a ∈ dom(fpτ ).
On the other hand, suppose a ∈ dom(fpτ ). By Definition C.15, there is b ⊆ D′0×· · ·×D′0

such that:

a = {(a1, . . . , an) ∈ dom(fp0 )× dom(fp0 ) | (fp0 (a1), . . . , f p0 (an)) ∈ b}

Suppose then that there are ai, a′i(i ≤ n) such that fFe0 (ai) = fFe0 (a′i). Since, by defini-
tion, fFe0 = f0 = fp0 , it follows that fp0 (ai) = fp0 (a′i). Therefore, by the above, (a1, . . . , an) ∈
a i� (a′1, . . . , a

′
n) ∈ a, that is, a ∈ dom(fFeτ ).

The next part follows easily from the definitions. Suppose a ∈ dom(fFeτ ). We have:

fFeτ (a) = {(fFe0 (a1), . . . , fFe0 (an)) | (a1, . . . , an) ∈ a ∩ dom(fFe0 )× · · · × dom(fFe0 )}

= {(f(a1), . . . , f(an)) | (a1, . . . , an) ∈ a}

= {(fp0 (a1), . . . , f p0 (an)) | (a1, . . . , an) ∈ a}

= fpτ (a)

This concludes the proof. �

Observe that we used the fact that f is total and surjective in the above, so the proof can’t
be readily extended to higher types.
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Corollary C.2. If a is an object of type 0n, then a is Feferman-invariant i� it is preimage invariant.

Corollary C.3. If a is an object f type 0n, then a is preimage-invariant i� a∗ is homomorphism-
invariant in the sense of Feferman.

Theorem C.4. A 〈m1, . . . ,mr → n〉-operatorF is preimage invariant i� it is Feferman-invariant.

Proof. Suppose f : D0 → D′0 is a surjective mapping. By the above lemma, it follows that
FD(a1, . . . , an) ∈ dom(F Fe

0n ) i� FD(a1, . . . , an) ∈ dom(F p
0n), so this part is taken care of.

Using the above lemma, we obtain the following equations:

FD′(f
Fe
0m1 (a1), . . . , fFe0mr (an)) = FD′(f

p
0m1 (a1), . . . , f p0mn (an))

and

fFe0n (FD(a1, . . . , an)) = fp0n(FD(a1, . . . , an)).

Therefore, we obtain that

FD′(f
Fe
0m1 (a1), . . . , fFe0mr (an)) = fFe0n (FD(a1, . . . , an))

i�

fFe0n (FD(a1, . . . , an)) = fp0n(FD(a1, . . . , an)).

That is, F is Feferman-invariant i� it is preimage-invariant. �

Corollary C.4. A 〈m1, . . . ,mr → n〉-operator F is preimage invariant i� F ∗ is homomorphism
invariant.

As Casanovas mentions, the above corollary helps to explain why conjunction acting
on formulas with the same free variables comes out as invariant in Feferman’s analysis, but
not on his. Conjunction acting on formulas with the same free variables is basically the
operation of intersection, which is preserved by preimages but not in general by surjective
functions. I’ll give a more precise characterization of the mapping-invariant objects and
operators in the next section.

C.3 Invariant Objects and Operators

In this section, I’ll present Casanovas’s characterization of mapping-invariant objects and
operators for the first levels of the hierarchy. For objects, I’ll provide a characterization of
0n and 〈〈0〉〉mapping-invariant objects, whereas for operators I’ll provide a characterization
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of 〈m→ n〉-ary mapping-invariant operators; the more general case of 〈m1, . . . ,mr → n〉-
ary mapping-invariant operators is obtained by an easy generalization from the previous
case. Since, as we saw in the last section, similarity invariance is equivalent to mapping
invariance, I will switch between these two notions according to what is more convenient
in each situation.

Mapping-invariant objects

The following lemma will prove to be very useful in the sequence:

Lemma C.3. The union of mapping-invariant objects is also mapping-invariant.

Proof. Let a =
⋃
i∈I
bi for mapping-invariant bis, i.e. for each D, aD =

⋃
i∈I
biD. Consider a

surjective function f : D0 → D′0. We have:

f0n(aD) = {(f0(a1), . . . , f0(an)) | (a1, . . . , an) ∈ biD for some i ∈ I}

=
⋃
i∈I

{(f0(a1), . . . , f0(an)) | (a1, . . . , an) ∈ biD}

=
⋃
i∈I

biD′

= aD′

This concludes the proof. �

In order to prove the first characterization theorem, I’ll first define the diagonal objects
and then state a couple of lemmas that will be useful in the proof.

Definition C.18. The diagonal object dI of type 0n is defined, for eachD and I ⊆ {1, . . . , n},
as follows: dID = {(a1, . . . , an) ∈ Dn

0 | ai = aj∀i, j ∈ I}.

Notice that, by this definition, D0 = dID for I = {1}.

Lemma C.4. Suppose a is an object of type 0n and that the following holds: if dID ∩ aD 6= ∅ for
|D0| > n , then dID′ ⊆ aD′ for any D′. Then a is uniformly a union of objects dI .

Proof. Suppose a satisfies the hypothesis of the theorem and let (a1, . . . , an) ∈ a. Now,
either there are i, j ∈ I for I ⊆ {1, . . . , n} such that ai = aj or not. If the former,
then (a1, . . . , an) ∈ dID for some I . If the latter, then (a1, . . . , an) ∈ d

{1}
D . Either way,

(a1, . . . , an) ∈ dID for some I . Thus, for each element of a, there is some I that contains it.
Let K be the set of all Is which contain elements of a. Clearly a ⊆

⋃
I∈K

I . Conversely, for

each such I ∈ K, dID ∩ aD 6= ∅, so by the hypothesis of the theorem, dID ⊆ aD. Therefore,⋃
I∈K

I ⊆ a, whence
⋃
I∈K

= a. �
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Lemma C.5. Each dI is a mapping-invariant object and, moreover, any object which is uniformly
a union of such dIs is also mapping-invariant.

Proof. Let f : D0 → D0 be a surjective mapping. By definition, we have:

f0n(dID) = {(f0(a1), . . . , f0(an)) | (a1, . . . , an) ∈ dID}.

Since ai = aj for every i, j ∈ I and f is a function, it follows easily that f0n(dID) ⊆ dID′ .
Moreover, since f is surjective, for every (b1, . . . , bn) ∈ dID′ , there will be (a1, . . . , an) ∈ dID
such that f(ak) = bk(k ≤ n). Thus f0n(dID) = dID′ , that is, dI is mapping invariant.

By Lemma C.3, the union of these objects is also mapping-invariant. �

Theorem C.5. An object a of type 0n is mapping-invariant i� it is the empty object (aD = ∅),
or the universe (aD = Dn

0 ), or it is uniformly a union of objects dI for I ⊆ {1, . . . , n}.

Proof. As both the empty set and universe are obviouslymapping-invariant, the above lemma
takes care of the right-to-left direction. Thus we only need to show that, if a is mapping-
invariant, it has one of three forms specified above. Because of Lemma C.4, I only need to
show that, for any mapping-invariant a of the appropriate type, if dID ∩ aD 6= ∅, then, for
any D′, dID′ ⊆ aD′ .

So assume |D0| > n and let (a1, . . . , an) ∈ dID ∩ aD. Consider (b1, . . . , bn) ∈ dID′ for some
D′. Define a similarity relation π as follows:

π = {((a1, . . . , an), (b1, . . . , b))} ∪ (D0 \ {a1, . . . , an} ×D′0).

By the mapping invariance of a, it follows that, for any D′, π(aD, aD′). But then, by
construction, (b1, . . . , bn) ∈ aD′ , as desired. �

Since, in general, the intersection of dI , dJ and the complement of dI for some I, J ⊆
{1, . . . , n} is not the union of dIs, it follows at once that the intersection and complement
of mapping-invariant objects are not necessarily themselves mapping-invariant. This is in
sharp contrast to the situation with permutation-invariant objects, which are preserved by
intersection and complement. It also indicates that, in a relational type hierarchy, the objects
determined by certain conjunctions and negations will not in general bemapping-invariant,
again in contrast to the situation we saw above when discussing Feferman’s theorem. Since,
however, these questions are considered more naturally in the context of operators deter-
mined by first-order formulas, I’ll postpone discussion of this latter point to the next section.

The next set-theoretical lemmawill be useful when characterizing themapping-invariant
objects of type 〈〈0〉〉.
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Lemma C.6. Let A be a set such that |A| < κ. Then, for any function f whose domain is A,
|rng(f)| < κ.

Proof. Suppose the hypothesis. By the axiom of choice, it’s possible to well-orderA. Relative
to this well-ordering, define a function g : rng(f) → A as follows: for any b ∈ rng(f),
g(b) = a such that a is the least element of A such that f(a) = b. Clearly g is injective, for,
if g(b) = g(b′) = a, then, by definition, b = f(a) = b′. Therefore, |rng(f)| ≤ |A| < κ. �

Theorem C.6. Suppose a is uniformly the union of the following objects:

1. the object e such that, for every D, eD = {∅};

2. the object u such that, for every D, uD = {D0};

3. the object p such that, for every D, pD = P(D0) \ {∅};

4. for some cardinal number κ, the object bκ such that, for every D, bκD = {A ⊆ D0 | A 6=
∅ and |A| < κ}.

Then a is mapping-invariant.

Proof. Again, because of Lemma C.3, I only need to show that each of these objects is
mapping-invariant. The first three objects are obviously mapping-invariant. To see that
bκ is also mapping-invariant, let f : D0 → D′0 be a surjective mapping. In that case, we have
the following:

f〈〈0〉〉(b
κ
D) = {f〈0〉(A) | A ∈ bκ}.

