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“. . . the opinion has time and again been expressed since the famous trial against Galileo
that scientific truth cannot be brought into harmony with the religious interpretation of the
world. Although I am convinced of the unassailability of scientific truth in its own sphere,

I have never been able to dismiss the content of religious thinking
—Werner Heisenberg “Scientific Truth and Religious Truth.” CrossCurrents, vol. 24, no. 4, 1975,

pp. 463–473.





ABSTRACT

SERENONE, W. M. Landau’s two-component superfluid model and the
quark-gluon plasma. 2019. 136p. Thesis (Doctor in Science) - Instituto de Física de
São Carlos, Universidade de São Paulo, São Carlos, 2019.

In this thesis we aim to test if Landau’s two-component superfluid model is compatible
with the quark-gluon-plasma description. We follow the test proposed by Chernodub et. al.
[Two-component liquid model for the quark-gluon plasma. Theor. Math. Phys., v. 170,
p. 211–216, 2012]. We start by reviewing the building process of a field theory with gauge
symmetries and discussing the conservation laws associated to the theory’s symmetries.
We explore the thermodynamic approach to quantum theory and the interesting fact
that, when combined with a field theory, the path-integral formulation for quantum field
theories emerges naturally. We also present the necessity of introducing a momentum cutoff
into the theory and show that embedding space-time on a lattice is a way to introduce
this cutoff and renormalize the theory. As a bonus, this also allows the numerical and
non-perturbative evaluation of observables. We overview the phenomenological aspects of
relativistic heavy-ion collisions and Landau’s two-component model for superfluids, along
with a quantum-field-theory motivation for it, and explain details of the test proposed
by Chernodub et. al.. Lastly, we show the implementation details of our simulation along
with results. We do not see evidence that the proposed superfluid model is able to describe
the plasma. We speculate that this might be caused by the absence of fermions in our
simulations.

Keywords: Quark-gluon plasma. Lattice QCD. Quantum chromodynamics. Relativistic
heavy-ion collisions. Path integrals.





RESUMO

SERENONE, W. M. Modelo de superfluido de duas componentes de Landau e
o plasma de quarks e gluons. 2019. 136p. Tese (Doutorado em Ciências) - Instituto
de Física de São Carlos, Universidade de São Paulo, São Carlos, 2019.

Nesta tese nosso objetivo é testar se o modelo de Landau de duas componentes para
superfluidos é compatível com a descrição do plasma de quarks e glúons. Seguimos o
teste proposto por Chernodub et. al. [Two-component liquid model for the quark-gluon
plasma. Theor. Math. Phys., v. 170, p. 211–216, 2012]. Começamos revisando o processo
de construção de uma teoria de campo com simetria de gauge e discutindo as leis de
conservação associadas às simetrias da teoria. Exploramos a abordagem termodinâmica
para teoria quântica e o interessante fato de que, quando combinada com uma teoria de
campo, a formulação de integrais de trajetória para teorias quânticas de campo emerge
naturalmente. Também apresentamos a necessidade de se introduzir um corte de momento
na teoria, e mostramos que embutir o espaço-tempo em uma rede é um meio de introduzir o
corte na teoria e renormalizá-la. Como um bônus, isso também permite o cálculo numérico e
não-perturbativo de observáveis. Apresentamos um panorama dos aspectos fenomenológicos
da colisão de íons pesados relativísticos e o modelo de duas componentes de Landau para
superfluidos, bem como uma motivação de teoria quântica de campo para ele, e explicamos
detalhes do teste proposto por Chernodub et. al.. Por fim, mostramos os detalhes de nossa
implementação juntamente com nossos resultados. Não vemos evidência de que o modelo
de superfluidod proposto seja capaz de descrever o plasma. Nós especulamos que isto possa
ser causado pela ausência de férmions em nossas simulações.

Palavras-chave: Plasma de quarks e glúons. QCD na rede. Cromodinâmica quântica.
Colisão de íons pesados relativística. Integrais de trajetórias.
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Chapter 1

Introduction

“And the earth was without form, and void; and darkness was upon the
face of the deep. And the Spirit of God moved upon the face of the
waters.”

Genesis 1.2 — King James Bible

In the first two decades of the XXI century there were three major breakthroughs
in fundamental physics: the confirmation of the existence of the quark-gluon plasma1–2

(QGP) in 2005 by the experiments at the Relativistic Heavy Ion Collider (RHIC), the Higgs
boson detection3–4 at the Large Hadron Collider (LHC) in 2012 and the gravitational wave
detection by the LIGO experiment in 2016.5 All of these were experimental confirmations
of theoretically predicted phenomena. As the title of this thesis indicates, our work explores
the description of the first of these breakthroughs.

The theoretical motivation for the QGP came shortly after Quantum Chromody-
namics (QCD) was formulated.6–7 QCD is the theory that describes the force between
quarks inside protons and neutrons. It is responsible for the binding of these nucleons
(protons and neutrons) inside the atomic nucleus. Once one understands QCD’s basic
features, the existence of QGP and the conditions necessary for its occurrence become
intuitive.

QCD appeared as the answer for the “particle zoo” that physicists were facing in
the 1960’s. It proposed that all hadrons, i.e. protons, neutrons, mesons and so on, were
formed by a set of more fundamental particles, which were called quarks. Quarks are
spin-1/2 particles that come in six flavors. The main differences between the various flavors
are their masses, their electric charges and their couplings to the weak force. They also
have the peculiarity of being the only known particles to carry fractionally charge. They
also carry QCD charge, named color. Contrary to electromagnetism, which has only one
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charge typei, QCD color charge comes into three types, namely red, green and blue.

Deep inelastic scattering experiments conducted by MIT-SLAC in the 1960’s have
confirmed the above picture by the detection of three point-like fermions inside the proton,
with the right quantum numbers.8 Despite this, the theory was widely accepted only in
the decades of 1970 and 1980, with the discovery of quarks charm, bottom and top (later,
in the 1995). The reason for the disbelief is that a quark was never seen isolated. They are
always inside hadrons. This QCD feature is called confinement. There is no proof for how
it works. However, there is a qualitative explanation for the phenomenon. To explain it,
we need to introduce QCD’s force carrier particle: the gluons.

There are eight types of gluons. Loosely speaking, each one carries a pair of color
and anti-color charge. More precisely, using the quantum mechanics notation for particle
states of brackets, and denoting the color states by r, g and b (with a bar on top of them
to represent the anti-colors), we may write each one of these states asii

g1 = 1
2 (|rḡ〉+ |gr̄〉) , g2 = i

2 (|gr̄〉 − |rḡ〉) ,

g3 = 1
2 (|rr̄〉 − |gḡ〉) , g4 = 1

2
(∣∣∣rb̄〉+ |br̄〉

)
,

g5 = i

2
(
|br̄〉 −

∣∣∣rb̄〉) , g6 = 1
2
(
|bḡ〉+

∣∣∣gb̄〉) ,
g7 = i

2
(
|bḡ〉 −

∣∣∣gb̄〉) , g8 = 1
2
√

3
(
|rr̄〉+ |gḡ〉 − 2

∣∣∣bb̄〉) .
(1.1)

Since the gluons carry color charges as well, they interact with each other. Thus,
instead of the interaction field spreading through space, as happens in electrodynamics, it
concentrates into a tube bridging the quarks, as depicted in Fig. 1. If one tries to take the
quarks farther apart, the energy deposited in the interaction will increase linearly. If the
energy in the interaction is high enough, the system may convert part of it into a quark
anti-quark pair, “breaking the string”. One then has two hadrons that will fly apart on
their own. Therefore, an isolated quark is never seen.

Another key feature of QCD is called asymptotic freedom. It deals with the opposite
regime of confinement, i.e. when quarks are near each other. In this situation quarks
interact very weakly. If we observe the limit in which two quarks are in the same place,
the interaction between them approaches zero asymptotically and they would behave as
free particles, hence the name.

Having illustrated these two basic features of QCD, we look at situations of high
density. Notice that when one speaks of a high density situation, we are already making the
i The negative charge is just the anti-charge for the positive one (and vice-versa).
ii If one denotes each color by a unitary vector of dimension three, with the anti-color being its

transpose vector, a state |cc̄′〉 is the tensorial product between the vectors c and c̄′, yielding
a 3× 3 matrix. Then one can verify that each gluon gi is an element of SU(3)’s Lie Algebra.
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+ − q q̄

Figure 1 – Left: Field lines for electric dipole. Right: Analogous dipole for QCD. Notice
the vertical lines connecting the parallel ones in QCD dipole. These represent
the gluons interacting with each other, confining the field lines in a tube and
avoiding its spread through space. This makes the force between the quarks
constant, regardless of the distance. Source: Elaborated by the author.

assumption that we will be dealing with a high number of baryons. In these situations, on
average, quarks are nearer each other and thus we may say that, on average, the interaction
strength between them is weak. If the density gets large enough, the interaction strength
gets so weak that one may say that hadrons “melted” and the only thing remaining is
quarks and gluons flying freely. The situation is similar to what is commonly known as a
plasma, i.e. when electrons are ripped out from their atomic orbits and fly freely.9 Hence,
this new state of matter was called a quark-gluon plasmaiii.

High density situations are not the only possibility for QGP’s occurrence. One may
use De Broglie’s wave matter hypothesis

λ = h

p
(1.2)

by associating the typical inter-quark distance to its wave-length λ. With this, one sees
that the equivalent situation of quarks being nearer each other (small λ) is for them to
carry large momentum. By definition, a system with a large number of particles which, on
average, carry large amounts of momentum has a high temperature.

The questions that follow are: how dense or how hot must the system be for it to
transition to the QGP phase? The answer lies in what is known as the QCD scale. It tell
us what is the energy scale for which the QCD interaction strength gets weak. Its value is10

ΛQCD ∼ 200 MeV. The calculation of the equivalent densities and temperatures, performed
in more detail in Chapter 4, results in two situations were there is the possibility for the
QGP to exist naturally. The first one is in the core of neutron stars, due to its very high
density. The second one is in the early moments of the universe, when the temperature
was high enough to prevent the formation of hadrons. Therefore, to know how to describe
and to understand the QGP has importance for both cosmology and astrophysics.
iii In astrophysical contexts, one often talks about “quark-matter” instead of QGP. This is

because it is not certain yet if there is the presence of a usual QGP in dense states or if it
transitioned to a color-superconductor phase. However, in both cases we have that quarks
and gluons would be in a deconfined phase.
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Of course, the core of neutron stars and the first moments of the universe are not
easy conditions to be probed. Therefore, if we aim to build a theoretical model for QGP
and validate it experimentally, the best thing would be to reproduce it experimentally.
This is done by accelerating heavy-ions (gold or lead, usually) to relativistic speeds and
colliding them. The temperatures and densities achieved in these collisions are enough to
melt the protons and neutrons into the QGP. The study of the debris of these collisions
allows us to understand the properties of the plasma.

As already mentioned, the collider that managed to provide the first concrete
evidence of QGP’s existence was the Relativistic Heavy Ion Collider (RHIC) at Brookhaven
National Laboratory in 2005. And with it, came an unexpected result. Instead of a weakly
coupled gas, the measurements indicated that the QGP was behaving as a strongly-
coupled, low viscosity liquid. In fact, the viscosity is near to the minimum predicted by
some AdS/CFT models.11

Such low viscosity motivates us to compare QGP with a superfluid. The canonical
example of superfluidity is helium, which becomes superfluid at temperatures below 2.17 K.
In helium, the superfluidity is caused by the Bose-Einstein condensation of atoms, i.e. a
macroscopic number of atoms go to their quantum ground state. This allows one to treat
the fluid as possessing two independent and interpenetrating components, associating to
the Bose-Einstein condensate a near-zero viscosity, while the other component retains the
normal helium viscosity. This model was first proposed by L. Tisza12 and L. Landau13 and
is very successful to describe liquid helium.

Considering the success of Landau’s model and the low viscosity of QGP, Chernodub
et. al. proposed14 that one could model the plasma by a two-component superfluid. They
also propose that computation of momentum density correlation function in QCD may be
used to verify if the model is compatible with the theory.

One might think that such a computation could be performed analytically, by
means of perturbation theory, since the reason for QGP formation is precisely the theory’s
coupling getting weak. However, a phenomenon known as Linde’s problem prevents the
applicability of perturbation theory.15 Essentially, since the quarks and gluons inside the
plasma are deconfined, the gluons screen the color charges of quarks. The effective result
is that gluons acquire a dynamical mass. This dynamical mass enters in the theory in such
a way as to cancel the additional powers of the coupling, rendering perturbation theory
unreliable, even in this situation. Therefore, a non-perturbative approach must be used.

We will be using the lattice QCD approach to compute these correlation functions.
Albeit being a numerical approach, it is an ab-initio and non-perturbative one. In it, one
looks at QCD at finite temperature as a system at thermodynamical equilibrium, but
instead of following a Boltzmann distribution e−βE, it follows a distribution e−S. The
degrees of freedom will not be the particle velocity and position, but the field values at
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every point. Then, in the same way one would perform a Monte Carlo simulation of a
statistical mechanical system by sorting particles’ velocities and positions according to the
Boltzmann distribution, one samples field values following the exponential of the action.
Then, it is just a matter of computing the correlation between momentum densities in
these configurations and averaging over them.

We will start by building quantum field theories in Chapter 2, with an emphasis
on their symmetries and conserved quantities. In that chapter, we also see that when
one applies statistical mechanics to a quantum field theory, Feynman’s path integral in
Euclidean space emerges naturally. In this framework, we work out the example of a
complex scalar field. In chapter 3, we pick up from the example of the previous chapter
and show that a renormalization procedure is necessary for an interacting theory. We
present the lattice approach as a way to introduce a regulator to the theory and to perform
the renormalization non-perturbatively, with the possibility of performing numerical
simulations. In chapter 4, we take a detour from the theoretical approach to present the
phenomenology of heavy-ion collisions and of superfluidity, as well as present Landau’s two
component model for superfluids and the test proposed in Ref. 14. In Chapter 5 we give
some details of the Monte Carlo algorithms implemented as well as the results obtained.
We end this thesis with final considerations and conclusions in Chapter 6.
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Chapter 2

Quantum Field Theory and its
relation to statistical mechanics

“. . . nature isn’t classical, dammit, and if you want to make a simulation
of nature, you’d better make it quantum mechanical. . . .”

Richard P. Feynman
Int. J. Theor. Phys., Vol 21, Nos. 6/7, 1982

In this chapter, we condense an overview of several key aspects needed to understand
a quantum field theory at finite temperature. We adopt a constructive approach. Assuming
Lorentz invariance, we build the Dirac equation and its Lagrangian. The gauge field is then
introduced by means of imposition of local gauge invariance in the Dirac Lagrangian. Since
the gauge field is an additional degree of freedom, we build a gauge invariant Lagrangian
for it. We then state Noether’s theorem and derive the energy-momentum tensor. We show
that a naive derivation of the tensor does not guarantee its gauge invariance, nor that it
will respect angular momentum conservation. We show how to correct these flaws and
connect their presence due to translations in different Lorentz reference frames and in
different gauges not being equivalent. At last, we turn to quantum thermodynamics and
show that it is possible to use it to build a quantum field theory at finite temperature
from the classical one.

2.1 Dirac equation and its Lagrangian density

Paul Dirac developed his equation in 1928 in an effort to describe the doubling
of spectral lines in hydrogen atom without the need to perform “arbitrary assumptions”,
as he says in the introduction of his paper.16 He correctly interpreted that the doubling
phenomenon was relativistic in nature. Thus, a relativistic equation for the electron was
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necessary to describe the experiments. His equation led to the discovery of the positron and
other particles. The Dirac equation was shown to be applicable to any half-spin particle.

Our approach will be based in the book by Peskin and Schroeder,17 which is rather
different from the one adopted by Dirac. Our requirement is to find the simplest Lagrangian
which satisfies Lorentz Invariance and has at least one derivative. As an initial assumption,
we will say that a field ψ(x) transforms under a Lorentz transform as

ψ(x) → ψ′(x′) = M(Λ)ψ(x). (2.1)

Since a composition of two Lorentz transforms is a Lorentz transform itself and
since we can always find an inverse for a given Lorentz transform, M(Λ) must be a
representation of a group, the Lorentz group. However there is no single representation for
a group. In fact, the spin of the field will be fixed by the choice of the representation of
M(Λ). Our aim will be to determine which one is suitable for half-spin particles.

We know that rotations form a subgroup of Lorentz transformations. Since rotations
form a Lie group, we will require for the Lorentz group to form a Lie group as well. Therefore,
we can write an element M(Λ) of the group as

M(Λ) = exp (iΛiJi) , (2.2)

where Ji is an element of the Lie algebra associated to the group. The index i on Ji is a
placeholder. A Lie Algebra element may carry more than one index to identify it, as we
will see momentarily.

Let us continue looking at the rotation group. The elements of the Lie Algebra
associated to it are the angular momentum operators Ji = −iεijkxj∂k, where εijk is the
Levi-Civita symbol. The group parameter will be given by the rotation angle θi and the
argument of the exponential in Eq. (2.2) becomes θiεijkxj∂k. This expression for Ji is useful
when thinking of rotations as being around an axis k. However, the idea of a rotation axis
is a trick that only works in a three-dimensional space. In such a case, there is only one
linearly independent vector perpendicular to each plane, allowing a unique determination
of the plane. In higher dimensions this does not happen and rotations must be defined on
a plane. We then rewrite the angular momentum operator as

J ij = −i(xi∂j − xj∂i) , (2.3)

where the indices i, j define the plane of rotation. We redefine the group parameter θi
as a tensor ωij/2 to accommodate the new index introduced. The tensor ωij must have
the property ωij = −ωji. This guarantees that if someone swaps the definitions of planes,
e.g. by performing the exchange 1 ↔ 2, terms like ω12J

12 will not change sign. We can
relate ωij and θi by requiring θiεijkxj∂k = iωijJ

ij/2. The result is that ω23 = θ1, ω31 = θ2

and ω12 = θ3.
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To build the Lorentz group we simply replace the indices i, j by µ, ν. Thus the Lie
algebra elements, which are also called the group generators, will be written as

Jµν = i(xµ∂ν − xν∂µ) . (2.4)

The minus sign absent in Eq. (2.4) will be explicitly written in the group element expression

M(ω) = exp
[
− i2ωµνJ

µν
]
. (2.5)

Although we have already said that Jµν belongs to a Lie Algebra, we did not prove
our statement. Fortunately, the proof is a simple matter of computing the commutator
between two algebra elements

[Jµν , Jρσ] = i [gµσJνρ + gνρJµσ − gµρJνσ − gνσJµρ] = ifµνρσηκJ
ηκ , (2.6)

where

fµνρσηκ ≡ gµσδνηδ
ρ
κ + gνρδµη δ

σ
κ − gµρδνηδσκ − gνσδµη δρκ (2.7)

is the group structure constant.

Eq. (2.4) is just one possible representation of the group’s generator. Any other set
of objects that obey Eq. (2.6) can be used as a representation. As we already stated, the
representation of the group will determine the field’s spin. Consequently, we need to pick
another representation that will transform the field ψ(x) as a half-spin field. The definition
of a half-spin field is the one that under a rotation of 2π on a plane ij will transform as
M(2π)ψ(x) = −ψ(x). One can verify that a representation fulfilling Eq. (2.6) and the
half-spin requirement have the generators defined by the following 4× 4 matrices

Sij ≡ εijk

2

σk 0
0 σk

 and S0i ≡ − i2

σi 0
0 −σi

 , (2.8)

where σi are the Pauli matrices.

A verification that the representation defined by these generators transforms the
field ψ(x) as a half-spin field is straightforward. Since the Pauli matrices are inserted in
the block diagonal entries of the generators, a rotation by an amount θ on a plane ij will
be given by

Λ 1
2
(θ) ≡ M(θ) = 1 cos(θ/2)− iεijk

σk 0
0 σk

 sin(θ/2) . (2.9)

The factor 1/2 inside the trigonometric functions comes from the factor 1/2 present in the
definition of Sij. Thus, Λ 1

2
(2π) = −1, implying the desired transformation property for a

half-spin field.
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We should also check that the generators Sµν satisfy the Lorentz Lie algebra of
Eq. (2.6). To this end, let us use as a starting point that εijkσk/2 = −i[σi, σj]/4. This
enables us to decompose Sij in a very interesting way

Sij = i

4

[σj, σi] 0
0 [σj, σi]

 = i

4

 0 σi

−σi 0

 ,
 0 σj

−σj 0

 = i

4[γi, γj] . (2.10)

Let us now extend this expression to Minkowski space, i.e. we suppose that

Sµν = i

4 [γµ , γν ] . (2.11)

When performing this assumption, we introduce a matrix γ0 that can be determined by
requiring that it generates S0i, as defined in Eq. (2.8)

S0i = i

4
[
γ0, γi

]
= − i2

σi 0
0 −σi

 . (2.12)

The matrices γµ are called Dirac matrices and they can be defined as

γ0 =
 0 12×2

12×2 0

 and γi =
 0 σi

−σi 0

 . (2.13)

The Dirac matrices are 4× 4 matrices. This is consistent with Sµν and Λ 1
2
(ω) being

4× 4 matrices as well. As a result, it makes sense to consider the field ψ(x) a dimension
four vector, which is called spinor. There will be moments when it will be advantageous
to deal with the components of the spinor, and we will refer to these components by the
indices α, β, etc. These indices are called spinor indices.

