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ABSTRACT

MARTINS, W. S. Suppressing information storage in a structured thermal
bath. 2022. 89p. Dissertation (Master in Science) - Instituto de Física de São Carlos,
Universidade de São Paulo, São Carlos, 2022.

Quantum system tend to have information lost from transmission through the correlations
generated among degrees of freedom. For situations where we have a non-Markovian en-
vironment, the information contained in it may return to the system, and non-Markovian
witnesses can capture such effect. In the present work, we sought how the environment
structure affects the system information reachability since its finite size induces a quasi-
periodic behavior in the decoherence and enables a highly non-Markovian behavior in the
dynamics. To do that, we use a central qubit coupled to a spin chain with Ising interactions
subject to a magnetic field, i.e., a central spin model, and solve the exact dynamics of the
system. Moreover, we use two witnesses to analyze the presence of non-Markovianity: the
Breuer-Laine-Piilo (BLP) trace distance-based measure and the conditional past-future
correlator (CPF). On the other hand, we see how such behavior suppresses the classic
plateau in Partial Information Plot (PIP) from the paradigm of quantum Darwinism and
objective information from Spectrum Broadcast Structure (SBS). In addition to the sys-
tem point of view, we show that the environmental structure avoids encoding accessible
and distinguishable information for measurement in the environment for any model limit.
Finally, he orthogonality between the density operators decodes the distinguishability
between SBS states in the environment.

Keywords: Quantum non-Markovianity. Open quantum systems. Quantum information
theory.





RESUMO

MARTINS, W. S. Suprimindo o armazenamento de informação em um banho
térmico estruturado. 2022. 89p. Dissertação (Mestrado em Ciências) - Instituto de
Física de São Carlos, Universidade de São Paulo, São Carlos, 2022.

Sistemas quânticos que interagem com ambiente tendem a ter informações perdidas na
transmissão por meio das correlações geradas entre graus de liberdade do ambiente. Para
situações onde temos um ambiente não-Markoviano, as informações contidas neste podem
retornar ao sistema e testemunhas não-Markovianas podem capturar tal efeito. No pre-
sente trabalho, buscamos entender como a estrutura do ambiente afeta a acessibilidade da
informação do sistema, uma vez que seu tamanho finito induz um comportamento quase
periódico na decoerência e possibilita um comportamento altamente não-Markoviano na
dinâmica. Para isso, usamos um q-bit central acoplado a uma cadeia de spin com inter-
ações de Ising sujeitas a um campo magnético, ou seja, um modelo de spin central, e
resolvemos a dinâmica exata deste sistema. Além disso, usamos duas testemunhas para
analisar a presença de não-Markovianidade: a medida de Breuer-Laine-Piilo(BLP) e a
correlação condicional passado-futuro (CPF). Por outro lado, vemos como tal comporta-
mento suprime o platô clássico no Partial Information Plot (PIP) do paradigma do dar-
winismo quântico e informação objetiva da Spectrum Broadcast Structure (SBS). Além do
ponto de vista do sistema, mostramos que a estrutura do ambiente evita a codificação de
informações acessíveis e distinguíveis para medição no ambiente para qualquer limite do
modelo. Por fim, ortogonalidade entre os operadores densidade codifica a distinguibilidade
dos estados SBS no ambiente.

Palavras-chave: Não-Markovianidade quântica. Sistemas quânticos abertos. Teoria da
informação quântica.
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1 INTRODUCTION

“A vida é um enclave de ordem
num universo fadado à morte
térmica.”

Haroldo de Campos.

In daily situations, we can not see quantum features; you can not see a superpo-
sition of a macroscopic object, for instance. (1) Interestingly, we know that particles of
the world are quantum, atoms are quantum, molecules are quantum. Still, when the scale
increases to an unknown point, something turns out that the objects constituted only by
these quantum atoms are non-quantum objects. (2) But, we can understand important
things about this issue; perhaps the first is: quantum states are fragile, i.e., they are easily
destroyed by environmental interactions. (3–5)

When a quantum system is in contact with a broad surrounding environment, it
entangles with its degrees of freedom and loses the quantumness. (5–7) The quantum
information about the system dilutes in the largeness of a more significant object, on
which other collective behaviors appear as a result of emergent properties. Here is an
ultimate and fatal reality: disintegration of matter by entropy increases, annihilation of
cohesion and coherence of atoms and molecules by the action of the quantum and thermal
fluctuations. This process is the destination of the entire material world ∗. (8, 9)

There is a mishmash of descriptions for the same aspect of quantum reality. Firstly,
one can learn that open quantum systems can be described as stochastic processes. (10,11)
It means that we can search for a stochastic equation describing systems concerning the
transition maps between two different instants of time. Of course, quantum theory is
a probability theory - and exceptional probabilistic theory that allows particular sorts
of correlations (12) - and the Schrödinger equation gives these probability distributions.
(13,14) As well as classical stochastic processes, the quantum ones are possibly classified
regarding these memory effects. A quantum process in which its present state does not
depend on the immediate past state is called memoryless or Markovian process, as in a
classical situation. (15)

As we said previously, the coupling with many environmental degrees of freedom
makes the information about the system decrease in time. The quantum process behind
it is the so-called decoherence. Often, as in some finite structured environments †, the
∗ An exciting text about that is The Last Question, by Isaac Asimov.
† Here we say structured environments those in which can be composed by individual indexed

Hilbert spaces, e.g., given individual quantum systems described in a Hilbert space Hi, one
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information recovers to the system, and the process is named non-Markovian. (16) To
manipulate the information about a quantum system, a possible expectation is to use the
non-Markovianity to avoid information decreases; however, this scenario demand intricate
engineering techniques to manipulate the environment and keep it controlled, as trapped
ions. (17–19)

Conversely, another feature of the quantum systems interacting with the surround-
ing environment is the persistence of particular states, in which its information multiplies
as copies throughout environmental components. A natural selection of some states of
several particles by correlation is a vital decoherence effect; only populations - diagonal
terms - survive when density operators describe these states. (3, 20) Diagonal operators
concerning a quantum evolution described by dynamical maps are called pointer states,
and the process is called “eisenselection”. A heuristic description of this phenomenon has
a suggestive name: quantum Darwinism. (4,21)

Quantum Darwinism aims to set out a reason for objectivity emergence in the clas-
sical world. The day-to-day experience seems to show us that all systems have a property
of objectivity. When one looks at an object, a pencil, a table, or a virus in an electronic
microscope, it always has a well-defined and measurable quantity, e.g., position. This
means that when various observers, armed with apparatus, take measures in a classical
system, there will ever be an agreement between the parts. Beyond the explanation of the
emergence of objectivity in quantum systems given by quantum Darwinism, another path
was traced by Spectrum Broadcast Structures (SBS) paradigm. (22–24) This theory uses
Bohr’s non-disturbance and the characteristics of objective states to build classical ones
and explain how it appears in general quantum systems.

Spectrum Broadcast Structures appears recently in the literature and indicates a
strong condition to the emergence of Quantum Darwinism and, more specifically, objec-
tivity. (22, 25–29) These structures are characterized by their possibility to be accessed
and discriminate without perturbation in a measurement process. (23,24) This framework
demonstrates the structures that enable the emergence of objective states by broadcasting
information between the system and environment fractions. A pretty important thing is
for these states to be accessible and distinguishable concerning projective measurements.

This work aims to obtain a description of a model consisting of a qubit coupled to
a structured finite-size thermal bath in an information-theoretic framework. The idea is
to investigate the phenomena of non-Markovianity in two different point-of-view: (1) the
system point-of-view, where we describe the information backflow caused by finite-size ef-
fects using a non-Markovianity witness and a measure; (2) the environmental perspective,
where we will show how the structure of the model affects the storage of distinguishable
information available to measure using SBS and quantum Darwinism, from quantum-to-

can build a bigger one as H ∼=
⊗

i Hi.
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classical transition paradigm.

This thesis is organized as follows: In the Chapter 2 we develop a theory for large
systems starting from one particle quantum systems to many-particle systems and their
informational and thermodynamic consequences.

In the Chapter 3 we develop the concepts of quantum channels and decoherence
and their consequences in non-Markovianity. We describe the idea of non-Markovianity by
information backflow and distinguishability between quantum states in the trace distance-
based non-Markovianity witness and by memoryless dynamics using the conditional past-
future correlator measure.

In the Chapter 4 we turn the analysis to the environment point-of-view and de-
scribe the idea of quantum Darwinism and its emergence in open quantum systems.

Finally, in the Chapter 5 we show the results, with calculations, plots, and im-
portant features of the model. Moreover, we trace the conclusions and an outlook with
current developments in the area.

Throughout this text, we use kB = ℏ = 1, where the first is the Boltzmann constant
and the second is the normalized Planck constant. As for formal issues, the present text
sought to build the problem and the tools gradually and use only the necessary formalism
to attack the problem. From the introduction, which talks about probability, to the results,
we try not to cite - except as a curiosity - concepts such as σ-algebra, groups, etc., to
reduce the length of the text and try to make it minimally self-contained for the reader.
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2 LARGE SYSTEMS AND INFORMATION

“Nature does not give all of
herself in a paragraph. She is
rugged and not set apart into
discreet categories.”

Ezra Pound.

Probability theory is present in all physics. If, on the one hand, we can use a
statistical description to obtain the macroscopic behavior of a system microscopically
governed by an equation of motion - such as the Schrödinger equation or the equations
of classical mechanics -, (30) on the other hand, we have the intrinsically probabilistic
character of quantum mechanics. (30–32) In the present chapter, we will develop the
theory of statistical physics to obtain, from a microscopic description, the general behavior
of physical systems. But here, a significant differentiation is needed a classical description
of the macroscopic properties can explain the behavior of a plethora of systems; conversely,
the existence of solids or magnetic substances, the properties of black-body radiation, or
the extensivity of matter, can only be explained by a quantum-mechanical approach. That
means that microscopic description is not synonymous with quantum description. (33)

2.1 Probability theory in a nutshell

Quantum mechanics is a probabilistic theory. Of course, a “special” kind of prob-
abilistic theory, where there are correlations with peculiar features, like entanglement.
Then, nothing fairer than starting with an elementary description of probability.

We can start by looking at the simplest case: two independent objects A and B.
Let us assume the case in which the object A has total dA possible outcomes - called
“events” (31, 32, 34) - and the set of these possible outcomes can be denoted by ΩA =
{ωA

i , i = 1, ..., dA}. For example, the simplest case of a coin - two possible outcomes -
can be expressed as ΩA = {ωA

0 , ω
A
1 }, where ωA

0 express heads and ωA
1 tails. Similarly, the

object B is such that it has dB possible outcomes, and the set of these possible outcomes
is ΩB = {ωB

i , i = 1, ..., dB}, in the same way as A.

A joint possible outcome for these two objects is (ωA
i , ω

B
j ) and forms a set that we

denote by ΩA × ΩB, in which the symbol “×” means the cartesian product between two
sets. Take an example, when ΩA = {ωA

0 , ω
A
1 } and ΩB = {ωB

0 , ω
B
1 }, we have ΩA × ΩB =

{(ωA
0 , ω

B
0 ), (ωA

0 , ω
B
1 ), (ωA

1 , ω
B
0 ), (ωA

1 , ω
B
1 )}. In general, the set ΩA × ΩB contains total dAdB

elements. The joint probability distribution pAB(ωA
i , ω

B
j ) for the joint experiment realized
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with the objects needs to satisfy the following conditions

pAB(ωA
i , ω

B
j ) ≥ 0,

dA∑
i=1

dB∑
j=1

pAB(ωA
i , ω

B
j ) = 1. (2.1)

These conditions comes from the definition of probability. (31) To make sense, probabilities
need to be positive, and the sum of all probabilities of individual realizations sum up to
one.

Then, the probability for getting the outcome ωA
i ∈ Ω measuring the object A is

given by the marginals

pA(ωA
i ) :=

dB∑
j=1

pAB(ωA
i , ω

B
j ) (2.2)

and, the object B gives a analogous result

pB(ωB
j ) :=

dA∑
i=1

pAB(ωA
i , ω

B
j ). (2.3)

These definitions tells that when we look just at the marginals, the functions also need to
be probability functions. These marginals behave as projections of the total distributions.

With these structures in hand, we can establish the correlation relations by condi-
tional probabilities between two observers taking measurements on A or B. For a proba-
bility distribution pAB(ωA

i , ω
B
j ), we can search for correlations between both objects using

conditional probabilities, i.e.,

pA|B(ωA
i , ω

B
j ) =

pAB(ωA
i , ω

B
j )

pB(ωB
j ) , (2.4)

reads “the probability to obtain ωA
i given occurence of ωB

j ”. This is an important result
formalized by Andrey Kolmogorov in his theory of probabilities (35).

Analogously, the object B enjoys a symmetric situation with respect to A,

pB|A(ωB
j , ω

A
i ) =

pAB(ωA
i , ω

B
j )

pA(ωA
i ) , (2.5)

then, if the joint distribution pAB(ωA
i , ω

B
j ) has no correlation at all, the events in a such

object independ on the other. Of course, in the language of conditional probabilities this
result is expressed by

pA|B(ωA
i , ω

B
j ) = pA|B(ωA

i , ω
B
k ), (2.6)

for all i, j, k integers. Similarly

pB|A(ωB
j , ω

A
i ) = pB|A(ωB

j , ω
A
k ), (2.7)

for all j, i, k integers. These last two results implies that the joint probability distribution
is equal to the product of the probability distribution of each party, i.e., pAB(ωA

i , ω
B
j ) =

pA(ωA
i )pB(ωB

j ) and vice versa. (11,31)
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Let us now introduce correlation functions - a statistical tool that measures cor-
relations between events - and, for this purpose, it is necessary to use a random variable
X(ΩA) ∗. The average value of this random variable can be given by

E(X) =
dA∑
i=1

pA(ωA
i )X(ωA

i ). (2.8)

For simplicity, another ways to write this definition is

E(X) ≡ ⟨X⟩ =
∑
x∈X

p(x)x, (2.9)

where the sum runs over all possible values in X. If we take a random variable Y (ΩB) in
the same way, i.e.,

E(Y ) =
dB∑

j=1
pB(ωB

j )Y (ωB
j ), (2.10)

and also
E(Y ) ≡ ⟨Y ⟩ =

∑
y∈Y

p(y)y. (2.11)

Here, the new notation get clearer if we explain what is a random variable.

The direct product of these two random variables gives us a random variable
defined on ΩA × ΩB space (31), and then the average value for this random variable
X × Y is

E(X, Y ) ≡ ⟨X, Y ⟩ =
∑
x∈X

∑
y∈Y

p(x, y)xy. (2.12)

An example of paramount importance for our purposes is a random variable correspondent
to the space of events ΩA = {ωA

0 , ω
A
1 } defined by X(ωA

0 ) = 0 and X(ωA
1 ) = 1. A variable

like this is called a “bit”, with a notable importance for information and computation
theory. Throghout the present text we will use computational basis, i.e., a basis constituted
by - or a composition of - bits. For N bits, a possible value is a binary string of lenght
N , i.e., xNxN−1...x1, where each xi is a bit, i.e., xi ∈ {0, 1}. There are a total 2N possible
values.

Going back to the correlation between two random variables X and Y , let us define
the correlation function, which is given by

C(X, Y ) := E(X, Y ) − E(X)E(Y ) ≡ ⟨X, Y ⟩ − ⟨X⟩ ⟨Y ⟩ . (2.13)

Then, we can say that two random variables does not have any correlation if and only if
C(X, Y ) = 0 for all X and Y .
∗ A random variable X is a measurable function that takes possible outcomes ω ∈ Ω to a

measurable space, in which the probability that X takes on a value in the measurable space
is p(X = x) = p({ω ∈ Ω|X(ω) in the measurable space}). (31, 34) The lower case letters
reffers to the realizations of this variable.
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Figure 1 – Entropy S in terms of the probability p. Here is easy to see that the complete
uncertainty becomes when p = 1/2, i.e., a coin with no bias.

