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Abstract

MERCADO-GUTIÉRREZ, E. D. Thermal expansion coefficient for a trapped Bose gas
during phase trnasition. 2016. 79p. Dissertation (Master in Science) - Instituto de Física
de São Carlos, Universidade de São Paulo, São Carlos, 2016.

Ultra cold quantum gas is a convenient system to study fundamental questions of modern
physics, such as phase transitions and critical phenomena. This master thesis is devoted to
experimental investigation of the thermodynamics susceptibilities, such as the isothermal
compressibility and the thermal expansion coefficient of a trapped Bose-Einstein conden-
sate (BEC) of 87Rb atoms. The critical phenomena and the critical exponents across
the transition can explain the behavior of the isothermal compressibility and the ther-
mal expansion coefficient near the critical temperature TC . By employing the developed
formalism of global thermodynamics variables, we carry out a statistical treatment of
Bose gas in a 3D harmonic potential. After that, comparison of obtained results reveals
the most appropriate state variables describing the system, namely volume and pressure
parameter V and Π respectively. The both are related with the confining frequencies and
BEC density distribution. We apply this approach to define the set of new thermodynamic
variables of BEC, and also to construct the isobaric phase diagram V − T . Its allows us
to extract the compressibility κT and the thermal expansion coefficient βΠ. The behavior
of the isothermal compressibility corresponds to the second-order phase transition, while
the thermal expansion coefficient around the critical point behaves as β ∼ t−αr , where
tr is reduced temperature of the system and α is the critical exponent on the basic of
these. Results we have obtained the critical exponent α = 0.15± 0.09, which allows us to
determine the system dimensionality by means of the scaling theory, relating the critical
exponents with the dimensionality. As a result, we found out that the dimensionality of
the system to be d ∼ 3, one is in agreement with the real dimension of the system.

Keywords: Bose-Einstein condensates. Global thermodynamics variables. Critical expo-
nents. Isothermal compressibility. Thermal expansion coefficient.





Resumo

MERCADO-GUTIÉRREZ, E. D. Coeficiente de expansão térmica de um gas de Bose
durante a sua transição de fase. 2016. 79p. Dissertação (Mestrado em Ciências) -
Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, 2016.

Amostras atômicas ultrafrias de um gás de Bose são convenientes para estudar questões
fundamentais da física moderna, como as transições de fase e fenômenos críticos em con-
densados de Bose-Einstein (BEC). A minha dissertação dedica se à investigação das sus-
ceptibilidades termodinâmicas como a compressibilidade isotérmica e o coeficiente de ex-
pansão térmica de a traves da transição de um BEC de 87Rb. Os fenômenos críticos e os
exponentes críticos a traves da transição podem explicar o comportamento da compress-
ibilidade isotérmica e do coeficiente de expansão térmica perto da temperatura crítica TC .
Ao empregar o desenvolvido formalismo das variáveis termodinâmicas globais, levamos a
cabo o tratamento estatístico de um gás de Bose num potencial harmônico 3D. Depois
da comparação dos resultados obtidos, revelam as mais apropriadas variáveis de estado
descrevendo o sistema, chamadas parâmetro de volume e pressão, V e Π respectivamente.
As duas estão relacionadas com as frequências de confinamento e a distribuição de densi-
dade do BEC. Nós aplicamos esta abordagem para definir um conjunto de novas variáveis
termodinâmicas do BEC, e também para construir o diagrama de fase isobárico V −T . O
anterior nós permite extrair a compressibilidade κT e o coeficiente de expansão termina
βΠ. O comportamento da compressibilidade isotérmica corresponde a uma transição de
fase de segunda ordem enquanto que o coeficiente de expansão térmica ao redor do ponto
crítico comporta se como β ∼ t−αr , onde tr é a temperatura reduzida do sistema, e α o
exponente crítico. Deste resultado nós obtemos um exponente critico, α = 0.15 ± 0.09,
que permite determinar a dimensionalidade do sistema a traves da teoria de escala, rela-
cionando os exponentes críticos com a dimensionalidade. Como resultado, encontramos
que a dimensionalidade do sistema é d ∼ 3 que está de acordo como a dimensão real do
sistema.

Palavras-chave: Condensados de Bose-Einstein. Variáveis termodinâmicas globais. Ex-
ponentes críticos. Compressibilidade isotérmica. Coeficiente de expansão térmica
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Chapter 1

Introduction

The fundamental works of A. Einstein and S. Bose, devoted to a quantum statistics
of ideal bosons, established a basis for one of the most interesting branches of a modern
physics. the most important result of the proposed statistic is prediction of a phase
transition at extremely low temperature leading to macroscopic population of the lowest
energy state of a system, while the other states are populated negligibly. this effect has
been called the Bose-Einstein condensation, where the macroscopic population of the state
is Bose-Einstein condensate (BEC). a Theoretical formalism of BEC description has been
finally formulated at the middle of 1960, while its experimental observation took place
only 1995, initially in the gas of rubidium and a bit latter in the gas of sodium. In general,
such a trapped BEC has two peculiar features: (i) weak interatomic interaction and (ii)
strong spatial inhomogenity. Also it is worth to mention that one is a good example of
quantum system with precise controllability all the key parameters, such as number of
particles, temperature, density and dimensionality. Altogether it opens door for variety
of theoretical and experimental investigations One of them is study of phase transition
and relevant critical phenomena.

In generally, all phase transition manifest an abrupt change in some specific physical
property of a system. For instance, in thermodynamics and statistical mechanics, BEC
represents a quantum phase transition where a macroscopic number of particles occupying
one single-particle state leads to an abrupt change in the system’s density.(2) The phase
transitions are classified in discontinuous and continuous phase transitions, the first one
are related with a singularity in the first derivative of the free energy respect to someone
state variable, such as, temperature, pressure or volume. Generally, this kind of transitions
involve a latent heat. The second one, continuous phase transitions, has discontinuities
in higher order of the free energy derivative respect with the state variables.(3) They
are related to critical phenomena which refer to the thermodynamic properties near the
critical temperature.

Landau’s theory of critical phenomena(4) attempts to explain continuous phase
transitions in general, however it fails in prediction of system’s behavior near the critical
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point. A more rigorous description of the critical phenomena, is known as the renor-
malization group theory which can include all the fluctuations of the system on all the
length scales.(5) This theory successfully explains the universality of critical exponents in
critical phenomena for variety of systems.(5, 6) These exponents are related to divergence
of some thermodynamic quantity which can be expressed as a function of the reduced
temperature tr = |T − TC/TC |, as t−cr , where c is the critical exponent typically labeled
with Greek letters, depending on the thermodynamic quantity.(7)

Phase transitions and critical phenomena signatures are present in the thermody-
namic susceptibilities when we study them in a quantum system such as a BEC. For this
reason, our aim in this work is to investigate behavior of two of these thermodynamic
susceptibilities, namely the isothermal compressibility and thermal expansion coefficient,
around temperature of, the phase transition followed by its associating with a critical
phenomena through finding the critical exponents.(8) For this purpose, we employ the
formalism of thermodynamic global variables approach developed by Romero-Rochín and
Vanderlei S. Bagnato.(9)The idea of this approach is to take the most favorable variables
to macroscopically describe the quantum system. One has been used before in our group
to explore the behavior of the thermodynamic susceptibilities such as heat capacity(10),
isothermal compressibility(11) and the behavior of quantum pressure at zero tempera-
ture.(12)

This Dissertation consist of four section: introduction, chapters, conclusions and
references list. In the first one, the introductions, we introduce the concept of phase
transitions and BEC showing the critical phenomena as an important topic to describe
the thermodynamic susceptibilities.

In Chapter 2, we introduce the history of the Bose-Einstein condensation and con-
sider the statistical description of Bose gas. Furthermore, some theoretical formalism of
BEC description to be present.

In Chapter 3, we discuss the evolution and classification of phase transitions. Also
a description of the systems near the critical point, by mean critical exponents, showing
that behavior of certain thermodynamic quantities can be considered as universals, to
be presented. Our experimental setup and technology of BEC creation are described in
Chapter 4. In Chapter 5 we define the appropriate global thermodynamic variables and
show how they have been used for study the thermodynamics of quantum systems.

Finally, in Chapter 6, we present the experimental results on the behavior of the
isothermal compressibility and the thermal expansion coefficient near the critical temper-
ature as a function of the critical exponents. Conclusions summarizes the main result of
the work. At the end, the references list is presented.
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Chapter 2

Statistical Description of Trapped
BEC

2.1 History

In 1924 S. Bose sent an article to A. Einstein about the way in which he reaches the
Planck’s formula for black body radiation, considering the electromagnetic radiation as a
gas of photons (massless bosonic particles).(13) With this consideration, Bose deduced the
Planck’s formula for the black body radiations without considering any classical approx-
imation. Einstein extend Bose’s results to non-interacting bosonic massive particles and
produced a serie of three articles in this context.(14, 15) Furthermore, Einstein predicted
that below a certain critical temperature all particles of the system would be in its minimal
state of energy. This phenomenon was called Bose-Einstein condensation (BEC), which
has become a new and interesting macroscopic quantum degenerate system. The race to
prove the existence of the BEC begun right after its prediction and was strongly moti-
vated by the observation of the superfluidity phenomenon in liquid helium cooled below
2.18K. This was first observed in 1938 by P. Kapitiza, and J F. Allen.(16, 17) F. London
indicated that the phenomena of superfluidity would be a consequence of achieving the
BEC on liquid helium.. A long time was spent on the development of new techniques in
the way of cooling and trapping neutral atoms and just in 1982 W. D. Phillips and H.
Metcalf observed for the first time the deceleration and velocity bunching of Na atoms in
an atomic beam caused by the absorption of photons of the resonant laser beam.(18) The
great success of laser cooling and other techniques awarded the Nobel Prize in physics in
1977 to Steven Chu, Cohen-Tannoudji and William Phillips.(19–22) Fundamental parti-
cles are divided into bosons and fermions depending on their internal angular momentum,
or ‘spin’. If the total spin is an integer multiple of Planck’s constant, ~, the particle is
a boson. An ultracold ensemble of these particles can condense into the lowest possible
quantum energy state, where it forms a BEC.