We will need only one more property of the Dirac matrices to verify that the
group generators Sµν belong to the Lie algebra defined in Eq. (2.6). If we compute the
anti-commutator of the Dirac matrices, one can observe by direct calculation that

{γµ, γν} = 2gµν . (2.14)

By supposing a diagonal metric, the use of the anti-commutation relations leads to
Sµν = i(γµγν − gµν)/2. Then the commutator of Sµν results in

[Sµν , Sρσ] = −1
4 [γµγν , γργσ] . (2.15)

We proceed to expand [γµγν , γργσ] and using once again the relation in Eq. (2.14), one
arrives at Eq. (2.6), as we desired to demonstrate.

With the group generators determined, we write the Lorentz group elements as

Λ 1
2

(ω) = exp
(
− i2ωµνS

µν
)
. (2.16)
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Since the transform always depends on the parameter ωµν , we will leave it implicit from
now on, unless we desire to stress its dependence.

One thing to notice is that the matrices γµ are not unique. In fact, if we transform
them as γ′µ = Λ 1

2
γµΛ−1

1
2
, the Lie algebra elements Sµν will transform following the same

pattern and as a result Eq. (2.6) will be invariant.

To better understand the implications of such a transformation of γµ, we write the
infinitesimal version of the transform

γ′µ = Λ 1
2
γµΛ−1

1
2

∼=
(
1− i

2ωρσS
ρσ
)
γµ
(
1 + i

2ωρσS
ρσ
)

∼= γµ + i

2ωρσ [γµ, Sρσ] = γµ + i

2ωρσ(J ρσ)µνγν ,
(2.17)

where

(J µν)αβ = i(δµαδνβ − δναδ
µ
β) (2.18)

obeys the Lie algebra of Eq. (2.6) as well. In particular, we have that

e−
i
2ωµν(J µν)ρσxσ ∼= xρ − i

2ωµν(J
µν)ρσxσ = xρ − iωρσxσ = x′ρ . (2.19)

Eq. (2.19) is nothing more than the Lorentz transform being written in its infinitesi-
mal form. Thus we see that Λ 1

2
γµΛ−1

1
2

= (Λ−1)µνγν . Or in other words, a Lorentz transform
applied to the spinor indices of the Dirac matrix γµ is equivalent to an inverse Lorentz
transform applied at its direction index µ. By taking this index as a true Lorentz index,
one then deduces that γµ is invariant under Lorentz transformations.

With the elements present so far, it is not possible to build a Lorentz scalar. As a
consequence, we are unable to build a Lagrangian, which is a Lorentz scalar. For instance,
the lowest derivative term we can build is γµ∂µψ(x), which transform as

γµ∂µψ(x) → γµ∂′µψ
′(x′) = γµ(Λ−1)νµ∂νΛ 1

2
ψ(x) = Λ 1

2
γµ∂µψ(x) . (2.20)

This clearly is not a Lorentz scalar. And it should not be. If one writes the spinor indices
explicitly in the above equation, it will be possible to notice that one of them is loose,
i.e. not contracted with another index.

To achieve our goal, we introduce a row-like auxiliary field ψ̄(x) of dimension
four, which we treat as independent of ψ(x). We require that this field transform as
ψ̄′(x′) = ψ̄(x)Λ−1

1
2
, so it is able to cancel the Λ 1

2
above. With these elements, we are able

to construct a Lorentz invariant Lagrangian

L(x) = ψ̄(x)(i/∂ ±m)ψ(x) , (2.21)

where we introduced the Feynman slashed notation for contraction of a four-vector with
the Dirac matrices, i.e. /A ≡ γµAµ. The sign in front of the mass, as we will see shortly,
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is a matter of convention. We will carry it along for the moment to show exactly this.
Notice that we could add a term ψ̄(x)∂2ψ(x) or even ψ̄(x)/∂2

ψ(x), since these terms are
Lorentz scalars. However, we would not have met the simplest Lagrangian requirement we
established in the beginning of the current section.

The next step is to build the equation of motion by the use of the Euler-Lagrange
equation. This yields

δL
δψ̄
− ∂µ

[
δL

δ(∂µψ̄)

]
= (i/∂ ±m)ψ(x) = 0 , (2.22)

δL
δψ
− ∂µ

[
δL

δ(∂µψ)

]
= ±mψ̄(x)−

[
i∂µψ̄(x)

]
γµ = 0 . (2.23)

So far we have treated ψ̄(x) as an independent variable. Since ψα(x) ∈ C, we
perform a variable change ψα = φα+ iχα, where φα, χα ∈ R. The two degrees of freedom of
the Dirac Lagrangian are now in the real and imaginary part of the spinor. In this scenario,
it would be natural to assume that ψ̄ = ψ†. This is not the case, since ψ† transforms as
ψ†(x)→ ψ′†(x′) = ψ†(x)Λ†1

2
6= ψ†(x)Λ−1

1
2
, due to Λ−1

1
2
6= Λ†1

2
. The solution is to set ψ̄ ≡ ψ†γ0.

The Lorentz transformation becomes

ψ†(x)γ0 → ψ′†(x′)γ0 = ψ†(x)e i2ωµνSµν†γ0 = ψ†(x)

∞∑
n=0

ωnµν
(
[γµ, γν ]†

)
n! 8n

 γ0

= ψ†(x)γ0
∞∑
n=0

(−1)nωnµν [γµ, γν ]n

n! 8n = ψ†(x)γ0Λ−1
1
2
,

(2.24)

where we used the properties γµ† = γ0γµγ0 and γ0γ0 = 1. Notice that ψ†(x)γ0 obeys the
desired transform for ψ̄(x) and thus is a suitable definition for it.

We established this relation between the spinors ψ̄(x) and ψ(x) because now is
evident that if one takes the transpose conjugate of Eq. (2.22) and right multiply the
result by γ0, one obtains Eq. (2.23). Thus, Eq. (2.23) is redundant.

We still need to show that the mass sign is a matter of convention. The easiest way
is to actually solve Eq. (2.22) To do so, one uses the Ansatz ψ(x) =

(
η ζ

)T
eip

µxµ , where
η and ζ are dimension 2 vectors. with the aforementioned Ansatz, one easily arrives at

η = p · σ
−E ±m

ζ and ζ = p · σ
−E ∓m

η . (2.25)

The conclusion is that if we swap the sign of the mass we are simply swapping the role of
η with ζ. The convention we will follow is to assume a negative sign accompanying the
mass term in the Lagrangian in Eq. (2.21).

If we were to proceed with the solution, we would need to set η or ζ equal to(
1 0

)T
or
(
0 1

)T
. One then sees that if we set η as one of these values, then we must

havei E < 0 to avoid singularities in ζ. But if we set ζ as one of these vectors, then we need
i Assuming m > 0.
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that E > 0 to avoid singularities in η. By interpreting the solution of negative energy as
being the antiparticle of the solution of positive energy, we conclude that the change in the
convention sign accompanying m just swaps which part of the spinor can be interpreted
as describing a particle or its antiparticle.

The solutions in Eq. (2.25) also allow to verify that if we desire non-zero values
for ψ(x), than it is necessary that the relativistic dispersion relation E2 − p2 = m2 to be
obeyed, thus proving that the Dirac equation indeed describes relativistic particles.

2.1.1 Gauge symmetry of the fermion fields

Lorentz invariance is not the only symmetry in the Dirac Lagrangian. If we transform
the spinors as ψ(x)→ ψ′(x) ≡ eiαψ(x), then the Lagrangian is invariant as well. This is
a well-known property of quantum mechanics in general, i.e. a global phase change in
the wave-function leaves the theory invariant. Since two successive transformations are
equivalent to another single one, the elements U = eiα belong to a group, in this case, the
unitary group of rank 1, denoted by U(1).

We point out that what makes the Lagrangian invariant under “rotations” of the
U(1) group is the unitarity property, i.e. U † = U−1. Thus, it is enough U ∈ U(N) to keep
the Lagrangian invariant. Of course, this opens up the possibility for the spinors to carry
an additional index that can be contracted with the group elements. This index will be
called a color index and range from 1 to N .

Nevertheless, using such a general case will not be useful. The U(N) group contains
continuous and discrete subgroups. Later, we will work with local transforms instead of
global ones. If we admit a discrete local transform, we will find undesirable divergent
derivatives. To avoid this issue later, we will restrict transformations to be in the special
unitary group SU(N), i.e. besides unitarity, we require that the group elements have
determinant equal to one. This is a Lie group as well and thus the transformations are
continuous transformations. An element of SU(N) can be expressed as

U = exp (igΛaT a) , (2.26)

where g is the theory couplingii and T a are the group generators, which belong to the Lie
algebra, defined by

[
T a, T b

]
= ifabcT c . (2.27)

The tensor fabc is the group constant structure. Its value changes according to the rank
of the group. The number of generators is dependent on the group rank as well, being
ii The theory coupling is needed for a correct gauge transform of the field Aµ(x), which we will

define in a moment.
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N2 − 1). Thus the indices a, b, . . .∈ [1, N2 − 1]. They are also normalized such that

Tr
(
T aT b

)
= 1

2δ
ab . (2.28)

Thus far, the transformations have been global transformations. A global phase
change resulting in a symmetry is not surprising. If the change is the same everywhere it
is perceived as a shift of the measuring referential only. Thus, to get a more interesting
result, we will demand more from the theory. We will require for it to be invariant under
a local phase change ψ(x)→ ψ′(x) = eigΛ

a(x)Taψ(x) = U(x)ψ(x). Such transformation is
called a gauge transformation and when a Lagrangian is invariant under it, we say that
the theory is gauge invariant. The Dirac Lagrangian, as it stands in Eq. (2.21), it is not
gauge invariant

L(x) → L′(x) = ψ̄(x)U †(x)(i/∂ −m)U(x)ψ(x)
= ψ̄(x)[i/∂ −m]ψ(x) + iψ̄(x)U †(x)[/∂U(x)]ψ(x) .

(2.29)

To understand why the Lagrangian is not gauge invariant, we look at the geometrical
interpretation of the gauge transform. The fact that the spinor field gains a new index
indicates that we are attaching to it an “internal” vectorial space. Also, we are allowed
to adopt a different reference frame in this internal space for each point of the physical
space-time. A gauge transform can be interpreted as a rotation of the internal space’s
basis. With this geometrical interpretation, it becomes evident that a term like ψ̄∂µψ will
not be gauge invariant. By writing the derivative’s definition

∂µψ(x) ≡ lim
a→0

ψ(x+ aµ̂)− ψ(x)
a

, (2.30)

we see that the derivative subtracts the fields in different points of space-time and, thus,
fields which are written in different bases of the internal space. The solution is to define a
covariant derivative that rotates the field ψ(x) to the same basis as ψ(x+ aµ̂)

Dµψ(x) ≡ lim
a→0

ψ(x+ aµ̂)− eigaAaµ(x)Taψ(x)
a

= [∂µ − igAµ(x)]ψ(x) , (2.31)

where Aµ(x) ≡ Aaµ(x)T a is a new field introduced in the Lagrangian. The gauge invariant
Dirac Lagrangian will be given by

L(x) = ψ̄(x)
[
i/∂ + g /A−m

]
ψ(x) = ψ̄(x)

[
i /D −m

]
ψ(x) . (2.32)

The question that immediately follows is how the gauge field Aµ transforms. We
answer this question by using that, if Eq. (2.32) is gauge invariant, then we know that
Dµψ(x)→ D′µψ

′(x) = U(x)Dµψ(x). We have then[
∂µ − igA′µ(x)

]
[U(x)ψ(x)] = U(x) [∂µ − igAµ(x)] only if

A′µ(x) = U(x)Aµ(x)U †(x)− i

g
[∂µU(x)]U †(x) .

(2.33)

The introduction of the gauge field Aµ(x) is presented in more detail in Ref. 18.
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2.2 Gauge Lagrangian

In the section above we introduced a gauge field Aaµ(x), initially as a way to connect
fermion fields located at different points. Contrarily to the variable Λa(x) in the gauge
transform, the field Aaµ(x) appears in the Lagrangian in Eq. (2.32), thus adding a new
degree of freedom to the theory. But it is strange that there is no kinetic term for it,
i.e. a term involving its derivative. As a consequence of the lack of such a term, the
Euler-Lagrange equation for Aaµ(x) is

igψ̄(x)γµT aψ(x) = 0 . (2.34)

One can recognize the left-hand side of the above equation as the current for the charge
g. Note that there is nothing constraining possible values for Aaµ yet. Motivated by this,
we will add a term involving a derivative. The tempting choices would be ∂µAµ or DµA

µ.
But these are not gauge invariant quantities. We do not want to overuse our trick of
introducing a new field to get a gauge invariant Lagrangian, especially when there is a
much simpler solution that does not require it.

Let us consider the commutator

[Dµ, Dν ] = −ig (∂µAν − ∂νAµ − ig [Aµ, Aν ]) . (2.35)

Under gauge transformation, the covariant derivative transforms as Dµ → D′µ = UDµU
†,

since

D′µ = ∂µ − igUAµU † − (∂µU)U † = U
[
U †∂µ − igAµU † − U †(∂µU)U †

]
= U

[
∂µ − igAµ − U †(∂µU)− (∂µU †)U

]
U † = U [∂µ − igAµ]U † = UDµU

† ,
(2.36)

where we used U †∂µf = ∂µ(U †f)− (∂µU †)UU †f and U †∂µU = −(∂µU †)U . The function f
is a placeholder test function. With this, the commutator transforms as

[Dµ, Dν ] →
[
D′µ, D

′
ν

]
=
[
UDµU

†, UDνU
†
]

= U [Dµ, Dν ]U † , (2.37)

i.e. it follows the same transformation pattern as Dµ itself. We use this commutator to
define the field strength tensor as

Fµν = i

g
[Dµ, Dν ] = ∂µAν − ∂νAµ − ig [Aµ, Aν ] . (2.38)

This tensor allows us to construct a Lorentz scalar Fµν(x)F µν(x). However, this is
not gauge invariant yet. Under gauge transformation, it transforms as Fµν(x)F µν(x)→
F ′µν(x)F ′µν(x) = U(x)Fµν(x)F µν(x)U †(x). It is tempting to simply “sandwich” it between
ψ̄(x) and ψ(x) to get a gauge invariant quantity. However, we can take a trace over the
color indices that are implicit in Fµν(x). The cyclic property allows us to cancel U(x) with
U †(x), yielding a gauge invariant term.
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Before writing the Lagrangian for the gauge fields, let us expand Fµν(x)F µν(x)
using Eq. (2.38)

FµνF
µν = 2

[
(∂µAν)(∂µAν)− (∂µAν)(∂νAµ)− ig {∂µAν , [Aµ, Aν ]}

− g2AµAν [Aµ, Aν ]
]
.

(2.39)

The curly braces represent an anti-commutator, as Eq. (2.14). We see in the above
expression a global factor two. This motivates us to multiply everything by a normalization
factor half. Thus, we define the gauge Lagrangian density as

L(x) = 1
2 Tr [Fµν(x)F µν(x)] . (2.40)

The full gauge Lagrangian is then finally written as

L(x) = ψ̄(x)(i /D −m)ψ(x) + 1
2 Tr [Fµν(x)F µν(x)] . (2.41)

The corner stone of our work will be the computation of the energy-momentum
tensor for a quantum gauge field theory with SU(3) symmetry group. Thus, we will skip
the derivation of the equations of motion for this Lagrangian and proceed to a brief review
of Noether’s theorem. A different approach, which partially overlaps with some calculations
performed so far, but includes the derivation of the classical equations of motions, can be
found in the author’s dissertationiii in [Ref. 19, Sec. 2]. A much more in-depth study of
gauge theories can be found in.18

2.3 Noether’s current and the energy-momentum tensor

As we will see in Chapter 4, the energy-momentum tensor will play an important
role on our work. Thus, we need to know its expression for the Lagrangian density in
Eq. (2.41). To this end, we will briefly review Noether’s theorem. We will not derive it
here, but will state it, as found in [Ref. 20, Chap. 8, p. 206].

Theorem: For every continuous transformation of the field func-
tions and coordinates which leaves the action unchanged, there is
a definite combination of the field functions and their derivatives
which is conserved (i.e., a constant in time).

Mathematically, if the Lagrangian is invariant under an infinitesimal transformation

xµ → xµ = xµ + λµi ε
i ,

φα(x) → φ′α(x′) = φα(x) + Ωαi(x)εi ,
(2.42)

iii In the referred dissertation we used the metric gµν = diag(−1, 1, 1, 1) while in the present
work we use gµν = diag(1,−1,−1,−1). Consequently, some results may show a sign difference.
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then there will exist a (conserved) current Oµi , given by

Oµi = δL
δ (∂µφα) [∂νφαλνi − Ωαi]− Lλµi , (2.43)

which obeys the continuity equation

∂µOµi = 0 . (2.44)

The field φα(x) is a placeholder for any field present in the Lagrangian and its index α
represents all possible indices that the field φ carries. Similarly, the index i in Ωαi and
λµi represents all indices used in the transformation. The parameter εi is the infinitesimal
parameter of the transformation upon which we Taylor expand it.

Since Oµi obeys the continuity equation, we can associate to it a conserved charge,
which is defined as

Qi ≡
∫
d3x O0

i . (2.45)

As an example, let us consider the gauge symmetry

xµ → x′µ = xµ ,

ψA(x) → ψ′A(x′) = UAB(x)ψB(x) ∼= ψA(x) + igΛa(x)T aABψB(x) ,
ψ̄A(x) → ψ̄′A(x′) = ψ̄B(x)U †BA(x) ∼= ψ̄A(x) + igΛa(x)ψ̄BT aBA ,
Aaµ(x) → A′

a
µ(x′) ∼= Aaµ(x) +

[
−gfabcAcµ(x) + δab∂µ

]
Λb(x) .

(2.46)

We see that, depending of which field the transformation is being applied on, a
different Ω is needed

(ΩA)abµ = δab∂µ − gfabcAcµ(x) ,
(Ωψ)bA = igT bABψB(x) ,
(Ωψ̄)bA = −igψ̄B(x)T bBA ,

(2.47)

where the index b is equivalent to the index i in Eq. (2.42) and all other indices are
equivalent to α in that equation. Notice as well that λµi = 0, since we do not transform
the space-time coordinates in any way.

Using Fµν = F a
µνT

a, one obtains the following set of equations

δL
δ(∂µAaν)

= F µν, a δL
δAaµ

= gψ̄T aγµψ + gfabcAbνF
µν, c , (2.48)

δL
δ(∂µψ) = iψ̄γµ

δL
δψ

= ψ̄(g /A−m) , (2.49)

δL
δ(∂µψ̄)

= 0 δL
δψ̄

= (i/∂ + g /A−m)ψ . (2.50)



38

One can then use these functional derivatives to write the conserved current jµ, a

as prescribed in Eq. (2.43)

jµ, a = −∂νF µν, a + gfabcAbνF
µν, c + gψ̄T aγµψ . (2.51)

This concludes our example. The curious thing in this example is that, if we compute
the equation of motion for Aaµ, we reduce the current to jaµ = 2g[fabcAbνF µν,c + ψ̄T aγµψ].
The factor two is irrelevant for the continuity equation, therefore we drop it. This matches
the definition of the full color current in the author’s dissertation.19 The difference is that,
in Ref. 19, the current was defined by interpreting the equation of motion, while here it
comes from Noether’s theorem.

Notice that the full color current can be defined only in the classical case, i.e. when
the fields follow their equations of motion. In the quantum case we are not allowed to use
the equations of motion and we should use Eq. (2.51).