Source: By the author

In the context of information theory established by Shannon, (36) a concept quan-
tifies the degree of correlation with operational meaning between two sub-systems. The
idea is the mutual information. For two random variables X and Y whose the joint prob-
ability distribution is p(x, y), the mutual information between them is given by

I(X, Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
(
p(x, y)
p(x)p(y)

)
(2.14)

To understand what I(X, Y ) means we need to introduce the concepts of entropy and
conditional entropy.

To motivate the entropy, let us suppose that one receives a message consisting in a
string of symbols 0 and 1, i.e., 01110010... and suppose that 0 happens with probability p
and 1 with possibility 1−p (following Witten approach on Ref. (37)) We want to describe
how many bits of information one can extract from a long message of this kind with N

symbols. For large N , the message will consist very nearly of pN occurrences of 0 and
(1 − p)N occurrences of 1. Using combinatorics, the number of such messages is

N !
(pN)!((1 − p)N)! ≈ NN

(pN)pN((1 − p)N)(1−p)N = 1
ppN(1 − p)(1−p)N = 2NS, (2.15)

where S is the Shannon entropy per letter and we used the Stirling’s approximation in
the first step (38),

S(p) = −p log p− (1 − p) log(1 − p). (2.16)

Then, we can understand entropy as an amount of lost information in acquiring of infor-
mation. In Fig.1 is showed the behavior of for the case described above.

Considering now a most general case, in which the messages can be pursuit k <
∞ outcomes given by the discrete random variable that take values x1, ..., xk, and the
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probability to obtain xi is pi ≡ p(xi) for i = 1, ..., k. The entropy function is given by

N !
(p1N)!...(pkN)! ≈ NN∏k

i=1(piN)(piN) = 2NS (2.17)

and can be explicitly writting as

S({pi}) := −
∑

i

pi log pi. (2.18)

Another way to search for the entropy function is paying attention to general
properties of a such function. Shannon postulate that S is a smooth function of the
probability distribution p(x) with the following properties:

1. It should be maximal when p(x) is uniform, and in this case, it should increase with
the number of possible values X can take;

2. It should remain the same if we reorder the probabilities assigned to different values
of X;

3. The uncertainty about two independent random variables should be the sum of the
uncertainties about each of them.

It was showed that the only measure of uncertainty that satisfies all these conditions is
the entropy, defined as

S(x) := −
∑
x∈X

p(x) log p(x). (2.19)

Notice this function is a generalization of the heuristic definition given by our discrete
variable in the last example.

Moreover, for the joint probability distribution p(x, y) of two random variables,
the entropy will be

S(X, Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y). (2.20)

Now, we can define a new quantity, S(X|Y ), so-called conditional entropy, i.e., the entropy
X conditional on the variable Y taking the value y, defined by

S(X|Y = y) = −
∑
x∈X

p(x|y) log p(x|y), (2.21)

where p(x|y) ≡ pA|B(ωA
i , ω

B
j ). For most clarity in relation to the meaning of the conditional

entropy,we can write down it explicitly in terms of the probability distributions, i.e.,

S(X|Y ) =
∑
y∈Y

p(y)S(X|Y = y)

= −
∑
x∈X

∑
y∈Y

p(y)p(x|y) log p(x|y)

= −
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y)
p(y) .

(2.22)
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Then, given a specific realization of the variable Y , we get the conditional entropy of a
culmination of the variable X.

Finally, we can turn back to the mutual information to re-write it using entropy
functions concerning our random variables, i.e.,†

I(X, Y ) = S(X) + S(Y ) − S(X, Y ),

= S(X) − S(X|Y ),

= S(Y ) − S(Y |X),

= S(X, Y ) − S(X|Y ) − S(Y |X).

(2.23)

Then, we can see that the mutual information quantifies the correlation of the joint
probability distribution of a composite system.

All these concepts will be recovered using a proper quantum generalization. In the
following sections, we present a theory of quantum probabilistic distributions by the idea
of density operator, a natural extension of probability for the quantum realm. Also, from
the concept of density operator, we build the definition of von Neumann entropy, widely
used in the present work.

2.2 States and density operator theory

More than a mere quantitative description of physical systems, states are the
central objects for mathematical description of nature, with an excelsior meaning that
explains the characterization of the availability of information in every phenomenon. Pure
states specify all information about the systems for classical and quantum systems. In
contrast, mixed states are a probability measure on the space of pure states. Its evolutions
are given by general rules of the widest formulation of physical theory, e.g., Liouville
equation for classical systems and von Neumann equation for the quantum ones. (14,40)
Wherefore, physical states properly tell us about the possibility of knowledge about a
physical system. This overview puts the statistical description of physical systems and
information theory side by side, as explained below.

The quantum theoretical correspondent of the classical probability distributions
is not state vectors but density operators. A density operator ρ can be defined in the
following way: (14,40,41)

1. ρ is Hermitian, i.e., ρ = ρ†.

2. ρ is positive: for any |ψ⟩, ⟨ψ| ρ |ψ⟩ ≥ 0.

3. Tr ρ = 1.
† This is true for classical probability theory; in quantum one this equality need to be modified

using the idea of quantum discord. (39)
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It follows that ρ can be diagonalized in an orthonormal basis, that the eigenvalues are all
real and nonnegative, and that the eigenvalues sum to one - what recovers its probabilis-
tic properties. Considering a situation when one prepare |ψk⟩ with k = 1, 2, ..., N with
probability pj. This is associated with the density operator

ρ =
N∑
k

pk |ψk⟩ ⟨ψk| . (2.24)

and Tr ρ2 ≤ 1, in which the inequality saturates only for pure states, i.e., states that can
be described as

ρ = |ψ⟩ ⟨ψ| . (2.25)

Along this text, we just going to deal with qubit-states, thus, every state will
be the form |00...0⟩, |00...1⟩, ..., |11...1⟩, and then the sum is taking over 2N different
combinations (see the appendix B).

2.3 Physical states and information

As well as we introduce before a measure of information by the Shannon entropy,
here an important quantity to measure uncertainty of a state ρ is the von Neumann
entropy, defined by (14)

S(ρ) = −Trρ log ρ, (2.26)

which is a generalization of the Shannon entropy to the quantum case. The correspondence
between these two measures emerges when we written the state density operator in its
spectral decomposition, i.e., ρ = ∑

χ pχ |χ⟩ ⟨χ|, we have S(ρ) = S({pχ}) = −∑
χ pχ log pχ.

The von Neumann entropy is an important quantity for a quantum theory of information,
(14,39) and its features are explored bellow.

Some essential properties follow from that structure of von Neumann entropy, and
now we will explain them to clarify the meaning of entropy in the quantum domain.
(14, 33, 42) Let us start with a generic quantum state defined by the density matrix ρ,
which acts on its association to a qubit Hilbert space (C2)⊗N , this is the scope of our
discussion.

First, S(ρ) defined in Eq. (2.26) is zero if only if ρ represents a pure state. This fact
can be viewed by considering a generic state in a diagonal basis ρ = ∑

χ pχ |χ⟩ ⟨χ|, and
one can write the entropy as S({pχ}) = S(p1, ..., p2N ). For a pure state, S(1, 0, ..., 0) = 0,
and it means that the event is a certainty, in the language of classical probability. One
gains no information, when one knows in advance which message one is about to receive.

On the other hand, S(ρ) is maximal and equal to N log 2 for a maximally mixed
state, i.e., a state defined by

ρ = 1

2N
. (2.27)
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that represents the situation in which, with respect of the diagonalized density matrix,
one have p1 = ... = pd = 2−N , or any event can occur with the same probability.

Another important property: S(ρ) is invariant under changes in the basis of ρ, i.e.,
S(ρ) = S(UρU †), with U a unitary transformation and also is concave. Given a collection
of {λi} ≥ 0 numbers sum to unit, and a collection of density operators {ρi}, we have the
inequality

S

(∑
i

λiρi

)
≥
∑

i

λiS(ρi). (2.28)

Its interpretation is simple: it means that if we combine two statistical ensembles relating
to the same events into a single new ensemble, the uncertainty is more significant than the
average of the initial uncertainties. Now, using the same definition, S(ρ) always satisfies
the bound

S

(∑
i

λiρi

)
≥
∑

i

λiS(ρi) −
∑

i

λi log λi. (2.29)

where equality holds when ρi has orthogonal support.

S(ρ) is strong subaddditive for any three systems A, B and C, i.e.,

S(ρABC) + S(ρB) ≤ S(ρAB) + S(ρBC). (2.30)

From that automatically follow S(ρ) is subadditive:

S(ρAB) ≤ S(ρA) + S(ρB). (2.31)

This last inequality is essential to quantum mechanics: if ρA acts on HA and ρB acts on
HB, the equal sign holds only when ρAB = ρA ⊗ ρB and we say that these two systems are
uncorrelated. We can reformulate this idea in a most dramatic form, just saying that, in
quantum mechanics, information is not defined locally.

Recovering the Eq. (2.23), if we consider two expressions which each, in the classical
limit, represent the mutual information, i.e.,

I(A,B) = S(A) + S(B) − S(A,B) (2.32)

I(A,B) = S(A) − S(A|B), (2.33)

in the nonclassical case, the quantum generalization gives us

I(A,B) = S(ρA) + S(ρB) − S(ρAB) (2.34)

IA(A,B) = S(ρB) − S(ρB|ρA), (2.35)

and the difference between the two expressions defines the basis-dependent quantum dis-
cord (39)

DA(ρ) := I(ρ) − IA(ρ), (2.36)
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that is a measure of nonclassical correlations between two sub-systems of a quantum
system, and it is assymetric, because IA(A,B) = S(ρB)−S(ρB|ρA) ̸= S(ρA)−S(ρA|ρB) =
IB(A,B).

In the next chapter, the notion of entropy of an ensemble state will be handy.
To search for equilibrium states, we need to use the assumption that these states are the
result of the maximization of the entropy for some specified conditions - both entropy and
the requirements results in the minimization of the free energy. Broadly, free energy is the
portion of any first-law energy available to perform thermodynamic work at a constant
temperature.

2.4 Thermodynamical equilibrium

The central statistical physics insight is the idea of “ensemble”, a mental construc-
tion to describe a probabilistic treatment of complex systems that are not treatable using
mere tools of few-body problems. Of course, a common picture about the problem is il-
lustrated by the increased degrees of freedom in approaching many-body systems using
individual equations of motion for each particle in it. One wants to arrive at some macro-
scopic description by microscopic formulations. Instead of it, statistical physics takes
hypothetic copies of the same system and its possible states, constrained by energetic
postulates and probabilistic assumptions.

Apart from these well-important considerations, here we are interested in an infor-
mational approach to these thermodynamical and statistical properties. Once specified a
treatment for quantum and large systems, we have powerful tools to bridge between the
probabilistic distribution of micro-states and macro-states, and these last ones will give
the function from which we derive the thermodynamic properties.

Statistical physics builds the bridge between the macro and the micro from sta-
tistical ensembles in thermal equilibrium. (30,43,44) Here, a very important one for us is
the Gibbs ensemble or Canonical ensemble. Roughly speaking, the Gibbs ensemble gives
the energetic distribution that minimizes the Helmholtz free energy. Given a Hamiltonian
H in the Gibbs formalism, we can decompose it in its energy basis, i.e.,

H =
∑

χ

Eχ |χ⟩ ⟨χ| . (2.37)

If this system is in equilibrium, then the probability of finding it in a state |χ⟩ will be
given by

pχ := e−βEχ

Z
, (2.38)

where the normalization is given by the partition function Z := Tr e−βH = ∑
χ e

−βEχ ,
where β = 1/T is the inverse of temperature, that function encodes all necessarily ther-
modynamic information.



30 Chapter 2 LARGE SYSTEMS AND INFORMATION

To attribute a quantum state to the system at finite temperature, we need to use
the so-called thermal states, i.e., states satisfying the Gibbs distribution. The density
operator of the thermal state is defined as

ρ :=
∑

χ

pχ |χ⟩ ⟨χ| , (2.39)

that gives a complete description of the probabilistic distribution of a system in thermal
equilibrium. Note that every diagonal term of the density matrix get a probability distri-
bution of the state correspondent to they respective row and column, e.g., for a case of
N qubits the eigenstate |χ⟩ has as its respective occurence probability Pχ in the (χ, χ)
matrix entry, with χ = 1, ..., 2N .

Then, from thermal states, we can obtain the expectation value for the thermal
observables. The expectation value of ⟨O⟩ can be written using the trace as

⟨O⟩ = TrOe−βH

Tr e−βH
, (2.40)

And, we can write the thermal state as

ρ = 1
Z

∑
χ

e−βEχ |χ⟩ ⟨χ| = e−βH

Z
, (2.41)

it simply writes the states as a function of the Hamiltonian. (45)

From this, any thermodynamic observable can be calculated; to do so, we just
take the trace multiplied by a given operator and divide it by the partition function, e.g.,
U := Z−1TrHe−βH is the internal energy with respect to a system with Hamiltonian
operator H.

Here we will picture a general framework to explain some exciting and important
things about information and its connection with thermodynamics. Remember that the
entropy is a logarithmic measure of the number of system states

S(ρ) = −Trρ log ρ =
∑

χ

pχ log pχ, (2.42)

where we consider the density matrix in its diagonal form ρ = ∑
χ |χ⟩ ⟨χ|.

In what has been called the fundamental postulate in statistical mechanics (For an
isolated system with an exactly known energy and exactly known composition, the system
can be found with equal probability in any microstate consistent with that knowledge) (46),
among system degenerate microstates, each microstate is assumed to be populated with
equal chance. Then, for an isolated system, pi = 1/Ω where Ω is the number of microstates
whose energy equals the system’s energy, and the entropy becomes

S(ρ) = log Ω (2.43)

Barring a constant, this is the thermodynamic entropy. (44)
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2.4.1 Partition function and Lee-Yang zeros

Before we talk about Lee-Yang zeros properly, let us trace the relationship of the
partition function to the Helmholtz free energy. Then, taking as a definition of partition
function, the sum (44)

Z =
∑

χ

e−βEχ , (2.44)

where is associated with the normalization of the probability pχ. Notice that this sum is
took over all microscopic states, thus, given such energy value, there are many coincident
terms, corresponding to all the microscopic states with this particular energy value. Taking
into account this factor of degenerecence, we can write

Z =
∑

χ

e−βEχ =
∑
E

Ω(E)eβEχ , (2.45)

where Ω(E) is the number of microscopic states of the system with energy E. For a large
system, we can take only the maximal term of the sum, i.e.,

Z =
∑
E

elog Ω(E)−βE ∝ e−β minE{E−T S} (2.46)

where again we used the result S(E) = log Ω(E). The minimization operation with respect
to the correspondent energy is a Legendre transformation, and this argument suggest a
connection between the canonical ensemble and thermodynamics given by the correspon-
dence

Z → e−βF , (2.47)

where F = E − TS is the Helmholtz free energy. Notice that the Helmholtz free energy
can be written as F = −β−1 logZ, and here an exciting thing happens.

Phase transitions are characterized by a sudden change in the physical properties
and, for example, in the order parameter (30,44). In the Ising model paradigmatic case -
in which will be treated here - the order parameter is the magnetization and the ordered
phase happens when it is different from zero. Mathematically, a phase transition occurs
when the partition function vanishes, and the free energy is singular (non-analytic). Tsung-
Dao Lee and Yang Chen-Ning developed a theory for criticality based on singularities of
the free energy, called the Lee-Yang theory. (47, 48) In this theory, phase transitions
in large physical systems in the thermodynamic limit based on the properties of small,
finite-size systems.

