• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.76.2000.tde-12062008-150425
Document
Author
Full name
Haroldo Naoyuki Nagashima
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2000
Supervisor
Committee
Faria, Roberto Mendonça (President)
Hai, Guo Qiang
Lepienski, Carlos Mauricio
Li, Maximo Siu
Moreira, Roberto Luiz
Title in Portuguese
Simulação de condutividade alternada em sistemas poliméricos e aplicações em poliméricos condutivos
Keywords in Portuguese
Matriz de transferência
Mecanismo de condução
Modelo estatístico
Polialinina
Rede de resistores
Abstract in Portuguese
Os processos envolvidos em condução eletrônica de polímeros condutores são muito complicados devido à intricada morfologia estrutural de tais materiais. Realizamos medidas de condutividade alternada em filmes de polianilina em uma grande faixa de freqüência, variando o grau de dopagem dos filmes e temperatura. Ao mesmo tempo, desenvolvemos um modelo estatístico de rede de resistores para descrever a estrutura polimérica e para simular as componentes real e imaginária de sua resistividade alternada. Leva-se em conta a polidispersividade do material, assim como os mecanismos de transportes de carga intracadeia e intercadeia. Pela aplicação de uma técnica de matriz de transferência, o modelo reproduz medidas de resistividade alternada realizadas em filmes de polianilina em diferentes graus de dopagem e em diferentes temperaturas. Nossos resultados indicam que os mecanismos intercadeias governam o comportamento da resistividade em regiões de baixa freqüência enquanto que, para altas freqüências, mecanismos intracadeia são dominantes. Essa simulação foi desenvolvida para redes bi e tridimensional. Aplicamos, também, esse método para estudar sistemas isoenergéticos de estrutura desordenada (poliacetileno estirado), sistemas isoenergéticos de estrutura desordenada (poliacetileno não-estirado) e sistemas não-isoenergéticos de estrutura desordenada (polianilina). Finalmente, uma comparação entre esses três materiais, permitiu-se discutir, em detalhes, a distribuição de barreiras de energia potencial e a diferença dos níveis de energia que controlam o mecanismo de salto dos portadores eletrônicos.
Title in English
Simulation of alternated conductivity, in polymeric systems and applications in conductive polymers
Keywords in English
Conduction mechanism
Polyaniline
Resistor network
Statistical model
Transfer matrix
Abstract in English
The processes involved in electronic conduction of conducting polymers are very complicated due to the intricate morphological structure of such materials. We carried out alternating conductivity measurements in polyaniline films in a large frequency range, varying the doping degree of the films and temperature. At the same time, we developed a statistical model of resistor networks to describe a polymer structure and to simulate the real and imaginary components of their ac resistivities. This model takes into account the polydispersiveness of the material as well as intrachain and interchain charge transport mechanisms. By the application of a transfer-matrix technique, it reproduces ac resistivity measurements carried out with polyaniline films in different doping degrees and temperatures. Our results indicate the interchain mechanisms govern the resistivity behavior in the low frequency region while, for higher frequencies, intrachain mechanisms are dominated. These simulations were developed in bi and tridimensional lattice. We also applied this method to study ordered structure in isoenergetic systems (stretched polyacetylene), disordered structure in isoenergetic systems (normal polyacetylene), and disordered structure in non-isoenergetic systems (polyaniline). Finally, a comparison between these three materials, allowed us to discuss in detail the energy barriers distribution and the difference in energy levels, which control the hopping mechanisms of the electronic carriers.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2008-06-16
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2024. All rights reserved.