By the above lemma, for each A ∈ bκ, |f〈0〉(A)| < κ. Therefore, f〈〈0〉〉(bκD) ⊆ bκD′ .
Conversely, suppose B ∈ bκD′ . By definition, B ⊆ D′0 and |B| < κ. As f is surjective,

for each b ∈ B, there’s a ∈ D0 such that f(a) = b. Define A ⊆ D0 to be the set of elements
in D0 such that f(a) = b for some b; if f(a) = f(a′), then pick only the least of them.
Then f � A : A → B is a bijection between A and B, whence |A| = |B| < κ, so A ∈ bκD,
and, by construction, f〈0〉(A) = B, i.e. B ∈ f〈〈0〉〉(bκD). Therefore, bκD′ ⊆ f〈〈0〉〉(b

κ
D), whence

bκD′ = f〈〈0〉〉(b
κ
D). So bκ is mapping-invariant, as required. �

To prove the converse, I’ll need the following lemma:

Lemma C.7. Suppose a is a mapping-invariant object of type 〈〈0〉〉 and suppose that, for a given
D, aD has non-empty elements A such that A 6= D0. Let κ be a cardinal such that, for each µ < κ,
aD has non-empty elements A 6= D0 such that |A| = µ. Then, for any D, bκD ⊆ aD .
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Proof. Suppose the hypothesis of the theorem and let B ⊆ D′0 be non-empty and such that
|B| = µ < κ. I must show that B ∈ aD′ . By the hypothesis, there’s a set A ∈ aD such that
A 6= D′0 and such that |A| = µ. Since |A| = |B|, there must be a bijection f between them;
set then π = f ∪ ((D0 \A)×D′0). Clearly π is a similarity relation betweenD0 andD′0, and,
by construction, π(A,B). But a is mapping invariant, whence B ∈ aD′ . �

Remark C.1. If, in the above lemma, bκD 6⊆ aD for some D, it follows that κ must be regular.
Otherwise, κ could be reached by a union of less than κ sets of size less than κ, whence bκ

would also be reachable by such a union. Since aD would contain all sets of sizes less than κ
(by the lemma), it would follow that bκD ⊆ aD, contradicting the hypothesis.

Remark C.2. Another corollary of the above lemma is that, if bκD 6⊆ aD, and κ = λ+, then
there can be no A 6= D0 such that |A| ≥ λ and A ∈ aD. The above lemma shows that, if
aD contains one set of cardinality µ, it must contain all of them. Thus, if there was A ∈ aD
satisfying the above conditions, bκD ⊆ aD, contrary to the hypothesis.

Theorem C.7. Suppose a is a mapping-invariant object of type 〈〈0〉〉. Then a is either the empty
object or uniformly a union of the following objects:

1. the object e such that, for every D, eD = {∅};

2. the object u such that, for every D, uD = {D0};

3. the object p such that, for every D, pD = P(D0) \ {∅};

4. for some cardinal number κ, the object bκ such that, for every D, bκD = {A ⊆ D0 | A 6=
∅ and |A| < κ}.

Proof. There are, at first, two cases to consider: either (i) there is no D such that aD has a
nonempty element A 6= D0 or (ii) there is such a D. If (ii), there are two more cases to
consider: (a) for arbitrarily large κ, there is D such that bκD ⊆ aD or (b) there’s a least κ such
that, for some D, bκD 6⊆ aD. Finally, if (b), then, by the above remark, κ = λ+ for some λ. In
that case, there are two further cases to consider: either (b′) there’s no D such that |D0| > λ

and D0 ∈ aD or (b′′) there’s D such that |D0| ≥ λ and D0 ∈ aD. Let’s tackle each such case
in turn.

Case (i): There’s no D such that aD has a non-empty element A 6= D0. Thus, for each D,
aD ⊆ {∅, D0}. By the mapping invariance of a, it follows that either aD = ∅ for each D,
or aD = {D0} for each D, or else aD = {∅, D0} for each D. Thus, in this case, a satisfies the
theorem.
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Case (iia): Suppose that, for arbitrarily large κ, there is D such that bκD ⊆ aD. Consider an
arbitraryD such that |D0| = κ for some κ. By the hypothesis and the mapping invariance of
a, bκD ⊆ aD. But then, either aD = P(D0), or else aD = P(D0)\{∅}. SinceD was arbitrary,
this holds uniformly for each D, so the theorem is also true in this case.

Case (iib′): There’s a least κ = λ+ such that bκD 6⊆ aD for some D and, moreover, there’s
no D such that |D0| ≥ λ and D0 ∈ aD. I claim that either a = bλ, or a = bκ ∪ e. Note
that, since κ is the least cardinal such that bκD 6⊆ aD for some D, it follows immediately that
bλ ⊆ a. To see the converse, suppose A ∈ aD for an arbitrary D. Either A = ∅ or A 6= ∅.
Suppose the latter. Then |A| = µ for some µ < λ (otherwise, as remarked above, bκ ⊆ a,
contradicting the hypothesis). But then A ∈ bλD, as required. Therefore, either aD = bλD, or
else aD = bλD ∪ {∅}, which is what we wanted to prove.

Case (iib′′): There’s a least κ = λ+ such that bκD 6⊆ aD for some D and, moreover, there’s
D such that |D0| ≥ λ and D0 ∈ aD. I claim that, for every D′, D′0 ∈ aD′ . There are three
possibilities: either |D′0| < λ, or |D0| = |D′0| ≥ λ or |D0|, |D0| ≥ λ but |D0| 6= |D′0|. If the
first, then D′0 ∈ aD′ . If the second, then there’s a bijection f between D0 and D′0, which is
also a similarity relation. By the mapping invariance of a, it follows that D′0 ∈ aD′ . Finally,
if the third possibility obtains, suppose, without loss of generality, that |D0| > |D′0|. Let
then A ⊆ D0 and B ⊆ D′0 be such that |A| = |B| ≥ λ, with A 6= D0. As |A| = |B|, there’s a
bijection f between them; set π = f ∪ ((D0 \ A) ×D′0). Clearly, π is a similarity relation,
whence there must be C ∈ aD′ such that π(D0, C); by construction, C = D′0. Therefore,
D′0 ∈ aD′ . Hence, it follows that either a = bλ ∪ u, or a = bλ ∪ e ∪ u, uniformly for each D.
So the theorem also applies in this case. �

Mapping-invariant 〈m→ n〉-ary operators

I’ll show in this section, first, that every mapping-invariant 〈m → n〉-ary operator can be
obtained from certain basic ones by means of three main operations. Using this result, I’ll
then show that every such operator can be determined by a first-order formula.

The basic operators are:

1. The constant 〈m→ 1〉-ary operators Cm
> and Cm

⊥ whose actions on R ⊆ Dm
0 are:

(a) Cm
> (R) = D0;

(b) Cm
⊥ (R) = ∅.

2. The 〈m→ nm〉-ary diagonal operator ∆m
n such that, for any R ⊆ Dm

0 ,

∆m
n (R) = {n× a | a ∈ R}
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where n × a is the n-fold concatenation of the tuple a, i.e., if a = (a1, . . . , an), then
n× a = (b1, . . . , bnm), where, for each 0 ≤ k < n and 1 ≤ i ≤ m, bkm+i = ai. That is,
∆m
n produces n copies of a and concatenates them.

3. The 〈m→ m− 1〉-ary i-projection operator Πm
i (for m ≥ 2 and 1 ≤ i ≤ m), such that,

for any R ⊆ D0,

Πm
i (R) = {(a1, . . . , ai−1, ai+1, . . . , am | (a1, . . . , am) ∈ R}

4. For any σ ∈ Sym{1, . . . ,m} (the symmetric group of {1, . . . ,m}), the 〈m→ m〉-ary
permutation operator Pσ, such that, for any R ⊆ Dm

0 ,

Pσ(R) = {(aσ(1), . . . , aσ(m)) | (a1, . . . , an) ∈ R}

The generating operations for operators are the following ones:

1. Product. If F is 〈m → n1〉-ary and G is 〈m → n2〉-ary, the product F × G is the
〈m→ n1 + n2〉-ary operator such that, for R ⊆ Dm

0 ,

F ×G(R) = F (R)×G(R)

2. Sum. If F and G are 〈m → n〉-ary operators, the sum F ∪ G is the 〈m → n〉-ary
operator such that, for any R ⊆ D0,

F ∪G(R) = F (R) ∪G(R)

3. Composition. If F is 〈m→ n〉-ary and G is 〈n→ k〉-ary, then the composition G ◦ F
is the 〈m→ k〉-ary operator such that, for any R ⊆ D0,

G ◦ F (R) = G(F (R))

If F is an operator generated only from projections, diagonals, and permutations by
composition, then F is called intern.

Lemma C.8. An 〈m → n〉-ary operator F is intern i� there’s a map σ : {1, . . . , n} →
{1, . . . ,m} such that for any R ⊆ Dm

0 ,

F (R) = {(a1, . . . , an) | for some (a′1, . . . , a
′
m) ∈ R, ai = a′σ(i) for all 1 ≤ i ≤ n}

Proof. From left to right, the proof is by induction on the generating sequence of F . If F is
a projection Πm

i , then, for 1 ≤ j ≤ n, let σ be defined as:



CODA: CRITICISM OF TARSKI’S PROPOSAL 141

σ(j) =

j if j < i

j + 1 if j ≥ i

If F is a permutation Pζ , then σ = ζ. If F is a diagonal ∆m
n , then, for 1 ≤ j ≤ nm, define

σ as

σ(j) =

j if j ≤ m

j − km if j > m

where k is such that km + i = j for some 1 ≤ i ≤ m. Finally, if F is a composition G ◦H
such thatG andH satisfy the hypothesis of the proposition, let ζ be the permutation defined
for G and ζ ′ be the permutation defined for H . Then σ = ζ ◦ ζ ′.

Conversely, suppose F is obtained in the manner described by the proposition. There
are three cases to consider: either n < m, or n = m, or m < n. Let’s tackle each in turn.
If n = m, then σ ∈ Sym{1, . . . ,m} and F = Pσ. If n < m, let ζ be an extension of σ
to m defined in the following way: ζ(i) = σ(i) for i ≤ n, and ζ(i) = i if n < i. Then
ζ ∈ Sym{1, . . . ,m}. Define the 〈m→ n〉-ary operator G as follows:

G(R) = Πm
n+1 ◦ · · · ◦ Πm

m ◦ Pζ(R)

I claim G(R) = F (R) for any R ⊆ Dm
0 . We have:

(a1, . . . , an) ∈ G(R) ⇐⇒ for some (a′1, . . . , a
′
m) ∈ R, ai = a′ζ(i) for all i ≤ n

⇐⇒ for some (a′1, . . . , a
′
m) ∈ R, ai = a′σ(i) for all i ≤ n

⇐⇒ (a1, . . . , an) ∈ F (R)

Finally, suppose m < n. There are two cases to consider: either m divides n or not. If
the former, then n = km for some k < n. This means that we can partition n into k blocks,
in such a way that σ can be decomposed into the union of smaller σ0, . . . , σk−1 such that
each σj(j < k) is a bijection between the jth block and m. Define then the 〈m → n〉-ary
operator G as follows:

G(R) = Pζ ◦∆m
k (R)

where ζ is defined as:

ζ(i) = σj(i) + jm

with j being the block in which i is in. Again, I claim that G(R) = F (R). Notice that, by
construction, aζ(i) = aσ(i)(i ≤ n). Therefore, we have:
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(a1, . . . , an) ∈ G(R) ⇐⇒ for some (a′1, . . . , a
′
n) ∈ ∆m

k (R), ai = a′σ(i)(i ≤ n)

⇐⇒ for some (a∗1, . . . , a
∗
m) ∈ R, ai = a∗σ(i)

⇐⇒ (a1, . . . , an) ∈ F (R)

The other case is when m doesn’t divide n. In that case, by the division algorithm,
n = km + r for some 0 < r < m. We proceed in the same way as in the first case, but
instead of employing ∆m

k , we use ∆m
k+1 and the projection functions Πkm+m

km+(r+1), . . . ,Π
km+m
km+m.

