• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
Documento
Autor
Nome completo
Renato Fabbri
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2017
Orientador
Banca examinadora
Oliveira Junior, Osvaldo Novais de (Presidente)
Amancio, Diego Raphael
Liang, Zhao
Recuero, Raquel da Cunha
Rodrigues, Francisco Aparecido
Título em inglês
Topological stability and textual differentiation in human interaction networks: statistical analysis, visualization and linked data
Palavras-chave em inglês
Complex networks
Linked data
Pattern recognition
Social network analysis
Text mining
Resumo em inglês
This work reports on stable (or invariant) topological properties and textual differentiation in human interaction networks, with benchmarks derived from public email lists. Activity along time and topology were observed in snapshots in a timeline, and at different scales. Our analysis shows that activity is practically the same for all networks across timescales ranging from seconds to months. The principal components of the participants in the topological metrics space remain practically unchanged as different sets of messages are considered. The activity of participants follows the expected scale-free outline, thus yielding the hub, intermediary and peripheral classes of vertices by comparison against the Erdös-Rényi model. The relative sizes of these three sectors are essentially the same for all email lists and the same along time. Typically, 3-12% of the vertices are hubs, 15-45% are intermediary and 44-81% are peripheral vertices. Texts from each of such sectors are shown to be very different through direct measurements and through an adaptation of the Kolmogorov-Smirnov test. These properties are consistent with the literature and may be general for human interaction networks, which has important implications for establishing a typology of participants based on quantitative criteria. For guiding and supporting this research, we also developed a visualization method of dynamic networks through animations. To facilitate verification and further steps in the analyses, we supply a linked data representation of data related to our results.
Título em português
Estabilidade topológica e diferenciação textual em redes de interação humana: análise estatística, visualização e dados ligados
Palavras-chave em português
Análise de redes sociais
Dados ligados
Mineração de texto
Reconhecimento de padrões
Redes complexas
Resumo em português
Este trabalho relata propriedades topológicas estáveis (ou invariantes) e diferenciação textual em redes de interação humana, com referências derivadas de listas públicas de e-mail. A atividade ao longo do tempo e a topologia foram observadas em instantâneos ao longo de uma linha do tempo e em diferentes escalas. A análise mostra que a atividade é praticamente a mesma para todas as redes em escalas temporais de segundos a meses. As componentes principais dos participantes no espaço das métricas topológicas mantêm-se praticamente inalteradas quando diferentes conjuntos de mensagens são considerados. A atividade dos participantes segue o esperado perfil livre de escala, produzindo, assim, as classes de vértices dos hubs, dos intermediários e dos periféricos em comparação com o modelo Erdös-Rényi. Os tamanhos relativos destes três setores são essencialmente os mesmos para todas as listas de e-mail e ao longo do tempo. Normalmente, 3-12% dos vértices são hubs, 15-45% são intermediários e 44-81% são vértices periféricos. Os textos de cada um destes setores são considerados muito diferentes através de uma adaptação dos testes de Kolmogorov-Smirnov. Estas propriedades são consistentes com a literatura e podem ser gerais para redes de interação humana, o que tem implicações importantes para o estabelecimento de uma tipologia dos participantes com base em critérios quantitativos. De modo a guiar e apoiar esta pesquisa, também desenvolvemos um método de visualização para redes dinâmicas através de animações. Para facilitar a verificação e passos seguintes nas análises, fornecemos uma representação em dados ligados dos dados relacionados aos nossos resultados.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2017-09-15
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2014. Todos os direitos reservados.