Let us consider the energy spectrum {Eχ} of finite number particles in a limited
volume is discrete so the state sum the partition function Eq. (2.44), that is positive and,
on the positive real axis β > 0 and in the neighborhood of it, an analytic function of its
argument β. In this kind of system, there can be no sharp phase transition point. Phase
transitions can thus occur only in the thermodynamic limit, i.e.,

V → ∞ and N → ∞, (2.48)
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Figure 2 – General scheme of the distribution of Lee-Yang zeros in the complex plane.
Considering an external parameter z, it is clear that as

Source: By the author

but with N/V → constant. The model by Lee and Yang explains how the analytic state
sum develops toward non-analytic form when we approach the thermodynamic limit.
(48, 49) We consider a system of hard spheres confined in the volume V . Let V0 be the
volume of one sphere, then

N ≈ V

V0
, (2.49)

is the maximum number of spheres. The state sum

ZG(T, V, µ) =
N∑

n=0
Z(T, V,N) (2.50)

is a polynomial of degree N of the fugacity z = eβµ and ZG represents the grand canonical
partition function. We use the shorthand notation Z(z) = ZG(T, V, µ) and now, consider
z1, z2, ...zN be the zeros of the polynomial Z(z). Since Z(0) = 1, we have according to the
fundamental theorem of algebra,

Z(z) =
N∏

n=1

(
1 − z

zn

)
. (2.51)

Because Z(z) is real when z is real, the zeros must occur as conjugate pairs, and when we
approach the thermodynamic limit, the number of zeros of the partition function tends to
infinity. The interesting situation is given when the parameter z comes the critical point
z⋆: in this case; the Lee-Yang zeros approaches the real axis at the critical point in the
fugacity plane (Fig. 2).



2.4 Thermodynamical equilibrium 33

As an example of how that theory works, let us consider the classical Ising chain
with N spins and periodic boundary conditions (50,51), i.e.,

HIsing = −J
N∑

i=1
σiσi+1 − h

N∑
i=1

σi (2.52)

such that σN+1 = σi and σi = ±1 like in almost all textbooks of statistical physics.

Let us calculate the partition function of this N spins model with σ = {σ1, ..., σN}
and its respective eigenvalues σi = ±1

Z = Tr e−βHIsing ,

=
∑

σ1,...,σN

eβ(J
∑

i
σiσi+1+h

∑
i

σi),

=
∑

σ1,...,σN

eβ[Jσ1σ2+ h
2 (σ1+σ2)]...eβ[JσN σ1+ h

2 (σN +σ1)],

(2.53)

in which we write the exponent in the symmetric form for convenience. Then, defining
the transfer matrix T (σi, σi+1) := eβ[Jσiσi+1+ h

2 (σi+σi+1)] = ⟨σi|T |σi+1⟩ we can re-writte the
partition function as

Z =
∑

σ1,...,σN

T (σ1, σ2)T (σ2, σ3)...T (σN−1, σN)T (σN , σ1) (2.54)

The matrix elements of T can be computed directly from the definition

T =
 T (1, 1) T (1,−1)
T (−1, 1) T (−1,−1)

 =
eβ(J+h) e−βJ

eβJ eβ(J−h)

 (2.55)

and finally, the partition function may be written now as

Z = TrTN = λN
+ + λN

− (2.56)

where λ± are the eigenvalues of T .

Here, λ± can be computed using some linear algebra, i.e.,

det(T − λ) = λ2 − 2λ(2eβJ cosh(βh)) + (e2βJ − e−2βJ) = 0. (2.57)

And this characteristic vector of the linear transformation defined by the transition matrix
gives us two eigenvalues

λ± = eβJ cosh(βh) ±
√
e2βJ sinh2(βh) + e−2βJ . (2.58)

In terms of these eigenvalues, we immediately can be re-write the partition function

Z = eNβJ

[(
cosh(βh) +

√
sinh2(βh) + e−4βJ

)N

+
(

cosh(βh) −
√

sinh2(βh) + e−4βJ

)N
]
.

(2.59)
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The partition function can be described as a polynomial in terms of some variable. Then,
we can search for the Lee-Yang zeros, i.e., the zeros of this polynomial. Make z := e−2βh

and x := e−2βJ , to write the follow (52)

Z = eN(βJ+βh)

1 + z

2 +
√(1 − z

2

)2
+ x2z

N

1 +


1+z

2 −
√(

1−z
2

)2
+ x2z

1+z
2 +

√(
1−z

2

)2
+ x2z


︸ ︷︷ ︸


=0

N

(2.60)

and then
1+z

2 −
√(

1−z
2

)2
+ x2z

1+z
2 +

√(
1−z

2

)2
+ x2z

= eiπ
(2n−1)

N = eikn (2.61)

where n = 1, 2, ..., N . If J > 0, we solve the equation to obtain

zn = −e−4βJ +(1− e−4βJ) cos(kn)± i
√

(1 − e−4βJ)[sin2(kn) + e−4βJ(1 + cos(kn))2] (2.62)

that gives to us the distribution of Lee-Yang zeros in the complex plan. Figure 3 show
the behavior of the Lee-Yang zeros for that case.
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Figure 3 – Lee-Yang zeros on the fugacity plan with N = 10 and J = 1, for β =
1, 0.5, 0.1, 0, respectively showed in the Figs. (a), (b), (c), and (d). As well
as the temperature increase the zeros approaches to z = −1. Here, changes
in the variable z are caused by the magnetic field h, and zeros tend to accu-
mulate on the real axis at the phase transition. Only real roots characterize
real phase transitions in the thermodynamic limit.

Source: By the author
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3 OPEN SYSTEMS I: SYSTEM POINT-OF-VIEW

“Between the idea
And the reality
Between the motion
And the act
Falls the Shadow”

The Hollow Man, by T.S.Eliot.

The present chapter will present an usual perspective of open quantum systems.
The idea here is to describe an unitary evolution of quantum operators in closed systems
and its natural generalization for open systems. Also, we use this perspective to build the
idea of non-Markovian dynamics as a consequence of the evolved operator’s behavior by
looking at the reduced dynamics that represent the system point-of-view.

3.1 Dynamics: channels and decoherence

So far, we deal with stationary states of quantum systems (with one or many par-
ticles). But, in the present chapter, we will present quantum dynamics in open scenarios.
To do that, let us start with Schrödinger’s equation, valid for pure states (13)

iℏ
∂

∂t
|ψ⟩ = H |ψ⟩ , (3.1)

where |ψ⟩ ∈ Cd is a pure quantum state and H the Hamiltonian operator. Of course, we
are more interested in mixed states in the present work.

Given a system and an environment represented by Hilbert spaces HS and HE, we
can get a combined state ρSE(0) as the initial. For mixed density operators, the Liouville-
von Neumann equation describes the evolution of the quantum state

∂

∂t
ρSE(t) = − i

h
[H(t), ρSE(t)] (3.2)

where H(t) = (HS ⊗ 1E + 1S ⊗HE +HSB)(t) is the total Hamiltonian, with HS acting on
HS

∼= CdS , HE on HE ∼= CdE - the system and environment Hilbert space, respectively -
and HSE on the composite space HS ⊗ HE ∼= CdS×dE . The solution of that results in the
unitary evolution operator (sometimes called propagator) U(t)

U(t) = T e− i
ℏ

∫ t

0 dτH(τ), (3.3)

where T denotes path-ordering operator with respect to time, i.e., time-ordering operator,
defined by

T (A(t1)B(t2)) =

 A(t1)B(t2) for t1 < t2

B(t2)A(t2) for t1 > t2.
(3.4)
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Under a closed dynamics, the combined evolution given by the interaction between system
and environment is unitary, and simply reduces to

ρSE(t) = U(t)ρSE(0)U †(t). (3.5)

Usually, a scenario for the theory of open quantum systems considers the effect of the
vast environment in the subsystem. To do that, we trace out the environment degrees of
freedom to recover the reduced dynamics. Let us consider an uncorrelated initial state of
both of the system and the environment, i.e., ρSE(0) = ρS(0) ⊗ ρE(0), then the effective
dynamics of the reduced system can be described as

E(ρS(0)) = ρS(t) = TrE
[
U(t)ρS(0) ⊗ ρE(0)U †

]
(3.6)

Where TrE[•] is the partial trace concerning the environment. The map E(•)∗ is a so-called
channel, and its properties will be clear ahead.

Considering the diagonal decomposion of ρE(0) = ∑
χ pχ |χ⟩ ⟨χ|, where ∑χ pχ = 1

and the states {|χ⟩} spanned an orthonormal basis of the Hilbert space HE. The evolution
U(t) will result in a system density operator evolving according to

ρS(t) = TrE

[
U(t)ρS(0) ⊗

(∑
χ

pχ |χ⟩ ⟨χ|
)
U †(t)

]
, (3.7)

=
∑
χχ′

pχ ⟨χ′|U(t) |χ⟩ ρS(0) ⟨χ|U †(t) |χ′⟩ . (3.8)

Introducing the operators defined by Eij(t) = √
pi ⟨j|U(t) |i⟩, we obtain

ρS(t) =
∑
ij

Eijρ(0)E†
ij. (3.9)

Those operators have a very interesting structure to guarantee that density operators go
to density operators and density operators result from density operators.

That dynamics given by channels define a completely positive trace preserving
(CPTP) map, which can be written via Kraus operators:

E(ρS) =
K∑

i=1
KiρSK

†
i (3.10)

where the Kraus operators satisfies ∑K
i=1 K

†
iKi = 1 for trace-preserving channels. (10,53)

Here, we combine the two indexes i and j into a single index to write them. That rep-
resentation (Kraus representation) is not unique, and the so-called Kraus representation
theorem supports its existence, and K ≤ d2

S is the Kraus number. (53)

Suppose a map E(•) acting on HS, with a convex set of density operators satisfying
ρ = ρ†, ρ ≥ 0 and Trρ = 1, the name “complete positive trace-preserving” can be justified
enumerating the properties of these maps, i.e., (40)
∗ Sometimes a channel is called a superoperator: an operator that takes from operators to

operators.
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1. Linearity. A quantum channel E(•) is said a linear map if E(αρ1 + βρ2) = αE(ρ1) +
βE(ρ2).

2. Preserves complete positivity. A quantum channel E(•) is said completely positive
(CP) if the composion E ⊗ 1E is a positive map for any sub-system HE.

3. Preserves trace. A quantum channel E(•) preserves trace if Tr E(ρ) = Tr ρ = 1.

Here, a positive map is one where E(ρ) ≥ 0, that is, E(ρ) is positive semi-definite ρ ≥ 0.
These criteria defines a CPTP map.

3.1.1 Dephasing

In the present text, a significant example is the dephasing channel, also called the
phase-damping channel. (10, 41, 53–55) An example is the interaction of a dust particle
with photons. The collision of the particle with one photon will not change the particle
state. Still, if the particle was in the ground (|0⟩S) or excited state (|1⟩S), the photon
will acquire more or less energy in the collision, thus being excited to its first or second
excited state. Let us consider a most straightforward case of isometric representation of
the channel, e.g.,

|0⟩S ⊗ |0⟩E →
√

1 − p |0⟩S ⊗ |0⟩E + √
p |0⟩S ⊗ |1⟩E

|1⟩S ⊗ |0⟩E →
√

1 − p |1⟩S ⊗ |0⟩E + √
p |1⟩S ⊗ |2⟩E .

(3.11)

Here, notice the system qubit not make transitions in the basis {|0⟩ |1⟩} basis. Evaluating
the partial trace over HE in the {|0⟩E , |1⟩E , |2⟩E} basis, a possible representation for the
unitary transformation is

U =



√
1 − p

√
p 0 0 0 0

√
p

√
1 − p 0 0 0 0

0 0 1 0 0 0
0 0 0

√
1 − p 0 √

p

0 0 0 0 1 0
0 0 0 √

p 0
√

1 − p


. (3.12)

To obtain the Kraus operators of this transformation, we need to trace out the
environmental degrees of freedom to get

K0 = ⟨0 |U | 0⟩ =
√

1 − p1S, K1 = ⟨1 |U | 0⟩ = √
p |0⟩ ⟨0| , K2 = ⟨2 |U | 0⟩ = √

p |1⟩ ⟨1| .
(3.13)

Thus, the state evolution is given by the map

E(ρ) =
3∑
i

KiρK
†
i = (1 − p)ρ+ p |0⟩ ⟨0| ρ |0⟩ ⟨0| + p |1⟩ ⟨1| ρ |1⟩ ⟨1| , (3.14)
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or in matrix form:

E(ρ) =
 ρ00 (1 − p)ρ01

(1 − p)ρ10 ρ11

 . (3.15)

In the Bloch sphere, pure dephasing represents a precession around the z axis. (41,53) Let
us compute how the polarization of the density operator evolves using the representation
of Appendix A

ρ(−→r ) = 1
2(1 + −→r · −→σ ) 7→ ρ(−→r ′), (3.16)

where r′
x,y = (1 − p)rx,y and r′

z = rz, then the Bloch ball shrinks to a prolate spheroid
aligned with z axis.

To our purposes, it is interesting consider the situation p = p∆t = γ∆t, in which
the probability represents a scatter event during the time ∆t. Then, if we have n events in
a time t = n∆t, the off-diagonal terms become ∝ (1 − p)n = (1 − γ∆t)t/∆t ≈ e−γt := Γ(t)

E(ρ, t) =
 ρ00 Γ(t)ρ01

Γ(t)ρ10 ρ11

 . (3.17)

Consider for example an initial pure state a |0⟩ + b |1⟩. At long times, this state reduces
to:

E(ρ, t) =
 |a|2 Γ(t)ab⋆

Γ(t)a⋆b |β|2

 t→∞−−−→

|a|2 0
0 |β|2

 . (3.18)

Then, in the process of decoherence, any phase coherence is lost, and the states reduce to
a classical, incoherent superposition of populations. (3, 5, 20)

3.2 Non-Markovianity: classical vs. quantum definition and its physical meaning

A crucial point for understanding the mechanism of decoherence is the study of
how information flows from the system to the environment. (5) However, this is only part
the story, because information can also flow in the opposite direction, that is, from the
environment to the system. We call this non-Markovianity. While in a Markovian process
the open system continuously loses information to the environment, a non-Markovian
process can be characterized as a flow of information from the environment back into the
open system. (56–59)

It is vital for us now to define stochastic process: a family of random variables
{X(t)}t∈I with I ⊂ R, usually representing time and can be discrete or continuous, then
the stochastic process can be seen as a random variable evolving in time. (11) Now,
using the language of the first section, a family of temporal joint probabilities is the joint
probability of n events occurring at times t0 ≤ t1 ≤ ... ≤ tn is given by

p(xn, tn;xn−1, tn−1; ...;x1, t1), (3.19)
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with the same normalization condition and positivity of usual probabilities, i.e.,

p(xn, tn; ...;x1, t1) ≥ 0,∑
xi

p(xn, tn; ...;xi, ti; ...;x1, t1) = p(xn, tn; ...;x1, t1),∑
x

p(x, t) = 1

(3.20)

which are known as consistency conditions.

As well as in usual probability distributions, by joint probabilities, we can obtain
conditional probabilities

p(xn, tn; ...;xk+1, tk+1|xk, tk; ...;x1, t1) = p(xn, tn; ...;x1, t1)
p(xk, tk; ...;x1, t1)

(3.21)

such that k < n.

Given a stochastic process with initial time t0, we can define the later probabilities
p(x, t|x0, t0) for any t ≥ t0 using form matrices with coefficients pij = p(xi, t|xj, t0) and
they satisfy the positivity and normalization condition,

p(x, t|x0, t0) ≥ 0,∑
x

p(x, t|x0, t0) = 1. (3.22)

It is important to note that the matrices satisfying the above conditions are called stochas-
tic matrices. By the definition of conditional probability, we get

p(x, t) =
∑
x0

p(x, t|x0, t0)p(x0, t0), (3.23)

so they can be seen as linear maps acting on the one time probabilities and evolving them.
Let us take t′ ≥ 0 and the probabilities p(x, t|x′, t′). These probabilities are not necessarily
well defined, but if all the matrices p(x, t|x0, t0) are invertible we can define

p(x, t|x′, t′) =
∑
x0

p(x, t|x0, t0) (p(x′, t′|x0, t0))−1 (3.24)

and this matrix may not be a stochastic matrix since it may no longer satisfy the positivity
condition. Also, note that

∑
x′
p(x, t|x′, t′)p(x′, t′|x0, t0)p(x0, t0)

=
∑
x′,x0

p(x, t|x0, t0) (p(x′, t′|x0, t0))−1
p(x′, t′|x0, t0)p(x0, t0)

=
∑
x0

p(x, t|x0, t0)p(x0, t0)

= p(x, t),

(3.25)
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and then, they satisfy the Chapman-Kolmogorov equation (11)

p(x, t|x0, t0) =
∑
x′
p(x, t|x′, t′)p(x′, t′|x0, t0). (3.26)

A stochastic process whose all matrices p(x, t|x′, t′) for (t ≥ t′) are stochastic and satisfy
the equation above is called a divisible process. (11)

With this in hand, we can define a Markovian process as a process where, for any
family of time-conditional probabilities, we have

p(xn, tn|xn−1, tn−1; ...;x0, t0) = p(xn, tn|xn−1, tn−1), (3.27)

and, intuitively, this represents a process without memory of the past: the future state
depends only on the state in the present. It is important to say that all Markovian process
are divisible (but the return is not necessarily true).