It’s clear that we can suitably modify the argument above to show that this operator is the
same as F . �

Definition C.19. A component is either a permutation of products of intern operators, or
else an operator of the form ∆1

nl
◦ Cm

> for some nl and m.

The idea is to show that every mapping-invariant operator can be decomposed into
components of the above form; the indices will become clear when I state the theorem. In
order to show this, I’ll define a technical notion which will be very useful in what follows,
namely the notion of what Casanovas calls a free system:

Definition C.20. Let R ⊆ Dm
0 for some D. Then (D0, R) is a free system if R is infinite, for

all a ∈ D0 there is at most one tuple (a1, . . . , am) ∈ R such that a = ai for some i ≤ m, and
for all (a1, . . . , am) ∈ R, ai 6= aj if i 6= j.

Before stating the theorem, a remark on notation: if R is an n-ary relation, I’ll follow
Casanovas and employ fieldj(R) = {a | (a1, . . . , an) ∈ R and a = aj(j ≤ n)}, i.e. fieldj(R)

is the set of all jth coordinates of R; field(R) is the union of all fieldj(R)(j ≤ n).

Theorem C.8. Let F be an 〈m→ n〉-ary mapping-invariant operator. LetR ⊆ Dm
0 and suppose

(D0, R) is a free system. Then for any (a1, . . . , an) ∈ FD(R) there are both a decomposition

{1, . . . , n} = I1 ∪ · · · ∪ Ik

with each Ij, Il(1 ≤ i, j,≤ k pairwise disjoint and also operators F1, . . . , Fk such that:

1. Fl is 〈m→ nl〉-ary, where nl = |Il|;

2. If i ∈ Il and ai = aj , then j ∈ Il;

3. Fl is intern if {ai | i ∈ Il} has more than one element or if it has just one element a and
a ∈ fieldj(R) for some j;
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4. If {ai | i ∈ Il} has only one element a and a 6∈ field(R), then Fl = ∆1
m ◦ Cm

> , that is,
Fl(S) = {nl × a | a ∈ D0} for all S ⊆ Dm

0 ;

5. (ai : i ∈ Il) ∈ Fl;

6. There is a σ ∈ Sym{1, . . . ,m} such that for all S ⊆ D
′m
0 , if (D0, S) is a free system, then:

Pσ(F1(S)× · · · × Fk(S)) ⊆ F (S)

Proof. The construction is a bit involved, but nevertheless clear. I’ll construct a sequence
of operators and sets of indices in such a way that they are tailor-made for verifying the
theorem. The idea is to construct each operator and index by recursion.

We’re given a mapping-invariant 〈m → n〉-ary operator F , a m-ary relation R such
that (D0, R) is a free system, and a tuple (a1, . . . , an) ∈ F (R). We proceed as follows. If
a1 ∈ field(R), select I1 as a maximal subset of {1, . . . ,m} for which 1 ∈ I1 and there is
an intern 〈m → nl〉-ary operator G such that (ak : j ∈ I1) ∈ G(R) and put F1 = G. If
a1 6∈ field(R), then take I1 = {i | a1 = ai} and put F1 = ∆1

n1
◦ Cm

> . Next, suppose l is the
least element of {1, . . . ,m} \ I1. We repeat the procedure for I1: if al ∈ field(R), choose
a maximal subset I2 of {1, . . . ,m} \ I1 for which l ∈ I2 and there is an intern 〈m → n2〉-
ary operator G such that (ai : i ∈ I2) ∈ G(R), and put F2 = G. If, on the other hand,
a 6∈ field(R), set I2 = {i | al = ai} and F2 = ∆1

n2
◦ Cm

> . This procedure will eventually
exhaust all of {1, . . . ,m}, generating a sequence of operators F1, . . . , Fk and sets of indices
I1, . . . , Ik. I’ll show that this sequence satisfies the six conditions laid out above.

Condition 1: If ai ∈ field(R), then Fl = G for some 〈m → nl〉-ary intern operator G;
otherwise, Fl = ∆1

nl
◦ Cm

> , which is also of the required arity.

Condition 2: If ai 6∈ field(R), the result is immediate by the construction of Il. So suppose
ai ∈ field(R) and i ∈ Il. Suppose also, towards a contradiction, that there is a j such that
ai = aj , but j 6∈ Il. Consider Il′ = Il ∪ {j}. As there’s an intern operator G such that
(ai : i ∈ Il) ∈ G(R), and ai = aj for some i ∈ Il, it follows also that (aj : j ∈ Il′) ∈ G(R),
contradicting the maximality of Il. Thus, if i ∈ Il and ai = aj , j ∈ Il as well.

Condition 3: Suppose either {ai | i ∈ Il} has more than one element, or that it has
only one element a such that a ∈ field(R). If the latter, this means that Fl = G for some
intern operator G. If the former, suppose toward contradiction that Fl is not intern. Then
Il = {i | ai = aj} for some j, whence {ai |; i ∈ Il} has only one element, contradicting the
hypothesis. Thus, if {ai | i ∈ Il} has more than one element, Fl is intern.

Condition 4: Suppose {ai | i ∈ Il} has only one element a and a 6∈ field(R). Then
Il = {i | ai = a} and Fl = ∆1

nl
◦ Cm

> , as desired.



144 APPENDIX: CASANOVAS’S ANALYSIS OF FEFERMAN’S PROPOSAL

Condition 5: Consider (ai : i ∈ Il). If Il = {i | ai = a} for some a 6∈ field(R), then, for
each ai ∈ (ai : i ∈ Il), ai = a, so (ai | i ∈ Il) is an nl-ary sequence of repeated as, that
is, (ai | i ∈ Il) = nl × a ∈ ∆1

nl
◦ Cm

> . Otherwise, the result follows by the condition we
imposed on G.

Condition 6: This is the trickiest. Assume that S ⊆ D
′m
0 is such that (D0, S) is a free system

and (b1, . . . , bn) is such that (bi : i ∈ Il) ∈ Fl(S) for l ≤ k. I’ll show that (b1, . . . , bn) ∈ F (S).
But first, let’s construct the permutation σ. For each Il, let sl be an enumeration of Il
and s1

_s2
_ . . . _sk be their concatenation. We set σ = s1

_s2
_ . . . _sk. Set J as the set

of all l ∈ {1, . . . , k} such that Fl is intern. By Lemma C.8, if l ∈ J , there’s a mapping
σl : Il → {1, . . . ,m} such that for all T ⊆ D∗m0 ,

Fl(T ) = {(ci : i ∈ Il) | for some (c′1, . . . , c
′
m) ∈ T, ci = c′σl(i) for all i ∈ Il}.

Therefore, for R and S in particular, this generates (al1, . . . , a
l
m) ∈ R and (bl1, . . . , b

l
m) ∈

S such that ai = blσl(i) and bi = blσl(i) for all i ∈ Il.
If l 6∈ J , then set al = ai and bli for all i ∈ Il. Let L be the set of all l ∈ {1, . . . , k}\J such

that bl ∈ field(S). Given that bl ∈ field(S), it follows that bl = bli for some i and some tuple
(bl1, . . . , b

l
m) ∈ S. Choose one such tuple and another arbitrary tuple (al1, . . . , a

l
m) ∈ R; the

only requirement on the tuple so chosen is that, for each l, l′ ∈ {1, . . . , k}, the corresponding
tuples must be distinct. This is possible because R is infinite.

Set now:

A = D0 \ ({ali | 1 ≤ i ≤ m and l ∈ J ∪ L} ∪ {al | l 6∈ J})

and

B = D′0 \ ({bli | 1 ≤ i ≤ m and l ∈ J ∪ L} ∪ {bl | l 6∈ J})

Define now a similarity relation π as follows:

π = (A×B) ∪ {(ali, bli) | 1 ≤ i ≤ m and l ∈ J ∪ L} ∪ {(al, bl) | l 6∈ J}

Clearly, π(R, S), so, by the mapping invariance of F , π(F (R), F (S)). Thus, there is
(c1, . . . , cn) ∈ F (S) such that π(ai, ci) for i ≤ n. But, by our construction of π and the l
tuples, if (l, i) 6= (l′, i′), then ali 6= al

′

i′ , ali 6= al
′ for any l, i, l′, and, if l 6= l′, al 6= al

′ . It follows
that (b1, . . . , bn) = (c1, . . . , cn) ∈ F (S), as required. �

Theorem C.9. Let F be an 〈m → n〉-ary mapping-invariant operator. Assume D0 is infinite.
For any (a1, . . . , an) ∈ FD(∅), there are both a decomposition
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{1, . . . , n} = I1 ∪ · · · ∪ Ik

with Ik, Il disjoint for k 6= l and also operators F1, . . . , Fk such that:

1. Fl = ∆1
nl
◦ Cm

> for nl = |Il|;

2. If i ∈ Il and ai = aj , then j ∈ Il;

3. (ai : i ∈ Il) ∈ Fl(∅);

4. There is a σ ∈ Sym{1, . . . ,m} such that for any infinite set D′0,

Pσ(F1D′
(∅)× · · · × FkD′ (∅)) ⊆ FD′(∅)

Proof. Essentially the same as in the previous theorem. �

Theorem C.10. For any D0, there are D′0, f such that D′0 is infinite and f : D′0 → D0 is
surjective.

Proof. Let D0 be arbitrary, I an infinite index set and {ai | i ∈ I} an enumeration of D0 by
I . Set I = D′0 and let f(i) = ai. Clearly f is a surjection, thus concluding the proof. �

Theorem C.11. For all R,D0 such that R ⊆ Dm
0 and R 6= ∅, there are S,D′0, f such that

S ⊆ D
′m
0 , (D′0, S) is a free system and f : D′0 → D0 is a surjection such that f(S) = R.