The building blocks of matter such as electrons, protons, and neutrons are, how-
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ever, particles with half-integer spin (fermions). Fermions obey Pauli’s exclusion principle,
which forbids two or more particles to occupy the same quantum state. The formation
of an ultracold condensate similar to a BEC is thus not allowed for a system of single
fermions.(23) From this point, a large number of papers has been development explor-
ing in more detail quantum phenomena such as superfluidity(23, 24), quantum informa-
tion(References), the high precision system of metrology and others.(References) today,
different atomic species have been brought to quantum degeneracy, alkaline species as
87Rb(2), 23Na(25), 7Li(26), 1H(27), 85Rb(28), 39K(29), 4He(30, 31), 41K(32), and 87Cs.(33)
Those help us to understand how works the systems when the temperature its order to
nano-kelvin. The vast interest in Bose-Einstein condensation arises partly from the fact
that this phenomenon touches several physical disciplines thus creating a link between
them: In thermodynamics BEC occurs as a phase transition from gas to a new state of
matter, quantum mechanics view BEC as a matter-wave coherence arising from overlap-
ping de Broglie waves of the atoms and draw an analogy between conventional and “atom
lasers”, quantum statistics explain BEC as more than one atom sharing a phase space cell,
in the quantum theory of atomic traps many atoms condense to the ground state of the
trap, in quantum field theory BEC is closely related to the phenomenon of spontaneous
breaking of the gauge symmetry.(34)

2.2 The non-interacting Bose gas

From statistical mechanics, we use the macrocanonical ensemble to study open
systems, which are able to exchange matter and energy with the surrounding. If we
consider a system of N bosons with mass m at temperature T , the best way to describe
the system is through the macrocanonical partition function Ξ(T,V , µ) defined by the
following expression

Ξ(T,V , µ) =
∞∑
N=1

exp (−β(H − µN)) , (2.2.1)

where µ is the chemical potential, V is the volume parameter, which is an extensive
variable that depends on the confinement potential (we discuss this variable in more
details later), β = 1/kBT , H is the total Hamiltonian of the system which can be written
as

H =
N∑
i=1

(
P 2
i

2m + U(ri)
)

+
N∑
i<j

V (rij). (2.2.2)

In eq. 2.2.2, Pi is the momentum for each particle, U(ri) is the confinement potential
in the position of each particle and V (rij) is the interaction potential between the particles.
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If we consider that V (rij) goes to zero and the atoms are in a 3D harmonic oscillator with
different frequencies ωk = 2πfk; k = x, y, z, the total hamiltonian of the system can be
rewritten as

H =
N∑
i=1

{
P 2
i

2m + 1
2m

[
(ωxxi)2 + (ωyyi)2 + (ωzzi)2

]}
, (2.2.3)

where U(ri) = 1
2m

[
(ωxxi)2 + (ωyyi)2 + (ωzzi)2

]
was used. Is convenient to rewrite the

Hamiltonian in terms of the number occupation, so applying second quantization to the
Hamiltonian we obtain

Hn =
N∑
i=1

~
[
ωx

(
nix + 1

2

)
+
(
niy + 1

2

)
+
(
niz + 1

2

)]
, (2.2.4)

with nik k = x, y, z the occupations number. Replacing Hn in eq. 2.2.1, we obtain the
macrocanonical partition function of the system, which can be written as

Ξ(T,V , µ) =
∏
nk

{
1− exp

[
−β~

( 3∑
k=1

ωknk

)
− βE0 + βµ

]}−1

. (2.2.5)

In this expression, E0 = ~
2(ωx + ωy + ωz) is the ground-state energy of the system

and ∑3
k=1 ωknk ≡ ωxnx + ωyny + ωznz. We can relate the microscopical states with the

macroscopic features of the system, using the thermodynamic potentials. In an open
system, the direct connection between the macrocanonical partition function and the
state variables is through the macrocanonical potential Ω, defined in (35) as

Ω(T,V , µ) = −kBT ln Ξ(T,V , µ). (2.2.6)

In this way the macrocanonical potential for an ideal gas in an anisotropic harmonic
oscillator is

Ω(T,V , µ) = kBT
∑
nk

ln [1− z exp (−βεnk
)] , (2.2.7)

where εnk
= ~

(∑3
j=1 ωknk

)
+ E0 is the total energy for each set of {nk} and z =

exp(µ/kBT ) is the fugacity. The state equations such as entropy, pressure parameter
Π(T,V , µ), which is the conjugate variable of the volume parameter V and the number of
atoms, can be obtained following the next relations
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S(T,V , µ) = −
[
∂Ω(T,V , µ)

∂T

]
V, µ

,

Π(T,V , µ) = −
[
∂Ω(T,V , µ)

∂V

]
T, µ

, (2.2.8)

N(T,V , µ) = −
[
∂Ω(T,V , µ)

∂µ

]
T,V .

Furthermore, through Euler’s relation we can relate the macrocanonical potential
with the state variables as

Ω = U − TS − µN, (2.2.9)

U = TS − ΠV + µN. (2.2.10)

Using these relations it is easy to show that

βΩ = −βΠV = −
∑
nk

ln [1− z exp (−βεnk
)] , (2.2.11)

N =
∑
nk

[
1

z−1 exp (βεnk
)− 1

]
. (2.2.12)

The sum of those expression can be replaced by integrals because at higher energies
the number of particles can be considered as continuous.(35, 36) Therefore, we replace
the sums by the phase-space density for a harmonic oscillator as in

∑
nk

→ 1
h3

ˆ
d3r

ˆ
d3p =

ˆ 2π
h3 (2m)2/3

ˆ
d3r

√
ε− 1

2mω̄
2r2

 dε =
ˆ
g(ε)dε, (2.2.13)

where g(ε) is the one particle state density and ω̄ = (ωxωyωz)1/3 is the geometric mean of
the trap frequencies. Thus, the state density is given by

g(ε) = 1
2

ε2

(~ω̄)3 . (2.2.14)

Taking the value for the ground estate ε = 0 in equations 2.2.11 and 2.2.12 and
replacing the sum by the integral in those equations we will have the integral corresponding
to all the values of the energy except ε = 0 and the term that take count of the zero energy
as follow
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N = 1
2(~ω̄)3

ˆ
ε2

z−1 exp(βε)− 1dε+N0, (2.2.15)

βΩ = β

6(~ω̄)3

ˆ
ε3

z−1 exp(βε)− 1dε− ln [1− z] . (2.2.16)

Here N0 = z/(1 − z) is the number of particles for ε = 0, the ground state. the
same was done βΩ, which has been treated by using integral by parts. The integrals in
the equations 2.2.15 and 2.2.16 can be solved using the function

gn(z) = 1
Γ(n)

ˆ
xn−1

z−1 exp(x)− 1dx =
∞∑
k=1

zk

kn
, (2.2.17)

with the substitution x = βε and n = 3 for eq. 2.2.15 and n = 4 for eq. 2.2.16. This
function is called the Bose function, and is related with the Riemann’s Zeta function. For
z = 1 (µ = 0), we have

gn(1) =
∞∑
k=1

1
kn

= ζ(n), n > 1. (2.2.18)

We are interested in the values when n = 3 and n = 4, which correspond to
ζ(3) = 1.202 and ζ(4) = 1.082 respectively. Thus, the expressions for the number of
atoms N and Ω are

N = N0 + k3
BT

3

(~ω̄)3 g3(z), (2.2.19)

Ω = k4
BT

4

(~ω̄)3 g4(z)− 1
β

ln [1− z] . (2.2.20)

The second term in the eq. 2.2.19, Nex = k3
BT

3

(~ω̄)3 g3(z), represents the number of
particles in excited states, while the first term, N0, determines the number of particles
in the state ε = 0. Since z only can assume values 0 ≤ z ≤ 1, because the chemical
potential µ ≤ 0, the maximum number of particles in the excited estate are limited by
the Bose function in 0 ≤ g3(z) ≤ ζ(3). Thus no more than Nmax

ex = k3
BT

3

(~ω̄)3 ζ(3) can be
in excited states.(35) When the system achieves the critical temperature an interesting
behavior occur: z assumes its maximum value (z = 1) and the particles of the system
macroscopically occupy its ground-state. If N < Nmax

ex , N0 can be neglected and the
critical temperature at this point is given by

T 3
C = ~3ω̄3

k3
Bζ(3)N. (2.2.21)
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This was calculated by first time by Bagnato et al.(36, 37) Dividing eq. 2.2.19 by N
and inserting eq. 2.2.21 into eq. 2.2.19, we obtain the condensed fraction of a harmonic
trapped Bose gas.

N0

N
= 1−

(
T

TC

)3
, (2.2.22)

this equations shows the coexistence of the condensed state and excited states, two phases
in thermal equilibrium.Where N ≥ N0 and T ≤ TC . Retaking the macrocanonical poten-
tial, it is better to rewrite it in terms of the pressure parameter as in eq. 2.2.11

Π = −Ω
V

= Π0 + k4
BT

4

~3 g4(z), (2.2.23)

where Π0 = −kBT ln [1− z] and V = (ω̄)−3. In the same way for z = 1 we can obtain the
critical pressure parameter

ΠC = k4
BT

4
C

~3 ζ(4). (2.2.24)

2.3 The weakly-interacting Bose gas

2.3.1 Mean field approximation

In real gases, the interaction between particles is non zero and we have to preserve
the second sum on the hamiltonian of eq. 2.2.2 to completely understand the behavior of
such gases. Now the total Hamiltonian, including the interaction is

Ĥ =
N∑
i=1

(
P̂ 2
i

2m + Û(ri)
)

+
N∑
i<j

V̂ (rij).

Considering that a system of N atoms trapped in a harmonic potential as we saw
before, the quantum state of the system can be represented by

ψ̂†(r, t) =
∑
n

ψ∗n(r, t)â†n, ψ̂(r, t) =
∑
n

ψn(r, t)ân, (2.3.1)

where â†n and ân are the creation and annihilation operator respectively and ψ̂† and ψ̂ are
the new operator that represents the system . The quantum states of the system can be
decomposed into its condensed and fluctuating parts, as

ψ̂(r, t) = Φ(r, t) + δψ̂(r, t), Φ(r, t) = 〈ψ̂(r, t)〉, (2.3.2)
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where the average part Φ(r, t) is a complex function, such that its module square cor-
responds to the density of the condensate n0(r, t) = |Φ(r, t)2|. Because the condensaton
corresponds to a very large number of atoms N0 � 1 in the ground state, the fluctuat-
ing part δψ̂(r, t) can be considered negligible. The evolution equation for the condensate
wave function Φ(r, t) can be derived from the Heisenberg equation for the field operator
ψ̂(r, t).(38) At this point we will assume that the particles of the gas can be considered
as hard spheres of radius as, where as is known as the scattering length. The informa-
tion about the interaction between particles is introduced in this parameter as. This
approximation is valid when collisions are at low energy the scattering is dominated by
s-wave collisions.(39) The effective interaction between two atoms at r and r′ positions is
commonly stated in the form(40)

ˆ
d3r′ Veff (r′, r) = g

ˆ
d3r′ δ(r − r′) = g = 4π~2

m
as, (2.3.3)

where Veff is an effective contact potential. Then, the total Hamiltonian of the eq. 2.2.2
can be rewritten as

Ĥ =
ˆ
ψ̂†(r, t)

[
P̂ 2

2m + Û(r)
]
ψ̂(r, t)dr+1

2

ˆ
dr

ˆ
dr′ψ̂†(r, t)ψ̂†(r′, t)Veff (r, r′)ψ̂(r, t)ψ̂(r′, t).