It is opportune to obtain quantum extensions of these mathematical structures.
The natural generalization of a probability distribution to the quantum realm is, as we
said before, the density operator. The mixed-state density operator can be described as
an ensemble of wavefunctions, i.e.,

ρ =
∑

x

p(x) |ψ(x)⟩ ⟨ψ(x)| , (3.28)

where∑x p(x) = 1 and p(x) ≥ 0, i.e., the p(x) form a probability distribution p. Therefore,
the evolution operator can be written as (58)

p(x, t) =
∑
x0

p(x, t|x0, t0)p(x0, t0) (3.29)

and then
ρ(t) = E(t, t0)ρ(t0), (3.30)

and, for a fixed t0 = 0, the quantum map forms an one-parameter subgroup with respect
to the variable t.

Important recent contributions have been made to obtain definitions that mean
quantum counterparts for non-Markovianity. (56–59) Classically, Markovianity is reflected
in the divisibility of conditional probabilities of a stochastic process as described by the
Chapmann-Kolmogorov equation. Quantumly, a definition characterized in the divisibility
of quantum channels cannot simply be imported. The propose of Rivas, Huelga, and Plenio
(RHP) (60) can be seen as most similar to the classical concept because consider that a
quantum process E(t, t0) is Markovian if it is a CP-divisible map, i.e., a trace-preserving,
completely positive (CPTP) such that, for any intermediate time, it can be divisible into
two CPTP maps

E(t, t0) = E(t, t1)E(t1, t0), t0 ≤ t1 ≤ t. (3.31)
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This composition between the operators frames a family of trace-preserving and com-
pletely positive maps - a semigroup with respect to time. Any dynamics that are Marko-
vian according to the semigroup definition are also Markovian according to the divisibility
definition, and hence according to the BLP definition, which will be presented in the next
subsection.

3.2.1 Trace distance-based non-Markovianity witness

Markovian processes are memoryless processes. With this in mind, an exciting way
to obtain an intuitive and consistent definition can be constructed by characterizing the
Markovianity from distance measures in Hilbert space. The definition of non-Markovian
dynamics proposed by Breuer, Laine, and Piilo (BLP) (61) takes into account the behavior
of trace-distance. First, we will be defining this specific Markovian condition and later
explain this meaning: An quantum evolution is Markovianity if the trace distance between
any two states decreases monotonically with time

d

dt
∥ρ1(t) − ρ2(t)∥1 ≤ 0, (3.32)

where ρ(t) = E(ρ) and ∥X∥1 = Tr
√
X†X is the so-called Schatten 1-norm. (39,53)

The trace distance measures the indistinguishability of two states, or the capac-
ity to discriminate between two states. Then, the trace distance decreases monotonically
when the system just lost information, e.g., Markovian dynamics. (61) As a result, an
increase in its value indicates that some information flows back to the design and breaks
the memoryless property, a natural consequence of the non-Markovian dynamics. Math-
ematically the trace distance is defined by

D(ρ1, ρ2) = 1
2 ∥ρ1 − ρ2∥1 , (3.33)

where we using the 1-norm defined before. Then, considering two states evolving in time
(ρ1(t) = E(ρ1) and ρ2(t) = E(ρ2)), it is immediate that the rate change of trace distance
is given by its first derivative, i.e.,

σ(t) = d

dt
D(ρ1(t), ρ2(t)), (3.34)

and, for some t ∈ [0,∞), the dynamics is called non-Markovian if

σ(t) ≥ 0. (3.35)

Then, from a concise definition, we have an indicator for non-Markovian dynamics in
general physical systems, where the trace distance can be well defined. Such witness of
non-Markovianity is widely used in the literature. Fig. 8 show the highly non-Markovian
behavior for the model used in this work. The calculations are present on the Chap.5.
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Figure 4 – The conditional past-future correlator (Cpf ) is based on measurements made
on the system - which, in the present case, interacts with a thermal bath -
at a time t earlier and a time τ later in relation to a present moment. The
measured correlations are related to the variables x, y, and z corresponding
to the past, present, and future, respectively. Systems with strong temporal
correlations retain the memory of previous states, an intuitive indication of
non-Markovianity.

Source: By the author

3.2.2 Conditional past-future correlation

Before defining the conditional past-future correlator (Cpf ), let us see some prop-
erties of correlation functions. The mean (temporal) value of a stochastic process is the
quantity

⟨X(t)⟩ =
∑

x

x(t)p(x, t), (3.36)

and the two-time correlation function of two random variables X(t) and Y (t) is defined
as

⟨X(t)Y (t′)⟩ =
∑
x,y

x(t)y(t′)p(x, t; y, t′), (3.37)

by extension. The correlation function when applied to the same random variable X(t),
yields the autocorrelation function, defined as

S(t, t′) := ⟨X(t)X(t′)⟩ =
∑
x,x′

x(t)x′(t′)p(x, t;x′, t′). (3.38)

and we assume this function depends only on the difference |t− t′|, i.e.,

S(t, t′) = S(t− t′) := S(τ), (3.39)

where we say that the process is homogeneous in time and implies the symmetry property
S(τ) = S(−τ). (11)

The present measure is based on statistical independence of past and future system
events when conditioned to a given state in the present time, proposed by Budini. (62,63)
Let us consider tx < ty < tz yields the outcomes x → y → z - the scheme is showed in
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the Fig. 4. For Markov process: p(z, y, x) = p(z|y)p(y|x)p(x); from here and from Bayes
rule (11)

p(z, x|y) = p(z|y)p(x|y) (3.40)

p(z, x|y) is the probability of y given x and z as results. Thus, past and future events
become statistically independent when conditioned to a given (fixed) intermediate state
for a classical Markovian process.

This property can be corroborated through a conditional past-future correlation,
which is defined as

Cpf := ⟨OzOx⟩y − ⟨Oz⟩y ⟨Ox⟩y

=
∑
xz

[p(z, x|y) − p(z|y)p(x|y)]OzOx,
(3.41)

where O are observables related to each system state and such that Markovian processes
lead to Cpf = 0 and non-Markovian otherwise (Cpf ̸= 0). In here, indexes x and z run
over all possible outcomes occurring at times tx and tz, respectively for fixed y at time ty.
It follows that non-Markovian effects break conditional past-future independence and are
present whenever Cpf ̸= 0.

Now, we take correspondent measurement operators x ↔ Πx, y ↔ Πy and z ↔ Πz

and satisfy ∑
x Π†

xΠx = ∑
y Π†

yΠy = ∑
z Π†

zΠz = 1, where y measurement must be pro-
jective. The memory indicator can be extended to quantum regime using these measure-
ments with respect to the events x, y and z. Taking a initial density operator ρSE(0)
correspondent to a system-plus-environment model, subject to a dynamics given by the
map E := E(ty, tx) and E ′ := E(tz, ty). Here, we can use the correspondence Πα ↔ Πα ⊗1E

to make clear the measurements only are doing on the system.

Then, we can follow the steps to obtain the probability distributions to obtain the
Cpf defined in Eq. (3.41), after the first x-measurement it occurs the transformation

ρx
SE = ΠxρSE(0)Π†

x

Tr Π†
xΠxρSE(0)

. (3.42)

The probability of each outcome is

p(x|0) = Tr ΠxΠ†
xρSE(0).

During a time interval t = ty − tx we know that the arrangement evolves with the map E
and, after the second y-measurement, it follows the transformation given by E(ρx

SE) → ρy
SE,

where
ρy

SE =
ΠyE(ρx

SE)Π†
y

Tr Π†
yΠyE(ρx

SE)
, (3.43)

where the conditional probability of outcome y given that the previous one was x is
p(y|x) = Tr Π†

yΠyE(ρx
SE). Thus, the joint probability for both measurement outcomes,

p(y, x) = p(y|x)p(x|0), is

p(y, x) = Tr Π†
yΠyE(ΠxρSE(0)Π†

x). (3.44)
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Now, using Bayes rule, the retrodicted probability can be obtained by p(x|y) = p(y, x)/p(y)
and reduces to

p(x|y) =
Tr Π†

yΠyE(ΠxρSE(0)Π†
x)∑

x′ Tr Π†
yΠyE(ΠxρSE(0)Π†

x)
. (3.45)

For projective measurements in y, i.e., Πy = |y⟩ ⟨y|, the state (3.43) can be sepa-
rated: ρy

SE = ρy
S ⊗ ρyx

E , where the bath state can be written as

ρyx
E = TrS ρ

y
SE =

TrS Π†
yΠyE(ρx

SE)
Tr Π†

yΠyE(ρx
SE)

, (3.46)

and we can, finally, go to the final step, correspondent to the evolution given by the map
E ′, in the time interval τ = tz − ty. The last z-measurement, which leads to E ′(ρy

S ⊗ ρyx
E )

comes
ρz

SE = ΠzE ′(ρy
S ⊗ ρyx

E )Π†
z

Tr Π†
zΠzE ′(ρy

S ⊗ ρyx
E )

. (3.47)

And it’s correspondent conditional probability of outcome z given that the previous one
is

p(z|y, x) = Tr Π†
zΠzE ′(ρy

S ⊗ ρyx
E ),

and using this and the Eq. (3.45) we obtain a final expression

p(z, x|y) = Tr Π†
zΠzE ′(ρy

S ⊗ ρyx
E )

Tr Π†
yΠyE(ΠxρSE(0)Π†

x)∑
x′ Tr Π†

yΠyE(ΠxρSE(0)Π†
x)
. (3.48)

Then, for the calculation of the Cpf we obtain a function dependent on two-times t and
τ , i.e., Cpf = Cpf (t, τ), where p(z|y) = ∑

x p(z, x|y), according to the Eq. (3.41).

For the present model, the Cpf is given by

Cpf (t, τ) =
∑
xz

[p(z, x|y) − p(z|y)p(x|y)]OzOx

= Γ(t+ τ) + Γ⋆(t+ τ)
4 + Γ(t− τ) + Γ⋆(t− τ)

4 −
(

Γ(t) + Γ⋆(t)
2

)(
Γ(τ) + Γ⋆(τ)

2

)
= f(t, τ) − f(t)f(τ)

where, in the last line, we defined f(t, τ) = [f(t + τ) + f(t − τ)]/2 and f(t) = Re(Γ(t)),
and Γ(t) is the decoherence function of the problem. The calculations are present on the
Chapter 5. It is importante to note that the similar result in comparison to (63) is due to
the fact that here we are also dealing with diagonal states in the σz basis.
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“Adianta querer saber muita
coisa? O senhor sabia, lá para
cima - me disseram. Mas, de
repente chegou neste sertão, viu
tudo diverso diferente, o que
nunca tinha visto. Sabença
aprendida não adiantou para
nada... Serviu algum?”

O Grande Sertão: Veredas, by
Guimarães Rosa.

The present chapter turns out to deal with a different paradigm to investigate the
non-Markovian dynamics. Here we present two ideas from the paradigm of quantum-to-
classical transition or objectivity paradigms: quantum Darwinism and Spectrum Broad-
cast Structures (SBS). First, the objective is to seek the information about the system
available in the environment by Partial Information Plots (PIPs) (64), to see how the
Markovianity/non-Markovianity induced by the decoherence affects the storage of infor-
mation. (65) The second idea is used to describe the structure of the density operators
that represent the states. By the form of these operators, we can point out two things:
(1) whether the information deposited in the environment is available for measurement or
not and (2) if, once taken the measurements, these measurements can be distinguishable.

4.1 Objectivity and quantum-to-classical transition

When dealing with open systems, we reduce the degrees of freedom to analyze
only a portion of the system-plus-environment configuration. (10) However, the informa-
tion that at some initial moment was contained in the system will be deposited in an
environment that, in general, has many more degrees of freedom. So far, we have evalu-
ated the adequate amount of the action of the environment on the states of the system
from its perspective. But instead of having all the information about the environment de-
coded in the decoherence function, we can look from its perspective to get the behaviour
of the information flow between system-bath.

Let us now look at the explanation of classicality emergence in the point-of-view
of decoherence theory, developed in the section. In a situation of pure decoherence, the
interaction between the system and the environment causes the destruction of superposed
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states. Considering a qubit, after a certain decoherence time, one has

ρdec
S ≈

|a|2 0
0 |b|2

 (4.1)

and this would be the key to understanding the emergence of classicality in quantum
systems, and the time of this process is typically extremely short for every day, macroscale
process. (3, 20, 55) The decoherence then causes a “collapse” of the quantum state into a
set of preferred states, called “pointer states”. (4, 66, 67) This is the first explanation for
the emergence of “classicality” or objectivity in quantum systems.

4.2 The idea of quantum Darwinism

First, let us consider quantum Darwinism, a framework based on a heuristic idea
centred on the proliferation of information from a central system to a nearby environ-
ment. Being another way to analyze the same phenomenon, quantum Darwinism makes
use of a more realistic platform: Instead of a monolithic structure for the environment, it
is divided into fractions where there is information proliferation, and information redun-
dancy/storage and its accessibility would be responsible for the classical emergence, from
the idea of objectivity.

It is essential to say that those perspectives come from exploring the emergence
of objectivity. Roughly speaking, objectivity is the standard agreement among observers
about the system’s state, which is not necessarily true for the quantum world. This concept
is stronger than the classicality of decoherence. Let us define the idea more formally:

Definition. (Objectivity) (24, 68, 69) A system state is objective if it is (1) simul-
taneously accessible to many observers (2) who can all determine the state independently
without perturbing it, and (3) all arrive at the same result.

Therefore, the emergence of objectivity in quantum systems means the emergence
of classicality. The conditions for this vital link are given recently by the framework of
quantum Darwinism but criticized, based on the importance of the possibility of informa-
tion extraction, i.e., measurable, distinguishable, and accessible information, that is not
necessarily taken into account in the quantum Darwinism paradigm.

Quantum Darwinism’s approach was used to treat a wide range of systems, like spin
(67, 70–73), and photonic (74–77) environments, harmonic oscillator (78) and Brownian
(65, 79) models, and experimentally in quantum dots (80), and photonic (74, 76) setups.
To study quantum Darwinism, we focus on correlations between environment and system
fragments. The relevant reduced density matrix ρSF is given by

ρSF = TrE/F |ψSE⟩ ⟨ψSE| , (4.2)
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or more generally, for a mixed state

ρSF = TrE/F ρSE. (4.3)

Above, the trace is over the space HE less HF, or HE/F - all of HE except for the fragment
HF. The space HE = HE

1 ⊗ HE
2 ⊗ .... ⊗ HE

N = ⊗N
k=1 HE

k . Being S(ρA) the von Neumann
entropy with respect to a system A with HA ⊆ HE, quantum Darwinism gives how much
F knows about S (the system, with a Hilbert space HS) can be quantified using mutual
information

I(S : F) = S(ρS) + S(ρF) − S(ρSF), (4.4)

defined as the difference between entropies of two systems treated separately and jointly.
Thus, we can define quantum Darwinism from the amount of shared information that
proliferates throughout the environment.

Definition. (Quantum Darwinism) There exists an environment fraction size f0

such that all fractions larger than it, f ≥ f0, it holds:

I(S : F) = S(ρS), (4.5)

independently of f .