2.3.1 Energy-momentum tensor for a gauge field theory

Blindly applying Noether’s theorem will yield an energy-momentum tensor that
has some issues. In this section we will show what are these issues and how to patch them.
The results obtained match the ones in Ref. 21, which are computed using a different
route, via general relativity. The main advantage of this procedure is that it is simpler to
follow for those not used to some aspects of general relativity, especially in the fermion
sector.

To our study, it will be easier to break the Lagrangian density into a fermionic
part and a bosonic part

LF (x) = ψ̄(x)
[
i /D −m

]
ψ(x) , (2.52)

LB(x) = 1
2 Tr [Fµν(x)F µν(x)] . (2.53)

Or yet, with all indices shown

LF (x) = ψ̄αA(x)
[
iδAB(γµ)αβ∂µ + gAaµ(x)(γµ)αβ(T a)AB − δABδαβm

]
ψβB(x) , (2.54)

LB(x) = 1
4F

a
µν(x)F µν, a(x) . (2.55)

We then will compute the energy-momentum tensor for each of these parts in separate.
The full tensor will be the sum of the two results.

The symmetry that generates the invariance is translations, i.e. xµ → x′µ =
xµ + δµν a

ν . The fields are not affected by such a transformation i.e. φ′(x′) = φ(x) for φ = A,
ψ, ψ̄. One then identifies aν with the infinitesimal transformation parameter and then
λµν = δµν . Since the fields are not affected by the transformation, then Ωαi = 0 for all fields.
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2.3.1.1 Bosonic energy-momentum tensor

Using Eq. (2.48), one can easily build the bosonic part of the tensoriv

T µν = δL
δ(∂µAaρ)

gνσ∂σA
a
ρ − gµνLB = F µρ, a∂νAaρ −

gµν

4 F ρσ, aF a
ρσ . (2.56)

This is called the canonical energy-momentum tensor.22 However, it has at least two issues.
Firstly, note that, since one can interpret its components in terms of energy or momentum
density, it must be an observable and thus, gauge invariant. The presence of a term ∂νAaρ

already suggests that this is not the case for the canonical tensor in Eq. (2.56). And indeed,
writing it in matrix notation and performing a gauge change, we can see the presence of
an extra term in the transformed tensor

T ′µν = 2 Tr
[
UF µρU †∂ν

(
UAρU

† − i

g
(∂ρU)U †

)]
− gµν

2 Tr
[
UF ρσU †UFρσU

†
]

= T µνB + 2 Tr
{

[Aρ, F µρ]U †∂νU − i

g
F µρU †

[
∂ν∂ρU + (∂ρU)(∂νU †)U

]}
.

(2.57)

Another issue comes from the fact that the canonical energy-momentum tensor is
not symmetric. A non-symmetric tensor implies that angular-momentum, defined as

Mµρσ = xρT µσ − xσT µρ , (2.58)

will not be conservedv. This is because ∂µMµρσ = T ρσ − T σρ, which will be zero only if
T µν is symmetric.

A solution to this issue is the one presented in Ref. 22. If one considers a “super-
potential” χρµν which is anti-symmetric in its first two indices, then we can add ∂ρχρµν

to the canonical tensor without violating the continuity equation. This happens because
∂µ∂νχ

ρµν will be the contraction of a symmetric tensor (∂µ∂ν) with the anti-symmetric
part of the superpotential.

As an Ansatz to the superpotential, we will choose χρµν = F ρµAν . Therefore, the
term we will add to the tensor will be ∂ρF ρµAν−F µρ∂ρA

ν (beware of the reversed indices in
the second term, which is compensated by the negative sign in front of it). The expression
for the energy-momentum tensor then becomes

T µν = 2 Tr [F µρ (∂νAρ − ∂ρAν) + (∂ρF ρµ)Aν ]−
δµν
2 Tr [FρσF ρσ] . (2.59)

iv To avoid cluttering the equations, from now on we may omit the dependence of position,
unless in situations where it is needed to be stressed out.

v One can convince himself that Mµρσ is the relativistic angular momentum by identifying
pi = T 0i and then noticing that Lk = εijkM

0ij/2.
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We then use the definition of Fνρ in Eq. (2.38), the equation of motion DρF
ρµ ,a = jµ, aF

and the fact thatvi DρF
ρν = ∂ρF

ρν − ig [Aρ, F ρµ] to obtain

T µν = δµν
2 Tr

[
FαβF

αβ
]
− 2 Tr {F µρFνρ

+ ig (F µρ [Aρ, Aν ] + Aν [Aρ , F µρ]) + Aνj
µ
F} .

(2.60)

Lastly, we use the property Tr(A[B, C]) = Tr(C[A, B]) to cancel the two commutators.
The fermionic current jµF will contribute to the fermionic part of the tensor, thus we drop
it for now. The result is a symmetric energy-momentum tensor

T µν = 2 Tr
[
F µρFνρ −

δµν
4 F

ρσFρσ

]
. (2.61)

2.3.1.2 Fermionic energy-momentum tensor

We will initially perform a blind derivation of the fermionic energy-momentum
tensor, using Eqs. (2.49) and (2.50), as we did in the bosonic case

T µν = δLF
δ(∂µψ)δ

ρ
ν∂ρψ + (∂ρψ̄) δLF

δ(∂µψ̄)
δρν + δLF

δ(∂µAaσ)δ
ρ
σ∂ρA

a
σ − δρνLF

= iψ̄γµ∂νψ − δρνLF .
(2.62)

The absence of the field Aµ already tells us that this expression is not gauge invariant. One
way out of this is to remember that, when we were symmetrizing the bosonic tensor, we
dropped the term proportional to the fermionic current Aaνj

µ, a
F = gAaνψ̄γ

µT aψ. We must
then add it here and arrive at

T µν = ψ̄ (iγµ∂ν + gγµAν)ψ − δµνLF , (2.63)

which is clearly gauge invariant. However, we still do not have a symmetric tensor.

Before symmetrizing the fermionic energy-momentum tensor, let us introduce the
operator

←
Dµ, which acts on ψ̄ as

ψ̄
←
Dµ = −∂µψ̄ − igψ̄Aµ . (2.64)

We then rewrite the equation of motion for ψ̄ in Eq. (2.23) as ψ̄(
←
/D−m) = 0. However, the

operator
←
Dµ is absent in the fermionic Lagrangian density. As it stands, the Lagrangian

does not deal with ψ̄ and ψ in a symmetric way. But we can build a symmetric Lagrangian
by replacing the operator Dµ by

↔
Dµ = (Dµ +

←
Dµ)/2. Eqs. (2.49) and (2.50) become

δLF
δ(∂µψ) = i

2 ψ̄γµ
δLF
δψ

= ψ̄
(
− i2

←
/∂ + g /A−m

)
, (2.65)

δLF
δ(∂µψ̄)

= − i2γµψ
δLF
δψ̄

=
(
i

2
/∂ + g /A−m

)
ψ , (2.66)

vi See Refs. 18–19
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where we used the notation
←
∂µ to indicate that the derivative will be acting on a function

from its left. If one proceeds to compute the equations of motion for this Lagrangian, the
same expressions as in Eq. (2.22) and Eq. (2.23) will be obtained. Thus, using

LF = ψ̄
(↔
/D −m

)
ψ (2.67)

as the fermionic Lagrangian will not change the physics.

We calculate the energy-momentum tensor for this Lagrangian using Eqs. (2.43),
(2.65) and (2.66), obtaining

T µν = δLF
δ(∂µψ)∂νψ + (∂νψ̄) δLF

δ(∂µψ̄)
+ δLF
δ(∂µAσ)∂νAσ − δ

µ
νLF + ψ̄γµAνψ

= iψ̄γµ
↔
Dνψ − δµνLF .

(2.68)

This tensor is not symmetric yet. In this case, it is easy to notice that if we permute
the indices of the first term and add the result to it, we would arrive at a symmetric
tensor. Before doing so, we will verify if the extra term added, i.e. iψ̄γν

↔
Dµψ, satisfies the

continuity equation.

The contraction of ∂µ with iψ̄γν
↔
Dµψ yields

∂µ

[
iψ̄γν

↔
D
µ

ψ
]

= i

2
[
ψ̄γν�ψ − (�ψ̄)γνψ

]
+ g∂µ

(
ψ̄γνAµψ

)
, (2.69)

where � = ∂µ∂
µ.

We then exploit the fact that ψ and ψ̄ must satisfy the Klein-Gordon equation,
i.e. (DµDµ −m2)ψ = 0 and ψ̄

(←
D
µ←
Dµ −m2

)
= 0. By expanding the definitions of Dµ

and
←
Dµ, we write the Klein-Gordon equation for them as

�ψ − ig [∂µAµ + 2Aµ∂µ]ψ = m2ψ + gAµA
µψ , (2.70)

�ψ̄ + igψ̄
[
∂µA

µ + 2
←
∂µA

µ
]

= m2ψ̄ + gψ̄AµA
µ . (2.71)

Next, we left-multiply Eq. (2.70) by iψ̄γν/2 and right multiply Eq. (2.71) by iγνψ/2.
Subtracting the resulting equations, we obtain

i

2
[
ψ̄γν�ψ − (�ψ̄)γνψ

]
+ g∂µ

(
ψ̄γνAµψ

)
= 0 . (2.72)

This is telling us that the right-hand side of Eq. (2.69) is zero. Thus, we are allowed to
add iψ̄γν

↔
D
µ

ψ to the energy-momentum tensor. Thus, it is written as

T µν = ψ̄
[
γµ
↔
D
ν

+ γν
↔
D
µ]
ψ − gµνψ̄

(↔
/D −m

)
ψ , (2.73)

which is a symmetrical and gauge invariant tensor.
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The method we presented above is a variation of what is commonly known as
Belinfante method, named after J. Belinfante who first proposed it.23 The main difference
is that, instead of performing an Ansatz, Belinfante prescribed a way of computing
the missing terms. However, it is still bothersome that we needed to patch Noether’s
theorem’s result to get an energy-momentum tensor which is gauge invariant. E. Eriksen
and J. M. Leinaas pointed out in Ref. 24 that, in a pure gauge theory with U(1) symmetry
group, i.e. electromagnetism without fermions, if one performs a translation taking into
account that the field Aµ is gauge dependent, then the resulting tensor is the same as
the one we found. It is easy to understand why this happens. A naive translation as we
performed does not take into account that the internal space base changes as we move
through space. Consequently, the end result will be gauge dependent, unless we “inform”
Noether’s theorem of the gauge symmetry.

Although taking into account gauge symmetry at translations fixes the issue of a
gauge dependent tensor, it will not always fix the symmetry of it. For instance, Y. Takahashi
computed in [Ref. 25, Sec. 6] the energy-momentum tensor for electromagnetism with
fermions, taking into account gauge symmetry. His results were gauge independent, but
the fermionic term was not symmetric. However, in [Ref. 25, Sec. 4] he clearly associates
the symmetry of the EMT with the need to take into account the Lorentz invariance
alongside the translation. We also point out that he modified the fermionic term of the
Lagrangian to include a backward derivative, just as we did.

Another way of performing the same calculation is presented in Ref. 21, which
makes use of general relativity in building the Lagrangian and the energy-momentum
tensor, only taking the limit of flat space as a last step. However, the core idea of needing
to take into account the Lorentz transform alongside the translation is the same and
indeed, Ref. 21 arrives at the same expression for the tensor as the one showed here.

2.4 Quantum field theory at finite temperature

So far, we have treated field theory from a classical point of view. But we are
interested in field theories at a quantum level. In this section we will show that a natural
approach to quantization is using statistical mechanics. The drawback of this approach is
that we will be limited to studying systems at thermodynamic equilibrium. We will start
by briefly presenting the application of the statistical mechanics approach to quantum
theories using the grand canonical partition function. This will enable us to build the
foundations to write the path integral formalism of quantum field theories, which is a key
ingredient in the formulation of lattice QCD.

This section is based on Ref. 26. Furthermore, Ref. 27 provides a more traditional
approach to the subject at hand.
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2.4.1 Statistical mechanics approach to quantum theory

Let us suppose that we desire to compute the expected value of an operator Â for
a quantum system in thermodynamic equilibrium. In a given instant of time the system
is in a state denoted by |ψn〉. Then, the expected value of Â will be given by 〈ψn| Â |ψn〉.
However, when an experimentalist performs a measurement, it typically happens in a time
interval much larger than the one during which the system stays in the state |ψn〉. Thus,
what is measured is an average over many states. Denoting by pn the probability that we
will find the system in the state |ψn〉, the expected value will be given by

〈A〉 =
∑
n

〈ψn| Â |ψn〉 pn , (2.74)

By considering that |ψn〉 is a set of vectors that form an orthonormal basis, we can
insert the relation 1 = ∑

m |ψm〉 〈ψm| . twice in Eq. (2.74) and obtain

〈A〉 =
∑
n, i, j

〈ψn|ψi〉 〈ψi| Â |ψj〉 〈ψj|ψn〉 pn =
∑
i, j

〈ψj|ψi〉 〈ψi| Â |ψj〉 pi = Tr
(
ρ̂Â
)
,

(2.75)

where ρ̂ is called the statistical operator, defined as

ρ̂ =
∑
n

|ψn〉 〈ψn| pn . (2.76)

The sum over n runs over all possible states of the system. Although in an experiment
this does not happen, we will suppose that the measure is taken over a long enough time
so that the system visits the majority of the most probable states. The contribution of
non-visited states is negligible due to its very small probability value.

Eqs. (2.75) and (2.76) tell us that all information we need to know is encoded into
the statistical operator ρ̂. But since it is not always possible to know pn and |ψn〉, we need
an alternative procedure to computing ρ̂.

To this end, let us suppose that the only relevant characteristics to label the
different states are their energies Em and a set of conserved chargesvii n. In this section,
we will consider a single conserved charge to simplify notation, since the calculation for an
arbitrary number of conserved charges is the same. although we use these quantities to
label them, two different states may have the same energy and charges.

Let us suppose as well that our system is in contact with a much larger heath-bath
system, with which it exchanges energy and charge, i.e. we are using the grand canonical
ensemble approach. We will call the number of states in the system with energy Em and
vii We mean by charge any conserved number that comes from the spatial integration of the

zero-th component of a conserved current, as defined in Section 2.3. A system may have more
than one conserved charge.
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charge n by Γ(Em, n). We use a similar notation for the number of states in the heath-bath
system, i.e. ΓH(E ′, n′). We notice yet that if the total energy and charge available are
respectively E and N , the heath-bath quantities will be E ′ = E − Em and n′ = N − n.
Since it is the heath-bath the one to fix the energy and charge in the system, we say that
the probability of finding a state with energy Em and charge n will be proportional to
ΓH(E − Em, N − n). Therefore,

pm,n = ΓH(E − Em, N − n)∑
m [ΓH(E − Em, N − n) + Γ(Em, n)] . (2.77)

By hypothesis, E � Em, N � n and, remembering thatviii entropy is defined as
S ≡ ln Γ, we have that

ln ΓH(E − Em, N − n) ≈ S(E,N)− Em
∂SH

∂E

∣∣∣∣∣
Em=0,n=0

− n ∂S
H

∂n

∣∣∣∣∣
Em=0,n=0

. (2.78)

The derivatives of the entropy can be written in terms of the temperature T and chemical
potential µ via ∂S/∂E = 1/T = β and ∂S/∂N = −βµ. Thus, we obtain the relation

ln ΓH(E − Em, N − n) ≈ S(E,N)− βEm + βµn . (2.79)

Inverting the above relation to isolate ΓH(E−Em, N −n), we write the probability
pm,n as

pm,n = ΓH(E,N)
ΓH(E − Em, N − n) + Γ(Em, n) × exp [−β (Em − µn)] . (2.80)

Notice that, since energy and charge are conserved, the factor in front of the exponential
is a constant, which we will call Z−1.

We are ready to return to Eq. (2.76). The states in it, |ψn〉, are replaced by |Em, n〉.
These are eigenstates of the Hamiltonian operator Ĥ and conserved charge operator N̂ .
Thus, we may write the statistical operator as

ρ̂ =
∑
m e
−β(Em−µn) |Em, n〉 〈Em, n|

Z
= e−β(Ĥ−µN̂)

Z
. (2.81)

At last, we can use Eq. (2.81) in Eq. (2.75) to write the expected value of an
operator Â in terms of the Hamiltonian and conserved charge operator as

〈A〉 =
Tr
[
e−β(Ĥ−µN̂)Â

]
Z

. (2.82)

Notice that we have Z only in terms of the number of states in the system and in
the heath-bath. Of course, these are very difficult to calculate. However, a trivial case is
to set operator Â to 1. Then the expected value will be one and we get

Z = Tr
[
e−β(Ĥ−µN̂)

]
, (2.83)

viii We use temperature units such that kB = 1.



45

which is called the grand partition function of the system.

Eq. (2.82) is useful when one knows how Ĥ, N̂ and Â act in the orthonormal states
of the chosen basis. This may not always be the case. The partition function formalism,
which we will study in the next section, does not use operators and provides a way to deal
with those cases.

2.4.2 The path-integral formulation of the partition function

As said in the previous section, the computation of the partition function and
expected values of observables is not always possible using Eqs. (2.82) and (2.83). The
easiest procedure to evaluate these quantities would be to find the eigenstates of the
Hamiltonian and charge operators to use them in the trace calculation. However, except
for a few simple cases, obtaining these eigenstates is not possible. Thus, the alternative
which we will follow is to get rid of the operators by using the path-integral formalism.

The path-integral formalism can be derived, perhaps in a simpler way, by considering
a system of a point-like particle, perhaps under the influence of a potential V (x). The
drawback is that we would need to make the additional hypothesis that the same procedure
generalizes to field theory. Using the approach presented above, the connection with
statistical mechanics would come later instead of being our starting point. And even
then, the connection would come through a Wick rotation, which introduces the concept
of imaginary time, motivated only by the desire to make an analogy with statistical
mechanics.

Due to the drawbacks outlined above, we choose to start by considering that
there exists a Hilbert space whose base |φ〉 consists of eigenstates of a field operator
φ̂(x). The field φ(x), as in Noether’s theorem, is a placeholder to represent the set of
all fields present in the theory, e.g. for QCD with a single quark flavor that would be
φ(x) = {Aaµ(x), ψaα(x)}. Notice also that we are making fields explicitly space dependent,
while the states |φ〉 are not. Otherwise, one could always adopt φ̂(x) ≡ eiP ·xφ̂e−iP ·x

and |φ〉 ≡ |φ(0)〉 = eiP ·x |φ(x)〉. Notice furthermore that there is no time dependence in
the operators. This is because we desire to describe a system in equilibrium. Therefore,
everything in the system must be time independent. All this said, to avoid cluttering our
equations, we once again will omit the space dependence of the operators from now on,
writing it just in the cases where it needs to be stressed.

Since |φ〉 forms a continuous set, the trace will be written in terms of an integral
instead of a sum. The partition function in Eq. (2.83) will be given by

Z =
∫
dφ 〈φ| e−β(Ĥ−µN̂) |φ〉 , (2.84)
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where the Hamiltonian is

Ĥ =
∫
d3xH[π̂(x), φ̂(x)] . (2.85)

The operator π̂ is the conjugate momentum to φ̂. Similarly, we assume that it is possible
to write the number operator as

N̂ =
∫
d3xN [π̂(x), φ̂(x)] . (2.86)

The next step is to decompose the exponential in N pieces. For convenience, we
will define a ≡ β/N . We then insert the completeness relation

∫
dφi |φi〉 〈φi| = 1 between

each exponential. The index i refers to an auxiliary “time” direction, which we introduce
to distinguish the different completeness relations. We then obtain, after some algebra in
which we use 〈φi|φj〉 = δ(φj − φi)

Z =
N∏
i=1

∫
dφi 〈φi+1| e−a(Ĥ−µN̂) |φi〉 δN+1, 1 . (2.87)

The problem at hand is then to compute 〈φi+1| e−a(Ĥ−µN̂) |φi〉. To this end, we insert
the completeness relation

∫
dπi/(2π) |πi〉 〈πi| = 1. We then apply the property 〈φ|π〉 =

exp[i
∫
d3x π(x)φ(x)], where φ(x) and π(x) are the eigenstates of the operators φ̂(x) and

π̂(x) respectively. Next, we assume that the following relation is true:

〈πi| e−a
∫
d3x[Ĥ(π̂,φ̂)−µN̂ (π̂,φ̂)] |φi〉 = e−a

∫
d3x[H(πi,φi)−µN (πi,φi)] 〈πi|φi〉 . (2.88)

Of course, Eq. (2.88) does not hold true in a general case and its validity should be
checked for each Hamiltonian. Usually the check involves the use of the Baker-Campbell-
Hausdorff [Ref. 28, Eq. (1.2)] formula to write eaH = eaT +aV ≈ eaT eaVea

2[T ,V] . . . Then,
terms proportional to a2 are dropped under the argument that they will vanish when the
continuum limit is takenix, as will be done below. The result will be

〈φi+1| e−a(Ĥ−µN̂) |φi〉 =
∫ dπi

(2π)e
i
∫
d3xπi(φi+1−φi)−a

∫
d3x [H(πi,φi)−µN (πi,φi)] . (2.89)

At this point, depending on the Hamiltonian’s form, it may be possible to integrate
out the momentum. The most common case is for the Hamiltonian to depend on momentum
only by a quadratic term. Then, after square completing the argument of the exponential,
we have at hand a Gaussian integral which allows the integration to be performed. Although
this is a common case, it is an additional hypothesis which will not be adopted for the
time being. In the next section, we will exemplify such a procedure with the complex
scalar field.
ix By continuum limit, we mean we take N →∞ and a→ 0 in such a way that β = aN always.
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With the result from Eq. (2.89) we may write the partition function as

Z =
N∏
i=1

∫ dπi
(2π)

∫
dφi δN+1, 1×

exp
[
a

N∑
i=1

∫
d3x iπi

φi+1 − φi
a

−H(πi, φi) + µN (πi, φi)
]
.