(2.3.4)

In the T → 0 limit, that mean, temperatures far below the critical temperature TC ,
we can replace the operator ψ̂(r, t) by its average Φ(r, t), and we get

i~
∂

∂t
Φ(r, t) = HΦ(r, t), H ≡ − ~2

2m∇
2 + (U(r)− µ) + g ‖Φ(r, t)‖2 . (2.3.5)

This is the time dependent Gross-Pitaevskii equation (GPE)(38) This is valid for
the case in which the atoms operator is exactly the mean field Φ(r, t) and a very large
number of atoms is in the condensed phase, N0 � 1. Here it is important to notice that
the scattering length can be positive as > 0, for repulsive interactions between atoms,
which implies that the effective energy increases as a function of the density, and negative
as < 0, for attractive interactions. (26, 38, 40, 41)

2.3.2 Thomas-Fermi approximation

For a large number of condensed atoms, the repulsive interactions lead to a lower
density in the cloud, since the atoms are pushed outwards. As a consequence, the quantum
pressure has a small influence and only contributes near the boundary surface of the



30 2.4. Observation of the BEC

condensate, i.e. the interaction term dominates the dynamics. In this case the GPE gives
the solution

n0(r) = ‖Φ(r, t)‖2 = 1
g

[µ− U(r)] , (2.3.6)

with n0(r) = 0 in the outside region where µ becomes smaller than U(r). This is usually
called the Thomas-Fermi approximation (TFA).(38) Since our external potential is a 3D
harmonic oscillator, we can see that the density profile of the condensate takes the form of
an inverted parabola. The size of the condensate is therefore determined by the condition
µ = U(r). For our trap, U(r) = mω̄2R2/2, and the normalization of the density N0 =´
d3r n0(r). The chemical potential is

µ = ~ω̄
(15N0as

ā

)2/5
, (2.3.7)

which is function of the total number of condensed atoms N0. Here, ā =
√
~/mω̄ repre-

sents the effective volume of the sample (atoms). From these two relations we can then
determine the external radius for each direction of the condensate, as a function of the
number of atoms, reading

Rk = ā
ω̄

ωi

(15Nas
ā

)1/5
, k = x, y, z. (2.3.8)

The Rk’s are known as the Thomas-Fermi radius.

2.4 Observation of the BEC

The size of the BEC is approximately of 10 µm, in a ultra-high vacuum system,
result difficult to interact directly with him. For this reason, the easiest way to observe
it is through light. Tho two most important techniques for observing Bose-Einstein con-
densates are in-situ and time of flight image.(42) In both cases is necessary the use of the
density distributions of the clouds when is trapped or when it is in a ballistic expansion
falling due to the gravity. The three physics processes involved in the interaction with
the atoms with the light are spontaneous absorption of photos, re-emission of photons
and shifting the phase of the transmitted light, these three processes are used to explain
different imaging techniques as absorptive, fluorescence and dispersive imaging methods,
respectively.(42) Absorption imaging is done by illuminating the atoms with resonant
light and the absorption of this light create a shadow of the atoms, taking this image in a
CCD camera is possible to extract the information of the density of the atoms and other
important parameters as the temperature. In the chapter 5 we discuss a little more this
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imaging method. In the case of the dispersive methods, using the ability to separate scat-
tered and unscattered components of the probe light and manipulate them independently.
Dark-ground imaging and phase-contrast are example of dispersive methods of imaging
in which the phase of the electric field is shifted by a change in the phase of the field to
separate it.
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Chapter 3

Phase Transitions and Critical
Phenomena

3.1 History

In 1869 was develop the first experiment to show the critical phenomena, Andrews
shows that in the critical point in the liquid - vapor phase of carbon dioxide appears a
critical opalescence.(43) Motivated with this experiment van der Waals develop his theory
of phase transitions studying the ordering in magnets.(44) In 1937 Landau showed that
all the second-order phase transitions have in common that, at the transition point, the
degree of symmetry of the system changes, this contribution led to the concept of sponta-
neous symmetry beak. furthermore, was introduced the concept of the order parameter,
which above of the critical temperature the value of this quantity is zero representing
that in the system there is not and order defined. Below of the critical temperature,
the order parameter has a finite value, indicating that the system is in an ordered state.
Landau provided a very successful qualitative theory of the phase transitions, getting pre-
dict a set of critical exponents that was able to describe the behavior of many important
thermodynamic quantities, as heat capacity, the susceptibilities, the correlations length
among others. However, in 1944 Onsager compute the exactly the partition function and
thermodynamic properties of the two-dimensional Ising model.(6, 45) He find that the
critical exponents predicted by the Landau theory are not the same, showing that not
all the systems have the same critical exponents but they are classified depending the
kind of the system. An extension of the Landau theory was made by Ginzburg in the
Landau-Ginzburg theory which includes all the fluctuations that there are not presents
when the system reach the critical temperature.(46) Finally, the last important contri-
butions to provide a complete theory of the phase transitions, Wilson in 1971 presented
the group renormalization theory(5), this theoretical framework based on the Landau-
Ginzburg theory, made the calculation of the critical exponents and other properties
feasible and supports the picture of universality classes: The symmetry of the system and
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the number of components of the order parameter define the behavior of a system at a
phase transition.(6)

3.2 Phase transition and classification

When we hear the words “phase transition”, maybe the first idea that coming into
our minds, is the fact when the liquid water becomes ice or steam. Whatever the case, we
are right, the measurement of the external conditions like temperature, pressure or others,
at which the transformation occurs is termed the phase transition. Phase transition is
characterized by abrupt changes, discontinuities, and strong fluctuations. It has been
known for a long time that such singular behavior is a consequence of a cooperative
phenomenon and thus intimately related to the interaction between the particles.(47)
The phase transitions can be classified follows the modern classification of the phase
transitions, although Ehrenfest was the first that classified the phase transitions based on
the behavior of the thermodynamic free energy as a function of others thermodynamic
variables.(3) Though useful, Ehrenfest’s classifications has been found to be an incomplete
method of classifying phase transitions, for it not take into account the case where a
derivative of the free energy diverges. We shall go to explain a little bit how are the
classification of the phase transitions take into account the modern classification which
diverges slightly of the Ehrenfest’s classification.

3.2.1 First-order phase transition or discontinuous phase tran-
sitions

The name of first-order phase transitions comes to the Ehrenfest’s classification,
while discontinuous phase transitions comes to the modern classifications. But, whichever
is his origin name, it is characterized by a discontinuity in the first derivative of the free
energy respect to some thermodynamic variable, or discontinuities on the any extensive
variable. but generally, we can say that all the discontinuities phase transitions involve a
latent heat. An example of this phase transitions is the entropy in a system in which the
the water becomes in steam, which is discontinue in the first derivative of the Helmholtz
free energy G and the volume also present the same behavior.(48) These relations are
given by

S = −
(
∂F

∂T

)
N,V

, (3.2.1)

V = −
(
∂G

∂P

)
N.T

. (3.2.2)
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In the fig. 3.2.1 we can see discontinuous phase transitions (a) and continuous phase
transitions (b), showing that, the volume, the heat capacity, and the compressibility in the
system present a discontinuity due to the presence of latent heat in the system. In general,
first-order phase transition include solid-liquid transition, the solid-vapour transition, and
the liquid-solid transition.(49)

𝑇 𝑇

𝑇 𝑇

𝑇

𝑇
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𝐺

𝑉

𝑉

𝐶
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𝑎)

𝑏)

Figure 3.2.1 – a). Discontinuous phase transitions. b). Continuous phase transitions.
Source: By the author.

3.2.2 Second-order phase transitions or continuous phase tran-
sitions

By Ehrenfest’s classification, a second-order phase transition has no latent heat be-
cause the entropy does not show a discontinuity (and neither does the volume – both
are first differentials of G), but quantities like the heat capacity and compressibility (sec-
ond differentials of G) do.(49) This is illustrated in fig. 3.2.1(b). The isothermal com-
pressibility, the heat capacity and also the thermal expansion coefficient are examples of
second-order phase transitions in system in which the latent heat in not involved. They
are defined as

CP = T

(
∂S

∂T

)
N,V

= −T ∂
2F

∂T 2 , (3.2.3)

kT = − 1
V

(
∂V

∂P

)
N,T

= − 1
V

∂2G

∂P 2 , (3.2.4)

βP = 1
V

(
∂V

∂T

)
P,N

= − 1
K

∂2F

∂T∂V
, (3.2.5)
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where K is the isothermal bulk modulus.(50) That kind of transition was observed in the
transition of 4He for a superfluid. This behavior is called of λ transition.(51, 52)

3.2.3 Order parameter and broken symmetry

A further classification of phase transition involves the notion of symmetry break-
ing. An example of this behavior is showed in the fig. 3.2.2, which shows atoms in a
liquid and in a solid. As a liquid cools there is a very slight contraction of the system but
it retains a very high degree of symmetry. However, below the melting temperature, the
liquid become a solid and that symmetry is broken. A phase transition is characterized
by a spontaneously broken symmetry. This may at first sight seem surprising because
the picture of the solid ‘looks’ more symmetrical than the liquid. The atoms in the solid
are all symmetrically lined up while in the liquid they are all over the place. The crucial
observation is that any point in a liquid is, on average, exactly the same as any other.
If you average the system over time, each position is visited by atoms as often as any
other. There are no unique directions or axes along which atoms line up. In short, the
system possesses complete translational and rotational symmetry. In the solid, however,
this high degree of symmetry is nearly all lost.(49) A phase transition is characterized by
a spontaneous broken symmetry. Symmetry-breaking is conveniently described in terms
of an order parameter, φ̃. It’s magnitude measures the degree of long-range order in some
way. To the order parameter can be associated a thermodynamic conjugated field, hφ,
which couples directly to ~φ. The corresponding term in the free energy F is −hφ~φ. Con-
sequently, the order parameter is defined by ~φ − (∂F/∂hφ)T . Generally the behavior of
the order parameter at the phase transition is usually a key to determine the nature of
the phase transition.(47) The susceptibility of the order parameter is an important quan-
tity which is expected to be influenced by critical fluctuations. The isothermal ordering
susceptibility, χ, is defined by

χφ =
 ∂~φ

∂hφ


T

. (3.2.6)

3.2.4 Critical exponents, universality and scaling theory

Continuous phase transitions can be characterized by parameters knows as critical
exponents that obeys to a scaling theory. Widom in 1975 (53) was the first to advance the
scaling hypothesis for scaling critical phenomena. The phenomenon of different systems
exhibiting the same critical behavior is called the universality, an example of universality
are the critical exponents, represented by Greek letters and appears in the concepts of
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𝑇 > 𝑇𝑐

𝑇 < 𝑇𝑐

Figure 3.2.2 – Spontaneous symmetry broken. An example when the liquid becomes
in solid.
Source: By the author.

the specific heat at constant pressure CP , in the isothermal compressibility kT and the
difference of density in the liquid-gas transitions ∆ρL−G near of the critical point, these
relations are given by

CP = C±|tr|−α,

kT = k±|tr|−γ, (3.2.7)

ρL − ρG = ρc(−tr)β.