To explain this definition, we consider that the amount of information about the
system is given by the von Neumann entropy about the system. Then, in a situation
where this quantity coincides with the mutual information about the system and the
environment fragment, we consider that it has stored sufficient information about the
system to reconstruct its physical state.

The most direct way to check for this condition is via so-called partial information
plots (PIPs), where I(S : F) is plotted as a function of f . The PIPs format depends on
the intrinsic characteristics of the system-environment density operator. If we take, for
example, a pure global state, we will have antisymmetric plots around f = 1/2 (67,71,79,
81), and this fact can be easily seen considering the marginal mutual information for the
system, i.e., mutual information correspondents to the operators ρSF and ρSF̄, in which
F̄ := B/F and then

I(S : F) + I(S : F̄) = 2S(ρS) (4.6)

which stems from the fact that the marginal entropies are equal: S(ρSF) = S(ρSF̄). But
for cases where we have mixed initial states (such as thermal states at finite temperature,
as in this work), such symmetry is broken in the system.

To illustrate how quantum Darwinism can occur, let us assume the system is a
qubit initially in a general pure state, i.e., a |0⟩S +b |1⟩S with |a|2 + |b|2 = 1, and we assume
a collection of N qubits each written in the same initial state |ψ⟩Ei

. Thus, we start with
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an initially factorized state

(a |0⟩S + b |1⟩S)
N⊗

k=1
|ψ⟩Ek

. (4.7)

Quantum Darwinism then posits that, if after their mutual interaction, the total state of
the system and environment is

a |0⟩S ⊗
N⊗

k=1
|0⟩Ek

+ b |1⟩S ⊗
N⊗

k=1
|1⟩Ek

(4.8)

then classical objectivity emerges. Taking the partial trace over N environmental qubits,
the system density matrix comes

ρS = |a|2 |0⟩ ⟨0|S + |b|2 |1⟩ ⟨1|S , (4.9)

while for any single environment qubit we have

ρEk = |a|2 |0⟩ ⟨0|Ek
+ |b|2 |1⟩ ⟨1|Ek

. (4.10)

Then we can see that the information about the central qubit can be sought in each
environment fraction.

However, a closer look at the meaning of quantum mutual information shows that
things are not as straightforward as in classical information theory, as we can see in the
following subsection.

4.3 Spectrum broadcast structures and strong quantum Darwinism

The focus of quantum Darwinism is on sharing information between the system
and fractions of the environment from correlations, but without mentioning the character
of these correlations or the accessibility of information stored in the environment. For a
scenario where objectivity emerges, information about the system needs to be measured.
In this way, the SBS paradigm takes into account the structure of the states formed by
the system-plus-fractions set of the environment to obtain sufficient conditions for the
emergence of objectivity. SBS relates to the composition of the partially traced density
operator ρSF. These structures have a close relationship with the possibility of quantum
Darwinism and are the keys to leading the idea of strong quantum Darwinism. (23)

Definition. (Spectrum Broadcast Structure) (23,24) The joint state ρSF of the sys-
tem S and a collection of subenvironments HF = HE1 ⊗...⊗HEfN = ⊗fN

k=1 HEk has spectrum
broadcast structure if it can be written as:

ρSF =
∑

i

pi |ei⟩ ⟨ei| ⊗ ρE1
i ⊗ ...⊗ ρEfN

i , (4.11)
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...

...

Figure 5 – Conditioned on the state |ei⟩ ⟨ei| the subenvironments take on conditional
states ρEk

i . These conditional states must be perfectly distinguishable, i.e.,
ρEk

1 ⊥ ρEk
2 for k = 1, 2, .... This allows an observer with access to Ek to

construct a general quantum measurement to perfectly determine index i.

Source: Adapted from LE; OLAYA-CASTRO (82)

where {|ei⟩} is the pointer basis of S, pi are the probabilities and the operators ρEk
i are

perfectly distinguishable, i.e., two by two orthogonal considering each pair of fragment
environments.

The basic idea for such structures is to consider states that can be faithfully
broadcasted satisfying Bohr non-disturbance definition:

Definition (Bohr non-disturbance) (24,29) A measurement ΠS′
k on the subsystem,

S′ is Bohr non-disturbing on the subsystem S if and only if

∑
i

1 ⊗ ΠS′

i ρSS′1 ⊗ ΠS′

i = ρSS′ (4.12)

Therefore, these are the states such that many observers can find out the state S inde-
pendently, and without perturbing it, as assigned in the definition of objectivity.

Another important thing is that states with spectrum broadcast structure satisfy
strong independence, where there are no correlations between the environment conditioned
on the system’s information.

Definition (Strong independence) (24,27) Subenvironments {Ek}k have strong in-
dependence relative to the system S if their conditional mutual information is vanishing,
i.e.,

I(Ej : Ei|S) = 0, for all i ̸= j. (4.13)

Here, we have sufficient information to answer an essential question about quantum
Darwinism. Indeed, the framework of quantum Darwinism, because of the use of quantum
mutual information for computing the information between the system and the environ-
ment, can not assume that the information is entirely classical in general. This situation is
critical, because mutual information has both quantum and classical information, and the
quantum information is responsible for the objectivity emergence. Furthermore, here we
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take the strategy of searching for strong independence and spectrum broadcast structure
in the model to search for the emergence of objectivity.

Definition (Strong quantum Darwinism) (27, 82) A system-environment satisfies
strong quantum Darwinism when the quantum discord is zero, and quantum mutual in-
formation is fully classical and equal to the information contained in the system:

I(S : Ek) = Iacc(S : Ek) = χ(S : Ek) = S(ρS), D(S : Ek) = 0, (4.14)

where Iacc(S : Ek) is the classical accessible information which here is equivalent to the
Holevo quantity χ(S : Ek).

For objectivity to emerge, Eq. (4.14) should hold for sufficiently many environ-
ments {Ek}k, as well as for the observed joint environment represented by Hilbert space
∪fN

k=1HE
k . Note the observed environment is never the total environment. The whole en-

vironment (provided that the total system-environment is closed and pure), retains all
quantum correlations and so will always have I(S : E) = 2S(ρS)

As shown in Ref. (23), in addition to the notion of SBS being a formalization of
the emergence of objectivity in open systems, it is also a stronger condition than quantum
Darwinism for the emergence of such. There is also a proposal to witness non-objectivity in
situations of strong quantum Darwinism (82) in the literature. Strong quantum Darwinism
is an extension of the theory of quantum Darwinism that emphasizes the structure of states
and their available information. (23,28,82)

An example of objective compative with all frameworks present here uses the GHZ
state. (13) Considering a system initially in a general pure state, i.e., a |0⟩S + b |1⟩S with
|a|2 + |b|2 = 1 as in quantum Darwinism example, but here the N spin environment is in
ground state |0⟩E. Let us suppose a total final state after interaction

ρSE = |a|2 |0⟩ ⟨0|S ⊗
N⊗

k=1
|0⟩ ⟨0|Ek

+ |b|2 |1⟩ ⟨1|S ⊗
N⊗

k=1
|1⟩ ⟨1|Ek

(4.15)

This state satisfies all frameworks of quantum Darwinism: has (invariant) spectrum broad-
cast structure with probabilities |a|2 and |b|2, the quantum mutual information condition
is fulfilled, i.e., I(S : Ek) = S(ρS) = S(|a|2, 1 − |a|2) and the state has zero discord and
hence satisfies strong and “weak” quantum Darwinism.
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“Let us leave theories there and
return to here’s hear.”

Finnegans Wake, by James
Joyce.

5.1 The model and its features

Let us denote HS the Hilbert space representative of the states of the central qubit
and by HE the Hilbert space of the the spin environment states. The total system is then
given by the tensor product space HSE = HS ⊗ HE. For the Hilbert space with respect
to the central qubit, we take a 2-dimensional complex space in the computational basis,
i.e., HS = span {|0⟩ , |1⟩} ∼= C2∗, and this states |0⟩ , |1⟩ are the eigenstates of the Pauli
matrix σz correspondents to the eigenvalues 1 and −1, respectively, where σz |0⟩ = |0⟩
and σz |1⟩ = − |1⟩.

Let us consider a Hilbert subspace that can be described too by a 2-dimensional
complex space, HEk = span{|0⟩ , |1⟩} ∼= C2. This space is the subspace descriptive of the
k-th spin site in the environment. As one can see, the environment can be constructed as
∗ “span” of a set of vectors is the smallest linear subspace that contains the set.

Figure 6 – Here, we use a central qubit coupled to a thermal environment structured
by spins with ferromagnetic interactions between the first neighbors (with
intensity J > 0), also subject to the action of a magnetic field h in the
direction ẑ. The environment is in thermal equilibrium at the temperature
T = 1

β
. Along the paper we consider kB = ℏ = 1.

Source: By the author
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Figure 7 – For the description of the model in terms of the thermal environment point
of view, we use the description given in Section, in which the central qubit
is described by a Hilbert space HS = span {|0⟩ , |1⟩} ∼= C2 and each environ-
mental spin is given by HEk = span{|0⟩ , |1⟩} ∼= C2, from so that the fractions
are compositions of fN of these spaces.

Source: By the author

the tensor product of subspace corresponding to each site

HE =
N⊗

k=1
HEk

∼= (C2)⊗N ,

and the notation (C2)⊗N means the composition of N 2-dimensional complex spaces.

To know how the environment acquires and records information about the central
system, we will use the environment point-of-view. Thereby, it is essential to construct
partial Hilbert spaces that will be tensorial compositions of such a number (lower than
N) of subsystems. If one calls this fractional Hilbert space HF, it can be written as

HF = HE1 ⊗ ...⊗ HEfN =
fN⊗

k=1
HEk ,

such that fN = #HF ≤ N , and # represents the number of composed subsystems (or
the cardinality of HF with respect to Hk).

Now, with each Hilbert space defined, we can propose that the total Hamiltonian
that describes system-environment is given by

H = HS +HE +HSB, (5.1)

where HS = ωσz
2 is the Hamiltonian of the system and HE is the Ising-like environment

Hamiltonian of N spin-1/2 particles, described by

HE = −J
N∑

i=1
σz

i ⊗ σz
i+1 − h

N∑
i=1

σz
i , (5.2)



5.1 The model and its features 55

that contains Pauli matrices σz
i acting in each space HEk , J corresponds to a nearest-

neighbor coupling between the spins and h, the magnetic field along z-axis affecting the
spin chain.

The initial state of the system will be considered as a general pure qubit state in
the Bloch sphere

|ψ⟩ = a |0⟩ + b |1⟩ ∈ HS, (5.3)

where a, b ∈ C and |a|2 + |b|2 = 1.

Since this qubit is subject to dynamics due to the interaction with a thermal
environment at temperature T , we will consider that such environment state is described
by the Gibbs state

ρE = e−βHE

ZE
, (5.4)

where ZE := Tr[e−βHE ] the partition function.

Such Gibbs state will give us distribution in the state space and one can construct
each microstate as

|χ⟩ := |χ1...χN⟩ ≡ |χ1⟩ ⊗ ...⊗ |χN⟩ , (5.5)

that diagonalizes HE, which |χk⟩ ∈ HEk is a eigenstate of the Pauli matrix σz in com-
putational basis {|0⟩ , |1⟩}, correspondent to the eigenvalues σi = ±1. Then, the diagonal
Hamiltonian results in

HE |χ⟩ = E(χ) |χ⟩ , (5.6)

defines the configuration correspondent to the energy

E(χ) = −J
N∑

i=1
σiσi+1 − h

N∑
i=1

σi. (5.7)

The diagonalization of the Ising chain Hamiltonian allows us to rewrite environ-
ment density operator in the energy basis

ρE = e−βHE

ZE
= 1
ZE

∑
χ

e−βE(χ) |χ⟩ ⟨χ| . (5.8)

This system presents ground states obtained from limβ→∞ ρE, in which for h = 0 emerges
a Z2 symmetry and the ground states are ⊗N

k=1 |0⟩ ⟨0|Ek
= |0⟩ ⟨0| and ⊗N

k=1 |1⟩ ⟨1|Ek
=

|1⟩ ⟨1|, and for h ̸= 0 the symmetry bronken and the ground states depends on the
direction of the magnetic field.

The central spin interacts with the environment with an interaction strength α ∈
[0, 1] (with this interval for realistic purposes), described using the Hamiltonian

HSB = ασz ⊗
∑

i

σz
i , (5.9)
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acting in the space HSB ∼= (C2)⊗N+1, and inducing the unitary time evolution operator
U(t) = e−iHSBt - considering here the situation of interaction picture with respect to the
operator HS; since [HS, HSB] = 0, arises in the setup a case of pure decoherence, this does
not affect HE +HSB and obviously [HE, ρE] = 0.

This operator HSB generate a quantum map E and following the calculations of
the Appendix, the dynamics just affects the off-diagonal terms

ρS(t) =
 |a|2 a∗bΓ(t)
ab∗Γ∗(t) |b|2

 , (5.10)

where Γ(t) is given by
Γ(t) = 1

ZE

∑
σ

e−βE(χ)e−2itα
∑

i
σi

= ZE(h− 2iαt/β)
ZE(h) ,

(5.11)

and the partition function ZE can be compute using the transfer matrix formalism, as
described by Ref. (50) This function Γ(t) is the so-called decoherence function, and, for
the present case, is a periodic function with period τ = 2π/4α.

Here, we have a situation with finite time reversibility implied by oscillations pre-
sented in the density operator coherences and, the irreversible process is obtained by
taking the continuous limit (55), e.g., considering each mode corresponding to a state
χ = {χ1, ..., χN} and defining a mode density operator Ω(χ), i.e.,

Ω(χ) =
∫
dχ1...

∫
dχN

N∏
i=1

D(χi)δ
(
m(χ) −

N∑
i=1

χi

)
, (5.12)

where D(χi) the density of states. The partition function can be written as

ZE =
∫
dχΩ(χ)e−βE(χ). (5.13)

For this case, one can speak of a decoherence rate γ(t) = log 1
Γ(t) that describes how fast

the coherence vanishes.

As a result, the discrete environment gives a dephasing process when the coherence
is recovered periodically, which is a signature of non-Markovianity. Here, in a case of pure
decoherence, when there is no energy dissipation in the system, for all practical purposes,
it means that we have a situation without any effect on the population of the central qubit,
and the impact of environment interaction in the system recover elastic scattering. (?, 9)

We will calculate the exact solution for the dynamics of the system density opera-
tor. Let us start with the initial density operator of the system ρS(0) = |ψ⟩ ⟨ψ|, with |ψ⟩
as defined in Eq. (5.3), and fully uncorrelated with the thermal environment described by
density operator in Eq.(5.4), i.e., ρ = ρS(0) ⊗ ρE. Then the evolved density operator can
be given by

ρS(t) = E(ρS) = TrE
[
U(t)ρS ⊗ ρEU

†(t)
]
, (5.14)
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that admits a representation in the Kraus form, i.e.,

E(ρS) =
∑
χχ′

Kχχ′ρSK
†
χχ′ , (5.15)

in which ∑χχ′ K†
χχ′Kχχ′ = 1S. As a result, the dynamics can be calculed writting explicitly

the environment operator in energy basis, like in Eq.(5.8), i.e.,

ρS(t) = TrE[U(t)ρS ⊗ ρEU
†(t)]

= TrE[U(t)ρS ⊗ 1
ZE

∑
χ

e−βE(χ) |χ⟩ ⟨χ|U †(t)].
(5.16)

Writting the trace operation explicity using a eigenbasis |χ′⟩ ∈ (C2)⊗N , one can obtain
the follow

=
∑
χ′

⟨χ′|U(t)ρS ⊗ 1
ZE

∑
χ

e−βE(χ) |χ⟩ ⟨χ|U †(t) |χ′⟩

=
∑
χχ′

e− βE(χ)
2

Z
1
2
E

⟨χ|U(t) |χ′⟩ ρS
e− βE(χ′)

2

Z
1
2
E

⟨χ|U(t) |χ′⟩ ,
(5.17)

where we put in a form that one can identify the Kraus operators, that are

Kχχ′ = e− βE(χ)
2

√
ZE

⟨χ|U(t) |χ′⟩ . (5.18)

Now, let us write the evolution operator at the energy eigenbasis to obtain the Kraus
operators, i.e.