Proof. Let I be an infinite index set and enumerate R as {(ai1, . . . , ain) | i ∈ I}. Let J be
another index set such that (bj : j ∈ J) is an enumeration of D0 \ field(R) and such that
J∩(I×{1, . . . ,m}) = ∅. DefineD′0 = J∪(I×{1, . . . ,m}) and set f : D′0 → D0 as f(j) = bj

for i ∈ J and f((i, k)) = aik for (i, j) ∈ I ×{1, . . . ,m}. Finally, define S = f−1(R). Clearly
D′0, S, and f satisfy the hypothesis of the theorem. �

Theorem C.12. Let F be an 〈m → n〉-ary mapping-invariant operator. Let R and S be two
m-ary relations over D0, D

′
0, respectively, and assume f : D′0 → D0 is a surjective mapping such

that f(S) = R. Then:

1. f(FD′(S)) = FD(R);

2. If G is also an 〈m → n〉-ary mapping-invariant operator and FD′(S) = GD′(S), then
FD(R) = GD(R).
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Proof. For 1, we have, by mapping invariance, f(FD′(S)) = FD(f(S)) = FD(R). For 2,
because of 1, we have:

FD(R) = f(FD′(S))

= f(GD′(S))

= GD(f(S))

= GD(R)

Theorem C.13. An 〈m→ n〉-ary operator F is mapping-invariant i� there are two 〈m→ n〉-
ary operators G,H generated from the basic operators by sum, product, and composition and such
that:

1. For all D, FD(∅) = GD(∅);

2. For all D and nonempty R ⊆ Dm
0 , FD(R) = HD(R).

Proof. The right-to-left direction of the theorem is established by an easy induction on the
generating sequence of G and H . As for the other direction, let’s tackle the empty case
first. Because of Theorem C.10 and Theorem C.12, we can focus on only those D such that
D0 is infinite. But then, by Theorem C.9, FD(∅) will be a finite sum of permutations of
components; let G be this sum. Then G satisfies the theorem.

Next, consider case 2. Again, using Theorem C.11 and Theorem C.12, we can focus
on those cases when (D0, R) is a free system. But then, by Theorem C.8, FD(R) will be a
finite union of components, thus satisfying the theorem. �

Definition C.21. Let P be anm-ary relation symbol and let φ(x1, . . . , xn) be a first-order
formula having only P as its extralogical symbol. The 〈m → n〉-ary operator Gφ attached
to φ is defined as: for any nonempty D0 and R ⊆ Dm

0 ,

Gφ
D(R) = {(a1, . . . , an) | (D0, R) |= φ(a1, . . . , an)}

Definition C.22. Let L = {P}, where P is an m-ary relation symbol. Let > be any
tautology and ⊥ be any contradiction. The set of mapping-invariant formulas of L is the
least set satisfying the following:

1. > and ⊥ are mapping-invariant;

2. P (y1, . . . , ym) is mapping-invariant for any distinct variables y1, . . . , ym;

3. ¬∃y1, . . . , ymP (y1, . . . , ym) is mapping-invariant for any distinct variables y1, . . . , ym;
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4. If φ, ψ are mapping-invariant, then (φ ∨ ψ) is mapping-invariant;

5. If φ, ψ are mapping-invariant and have no common free variables, then (φ ∧ ψ) is
mapping-invariant;

6. If φ(x1, . . . , xn) is mapping-invariant and y is a variable distinct from xi for i ≤ n,
then (φ(x1, . . . , xn) ∧ xi = y) is mapping-invariant for all i ≤ n;

7. If φ is mapping invariant, then ∃xφ is mapping-invariant.

Theorem C.14. An 〈m → n〉-ary operator F is mapping-invariant i� F = Gφ for some
mapping-invariant φ in a language L = {P}.

Proof. Right-to-left follows easily by induction on φ. For left-to-right, we need to show,
first, that every operator obtained from the basic ones by sum, product, or composition
is definable by a mapping-invariant formula. This can be done by an induction on the
generating sequence of the operator. Finally, suppose this result. By Theorem C.13, it
follows that the behavior of F is determined by two operators G,H which are obtained
from the basic ones by the above operations. By the result, it follows that there are formulas
ψ(x1, . . . , xn) and χ(x1, . . . , xn) such that G = Gψ and H = Hχ. Let then φ(x1, . . . , xn) be
the following formula:

(ψ(x1, . . . , xn) ∧ ¬∃ȳP (ȳ)) ∨ (χ(x1, . . . , xn) ∧ ∃ȳP (ȳ))

Then φ is a mapping-invariant formula and F = Gφ, as required. �

C.4 Conclusion

As we have seen, in his article, Feferman presented three main criticisms of Tarski’s proposal:

1. It assimilated logic to set theory;

2. The notions involved in explaining the semantics of L∞∞ are not set-theoretically
robust, i.e. they’re not absolute;

3. It gives no explanation of what constitutes the same operation over basic domains.

He tried to meet these three main criticisms with by proposing to consider the logical
operations as precisely the homomorphism-invariant operations. Indeed, it seemed clear
that, by ruling out the numerical quantifiers, Feferman’s proposal avoided assimilating logic
to set theory, thus ruling out 1. The notions capturedwere shown to be exactly those defined
by the first-order predicate calculus without identity, which, as shown by Väänänen (1985),



148 APPENDIX: CASANOVAS’S ANALYSIS OF FEFERMAN’S PROPOSAL

are absolute even under the theory Kripke-Platek with urelements and without the axiom
of infinity (KPU-inf). Finally, given his functional-type framework, he was able to give a
uniform account of, e.g., the operation determined by conjunction, whichwill be uniformly
the same operation from truth-values to truth-values.

Unfortunately, setting aside the first criticism, we have seen that matters are not so
simple. As shown by Casanovas, Feferman’s theorem is highly sensitive to which type-
theoretical framework one adopts. In particular, if one adopts a relational-type framework,
it’s not clear that Feferman is still able to retain 3, as, e.g., conjunction acting on formulas
without common variables will be mapping-invariant, but conjunction acting on formulas
with common variables will not in general be mapping-invariant, which shows that even
on the same domain the operations determined by this connective will not be the same.
Moreover, while the semantics of first-order logic without equality are set-theoretically
absolute, it’s not clear that they are robust, given this wild disparity in the results depending
on whether one adopts a functional- or a relational-type framework. Therefore, it seems
that, by his own lights, Feferman’s proposal fails as a good logicality criterion.
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Conclusion

In the first part, I presented a historical reconstruction of Carnap’s, Quine’s, and Tarski’s
di�ering, and sometimes evolving, views on activity that can be broadly called explication.
This activity is central to the philosophical output of those three, which is why I decided
to give it center stage in the beginning of my analysis. In fact, given how much ink has
been spilled on whether or not Tarski’s proposal captures our “intuitive” concepts of truth,
consequence, and logicality, focusing on Carnap’s and Quine’s dismissal of such appeals to
“intuition” seemed to me a good strategy for making a fresh start on this debate. Neverthe-
less, there remains much to be done in this connection, be it on the historical, technical, or
philosophical front.

On the historical side, there are least two issues that I believe are worthy of further ex-
ploration. First, Tarski’s environment during his formative years should be better explored,
in particular his connection with other Polish logicians such as Ajdukiewicz. In this same
vein, the Polish school’s ties with more “mainstream” figures, especially Frege, could also be
more developed. This research would give us a fuller picture of what Arianna Betti (2008)
has called the Classical Ideal of Science, which guided logical research in the 19th century
and in the early days of the 20th, before Hilbert’s modern position took hold. The sec-
ond historical point that I believe also merits attention is the connection between Tarski,
on the one hand, and Carnap and Quine, on the other. In this study, I limited myself to
a few comparisons, but I believe a case for direct influence on specific points, e.g., Quine
and Goodman’s nominalist strategy, could be easily built, particularly in light of the new
archival material made available by Frost-Arnold (2013).

On the technical side, it would perhaps be interesting to see how far Tarski’s substitu-
tional strategy could be made to work, and to compare the strength of the resulting theory
with the simple theory of types. Burgess and Rosen (1997, pp. 183-5) seem to imply that
Tarski’s proposal is merely a rewritten version of the simple theory of types, but it would
be nice to have a more detailed examination of this result. It would be also of interest to see
what happens when one tinkers with the framework to better fit Tarski’s finitist strictures,
e.g, by considering only a finite set of expressions at the start.

Finally, on the more philosophical side, there remains the issue of examining from a
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closer perspective the merits of each type of explication project. I have already indicated in
Chapter 2 some of my worries regarding Quine’s “paraphrase” method, but I have not done
so for Carnap as well. In a footnote, I indicated that a comparison with MarkWilson’s view
inWandering Significance was called for, which would require a more extensive treatment of
particular case studies from the history ofmathematics. Similarly, comparisonwith Shapiro’s
development of Waismann’s concept of open texture and how informal concepts can give
rise to di�erent sharpenings would make for some nice contrastive analysis.

More importantly, however, is how certain considerations from the second part of the
study interact with the first part. The Carnapian position outlined in the first part implies
that the activity of concept creation is a largely voluntaristic process, in which fruitfulness
is the only measure of success. However, the second part of the study outlined a di�erent
picture. By introducing the notion of a property or an object being natural, I thereby also
opened the possibility for another, more platonic measure of success, namely whether the
concept thus created is also in some derivative sense natural, that is, if it tracks a natural
property or object. Of course, these two metrics need not come apart. Indeed, they of-
ten go together, so much so that Tappenden (2008a,b) even proposed to identify the two,
by simply equating naturalness with fruitfulness. As should be clear by my remarks in the
third chapter, I reject this identification. For me, naturalness should be explained in each
case by an appeal to intrinsic properties of the theory or structure in question (Manders’s con-
ceptual settings), following the example set forth by Manders’s analysis of domain extension.
Therefore, in my view, naturalness is not identical with fruitfulness, but explains fruitfulness.

In any case, this idea that our activity of concept creation is constrained by naturalness
would go some way towards limiting the voluntaristic aspects of Carnapian (and Quinean,
for the matter) explication. This would also explain why the activity of defining new math-
ematical concepts is so important and at the same time so di�cult. Two examples: Wussing
(2007) shows how the emergence of the abstract group concept was a rather slow process,
that depended on the development of at least three di�erent areas, namely geometry, num-
ber theory, and algebra, in the form of the theory of polynomial equations. It is interesting
to see how distinguished authors such as Lagrange, Euler, Gauss, and others were groping
towards this concept, proving special cases of results that are much more naturally formu-
lated using group-theoretic concepts. Indeed, that is why their names ended up attached
to results from a subject matter that was created only after their death, such as the famous
Lagrange Theorem on the relation between the order of a group and the order of its sub-
groups. Not surprisingly, when it finally emerged, the abstract group concept proved to
be fundamental for all these areas. In a somewhat di�erent direction, and this is the second
example, it would be interesting to see how concepts that did not naturally belong together
were eventually refined into distinct notions, such as the notions of continuity, di�erentia-
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bility, convergence, uniform convergence, etc. Grabiner’s (1981/2005) book is a rich source
in this regard.