In the eq. 3.2.7 C± and k± refers to tr > 0 and tr < 0, ρc is the density at the
critical temperature. tr = (T − TC)/TC is the reduced temperature and measure the
relative distance of the critical temperature. For a certain critical temperature TC exist
an critical pressure pC which led another relations of criticality as a functions of the
differences of the densities (in the Liquid-Gas transitions),

p− pC
pC

=
∣∣∣∣∣ρL − ρGρc

∣∣∣∣∣
δ

. (3.2.8)

The critical exponents α, β, γ and δ are universal, that mean, the same for a whole
class of various phase transitions. Is interesting to note that close the transition the
isobaric heat capacity is given in terms of the isobaric thermal expansion coefficient βP
as
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CP = V T (∂P/∂T )βP + T (∂S/∂T ). (3.2.9)

Near the transition point the second term in the eq. 3.2.9 can be neglected, and
the thermal expansion coefficient can be expressed as

βP = β±|tr|−α, (3.2.10)

where β± correpond to tr > 0 and tr < 0 respectively. Critical exponents are not the only
universal quantities, there are others, like scaling functions and universal amplitude ratios,
like C+/C− and k+/k−. The exponents are, however, often the most directly measurable
quantities, and their non-trivial and nearly universal experimental values provided the
main motivation for the theory of critical phenomena.(7) Scaling implies that not all
critical exponents are independent. Indeed, only two of four critical exponents can be
chosen independently.

α + 2β + γ = 2,

α + β(δ + 1) = 2,

2− α = dν,

2β + γ = dν.

An experimental fundamental observation(54, 55), that the critical exponent values
are rather insensitive to detail within the system displaying the critical phenomena. This
observation is embodied in the universal hypothesis which states that continuous phase
transitions can be classified in a few universality classes, each class giving rise to a certain
set of exponents. These classes are determined by a few very fundamental properties of
the systems, such as spatial dimension d, range of interaction which critical exponent is
ν and the symmetry and dimensionality n of the order parameter.(6, 47, 53) the physical
idea underlying the universal hypothesis is that at a critical point, all details of the
microscopic interactions are washed out by the long wavelength fluctuations.(47) In this
work, we pretend to show how two different thermodynamic susceptibilities such as, the
isothermal compressibility and the thermal expansion coefficient are continuous phase
transitions and near of the critical temperature, can behaves like λ-transition and also,
we can be to relate this behavior with critical phenomena to find the critical exponents.
Before that, in the next chapter we going to describe which is the system of the cold
atoms for study the critical phenomena mentioned before.
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Chapter 4

Experimental Setup

We are interested in achieve experimentally a BEC of rubidium atoms, for this it
was necessary to construct a machine able to do it. In this chapter, we will briefly present
all processes and technical information of our experimental system and the 87Rb atoms.
A detail description of our system can be found in (40, 48, 56) references.

4.1 Rubidium atoms

The rubidium atom (Rb), is a element of the periodic table which belongs to the
alkali-metals group, characterized by their outermost electron be in an s-obrital. The
atomic number is Z = 37 and natural rubidium is a mix of two isotopes, 85Rb the only
stable one, constitute approximately 72% of it. We are focusing in the other isotope and
its optical properties, 87Rb with a 28% of abundance which is slightly radioactive . For
this it is necessary to understand how is the energy levels structure of the atoms and how it
is possible interact with it. The rubidium atom is a hydrogen-like atom which means that
have only one electron in the last energy level (n), in Rb case n = 5, principal quantum
number. By consequence, all the possibles values of the orbital angular momentum L are
delimited by l ≤ n−1 and as we are considering an electron, the spin angular momentum
is equal to S = 1/2. We know of the fine structure of the atoms that the coupling
between L and S result in the total angular momentum of the atom J which is defined as
J = L + S. All the possibles values of J are given by

|L− S| ≤ J ≤ |L+ S| . (4.1.1)

In this way we can express any energy level using the notation n2S+1Lj. In this
notation the values for l = 0, 1, 2, 3, 4 they are as the most common form S(l = 0), P (l =
1), Dl = 2), F (l = 3), G(l = 4). Therefore, the ground state for the outermost electron
in the rubidium atom can be write as 52s1/2, where l = 0, S = 1/2. If the electron
makes a transition from the ground state (l = 0) to the first excited state (l = 1), it
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is said that is a D line and the total angular momentum for l = 1 can be J = 1/2 or
J = 3/2. The transition is split in two components, the D1-line (52S1/2 → 52P1/2) and
the D2-line (52S1/2 → 52P3/2). In the hyperfine structure we have to consider the total
nuclear angular momentum I, them the coupling now is between I and J, giving rise to
the total atomic angular momentum F = I + J. In the same way, all possibles values for
F are given by

|I − J | ≤ F ≤ |I + J | . (4.1.2)

For 87Rb the ground state, I = 3/2 and J = 1/2, so F = 1 or F = 2. For the
excited state of the D1-line (52P1/2), also have F = 1 or F = 2, while for the excited state
of the D2-line F can take any of the values 0, 1, 2, 3. The Hamiltonian that describe the
hyperfine structure is (57)

Hhfs = AhfsI · J +Bhfs

3(I · J)2 + 3
2I · J− I(I + 1)J(J + 1)

2I(2I − 1)J(2J − 1) , (4.1.3)

where Ahfs is called the magnetic dipole hyperfine structure constant and Bhfs is the elec-
tric quadrupole interaction constant which can not be applied to the levels with J = 1/2,
the ground state. The constant of the hyperfine structure can be determined experimen-
tally, the values for For 87Rb can be find it in (57) reference. Due to this interaction the
energy shift of the hyperfine structure is

Ehfs = 1
2AhfsK +Bhfs

3K(K + 1)− 4I(I + 1)J(J + 1)
8I(2I − 1)J(2J − 1) , (4.1.4)

where K is given by

K = F (F + 1)− I(I + 1)− J(J + 1). (4.1.5)

For each hyperfine level F we have 2F + 1 magnetic energy sublevels mF with |mF | ≤ F .
Without magnetic field all those sublevels are degenerate but, if we place a weak external
magnetic field in a given direction for instance Bz along of the atomic quantization axis,
the magnetic sublevels will be split linearly according to (57)

∆EF,mF
= µBgFmFBz, (4.1.6)

where µB is the Bohr magneton and gF is the hyperfine landé g-factor which is a function
of the spin, orbital and nuclear angular momentum. The hyperfine structure for the 87Rb
are illustrated in the fig. 4.1.1 and the splitting of the energy sublevels for each mF are
graphed in the fig. 4.1.2
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Figure 4.1.1 – Hyperfine structure of 87Rb atoms. a). In the graph we can see the D1
line (52s1/2 → 52p1/2), b). D2 line (52s1/2 → 52p3/2). The separations
of the hyperfine energy levels in units of frequency.
Source: By the author.

Figure 4.1.2 – Anomalous zeeman effect for 87Rb. In the graph we can see the split-
ting of the two first hyperfine energy levels of the ground state 52S1/2,
F = 1 and F = 2.
Source: By the author.



42 4.2. Vacuum system

4.2 Vacuum system

Figure 4.2.1 – Scheme of the double-MOT configuration for the machine of BEC2.
Source: By the author.

The vacuum system have two chambers, the first one (MOT1) is made of common
glass and the second one (MOT2) is a quartz cell with a high optical quality. They are
connected through a thin glass transfer tube with a length of 50 cm, with an inner diameter
of 4mm in a configuration known as double-MOT. The first chamber is pumped by an
ion pump of 55 L/s achieving a pressure into the cell around of 10−9 Torr. The second
ion pump can be pumping with a rate of 300 L/s, getting a pressure into the chamber
lower than 10−11 Torr. In the figure 4.2.1 we can see the double-MOT configuration of our
system.
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4.3 Laser system and MOT processes

Laser deceleration occurs when a gas with a velocity ~v is counter-propagating to
a laser beam with circular polarization. Each photon it is absorbed by atoms which
are slowed by vrec = ~k/m (k = 2π/λ where λ is the wave length of the light). In
order to absorb again, the atom must return to the ground state by emitting a photon.
Photons are emitted in random directions, but with a symmetric average distribution, so
their contribution to the atom’s momentum averages to zero.(21) With two pairs of coils
(quadrupole coils), a weak magnetic field is generated separating the energy sublevels mF

of rubidium atoms, this is known as anomalous Zeeman effect. The current of the coils
current are in opposite directions (anti-Helmholtz configuration) supplying the quadrupole
magnetic field on the MOT1 (first chamber) and MOT2 (second chamber), this creates a
spatial dependence of the light detuning frequency respect to the magnetic field.(22) At
the point in the middle of the coils the magnetic fields produced by the coils cancel out,
so that B = 0. The value of the magnetic field gradient used in the Magneto-Optical trap
(MOT) stage it is approximately of 12 G/cm.(40) All this leads to trap the atoms in the
MOT. The MOT is generated in the following way. The Zeeman effect causes that the
energy of the three sublevels with mF = 0,±1 of the 52s1/2 (F = 1). The energy sublevels
vary linearly with the atoms position, as show for the z-axis in Fig 4.3.1. For a component
of the magnetic field in z-direction Bz and ∆mF = −1 for z > 0, transition moves closer
to resonance with the frequency of the laser beam. Making use of the selection rules the
absorption of the photon excites the σ− transition and this gives a scattering force that
pushes the atom back, towards the trap center. A similar process occurs for a displacement
in the opposite direction z < 0 and σ+ because ∆mF = +1.(22)

After the MOT process, it is necessary decrease more the temperature of the atoms.
The optical molasses and the optical pumping are processes that reduce the temperature
of the atoms after the MOT. The first one, the optical molasses is when the magnetic
field of the MOT is switch off quickly and the cooling frequencies detuning goes to red 60
MHz (in our case). In the optical molasses the light exerts a frictional , or damping, force
on the atoms just like that on a particle in a viscous fluid.(22) So the force produced by
each counter-propagating beam decelerates atoms. The second one, the optical pumping
process in which all atoms on the ground state 52S1/2 (F = 1) and 52S1/2 (F = 2) are
transferred to the excited state 52P3/2 (F ′ = 2 mF = 2) when we turn on an additional
pair of coils called “optical pumping coils” providing an uniform weak magnetic field of
1 G. With this processes the temperature of the atoms is lower than 40 µK. The reason
why we do this is because the atoms must be magnetically catch able as we shall later.
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Figure 4.3.1 – The blue and red balls represent the atoms that can interact with the
circular polarized light. When the atom is moving to the right direction
(red) it take a kick from the photon in the opposite direction and make
that the atom come back to the center of the trap. Occurs the same
for atoms moving on the another direction (blue).
Source: By the author.

