• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.76.2010.tde-25112010-110155
Document
Author
Full name
Daniel Ferreira Silva
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2010
Supervisor
Committee
Costa Filho, Antônio José da (President)
Cilli, Eduardo Maffud
Fadel, Valmir
Magalhães, Alvicler
Munte, Claudia Elisabeth
Title in Portuguese
Correlação estrutura-função da proteína ligante de ácidos graxos de cérebro humano (B-FABP)
Keywords in Portuguese
Bicela isotrópica
Interação proteína membrana
Ressonância magnética do elétron
Ressonância magnética nuclear
Vesícula
Abstract in Portuguese
Ácidos graxos são moléculas hidrofóbicas essenciais para a composição da estrutura física celular, para o metabolismo energético dos seres vivos e também para os caminhos de sinalização molecular no proteoma celular. No caso de deficiência no ácido graxo docosahexaenóico (DHA) e do ácido eicosapentaenoico (EPA) temos a depressão e a mudança do comportamento. O transporte destas moléculas hidrofóbicas no citosol celular é realizado por uma família de proteínas capazes de se ligar a esses ácidos graxos de maneira seletiva, com alta afinidade e de forma reversível. Esta família de proteína é conhecida como FABP, ou proteínas ligantes de ácido graxo. Para realizar esta função, as FABP possuem características únicas tanto na sua estrutura tridimensional quanto na dinâmica experimentada pelos vários elementos estruturais. Diversos trabalhos identificaram regiões relevantes e, com mutações realizadas em resíduos específicos, caracterizaram o mecanismo como a proteína interage com ligantes e com a bicamada lipídica para a realização da sua função, identificando um processo multi-estágio na interação com a bicamada lipídica. Contudo, a não realização de mutações em todos os resíduos da proteína pode deixar não-identificados regiões ou resíduos da proteína também envolvidos na sua função. Além disso, nunca foi caracterizado o que ocorre com os resíduos e com a estrutura da FABP quando a proteína está complexada com uma bicamada lipídica. No presente trabalho, escolhemos a B-FABP para estudar a interação com ligantes e o complexo proteína-membrana desta família de proteínas. Para isto, as técnicas de ressonância magnética nuclear 15N-HSQC e eletrônica (RMN e RPE) foram utilizadas para acompanhar mudanças estruturais e dinâmicas ocorridas quanto de interações moleculares. Com a técnica de RPE e o uso de derivados de ácidos graxos marcados com radicais nitróxidos, monitoramos o sítio de ligação da molécula de ácido graxo e suas alterações quando na presença do surfactante SDS. No caso de RMN, foi usada em proteínas marcadas isotopicamente com 15N na presença de bicelas isotrópicas de DMPC: DHPC na razão igual a um (q = 1), em uma concentração lipídica (CL) de 4%. Nossos resultados além de identificar os mesmos resíduos já conhecidos na interação da FABP com modelos de membrana, também encontrou novos resíduos nunca antes associados à superfície de contato da FABP com a bicamada lipídica.
Title in English
Structure-function correlation in the Fatty Acid Binding Protein from Human Brain (B-FABP)
Keywords in English
Electron magnetic resonance
Isotropic bicelle
Membrane protein interaction
Nuclear magnetic resonance
Vesicles
Abstract in English
Fatty acids are hydrophobic molecules essential to the cell structure, to the energetic metabolism of living organisms and to the molecular signaling pathways in the cell proteome. Depression and behavior alteations are two common consequences of deficiencies in docosahexanoic (DHA) and eicosapentaenoic (EPA) acids. The transport of such hydrophobic molecules in the cytosol is the main function of a family of proteins capable of making a selective, high affinity, and reversible binding of fatty acids. This family of proteins is known as FABPs (fatty acid binding proteins). To perform their function, FABPs have unique features in both their tridimensional structure and in the dynamics experienced by the several structural elements. Many reports have identified regions that are relevant to function and, through point mutations of specific residues, have characterized the mechanism used by the protein to bind its ligand and also to interact with lipid bilayers. However, the point mutation strategy relies heavily on the choice of residues such that missing residues can lead to the lack of identification of important elements involved in protein function. Moreover, the characterization of the protein-bilayer complex still deserves a more detailed investigation. In this work, we study the B-FABP protein in terms of its interaction with ligands as well as a membrane model system. We made use of magnetic resonance techniques, nuclear (NMR) and electronic (EPR), to probe structural and dynamical changes occurring upon intermolecular interaction. EPR and spin labeled fatty acids allowed us to monitor the ligand binding site in the protein structure and also its alterations in the presence of the surfactant SDS. NMR HSQC was used to gain information on the conformational changes of isotopically labeled protein in the presence of biceles made of DMPC:DHPC (q = 1 and lipid concentration CL of 4%). Our results confirmed relevant functional residues that had been previously identified and also pointed to new residues that had not been implicated as part of the contact surface before, thus widening our understanding of FABP-bilayer interaction.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2010-12-10
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2024. All rights reserved.