These historical examples are also interesting in limiting the appeal to “intuitions” in this
kind of context. If there is something to be learned from these two examples, is that natural
concepts are anything but “intuitive” (in fact, mathematicians’ intuitions about continuity
and convergence famously led them astray numerous times). Rather, they are obtained after
a painstaking labor of unearthing natural objects and properties. My hope is that a more in
depth study of these historical examples could help to reveal some of the features that make
those concepts so natural.

Moving on to the second part of the study, since this part is more opinionated and less
historical, it also contain more loose ends. Two of them I indicated in Chapter 3 itself: a
more thorough investigation of neo-Fregean abstractionism and a formal account of “ana-
lytic” that could be useful in building a bridge between logical objects and logical constants.
I believe that the latter will prove to be a mere exercise in formal semantics, since the outline
of such an account has been more than adequately provided by Lewis. The former, on the
other hand, is more di�cult, since the nature of abstraction principles is still very contro-
versial. First, given the so-called bad company objection, there is the pressing question of
which such principles are natural in a metaphysical sense. Some global technical constraints
have been outlined in this connection by Fine (2002), but are there any other more meta-
physical ones? And how do these constraints interact with the broadly Kleinian framework
outlined here?

Second, there is also the question of the nature of abstract objects. Typically, philoso-
phers simply assume that the nature of this division between concrete and abstract objects
is well understood, but this division is not so clear to me.37 As Heck (2017) suggests, the
neo-Fregean may have a promising line here, but this account needs to be fleshed out, and
objections such as those raised by Lewis (1986, p. 85) should be met. Perhaps a generaliza-
tion of my proposal for types could work here, but, again, there is much to be investigated
in this connection.

In this regard, another question that arises in the interaction between the first and the
second part is about the essence of mathematical objects. If we conceive the essence of an
object to be simply the set of its necessary properties, then every property of a mathematical
object will presumably be an essential property. However, at least since Fine (1994), philoso-
phers have begun to search for a more robust conception of essence, one that is somehow
connected to the way that a thing’s essence constitutes that thing. Perhaps this could be tied
to the explanation I gave of natural properties in the text. Suppose, as is somewhat plau-

37For early doubts about this, cf. Hale (1987, Chap. 3); for a more recent discussion, including a very useful
bibliography, cf. Cowling (2017, Chap. 2).
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sible, that mathematical objects are types.38 The essential properties of the type would be
those that figured in the explanatory principle connected to the type, in such a way that its
other properties somehow followed from it. Thus, the naturalness of some concepts could
be thought of as following from the fact that such concepts captured the essence of the type
in question. The continuous refinement of mathematical definitions, which I briefly de-
scribed a couple of paragraphs back, would be the search for real definitions. But this is all
speculation. As I said in the previous paragraph, there is a lot of work to do before this is
even plausible.

Third, there are questions related to Klein’s own framework. In one direction, even in
the 19th century, it was already noted that Klein’s proposal was limited, since it couldn’t
deal with Riemannian geometry. There are ways of extending his approach to include such
cases,39 and an investigation into those approaches could reveal something philosophically
fruitful. On another direction, Marquis (2009) contains some intriguing suggestions, espe-
cially on the connections between logic, geometry, and category theory that I unfortunately
could not investigate further here.

On a more technical level, I mentioned in the last chapter that Bonnay’s work couldn’t
be included in this study; still, his work does raise some interesting mathematical questions,
in particular about the connections between logic and Galois theory that I believe could be
fruitfully pursued. Moreover, due to a mistake, his work still leaves open the question of
which logic corresponds exactly to the homomorphism invariant operations. There is some
rather strong evidence that L∞,∞ without identity is such a logic, but no proof of this has
yet been published.

Finally, there is also the work of van Benthem mentioned by Dutilh Novaes. Roderick
Batchelor has in recent years conducted extensive research into extending the theory of
logical operations to a modal framework. Another fruitful direction of research would be
to extend Batchelor’s work and compare it with earlier results obtained by van Benthem,
in particular in connection with the latter’s use of the bisimulation technique.

38This would be a position close to some forms of structuralism, in the sense that the “positions” in the
structure would be considered as types. In fact, structures themselves could be considered as isomorphism
types.

39Notably, Cartan’s proposal. Cf. Sharpe (1997) for a detailed mathematical treatment of Cartan’s ideas.



References

AMIOT, EMMANUEL. Music Through Fourier Space: Discrete Fourier Transform in Music Theory.
New York: Springer, 2016.

ARNOL’D, VLADIMIR I. “On Teaching Mathematics”. In: Russian Mathematical Surveys 53
(1998), pp. 229–236.

BARNARD, ROBERT and JOSEPH ULATOWSKI. “Tarski’s 1944 Polemical Remarks and Naess’
“Experimental Philosophy””. In: Erkenntnis 81.3 (2016), pp. 457–477.

BARWISE, K. JON. Admissible Sets and Structures. New York: Springer-Verlag, 1975.
BEANEY, MICHAEL, ed. The Analytic Turn: Analysis in Early Analytic Philosophy and Phe-

nomenology. New York: Routledge, 2007.
BELL, JOHN LANE and A. B. SLOMSON. Models and Ultraproducts: An Introduction. New York:

North Holland, 1974.
BELLOTTI, LUCA. “Tarski on Logical Notions”. In: Synthese 135 (2003), pp. 401–413.
BETH, EVERT WILLEM. “Reason and Intuition”. In: Aspects of Modern Logic. Dordrecht-

Holland: D. Reidel Publishing Company, 1970. Chap. 7, pp. 86–101.
BETTI, ARIANNA. “Leśniewski’s early Liar, Tarski and natural language”. In: Annals of Pure

and Applied Logic 127 (2004), pp. 267–287.
— “Polish Axiomatics and its Truth: On Tarski’s Leśniewskian Background and the Aj-

dukiewicz Connection”. In: New Essays on Tarski and Philosophy. Ed. by DOUGLAS PAT-
TERSON. Oxford: Oxford University Press, 2008, pp. 44–71.

BIRKHOFF, GARRETT and M. K. BENNETT. “Felix Klein and his “Erlanger Programm””.
In: History and Philosophy of Modern Mathematics. Ed. by PHILIP KITCHER and WILLIAM
ASPRAY. Minneapolis: University of Minnesota Press, 1988, pp. 145–176.

BLANCHETTE, PATRICIA A. Frege’s Conception of Logic. Oxford: Oxford University Press,
2012.

BONNAY, DENIS. “Logicality and Invariance”. In: Bulletin of Symbolic Logic 13, 1 (2008),
pp. 29–68.

BRANDOM, ROBERT. Articulating Reasons: An Introduction to Inferentialism. Cambridge: Har-
vard University Press, 2000.

— Between Saying and Doing: Towards an Analytic Pragmatism. Oxford: Oxford University



154 REFERENCES

Press, 2008.
BROMBERGER, SYLVAIN. On What We Know We Don’t Know: Explanation, Theory, Linguistics,

and How Questions Shape Them. Chicago: University of Chicago Press, 1992.
BURGESS, ALEXIS G. and JOHN BURGESS. Truth. Princeton: PrincetonUniversity Press, 2011.
BURGESS, JOHN P. and GIDEON ROSEN. A Subject with no Object: Strategies for Nominalist

Interpretations of Mathematics. Oxford: Oxford University Press, 1997.
CARNAP, RUDOLF. Logical Syntax of Language. London: Routledge, 1937/2001.
— “Empiricism, Semantics, and Ontology”. In: Meaning and Necessity. 2nd ed. Chicago:

University of Chicago Press, 1950/1956, pp. 205–221.
— “Meaning and Synonymy in Natural Languages”. In: Philosophical Studies VI.3 (1955),

pp. 33–47.
— “Value Concepts”. In: Synthese 194 (1958/2015). Edited and translated by André W.

Carus, pp. 185–194.
— Logical Foundations of Probability. 2nd ed. Chicago: The University of Chicago Press,

1962.
— “Replies and Systematic Expositions”. In: The Philosophy of Rudolf Carnap. Ed. by PAUL

ARTHUR SCHILPP. Chicago: Open Court, 1963, pp. 859–1013.
CARUS, ANDRÉ W. Carnap and Twentieth-Century Thought: Explication as Enlightenment.

New York: Cambridge University Press, 2007.
— “Engineers and Drifters: The Ideal of Explication and Its Critics”. In: Carnap’s Ideal of

Explication and Naturalism. Ed. by PIERRE WAGNER. New York: Palgrave Macmillan,
2012, pp. 225–239.

— “Carnapian Rationality”. In: Synthese 194 (2017), pp. 163–184.
CASANOVAS, ENRIQUE. “Logical Operations and Invariance”. In: Journal of Philosophical Logic

36 (2007), pp. 33–60.
CASANOVAS, ENRIQUE, PILLAR DELLUNDE, and RAMON JANSANA. “On Elementary Equiv-

alence for Equality-free Logic”. In: Notre Dame Journal of Formal Logic 37.3 (1996),
pp. 506–522.

COFFA, J. ALBERTO. The Semantic Tradition from Kant to Carnap: To The Vienna Station.
Ed. by LINDA WESSELS. Cambridge: Cambridge University Press, 1991.

CORCORAN, JOHN. “Material Adequacy”. In: The Cambridge Dictionary of Philosophy. Ed. by
ROBER AUDI. Cambridge: Cambridge University Press, 1999, p. 540.

— “Review of Sinaceur 2009”. In: Mathematical Reviews (2011). MR2509665 (2011b:03006).
CORCORAN, JOHN and JOSÉ MIGUEL SAGÜILO. “The Abscence of Multiple Universes of Dis-

course in the 1936 Tarski Consequence-Definition Paper”. In: History and Philosophy of
Logic 32.4 (2011), pp. 359–374.

CORCORAN, JOHN and LEONARDO WEBER. “Tarski’s Convention T: Condition beta”. In:



REFERENCES 155

South American Journal of Logic 1.1 (2015), pp. 3–32.
CORCORAN, JOHN, WILLIAM FRANK, and MICHAEL MALONEY. “String Theory”. In: The

Journal of Symbolic Logic 39.4 (1974), pp. 625–637.
COWLING, SAM. Abstract Entities. London: Routledge, 2017.
CREATH, RICHARD, ed.Dear Carnap, Dear Van: The Carnap-Quine Correspondence and Related

Work. Berkeley, CA: University of California Press, 1990.
— “Every Dogma Has Its Day”. In: Erkenntnis 35 (1991), pp. 347–389.
— “The Linguistic Doctrine and Conventionality: The Main Argument in “Carnap and

Logical Truth””. In: Logical Empiricism in North America. Ed. by GARY L. HARDCASTLE
and ALANW. RICHARDSON. Minneapolis: University of Minnesota Press, 2003, pp. 234–
256.