In the first and second chamber the rubidium atoms are confined in by the MOT
using three orthogonal pairs of counter-propagating laser beams intercepted at the center
of the trap. They are supplied by three diode laser of the company TOPTICA Photonics
DLX 110-L with a wave length of 780 nm and linewidth of 1 MHz. During the BEC
production occurs different processes with the light, two of the three lasers are locked
with a red detuning of 20Mhz (cooling frequency). The corresponding transitions is
52S1/2 (F = 2) to 52P3/2 (F ′ = 3), in which the atoms are pumped to the ground state
with F = 2 to F ′ = 3 of the excited state. With this transition will be possible generate
the optical trapping of the MOT1 and MOT2, they are called “Cooling 1” and “Cooling
2” respectively.(40) As the source of atoms is in the MOT1, is necessary to transfer
them to the MOT2 where they will be trapped again. For this reason, we add another
laser beam called “Push” with the same characteristics of the cooling beams. When
the atoms are in the excited state can decay not only the state 52S1/2 (F = 2) but can
also decay into the state 52S1/2 (F = 1). In this case the third laser is used to pump
the atoms into cooling transition with the frequency necessary for the transition from
52S1/2 (F = 1) to 52P3/2 (F ′ = 2) of the excited state. Before of begin the BEC another
beam is introduced on the atoms. it is called “Optical Pumping”. its function is to put all
the atoms, 52S1/2 (F = 1) as 52s1/2 (F = 2) in the excited state 52P3/2 (F ′ = 2, mF = 2).
Finally, when the BEC is achieved, one of the way to characterize it is through image
absorption. A beam pass across of the BEC, absorbing the light and leaving a hole on
the laser beam. It is the “Image Beam” which is completely resonant with the transition
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52S1/2 (F = 2) → 52P3/2 (F ′ = 3).(40) The state transitions of the atom and the laser
system are illustrated in the figure 4.3.2.
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Figure 4.3.2 – On the left side we can see the light scheme of the system in the hyper-
fine structure of the atom. There are four important frequencies in the
system, necessaries to achieve all the stages of the BEC. In the right
side we show the optical design of the laser beams in the table work.
Source: By the author.

4.4 Magnetic and dipole trap

4.4.1 Magnetic trap

When the MOT, the optical molasses and the optical pumping processes has been
achieved, the next step is transfer the atoms cloud in a pure magnetic trap (MT), where
all the light are turn off ad the magnetic field is abruptly increased to a gradient of 150
G/cm. Them, the magnetic field is ramped linearly during 500 ms from 60 G/cm to 160
G/cm. The profile of the quadrupole magnetic field can be calculated using the expression
given by

UMT = µBgFmFB
′
x

√
x2 + y2

4 + z2

4 , (4.4.1)
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where µ = µBgFmF , the Landé g-factor gF is for F = 2 and B′x is the gradient of the
magnetic field along the strong direction. After of the confinement of the atoms in the
MT, the next step is to do the evaporating cooling technique, which consist to induce a
transition of the hyperfine sublevels for a completely repulsive state (F = 0,mF = −1,−2)
by radio frequency (RF), that leaves the atoms feel the potential as repulsive and escapes
from the trap. It is necessary to avoid the point in which the magnetic field vanish (the
center of the trap). When the atoms are near of the this point, exist a probability to
change the spin of the atom, atoms with energy F = 2, mF =1, 2 which are magnetically
catch-able, that mean, they feel an attractive magnetic potential. By another way, atoms
with energy F = 2, mF =0, -1, -2 feel a repulsive magnetic potential, doing them escape
of the trap. This hole on the magnetic field, and the fact that atoms get away of the trap
because the change in the spin state, is known as Majorana Flips.(58) The RF evaporation
technique induce selectively the transitions of the atoms, so, its possible to remove remove
the most energetic atoms, such a way that the atoms thermalize at lower temperature
due to collisions between them.(59)

4.4.2 Optical dipole trap

The optical dipole trap of our system is provided by a Ytterbium fiber laser with
a 1064 nm wavelength of the company IPG Photonics. The frequency of the light has
to be far-detuned of any resonance frequency of the atom. The model that describes the
interaction between the atoms and light field is known as dressed atom model.(60) Follow
this model, the potential energy generated by the dipole trap is given by

UOT = − U0

(1 + y2/y2
R) exp

[
− 2(x2 + z2)
ω2

0(1 + y2/y2
R)

]
, (4.4.2)

with,

U0 = 3c2P

(ω52s1/2→52p3/2)3ω2
0

(
Γ
∆

)2

(4.4.3)

where U0 is the potential depth, ω52s1/2→52p3/2 and Γ are the resonant frequency and decay
rate in the transition 52s1/2 → 52p3/2 respectively. ∆ is the detuning of the laser frequency,
y is the direction of propagation, yR is called Rayleigh range, P is the laser power and ω0

is the beam waist.

To avoid the Majorana’s hole, the optical dipole trap (ODT) modify the potential
profile of the magnetic trap, removing the null point of the magnetic field. Superposing the
two traps (MT and ODT) , the resulting trap is called “Hybrid Trap” and its expression
for the potential energy will be the total sum of the magnetic trap potential UMT , optical
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trap potential UOT and the contribution of the gravitational potential on the atoms. The
expression for the hybrid potential is

UHT = µB′x

√
x2 + y2

4 + z2

4 −
U0

(1 + y2/y2
R) exp

[
−2x2 + 2(z − z0)2

ω2
0(1 + y2/y2

R)

]
+mg(z − z0) + E0.

(4.4.4)
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Figure 4.4.1 – Hybrid trap potential in the strong x and weak z direction. A). show
the hybrid potential in x direction with four different gradients of mag-
netic field 150 G/cm (yellow line), 100 G/cm (Green line), 60 G/cm
(red line) and 30.6 G/cm (purple line). The dash line is the magnetic
quadrupole potential for 150 G/cm. B). is the profile of the hybrid trap
in z direction, the color lines are the same that A and the laser power
is 6 W. In C) and D) the gradient of the magnetic field is around 30.6
G/cm the plots are for four different power laser, 200 mW (yellow line),
100 mW (green line), 60 mW (red line) and 45 mW (purple line).
Source: By the author.

In this expression z0 is the offset between the dipole beam trap depth and the zero-
field of quadrupole trap. On the fig. 4.4.1 is showed the profile of the hybrid trap in
two situations, when we have a strong magnetic potential and dipole potencial as in fig.
4.4.1(A) and 4.4.1(B), in which we can see the profile of the hybrid trap as we decrease
the gradient of the magnetic field from 150 G/cm to 30 G/cm with a laser power of 6 W
one in x direction and other in z direction. The waist of the beam used was 75 µK and
the offset position z0 = 100 µm. The another situations happen when we have a weak
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magnetic potential and dipole potential as in fig. 4.4.1(C) and 4.4.1(D). The gradient of
the magnetic field do not compensate anymore the gravity, the atoms “fall” into the depth
of the optical dipole trap. In this point, we start the optical evaporation process in which
the power laser decrease from 6 W to 45 mW. After this procedure the Bose-Einstein
condensation can be observed.

4.5 Bose-Einstein condensation of 87Rb

4.5.1 Image system

Finally, when the BEC is reached, all the potentials in the trap are switch off and
the ultra-cold cloud is released in time of flight (TOF). This stage is when the image beam
take place, a completely resonant beam laser with the transition 52s1/2 (F = 2)→ 52p3/2

(F ′ = 3) go through the BEC, them, the light is absorbed by the cloud leaving a “shadow”
on the beam laser, after that, the image is captured by a CCD camera pco.imaging model
270XS which contains a chip with dimensions 1384 × 1024 pixels with 6.45 × 6.45 µm2

by pixel. This method of obtain imaging is known as absorption image (42) which is show
in the fig. 4.5.1.

BEC

Laser 
beam

Lens 1 Lens 2
CCD 

Camera

Absorption 
Image

Figure 4.5.1 – Absorption image system. The resonant light of the laser its absorbed
by the atoms, creating “shadow”. This shadow its collected by an op-
tical arraignment and focused into a CCD camera.
Source: By the author.

The resulting image, normalized image, is generated by calculations of another three
images captured in TOF. The first one is the image with atoms, the second one is the
image without atoms, this image is obtained after of the image with atoms because we
need to subtracts the region where there are atoms and not. Finally the third we take an
image is the background, for be sure that there is not a offset of the light intensity coming
into the camera. The calculation of the normalized image can be obtained through the
equation
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NormalizedImg = ImgWithAtoms−BackgroundImg
ImgWithoutAtoms−BackgroundImg

. (4.5.1)

From the normalized image we obtain the 2D density profile that can help us to
determinate the parameter of the atomic cloud as temperature, atoms number and the
size of the atomic cloud. since, we collect the cloud image on a CCD camera, the profile
is in a 2D we lose information because the density profile come to us in a 3D. Integrating
this we obtain information of the density of the cloud, in this way

n(z, y) =
ˆ
dxn(x, y, z) = − 1

σ0

[
I(y, z)− Ib(y, z)
I0(y, z)− Ib(y, z)

]
, (4.5.2)

where I(y, z) is the intensity related to the image with atoms, I0(y, z) is only related to
the intensity of the laser beam on the image without atoms, and Ib(y, z) is the intensity
when there is not light on the camera, the background image. Finally, σ0 is the scattering
cross-section. The law physics below of this treatment is the Beer-Lambert law. In the
next section, we going to discuss how we analyze the atomic cloud picture and obtain its
parameters (i.e. number of atoms, temperature and sizes).