U(t) = e−iHSBt =
∑
nχ

e−itϵnm(χ) |n, χ⟩ ⟨n, χ| , (5.19)

in which m(χ) = ∑
i σi is the total magnetization spin with respect to the state χ and

ϵn = α(−1)n with n = 0, 1 is the energy gap obtained when one diagonalize the operator
HSB in the basis |n, χ⟩ = |n⟩ ⊗ |χ⟩. Consequently, for the Kraus operators

Kχχ′ = e− βE(χ)
2

√
ZE

⟨χ|U(t) |χ′⟩

= e− βE(χ)
2

√
ZE

⟨χ|
∑
nγ

e−itϵnm(γ) |γ⟩ ⟨γ |χ′⟩ |n⟩ ⟨n|

= e− βE(χ)
2

√
ZE

∑
nγ

e−itϵnm(γ) |n⟩ ⟨n| δχγδγχ′

= 1√
ZE

∑
nχ′

e− βE(χ)
2 e−itϵnm(χ′) |n⟩ ⟨n| δχχ′ .

(5.20)

Let us decompose the initial density matrix ρS = ∑
nm ρ

nm
S |n⟩ ⟨m| , where ρnm

S =
⟨n| ρS |m⟩ . Then, applying these Kraus operators, an evolved state subject to the evolution
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take the particular form

ρS(t) = 1
ZE

∑
m,n,o,p,χ,χ′

ρnm
S e−βE(χ)e−it(ϵo−ϵp)m(χ′)×

× |o⟩ ⟨o, n⟩︸ ︷︷ ︸
δon

⟨m | p⟩︸ ︷︷ ︸
δmp

⟨p| δχχ′

= 1
ZE

∑
m,n,σ

e−βE(χ)e−it(ϵn−ϵm)m(χ)ρnm
S |n⟩ ⟨m| .

(5.21)

and, one can easily check ϵn − ϵm = α[(−1)n − (−1)m] results in null terms for n = m,
then the dynamics just affects off-diagonal terms whilst the coherences (off-diagonal) are
modulated by the periodic function Γ(t), given by

Γ(t) = 1
ZE

∑
σ

e−βE(χ)e−2itα
∑

i
σi

= ZE(h− 2iαt/β)
ZE(h) ,

(5.22)

where the partition function ZE := Tr e−βHE is the Ising partition function.

5.2 Decoherence and dynamical phase transitions: a comment

As a result, the discrete environment gives a dephasing process when the coherence
is recovered periodically, as we will show, is a signature of non-Markovianity. Decoherence
theory provides an archetypal mechanism for open quantum systems, which can be sum-
marized simply as follows: interaction between the system and the environment causes
decoherence and this, in turn, causes the loss of information from the system to the envi-
ronment. (5) Here, a case of pure decoherence, when there is no energy dissipation in the
the system, for all practical purposes, means that we have a situation without any effect
on the population of the central qubit, and the result of environment interaction in the
system recovers elastic scattering.

The decoherence function recalls the Loschmidt amplitude, a fundamental theory
of dynamical phase transitions (DQPT). (83) The Loschmidt amplitude quantifies an
overlap between an initial state and its post-quench evolution. This amplitude measures
how a quantum system differs from its initial state after applying an evolution operation.
One can define the Loschmidt amplitude as

G(t) = ⟨Ψ0|Ψt⟩ = ⟨Ψ0| e−iHt |Ψ0⟩ , (5.23)

for some initial state Ψ0 and a general driven Hamiltonian H. Notice that the Loschmidt
amplitude vanishes for the case when the states are orthogonal. Analogous to thermal
phase transitions, DQPT’s occurs when t = tc if G(tc) = 0 which results in nonanalyticity
of log G(t), a dynamical analog of the thermal free energy.
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Accordingly, Loschmidt amplitude has a closed relation with the partition function,
which can be seen considering the boundary partition function, described in the Ref. (84),
represented in the following form

Z = ⟨Ψ1| e−RH |Ψ2⟩ , (5.24)

in which the states |Ψ1⟩ and |Ψ2⟩ encoding the boundary conditions and H denoting
the bulk Hamiltonian, R is the distance between two borders of the system, such as a
situation described by our system: a qubit with two energy levels corresponding to the
energy boundaries coupled to another system with a coupling strength α.

In the present text, obviously, it does not make sense to talk about phase transi-
tions, given that our states are all orthogonal. But we can use this theory as an analogy.
The coupling concerning the qubit is described by the interacting Hamiltonian, which can
be re-written as α(|0⟩ ⟨0| − |1⟩ ⟨1|) ⊗∑

i σ
z
i , and each level of the qubit is submitted to an

amount α of energy concerning the environment.

Thus, we can speak of an effective Hamiltonian that computes this behavior of
the system, H(α) = 2α∑i σ

z
i , introducing the overlap effect caused by the thermal en-

vironment in the central qubit, and the environment thermal state ρE, we can use the
generalization for the mixed state Loschmidt amplitude given by Refs. (85) and (86) to
obtain

G(t) = Tr
[
ρE exp

(
−2iαt

∑
i

σz
i

)]
= Tr[e−βHEe−iH(α)t]

ZE
, (5.25)

i.e., the same as decoherence function Γ(t). In the same way, one can consider another
way to writte the coherence function with Γ(t) =

〈
e−iH(α)t

〉
E

in which ⟨•⟩E = Tr[•ρE]
denotes the thermal average with respect to the environment.

The critical times on the Loschmidt amplitude reveal a closed relation with the
zeros of the partition function, the so-called Lee-Yang zeros. For the case of equilibrium
phase transitions, the theory of Lee-Yang tells us that the zeros of the partition function
determine critical points in the fugacity plan. The decomposition of a partition function
in the Nth order polynomial of z := e−2βh can be obtained by

ZE = Tr[e−βHE ] = eβNh
N∑

n=0
pnz

n, (5.26)

where pn is the partition function with zero magnetic field in which n ≤ N spins are in
the state −1 and N is the number of spins.

The N zeros of the partition function lying on the unit circle in the complex plane
of z can be written as zn := eiθn with n ∈ N. We rewrite the partition function in the
function of its zeros

ZE = p0e
βNh

N∏
n=1

(z − zn). (5.27)
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Then, the Lee-Yang zeros in the time domain, as proposed in Ref. (52), are

Γ(t) = e−2iNαt

∏N
n=1(e−2βh+4iαt − zn)∏N

n=1(e−2βh − zn)
, (5.28)

which, of course, clarifies the one-to-one correspondence between the decoherence function
(or the Loschmidt amplitude) and the Lee-Yang zeros. Notice that the numerator term
is obtained simply by rewriting a new (time-dependent) magnetic field h → h − 2iαt/β.
When h = 0, this function vanishes at the critical times given by Lee-Yang zeros in fugacity
plan. Then, the situation provides a setup in which we can map an equilibrium system
in a probe decoherence system. Beyond a mere theoretical result, this correspondence
guarantees the possibility of observing Lee-Yang zeros experimentally, as can be seen in
Ref. (87)
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Figure 8 – Trace distance for two initial states ρ1 = |+⟩ ⟨+| and ρ2 = |−⟩ ⟨−| subject
to the dynamics given by Eq.(5.10) for different temperatures: β = 0 (black
line), β = 0.75 (blue line), β = 1.75 (purple line) and β = 4 (red line). For
the case of zero magnetic field (c), the trace distance oscillations correspond
directly to the Lee-Yang zeros, and this correspondence is erased as the mag-
netic field h increases in intensity (that corresponds to (a) and (b)). For
all cases, we see that the revivals in time culminates in situations in which
σ(ρ1, ρ2; t) > 0, which would, in principle, indicate the non-Markovianity of
the system, unless for those cases where the trace distance tends to remain
constant D(ρ1, ρ2; t) = 1 for any t, which cover the low temperature cases
(large β). For situations (a), (b) and (d) one have D(ρ1, ρ2) = 1 at any time
for β = 4 (red line), a situation without memory effects. We set a coupling
α = 0.1, what result in the recoherence at t = τ .

Source: By the author
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5.3 Non-Markovian behavior

The present section will show the results for the two aforementioned non-Markovian
measures. We present a pretty detailed calculation for the trace distance-based non-
Markovianity witness and the CPF measure for a specific initial system. The comparison
between the trace distance-based witness and the CPF measure is given in Fig.11.

5.3.1 Trace distance-based non-Markovianity witness

In the present problem, the situation is characterized by a qubit dephasing when
putting it in contact with a thermal environment. Considering two initial pure states.

ρ1
S = |+⟩ ⟨+| = 1

2

1 1
1 1

 , ρ2
S = |−⟩ ⟨−| = 1

2

 1 −1
−1 1

 .
where |±⟩ = (|0⟩ ± |1⟩)/2. While keeping the population terms unchanged, pure decoher-
ence subjects the off-diagonal terms to a modulation given by the decoherence function
for the model considered here. This case results in an immediate dependence of the trace
distance with the decoherence function, which can be written as

D(ρ1
S, ρ

2
S; t) = 1

2Tr
∣∣∣ρ2

S(t) − ρ1
S(t)

∣∣∣ = 1
2Tr

∣∣∣∣∣∣
 0 Γ(t)

Γ⋆(t) 0

∣∣∣∣∣∣ = |Γ(t)|,

where ρ1,2
S (t) are defined by the dynamics described in Eq.(5.20). Then, we find that

dD(ρ1
S, ρ

2
S; t)

dt
= Γ(t)

|Γ(t)|Γ
′(t) = sign[Γ(t)]Γ′(t), (5.29)

where sign[z] := z/|z| with z ∈ C ̸=0 and Γ′(t) := dΓ/dt is the function first derivative. As
a result, a decrease in the trace distance mean a non-Markovian behavior as showed in
the Fig. 8.

To understand Fig. 8 for the trace distance, we can analyze two different cases,
where we have the interacting (J = 1) and noninteracting (J = 0) regimes. Considering
two function defined by C(t) := cosh(βh−2iαt) and S(t) := [e−4βJ +sinh2(βh−2iαt)]1/2,
the decoherence function for the interaction regime (J > 0) takes the form

Γ(t) = (C(t) + S(t))N + (C(t) − S(t))N

(C(0) + S(0))N + (C(0) − S(0))N
. (5.30)

To search the zeros of this function, one can consider the Lee-Yang zeros, explicitly given
by the formula

zn = −e−4βJ + (1 − e−4βJ) cos kn

±
√

(e−4βJ − 1)
[
sin2 kn + e−4βJ (1 + cos kn)2

] (5.31)

with kn = π(2n − 1)/N and n ∈ N, and hence, take a transformation in magnetic field
h → h− 2iαt/β the zeros of the decoherence function reduces to

t = βh

2iα + 1
4iα ln zn (5.32)
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that, to result in real times, obviously need the conditions h → 0 or β → 0. Here, by
rewriting the decoherence function in terms of Lee-Yang zeros, we have a clear correspon-
dence for the critical times. In the case where the magnetic field is null, the decoherence
function touches the time axis at an interval t = τ the same number of times that zeros
of the partition function occur in the fugacity plane, as previously shown in Ref. (88)

For the condition J = 0, only a zero rises from the fugacity plan for zn = −1. The
decoherence function simply reduces to

Γ(t) = CN(t)
CN(0) . (5.33)

Which finally results in the following zeros for the system’s decoherence function

t = βh± iπ/2
2iα , (5.34)

that results in real terms only for weak fields h → 0 or high temperatures β → 0, as the
last case.

Therefore, it can be seen that this model results in a strongly non-Markovian envi-
ronment, where the decoherence is not affected by low temperatures. Here, the recurrence
at each interval τ appears as a finite size effect, and during short intervals, the system
has its initial information restored. This effect is crucial for the storage of information in
the environment, and we see here that the info deposited quickly returns to the system,
preventing there from being accessible information in the environment to be measured.

We can see the trace distance behavior in the Fig. 8. For the case of zero magnetic
fields Fig. 8(c), the trace distance oscillations correspond directly to the Lee-Yang zeros,
and this correspondence is erased as the magnetic field h increases in intensity (that
corresponds to Fig. 8(a) and Fig. 8(b)).For all cases, we see that the revivals in time
culminates in situations in which σ(ρ1, ρ2; t) > 0, which would, in principle, indicate the
non-Markovianity of the system, unless for those cases where the trace distance tends to
remain constant D(ρ1, ρ2; t) = 1 for any t, which cover the low temperature cases (large
β). For situations Fig. 8(a), Fig. 8(b) and Fig. 8(d) one have D(ρ1, ρ2) = 1 at any time
for β = 4 (red line), a situation without memory effects. We set a coupling α = 0.1, what
result in the recoherence at t = τ .

5.3.2 Conditional past-future correlation as a non-Markovianity measure

In the present case, we can take all the measures in the direction x of the qubit
Bloch sphere and follow the idea proposed in the Sec. 3.2.2. Thus, the outcomes of each
measurement, in successive order, are x = ±1, y = ±1, and z = ±1, which in turn
define the system operators values Oz = z and Ox = x. The corresponding measurement
operators are the same Πx = Πy = Πz = Πx̂=±1, where Πx̂=±1 = |x̂±⟩ ⟨x̂±|, with |x̂±⟩ =
(|+⟩ ± |−⟩)/

√
2. Here, we can summarize the steps to obtain the Cpf :
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1. First, we take the first measure at the initial state ρSE(0):

ρSE(0) → ρx
SE(0) = Πx̂=xρSE(0)Πx̂=x

Tr[ρSE(0)Πx̂=x]

For this purpose, we start considering the initial state of the system as ρS(0) =
|0⟩ ⟨0|, to rewritte:

ρx
SE(0) = Πx̂=x |0⟩ ⟨0| ⊗ ρE(0)Πx̂=x

Tr[|0⟩ ⟨0| ⊗ ρE(0)Πx̂=x]

= (|0⟩ ⟨0| + x |0⟩ ⟨1| + x |1⟩ ⟨0| + |1⟩ ⟨1|) ⊗ ρE(0)/4
1
2

= (|0⟩ ⟨0| + x |0⟩ ⟨1| + x |1⟩ ⟨0| + |1⟩ ⟨1|)
2 ⊗ ρE(0)

2. Now, we perform a forward evolution above the density operator ρx
SB(0)

ρx
SB(t) = U(t)ρx

SB(0)U †(t)

to obtain p(y|x) = Tr ρx
SE(t)Πx̂=y. Then, we can compute:

ρx
SE(t) = U(t)(|0⟩ ⟨0| + x |0⟩ ⟨1| + x |1⟩ ⟨0| + |1⟩ ⟨1|)

2 ⊗ ρE(0)U †(t)

= (|0⟩ ⟨0| + e−γ01(σ)tx |0⟩ ⟨1| + e−γ10(σ)tx |1⟩ ⟨0| + |1⟩ ⟨1|)
2 ⊗ ρE(0)

where

−iαt(⟨j|σz |j⟩−⟨k|σz |k⟩)
∑

i

σz
i |χ⟩ = −iαt(⟨j|σz |j⟩−⟨k|σz |k⟩)

∑
i

σi |χ⟩ ≡ −iγjk(χ)t |χ⟩

(5.35)
Thus, we obtain for the probability p(y|x) calculating ρx

SE(t)Πx̂=y:

ρx
SE(t)Πx̂=y = 1

4 (|0⟩ ⟨0| + |1⟩ ⟨1|) ⊗ ρE(0) + 1
4 (y |0⟩ ⟨1| + y |1⟩ ⟨0|) ⊗ ρE(0)+

+ 1
4
(
xe−iγ01(χ)t |0⟩ ⟨1| + xe−iγ10(χ)t |1⟩ ⟨0|

)
⊗ ρE(0)+

+ 1
4
(
xye−iγ01(χ)t |0⟩ ⟨0| + xye−iγ10(σ)t |1⟩ ⟨1|

)
⊗ ρE(0)