— “Quine’s Challenge toCarnap”. In: The Cambridge Companion to Carnap. Ed. byMICHAEL
FRIEDMAN andRICHARDCREATH. Cambridge: CambridgeUniversity Press, 2007, pp. 316–
335.

— “Understandability”. In: Metascience (2015). Online first.
— “The Logical and the Analytic”. In: Synthese 194 (2017), pp. 79–96.
DE ROUILHAN, PHILIPPE. “Carnap on Logical Consequence for Languages I and II”. in: Car-

nap’s Logical Syntax of Language. Ed. by PIERRE WAGNER. New York: Palgrave Macmil-
lan, 2009, pp. 121–146.

DEDEKIND, JULIUS WILHELM RICHARD. “Continuity and Irrational Numbers”. In: Essays on
the Theory of Numbers. New York: Dover, 1872/1963, pp. 1–27.

— Gessamelte Mathematischen Werke, Volumes 1-3. Braunschweig: Vieweg, 1932.
DEMOPOULOS, WILLIAM. “Carnap’s Analysis of Realism”. In: Logicism and Its Philosophucal

Legacy. New York: Cambridge University Press, 2013, pp. 68–89.
DEVLIN, KEITH J. Constructibility. Berlin: Springer-Verlag, 1984.
DUTILH NOVAES, CATARINA. “The Undergeneration of Permutation Invariance as a Crite-

rion for Logicality”. In: Erkenntnis 79 (2014), pp. 81–97.
DUTILH NOVAES, CATARINA and EDGAR ANDRADE-LOTERO. “Validity, the Squeezing Argu-

ment and Alternative Semantic Systems: the Case of Aristotelian Syllogistic”. In: Journal
of Philosophical Logic 41 (2012), pp. 387–418.

DUTILH NOVAES, CATARINA and ERICH RECK. “Carnapian explication, formalisms as cog-
nitive tools, and the paradox of adequate formalization”. In: Synthese (2015). Published
online.

EBBINGHAUS, HANS-DIETER. “Extended Logics: The General Framework”. In: Model-
Theoretic Logics. Ed. by K. JON BARWISE and SOLOMON FEFERMAN. New York: Springer-
Verlag, 1985, pp. 25–76.

EBBS, GARY. “Quine’s Naturalistic Explication of Carnap’s Logic of Science”. In: A Com-



156 REFERENCES

panion to W. V. O. Quine. Ed. by GILBERT HARMAN and ERNEST LEPORE. West Sussex:
Wiley-Blackwell, 2014, pp. 465–482.

ERESHEFSKY, MARC. The Poverty of the Linnaean Hierarchy: A Philosophical Study of Biological
Taxonomy. Cambridge: Cambridge University Press, 2003.

— “Systematics and Taxonomy”. In: A Companion to the Philosophy of Biology. Ed. by
SAHOTRA SARKAR and ANYA PLUTYNSKI. Oxford: Wiley-Blackwell, 2008, pp. 99–118.

ETCHEMENDY, JOHN. The Concept of Logical Consequence. Stanford: Center for the Study of
Language and Information, 1999.

— “Reflections on Consequence”. In: New Essays on Tarski and Philosophy. Ed. by DOUGLAS
PATTERSON. Oxford: Oxford University Press, 2008, pp. 263–299.

FEFERMAN, SOLOMON. “Applications of many-sorted interpolation theorems”. In: Proceedings
of the Tarski Symposium. Ed. by LEON HENKIN. Providence: American Mathematical
Society, 1974, pp. 205–223.

— “Logic, Logics, and Logicism”. In: Notre Dame Journal of Formal Logic 40 (1999), pp. 31–
54.

— “Set-theoretical invariance criteria for logicality”. In: Notre Dame Journal of Formal Logic
51 (2010), pp. 3–20.

FERNÁNDEZ-MORENO, LUIS. “Tarski y la noción carnapiana de significado”. In: Revista de
Filosofia VII (1994), pp. 403–420.

FIELD, HARTRY. “Tarski’s Theory of Truth”. In: Truth and the Abscence of Fact. Oxford:
Oxford University Press, 1972/2001, pp. 1–26.

— Saving Truth from Paradox. Oxford: Oxford University Press, 2008.
— Science Without Numbers. 2nd ed. Oxford: Oxford University Press, 2016.
FINE, KIT. “Essence and Modality”. In: Philosophical Perspectives 8 (1994), pp. 1–16.
— The Limits of Abstraction. Oxford: Oxford University Press, 2002.
— “Guide to Ground”. In: Metaphysical Grounding: Understanding the Structure of Reality.

Ed. by FABRICE CORREIA and BENJAMIN SCHNIEDER. Cambridge: Cambridge University
Press, 2012, pp. 37–80.

FREGE, GOTTLOB. The Foundations of Arithmetic: A Logico-mathematical Enquiry into the Con-
cept of Number. 2nd ed. Translated by J. L. Austin. New York: Harper Torchbooks,
1884/1960.

FRENCH, CHRISTOPHER FORBES. “Philosophy as Conceptual Engineering: Inductive Logic
in Rudolf Carnap’s Scientific Philosophy”. PhD thesis. University of British Columbia,
2015.

FRIEDMAN, MICHAEL. “Geometry as a Branch of Physics”. In: Reading Natural Philosophy:
Essays in the History and Philosophy of Science and Mathematics. Ed. by DAVID MALAMENT.
Chicago: Open Court, 2002, pp. 193–230.



REFERENCES 157

— “Carnap and Quine: Twentieth-Century Echoes of Kant and Hume”. In: Philosophical
Topics 34 (2006), pp. 35–58.

— “Carnap’s Philosophical Neutrality Between Realism and Instrumentalism”. In: Analysis
and Interpretation in the Exact Sciences: Essays in Honour of William Demopoulos. Ed. by
MELANIE FRAPPIER, DEREK BROWN, and ROBERT DISALLE. Dordrecht: Springer, 2012,
pp. 95–114.

— “Scientific Philosophy fromHelmholtz to Carnap and Quine”. In: Rudolf Carnap and the
Legacy of Logical Empiricism. Ed. by RICHARD CREATH. Vienna Circle Institute Yearbook
16. Dordrecht: Springer, 2012, pp. 1–11.

FROST-ARNOLD, GREG. Carnap, Tarski, and Quine at Harvard: Conversations on Logic, Mathe-
matics, and Science. Chicago, Illinois: Open Court, 2013.

— “Replies to Creath, Ebbs, and Lavers”. In: Metascience (2015). Online first.
GAWROńSKI, ALFRED. “Psychologism and the principle of relevance in semantics”. In: Ko-

tarbiński: Logic, Semantics and Ontology. Ed. by JAN WOLEńSKI. Dordrecht: Kluwer
Academic Publishers, 1990, pp. 23–29.

GOODMAN, NELSON. Fact, Fiction, and Forecast. 4th ed. Cambridge, Massachusetts: Harvard
University Press, 1983.

GRABINER, JUDITHV.TheOrigin’s of Cauchy’s Rigorous Calculus. NewYork: Dover, 1981/2005.
GRAY, JEREMY J. “Poincaré and Klein - Groups and Geometries”. In: 1830-1930: A Century

of Geometry. Ed. by LUCIANO BOI, DOMINIQUE FLAMENT, and JEAN-MICHEL SALANSKIS.
Berlin: Springer, 1992, pp. 35–44.

— Worlds Out of Nothing: A Course in the History of Geometry in the 19th Century. London:
Springer, 2011.

GRUBER, MONIKA. Alfred Tarski and the “Concept of Truth in Formalized Languages”: A Run-
ning Commentary of the Polish Original and the German Translation. New York: Springer,
2016.

GUIGON, GHISLAIN and GONZALO RODRIGUEZ-PEREYRA, eds. Nominalism About Properties:
New Essays. New York: Routledge, 2015.

GUSTAFSSON, MARTIN. “Quine’s Concept of Explication —and Why It Isn’t Carnap’s”. In:
A Companion to W. V. O. Quine. Ed. by GILBERT HARMAN and ERNEST LEPORE. West
Sussex: Wiley Blackwell, 2014. Chap. 24, pp. 508–525.

HADDOCK, GUILLERMO E. ROSADO. Against the Current: Selected Philosophical Papers. Frank-
furt a. M.: Ontos Verlag, 2012.

HALBACH, VOLKER. Axiomatic Theories of Truth. New York: Cambridge University Press,
2011.

HALE, BOB. Abstract Objects. Oxford: Basil Blackwell, 1987.
HAMKINS, JOEL DAVID, DAVID LINETSKY, and JONAS REITZ. “Pointwise Definable Models of



158 REFERENCES

Set Theory”. In: (2012). arXiv:1105.4597 [math.LO].
HAWKINS, THOMAS. “The Erlanger Programm of Felix Klein: Reflections on Its Place in the

History of Mathematics”. In: Historia Mathematica 11 (1984), pp. 442–470.
— Emergence of the Theory of Lie Groups: An Essay in the History of Mathematics, 1869-1926.

New York: Springer, 2000.
HECK JR., RICHARD G. “Syntactic Reductionism”. In: Frege’s Theorem. Oxford: Oxford

University Press, 2011, pp. 180–199.
— “The Existence (and Non-existence) of Abstract Objects”. In: Abstractionism: Essays in

the Philosophy of Mathematics. Ed. by PHILIP A. EBERT and MARCUS ROSSBERG. Oxford:
Oxford University Press, 2017, pp. 50–78.

HIRSCH, ELI. Dividing Reality. Oxford: Oxford University Press, 1993.
HODGES, WILFRID. “Truth in a Structure”. In: Proceedings of the Aristotelian Society 86, N. S.

(1986), pp. 135–151.
— Model Theory. Cambridge: Cambridge University Press, 2004.
HORSTEN, LEON. The Tarskian Turn: Deflationism and Axiomatic Truth. Cambridge, Mas-

sachusetts: MIT Press, 2011.
HYLTON, PETER. Quine. London: Routledge, 2007.
JANÉ, IGNACIO. “What is Tarski’s Common Concept of Consequence?” In: The Bulletin of

Symbolic Logic 12.1 (2006), pp. 1–42.
JEFFREY, RICHARD. “Carnap’s Voluntarism”. In: Logic, Methodology, and Philosophy of Science

IX. ed. by DAG PRAWITZ, BRIAN SKYRMS, and DAGWESTERSTÅHL. Amsterdam: Elsevier,
1994, pp. 847–866.

JENSEN, RONALD B. and CAROL KARP. “Primitive Recursive Set Functions”. In: Axiomatic
Set Theory: Proceedings of Symposia in Pure Mathematics. Ed. by DANA S. SCOTT. Vol. 1.
Providence: American Mathematical Society, 1971, pp. 143–176.

KANAMORI, AKIHIRO. “The Empty Set, the Singleton, and the Ordered Pair”. In: The Bul-
letin of Symbolic Logic 9 (2003), pp. 273–298.