4.5.2 Thermal atomic cloud

The 2D profile density of a thermal cloud is a Gaussian distribution.(42) The equa-
tion of the 2D profile becomes

n2Dth(y, z) = ηth
σ0

exp
[
−(y − y0)2

2σ2
y

− (z − z0)2

2σ2
z

]
(4.5.3)

The size of the cloud can be defined using two widths σx and σy. y0 and z0 are the
distribution centers in the image, and ηth/σ0 is the peak value of the distribution. The
atom number of the thermal cloud is obtained by the integral of the 2D density profile
n2Dth.

Nth =
ˆ

dydz n2Dth(y, z) = 2π
σ0
ηthσyσz (4.5.4)

This show that the atom number of the thermal cloud is proportional to the widths
of the Gaussian distributions and the peak value of the density profile. Furthermore, the
temperature of the cloud can be extracted using the energy conservation. The velocity
distribution correspond to the expansion velocities in two directions at time texp = TOF .
The kinetic energy associated to the velocity distributions is equal to the thermal energy
of the system given by
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kBT = 1
2mv

2 → T = 1
2
m

kB
v2, (4.5.5)

m is the mass of the atoms and v = dσ(texp)
dtexp

is the expansion velocity. The temperature of
the thermal cloud after a certain expansion time is

T = 1
2
m

kB

[
(σy − σ0y)2 + (σz − σ0z)2

∆2t

]
, (4.5.6)

where σ0i is the initial width of the thermal cloud at a initial time t0. For long TOF we
can consider that σ0i is smaller than σi, so the temperature of the cloud at TOF is

T = m

2kB

[
σ2
y + σ2

z

t2TOF

]
. (4.5.7)

One of the characteristics of the thermal cloud is the isotropic expansion during
time of flight. The cloud expands with the same aspect ratio, which is ratio between the
widths of the cloud. Its dynamic can be described classically. A expansion in TOF of the
thermal cloud is showed in the fig. 4.5.2

Sequence of images during the TOF

Figure 4.5.2 – Expansion of the thermal cloud for different times of flight. On the
figure we can observe that the aspect ratio is constant while the cloud
is falling, explaining the isotropic expansion.
Source: By the author.
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4.5.3 Condensate atomic cloud

The profile of the condensate cloud density distribution is given by the Thomas-
Fermi approximation, in which the shape of the atoms have the “potential’s face”, in our
case an inverted parabola. So, the optical density density profile for the condensate cloud
can be written as

n2DBEC(y, z) = ηTF
σ0

max
(1− (y − y0)2

R2
y

− (z − z0)2

R2
z

)3/2

, 0
 , (4.5.8)

where ηTF/σ0 is the peak value of the distribution and Ry and Rz are the Thomas-Fermi
radius (BEC radius) in a y and z direction, respectively. To calculate the atom number
we as the same way with the thermal cloud, integrate the optical density to obtain the
atom number in the BEC cloud

NBEC =
ˆ

dydz n2DBEC(y, z) = 5ηTF
4σ0

RyRz. (4.5.9)

Figure 4.5.3 – BEC expansion of the condensed cloud for different times of flights. In
the graph we can see the aspect ratio inversion, which is a important
characteristic that define a BEC.
Source: By the author.
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The atom number is proportional to the Thomas-Fermi radius of the condensed
cloud and the peak value of the distribution. Contrary to the thermal cloud, the TOF
expansion of the condensate cloud is much faster on the direction in which the confinement
trap potential is strongest. The cloud in time of flight undergoes an aspect ratio inversion
as show in fig. 4.5.3.
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Chapter 5

The Global Thermodynamic
Variables

The global thermodynamics variables are appropriate variables to describe a ther-
modynamic system in which the state variables are not very well defined. In (9) Romero-
Rochín and V. Bagnato defines the global variables comparing the results obtained for
a Bose gas in a 3D harmonic potential with the results in a box potential, relating an
extensive variable with the frequencies of the trap, because, they are not depend on the
size of the system. The volume parameter V is associated to the volume in the case of a
harmonic potential. Consequently, the conjugated variable of the volume is the pressure,
in the approach of the global variables, the pressure parameter Π is an intensive variable
that depend on the number of particles, the density distributions, and the harmonic po-
tential of the cloud. Together, the V and Π describe macroscopically a quantum system
as a BEC, because his product result in the total energy of the system. In this chapter we
will define the global thermodynamics variables and also we will show the results obtained
employing the formalism of these variables.

5.1 Volume and pressure parameter

we will introduce the variable V , an extensive variable that depends on the potential
frequencies, this variable was defined as

V = 1
ω̄3 = 1

ωxωyωz
. (5.1.1)

The volume parameter V , does not have volume units, but his product with another
quantity, his conjugated variable, the pressure parameter Π give units of energy. Theses
two variables are related through of the relation
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Π = −
(
∂Ω(µ, T, V)

∂V

)
µ, T

. (5.1.2)

We use the macrocanonical partition function to obtain the pressure parameter, in
the case that exist an interaction between the particles. The expression of the macro-
canonical partition function in terms of the macrocanonical operator K̂ is

Ξ = Tr
[
exp(−βK̂)

]
, (5.1.3)

where K̂ = ĤN − µN̂ is the macrocanonical operator . Using the Hamiltonian with the
interaction between the particles, eq. 2.3.4 we have

Ξ = Tr
exp

−β N∑
i

P̂i
2m + 1

2

N∑
i

mV−2/3r̂2
i +

N∑
i<j

V̂ (rij)− µN̂
 . (5.1.4)

In which the harmonic potential was rewritten in term of the volume parameter V .
Thus, we can obtain the pressure parameter directly of the eq. 5.1.2, given by

Π = 2
3V

1
ΞTr

[
N∑
i

1
2mV

−2/3r̂2
i exp

(
−βK̂

)]
, (5.1.5)

using the identity

N∑
i

1
2mω̄

2r̂2
i =
ˆ
d3r

1
2mω̄

2r2
N∑
i

δ(r − ri), (5.1.6)

in this form

Π = 2
3V

ˆ
d3r

1
2mω̄

2r2 1
ΞTr

[
N∑
i

δ(r − ri) exp(−βK̂)
]
, (5.1.7)

Π = m

3V

ˆ
d3r n(r)

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)
, (5.1.8)

where the density n(r) = 1
ΞTr

[∑N
i δ(r − ri) exp(−βK̂)

]
. This shows that the pressure

parameter can be expressed in term of the cloud density, the external potential of the
trap and also inversely proportional to the volume parameter V. If the system it is below
of the critical temperature, the density will be n0 which correspond to the density of the
condensate, given by TFA. Otherwise the density follows a classical behavior. All those
approach to reach the new variable Π and V is called global variable approximation and
it has been developed by Romero-Rochin and V. S Bagnato.(1, 9, 61)
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5.2 Achieved measurements

In our group the global thermodynamic variables has been used to measure some
thermodynamics susceptibilities as the heat capacity(10), isothermal compressibility(11),
the thermal expansion coefficient(62) and also hydrodynamics properties as the sound ve-
locity in a box gas.(63) In this section, we will see the measurements of this quantities and
also how the global thermodynamic approach has been successes in explain the behavior
of the phase transition of this system.

5.2.1 Isothermal compressibility

To obtain the frequencies of our 3D harmonic trap, we have to take in consideration
the equation for the hybrid potential 4.4.4.

UHT = µB′x

√
x2 + y2

4 + z2

4 −
U0

(1 + y2/y2
R) exp

[
−2x2 + 2(z − z0)2

ω2
0(1 + y2/y2

R)

]
+mg(z − z0) + E0.

If we expand this expression in the Taylor’s series, we can approximate this poten-
tials in terms of a polynomial equation as

UHT =
∞∑
n=0

U
(n)
OH(x, y, z)(x− x0, y − y0, z − z0)n

n! , (5.2.1)

UHT ' 1
2µB

′
xz0 − U0 + E0 +

(1
2µB

′
x +mg

)
(z − z0) +

1
2

(
4U0

ω2
0

+ 2µB′x
|z0|

)
x2 + 1

2

(
µB′x
2|z0|

+ 2U0

y2
R

)
y2 + 1

2

(
4U0

ω2
0

)
(z − z0)2 +(5.2.2)

O(x3, y3, z3).

We consider that y/yR � 1 and we can identify the frequencies as

ωx =
√

4U0

mω2
0

+ 2µB′x
m|z0|

, ωy =
√

µB′x
2m|z0|

, ωz =
√

4U0

mω2
0
, (5.2.3)

where the radial frequencies ωx and ωz have a strong contribution of the optical trap
depth. The axial frequency ωy depend only of the magnetic field gradient, which remains
constant in the final stage of the process to achieve the BEC. This means that the geometry
of our trap only will be changed by the laser power of the ODT. As the magnetic field
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gradient B′x is very smaller than the power of the dipole laser, we can approximate the
radial frequencies as ωx ' ωz = ωρ which correspond and a cylindrical approximations.
In this case, the frequency ωρ can be expressed as the mean value of the radial frequencies
as

ωρ = 1
2(ωx + ωz). (5.2.4)

As we saw in the chapter 3, second-order phase transitions (in the Ehrenfest classi-
fications) or continuous phase transitions (in the modern classification), are characterized
by the no presence of the latent heat when the system is at the critical point. Particu-
larly, his susceptibilities are discontinuous at the critical point. In this chapter we going
to show how the isothermal compressibility kT was measured, and how we related it with
a second-order phase transition. In eq. 3.2.4 was defined the isothermal compressibility
kT in terms of the thermodynamic variables volume V and pressure P . To define the
the isothermal compressibility parameter κT in our system, its necessary to defined it in
terms of the new thermodynamics variables, the volume parameter V and the pressure
parameter Π as follow

κT = − 1
V

(
∂V
∂Π

)
T,N

. (5.2.5)

The isothermal compressibility parameter κT is a quantity with the same properties
of the standard compressibility kT and indicates the thermodynamic stability defined by
the second derivative of Gibbs free energy. The convexity property of the free energy is
maintained with the condition, 0 ≤ κT ≤ ∞. Our system its able to achieve a pure BEC
of ∼ 105 atoms at typical temperatures 100− 200 nK.