(2.90)

Notice that the field φ, which originally depended only on the position, now depends of
the index i as well. If we take the limit a → 0 and N → ∞ simultaneously, as to keep
β = aN , the index i will become a continuous variable τ . The sum in a∑N

i=1 becomes an
integral and the fraction is just the discretized version of a derivative in τ . Summarizing,
we have the following transformations as we take the continuum limit

φi(x) → φ(x, τ)

a
N∑
i=1
→

∫ β

0
dτ

φi+1(x)− φi(x)
a

→ ∂τφ(x, τ) .

(2.91)

We also adopt the following definitions

lim
a→0
N→∞

N∏
i=1

∫ dπi
(2π)

∫
dφiδN+1, 1 ≡

∫
Dπ

∫
P
Dφ . (2.92)

The P in
∫
P Dφ is an indicative that the integration in the variable φ should be done

respecting the constraint φ(x, 0) = φ(x, β).

With Eqs. (2.90, 2.91) and (2.92), we write the partition function as

Z =
∫
Dπ

∫
P
Dφ e

∫ β
0 dτ

∫
d3x iπ(x,τ)∂τφ(x,τ)−H[π(x,τ),φ(x,τ)]+µN [π(x,τ),φ(x,τ)] . (2.93)

Notice that τ is acting quite-like a time variable. Also, the term iπ∂τφ−H is very
similar to the Legendre transform that would yield the system’s Lagrangian. In fact, by
saying that τ is a complex time related to the real time by τ = it, we arrive precisely at
our usual Legendre transform. Eq. (2.93) is then written as

Z =
∫
Dπ

∫
P
Dφ ei

∫ −iβ
0 dt

∫
d3xπ(x,t)∂0φ(x,t)−H[π(x,t),φ(x,t)]+µN [π(x,t),φ(x,t)] . (2.94)

The argument of the exponential could then be identified with iS. The only things
stopping this identification are the integration limits and the path integral in the conjugate
momentum π. The conclusion drawn is that a quantum field theory at finite temperature
and in equilibrium can be evaluated by an analytic continuation of the time variable to
the complex plane and by changing the integration path of the action to be along the
imaginary axis.
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This conclusion is powerful and is responsible for allowing us to perform Monte
Carlo simulations. Of course, this also tells us that systems which are not in thermal
equilibrium are not available to study by means of Monte Carlo simulations. Similarly,
results from a Monte Carlo simulation cannot be extrapolated to real time, unless the
desired observables are known, allowing us to perform the analytic continuation safely.
This procedure is generally known as Wick rotation.

2.5 Quantum field theory example: the complex scalar field

We will take as an example a complex scalar field theory, with the fields interacting
by means of a potential V (|φ|2)

L = ∂µφ(x)∂µφ∗(x)−m2|φ(x)|2 − V (|φ|2) . (2.95)

For the same reasons discussed in Section 2.1.1, this theory is symmetric under global
phase transformations

φ′(x) = eiαφ(x) ∼= φ(x) + iαφ(x)
φ∗′(x) = e−iαφ∗(x) ∼= φ(x)− iαφ∗(x) .

(2.96)

By means of the Noether theorem (see Section 2.3), we have that Ωφ = iα and
Ωφ∗ = −iα. We then have that the conserved current is given by

jµ = i [φ∗(x)∂µφ(x)− φ(x)∂µφ∗(x)] . (2.97)

The fields φ(x) and φ∗(x) are good degrees of freedom to notice the symmetry
and derive its associated current. However, for the computation of the path integral, they
are not the easiest degrees of freedom to work with. It will greatly simplify our lives to
perform the following change of variables

φ(x) = φ1(x) + iφ2(x)√
2

and φ∗(x) = φ1(x)− iφ2(x)√
2

, (2.98)

where φi(x) ∈ R, i = 1, 2. The Lagrangian is then written as

L = 1
2
[
∂µφ1∂

µφ1 + ∂µφ2∂
µφ2 −m2

(
φ2

1 + φ2
2

)]
− V

(
φ2

1 + φ2
2

2

)
(2.99)

and the conserved current

jµ = φ2∂
µφ1 − φ1∂

µφ2 . (2.100)

We need to find the Hamiltonian for the theory. The first step is to consider the
conjugate momentum of φi

φi = δL
δφ̇i

= φ̇i , (2.101)
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where φ̇i = ∂0φi.

Now, we perform the usual Legendre transformation H = π1φ̇1 + π2φ̇2 − L and
obtain

H = π2
1

2 + π2
2

2 + (∇φ1)2

2 + (∇φ2)2

2 + m2

2
(
φ2

1 + φ2
2

)
+ V

(
φ2

1 + φ2
2

2

)
. (2.102)

The next step is to input the above Hamiltonian in Eq. (2.94). Identifying as the
conserved charge density the zero-th component of jµ, i.e. N = φ2φ̇1−φ1φ̇2 = φ2π1−φ1π2,
we have that the expression inside the space-time integrals in Eq. (2.94) is

π1φ̇1 + π2φ̇2 −
π2

1
2 −

π2
2

2 −
(∇φ1)2

2 − (∇φ2)2

2 − m2

2
(
φ2

1 + φ2
2

)
− V

(
φ2

1 + φ2
2

2

)
+ µ (φ2π1 − φ1π2) .

(2.103)

Notice that, since the path integral runs over φi and πi, we cannot simply replace
πi by φ̇i. In other words, they must be treated as independent of each other. The strategy
adopted is to complete the squares for πi. In this way, after a variable change, we will
arrive at a Gaussian integral that can be trivially evaluated.

Let us forget for a moment the terms that depend only on φi and focus only on
the ones depending on πi. One can also notice that the dependence on the momentum π2

is the same as the one for π1, except for a sign in the term proportional to the chemical
potential µ. Thus, we may write

πiφ̇i −
π2
i

2 − (−1)iµφjπi = −1
2
{
π2
i − 2πi

[
φ̇i − (−1)iµφj

]}
= −1

2
[
πi − φ̇i + (−1)iµφj

]2
+ 1

2
[
φ̇i − (−1)iµφj

]2
,

(2.104)

where j = 1 if i = 2 and vice-versa.

Upon expanding the term independent of πi in Eq. (2.104), we obtain that
Eq. (2.103) becomes

1
2

[
∂µφ1∂

µφ1 + ∂µφ2∂
µφ2 +

(
µ2 −m2

)(φ2
1 + φ2

2
2

)]
− V

(
φ2

1 + φ2
2

2

)

+µ
(
φ̇1φ2 − φ̇2φ1

)
− 1

2

[(
π1 − φ̇1 − µφ2

)2
+
(
π2 − φ̇2 + µφ1

)2
]
.

(2.105)

One then performs a variable transformation to “shifted” momentum coordinates
π̃1 = π1 − φ̇1 − µφ2 and π̃1 = π2 − φ̇2 + µφ1. The integral to be evaluated is therefore

Z =
∫

P
Dφ1Dφ2e

i
∫ −iβ

0

∫
d3xL

[
∂µφ1, ∂µφ2,

φ2
1+φ2

2
2

]× (2.106)
(∫
Dπ̃1Dπ̃2e

−i
∫ −iβ

0

∫
d3x

π̃2
1+π̃2

2
2

)
, (2.107)
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where

L
[
∂µφ1, ∂µφ2,

φ2
1 + φ2

2
2

]
= 1

2

[
∂µφ1∂

µφ1 + ∂µφ2∂
µφ2 +

(
µ2 −m2

)(φ2
1 + φ2

2
2

)]

− V
(
φ2

1 + φ2
2

2

)
+ µ

(
φ̇1φ2 − φ̇2φ1

) (2.108)

is an effective Lagrangian which incorporates the effects of the chemical potential.

To perform the integral in the shifted momentum, one discretizes the space-time
into a hiper-cubic lattice of spacing a. The path integral is then written as a product of
integrals, with an integral for each site. All integrals will be Gaussian and each one will
bring a factor

√
2π. If we do not limit the space to be a box, there will be infinite factors.

Even if limiting the space to be a box of side L, the number of factors will be N3
s ×Nt,

where Ns = L/a and Nt = β/a are the number of lattice sites in the spatial and temporal
directions, respectively. Then, as the limit a→ 0 is taken, the number of factors goes to
infinity anyway.

The picture just described seems to be problematic. However, one must remember
that we are never interested in the partition function by itself, but rather in some
expectation value, as in Eq. (2.82). Now, suppose that an operator Â = f [φ̂, φ̂∗] does
not depend on the momenta conjugate to the fields. We can perform the same procedure
as in Section 2.4.2 and in the current section and we would have arrived at Eq. (2.107)
with f [φ̂, φ̂∗] inside the integrand of the path integral. Therefore, the evaluation of the
path integral in the shifted momentum results in the same constant as before. Since this
will need to be divided by the partition function, the constant will be canceled and no
divergence problem will be present in the computation of the expectation value of Â.

Eq. (2.108) has an interesting property, which is better seen when we rewrite the
Lagrangian in terms of the complex fields φ and φ∗. After some algebra, one arrives at

L
[
∂µφ, ∂µφ

∗, |φ|2
]

= |(∂0 − iµ)φ|2 − |∇φ|2 −m2|φ|2 − V (|φ|2) . (2.109)

Now, if one takes the Lagrangian in Eq. (2.95) and repeats the procedure of Section
2.1.1, generalizing the local symmetry to a global one, a gauge field will be introduced. This
field is introduced by means of a covariant derivative Dµ = ∂µ − igAµ. The Lagrangian in
this case is

L
[
∂µφ, ∂µφ

∗, |φ|2
]

= |(∂µ − igAµ)φ|2 −m2|φ|2 − V (|φ|2) . (2.110)

Thus, the chemical potential enters in the Lagrangian in the same way as the temporal
component of a gauge field.

With this, one writes the partition function as

Z =
∫
P
D[φ∗, φ] exp

[
i
∫ −iβ

0

∫
dt d3x|(∂0 − iµ)φ|2 − |∇φ|2 −m2|φ|2 − V (|φ|2)

]
, (2.111)
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where D[φ∗, φ] = Dφ∗Dφ. The expected value of an observable becomes

〈Â[φ̂∗, φ̂]〉 = 1
Z

∫
P
Dφ∗DφA[φ, φ]ei

∫ −iβ
0 dt

∫
d3x|(∂0−iµ)φ|2−|∇φ|2−m2|φ|2−V (|φ|2) . (2.112)

There is one further thing that must be said about the chemical potential. It breaks
explicitly Lorentz symmetry. This is no surprise. It is associated to the charge density,
which is reference-frame dependent, since it is a component of a four-vector. Thus, every
time we use it, we will need to explicitly say which reference frame we are adopting.

We stress that, although we picked a rather simple theory, the general procedure
stays the same for a more complex theory, e.g. QCD. The main feature needed for a similar
procedure to be applicable is that the Hamiltonian needs to be quadratic in the conjugate
momentum of the fields, without any other field accompanying these terms. This allows
one to complete squares, and to perform the change of variables to the shifted momentum.
This transforms the integral into a Gaussian one, enabling its easy evaluation.

There is one more similarity between this simple theory and QCD. When one
introduces the chemical potential associated to the conservation of baryon number, it
enters inside the fermionic Lagrangian in a similar way as in Eq. (2.109). In this case, it
contributes to the Lagrangian as a temporal component of a complex gauge field, i.e. the
fermionic Lagrangian becomes29

LF = ψ̄
(
i /D + iγ0µ−m

)
ψ . (2.113)

The next step is then to define a suitable operator Â and evaluate the path-integral.
We refer to Eq. (2.92), which prescribes how to compute the path-integral. The introduction
of a lattice to discretize space, with its removal through the limit a→ 0 is unavoidable.
This should be made with care, or else infinities may appear. We leave the details of such
computations for the next chapter.
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Chapter 3

Lattice QCD

“Monte Carlo is an extremely bad method; it should be used only when
all alternatives are worse.”

Alan D. Sokal
Monte Carlo Methods in Statistical Mechanics: Foundations and New

Algorithms (1996)

In Chapter 2 we overviewed field theories and derived the path integral formalism as
a quantization method for them. However, we left pending the computation of observables.
The reason for this is that a non-perturbative approach is mandatory when evaluating
QCD path integrals. This is accomplished by numerical simulations. In this chapter, we
will pick as a suitable observable an n-point correlation function and look in detail at its
evaluation for the complex scalar field. Using perturbation theory, we will show that, for
an interacting theory, the 2-point correlation function diverges if one naively takes the
limit a→ 0. This indicates the need for a renormalization procedure. We will proceed to
outline the Monte Carlo procedure for simulations of non-perturbative theories, such as
QCD, and present a renormalization method for them.

3.1 Evaluation of n-point correlation functions

In Section 2.5, we concluded that the expectation value for an observable Â is given
by

〈Â〉 = 1
Z

∫
D {φ} eiS[{φ}]A[{φ}] , (3.1)

where {φ} represents the set of fields in the theory. To evaluate the path-integral, we will
Wick rotate to Euclidean space, which is more natural for a thermal theory. Thus, we will
have that x0 = t = −iτ = x4. As a consequence, the notation throughout this chapter will
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be slightly different. An index µ runs from 1 through 4 and since the metric is gµν = 1,
there is no need to make a distinction between covariant and contravariant components.

We will continue the example of the complex scalar field from Chapter 2. The
Lagrangian in Eq. (2.110) is in Minkowski space-time. Rotating to Euclidean time, one has

L → −LE = − [(∂4 + µ)φ∗] [(∂4 − µ)φ]− |∇φ|2 −m2|φ|2 − V
(
|φ|2

)
= −|∂µφ|2 −

(
µ2 +m2

)
|φ|2 + µ [φ∗ (∂4φ)− (∂4φ

∗)φ] .
(3.2)

Thus, we rewrite Eq. (3.1) as

〈Â〉E = 1
ZE

∫
D {φ} e−SE [{φ}]A[{φ}] . (3.3)

Since we will be working only in Euclidean time, we drop the index E from now on to
avoid to clutter the notation.

As an operator Â, we will choose the n-point correlation function

Â[φ̂∗(x1), . . . , φ̂(xn)] = φ̂∗(x1)φ̂∗(x2) . . . φ̂∗(xn−m)φ̂∗(xn−m+1) . . . φ̂(xn) . (3.4)

The motivation for such a choice comes from the usual operator approach to quantum field
theories, where φ̂∗ and φ̂ are proportional to the creation/annihilation operators. Thus,
when computing such correlation functions, we are creating and/or annihilating particles
at positions x1, . . . , xn.

The expectation value of the n-point function will be given by

〈φ̂∗(x1) . . . φ̂(xn)〉 = 1
Z

∫
P
D[φ∗(x)]D[φ∗(x)] [φ∗(x1) . . . φ(xn)] e−S . (3.5)

The calculation is simplified by the introduction of the auxiliary currents J∗(x) and J(x)
to the Lagrangiani

L[J∗(x), J(x)] = LE + J∗(x)φ(x)/
√

2 + φ∗(x)J(x)/
√

2 . (3.6)

The correlator then is written as

〈φ̂∗(x1) . . . φ̂(xn+m)〉 = 1
Z[J∗, J ]

[
n∏
i=1

δ

δJ(xi)

]  n+m∏
j=n+1

δ

δJ∗(xj)

Z[J∗, J ]
∣∣∣∣∣∣
J∗, J=0

, (3.7)

Z[J∗, J ] =
∫
P
D[φ∗(x)]D[φ∗(x)]e−

∫ β
0

∫
d3xL[J∗,J ] . (3.8)

The greatest advantage of this approach is that, if one is able to compute Z[J∗, J ]
(up to a constant factor), one will be able to calculate any desired correlation function. In
i Since there is no time ordering of the operators, the computation that will be performed

considers the exchanges xn ↔ xm. The factors 1/
√

2 are to compensate extra numerical
factors due to this exchange.
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what follows, we derive a general formula for Z[J∗, J ] in the complex scalar field theory
example.

As said before, it will be inevitable to evaluate the path integral with the introduc-
tion of a lattice discretizing space. This lattice will have Nτ sites in the temporal direction
and Ns sites in the spatial directions. The spacing between nearest neighboring sites is
denoted by a. The parameter a is such that β = aNτ . This fixes the size of the box in
which we are containing our system to be L = aNτ . As we are taking a finite size lattice,
boundary conditions must be imposed. We already have that the fields must be periodic
in the time direction. A usual choice is to set periodic boundary conditions in the spatial
directions as well. Although this choice is not mandatory, it is the one we will adopt here.

The introduction of the lattice also imposes the need to apply a suitable discretiza-
tion for the action. For the time being, we will not dwell on a particular one. We will only
make the hypothesis that

1. In the naive limit of a→ 0, the discretized action has as the limit the continuum
one.

2. The discrete action may be written as

S =
∑
n,m

φ∗(m)K(m,n)φ(n) , (3.9)

where m, n are indexing lattice sites. We are also adopting the notation φ(n) = φ(an).

As the above notation suggests, K(m,n) is a matrix N3
sNτ ×N3

sNτ and the fields
are vectors of dimension N3

sNτ . This enables us to use a matrix multiplication notation,
further simplifying the notation. The action is then written as S = φ†Kφ.

Let us suppose that there exists a matrix M such as that M †KM = 1. We use it
to perform the change of variables φ† = ϕ†M † and φ = Mϕ. The Jacobian determinant
for this change of variables is det(M †M). We write Z[J, J∗] as

Z[J†, J ] = det(M †M)
∫
P
Dϕ†Dϕ exp

[
−ϕ†ϕ+ J†Mϕ√

2
+ ϕ†M †J√

2

]
. (3.10)

Once again, we found a form very similar to a Gaussian integral. We can make it
explicit by a new change of variables ϕ = A+ iB and ϕ† = AT − iBT , with A, B being
matrices of real numbers. The Jacobian determinant in that case isii (−2i)N3

sNτ . We get

Z[J†, J ] = (−2i)N3
sNτ det(M †M)×∫

P
DADB e

−A2−B2+J†MA√
2

+ATM†J√
2

+ iJ†MB√
2
− iB

TM†J√
2 .

(3.11)

ii To compute this determinant, one notices that the Jacobian matrix is a 2× 2 block matrix(
A B
C D

)
, with each block proportional to 1. Then, the determinant is just det(AD − CB).
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We may then complete squares

−A2 + J†MA√
2

+ ATM †J√
2

= −
(
A− M †J√

2

)† (
A− M †J√

2

)
+ 1

2J
†MM †J , (3.12)

−B2 + iJ†MB√
2

+ iBTM †J√
2

= −
(
B + i

M †J√
2

)† (
M + i

M †J√
2

)
+ 1

2J
†MM †J . (3.13)

At last, one may shift once again the variables to Ã = A −M †J and B̃ = B + iM †J ,
resulting in two Gaussian integrals. Each one will bring a factor πN3

sNτ/2. The result is
finally

Z[J†, J ] = (−2iπ)N
3
sNτ det(M †M)eJ†MM†J . (3.14)

It remains to determine M . To this end, we use its defining property M †KM = 1.
If the matrix M has an inverse, we can right multiply M †KM = 1 by M−1 and left
multiply it by (M †)−1, resulting in K = (M †)−1M−1. Thus we conclude that MM † = K−1

and we may write

Z[J†, J ] = (−2iπ)a
4L3β

detK eJ
†K−1J . (3.15)

Notice that the factor in front of the exponential is a constant, and will cancel out when
computing correlation functions. Thus, in what follows, we will neglect it.