KANT, IMMANUEL. Critique of Pure Reason. Translated and edited by Paul Guyer and Allen
Wood. New York: Cambridge University Press, 1998.

KLEIN, CHRISTIAN FELIX. “A Comparative Review of Recent Researches in Geometry”. In:
Bulletin of New York Mathematical Society 2 (1892-1893). Translated by M. W. Haskell,
pp. 215–249.

KLEMENT, KEVIN C. “A Generic Russellian Elimination of Abstract Objects”. In: Philosophia
Mathematica 25 (2017), pp. 91–115.

KLINE, MORRIS. Mathematical Thought from Ancient to Modern Times. New York: Oxford
University Press, 1972.

KOTARBIńSKA, JANINA. “Puzzles of Existence”. In: Kotarbiński: Logic, Semantics and Ontology.



REFERENCES 159

Ed. by JAN WOLEńSKI. Dordrecht: Kluwer Academic Publishers, 1990, pp. 53–67.
KREISEL, GEORG. “Informal rigour and completeness proofs”. In: Problems in the Philosophy

of Mathematics. Ed. by IMRE LAKATOS. Amsterdam: North Holland, 1967, pp. 138–171.
KRIPKE, SAUL. “Is There a Problem about Substitutional Quantification?” In: Truth and

Meaning. Ed. by GARETH EVANS and JOHN MCDOWELL. New York: Oxford University
Press, 1976, pp. 325–419.

LANGE, MARC. “Explanation, Existence, and Natural Properties in Mathematics – A Case
Study: Desargues’ Theorem”. In: Dialectica 69.4 (2015), pp. 435–472.

— Because Without Cause: Non-Causal Explanations in Science and Mathematics. Oxford:
Oxford University Press, 2017.

LEśNIEWSKI, STANISŁAW. “An Attempt at a Proof of the Ontological Principle of Contra-
diction”. In: Collected Works. Ed. by S. J. SURMA et al. Dordrecht: Kluwer Academic
Publishers, 1992, pp. 20–46.

— “Fundamentals of a New System of the Foundations of Mathematics”. In: Collected
Works. Ed. by S. J. SURMA et al. Dordrecht: Kluwer Academic Publishers, 1992, pp. 410–
605.

— “On the Foundations of Mathematics”. In: Collected Works. Ed. by S. J. SURMA et al.
Dordrecht: Kluwer Academic Publishers, 1992, pp. 174–382.

— “The Critique of the Logical Principle of the Excluded Middle”. In: Collected Works.
Ed. by S. J. SURMA et al. Dordrecht: Kluwer Academic Publishers, 1992, pp. 47–85.

LEWIS, DAVID. “General Semantics”. In: Philosophical Papers. Vol. 1. New York: Oxford
University Press, 1970/1983, pp. 189–232.

— “Language and Languages”. In: Philosophical Papers. Vol. 1. New York: Oxford Uni-
versity Press, 1983, pp. 163–188.

— On the Plurality of Worlds. New York: Basil Blackwell, 1986.
MACFARLANE, JOHN. “What does it mean to say that logic is formal?” PhD thesis. University

of Pittsburgh, 2000.
MAKOWSKI, J. A., SAHARON SHELAH, and JONATHAN STAVI. “∆-logics andGeneralizedQuan-

tifiers”. In: Annals of Mathematical Logic 10 (1976), pp. 155–192.
MANCOSU, PAOLO. “Fixed- versus Variable-domain Interpretations of Tarski’s Account of

Logical Consequence”. In: Philosophy Compass 5.9 (2010), pp. 745–759.
— “Harvard 1940-1941: Tarski, Carnap, and Quine on a Finitistic Language of Mathe-

matics for Science”. In: The Adventure of Reason: Interplay between Philosophy of Math-
ematics and Mathematical Logic, 1900-1940. New York: Oxford University Press, 2010.
Chap. 13, pp. 361–386.

— “Quine and Tarski on Nominalism”. In: The Adventure of Reason: Interplay between Phi-
losophy ofMathematics andMathematical Logic, 1900-1940. NewYork: OxfordUniversity



160 REFERENCES

Press, 2010, pp. 387–409.
MANCOSU, PAOLO. “Tarski, Neurath, and Kokoszyńska on the Semantic Conception of

Truth”. In: The Adventures of Reason: Interplay between Philosophy of Mathematics and
Mathematical Logic, 1900-1940. New York: Oxford University Press, 2010, pp. 415–
439.

— Abstraction and Infinity. Oxford: Oxford University Press, 2016.
MANDERS, KENNETH. “Logic and Conceptual Relationships in Mathematics”. In: Logic

Collquium ’85. Amsterdam: Elsevier, 1987, pp. 193–211.
— “Domain Extensions and the Philosophy of Mathematics”. In: The Journal of Philosophy

86 (1989), pp. 553–562.
MARQUIS, JEAN-PIERRE. From a Geometrical Point of View: A Study of the History and Philos-

ophy of Category Theory. Dordrecht: Springer, 2009.
MAUTNER, F. I. “An Extension of Klein’s Erlanger Program: Logic as Invariant-Theory”.

In: American Journal of Mathematics 68 (1946), pp. 345–384.
MCGEE, VANN. “Logical Operations”. In: Journal of Philosophical Logic 25 (1996), pp. 567–

80.
— “Tarski’s Staggering Existential Assumptions”. In: Synthese 142 (2004), pp. 371–387.
MITCHELL, JOHN C. “Type Systems for Programming Languages”. In: Handbook of Theoret-

ical Computer Science. Ed. by JAN VAN LEEUWEN. Vol. B, Formal Models and Semantics.
Amsterdam: Elsevier, 1990, pp. 365–458.

PATTERSON, DOUGLAS. Alfred Tarski: Philosophy of Language and Logic. New York: Palgrave
Macmillan, 2012.

PSILLOS, STATHIS. Scientific Realism: How Science Tracks Truth. New York: Routledge, 1999.
QUINE, WILLARD VAN ORMAN. “Truth by Convention”. In: The Ways of Paradox and Other

Essays. New York: Random House, 1935/1966, pp. 70–99.
— “On Carnap’s Views on Ontology”. In: Quintessence: Basic Readings from the Philosophy

ofW. V. Quine. Ed. by ROGER F. GIBSON. Cambridge, Massachusetts: The Belknap Press
of Harvard University Press, 1951/2004, pp. 249–256.

— “Two Dogmas of Empiricism”. In: Quintessence: Basic Readings from the Philosophy of W.
V. Quine. Ed. by ROGER F. GIBSON. Cambridge, Massachusetts: The Belknap Press of
Harvard University Press, 1952/2004, pp. 31–53.

— “The Scope and Language of Science”. In: Quintessence: Basic Readings from the Philoso-
phy of W. V. Quine. Ed. by ROGER F. GIBSON. Cambridge, Massachusetts: The Belknap
Press of Harvard University Press, 1954/2001, pp. 193–209.

— “Carnap and Logical Truth”. In: The Philosophy of Rudolf Carnap. Ed. by PAUL ARTHUR
SCHILPP. Chicago: Open Court, 1963, pp. 385–406.

— “Carnap’s Positivistic Travail”. In: Quine in Dialogue. Ed. by DAGFINN FØLLESDAL and



REFERENCES 161

DOUGLAS B. QUINE. Cambridge, Massachusetts: Harvard University Press, 1984/2008,
pp. 119–128.

— Word and Object. 2nd ed. Cambridge, Massachusetts: MIT Press, 2013.
QUINE, WILLARD VAN ORMAN and NELSON GOODMAN. “Steps Towards a Constructive

Nominalism”. In: The Journal of Symbolic Logic 12 (1947), pp. 105–122.
RAATIKAINEN, PANU. “More on Putnam and Tarski”. In: Synthese 135.1 (2003), pp. 37–47.
RAVEN, CHARLES. John Ray, Naturalist: His Life and Works. Cambridge: Cambridge Uni-

versity Press, 2009.
RAY, GREG. “Tarski and theMetalinguistic Liar”. In: Philosophical Studies 115 (2003), pp. 55–

80.
RECK, ERICH. “Dedekind’s Structuralism: An Interpretation and Partial Defense”. In: Syn-

these 137.3 (2003), pp. 369–419.
REID, MILES and BALÁZS SZENDRőI. Geometry and Topology. Cambridge: Cambridge Uni-

versity Press, 2005.
RICHARDSON, ALAN. “Two Dogmas about Logical Empiricism: Carnap and Quine on

Logic, Epistemology, and Empiricism”. In: Philosophical Topícs 25.2 (1997), pp. 145–
168.

— “Taking the Measure of Carnap’s Philosophical Engineering: Metalogic as Metrology”.
In: The Historical Turn in Analytic Philosophy. Ed. by ERICH RECK. New York: Palgrave
Macmillan, 2013, pp. 60–77.

RICKETTS, THOMAS. “Frege, Carnap, and Quine: Continuities and Discontinuities”. In:
Carnap Brought Home: The View from Jena. Ed. by STEVE AWODEY and CARSTEN KLEIN.
Chicago: Open Court, 2004, pp. 181–202.

— “From Tolerance to Reciprocal Containment”. In: Carnap’s Logical Syntax of Language.
Ed. by PIERRE WAGNER. New York: Palgrave Macmillan, 2009, pp. 217–235.

ROBINSON, ABRAHAM. Introduction to Model Theory and to the Metamathematics of Algebra.
2nd ed. Amsterdam: North Holland, 1965.

RODRÍGUEZ-CONSUEGRA, FRANCISCO. “Tarski’s Intuitive Notion of Set”. In: Essays on the
Foundations of Mathematics and Logic. Ed. by G. SICA. Monza: Polimerca, 2005, pp. 227–
266.

RODRIGUEZ-PEREYRA, GONZALO. Resemblance Nominalism: A Solution to the Problem of Uni-
versals. Oxford: Oxford University Press, 2002.

ROWE, DAVID E. “Klein, Lie, and the “Erlanger Programm””. In: 1830-1930: A Century
of Geometry. Ed. by LUCIANO BOI, DOMINIQUE FLAMENT, and JEAN-MICHEL SALANSKIS.
Berlin: Springer, 1992, pp. 45–54.

