• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.76.2015.tde-10082015-142117
Documento
Autor
Nome completo
Guylherme Emmanuel Tagliaferro de Queiroz
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2015
Orientador
Banca examinadora
Guido, Rodrigo Capobianco (Presidente)
Iano, Yuzo
Paiva, Fernando Fernandes
Título em português
Processamento digital de sinais aplicado a análise de distribuição de tempos de relaxação em sinais de ressonância magnética nuclear
Palavras-chave em português
Equações integrais de Fredholm
Meios porosos
Processamento digital de sinais
Ressonância magnética nuclear
Resumo em português
Sabe-se que a relaxação de líquidos em meios porosos envolve três mecanismos principais: relaxação bulk, relaxação de superfície e difusão. Muitas vezes, os processos de relaxação de líquidos confinados em meios porosos são dominados pelo processo de relaxação de superfície e difusão do fluído. No chamado regime de difusão rápida, a relaxação de um único poro é comandada por uma função mono exponencial que depende, principalmente, da relação superfície-volume do poro, de modo que em um material poroso, isto é, contendo uma distribuição ampla de tamanho de poros, o sinal de decaimento de magnetização obtido por meio da ressonância magnética nuclear é formado pela soma de exponenciais com diferentes tempos de relaxação. O problema-chave abordado neste trabalho consiste, portanto, em obter por meio desse sinal de magnetização a distribuição dos tempos de relaxação que controlam o decaimento das funções mono-exponenciais. Matematicamente, esse sinal de decaimento de magnetização pode ser descrito na forma geral de uma equação integral de Fredholm do primeiro tipo, cuja solução é um reconhecido problema inverso mal-posto. As abordagens utilizadas na tentativa de solucionar o problema são oriundas de uma área conhecida como processamento digital de sinais, e os seguintes métodos são analisados e comparados neste trabalho: algoritmo dos mínimos quadrados médios com restrição de não negatividade (LMS-NN), algoritmo dos mínimos quadrados médios com restrição de não negatividade e regularizado (LMS-RNN), redes recorrentes de Hopfield e o já bem conhecido na solução de problemas inversos mal-postos, o algoritmo dos mínimos quadrados regularizado (LS-R). Os resultados obtidos no trabalho são bastante positivos, demonstrando que, além do LS-R, existem outras alternativas na solução do problema, que principalmente, permitem atestar as soluções obtidas por qualquer um dos algoritmos.
Título em inglês
Digital signal processing applied to relaxation times distribution analysis in nuclear magnetic resonance signals
Palavras-chave em inglês
Digital signal processing
Fredholm integral equations
Nuclear magnetic ressonance
Porous media
Resumo em inglês
It is known that the relaxation of liquids in porous media involves three principal mechanisms: bulk relaxation, surface relaxation, and diffusion. Relaxation processes of confined fluids in porous media are often controlled by surface relaxation process and diffusion. In the so-called fast diffusion regime, the relaxation of a single pore is governed by a mono-exponential function that depends primarily on the relation surface-volume of the pore, so that in a porous medium, i.e, in a medium which contains a wide distribution of pore sizes, the signal of magnetization decay obtained by nuclear magnetic resonance is composed by a sum of exponentials controlled by different relaxation times. The main issue discussed in this work consists in obtaining the distribution of relaxation times that controls the decay of the mono-exponential functions that comprise the magnetization signal. Mathematically this signal of magnetization decay can be generally described as a Fredholm integral equation of the first kind, whose solution is a recognized ill-posed inverse problem. The approaches adopted to try to solve the problem come from an area known as digital signal processing, and the following methods analyzed and compared are: non-negative least mean square algorithm (NN-LMS), regularized and nonnegative nleast mean square algorithm (RNN-LMS), recurrent Hopfield networks and regularized least square algorithm (R-LS), acknowledged in the solution of ill-posed inverse problems. The results obtained are very positive, and show that in addition to R-LS there are other alternatives in the solution of the problem, which mainly allow to attest the results achieved through any of the algorithms.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2015-08-13
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.