We characterize the atomic cloud using the imaging absorption system which was
described in the section 4.5.1. For all images obtained, the free expansion time (TOF) is
30 ms. Varying the power laser of the ODT, the frequencies of the trap can be changed,
and a set of different frequencies results in a different volume parameters. To measure the
frequencies of the trap when the Bose-Einstein is achieved we give a “kick” on the cloud
with a external magnetic field. After of the kick, the cloud remains a few mili-seconds
into the hybrid trap, after that the cloud is released in TOF and the position into the trap
will be change in function of the time after the kick. The behavior of the center of mass of
the cloud will be a sinusoidal wave, characterized by a frequency fi = ωi/2π; i = x, y, z

for each axis in consideration. In the fig 5.2.1 we show the three frequencies fx, fy and fz
for two volume parameters V1 and V2 . In the references (40, 48) it can find all the total
experimental description and measurements of the trap frequencies. We summarize in
the table 5.1 all the volume parameters used to calculate the isothermal compressibility
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parameter and also the thermal expansion coefficient was obtained later using the eq.
5.1.1.

Figure 5.2.1 – Measure of the trap frequencies for two volume parameter V1 (left) and
V2 (right). The graphs shows the positions of the center of mass of the
cloud in pixels (px). The solid lines represent the fitting for a sinusoidal
curve which the frequency fi = ωi/2π was extracted. Also we can see
the differences between the radial frequencies and the axial frequencies
in which ωx ' ωz and ωy is different of them. In the frequency ωz
for V2 shows how to change the power laser of the ODT the volume
parameter can be changed.
Source: By the author.



58 5.2. Achieved measurements

Table 5.1 – Volume parameters
V (rad/s3) ∆V (rad/s3)

V1 1.9× 10−7 8.2× 10−9

V2 6.4× 10−8 2.02× 10−9

V3 3.2× 10−8 1.01× 10−9

V4 1.75× 10−8 5.5× 10−10

V5 1× 10−8 3.14× 10−10

Source: By the author.

Phase Diagrams

Figure 5.2.2 – Phase Diagram for Π vs T and Π vs N/V curves from Romero-
Rochín.(1) In both cases we can use the change in the behavior when
occurs the transitions from thermal to condensate regime.
Source: ROMERO-ROCHÍN et al.(1)

Equilibrium lines where two or more phases can coexist in thermodynamic equilib-
rium. When we mention phases in this thesis we refer to the property of the bosons to
occupy the ground state and excited states, i.e. a quantum phase and classical phase,
respectively. The equilibrium lines in this kind of system are typically represented by
critical lines where quantum degeneresence begins to occur. A phase transition occurs
when we go from one region to another through a critical line. In the reference (1) we
can see how the phase diagram Π vs T and Π vs N/V for a thermodynamic system in a
harmonic trap fig.5.2.2.
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In order to calculate the pressure parameter Π by performing the integral in eq.
5.1.8, it is necessary to reconstruct the density profile of the atoms in the trap n(r),from
the measured profiles in the time of flight, and the trap frequencies.(11) The density
profile below of the critical temperature TC will be the sum of the thermal and condensate
contributions. In this way we can rewrite the equations for the pressure parameter 5.1.8
as follow

Π = Πq + Πth = 2
3V

[ˆ
d3r nq(r)U(r) +

ˆ
d3r nth(r)U(r)

]
, (5.2.6)

where nq(r) and nth(r) are the densities for the condensate and thermal part of the cloud
respectively, which are given by

nq = 15N0

8πR0
xR

0
yR

0
z

max
1−


(
x

R0
x

)2

+
(
y

R0
y

)2

+
(
z

R0
z

)2
 , 0

 , (5.2.7)

nth = Nth

(2π)3/2σ0
xσ

0
yσ

0
z

exp
−1

2


(
x

σ0
x

)2

+
(
y

σ0
y

)2

+
(
z

σ0
z

)2

 , (5.2.8)

where R0
x, R0

y and R0
z are the insitu Thomas-Fermi radius, N0 is the condensate number

of particles, σ0
x, σ0

y and σ0
z are the insitu width of the thermal cloud and, finally, Nth

correspond to non-condensate atoms number of particles. Replacing the equations 5.2.7
and 5.2.8 into 5.2.6, the pressure parameter Π below the critical temperature is the sum
of the two expression below

Πq = mN0

21V
(
ω2
x(R0

x)2 + ω2
y(R0

y)2 + ω2
z(R0

z)2
)

(5.2.9)

Πth = mNth

3V
(
ω2
x(σ0

x)2 + ω2
y(σ0

y)2 + ω2
z(σ0

z)2
)
. (5.2.10)

The equation 5.2.10 is totally equivalent to the equation of state for an ideal gas.
This fact can be verified using the equipartition theorem, where 1

2mω
2
i σ

2
i = 1

2kBT , them

ΠthV = NthkBT (5.2.11)

This equation, is the equation of state above the critical temperature TC as is
expected, because the thermal part follow the Maxwell-Boltzmann distribution. Now, the
quantum pressure parameter Πq can be rewritten with an analytical expression replacing
the equations 2.2.22, 2.3.8 and 2.2.21 into 5.2.9, we obtain an analytical expression for
the pressure parameter due to the condensed atoms, as follow(40)
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Πq = 1
7

15as~2√m

N
V
−
(
kBT

0.94~

)3
7/2

 . (5.2.12)
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Figure 5.2.3 – Phase diagram Π vs T for a fixed atoms number N = 1 × 105 atoms,
the values of the volume parameter are showed in the table 5.1.
Source: POVEDA-CUEVAS et al.(11)

For each volume parameter we have performed many experimental runs for tem-
perature within the range 40 − 400 nK and post-selected atomic cloud containing N =
(1 ± 0.1) × 105atoms to be taken in consideration.(11) The result is presented in the fig
5.2.3 in which we are plotted the pressure parameter Π as a function of T , for different
values of the volume parameter V , remaining fixed the atoms number N . In the graph
we can see clearly two regions: below the critical temperature TC and above the TC .
The pressure parameter below the critical temperature is the result of the sum for the
thermal and condensate contribution, follow the behavior of the equation Π = Πq + Πth,
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represented by the solid lines in the figure 5.2.3 below the TC for each volume parameter.
Above of the critical temperature, the behavior of the pressure parameter is the expected,
the classical behavior of the state equation for an ideal gas (the straight lines in the fig.
5.2.3). Near of the BEC-thermal transition we can appreciate a abrupt change in in the
behavior of the pressure parameter, revealing that at TC is possible to find a continuous
phase transitions. It is interesting to remark, when the temperature T → 0 the pressure
parameter in not zero.(12) The critical temperature curve can be expressed independent
of the volume parameter V and plotted in the middle of the transition in the fig. 5.2.3
which is given by

ΠC = (3.4284× 1010)T 4
C → ΠT−4 = const. (5.2.13)

The transition line from thermal state and condensate state in a Π− V diagram is
plotted fig. 5.2.4. From the measurement in the fig. 5.2.3 we extract different isotherms
and plotted in the fig. 5.2.4 relating the volume and pressure parameter V = VT (Π). From
this graph, we can extract the isothermal compressibility parameter using the equation
5.2.5. Applying the derivative of the volume parameter respect to the pressure parameter
and dividing by each volume parameter point by point, we obtain the isothermal com-
pressibility parameter for a Bose gas in a harmonic trap. In the fig. 5.2.5 we plot these
results, the isothermal compressibility parameter κT vs Π for different temperatures T .

In the fig 5.2.5(a) in clearly a thermal situation in which the temperature of the
cloud is T = 150 nK. In this situation, κT follows the classical behavior 1/Π, which
correspond to the isothermal compressibility kT for an ideal gas. When the temperature
is slightly lower, T = 80 nK, which is approximately the critical temperature, the curve
have an abrupt change for a certain pressure parameter fig. 5.2.5(b). The critical pressure
parameter ΠC is between 20 and 30 (×10−19) J s−3, the sudden increase of κT indicates the
transition. The compressibility reaches a maximum value before returning to the baseline
after 40×10−19 J s−3 fig 5.2.5(b). In this pressure range the compressibility acquires values
4 to 8 times higher than the baseline. The behavior of the κT in fig. 5.2.5 is typical for
a second-order phase transition (continuous transition).(11) In the last isotherm curve,
T = 40 nK, the situation in which we have a pure BEC, the compressibility decrease with
pressure parameter much faster than in the thermal regime. This can be explained saying
that, in the thermal regime the expansion of the cloud have an anisotropic expansion,
equal in all directions. But in the condensate regime, the interaction is more strongest in
one direction produced by the harmonic potential, for this the expansion is much faster
in one direction than another direction.
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Figure 5.2.4 – Phase diagram V vs Π for different isotherms T = 175 nK, T = 150 nK,
T = 175 nK, T = 100 nK, T = 75 nK, T = 50 nK, and T = 40 nK.
For each isotherm we select a set of pressure and volume parameter
points. They are separated by the critical pressure ΠC in a thermal
and condensate region(gray region). The solid lines represent the best
polynomial fitting and they are not a theoretical model.
Source: POVEDA-CUEVAS et al.(11)
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Figure 5.2.5 – Isothermal compressibility parameter κT in function of the pressure
parameter Π for three different isotherms, T = 150 nK, T = 80 nK and
T = 40 nK, in which we can see the the behavior of κT in the thermal
regime, near the transition and in the complete condensate regime.
Source: POVEDA-CUEVAS et al.(11)
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5.2.2 Heat capacity

The heat capacity using the global thermodynamic variables can be defined as

CV = 3
ω̄3

(
∂Π
∂T

)
N,ω

, (5.2.14)

As a function of the volume parameter V and its intensive conjugate variable Π, one can
show that the internal energy of a harmonically trapped thermal cloud and pure BEC
are uth = 3ΠV and u0 = 5ΠV/2, respectively. These expressions can be found from
the virial theorem. The first is the expected result for a noninteracting gas held in a
three-dimensional (3D) harmonic oscillator potential. The second results from a contact
interaction potential combined with the Thomas-Fermi approximation. Therefore it is
valid to separate the thermal and the condensed fractions to determine the total internal
energy(10)

u = 3ΠthV + 5
2ΠqV (5.2.15)

a) b)

Figure 5.2.6 – a). Phase diagram Πvs T at constant volume parameter V and three
different number of particles N. b). Heat capacity CV in a BEC system
plotted around the condensation temperature TC for two different atom
numbers.
Source: SHIOSAKI et al.(10)

where the total pressure parameter has been considered as the sum of the two components
Π = Πth + Πq.(10) To obtain the pressure parameter, the density distribution is extracted