SHAPIRO, STEWART. “Computability, Proof, and Open-Texture”. In: Church’s Thesis After
70 Years. Ed. by ADAM OLSZEWSKI, JAN WOLEńSKI, and ROBERT JANUSZ. Franfurt a. M.:



162 REFERENCES

Ontos Verlag, 2006, pp. 420–455.
SHARPE, RICHARD W. Di�erential Geometry: Cartan’s Generalization of Klein’s Erlangen Pro-

gram. New York: Springer, 1997.
SHER, GILA. “Tarski’s Thesis”. In: New Essays on Tarski and Philosophy. Ed. by DOUGLAS

PATTERSON. New York: Oxford University Press, 2008, pp. 300–339.
SIMPSON, STEPHEN G. “Short Course on Admissible Recursion Theory”. In: Generalized

Recursion Theory II. ed. by J. E. FENSTAD, R. O. GANDY, and G. E. SACKS. New York:
North Holland, 1978, pp. 355–390.

SINACEUR, HOURYA BENIS. “Tarski’s Practice and Philosophy: Between Formalism and
Pragmatism”. In: Logicism, Intuitionism, and Formalism: What Has Become of Them? Ed.
by STEN LINDSTRÖM et al. Dordrecht: Springer, 2009, pp. 357–396.

SMID, JEROEN. “Tarski’s one and only concept of truth”. In: Synthese 191 (2014), pp. 3393–
3406.

SMITH, PETER. “Squeezing Arguments”. In: Analysis 71 (2011), pp. 22–30.
— An Introduction to Gödel’s Theorems. 2nd ed. Cambridge: Cambridge University Press,

2013.
SOAMES, SCOTT. Understanding Truth. Oxford: Oxford University Press, 1999.
— “The Place of Quine in Analytic Philosophy”. In: A Companion to W. V. O. Quine. Ed. by

ERNEST LEPORE and GILBERT HARMAN. West Sussex: Wiley Blackwell, 2014, pp. 432–
464.

STEIN, HOWARD. “Some Philosophical Prehistory of General Relativity”. In: Foundations
of Space-Time Theories. Ed. by JOHN EARMAN, CLARK GLYMOUR, and JOHN STATCHEL.
Minneapolis: University of Minnesota Press, 1977, pp. 3–49.

— “Was Carnap Entirely Wrong, After All?” In: Synthese 93.1/2 (1992), pp. 275–295.
SUNDHOLM, GÖRAN. “Tarski and Leśniewski on Languages withMeaning versus Languages

without Use”. In: Philosophy and Logic, in Search of the Polish Tradition: Essays in Hon-
our of Jan Woleński on the Occasion of his 60th Birthday. Ed. by JAAKKO HINTIKKA et al.
Dordrecht: Kluwer Academic Publishers, 2003, pp. 109–128.

TAPPENDEN, JAMIE. “Mathematical Concepts and Definitions”. In: The Philosophy of Math-
ematical Practice. Ed. by PAOLO MANCOSU. Oxford: Oxford University Press, 2008,
pp. 256–275.

— “Mathematical Concepts: Fruitfulness andNaturalness”. In: The Philosophy of Mathemat-
icl Practice. Ed. by PAOLO MANCOSU. Oxford: Oxford University Press, 2008, pp. 276–
301.

TARSKI, ALFRED. “Fundamental Concepts of the Methodology of the Deductive Sciences”.
In: Logic, Semantics, Metamathematics. Ed. by JOHN CORCORAN. 2nd ed. Translated by J.
H. Woodger. Indianapolis, Indiana: Hackett Pub., 1930/1983. Chap. 5, pp. 60–109.



REFERENCES 163

— “Sur les ensembles définissables de nombres réels”. In: Fundamenta Mathematicae 17.1
(1931), pp. 210–239.

— “On Definable Sets of Real Numbers”. In: Logic, Semantics, Metamathematics. Ed. by
JOHN CORCORAN. Translated by J. H. Woodge. Indianapolis, Indiana: Hackett Pub.,
1931/1983. Chap. VI, pp. 110–142.

— “TheConcept of Truth in Formalized Languages”. In: Logic, Semantics, Metamathematics.
Ed. by JOHN CORCORAN. 2nd ed. Translated by J. H. Woodger. Indianapolis, Indiana:
Hackett Pub., 1933/1983. Chap. VIII, pp. 152–278.

— “On theConcept of Following Logically”. In: History and Philosophy of Logic 23 (1936/2002).
Translated by Magda Stroińska and David Hitchcock, pp. 155–196.

— Introduction to Logic and to the Methodology of the Deductive Sciences. New York: Oxford
University Press, 1941.

— “The Semantic Concept of Truth and the Foundations of Semantics”. In: Philosophy and
Phenomenological Research 4.3 (1944), pp. 341–376.

— “A General Theorem Concerning Primitive Notions of Euclidean Geometry”. In: Inda-
gationes Mathematicae 18 (1956). Proceedings Series, pp. 468–474.

— “What are Logical Notions?” In: History and Philosophy of Logic 7 (1966/1986). Tran-
scription of a 1966 lecture, ed. John Corcoran, pp. 143–154.

— “Truth and Proof”. In: Scientific American 220 (1969), pp. 63–70, 75–77.
— “On the Concept of Logical Consequence”. In: Logic, Semantics, Metamathematics. Ed. by

JOHN CORCORAN. 2nd ed. Translated by J. H. Woodger. Indianapolis, Indiana: Hackett
Pub., 1983. Chap. XVI, pp. 409–420.

— “Two Unpublished Contributions by Alfred Tarski”. In: History and Philosophy of Logic
28 (2007). Transcription of two 1965 lectures, ed. Francisco Rodriguez-Consuegra,
pp. 257–264.

TARSKI, ALFRED and STEVEN GIVANT. A Formalization of Set Theory Without Variables. Prov-
idence, Rhode Island: American Mathematical Society, 1988.

TARSKI, ALFRED and ADOLF LINDENBAUM. “Sur l’indépendance des notions primitives dans
les systèmes mathématiques”. In: Annales de la Societé Polonaise de Mathématique (1926),
pp. 111–113.

— “On the Limitations of the Means of Expression of Deductive Theories”. In: Logic,
Semantics, Meta-mathematics. Ed. by JOHN CORCORAN. 2nd ed. Translated by J. H.
Woodger. Hackett Pub., 1935/1983. Chap. 13, pp. 384–392.

TARSKI, ALFRED, ADRZEJ MOSTOWSKI, and RAPHAEL M. ROBINSON. Undecidable Theories.
New York: Dover, 1953/2010.

VÄÄNÄNEN, JOUKO. “Set-Theoretic Definability of Logics”. In: Model-Theoretic Logics.
Ed. by K. JON BARWISE and SOLOMON FEFERMAN. New York: Springer-Verlag, 1985,



164 REFERENCES

pp. 599–643.
VILLEGAS-FORERO, LUIS and JANUSZ MACIASZEK. “Tarski on Logical Entities”. In: Logica

Trianguli 1 (1997), pp. 115–141.
VINCI, THOMAS C. Space, Geometry, and Kant’s Transcendetal Deduction of the Categories. Ox-

ford: Oxford University Press, 2015.
WAGNER, PIERRE, ed. Carnap’s Logical Syntax of Language. New York: Palgrave Macmillan,

2009.
— ed. Carnap’s Ideal of Explication and Naturalism. New York: Palgrave Macmillan, 2012.
WARREN, JARED. “Internal and External Questions Revisited”. In: Journal of Philosophy 113

(2016), pp. 177–209.
WETZEL, LINDA. Types and Tokens: On Abstract Objects. Cambridge, Massachusetts: MIT

Press, 2009.
WILSON, MARK. “Frege: The Royal Road from Geometry”. In: Frege’s Philosophy of Math-

ematics. Ed. by WILLIAM DEMOPOULOS. Cambridge, Massachusetts: Harvard University
Press, 1995, pp. 108–159.

— “Ghost World: A Context for Frege’s Context Principle”. In: Gottlob Frege: Critical
Assessments of Leading Philosophers. Ed. by MICHAEL BEANEY and ERICH RECK. Vol. 3.
London: Routledge, 2005, pp. 157–176.

— Wandering Significance: An Essay on Conceptual Behavior. New York: Oxford University
Press, 2006.

— “The Perils of Polyanna”. In: Carnap’s Ideal of Explication and Naturalism. Ed. by PIERRE
WAGNER. New York: Palgrave Macmillan, 2012, pp. 205–224.

WUSSING, HANS. The Genesis of the Abstract Group Concept: A Contribution to the History of
the Origin of Abstract Group Theory. New York: Dover Publications, 2007.

YAGLOM, ISAAK MOISEEVICH. Felix Klein and Sophus Lie: Evolution of the Idea of Symmetry in
the Nineteenth Century. Boston: Birkhauser, 1988.


	Explicating logicality
	Acknowledgments
	Resumo
	Abstract
	Contents
	Introduction
	PART I 
Tarskian Explication
	Chapter 1Tarski’s Conceptual Analyses
	1.1 Carnapian Explication
	1.1.1 A Puzzle about Similarity
	1.1.2 Carnap’s Pragmatism

	1.2 Tarski’s analysis of the concept of truth
	1.3 Tarskian Explication
	1.4 Conclusion

	Chapter 2 
Tarski’s Nominalism
	2.1 Quine and Carnap on explication
	2.1.1 Quine’s Polemic with Carnap
	2.1.2 Quinean Explication

	2.2 Tarski’s Nominalism
	2.2.1 Tarski’s nominalist and physicalist tendencies
	2.2.2 Nominalism and Type-Theory
	2.2.3 Two Nominalist Strategies

	2.3 Conclusion
	A Appendix: Kripke on substitutional quantification


	PART II 
Tarski’s Proposal
	Chapter 3 
The Proposal
	3.1 Klein’s Strategy and the Nature of Types
	3.1.1 A Kantian Predicament
	3.1.2 Bromberger’s account
	3.1.3 Types, Equivalence Relations, Abstraction
	3.1.4 Carving Nature at Its Joints
	3.1.5 Klein’s Insight

	3.2 Tarski’s Extension of Klein’s Erlangen Program
	3.2.1 Logical notions

	3.3 Consequences of the proposal
	3.3.1 Cardinality properties
	3.3.2 Mathematics as logic?
	3.3.3 Logical constants

	3.4 Conclusion
	A Appendix: Group Actions and Homogeneous Spaces

	Chapter 4 
Coda: Criticism of Tarski’s Proposal
	4.1 Eliminativism
	4.2 Feferman’s criticism
	4.3 Bonnay’s criticism
	4.4 Dutilh Novaes
	4.5 Conclusion
	A Appendix: On the Absoluteness of First-Order Logic
	A.1 Set-Theoretical Background
	A.2 Model-theoretic Background
	A.3 Proof of the Main Theorem

	B Appendix: Feferman’s Proposal
	B.1 Preliminary remarks and definitions
	B.2 The main theorem

	C Appendix: Casanovas’sAnalysis of Feferman’s Proposal
	C.1 Types of similarity
	C.2 Types of invariance
	C.3 Invariant Objects and Operators
	C.4 Conclusion



	References