As an example, let us consider the two-point function 〈φ(n)φ∗(m)〉. The first
functional derivative is with respect to J

δ

δJ
Z[J†, J ] = eJ

†K−1JJ†K−1 . (3.16)

Next, we take the derivative in J†

δ2

δJ†δJ
Z[J†, J ] = eJ

†K−1J
[
K−1JJ†K−1 +K−1

]
. (3.17)

Thus, the two-point correlation function will be given by

〈φ(n)φ∗(m)〉 = 1
Z[J†, J ]

δ2

δJ†δJ
Z[J†, J ]

∣∣∣∣∣
J†, J=0

= K−1(n,m) . (3.18)

The problem now is to compute K−1. To do so, we need to discuss a proper
discretization of the action. For now, we will consider the Lagrangian in Eq. (3.2) with
V (|φ|2) = 0, i.e. a non-interacting theory. The dictionary to discretize the action will be
similar to the one in Eq. (2.91). We get

S = a2∑
n

4∑
µ=1

[
|φ(n+ µ̂)|2 + |φ(n)|2 − φ∗(n+ µ̂)φ(n)− φ∗(n)φ(n+ µ̂)

]
+ a4

(
µ2 +m2

)∑
n

|φ(n)|2 + a3µ
∑
n

[
φ∗(n+ 4̂)φ(n)− φ∗(n)φ(n+ 4̂)

]
,

(3.19)
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where the notation n + mµ̂ means that, starting from site n, one hops m sites in the
direction µ̂. The symbol µ̂ stands for a unit vector to indicate one of the four directions
in (Euclidean) space. It should not be confused with the chemical potential. It is usual
to write the action in terms of dimensionless quantitiesiii, denoted by a tilde on top of
them. In our case this is implemented by means of by making the transformations φ̃ = aφ,
φ̃∗ = aφ∗, m̃ = am and µ̃ = aµ. We also point out that

∑
n

4∑
µ=1

φ̃∗(n+ µ̂)φ̃(n+ µ̂) =
∑
n

4∑
µ=1

φ̃∗(n)φ̃(n) , (3.20)

∑
n

4∑
µ=1

φ̃∗(n+ µ̂)φ̃(n) =
∑
n

4∑
µ=1

φ̃(n)φ̃∗(n− µ̂) . (3.21)

After some algebra using the above relations, we are able to write the action in the
form of Eq. (3.9), with K(n,m) given by

K(n,m) =
4∑

µ=1
[2δ(n,m)− δ(n,m+ µ̂)− δ(n,m− µ̂)]

+ µ̃
[
δ(n,m+ 4̂)− δ(n,m− 4̂)

]
+
(
µ̃2 + m̃2

)
δ(n,m) .

(3.22)

Due to the translation symmetry, one may shift the entire lattice by a given amount
and the action does not change. Thus, we say that K(n,m) = K(n −m). With this in
mind, we decompose K(n−m) in its Fourier components

G(k) =
Ns−1∑
ni=0

3
Nτ−1∑
n4=0

K(n)
4∏

µ=1
e
i 2π
Nµ

kµnµ ≡
Nµ∑
nµ

K(n)ei
2π
Nµ

kµnµ

= 4
4∑

µ=1
sin2

(
π

Nµ

kµ

)
+ 2iµ̃ sin

( 2π
Nτ

k4

)
+ µ̃2 + m̃2 ,

(3.23)

where kµ = −Nµ/2, . . . , Nµ/2− 1. One writes K(n−m) in terms of its components as

K(n−m) = 1
N3
sNτ

Nµ∑
kµ

G(k)e−i
2π
Nµ

kµ(nµ−mµ)
. (3.24)

On the other hand, one has that K(n,m)K−1(m, l) = δ(n, l) and using Eq. (3.24)
we may write

1
N3
sNτ

Nµ∑
kµ

Nµ∑
mµ

G(k)e−i
2π
Nµ

kµ(nµ−mµ)
K−1(m, l) = 1

N3
sNτ

Nµ∑
kµ

e
i 2π
Nµ

kµ(lµ−nµ)
. (3.25)

We may expand K−1 in its Fourier components as well

K−1(m, l) = 1
N3
sNτ

Nµ∑
qµ

∆(q)e−i
2π
Nµ

qµ(mµ−lµ)
, (3.26)

iii In numerical simulations, this will be important to avoid sums of numbers differing by several
orders of magnitude, which in turn would lead to larger numerical errors.
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and insert it in Eq. (3.25). The sums in mµ will result in a factor N3
sNτδ(q, k). The delta

may be eliminated by the sum in qµ. Since the sums in kµ are on both sides of the equation,
one may drop them. The exponentials in both sides will be equal now, and thus cancel
each other. The same happens for the remaining normalization factors 1/N3

sNτ . As a
result, one gets that ∆(k)G(k) = 1. Thus, using this statement and Eqs. (3.18), (3.23) and
Eq. (3.26), one arrives at

〈φ̃(n)φ̃∗(m)〉 = 1
N3
sNτ

Nµ∑
kµ

e
−i 2π

Nµ
kµ(nµ−mν)

4∑4
µ=1 sin2

(
π
Nµ
kµ
)

+ 2iµ̃ sin
(

2π
Nτ
k4
)

+ µ̃2 + m̃2
. (3.27)

We must take the continuum limit and the limit of an infinite box L→∞. To this
end, we bring out the lattice parameter a and write

a2〈φ(x)φ∗(y)〉 = a4

L3β

Nµ∑
kµ

e
i 2π
Lµ

kµ(xµ−yν)

4∑4
µ=1 sin2

(
a
2

2π
Lµ
kµ
)

+ 2iaµ sin
(
a2π
β
k4
)

+ a2 (µ2 +m2)
,

(3.28)

where L4 = β = aNτ and Li = Ns, for i = 1, 2, 3. To leave the expression in a more familiar
form, we perform the variable change p = 2πk/L. The sum is now in steps of ∆p = 2π/L

〈φ(x)φ∗(y)〉 = 1
(2π)3β

Nτ/2−1∑
n4=−Nτ/2

π/a−∆p∑
pi=−π/a

[
eip·(x−y)ei

2π
β
aK4(x4−y4) (∆p)3

/

4
a2

3∑
i=1

sin2
(
pi
2

)
+ 4
a2 sin2

(
a

2
2π
β
K4

)
+ 2iµ

a
sin

(
a

2
2π
β
K4

)

+ µ2 +m2
]
.

(3.29)

Notice that we do not touch the temporal components. Now, we take the limit L→∞.
This implies the limit ∆p→ 0 in the expression above. This is the definition of a Riemann
integral and we write

〈φ(x)φ∗(y)〉 = 1
β

Nτ/2−1∑
k=−Nτ/2

∫ π
a

−π
a

d3p

(2π)3 e
ip·(x−y)eiωk(x4−y4)

[
4
a2

3∑
i=1

sin2
(
api
2

)

+ 4
a2 sin2

(
a

2ωk
)

+ 2iµ
a

sin (aωk) + µ2 +m2
]−1

,

(3.30)

where ωk = 2πk4/β is called the Matsubara frequency.27 In the limit of zero temperature,
we may apply the same procedure as for the spatial components and replace the sum by
an integral over the spatial component of the four-momentum.

The example above is one particular case where we are able to take the naive
continuum limit a→ 0 without any issues. For a small, we can approximate sin(api/2) ≈
api/2 and sin(aωk/2) ≈ aω2

k/2. Notice that, as we decrease a, we must increase Nτ to keep
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β = aNτ and thus Nτ →∞. In this way, in the continuum limit, the two-point function
becomes

〈φ(x)φ∗(y)〉 = 1
β

∞∑
k=−∞

∫ ∞
−∞

d3p

(2π)3
eip·(x−y)eiωk(x4−y4)

p2 + ω2
k + 2iµωk + µ2 +m2 . (3.31)

We stress that the components x4 and y4 are in the auxiliary imaginary-time and
should not be interpreted as an actual time variable. This is the reason one does not
worry about the time ordering of operators. However, it is possible to relate the thermal
propagator to the vacuum one by means of a Wick rotation back to real time. The time
ordering then will emerge automatically by means of an appropriate integration path
choice.

3.1.1 Perturbation theory and Feynman graphs

A non-interacting theory has an academic importance due to its simplicity. However,
typical physical systems do interact. We will devote this section to the treatment of
interactions in the case of weakly interacting theories. This means that the potential can
be written as

V (|φ|2) = λf(|φ|2) , λ � 1 . (3.32)

We make such a choice because this is a case where an analytical calculation can
be done. This allows us to expose what happens when the limit a → 0 is taken in an
interacting theory.

We start by breaking the action into the non-interacting part and the interacting
part. Thus the exponential inside the path-integral becomes

exp
{
−SE[J, J†]

}
= exp

{
−S0[J, J†]

}
∞∑
n=0

(−1)n
n!

Nµ∑
nµ

V
(∣∣∣φ(n)2

∣∣∣)
n . (3.33)

If V is polynomial, then one can generate it by means of functional derivatives of the
auxiliary currents, i.e.

exp
{
−SE[J, J†]

}
=

∞∑
n=0

(−1)n
n!

Nµ∑
nµ

V

(
δ2

δJ(n)δJ∗(n)

)n exp
{
−S0[J, J†]

}
. (3.34)

In particular, if λ � 1 and one desires to compute the observable with a fixed
precision, one may not need to evaluate all the terms of Eq. (3.34) and truncate the series
at a given order.

As an example, we will take the potential λ|φ|4 and compute the two-point cor-
relation function, truncating it after the first order. At order 0, we simply recover the
free theory function. The interesting result happens at the first order. This will require
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the computation of a fourth-order functional derivatives, which can get quite lengthy
and tedious, although the procedure itself is simple. For this reason we will omit this
calculation here, only stating the result after setting the auxiliary currents to zero

Z1[0, 0] = 2λ
Nµ∑
mµ

K−1(m,m)K−1(m,m) , (3.35)

δ2

δJ†(m)δJ(n)Z1[J†, J ]
∣∣∣∣∣
J, J†=0

= 2λK−1(m,n)
Nµ∑
lµ

K−1(l, l)K−1(l, l)

+ 4λ
Nµ∑
lµ

K−1(m, l)K−1(l, l)K−1(l, l)K−1(l, n) .
(3.36)

The above equations can be represented graphically if the following rules are
applied:

• Each propagator ∆(q) is represented by a line.

• Every end point n of a propagator brings a factor e(2πi/Nµ)qµnµ , where q is associated
to the momentum of the propagator leaving point q. If the momentum is incoming,
its sign is reversed.

• Each point which is summed over is called a vertex and brings a factor λ. It is
represented by a dot.

• Each vertex is allowed to have only 4 lines attached to it.

• There is a sum over all momentum variables in each graph.

These rules are called Feynman rules, since Feynman was the one to propose this
drawing method of notation. The graphs that originate from them are usually referred to
as Feynman graphs or Feynman diagrams. Using this notation, one gets

Z1[0, 0] = 2 (3.37)

δ2Z1[J†, J ]
δJ†(m)δJ(n)

∣∣∣∣∣
J, J†=0

= 2 ×
(
m n

)
+ 4

 m n

 . (3.38)

The two-point correlation function, computed up to first order, will then be

〈φ̂(m)φ̂∗(n)〉 = m n − 4

 m n

/
1− 2

 . (3.39)

Notice that the infinity shaped graph amounts to a numerical constant. We leave
to deal with it later and focus on the one with the loop attached to it. We will consider the
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case of an infinite box, thus avoiding to deal with finite-size effects. To make notation more
compact, we will take the case of zero temperature. Lastly, to simplify the calculations,
we take the case of zero chemical potential as well. We have

x

pµ
z

kµ

y

qµ

=
∫ π/a

−π/a

d4p

(2π)4
d4q

(2π)4
d4k

(2π)4×

∫
d4z

eipµ(x−z)µ

4
a2
∑
µ sin2

(
apµ

2

)
+m2

×

e−iqµ(y−z)µ

4
a2
∑
µ sin2

(
aqµ
2

)
+m2

λ
4
a2
∑
µ sin2

(
akµ

2

)
+m2

=
∫ π/a

−π/a

d4p

(2π)4
d4k

(2π)4
eipµ(x−y)µ[

4
a2
∑
µ sin2

(
apµ

2

)
+m2

]2×
λ

4
a2
∑
µ sin2

(
akµ

2

)
+m2

.

(3.40)

Notice that the integration region is finite and all poles are outside it. Thus, the
above integral is finite. However, if we take the continuum limit of a→ 0 naively, we have

x

pµ
z

kµ

y

qµ

=
a→0

∫ ∞
−∞

d4p

(2π)4
d4k

(2π)4
eipµ(x−y)µ

(p2 +m2)2
λ

k2 +m2 . (3.41)

Let us evaluate the integral in k. We notice that the integrand is even and thus we
can replace the integration limits to be from 0 to ∞ in each one of the 4 integrals. Next,
we perform a variable change to (hyper-)spherical coordinates. We get

∫ ∞
−∞

d4k

(2π)4
λ

k2 +m2 = λ

π4

∫ ∞
0

k3 dk

k2 +m2

∫
dΩ = λΩ

π4

∫ ∞
0

k3 dk

k2 +m2 . (3.42)

Next, one makes the change of variables k =
√
p2 −m2. The integral becomes

λΩ
π4

∫ ∞
m

p2 −m2

p
dp → ∞ . (3.43)

Thus, the integral in k, which was amounting to just a finite numerical factor inside
the propagator, diverges when we take the continuum limit naively. This is nothing different
from the usual divergences one finds in quantum field theory textbooks. A renormalization
procedure must be taken. Therefore, we are able to interpret the lattice not just as a
mathematical trick used to compute the path-integral, but as a regularization of the theory,
with the regulator being the lattice spacing. And as in any renormalizable theory, its bare
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parameters (masses and couplings) depend on the regulator. Consequently, the continuum
limit process consists in varying the bare parameters of the theory in such a way as to
keep an observable evaluated at a given energy scale constant. The value that one fixes
for the observable is usually taken (but not necessarily) to be its value as experimentally
measured.

We used the complex scalar theory due to its simplicity. However, such issues
appear in gauge theories as well. We will not dwell further on how to renormalize a
perturbative theory. This is because we are interested in QCD, which has a running
coupling that prevents us from performing this perturbative approach when studying
low-energy phenomena. The reason is because the interaction coupling gets of order one or
more at low energies. Instead, we will proceed to the description of QCD’s discretization
on the lattice and the calculation of observables using Monte Carlo simulations. We will
return to the topic of renormalization as one of the steps of performing the simulation.

3.2 Discretization of the Yang-Mills action

Quantum Chromodynamics is built as a gauge theory with SU(3) symmetry group.
The fermions carrying color charge come in six “flavors”, each one with its own mass. We
write the QCD Lagrangian (in Minkowski space-time) as

LQCD =
6∑

f=1
ψ̄f
(
iγµ∂µ + g0γ

µAµ −mf
0

)
ψf − 1

2 Tr [FµνF µν ] . (3.44)

Notice that we attached a 0 subscript to the coupling and to the mass. This is to
indicate that these are the bare parameters of the theory, which are different from the
“dressed” parameters that appears after a renormalization procedure takes place.

An operator Â will depend on the fields ψ̄f , ψf and Aµ. In this way, we write the
expectation value of Â as

〈Â[ψ̄f , ψf , Aµ]〉 = 1
Z

 6∏
f=1

∫
D[ψ̄f ]D[ψf ]

D[Aµ]A[ψ̄f , ψf , Aµ]×

ei
∫ −iβ

0 dt
∫
d3xLQCD[ψ̄f ,ψf ,Aµ] .

(3.45)

As was done for the complex scalar field, we will perform a Wick rotation to
Euclidean time. However, here we have to Wick rotate the Dirac matrices as well, since their
defining property is metric dependent, i.e. they must obey {γµ, γν} = 2δµν . Furthermore,
we have a vector field (Aµ), which must be Wick rotated as well. We summarize the
transformations that one must perform below [see Ref. 30 for the Wick rotations of the
Dirac matrices]

γ0,M = γ4 , γi,M = iγi , ∂0 = i∂4 and A0 = −iA4 . (3.46)
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For the moment, let us look only at the fermionic term of the Lagrangian. Also,
since for all flavors the Lagrangian has the same form, we will consider just one of them.
This cleans up the notation and we just need to remember that later we will need to sum
over all flavors. With this in mind, we have that the fermionic term in the Lagrangian
transforms as

LF = ψ̄
(
iγ0,M∂0 + iγi,M∂i + g0γ

0,MA0 − g0γ
iMAi −m0

)
ψ

= ψ̄ (−γ4∂4 − γi∂i − ig0γ0A0 − ig0γiAi −m0)ψ
= −ψ̄ (γµ∂µ + ig0γµAµ +m0) = −LF,E .

(3.47)

We then turn to the gauge term of the Lagrangian. The sum FµνF
µν can be

rewritten as −2F 0iF 0i + 2FijF ij. Thus we need only to learn how F 0i transforms. We see
that

F 0i = ∂0Ai − ∂iA0 − ig0
[
A0, Ai

]
= −i∂4Ai + i∂iA4 − ig0 [−iA4Ai] = −iF4i . (3.48)

Therefore the gauge Lagrangian transforms as

LG = Tr
[
F 0iF 0i − F ijF ij

]
= −Tr [F4iF4i + FijFij]

= −1
2 Tr [FµνFµν ] = −LG,E .

(3.49)

From these results, we write the Euclidean Lagrangian as

LE =
∑
f

ψ̄f (γµ∂µ + ig0γµAµ +m0)ψf + 1
2 Tr [FµνFµν ] . (3.50)

The expectation value of an observable will be similar to the one in Eq. (3.45), but with
the Minkowski Lagrangian replaced by the Euclidean one, the imaginary number in front
of the action replaced by a negative sign and the temporal integration limit now running
from 0 to β.

With this, we are ready to discretize the theory’s action. The strategy, once again,
is to consider gauge and fermionic actions separately. Since the fermionic Lagrangian
contains the gauge field, it will be simpler to discretize first the gauge action and only
then proceed to the fermionic action.

3.2.1 Discretization of the gauge action

The discretization of the gauge action was performed in the author’s dissertation
in [Ref. 19, Chap. 3]. For completeness, it is reproduced here, with some minor adaptations.

In Eq. (2.31) we see that, in order to compare two fields infinitesimally near each
other, one must transport one of them using the factor eiagAµ(x)aTa . Now we wish to
describe this transport on a lattice of spacing a between neighboring sites. The transport
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through lattice sites can be described as a hopping between neighboring sites. As the
particle hops between these sites, it gains the corresponding phase factor. In this way, we
can associate an SU(N) group element Uµ(x) to each link between two adjacent sites (see
Fig. 2). The notation used means that this group element corresponds to the lattice link
between the points x and x+ aµ̂.

Uµ(x)

x

x+ aµ̂

Figure 2 – Visual representation of the association of a group element Uµ(x) to a link
of the lattice. Notice that this defines a “forward direction as well”. Source:
SERENONE.19

Since after the parallel transport Uµ(x)ψ(x+ aµ̂) must behave under gauge trans-
formations as the field at point x, the group element Uµ(x) behaves under gauge transfor-
mations asiv

Uµ(x) → V (x)Uµ(x)V †(x+ aµ̂) , (3.51)

where V (x) is an SU(N) group element as well, associated to the lattice site at position x.

Having discretized the space on a lattice, we can shift the dependence of Uµ(x) on
Aµ(x) to the position x+ aµ̂/2, since we later take the continuum limit a→ 0, returning
to the original definition. Thus, on the lattice, we relate Uµ(x) to Aµ by

Uµ(x) = exp
[
ig0aAµ(x+ aµ̂/2)

]
. (3.52)

Once we attribute a group element to every link of the lattice, we have fixed a field
configuration. If a different configuration is desired, it will be enough to just change the
group elements associated with each link. Also, Eq. (3.52) defines a forward direction. With
this, we can define oriented closed loops on the lattice. This is achieved by multiplying the
group elements of links in the closed loop and taking the trace

W (C) = Tr
[∏
x

Uµ(x)
]
, (3.53)

where the variable x in the product runs over all the lattice points in the loop. Note
that this will require some links to be oriented in the backward direction. When this
iv This explanation seems in conflict with the derivation of the covariant derivative in Section

2.1.1. However, one must remember that the derivation there was done in Minkowski space. In
Euclidean space the parallel transport must act on ψ(x+ aµ̂) instead, to correctly reproduce
the sign of Aµ(x) in Eq. (3.47). Then, Uµ(x) must gauge transform as stated here.