Chapter 5. The Global Thermodynamic Variables 65

from the absorption image and, for a constant volume parameter, was obtained the phase
diagram Π vs T at constant volume parameter, as shown in fig. 5.2.6(a). Using the
equation 5.2.14 over each point in the fig. 5.2.6(a) the heat capacity is obtained and
presented in the fig. 5.2.6(b) as a function of the temperature, where near the critical
point is observed a spontaneous change in the heat capacity. The behavior of this result is
accepted in the literature (64) as a property of a second-order phase transition. Thus, the
investigation of the heat capacity steep change in a trapped gas, near Tc, is very significant
to the overall understanding of the phase transition itself, especially for non-homogeneous
density distributions.(10)

5.2.3 Pressure parameter at zero temperature

In the reference (12) was studied the behavior of the pressure parameter near of
the absolute zero temperature. Again, we start from the phase diagram from Π vs T ,
fig. 5.2.7(a), in which we shows the behavior of the pressure parameter in function of
the temperature, for a given atom number N = 3 × 105 and the volume parameter
V = 3 × 108 s3. The interpolation of the curve Π vs T below to T < TC allows to
identify the pressure parameter when the temperature approximate to zero, reaching a
finite value Π0. In the fig. 5.2.7(b) we can see the behavior of the pressure parameter at
zero temperature, Π0, as function of the atoms number, showing that, as the atom number
decrease, Π0 also decreases. The theoretical curve is obtained using the eq. 5.2.12, in the
limit of T → 0, Π0 depends only of the s-wave scattering lenght of the atomic cloud as
and on its total atom number as follows the equation:

Π0(T → 0) = m

21

(
15~2as
m2

)2/5 (
N

V

)7/5
. (5.2.16)

The pairs of conjugated variables Π−V in the quantum limit, obey an uncertainty
relation that is able to describes the behavior of the quantum system when the temper-
ature is near of the lowest possible value, T = 0. The preceding demonstration reveals
ideas for the thermodynamic variables are sufficient to calculate some thermodynamic
variables as we saw before. The fact that an equivalent compromise can exist between
pressure and volume for a confined gas near absolute zero temperature is totally different
from what is expected in traditional classical thermodynamics.(12) Therefore, we can say
that the global thermodynamic variables are a powerful tool to explore the state of the
thermodynamic quantum system and his behavior around the critical points, even near
the absolute zero.
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(a) (b)

Figure 5.2.7 – (a). Pressure parameter Π as a function of the temperature T , for a
fixed atom number and volume parameter. (b) Behavior of the pressure
parameter at zero temperature function of the atom number.
Source: CASTILHO et al.(12)
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Chapter 6

Results and Discussion

In this chapter, the result of measuring the coefficient of thermal expansion of a
BEC is displayed, showing how the transition from the thermal regime to condensate
regime can be a continuous phase transition, and also how can be express the thermal
expansion coefficient as critical phenomena in terms of the critical exponents and its scale
law. So, the isobaric thermal expansion coefficient βT can be defined as

βΠ = 1
V

(
∂V
∂T

)
Π, N

, (6.0.1)
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Figure 6.0.1 – Phase diagram Π vs T for a fixed atoms number N = 1× 105 atoms.
Source: POVEDA-CUEVAS et al.(11)
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Figure 6.0.2 – Phase Diagram V vs T for different isobaric curves. In the graph we
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the thermal and condensate regime.
Source: By the author.

its means that, the capacity of the system of change its volume when we apply energy or
temperature, normalized by the volume at constant pressure. As we know, the volume
in our system is not the physical volume. In this case, the volume was changed by the
frequencies of the confinement potential, like an effective volume of dilute gases in vacuum.
To measure the isobaric thermal expansion coefficient it is necessary, as in the isothermal
compressibility, a phase diagram, but in this case, a V vs T diagram. Taking the phase
diagram Π vs T in the fig. 6.0.1, it is possible to select a few isobaric (horizontal lines) and
take the points that cross the volume parameters. Each point its plotted as a function of
temperature for each isobaric curve with the same number of atom N . The corresponding
phase diagram V vs T is plotted in a log-log scale in fig. 6.0.2, in which each set of point
correspond to an isobaric curve (constant pressure parameter). Many different isobaric
curves are plotted, as well. Is clearly to see the behavior of the volume parameter as a
function of temperature in two regions: the gray zone and the white zone, representing the
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condensate and thermal regime respectively. The solid lines above the critical temperature
follows the behavior of the ideal gas law ΠV = NkBT as expected for thermal clouds.
The curves below the critical temperature are not theoretical models , they are the best
curve fit over those points, following a similar behavior that the isothermal compressibility
parameter κT , because is not possible to predict in fig. 6.0.2 what is the behavior of the
volume parameter at T = 0.

In order to obtain the isobaric thermal expansion coefficient of a Bose gas, using
the fig. 6.0.2 and evaluating the derivative in eq. 6.0.1, we obtain βΠ at constant pressure
parameter Π20 = 20 × 10−19 J s−3 which is plotted in the fig 6.0.3. Below to the critical
temperature, the thermal expansion coefficient grow up faster than above the critical
temperature. Near of this point, we can see a high peak very close of the transition point,
revealing a continuous phase transition for the isobaric thermal expansion coefficient.
The same was done for three different pressure parameters Π3 = 3 × 10−19 J s−3, Π20 =
20 × 10−19 J s−3 and Π80 = 80 × 10−19 J s−3 showing in fig 6.0.4 a similar behavior, each
one near of the critical temperature. It is important to note that the collection of the
thermal coefficient plots in fig. 6.0.4 indicate that high pressure parameters promotes
condensation at high temperature as expected. For all pressure, the typical shape βΠ vs
T is present.
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Figure 6.0.3 – Isobaric thermal expansion coefficient for a Bose gas with a constant
pressure parameter Π20 = 20× 10−19 J s−3 as a function of the temper-
ature.
Source: By the author.
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To analyses the behavior of β around TC , we consider the case in fig. 6.0.3 in
which we consider the reduced temperature tr = |T − TC |/TC and the thermal expansion
coefficient as a function of a critical exponent α given by

βΠ ∼ t−αr , (6.0.2)

which is valid for T < TC . Taking the limit when T = TC or tr → 0 we can find the value
of α, thus

α = − lim
tr→0

d ln β
d ln tr

. (6.0.3)

In fig. 6.0.5 we illustrate the behavior of β vs tr, showing that the limit of the eq.
6.0.3 is finite as tr approximates to 0. The dashed line represent the curve which slope
is α = 0.15. Equivalents values for alpha are obtained for other pressure parameters and
the combined values results in

α = 0.15± 0.09. (6.0.4)
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In 2007 Donner et. al. (65) investigate the correlation length as a critical phenom-
ena as ξ ∝ t−νr . The observation enable then to obtain a critical exponent through the
correlation length, revealing a critical exponent ν = 0.67 ± 0.13. Considering this value
of ν and our value for α and applying the scaling law dν = 2− α it is possible to obtain
the value for the dimension for the system

d = 2.76± 0.16, (6.0.5)

which is slightly smaller than 3, the expected value for our geometry. This deviation
can come from the finite size of the system or effects no yet considered. Since the global
variable is fully related to the thermodynamics in a formal sense, it should not introduce
variations on d. In doing that another limitation arises from technical difficulties to
obtain data for tr very close to zero. The capability to measure for smaller tr could
improve the value of α. A deep theoretical evaluation on the critical exponent using global
variables could also elucidate differences that are however out of the scope of this work.
Besides the technical limitation, it seems clear that the use of global thermodynamics
variables may open up a whole new window of opportunities to investigate universality
and scaling laws for those non-homogeneous systems. In special, interactions play an
important role in this field. While it is practically impossible to vary the interaction in
4He λ-transition, it is possible for trapped atoms. The new possibilities for universality
in strong correlated systems may be quite exciting since it is very unknown. In all new
possible exciting situations, the global variable concept may well be a nice tool of great
relevance as demonstrated with this present walk.

Our experiment procedure, allow to investigate the system across the critical tem-
perature TC and the extraction of the susceptibilities which its divergences provide us
information about the critical exponent. In this sense, we are near the critical point. It
would be very nice if we could explore a whole collection of point around TC , this is how-
ever technically very hard and the best that we can do is observe around and extrapolate
the best behavior near the critical point.
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Chapter 7

Conclusion

We can conclude that formalism of global thermodynamics variables has successfully
describes the system by mean the volume and pressure parameter. The volume parameter
is defined as V = 1/ω̄3, where ω̄ is the product trapping frequencies. The pressure
parameter Π, was defined as product of density distributions and harmonic potential.
Eq. 5.1.8 shows that Π and V are conjugated variables. In experiment we reached a
BEC of 87Rb atoms with an average number of atoms approximately ∼ 105 in a range
of temperature of 40 − 300 nK. Using dipolar oscillations of the BEC it was possible to
measure the frequencies of the hybrid trap composed by a magnetic trap and optical dipole
trap. The volume parameter could be modified by variation of laser power of the ODT.
It allows us to construct a phase diagram Π vs T , where each curve assume the constant
number of atoms and volume parameter. By means the constructed phase diagram, we can
build another phase diagram Π vs V to then extract the derivatives of volume parameter
respect to pressure parameter and thus obtain the isothermal compressibility κT . Around
critical temperature, the isothermal compressibility shows a discontinuity that indicates
the existence of the second-order phase transition. The thermal expansion coefficient βΠ,
has been obtained in the same way. Applying the thermodynamic definition of the thermal
expansion coefficient, we obtained its dependence on temperature. The results shows that
also near the critical temperature TC , βΠ demonstrates an abrupt change in the thermal
expansion coefficient, growing up 10 times more than the baseline. The calculations of
the thermal expansion coefficient has been made for three different pressure parameters;
We found out, for each pressure parameter the critical temperature has a different value,
higher pressure parameter corresponds to a higher critical temperature. The behavior
of βΠ near the critical temperature could be explained by using the critical exponent of
Landau’s theory, where β ∼ t−αr (tr is reduced temperature tr = |T − TC/TC |, α is the
critical exponent then). The critical exponent was calculated taking the derivative of βΠ

respect to T and evaluating this value at the limit T → 0. As result, the value for the
critical exponent, α = 0.15±0.09, has been found and then checked within scaling theory.
One relates the dimensionality d and another critical exponent ν.(65). With obtained our
values of α and ν we get that dimensionality of the system is d = 2.76± 0.16 ∼ 3, which
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correspond to real one. Due to behavior of the thermal expansion coefficient near the
critical temperature, we can conclude that this quantity also demonstrates the second-
order phase transitions, like the isothermal compressibility.
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