• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
https://doi.org/10.11606/T.76.2016.tde-01042016-144639
Documento
Autor
Nombre completo
Oigres Daniel Bernardinelli
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 2015
Director
Tribunal
Azevêdo, Eduardo Ribeiro de (Presidente)
Guimarães, Francisco Eduardo Gontijo
Menezes, Sonia Maria Cabral de
Novotny, Etelvino Henrique
Oliveira Neto, Mario de
Título en portugués
Caracterização de biomassa lignocelulósica utilizando técnicas de ressonância magnética nuclear do estado sólido (SSNMR)
Palabras clave en portugués
Biomassa lignocelulósica
Produção de etanol de segunda geração
Ressonância magnética nuclear do estado sólido
Resumen en portugués
Nesta tese, a ressonância magnética nuclear do estado sólido (SSNMR) foi utilizada para estudar a composição química e estrutura dos componentes da parede celular de plantas. Visando contribuir no desenvolvimento de estratégias de despolimerização da biomassa, SSNMR foi inicialmente utilizada para estudar efeitos dos pré-tratamentos químicos e físicos, e da ação de enzimas sobre algumas biomassas. Os resultados mostraram que, em baixas concentrações, tratamentos ácidos são altamente efetivos na remoção das frações de hemicelulose, com pouco efeito nas frações de lignina e celulose. Já tratamentos alcalinos promovem eficiente deslignificação da biomassa, sendo que a mínima concentração da solução alcalina necessária para obter a máxima deslignificação depende do tipo de biomassa e da temperatura do tratamento. Os estudos por SSNMR foram correlacionados com estudos por outras técnicas, contribuindo para um entendimento mais profundo sobre o efeito dos pré-tratamentos e da hidrolise enzimática em diferentes biomassas. Outra parte da tese aborda a determinação da cristalinidade de celulose nativa (não extraída) de biomassa de bagaço de cana-de-açúcar. Utilizando a técnica de polarização cruzada em múltiplas etapas (Multi-CP) e um procedimento de subtração espectral, foi possível isolar os sinais de RMN da celulose nativa e a partir daí avaliar o índice de cristalinidade (CI). Esse método foi utilizado para avaliar o CI da celulose nativa de bagaço de cana-de-açúcar submetido à pré-tratamentos com H2SO4 e NaOH e os resultados não mostraram variações significativas do CI da celulose nas concentrações utilizadas, apesar do aumento da eficiência da hidrólise. Assim, ao contrário de muitos trabalhos encontrados na literatura, não parece que a cristalinidade da celulose seja um fator primordial no aumento de eficiência da hidrólise enzimática. Na parte final da tese, as interações intermoleculares entre os dois principais polissacarídeos da biomassa: celulose e xilano foram investigadas utilizando uma variedade de técnicas avançadas de RMN bidimensional. Neste trabalho, a arquitetura molecular de hastes de plantas de Arabidopsis Thaliana, sem nunca serem seca foi estudada. Utilizando a técnica refocused J-INADEQUATE (Increadible Natural Abundance Double Quantum Transfer Experiment via J coupling) observamos dois conjuntos de deslocamentos químicos distintos para o xilano, sendo um deles coincidente com aquele observado em solução. Em seguida, utilizamos experimentos SSNMR com o intuito de investigar se algum desses domínios de xilano estaria vinculado com a celulose. Experimentos CP-PDSD (Proton Driven Spin Diffusion detected via 13C through Cross-Polarization) demonstram a existência de proximidade espacial entre o novo domínio do xilano e o domínio da celulose. A comparação de resultados entre as amostras de padrão e o seu mutante deficiente em celulose (irx3) indicaram que o xilano com novo deslocamento químico é fortemente dependente da presença de celulose. A análise da mobilidade molecular pela técnica Dipolar Chemical Shift Correlation (DIPSHIFT), mostrou que as moléculas do novo domínio do xilano são altamente rígidas - uma característica partilhada com a celulose. Combinados, esses dados fornecem evidências de uma arquitetura molecular específica entre os dois polissacarídeos majoritários da parede celular.
Título en inglés
Characterization of lignocellulosic biomass using solid-state nuclear magnetic resonance techniques
Palabras clave en inglés
Lignocellulosic biomass
Second generation of bioethanol
Solid-state nuclear magnetic resonance
Resumen en inglés
Solid-state nuclear magnetic resonance (SSNMR) was used to study the chemical composition and structure of plant cell wall components. Aiming the development of depolymerization strategies, SSNMR was initially used to study the effects of chemical and physical pre-treatments, as well as the enzymatic action on the structure and composition of biomasses. The results showed that, at low concentrations, pre-treatments with acids are highly effective for removal of hemicellulose without significant effect on lignin and cellulose. In turn, the alkaline pre-treatment promotes efficient delignification of the biomass. The minimum concentration of the alkaline solution required to achieve the maximum delignification depends on the type of biomass and treatment temperature. SSNMR studies were correlated with studies using other techniques, contributing to an in-depth understanding of the effect of pre-treatments and enzymatic hydrolysis in different biomasses. Another part of the thesis discusses is the determination of native cellulose crystallinity (not extracted) of sugarcane bagasse biomasses. Using the cross-polarization technique in multiple blocks (Multi-CP) and a spectral subtraction approach, it was possible to isolate the NMR signals of the native cellulose and to evaluate the crystallinity index (CI). This method was used to accessof the CI of cellulose in sugarcane bagasse samples pre-treated with H2SO4 and NaOH. The results did not show significant variations of the cellulose CI, at the concentration used here, despite the increase in the hydrolysis efficiency. Thus, in contrast to some studies in the literature, it does not appear that the crystallinity of cellulose is a primary limiting factor concerning the enzymatic hydrolysis efficiency in biomasses. In the final part of this thesis, the intermolecular interactions between the two main polysaccharides of the plant cell wall, cellulose and xylan, were investigated using advanced two-dimensional NMR techniques. The molecular architecture of 13C labelled never-dried Arabidopsis Thaliana stems was studied. Using refocused J-INADEQUATE (Increadible Natural Abundance Double Quantum Transfer Experiment via J coupling) we observed two distinct chemical shifts in xylan, one of which coincides with that observed in solution. Next, we used SSNMR experiments toinvestigate the interaction between the novel xylan and cellulose domains. CP-PDSD (Proton Driven Spin Diffusion detected via 13C through Cross-Polarization) experiments demonstrated spatial proximity between the new xylan and cellulose domains. The same approach was used to study cellulose deficient (irx3) mutants and the comparison between the results indicate that the new xylan domain is cellulose-dependent. Dipolar Chemical Shift Correlation (DIPSHIFT) experiments were performed to analyse the molecular mobility of these polysaccharides showing that the novel xylan is highly rigid - a characteristic which is shared with cellulose. Combined, these data provide evidence for a specific molecular architecture between the two most common polysaccharides in plant cell walls.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2016-04-13
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2024. Todos los derechos reservados.