65

happens, we must use the inverse element U−1
µ (x), or equivalently U †µ(x) ≡ U−µ(x+ aµ̂).

It is important to notice that these closed loops are gauge-invariant [see Eq. (3.51)]. They
are called Wilson loops and play a central role in lattice studies, both for analytical
calculations and for computational simulations.

Finally, we need to build an action to use in the statistical weight. This action
must correspond, in the limit a → 0, to the integral of Eq. (3.49). We note that F a

µν is
a generalized form of curl. This information can be used to motivate the action in the
following way. Firstly we define as a plaquette the elementary square on a lattice, i.e. a
square of side a (see Fig. 3). Each one of these plaquettes corresponds to the smallest

µ̂

ν̂ Uµ(x)

Uν(x+ aµ̂)

U−µ(x+ aµ̂+ aν̂)

U−ν(x+ aν̂)

x

Uµν(x)

Figure 3 – A graphical representation of a plaquette. Source: SERENONE.19

possible closed loop on the lattice, i.e. in some sense, it is a discretized version of a curl on
the lattice. The resulting action, introduced by Wilson in 1974,31 is given by

S =
∑
x

∑
C(µ,ν)

Sµν(x) , (3.54)

where C(µ, ν) stands for the six possible combinations of µ and ν, i.e. we have to consider
the plaquettes at point x on all the six planes [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]. We
also sum over all lattice points x. Essentially, Sµν(x) is a quantity that depends on a given
plaquette and we are summing over all oriented plaquettes on the lattice. We have

Sµν(x) ≡ β0

{
1− 1

N
<Tr

[
Uµ(x)Uν(x+ aµ̂)U−µ(x+ aµ̂+ aν̂)U−ν(x+ aν̂)

]}
≡ β0

{
1− 1

N
<TrUµν(x)

}
,

(3.55)

where < indicates the real part of the trace and N is the dimension of the group matrices,
e.g. N = 2 for the SU(2) group. Notice that Sµν is clearly gauge-invariant and therefore
the Wilson action preserves gauge symmetry exactly, for any value of a. The factor β is
related to the bare coupling g0 by

β0 = 2N
g2

0
, (3.56)
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in order to reproduce the gauge action in Eq. (3.49) as we take the limit of zero
lattice spacing. To verify this, let us consider a particular plane (µ, ν). We use the
Baker–Campbell–Hausdorff formula to reduce Uµν [defined in Eq. (3.55)] to a single expo-
nential. We will keep in our expansion terms up to order a2 and therefore we can ignore
terms containing commutators of commutators. We Taylor expand Aµ(x) assuming small
values of a. The first step consists in calculating Uµ(x)Uν(x+ aµ̂)

Uµ (x)Uν (x+ aµ̂) = eig0aAµ(x+a
2 µ̂) eig0aAν(x+aµ̂+a

2 ν̂)

≈ eig0a[Aµ(x+a
2 µ̂)+Aν(x+aµ̂+a

2 ν̂)]e
g2

0a
2

2 [Aµ(x+a
2 µ̂), Aν(x+aµ̂+a

2 ν̂)] .
(3.57)

For the calculation of Uµν(x) we need also the expression for U−ν(x+aν̂)U−µ(x+aν̂+aµ̂) =
[Uν(x)Uµ(x+ aν̂)]†. Notice that if we make the transformation in the indices µ→ ν and
ν → µ, we obtain that Uµ(x)Uν(x+aµ̂)→ Uν(x)Uµ(x+aν̂). Therefore these transformations
allow us to get an expression for Uν(x)Uµ(x + aν̂) from Eq. (3.57). We are now able to
calculate Uµν(x)

Uµν(x) = [Uµ (x)Uν (x+ aµ̂)] [Uν (x)Uµ (x+ aν̂)]†

≈ exp
{
ig0aAµ (x+ aµ̂/2) + ig0aAν (x+ aµ̂+ aν̂/2)

− g2
0a

2

2 [Aµ (x+ aµ̂/2) , Aν (x+ aµ̂+ aν̂/2)]

− ig0aAν (x+ aν̂/2)− ig0aAµ (x+ aν̂ + aµ̂/2)

− g2
0a

2

2 [Aν (x+ aν̂/2) , Aµ (x+ aν̂ + aµ̂/2)]†
}
×

exp
{
g2

0a
2[Aµ (x+ aµ̂/2) , Aν (x+ aν̂/2)]

+ g2
0a

2[Aµ (x+ aµ̂/2) , Aµ (x+ aν̂ + aµ̂/2)]
+ g2

0a
2[Aν (x+ aµ̂+ aν̂/2) , Aν (x+ aν̂/2)]

+ g2
0a

2[Aν (x+ aµ̂+ aν̂/2) , Aµ (x+ aν̂ + aµ̂/2)]
}
.

(3.58)

We proceed to perform the Taylor expansion around small a. In the first exponential
in Eq. (3.58) we expand up to first order in a, since each Aµ is accompanied by an a and
therefore this will result in terms of order up to a2. For the second exponential, each term
in it is already of order a2, so the expansion must be carried until zeroth order. It is easy
to see that with this expansion the argument of the second exponential will be zero and
therefore we focus on the expansion in the first exponential. We obtain

Uµν(x) = exp
{
− ig0a

2 [∂µAν(x)− ∂νAµ(x)]− g2
0a

2 [Aµ(x), Aν(x)] +O(a4)
}

= exp
[
−ig0a

2Fµν +O(a3)
]
.

(3.59)
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We proceed to Taylor expand the exponential

Uµν(x) = 1 − ig0a
2Fµν −

g2
0a

4

2 F 2
µν + O(a6) . (3.60)

We use Eq. (3.60) in Eq. (3.55) to obtain the contribution of a single plaquette to the
action in the limit of small a

Sµν(x) = β

[
1− 1

N
< (Tr1) + g0a

2

N
<(iTrFµν) + g2

0a
4

2N <
(
TrF 2

µν

)]

= β
g2

0a
4

2N <
(
TrF 2

µν

)
= Tr

[
βg2

0a
4

4N
(
FµνFµν + F ∗µνF

∗
µν

)]

= βg2
0a

4

2N Tr (FµνFµν) .

(3.61)

Notice that Sµν is the contribution of a single plaquette to the action and therefore
Einstein’s sum rule does not apply for FµνFµν . The following step is to sum over the
plaquettes Sµν(x) of the entire lattice and take the limit a→ 0

∑
x

βg2
0a

4

2N Tr [Fµν(x)Fµν(x)] → βg2
0

2N

∫
d4x Tr [Fµν(x)Fµν(x)] . (3.62)

When we sum this result over all the six possible planes, we obtain

S = βg2
0

2N

∫
d4xTr [F41(x)F41(x) + F42(x)F42(x) + F43(x)F43(x)

+ F12(x)F12(x) + F13(x)F13(x) + F23(x)F23(x)] ,
(3.63)

which can now be written using Einstein’s sum rule as

S = βg2
0

2N

∫
d4x

1
2 Tr [FµνFµν ] . (3.64)

The factor 1/2 comes from the fact that, when we sum over the indices, there will be
terms FµνFµν as well as FνµFµν = FµνFµν .

We compare the result in Eq. (3.64) with Eq. (3.50) integrated (with the fermion
fields ψ set to zero). We see that the choice made in Eq. (3.56) makes the lattice action
equivalent to the Euclidean action, as we desired to show.

3.2.2 Discretization of the fermionic action

The discretization of the fermionic field is somewhat simpler. For the covariant
derivative, one uses the symmetric discretization of variables, as it has a smaller numerical
error. However, as was done in the definition of the covariant derivative in Eq. (2.31), one
must parallel transport the fields to the central point x. Thus, the discretization of the
covariant derivative is written as

Dµψ(x) → Uµ(m)ψ(m+ µ̂)− U−µ(m)ψ(m− µ̂)
2a . (3.65)



68

Given the above discretization, a candidate to the discrete fermionic action for the
flavor f is

Sf = a4 ∑
m,n

ψ̄f (m)
 4∑
µ=1

γµ
Uµ(m)δ(m+ µ̂, n)− U−µ(m)δ(m− µ̂, n)

2a

+mf
0δ(m,n)

]
ψf (n) .

(3.66)

There is one particularity that must be said about fermions: due to Fermi-Dirac
statistics, the order they appear in an observable matters. As an example, for fermion fields
at two different positions, one have ψαa(x)ψβb(y) = −ψβb(y)ψ(x)αa. For this reason, the
field components cannot be treated as usual complex numbers. Instead, they are treated
as Grassmann numbers. These variables have a peculiar behavior, e.g. an integral and a
derivation over them acts in the same fashion.30,32–33 Also, due to the anti-commutative
property, we have that ψ2

i = 0, meaning that any function of Grassmann variables can be
Taylor expanded to first order and the expansion will be exact. Beside the new algebra
introduced, the core idea of introducing auxiliary currents conjugate to the fields and
computing generating functionals is kept. Since it will require just a bit of algebra, we
will not describe the entire procedure, but show the final result, which is called Wick’s
theorem30

〈ψα1a1(x1)ψ̄β1b1(y1) . . . ψαnan(xn)ψ̄βnbn(yn)〉F
= (−1)n

∑
P (1,2,...,n)

sign(P )K−1
α1a1, βP1bP1

(x1, yP1) . . . K−1
αnan, βPnbPn

(xn, yPn) , (3.67)

where the 〈·〉F means that the average is taken only in terms of the fermions, i.e. only the
path integrals with respect to the fermions where performed. Thus, in general, the matrix
K−1 holds a dependence on the gauge fields, which must be integrated.

A simple case where K−1 does not depend on the gauge links is the case of free
fermions, i.e. with Uµ(x) = 1. Then one may use the discretization in Eq. (3.66) to compute
the two-point correlation function 〈ψαa(x)ψ̄βb(y)〉. The result in momentum space is

∆(q) =
m01− i

a

∑4
µ=1 γµ sin(apµ)

m2
0 + 1

a2
∑4
µ=1 sin2(apµ) . (3.68)

Consider the case where we take the bare mass to 0. We know that in the continuum
this will yield a double pole at p = 0. However, in this case, there will be also poles at
p = (π/a, 0, 0, 0), p = (π/a, π/a, 0, 0), . . . and so on. These poles are nonphysical and are
a result of the discretization adopted. The presence of such “doublers” was noticed by
K. Wilson, shortly after he proposed the lattice approach to quantum field theories.34

It was him who also proposed as solution to add a term to the discretized action which
behaves as a mass term when one of the momenta pµ = π/a. This term is usually refereed
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as the Wilson term and is given by

−a
4∑

µ=1

Uµ(m)δ(m+ µ̂, n)− 2δ(n,m) + U−n(m)δ(m− µ̂, n)
2a2 . (3.69)

The prefactor a guarantees us that, in the naive continuum limit, it vanishes. At
the same time, this term adds to the bare mass a quantity proportional to 1/a when
pµ = π/a and nothing when pµ = 0. Consequently, as we take a → 0, the mass of the
doublers becomes infinity and they do not affect the physics of the propagator. The Wilson
action is then written as

SW = a4∑
f

∑
m,n

ψ̄f (m)
[(
mf

0 + 4
a

)
δ(m,n)

− 1
2a

±4∑
µ=±1

(1− γµ)Uµ(m)δ(m+ µ̂, n)
]
ψf (n) ,

(3.70)

where γ−µ = −γµ.

The Wilson action is not perfect. For instance, since the up and down quarks are
very light (a couple of megaelectron volts), it is common to consider QCD at energy scales
smaller than the strange mass to posses chiral symmetry, i.e. to neglect quark masses.
However, the Wilson action explicitly breaks chiral symmetry. Thus, if one desires to study
a phenomenon sensitive to chiral symmetry, as the chiral condensate 〈ψ̄ψ〉 or the pion mass,
the Wilson action is not the ideal tool. In the example, one may desire to use the staggered
fermions action, which partially restore chiral symmetry, but at the cost of restoring some
(but not all) doublers. Another approach is called domain wall fermions and consists of
considering a fifth dimension for fermions and taking only its 4D boundary values at this
extra dimension to compute observables. With this, one may restore chiral symmetry, but
it is much more expensive to solve. Yet another example is the twisted mass fermions,
used for even-flavoured theories. This approach introduces a complex mass term which can
be used to introduce a infrared regulator as well as introduce order O(a) corrections to
the action. All these approaches are overvieed in detail at Ref. 30 and references there in.

3.3 Monte Carlo simulation

As stated at the end of Section 3.1.1, it is not possible to evaluate the partition
function analytically for the full QCD. We turn to a numerical solution. The most
straightforward process would be to discretize the path-integral, assigning an integral
to each lattice site and then numerically estimating its value. Although this is a valid
procedure, it is not a viable one. Let us suppose that each integral will be evaluated via a
method like Simpson’s rule.35 If the integral interval is partitioned in N bins, the precision
increases as N−5/D, where D is the dimension number of the discretized path integral. In
our case, D is the number of sites on the lattice, i.e. D = N3

sNτ . A lattice of modest size
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typically has sides sizes of order 10, making D ∼ 104. As a result, to gain one order of
magnitude in precision, one would need an effort 10N3

sNτ ∼ 1010000 times greater. To get
an idea of the size of the problem, let us be optimistic and imagine that each integral
for a site will require 100k floating operations to evaluatev. Therefore, it will be executed
around 105×104 floating point operations. Let us consider a computer with a processing
power of the order 100’s of petaflopsvi. The time it will take to execute such a computation
will be 105×104−15 s ≈ 105×104 s. To better picture this number, the age of the universe is
around of 4.4× 1016 s. It is evident that this straightforward process is hopeless, even for
a small lattice. An alternative to evaluating the path-integral is needed.

The Monte Carlo approach is this alternative. The idea is that, due to the exponen-
tial e−S, a couple of gauge configurations that yield an action value near zero are the ones
that weigh more in the path integrals sums, with the contributions of the remaining con-
figurations being negligible. This is because one could look at e−S as a density probability
and thus, if one randomly draws field configurations following this distribution, then it
would just be a matter of evaluating the operators at these distributions and take a simple
average to get an estimator of the expectation value of the operator. This procedure is
called importance sampling.

To illustrate, let us apply this procedure to the computation of the expectation
value of a function A(x) when x is a stochastic variable following the Gaussian function.
We draw NMC points following the Gaussian distribution function. One then writes

∫ ∞
−∞

A(x) e
− x2

2σ2

√
2πσ2

dx ∼=
NMC∑
i=1

A(xi)∆x . (3.71)

Since we draw the points following the probability density, then automatically we will have
proportionally more terms in the sum near the probability peaksvii. Thus we are allowed to
omit the probability density in the left-hand side of Eq. (3.71). It remains to determine ∆x.
Since the Gaussian function is normalized and using A(x) = 1, we arrive at NMC∆x = 1.
This yields ∆x = 1/NMC . Therefore, as we said above, if one draws the points x following
the probability density, the computation of expected values of an operator is just a matter
of averaging over the values of the operator evaluated at these points.

Let us return to the QCD case. Due to the Grassmann number representation of
fermions, one is able to evaluate the integrals over them as long as they appear bilinearly
v We are estimating that the computation of the exponential of the trace of a plaquette takes

around 100 multiplications and sums, and in the process of integrating a site one will repeat
the process 1000 times. Notice that, in this estimation, we are being overly optimistic and
excluding the computational cost of evaluating the exponentiation.

vi At the time of writing this thesis, this is the order of magnitude of computational power of
the most powerful computers in the world.

vii We stress that a point far away of the peak is not forbidden to be draw, it is just unlikely
to be selected because we are following the Gaussian distribution.
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in the observable Â. This is shown in Wick’s theorem in Eq. (3.67). However, we stress
that, there, the gauge fields were frozen, i.e. we did not integrate over the gauge fields. As
a result, in the complete computation, Wick’s theorem’s result should be multiplied by
the fermionic partition function ZF = detKF , and then one integrates everything in the
gauge fields only. As an example, consider the operator ψ̄(y)Uν(y)ψ(y + aν̂), which can be
rewritten as −Tr[Uν(y)ψ(y + aν̂)ψ̄(y)], where the trace is over color and spinor indices.
We can write it in terms of path integral as

〈ψ̄(y)Uν(y)ψ(y + aν̂)〉 = 1
Z

∫
D[Uµ(x)] Tr

[
Uν(y)K−1(y + aν̂, y)

]
e−SG detKF , (3.72)

Z =
∫
D[Uµ(x)]e−SG detKF , (3.73)

where KF is a function of Uµ(x). From Eq. (3.73), it is possible to deduce that we should
treat as the distribution function the term e−SG detKF . This implies that the gauge
action must be real and positive. The same applies to detKF . However, it is not always
true that the determinant obeys these conditions. Depending on the action, some tricks
may be employed to ensure these conditions are met. For instance, if the approximation
mf=u

0 = mf=d
0 is made, one may use the property that, for the Wilson action, γ5Kγ5 = K†

and conclude that detKf = detKu detKf ≥ 0. But not always can such a trick be
performed. For instance, if there is a baryon chemical potential present, as was presented
in the end of Chapter 2, then γ5Kγ5 6= K† and the determinant becomes complex. For
such cases, the Monte Carlo approach is not applicable.

For our purposes, let us assume that e−SG detKF can be treated as a probability
distribution (at least up to a normalization constant). We must devise a way to select
gauge configurations following this distribution. The method used takes inspiration in
the evolution of statistical systems in equilibrium. In such cases, the system in an initial
state evolves during a time (called thermalization time) to an equilibrium situation. The
equilibrium situation is defined as the situation when the set of configurations follows the
Boltzmann distribution function. Thus, if one is able to simulate such thermal systems, it
is just a matter of replacing the Boltzmann distribution e−βE by e−SG detKF . In our case,
the evolution is not in the real time. We are adding another auxiliary time just to generate
many lattice configurations, which can be used to take the average of operators evaluated
for each one of these configurations. We will refer to this auxiliary time as Monte Carlo
time, denoting it by tMC . One should not mistake the Monte Carlo time for the imaginary
one τ = it. These are two unrelated concepts.

In this context, let us denote a particular field configuration by i. The probability to
find the system in this configuration is pi. During a time interval dtMC , the probability of
the system changing from configuration i to configuration j is P (i→ j) = R(i→ j)dtMC .
We assume that the transition rate R(i→ j) is time-independent. Thus, the change of the
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probability pi of finding the system in a state i is given by the master equation

dpi
dtMC

=
∑
j

pjR(j → i)− piR(i → j) . (3.74)

However, at equilibrium, the probability pi should be time-independentviii. Thus, at
equilibrium, the master equation can be written, after the Monte Carlo time is integrated,
as

∑
j

pjR(j → i) =
∑
j

piR(i → j) . (3.75)

Eq. (3.75) is a necessary condition for a system to achieve equilibrium. From it,
one may get the detailed balance condition

piR(i → j) = pjR(j → i) , (3.76)

which is a sufficient condition for equilibrium. Eq. (3.76) can be used to impose a constraint
in the transition probabilities

R(i → j)
R(j → i) = pj

pi
. (3.77)

Thus, it is enough to draw a number of sample configurations whose probability
obeys Eq. (3.77). In practice, it is inefficient to randomly draw two uncorrelated states
obeying the detailed balance condition. The procedure usually adopted is to arbitrarily
set the fields in a given initial state and then modify it in a way that the probability
of a transition from the old state to the modified one follows Eq. (3.77). This chain of
configurations is called a Markov chain, which is characterized by the fact that a new
configuration depends solely on the previous configuration in the chain.

Notice also that, since the starting configuration is chosen in an arbitrary fashion,
it typically is not a representative point of the equilibrium state. This means that the
probability p0 of finding the state in this configuration is small and, by the detailed balance
condition, it has a high probability of transitioning to a state nearer equilibrium. This
also implies that the few initial states are not sampling the system correctly and must be
ignored. The number of generated steps that must be discarded are called thermalization
time.