= 1
4 |0⟩ ⟨0|

(
1 + xye−iγ01(χ)t

)
⊗ ρE(0) + 1

4 |0⟩ ⟨1|
(
y + xe−iγ01(χ)t

)
⊗ ρE(0)+

+ 1
4 |1⟩ ⟨0|

(
1 + xye−iγ10(χ)t

)
⊗ ρE(0) + 1

4 |1⟩ ⟨1|
(
y + xe−iγ10(χ)t

)
⊗ ρE(0)

= 1
4 |0⟩ ⟨0| c(t) ⊗ ρE(0) + 1

4 |0⟩ ⟨1| yc(t) ⊗ ρE(0) + 1
4 |1⟩ ⟨0| yc⋆(t) ⊗ ρE(0)+

+ 1
4 |1⟩ ⟨1| c⋆(t) ⊗ ρE(0)
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such that c(t) = 1 +xye−iγ01(χ)t (by Eq. (5.35) is easy to that γ01 = −γ10) and, take
the total trace we obtain:

Tr ρx
SE(t)Πx̂=y = 1

2 + 1
4TrE

∑
χ

xy
e−βE(χ)e−iγ10(χ)t

ZE
|χ⟩ ⟨χ|

+

1
4TrE

∑
χ

xy
e−βE(χ)e−iγ01(χ)t

ZE
|χ⟩ ⟨χ|


= 1

2 + xy

4

[
ZE(β, h− 2iαt/β)

ZE(β, h) + ZE(β, h+ 2iαt/β)
ZE(β, h)

]

= 1
2 + xy

4 [Γ(t) + Γ⋆(t)] = p(y|x)

3. In the present step, we perform the second measure, which gives us

ρxy
SE(t) = Πx̂=yρ

x
SE(t)Πx̂=y

Tr[ρx
SE(t)Πx̂=y]

and now, we can compute the numerator using the previous results

Πx̂=yρ
x
SE(t)Πx̂=y =

(
|0⟩ ⟨0| + y |0⟩ ⟨1| + y |1⟩ ⟨0| + |1⟩ ⟨1|

2

)
⊗ ρE(0)

(
c⋆(t) + c(t)

4

)

and finally

ρxy
SE(t) =

(
|0⟩ ⟨0| + y |0⟩ ⟨1| + y |1⟩ ⟨0| + |1⟩ ⟨1|

2

)
⊗ ρxy

B (t)

4. In the next step, the bipartite arrangement evolves during a time interval τ ≡ tz −ty,
with the unitary dynamics dictated by the interaction Hamiltonian, ρxy

SE(t) → ρxy
SE(t+

τ):
ρxy

SE(t+ τ) = U(τ)ρxy
SE(t)U †(τ)

to obtain, finally, this resultant probability:

p(z|y, x) = Tr[ρxy
SE(t+ τ)Πx̂=z]

= 1
2

(
1 + zy

[Γ̃(t) + Γ̃⋆(t)]
2

)
which

Γ̃(t) = Γ(τ) + xy(Γ(t+ τ) + Γ⋆(t− τ))/2
1 + xy(Γ(τ) + Γ⋆(t))/2 .

Having these terms in hand , we can compute the conditional past-future correlation as
follow:

Cpf (t, τ) =
∑
xz

[p(z, x|y) − p(z|y)p(x|y)]OzOx

= Γ(t+ τ) + Γ⋆(t+ τ)
4 + Γ(t− τ) + Γ⋆(t− τ)

4 −
(

Γ(t) + Γ⋆(t)
2

)(
Γ(τ) + Γ⋆(τ)

2

)
= f(t, τ) − f(t)f(τ)
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where, in the last line, we defined f(t, τ) = [f(t + τ) + f(t − τ)]/2 and f(t) = Re(Γ(t)).
The same structure in the conditional past-future correlator in relation to (62,63) reflects
the fact that the interactions present here between the baths spins are diagonal in the z
basis.

Figs. 9 and 10 shows the conditional past-future correlation behavior. For large N
and low temperatures (high β) one has system Markovianity limits, where information is
being lost to the environment. As in trace distance-based measure, at β = 4 the mem-
ory effects are suppressed. The situations Cpf ̸= 0 recover situations of finite size and
temperature, which induce memory effects on the total system. The noninteracting case
(h = 0) recaptures a quite similar situation, where there is a Markovian limit for large
chain sizes (large N) and low temperature (high β). Here, we can see the same behavior
of plot (d) of Fig. 8, correspondent to the noninteracting regime, in which the memory
effects disappear for β = 4. We set the coupling α = 0.1.

(a) (b)

(c) (d)

Figure 9 – Conditional past-future correlation (Cpf ) for different chain sizes and tem-
peratures in the interacting situation (J = 1). For (a), (c) and (d) the chain
size is N = 10 and the temperature is β = 0.1, β = 1 and β = 4, respectively;
N = 50 and β = 0.1 in (b).

Source: By the author
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(a) (b)

(c) (d)

Figure 10 – Conditional past-future correlation (Cpf ) for different chain sizes and tem-
peratures in the non-interacting bath spins situation (J = 0). For (a), (c)
and (d) the chain size is N = 10 and the temperature is β = 0.1, β = 1 and
β = 4, respectively; N = 50 and β = 0.1 in (b).

Source: By the author

5.4 Suppressing information storage

We can summarize this session with two questions: Is there information storage in
the environment? If so, is the information accessible from measurements? Such questions
can be answered using the paradigms of quantum Darwinism and SBS.

For the study of quantum Darwinism, we divided the Hilbert space of the envi-
ronment into fractions HEk

∼= C2 (Fig. 7). The PIPs (Partial Information Plots) method
quantifies the information between a set of fN fractions and the system. The idea is to
consider that the complete knowledge of the environment about the system occurs when
the amount of correlations is I(S : F) = S(ρS). Here, we present (Fig. 12(b)) PIPs for
J = 0 for different temperatures (β = 0.1, β = 0.5, β = 1, β = 2, β = 4) and an initial
system state ρS = |+⟩ ⟨+| and, respectively, t = τ/2 (red dashed lines), and t = τ (blue
solid lines). For the case where t = τ/2, decoherence inhibits the storage of information in
the environment more intensely as the temperature increases. This situation sheds light
on the influence of information flow for the emergence of quantum Darwinism. In t = τ ,
we have total recoherence and storage is not temperature dependent. In figure 7(a), the
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(a) (b)

(c) (d)

(e)
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Figure 11 – For the non-interacting situation (J = 0), the correspondence (and agree-
ment) between the trace-distance non-Markovianity witness and the mea-
sure based on conditional past-future independence is clear. In figure (f),
the trace distance for two initial states ρ1 = |+⟩ ⟨+| and ρ2 = |−⟩ ⟨−| sub-
ject to the dynamics given by Eq.(5.10), for the cases β = 0.1 (black line),
β = 0.5 (purple line), β = 1 (blue line), β = 2 (orange line) and β = 4 (red
line), and the Cpf for the cases β = 0.1 (a), β = 0.5 (b), β = 1 (c), β = 2
(d) and β = 4 (e).

Source: By the author

trace distance for two initial states ρ1 = |+⟩ ⟨+| and ρ2 = |−⟩ ⟨−| subject to the dynamics
given by Eq.(5.10) expresses the decoherence behavior for the cases β = 0.1 (black line),
β = 0.5 (purple line), β = 1 (blue line), β = 2 (orange line) and β = 4 (red line). For
comparison, we use the solid red line to represent an emergence of quantum Darwinism.
We set the coupling α = 0.1.

Let us assume a system-environment interaction under the decoherence action,
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that can be written as follows

ρSF =
∑

n

pi |i⟩ ⟨i| ⊗
⊗

k

ρEk
i + ρcoh., (5.36)

so that, the SBS structures emerges when ρcoh. = 0. The partially-traced density operator
for the J > 0,

ρSF(t) =
∑
ij

ρij
S |i⟩ ⟨j| ⊗

fN⊗
i=1

|χi⟩ ⟨χi| ×

×
∑

χ

e−βE(χ)e−i(ϵn−ϵm)
∑

i
χit

(5.37)

that does not express the structure that we need to broadcast all information to the
environment from the system, since e±2iαm(χ)t ̸= 0 for any time and magnetization. On
the other hand, in the case of our system, ΓF(t) = 0 (see appendix E) the non-interacting
situation gives us

ρSF(t) =
∑

i

ρii
S |i⟩ ⟨i| ⊗

fN⊗
k=1

eβhσz
k

ZE
. (5.38)

Notice that the partially-traced decoherence function can be written as

ΓF(t) = [cos(2αt) + i tanh(βh) sin(2αt)](1−f)N .

Then, that condition is only satisfied for situations in which βh → 0 and t = πn/2α −
π/4α, such that n ∈ Z. However, the second condition for these states is not satisfied,
because for each pair (n,m) of states with n ̸= m, one has no ρEi

n ⊥ ρEi
m , i.e., the states

are indistinguishable. However, these are not surprising situations. The suppressing of
information and its relation with the decoherence is shown in Fig. 12.

5.5 Conclusion

“It has no explanation and no
conclusion; it is, like most of
the other things we encounter
in life, a fragment of something
else which would be intensely
exciting if it were not too large
to be seen.”

Tremendous Trifles, by G.K.
Chesterton.

In the present work, we build a general description of a model with exciting features
caused by the environmental structure. Here, the structure reflects the properties raised
from the possibility of composing Hilbert spaces from individual objects to construct a
larger interacting scheme, e.g., an Ising chain. Some of these features can be shown by the
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Figure 12 – In figure (a), the trace distance for two initial states ρ1 = |+⟩ ⟨+| and
ρ2 = |−⟩ ⟨−| subject to the dynamics given by Eq.(5.10) expresses the
decoherence behavior for the cases β = 0.1 (black line), β = 0.5 (purple
line), β = 1 (blue line), β = 2 (orange line) and β = 4 (red line). Here,
we present (plot (b)) PIPs for J = 0 for different temperatures (β = 0.1,
β = 0.5, β = 1, β = 2, β = 4) and an initial system state ρS = |+⟩ ⟨+| and,
respectively, t = τ/2 (red dashed lines), and t = τ (blue solid lines).

Source: By the author

manifestation of Lee-Yang zeros in quantities like the decoherence function, Γ(t), which
has a quasiperiodic behaviour far from the thermodynamic limit (where the chain size
goes to infinity, N → ∞), and the trace distance D(t) ≡ D(ρ1, ρ2, t). As described along
the text, trace distance is a measure of distinguishability between two states able to point
out the non-Markovian characteristics of the dynamics because when the trace distance
decreases (or increases), the distance between these two states decreases (increases), sig-
naling the return of information from the environment to the system. Also, the Lee-Yang
zeros act as markers of indistinguishability of two states in finite-size chain (N < ∞), a
pretty exciting result that is showed in Fig. 8 and demonstrates the highly non-Markovian
behaviour of the system. About non-Markovianity, we have two essential things: (i) For
low-temperature (β ≈ 4) it was verified a Markovian dynamics at non-zero field – in the
case of h = 0, the trace-distance behaviour, with just one vanish between recoherence
times for T → ∞, reveals the influence of Lee-Yang zeros that are accumulated in the real
axis in this case – and a non-Markovian dynamics otherwise (Fig. 8); (ii) We can see that
in the conditional past-future correlator (Cpf ) the rise of the same behaviour, obtaining a
Markovian dynamics only for low temperatures (Fig. 9 and Fig. 10), finding an agreement
between the Markovianity witnesses from two different perspectives, named temporal and
spatial distinguishability of density operators. All that description was focused on the
phenomena captured by the decoherence function.

Next, the idea was to take the environment perspective. The previous signalized
indistinguishability between two states caused by decoherence is a indication of pointer
states selection, i.e., selection of classical states by monitoring the environment, a common
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thread of quantum Darwinism. Despite that, in this work, we can see the impossibility of
Spectrum Broadcast Structure (SBS) due to the structured bath and the sort of interaction
(two-level sub-systems subject to an Ising interaction). For the non-interacting regime,
for example, all the individual density operators concerning the environment fragments
have no orthogonal support (Eq. 5.38), a necessary condition of SBS for the emergence of
objectivity. At the same time, the partial information plot (PIP) shows a vital thing: the
mutual information decreases more and more as well as the temperature of the thermal
bath increases, avoiding the proliferation of environmental available information and, con-
sequently, the emergence of objectivity by the amount of redundant information about the
system state (an interesting result also recently noticed in Ref. (89)). As the temperature
increases, the information stored in the environment decreases, and quantum Darwinism
(a weaker condition than the SBS one) is avoided (Fig. 12). In short, the text aimed
to describe a system under decoherence behaviour from the dynamics vestiges sought in
the environment structure. Instead of objectivity emergence, the model presents exciting
relationships between quantities arising from different formalisms, such as Lee-Yang zeros
and the distinguishability measure based on trace distance. Another noticeable remark is
the dependence of mutual information shape with mixedness of ρSF(t), signalling its decay
by the global temperature T increments, which defines the thermal environment state.
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APPENDIX A – CASE STUDY: SPIN-1/2 AND COMPUTATIONAL BASIS

The spin-1/2 theory has very nice features and, in general, is very simple to deal
with∗ Using the theory described until now, let us explore the spin-1/2 formalism; it will
be crucial to describe the model in this work: particles with spin one-half are prototypical
setups to obtain quantum bits, the so-called qubits.

First, spin is a physical observable described by operators Sx, Sy and Sz acting
on C2. Each of them describes the intensity of the quantity in some direction of the
three-dimensional space. Fundamentally, a postulate of angular momentum is that these
operators satisfy the algebra:

[Sx, Sy] = iSx, [Sz, Sx] = iSy, [Sy, Sz] = iSx. (A.1)

This is, in fact, the algebra of angular momentum, and every property follows from these
commutation relations. (13)

To obtain the spin magnitude, the total spin is given by the operator defined by
S2 = S2

x + S2
y + S2

z , that have the eigenvalues

S(S + 1), for S = 1
2 , 1,

3
2 , 2, ... (A.2)

Then, the spin-1/2, like an electron, mean a system where the eigenvalue of S2 is 1
2

(
1
2 + 1

)
=

3
2 . On the other hand, each operator Sα, with α = x, y, z, have 2S + 1 eigenvalues which
go from S to −S in unit steps, i.e., S, S − 1, ...,−S + 1,−S. In such way, for spin 1/2 we
will have a total of 2S + 1 = 2 states with eigenvalues +1/2 and −1/2.

For spin-1/2 we can label the eigenvectors in different forms, like |↑⟩ and |↓⟩, |+⟩
and |−⟩, |+1⟩ and |−1⟩, |0⟩ and |1⟩. Here we will use this last labeling, according to the
pre-defined computational basis. They satisfy

Sz |0⟩ = 1
2 |0⟩ , Sz |1⟩ = −1

2 |1⟩ . (A.3)

Here, a intelligent re-definition is given by the use of Pauli matrices, simply defined as
Sα = 1

2σα, with α = x, y, z. The algebra - a Lie Algebra, as we said before - of the Pauli
matrices is then given by

[σx, σy] = iσx, [σz, σx] = iσy, [σy, σz] = iσx. (A.4)

The eigen-equation for σz is now

σz |0⟩ = |0⟩ , σz |1⟩ = − |1⟩ . (A.5)
∗ Just out of curiosity and a bit of scholarly exhibitionism, the generators of spin-1/2 operators,

the famous Pauli matrices forms a basis for su(2) Lie Algebra and it exponentiates forms a
SU(2)(Special Unitary) Lie Group. (90)
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This description is almost all the tools needed to deal with our present model, as we will
show later. These two kets |0⟩ and |1⟩ define the quantum bits, highly used in quantum
information-theoretical aim.