There is one more detail one must be aware of when devising such an algorithm.
The system may not converge to equilibrium, or yet, may generate the wrong sample of
equilibrium configurations, if the algorithm used somehow does not allow the transition
viii By hypothesis, in equilibrium, the probability of finding the system in a given state depends

only on the distribution function (the Boltzmann weight for a classical statistical system or
detKF e

−SG for QCD).
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from the initial states to the equilibrium ones. Since we do not know what the equilibrium
configurations are, a way to enforce that the system will eventually converge to it is to
impose that the algorithm allows all possible configurations to be visited, given that the
simulation runs for a long enough time.

Lastly, we must remark that the sampled configurations will not be completely
independent of each other. Since a new configuration is generated from a previous one,
it usually is somewhat similar to the previous configuration and it may take a couple of
iterations before they look different enough to be treated as an independent sample. The
number of iterations between two uncorrelated samples is called correlation time.

We will not dwell on a specific algorithm here. Any algorithm satisfying the
conditions above is suitable, which gives us a range of possible choices. The choices made
will be shown at Chapter 5.

3.3.1 Renormalization procedure on the lattice

By now we have seen the discretization of QCD and explored a way to compute
expected values of observables. However, we typically rescale the fields for them to be
independent of the lattice spacing. We did this to ensure that in a sum we will be dealing
with numbers of the same order of magnitude, thus avoiding numerical errors.

One could argue that, after the simulation is performed, it is time to reintroduce
the lattice parameter a, e.g. via the relation between the link Uµ(x) and the field Aµ(x)
through Uµ(x) = exp{ig0aAµ(x+ aeµ/2)}. If we proceed with this idea and naively take
the limit a → 0, we would get Uµ(x) → 1. This cannot work because it corresponds to
the trivial solution of the equations of motion Aµ(x) = 0. This issue is related to the
divergences that appear in a quantum field theory if one removes its cutoff naively, as we
have shown in Section 3.1.1.

The approach to the continuum limit can be better understood by analogy with
the numerical solution of differential equations. In these computations, we choose a small
integration step. The step size is small enough if it is much smaller than the typical size of
the resulting function’s features. At the same time, these function features must be much
smaller than the integration region. On the lattice simulation, the lattice spacing is similar
to the integration step, the correlation function of an operator between two points of the
lattice is analogous to the typical size of the differential equation’s solution features and
the lattice size does the job of the integration region. Therefore, the correlation length
should be larger (ideally, much larger) than the lattice spacing. However, this correlation
length has to be smaller (ideally, much smaller) than the lattice size. This allows to us to
see large distance behaviors and minimizes errors due to the fact that our lattice size is
finite.
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We stress that, in the above paragraph, the correlation length we are talking about
(which we will identify as ξ) is a physical correlation length. It has units of [E]−1 and can
be related to the mass of a particle, such as a hadron (determined by the choice of the
operator). Thus, we cannot compute it directly from the lattice, which knows nothing
about scales. But we can compute a correlation function on the lattice ξ̂ and relate it to
the physical correlation length ξ by ξ = aξ̂.

Since ξ is a physical quantity, it can be used as a reference to introduce the physical
scale to the simulation. Also, note that ξ has a fixed finite value. This implies that in the
continuum limit a → 0, ξ̂ should go to infinity. Therefore, the correct continuum limit
procedure in a lattice simulation is to tune the bare lattice parameters as to obtain a
lattice correlation length ξ̂ that diverges in such a way that one is able to keep constant ξ.
Consequently, the lattice spacing a will depend (usually in a non-trivial way) on the bare
parameters of the lattice.

An alternative is to use the lattice static potential and compare it with phenomeno-
logical potential models for heavy quarks. As explained in Refs. 30 and 32, a lattice static
potential can be computed from the expectation value of a Wilson loop (on a plane that
contains the spatial direction) by

〈W (I, J)〉 = C exp[−IV̂ (J)] , (3.78)

where I is the size of the loop in the temporal direction and J the inter-quark distance.
Notice that I and J are given in terms of number of lattice sites and relate to physical
quantities by I = T/a and J = r/a. The potential is also given in lattice units, being
related to the potential model by V̂ = aV .

To compare with potential models of heavy quarks, we use the Sommer parameter
r0, which is a distance related to the shape of the potential. It is obtained by the observation
that in the most successful potential models, such as the Richardson and Cornell, the
following holds36

−r2dV

dr

∣∣∣∣∣
r=r0≈0.5 fm

= 1.65 . (3.79)

The value of the Sommer parameter can vary slightly according to the potential
model considered. For instance, for the Richardson potential, r0 = 0.49 fm. With this
information, we can obtain the value of the lattice spacing by performing the following
procedure

1. Compute the expectation value of the Wilson loop of different sizes in the time
direction and fit it to Eq. (3.78) to obtain the lattice potential at a fixed size J .

2. Repeat step 1 for different Wilson loop sizes in the spatial direction to obtain the
potential dependence with the inter-quark distance.
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3. Use an analytic expression (which may be inspired from a potential model) to fit
the lattice potential.

4. Determine the value J0 for which the following condition is fulfilled

−J2dV̂

dJ

∣∣∣∣∣
J=J0

= 1.65 . (3.80)

5. Since J = r/a, we can use J0 and the Sommer parameter r0 to the determine that
a = r0/J0.

By performing this operation, one can determine g0(a) by repeating the procedure
above for different values of the bare constant. Notice that although by this method one
has a good estimate of the lattice spacing, this does not exempt one from taking care that
a� ξ � L, under the penalty of introducing excessive discretization and/or finite size
errors.

Once the lattice spacing is determined, regardless of the method, we have that the
system’s temperature will be given by 1/T = β = aNτ . As a result, to keep a constant
temperature as the continuum limit is taken, one should increase the temporal lattice
side. Since L = aNS = βNs/Nτ , the increase of temporal lattice side implies the shrinking
of the spatial size L, unless the lattice side Ns is increased proportionally. We say that
Ns/Nτ defines the lattice aspect ratio, which should be kept constant.

In the next chapter, we will look at some phenomenological aspects of QCD at
finite temperature, as well as some details of effective models for it.
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Chapter 4

Heavy-ion collisions and
superfluidity

“We are rather like children, who must take a watch to pieces to see how
it works.”

Sir Ernest Rutherford
Explaining to a Daily Herald reporter why he wanted to disintegrate

nuclei, as quoted in Freeman Dyson, ’Seeing the Unseen’, The New York
Review of Books (24 Feb 2005), collected in The Scientist as Rebel

(2006), 249.

In this chapter, we will review the phenomenology of heavy-ion collisions, with an
emphasis on its quark-gluon-plasma stage. We will start by overviewing QCD and why one
expects a phase transition from hadronic matter to a deconfined phase. This will enable us
to establish the conditions for such a transition to happen and that one is able to reproduce
these conditions via a relativistic heavy-ion collision. We outline the basic characteristics of
each stage of the collision, giving an emphasis on the relativistic hydrodynamic description
of the quark-gluon-plasma stage. Next, motivated by the low viscosity of the plasma,
we overview Landau’s model of a two-component liquid for superfluids and detail the
applicability test of this model to the QGP, as proposed by Chernodub et. al.14

4.1 A qualitative description of the QGP

In this section, we will make a qualitative description of the QGP, to provide an
understanding of the system we aim to study.

One of the key features of QCD is known as confinement, i.e. the force strength
between two color charged particles increases at long range. An analytic description of
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confinement origin is not available yet. However, it is possible to outline a good motivation
for its presence.

Let us consider the perturbative computation of the scattering matrix S for QCD.
The fact that the gauge symmetry group of the theory is not Abelian gives rise to terms
with third and fourth powers of Aµ(x) in the Lagrangian. This implies that the fundamental
vertices of QCD, when computing Feynman diagrams, will be the ones in Fig. 4.

Figure 4 – Fundamental vertices of QCD. Source: Elaborated by the author.

The last two terms have no analogue in QED. This difference impacts the theory’s
coupling’s renormalization. Recall that in QED the coupling (electric charge) renormaliza-
tion is given byi

e2
R(q2) = 1

C ln (Λ2/− q2) , (4.1)

where C is a positive constant that depends on the number of fermions. Notice also that,
for −q2 → Λ2, the coupling diverges. Thus, at the energy scale of Λ2 there is an increase
in interaction strength, and perturbation theory fails. Meanwhile, the QCD coupling
renormalization is given by

αs(q2) = 4π[
11− 2

3Nf (q2)
]

ln(−q2/Λ2
QCD)

. (4.2)

Details of this calculation can be found in Ref. 37 and references therein.

One can see that the difference in coupling renormalization between QCD and
QED is essentially in the argument of the logarithm, i.e. in QCD it is the inverse of the
one in QED. The implications are better observed by plotting both running couplings,
as we do in Fig. 5. We clearly see that, for QED, the divergence of the coupling happens
at very large energies. Also, it runs very slowly, being of the order 10−2 across several
orders of magnitude of energy. Thus, QED is perturbative for all energy ranges accessible
currently. QCD has the opposite behavior. It becomes non perturbative at energy scales
equal to or below order the hundreds of MeV. Also the change from non-perturbative to
perturbative occurs much faster than in QED.

The QCD behavior implies that two color-charged particles that exchange gluons of
low momentum interact strongly. This will typically happen for particles that themselves
have low momentum. A low-momentum particle has a larger De Broglie wavelength,
i The coupling’s renormalization assumes a momentum transfer such that q2 < 0.
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Figure 5 – Comparison between QED (left plot) and QCD (right plot) coupling constants.
Besides the divergence occurring at low energy for QCD, we also draw attention
for the fact that the QCD coupling changes much faster than the QED coupling.
The energy scale ΛQED ' 0.5× 10277 GeV and its formula were retrieved
from [Ref. 38, Section 5.2], using me− ' 0.5 MeV. The above considers only the
electron as part of the theory. According to Ref. 39, when the full standard model
is taken into account, ΛQED ' 1034 GeV, which does not change significantly
our argument. The value of the energy scale of QCD comes from [Ref. 10, QCD
Review] for three quark flavors. Source: Elaborated by the author.

meaning that they are able to probe situations where they are further apart. Thus, it is
often said that color-charged particles interact strongly at large distance, and weakly at
short distance.

Consequently, it is impossible to have non-color-neutral objects. If you try to take
two particles apart, the force binding them increases, confining color charges inside color
neutral-objects, thus the name confinement to this phenomenon. On the other hand, as
two color charged particles approach each other, their interaction strength gets smaller
and, in the limit of infinite energy, they do not interact at all. This is called asymptotic
freedom.

Confinement and asymptotic freedom are fundamental concepts to understand the
reason why the QGP is formed. Imagine we have a set of Hadrons, e.g. nucleons in a star’s
core. Let us suppose that the density of Hadrons starts to increase. The mean free path
between quarks collisions will get shorter and, as consequence, the interaction force that
keeps quarks confined inside hadrons starts to decrease. If the mean free path gets small
enough, the hadron identity is lost. We only have a “soup” of quarks and gluons. Since
they are not in bound states, we say that they are forming a plasma, hence the name
quark-gluon plasma. A representation of what happens is shown in Fig. 6.

Another way of obtaining the QGP is by raising the system’s temperature, i.e. by
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Increasing density

Figure 6 – A representation of QGP formation. As density is increased, quarks and gluons
get nearer each other and the interaction force gets weaker, until the point
where they deconfine. Source: Elaborated by the author.

increasing the kinetic energy of quarks and gluons (without an increase in the system’s
total momentum). Since quarks and gluons are now carrying more momentum, they will
exchange higher amounts of momentum as well, and thus they interact between each other
weakly. Once again, they are free to roam around, unable to form a bound state, forming
the QGP.

QGP is a new state of matter, completely different from hadronic matter as found
in our daily life. This makes it an interesting system to study on its own right. However,
one can find astrophysical and cosmological motivation to its study as well.

The astrophysical interest is related to the equation of state of QGP, since stars do
not collapse under their own weight due to the pressure in their cores.40 In the case of
very compact stars, such as neutron stars, many models make use of QGP’s equation of
state.9,41–42 A compelling argument to its use starts by looking at the scale of momentum
transfer required for QGP formation. From the argumentation above, that would be the
scale where the running coupling goes below one, i.e. ΛQCD ≈ 200 MeV. Using the De
Broglie wave-length, one can them argue that the quarks should be distant from each
other by approximately 1 fm. This is the typical nucleon size. A reasonable approach then
would be to assign an effective mass to each quark, such that the sum of quark masses
yields the nucleon mass. Considering that each quark is inside a sphere of radius of 1 fm,
after conversion of units, one obtains a density of about 1017 kg/m3. This is the same order
of magnitude as neutron stars’ densities.

The cosmological motivation comes from the early-universe description, where
extreme temperature conditions were present. Once again, using ΛQCD as a temperature
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1 2 3 l + 1

Figure 7 – Linde’s diagram: an l+1 loop gluon diagram. Source: Elaborated by the author.

scale to the QGP formation, we expect to see its presence at temperatures above 1012 K.
For comparison, the temperature needed for nuclear fusion is of the order of 108 K. Thus,
the temperature required for QGP formation is far higher than anything in existence
and was only seen in the early stages of the universe. As a consequence, understanding
the plasma properties may lead to improvements in our understanding of early universe
evolution.

A similar reasoning for the existence of the QGP was performed already in the
early days of QCD [e.g. see Ref. 7]. However, it was initially thought that a perturbative
approach would suffice, since the plasma forms due to the deconfinement of quarks and
gluons caused by the coupling constant getting weaker. Unfortunately, this is wrong and
non-perturbative phenomena are still present in the QGP. The issue is usually called
Linde’s problem.15 In short, a massless boson in a covariant gauge has a propagator given
by (see [Ref. 27, Chap. 6])

Dµν = 1
q2 +G

P T
µν + 1

q2 + F
PL
µν + ξ

q2
qµqν
q2 . (4.3)

The factors F and G are scalars that will incorporate self-energy corrections, while PL, T
µν

are projectors in the directions longitudinal/transversal. It turns out that in the limit of
high temperature, both F and G are proportional to a mass dynamically generated by the
creation of virtual pairs of charge that screen the real charges.

Now, consider a Feynman diagram of l + 1 gluon loops, as the one in Fig. 7.
This diagram has 2l vertices, 3l propagators and, as the name suggests, l + 1 loops.
The contribution of this diagram at finite temperature to the partition function will
be [Ref. 27, Chap. 10]

(
T
∫
d3k

)l+1 (gk)2l

(k2 +m2)3l . (4.4)

Notice that we are assuming that the gluons being exchanged have zero frequency, i.e. k0 = 0.
This is because we are interested in investigating if there are infrared divergences in this
diagram. If k0 6= 0, then it is guaranteed that there is no infrared divergence in it.

By simply power counting, for 2 and 3 loop computations, there are no infrared
divergences. However, for 4 loops we have a result proportional to g6T 4 ln(T/m) and, for
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5 loops or more, it is proportional to g6T 4(g2T/m)l−3. Now we look into the value of the
screening mass m. For QCD, the mass in the longitudinal gluon is different from the one
in a transversal gluon. For longitudinal gluons the effective mass is proportional to gT and
thus each graph with l > 4 will give a contribution proportional to gl+3. Thus, there are
no infrared divergences and perturbation theory does not breakdown, since g = g(T )� 1.
However, for transverse gluons, the screening mass is proportional to g2T . This cancels out
completely the numerator, eliminating the dependence in l. Consequently, for all orders
greater than 4 loops, the graph contributes with a factor g6T 4. Perturbation theory break
downs in this situation because all terms have the same order of magnitude. So far, there
is no a analytic solution for such an issue and a non-perturbative method, such as lattice
QCD, should be employed.

4.2 Overview of heavy-ion collisions

Although the QGP formation requires conditions of extreme temperature and
density, it is not impossible to achieve experimentally such conditions for short amounts
of time. This is typically achieved by the collision of heavy-ions, e.g. Pb + Pb or Au
+ Au nucleus collisions. The center of mass energy required for QGP formation in such
collisions should be of order 10 GeV or larger.43–44 From the 1980’s through the early
2000’s, many colliders attempted to study such a system, such as the Bevalac at LBNL,
the AGS at BNL and SPS at CERN. In all these, no decisive proof of QGP formation
was found, although SPS had signs of a very dense state being formed.2 The first collider
that had robust evidence of QGP being produced experimentally was the Relativistic
Heavy-Ion Collider (RHIC) at BNL [see e.g. Ref. 1,45], by means of collisions of gold nuclei
at center-of-mass energy up to 200 GeV per nucleon. Later, LHC performed lead-lead
collisions at even higher energies, confirming the results from RHIC. For details in the
history of the experimental efforts to the QGP discovery, see Refs. 46–47.

We will now proceed to give a brief overview about heavy ion collisions. It is usual
to divide the evolution of the system in stages. The durations of these stages are measured
in Bjorken proper time (delimited by the hyperbolas in Fig. 8), given by48–49

τ =
√
t2 − z2 . (4.5)

A brief overview of the several stages is

I. Pre-collision: Heavy-ions at relativistic speeds collide at origin. Due to Lorentz
contraction, the nucleus seems like a “pancake”.

II. Thermalization or pre-equilibrium: The dynamics is dominated by longitudinal
expansion, characterized by strong gradients and possibly strong gauge-fields. Lasts
for τ ' 1 fm/c.
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III. QGP evolution: System in near-equilibrium for about τ ' 5− 10 fm/c. High temper-
ature phase with quarks and gluons deconfined. Description is done via relativistic
hydrodynamics.

IV. Hadron gas evolution: Matter is cool enough to form hadrons again, but the mean
free path between them is comparable to their cross section, resulting in frequent
collisions. Possesses large viscosity and is unsuitable to hydrodynamics.

V. Freeze out: Scattering cross-section of hadrons becomes low compared to their mean
free path and they fly towards the detector, without interacting with each other.

Au Au

I

II

III

IV

V τ = const.
τ = const.

τ = const.

z

t

Figure 8 – Stages of evolution of heavy ion collision. Refer to text above for the description
of each stage. Source: Elaborated by the author.

In the following sections, we will present in short what are the main characteristics
known of each stage shown above.

4.2.1 Stage I: Pre-collision

The way that heavy ions collide will determine the initial conditions of the system
and thus its evolution. Using the center of mass frame, one typically models the incoming
nuclei as possessing a pancake-like shape (see Fig. 9, left panel), due to the Lorentz
contraction. As an example, at RHIC the collision energy is of 200 GeV per nucleon. As a
result, each nucleon is carrying 100 GeV on average. By estimating a nucleon rest mass of
≈ 1 GeV, the contraction factor γ is then

γ = ETotal

E0
= 100 GeV

1 GeV = 100 . (4.6)
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As consequence, the collision time is of order 0.15 fm/c, much shorter than the time light
would need to cross the nucleus. For this reason, one often considers the collision itself to
be instantaneous.

∼
15

fm ~v

−~v
bx

zy

b

y

xz

Participants

Spectators

Figure 9 – Left: Sketch of a heavy ion collision with the typical reference frame usually
adopted. Right: Geometry of the heavy ion collision. The darker ellipsoid in the
center of the figure highlights the nucleons that will take part in the collision.
Source: Elaborated by the author.

Another important aspect to take into consideration is the collision geometry.
The nuclei will not be with their centers aligned. How far they are apart determines
the impact parameter b, as seen in Fig. 9. Since we are considering the collision to be
almost instantaneous, not all particles will take part into the collision, with the numbers
of nucleons taking part in the interaction decreasing with the increase of the impact
parameter. We refer to the nucleons that interact during the collision as the participants,
with the remaining being named spectators.

The impact parameter also helps to define the coordinate system used in the
description of the collision. The x axis lies down in its direction while the z axis is defined
along the beam direction. One then defines the y axis using a right hand rule, as one can
see in Fig. 9.