A matrix representation is usefull to make clear the meaning of these operators
and state vectors. Then, one can use the follow representation for the eigen-states of the
Pauli matrix σz:

|0⟩ =
1

0

 , |1⟩ =
0

1

 . (A.6)

The operators σx, σy and σz in this basis become

σx =
0 1

1 0

 , σy =
0 −i
i 0

 , σz =
1 0

0 −1

 . (A.7)

With its respective Pauli matrices give all Pauli operators, let us see now how
the operators σx and σy act on this basis, since σz is for sure diagonal on it. When the
operator σx acts on |0⟩ and |1⟩ the results are

σx |0⟩ = |1⟩ , σx |1⟩ = |0⟩ . (A.8)

On the other hand, for the operator σy the action become

σy |0⟩ = i |1⟩ , σy |1⟩ = −i |0⟩ . (A.9)

To complete our description of Pauli matrix theory, we need to consider two well
critical operators: the lowering and raising operators. These operators, on the basis of σz,
are given by the two matrices

σ+ =
0 1

0 0

 σ− =
0 0

0 1

 (A.10)

respectively. In terms of these operators, the Pauli matrix can be described as

σx = σ+ + σ−, and σx = −i(σ+ − σ−). (A.11)

Now, we can justify these names just by seeing how their acts on the computational basis,
i.e.,

σ+ |1⟩ = |0⟩ , and σ− |0⟩ = |1⟩ . (A.12)

and when you try to raise a |0⟩ state or lower a |1⟩ state, the result is zero.

A vital picture will follow us throughout this text: the Bloch sphere. It is a visu-
alization of a quantum state, i.e., a geometrical representation of a qubit. An arbitrary
single-qubit state can be written as

|ψ⟩ = eiγ

(
cos θ2 |0⟩ + eiϕ sin θ2 |1⟩

)
, (A.13)
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where θ, ϕ and γ are real numbers. The numbers 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π define a
point on a unit three-dimensional sphere, and this is the Bloch sphere.

Qubit states with arbitrary values of γ are all represented by the same point on the
sphere, and the exponential factor has no observable effects. In this way, we can therefore
write:

|ψ⟩ = cos θ2 |0⟩ + eiϕ sin θ2 |1⟩ . (A.14)

To obtain a density operator representation of this state, we can just be doing the oper-
ation

ρ = |ψ⟩ ⟨ψ| =
 cos2 θ

2 e−iϕ cos θ
2 sin θ

2
eiϕ cos θ

2 sin θ
2 sin2 θ

2

 (A.15)

and that parametrization allows the description of the Bloch sphere immediately.

A meaningful interpretation comes when we put the projections of the density
operator in terms of average values of observables, let us define the basis {1, σx, σy, σz},
one can redescribe the density operator as

ρ = 1
2(1 + σx cosϕ sin θ + σy sinϕ cos θ + σz cos θ),

= 1
2(1 + −→r · −→σ ),

(A.16)

where −→σ is the 3-element vector of Pauli matrices (σx, σy, σz) and −→r is the unit Bloch
vector. Notice that this vector have, in these components, the mean values of the Pauli
operators, i.e.,

rx = ⟨σx⟩ , ry = ⟨σy⟩ , rz = ⟨σz⟩ (A.17)

in which −→r = (rx, ry, rz). As we see in other sections, a situation of pure dephasing affects
the average values of the Pauli operator σx, for example, without perturbing the operator
σz. This is an example of useful visualization given by the Bloch sphere representation.
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APPENDIX B – MORE-THAN-ONE FORMALISM

Now we consider the case of a composite quantum system, i.e., descriptive states
of systems with more than one quantum particle. We will tread the same paths as in
the probabilities Sec.2.1: construct a formalism to two objects and then generalize for N
objects. (13,32,40) Any pure state |ψAB⟩ ∈ HA ⊗ HB can be written as

|ψAB⟩ =
dA∑
i=1

dB∑
j=1

cij |ei⟩ ⊗
∣∣∣e′

j

〉
, (B.1)

where HA ∼= CdA = span{|ei⟩} and HB ∼= CdB = span{
∣∣∣e′

j

〉
}. This states living on the

tensor product space CdA ⊗ CdB , being the symbol “⊗” appearing in the equation just
poits to this structures. Actually, the total vector state is a cartesian product of both
states in HA and HB.

For example, let us see how this structure works for spin-1/2 particles. First we
attribute a set of spin operators to each particles, i.e., for the particle one {σα

1 }, for the
particle two {σα

2 }, such that α = x, y and z. In addition to the relations already existent,
we assume that operators about different particles commute, i.e.,

[σα
1 , σ

β
2 ] = 0 for α, β = x, y, z. (B.2)

Consequently, we have the two-by-two commutation relation between different indexed
particles. These composition comes from the tensorial structure σα

1 = σα ⊗ 1 and σα
2 =

1 ⊗ σα.

In its turn, with respect to the eigen-states of those operators, considering an index
χ = 0, 1 and C2 ∼= span {|0⟩ , |1⟩}, a composition of two spin-1/2 state is given by

|χ1⟩ ⊗ |χ2⟩ = |χ1χ2⟩ ∈ C2 ⊗ C2 ∼=
(
C2
)⊗2

. (B.3)

To deal with the matrix elements of many-particle systems, the idea of a tensor product
is also essential. Tensor products are crucial to quantum mechanics and are the idea that
allows describing features like entanglement in the theory.

Considering four operators A, B, C and D, the tensor product between them will
satisfy the property

(A⊗B)(C ⊗D) = (AC) ⊗ (BD), (B.4)

then, tensor product make it clear the different structure of each space of elements, here
operators. An operator σα

1 σ
β
2 is then written as

σα
1 σ

β
2 = (σα

1 ⊗ 1)(1 ⊗ σβ
2 ) = σα

1 ⊗ σβ
2 , (B.5)
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for α, β = x, y and z.

Considering this composition structure for states and operators, an action of an
operator σα

1 σ
β
2 in a state |χ1χ2⟩ is given by

σα
1 σ

β
2 |χ1χ2⟩ = (σα

1 ⊗ σβ
2 )(|χ1⟩ ⊗ |χ2⟩) = (σα

1 |χ1⟩) ⊗ (σβ
2 |χ2⟩). (B.6)

In terms of matrix objects, what the tensor product doing can be illustrated considering
two operators A and B, in which the operator A = (aij), i = 1, 2, ..., N and j = 1, 2...,M .
The tensorial composition between them is given by

A⊗B =


a11B . . . a1MB

... . . . ...
aN1B . . . aNMB

 . (B.7)

Then, to obtain tensor products of two operators we need simply multiply the
elements of one by the another one. In case of operator σz that we deal with, for example,
we have:

σz ⊗ σz =


1
1 0

0 −1

 0
1 0

0 −1


0
1 0

0 −1

 −1
1 0

0 −1



 =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 (B.8)

The same is true for vector states in σz eigenstates basis, e.g.,

|01⟩ =


1
0

1


0
0

1



 =


0
1
0
0

 , (B.9)

and then, tensor products gives us a general formula to construct many-body systems
using operators from the individual subsystems.

Finally, we can consider a spin operator in a specific site i, in which is written in
its tensorial composition with tneighbourhoodood sites as

σα
i = 1 ⊗ ...⊗ 1 ⊗ σα ⊗ 1 ⊗ ...⊗ 1. (B.10)

The reader can imagine what is the structure of a N -qubit state - a binary string formed
by a composition of N qubits -, i.e., |χ1χ2...χN⟩ ∈ C2 ⊗ ... ⊗ C2 ∼= (C2)⊗N ∗. Then, the
Hilbert space of a composite quantum system is a tensor product of the Hilbert spaces of
all its subsystems of the respective individual sites.
∗ The object

(
C2)⊗N is the so-called N -fold tensor product
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Generally, in composite systems, we are interested in looking at a specific subsys-
tem, then the amount of information of the remaining system can be neglected. To get a
general description of the act of looking at a specific subsystem, consider the operators
acting on CdA ⊗ CdB . They will be a general structure

O =
m∑

i=1
Ai ⊗Bi (B.11)

for some index i and some set of operators Ai and Bi. Starting with the operator O =
A⊗B, the trace of this operator is

TrO =
dA,dB∑
i,j=1

〈
ei, e

′
j

∣∣∣O ∣∣∣ei, e
′
j

〉
, (B.12)

and futhermore, expanding the tensor products we get

TrO =
dA,dB∑
i,j=1

(⟨ei| ⊗
〈
e′

j

∣∣∣)(A⊗B)(|ei⟩ ⊗
∣∣∣e′

j

〉
)

=
dA,dB∑
i,j=1

⟨ei|A |ei⟩ ⊗
〈
e′

j

∣∣∣B ∣∣∣e′
j

〉

=
dA,dB∑
i,j=1

⟨ei|A |ei⟩
〈
e′

j

∣∣∣A ∣∣∣e′
j

〉
.

(B.13)

The last term represents just the product of the traces of A and B in their respective
Hilbert space. Then

TrA⊗B = TrATrB. (B.14)

Then, the trace of a tensor product of two operators is the product of the individual traces
in each operator. In this in hand, is direct the definition of partial trace:

TrAA⊗B = (TrA)B, TrBA⊗B = A(TrB). (B.15)

The trace over some subsystem eliminates the degrees of freedom concerning it. In general
terms, the partial traces with respect to some sub-space of an operator O are

TrAO =
m∑

i=1
(TrAi)Bi and TrBO =

m∑
i=1

Ai(TrBi), (B.16)

and expliciting the component terms one we have

TrAO =
dA∑
i=1

⟨ei|O |ei⟩ and TrBO =
dB∑

j=1

〈
e′

j

∣∣∣O ∣∣∣e′
j

〉
. (B.17)

For density operators acting on HAB, arises the idea of state subsystem by partial
trace, i.e.,

ρA = TrBρ and ρB = TrAρ. (B.18)

Partial traces are, of course, significant in the context of the open quantum system. In
this work, we use the structure of the model to build well-defined partial traces, since we
dealt with more complicated partial traces to study the emergence of quantum Darwinism
and SBS structures in our model.
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APPENDIX C – INTERACTION PICTURE

We begin by considering a Hamiltonian of the form

H = H0 + V (C.1)

where H denotes the free evolution Hamiltonian (that is, the unperturbed one) concerning
the system, whereas V is some added external perturbation, e.g., the environmental and
the interacting Hamiltonian. (10,20,55)

From standard quantum theory, we know that the expectation value of an operator
observable O(t) is given by

⟨A(t)⟩ = TrA(t)ρ(t) = TrA(t)e−iHtρ(0)eiHt, (C.2)

where ρ is the complete quantum state. For reasons that will immediately becohem obvi-
ous, let us rewrite this expression as

⟨O(t)⟩ = Tr
(
eiH0tO(t)e−iH0t

) (
eiH0te−iHtρ(0)eiHte−iH0t

)
. (C.3)

Now, we can define a new set of operators, defined by

OI(t) := eiH0tO(t)e−iH0t, (C.4)

ρI(t) := eiH0te−iHtρ(0)eiHte−iH0t

= eiH0tρ(t)e−iH0t,
(C.5)

where the superscript I is used to denote interaction picture operators. Note that the
dynamics of the interaction-picture operators are fully determined by the unperturbed
operators, rather than the total Hamiltonian. Our expectation-value equation can then
be written in the compact form

⟨O(t)⟩ = TrOI(t)ρI(t). (C.6)

Now, instead, consider the case of a single system subject to some perturbation,
let us consider a system-environment interaction:

H = H0 + V ≡ HS +HE +HSE (C.7)

where HS is the system Hamiltonian, HE the environmental Hamiltonian and, finally, the
interacting Hamiltonian HSE. Using the same strategy, with H0 ≡ HS +HE and V ≡ HSE,
we obtain:

ρI
S(t) ≡ TrEρ

I(t). (C.8)
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APPENDIX D – TIME EVOLUTION OF ρSF: GENERAL CASE

For the present system with non-zero coupling and magnetic field, the partially-
traced density operator can be obtained expanding the density operator ρE in the energy
eigenbasis (Eq. 5.8), in the same way as the exact solution. But, for present work, a better
path to obtain the partially-traced density operator is decompose the time evolution
operator as a tensor product, i.e., U(t) = e−iασz⊗σz

1 t ⊗ ... ⊗ e−iασz⊗σz
N t = ⊗N

i=1 e
−iασz⊗σz

i t.
Hence, the operator comes

ρSF(t) = TrE/F[U(t)ρS ⊗ ρEU
†(t)]

= Z−1
E TrE/F

[(
N⊗

i=1
e−iασz⊗σz

i t

)
ρS ⊗

∑
σ

e−βE(χ) |χ⟩ ⟨χ|
(

N⊗
i=1

e+iασz⊗σz
i t

)]
,

Writing each term ⟨n| ρSF |m⟩ ≡ ρnm
SF , one have:

ρnm
SF (t) = ρnm

S Z−1
E TrE/F[

N⊗
i=1

e−i(ϵn−ϵm)σz
i t
∑

χ

e−βE(χ) |χ⟩ ⟨χ|]

= ρnm
S Z−1

E
∑

χ

e−βE(χ)TrE/F[
N⊗

i=1
e−i(ϵn−ϵm)σz

i t |χi⟩ ⟨χi|]

= ρnm
S Z−1

E
∑

χ

e−βE(χ)
fN⊗

i=1
e−i(ϵn−ϵm)σz

i t |χi⟩ ⟨χi|
N∏

i=fN+1
Tr[e−i(ϵn−ϵm)σz

i t |χi⟩ ⟨χi|],

and, finally:

ρSF(t) = 1
ZE

 |a|2∑χ e
−βE(χ)⊗fN

i=1 |χi⟩ ⟨χi| a⋆b
∑

χ e
−βE(χ)e−2iαm(χ)t⊗fN

i=1 |χi⟩ ⟨χi|
ab⋆∑

χ e
−βE(χ)e2iαm(χ)t⊗fN

i=1 |χi⟩ ⟨χi| |b|2∑χ e
−βE(χ)⊗fN

i=1 |χi⟩ ⟨χi|


(D.1)

that does not express the structure that we need to broadcast all information to the
environment from the system. Since e±2iαm(χ)t ̸= 0 for any time and magnetization.





89

APPENDIX E – TIME EVOLUTION OF ρSF: J = 0

In this appendix, we show how derivate the partially reduced state for a more
simple situation (non-interacting regime). Here, the calculation is easier by the fact of the
non-interacting Hamiltonian can be describe as HE = ∑

k HEk with HEk = −h11 ⊗ ... ⊗
1k−1 ⊗ σz

k ⊗ 1k+1 ⊗ ...⊗ 1N . The density operator can be re-written as

ρE = 1
ZE

N⊗
i=1

eβhσz
i , (E.1)

in which ZE = 2N coshN(βh). Of course, for Gibbs states, noninteragent means uncorre-
lated. Then, one can compute each terms of the partial reduced matrix in the follow form:

ρnm
SF (t) = Z−1

E ρnm
S TrE/F

[
N⊗

i=1
e−iα(ϵn−ϵm)σz

i teβhσz
i

]

= Z−1
E ρnm

S TrfN+1...TrN[e−iα(ϵn−ϵm)σz
1 teβhσz

1 ⊗ ...⊗ e−iα(ϵn−ϵm)σz
N teβhσz

N ]

= Z−1
E ρnm

S

fN⊗
i=1

e−iα(ϵn−ϵm)σz
i teβhσz

i

N∏
fN+1

Tr
[
e−iα(ϵn−ϵm)σz

i teβhσz
i

]
.

(E.2)

We can make the identifications that follow

ρF =
fN⊗

i=1

eβhσz
i

Tr
[
eβhσz

i

] , ρ′
F(t) =

fN⊗
i=1

e(βh−2iαt)σz
i

Tr
[
eβhσz

i

]
and the decoherence function comes

ΓF(t) =
[

cosh(βh− 2iαt)
cosh(βh)

](1−f)N

.

Where we finally were able to write the matrix for the explicitly partially traced density
operator

ρSF(t) =
 |a|2ρF a⋆bρ′

F(t)ΓF(t)
ab⋆ρ′

F(t)ΓF(t) |b|2ρF

 . (E.3)

In this limit, the calculations for the fraction entropy can be done quickly, because the
fraction density operator is a tensorial composition of fN 2 × 2 matrices.
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