The collisions are categorized in two types, according to their impact parameters:
central and peripheric. A central collision, is one with a small impact parameter and they
happen with less frequency than a peripheric collision. However, more nucleons take part
into the collision. These nucleons are called participants, while the remaining nucleons
are called spectators (see above). Since there are more participants nucleons in a central
collision, more energy is available and more particles are formed in a central collision.
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Another key aspect, which is a direct result of the collision’s geometry, is the shape
of the interaction region, which takes the form of an ellipsoid (darker cyan in Fig. 9). This
is “measured” by the standard eccentricity50

εstandard = {y2 − x2}
{y2 + x2}

, (4.7)

where the curly braces {. . . } represent an average over the initial density distribution ε(x)

{A(x)} =
∫
d3x ε(x)A(x)∫
d3x ε(x) . (4.8)

However, there is no way to directly probe the initial density distribution (thus, the quotes
in the word measured above). What is seen is rather how the emerging particle momentum
is distributed. For the case at hand, one looks at the elliptic flow, defined as48,50

v2 = 〈cos(2φ)〉p =
〈
p2
y − p2

x

p2
y + p2

x

〉
p

, (4.9)

where φ is an angle in the x − y plane. The average 〈· · · 〉p is an average over the final
particle distribution. The presence of an elliptic flow is one of the main signatures for the
QGP being a liquid of low viscosity. Once one models the collision and determines the
viscosity, it is possible to apply near-ideal hydrodynamics and reproduce the elliptic flow
observed experimentally. This is typically a concentration of emitted particles along the x
axis (defined by the impact parameter). Once one adopts hydrodynamics to describe QGP,
such outcome is intuitive. The pressure in the center of the participants region should be
zero due to the symmetry of the system, while in the surface it is a constant. Therefore,
there is a higher pressure gradient along the x axis and thus more quarks and gluons will
be ejected along this direction. As a result, there will be more Hadrons flying along the x
axis in stages IV and V.

4.2.2 Stage II: Thermalization or pre-equilibrium

There is not much that is known about this stage. As the name suggests, the
system is not at (local) equilibrium and thermodynamics is not applicable. Perturbative
approaches will fail to provide a complete picture due to the non-perturbative nature of
QCD. Our most reliable tool for a non-perturbative and ab initio approach, lattice QCD,
is suitable only for equilibrium situations and thus ill-suited to such case. However, it is
crucial to know how the system will be at the end of this stage, since it will fix the initial
conditions for the hydrodynamical evolution in the next step.

Given our incapacity so far to calculate QCD out of equilibrium from first principles,
the canonical approach is to pick up some selected data and adjust the initial conditions
(the red line frontier in Fig. 8). This is not the only possible approach however. For
instance, since the system we are dealing with small and at each collision there will be
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fluctuations in the initial conditions, a possible approach is to introduce these fluctuations
and integrate the system for several of them, taking an average at the end, as done in
Refs. 51–53, thus better simulating the experiments.

4.2.3 Stage III: Relativistic hydrodynamics and QGP

In a heavy ion collision, the system is never found at a static equilibrium. It is
always expanding and one always needs to perform a dynamical evolution of the system.
However, after the pre-equilibrium stage above, one can say that local equilibrium is
achieved and one can employ relativistic hydrodynamics to evolve the system through
these stages. In this subsection, we will do a brief review on the topic of relativistic
hydrodynamics, which hopefully will give the reader unfamiliar with the topic a minimum
background to be able to follow the coming sections. Refs. 49, 54 have a more detailed
introduction to the subject.

First, we delimit the hydrodynamics’s regime of applicability. It is a coarse-grained
theory, introduced to explain the collective behavior of a many-particle system. As said
above, the system is usually not in static equilibrium and its macroscopic thermodynamic
variables, such as energy density and pressure, change in both space and time. However, if
the change rate is much slower than the microscopic interaction rate, we may divide the
system in space-time cells. These cells are much smaller than the system volume but still
large enough such that we can consider each one of them to be in static equilibrium. We
then say that the system is in local equilibrium. [Ref. 54, Section 4.1] goes deeper into the
analysis of the scale separations needed for hydrodynamics to be valid.

In this picture, the system will be described in terms of thermodynamic quantities,
which depend on the cell. The typical thermodynamic observables are energy density
ε(x), pressure P (x), temperature T (x), collective four-velocity uµ(x), a set of conserved
currents densities jµi (x) and a chemical potential µi(x), associated to the charge densities
j0
i (x) = ρi(x). All the microscopic input gets condensed in the form of an equation of state
P = P (ε) and the dynamics between the remaining quantities is determined solely by
conservation laws.

The ideal fluid us a good initial model and on top of it we may add corrections
later. The relevant conservation laws for it areii

∂µT
µν = 0 , (4.10)

∂µj
µ
i = 0 . (4.11)

Let us explore the features of the energy-momentum tensor. We know that it must
transform as a Lorentz tensor and should be symmetric. Therefore, its general form can
ii We always use as metric gµν = diag(1,−1,−1,−1).
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be expressed as

T µν = c0g
µν + c1u

µuν . (4.12)

We adopt a local rest-frame, which is defined as a frame where the four-velocity
uµ(x) for the cell at position x is

uµ(x) =
(
1 0 0 0

)
. (4.13)

In this reference frame, we know that the four-momentum is given by

uµT
µν = pν =

(
ε 0 0 0

)
. (4.14)

This requirement constrains c0 and c1 to obey T 00 = c0 + c1 = ε. The cell at point x is
also subject to a uniform pressure and thus we expect that T ij = Pδij. This gives us a
second constraint T (i)(i) = −c0 = P . These conditions imply that

T µν = εuµuν − P∆µν , (4.15)

where ∆µν = gµν − uµuν is an operator that will decompose whatever vector it contracts
with in components orthogonal to the fluid velocity uµ, e.g. ∆µνuµ = 0.

We draw attention to one point: ε and P in Eq. (4.15) are Lorentz scalars because
they are the energy and pressure densities in the local rest-frame of the cell, which all
observers will agree to be the same. Notice that this is the same argument made to define
the proper time as a Lorentz scalar. In fact, to keep equations covariant, all thermodynamic
variables should be computed in this frame and should be called proper-pressure, proper-
charge-density, proper-volume and so on. For readability, when we refer to a thermodynamic
variable, it should be implicitly understood that we are referring to the proper value of
this variable.

So far we have five unknowns: ε, P and three components of the fluid velocity, since
uµuµ = 1. However, Eq. (4.10) defines only four equations. Bringing the conserved current
into play does not help, because each conserved current brings together one more variable,
its charge density. The missing equation is the equation of state. The methods used in its
determination may vary according to the needs. For instance, Ref. 55 uses a parameterized
equation which can be used in the later stages of the evolution, i.e. it applies to QGP
and Hadron Gas. This parameterization is done using lattice QCD results for the high
temperature (QGP) phase and hadron cascades for the low temperature phase.

It is possible to show49 that once we define the energy-momentum tensor using
Eq. (4.15), it is possible to recover the non-relativistic continuity equation and the Euler
equation by projecting Eq. (4.10) into components parallel and perpendicular to uµ and
then taking the non-relativistic regime.
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As said before, the ideal fluid is a first approximation. However, one must take into
account the possibility of dissipative phenomena in the fluid. This is done by adding a
term to the ideal energy-momentum tensor

T µν = T µνideal + Πµν and Πµν = πµν + ∆µνΠ . (4.16)

We hold the requirement that uµT µν = εuν and thus uµΠµν = uµπ
µν = 0. We then

project the continuity equation for T µν in directions parallel and orthogonal to uµ. After
some algebra, we get

uν∂µT
µν = uµ∂µε+ (ε+ P − Π)∂µuµ + uν∂µπ

µν = 0 ,
∆α
ν∂µT

µν = (ε+ P − Π)uµ∂µuα −∆µα∂µ(P − Π) + ∆α
ν∂µπ

µν = 0 .
(4.17)

Notice that Π seems to act as creating an effective pressure P −Π. We can further
relate it to the pressure by looking at the trace T µµ

T µµ = ε− 3P + πµµ + 3Π = ε− 3(P − Π) + πµµ. (4.18)

This equation motivates us to require πµν to be traceless.

The above properties will guide us in specifying the tensor πµν and the scalar Π.
These terms being dissipative ones, it is natural to look at the second law of thermodynamics
(∂µsµ ≥ 0, sµ = suµ) as a possibility to fix them.

The starting point in the procedure is the thermodynamic relationsiii

ε+ P = sT + µiρi Tds ≥ dε− µidρi . (4.19)

From these, one can establish the derivative T∂µs = ∂µε− µi∂µρi. The second law
of thermodynamics becomes

∂µs
µ = uν

T
∂νε−

µi
T
uν∂νρi + ε+ P − µiρi

T
∂νu

ν ≥ 0 . (4.20)

We use Eq. (4.17) to eliminate uν∂νε in favor of Π and πµν . This will result in the
term proportional to (ε+ P )∂νuν canceling. We can also eliminate the terms containing
the chemical potential and the densities by using the continuity equation for charges. The
result will be

Π
T
∂µu

µ + πµν

T
∂µuν ≥ 0 . (4.21)

Since πµν is symmetric, traceless and orthogonal to uµ, we can write the second
term as

πµν∂µuν = πµν

2

[
∂µuν + ∂νuµ − uµ (uα∂αuν)− uν (uα∂αuµ)− 2

3∆µν∂αu
α
]
. (4.22)

iii In the second relation one must take each cell of the fluid to have the same proper-volume.
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Using the above mentioned properties, one can notice that the last three terms inside the
square brackets are identically zero when contracting with πµν . A nice feature of the whole
expression inside the square brackets is that it holds all the above properties of πµν . Thus,
if we define

πµν = η
[
∂µuν + ∂νuµ − uµ (uα∂αuν)− uν (uα∂αuµ)− 2

3∆µν∂αu
α
]
,

Π = ζ∂µu
µ ,

(4.23)

the condition in Eq. (4.21) becomes

ζ

T
(∂µuµ)2 + πµνπµν

2Tη ≥ 0 . (4.24)

Thus, if η ≥ 0 (shear viscosity) and ζ ≥ 0 (bulk viscosity), then the condition is satisfied
identically.

When we use Eq. (4.23) in Eq. (4.17), the resulting equation is called relativistic
Navier-Stokes equation. The reason is because they reduce to the Navier-Stokes equation
in the non-relativistic regime. It must be pointed out that this equation has its issues.
The most severe is that it allows faster-than-light propagation of perturbations. Of course,
there are ways to deal with this issue. One popular way is called the “Maxwell-Cattaneo
law”.49,56–57 However, this fix is inconvenient since it is introduced in an ad hoc manner. A
better solution for this is the Müller-Israel-Stewart theory, which is built by adding to the
entropy current sµ terms proportional to uµΠ2 and uµπαβπαβ. For our needs, we notice
that faster-than-light propagation is related to modes of small wavelengths. However,
hydrodynamics is an effective theory for long wavelengths. Thus, when dealing with
hydrodynamics, we will be looking at limits of low k and ω.

4.2.4 Stage IV and V: Hadron gas and freeze out

As the system expands, it will cool down, eventually reconfining quarks and gluons
into hadrons. Once one has transitioned to hadrons as the new degree of freedom, it is
possible to use the knowledge of how hadrons scatter between themselves to evolve the
system, using kinetic theory. Notice that this is a microscopic description of the system.
The hydrodynamic approach, based in macroscopical variables, such as pressure and
temperature, fails in this stage. This is because the system once again is not at local
thermal equilibrium. A symptom of the breakdown of hydrodynamics is the increase of
viscosity as the system evolves, coming to a point where the viscous terms are not a
correction anymore, but dominate the continuity equations.

By the description given above, one can notice that in the initial moments of this
stage, it is still possible to describe the hadron gas using hydrodynamics. At the same
time, it must be always possible to use kinetic theory to evolve the system. This overlap
between hydrodynamics and kinetic theory is the tool used to describe the hadronization
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process by setting up the initial conditions for the kinetic theory. The strategy used is,
after the hydrodynamical evolution is computed, one finds a hypersurface of hadronization
and determines along it the grand-canonical boosted particle distribution function f(x, p).
The criteria for defining this hypersurface may be various, such as temperature or energy
density. Once it is determined, the computation of the distribution function is performed.
A common Ansatz for it is50

f(x, p) = feq(pµuµ) + δf(pµ) , feq(pµuµ) = 1
exp {[pµuµ(x)− µ(x)] /T (x)} ± 1 ,

δf(pµ) = feq(1± feq)
pµpνΠµν

T 2 (ε+ P ) .
(4.25)

The determination of f(x, p) is the main interest in this stage because it is the
dynamical variable to evolve. More specifically, assuming that hadrons are on shell, i.e. that
the mean free path between them is large enough so Heisenberg’s uncertainty principle
has little effect on the dispersion relation p2 = m2, then f(x, p) will follow the Boltzmann
equation54

pµ∂µf(x, p) = C(x, p) . (4.26)

The term C(x, p) is called collision term. The particles’ characteristics, such as interactions’
strength will be encoded in it.

As the system evolves, it gets more dilute to the point where particles almost do
not collide anymore. When this stage happens, we say that the last stage is achieved and
the system freezes out. This is the point where one must connect the particle density
function with what the detectors will record, i.e. a flux of particles passing through them.
This can be done using the Cooper-Frye formula58

E
dN

dp3 =
∫
σ
f(p, x)pµdσµ , (4.27)

where σ is the freeze out hypersurface. Once the particles flow through the freeze out
hypersurface, it is a trivial matter to propagate them towards the detector.

4.3 Superfluids

As stated in Section 4.2.1, data from elliptic flow point out that the QGP behaves
as a liquid of extremely low viscosity. The value found was near the lower bound found in
AdS/CFT calculations, creating an entire field inside HEP dedicated to development of
dual models, connecting QCD with AdS/CFT. However, liquids of near zero viscosity are
not something unknown to physicists. We know that liquid helium becomes superfluid since
the end of the 1930’s and there are several models for such systems available. Thus, it is
worth it to give them a look and see if we can learn something useful to the hydrodynamics
of QGP.
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In this section, we devote ourselves to such a task. After a brief overview of
superfluidity, we will focus in the Landau model for superfluid helium and see a test for
its applicability to the QGP, as proposed in Ref. 14.

4.3.1 Landau model for superfluids

In 1938, P. Kapitza discovered the phenomenon of superfluidity in liquid helium.
At the time, by means of measurements of the specific heat of helium, it was already
known that it undergoes a phase transition at ∼ 2.17 K. Kapitza’s experiment consisted
of connecting two cylinders, one of them filled with liquid helium, with a very thin tube
(∼ 0.5 µm diameter). He noticed that the liquid helium flowed freely from one cylinder
to the other only after the phase transition. The interpretation was that, at this phase,
helium viscosity was zero.

Shortly after these results, Keesom and Macwood59 performed yet another experi-
ment, in which they submerged a spinning disc in superfluid helium. They measured that
the disc did slow down, indicating the presence of viscosity. This was the motivation for
the two-component liquid model. It was proposed by L. Tisza and L. Landau.12–13 The
model supposes that superfluid helium has two indissociable components. Each component
has its velocity, density and viscosity. The first component is called the normal component
and has this name because it retains the viscosity of liquid Helium. The second component
is called superfluid component and has viscosity zero. Thus, in this model, one writes

T µν = T µνn + T µνs

T µνn = εnu
µuν + Pn∆µν + πµν + ∆µνΠ

T µνs = εsv
µvν + Ps∆̃µν ,

(4.28)

where the “n” subscript represents variables associated to the normal component and “s”
subscript to the superfluid component. Exception is made for the velocity of the liquid
components, for which we keep using uµ for the normal component, but use vµ for the
superfluid component. Since the operator ∆µν depends on the velocity, we use ∆̃ to indicate
when the operator depends on the superfluid velocity vµ.

There is also a good theoretical motivation for this model. Helium being a boson,
it forms a Bose-Einstein condensate at low temperatures. However, unless absolute zero
temperature is reached, there will be room for a portion of the atoms to occupy the excited
states. One can show that the condensation appears below a critical temperature.60 This
motivates us to assign to it the superfluid component, while the excitations are the normal
component.

One interesting aspect is that it is possible to associate the model’s macroscopical
observables with field theory observables. This is shown in Ref. 61 and starts by supposing
the complex scalar theory with a |φ|4 potential (the same one which we explored as example



92

model in the previous chapters)

L = ∂µφ∂
µφ∗ −m2 |φ|2 − λ |φ|4 . (4.29)

Since we are expecting Bose-Einstein condensation, we perform the variable change
φ→ φ+ ϕ, where φ will be treated as the condensate variable, while ϕ will be treated as
the excitations on top of the condensate. In practice, this implies treating φ as a classical
field, while ϕ will be the dummy variable to be integrated by a path integral.

To understand the dynamics of the superfluid component, we neglect the excitations.
We perform the change of variable φ = ρ exp(iψ)/

√
2 and rewrite the Lagrangian as

L = ∂µρ∂
µρ− ρ2

2
[
m2 − ∂µψ∂µψ

]
. (4.30)

As presented in detail in Chapter 2, the Lagrangian possesses also a global phase
symmetry, which gives rise to a conserved current via Noether’s theorem. In terms of the
variables ρ and ψ, the Noether conserved current is

jµ = ρ2∂µψ . (4.31)

Consequently, the macroscopic liquid density may be written as

ns =
√
jµjµ = ρ2

√
∂µψ∂µψ . (4.32)

Since jµ = nvµ. We can relate the fluid velocity to the derivatives of the field phase as well

vµ = ∂µψ

σ
where σ ≡

√
∂µψ∂µψ . (4.33)

The result from Eq. (4.33) is important. By using that vµ = γ(1, v), one finds that the
superfluid is given by v = −∇ψ/∂tψ. Thus, if ∂tψ is constant, the vorticity ∇× v of the
superfluid is zero. This result is crucial for later calculations.

A similar approach can be used to relate the internal energy density of the fluid
with the microscopical quantities. We start by computing the energy-momentum tensor of
the microscopical theory

T µν = ∂µρ ∂νρ+ ρ2∂µψ ∂νψ − gµνL . (4.34)

Since εs = vµvνT
µν and Ps = (vµvν − gµν)T µν , after some algebra, we get

εs + Ps = µsns + sT = ρ2σ2 + 4
3

(∂µψ∂µρ2)
σ2 − 1

3∂µρ∂
µρ . (4.35)

However, the condensate is defined as being a coherent state. Therefore, it has
minimum entropy and we use it to set entropy’s measuring referential. Thus the term sT

is zero. If we take a very simple case of constant ρ (which one can see that translates to
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a case of constant pressure and energy-density in all points of the liquid), we get a very
simple interpretation for σ. Under this condition and using ns = ρ2σ, we get

µsns = µsρ
2σ = ρ2σ2 . (4.36)

The conclusion is that, in these circumstances, µs = σ. Notice that we did not supposed
the presence of a chemical potential in the microscopic theory. The above shows that, even
if we do not consider a chemical potential microscopically, nothing stops the presence of
an effective macroscopic chemical potential.

As a last remark, we may use that we are setting s = 0 and the thermodynamic
relation ε+ P = µn+ sT to rewrite the energy-momentum tensor for the superfluid as

T µνs = (εs + Ps)vµvν − Psg
µν = µi, sρi, sv

µvν − Psg
µν , (4.37)

and the full tensor for the model as

T µν = (εn + Pn)uµuν + µi, sρi, sv
µvν − Psg

µν + πµν + ∆µνΠ . (4.38)

The next step is to find a way of verifying the model’s applicability to the QGP. To
do so, we will use linear response theory. The advantage of such approach is that we are
able to connect the dynamics of hydrodynamics with computations in static equilibrium,
which can be evaluated via lattice QCD.

4.3.2 Linear response theory

As said above, we will use linear response theory to detail the test proposed by
Ref. 14. We will start by exposing how to build linear response theory [as exposed in
Ref. 26] and work our way to the test itself.

Consider a system at equilibrium, which is governed by a Hamiltonian H0. Now,
we turn on a small macroscopic perturbation in the form of velocity field U i(t,x) that
couples to the momentum density T 0i(t,x). The Hamiltonian will receive a modification
δH(t), given by

δH(t) =
∫
d3xUi(t,x)T 0i(t,x) . (4.39)

We suppose also that for t < t0 the perturbation is zero, i.e. we turn on U i(t,x) at
t = t0. We expect that the system will answer by changing its momentum density operator
T 0i(t,x). The system evolution will be given by

∂〈T 0i(t,x)〉Q
∂t

= i
〈[
H0 + δH(t), T 0i(t,x)

]〉
Q

= i
〈[
δH(t), T 0i(t,x)

]〉
Q
, (4.40)

where 〈·〉Q denotes a quantum expectation value, i.e.

〈A〉Q = 〈ψ|A |ψ〉 , (4.41)
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and |ψ〉 denotes an eigenstate of the unperturbed Hamiltonian H0.

Integrating Eq. (4.40) from the moment we turn on the perturbation until a time t,
we get the integral equation

〈T 0i(t,x)〉Q = 〈T 0i(t0,x)〉Q + i
∫ t

t0
dt′
∫
d3x′

〈[
Uj(t′,x′)T 0j(t′,x′), T 0i(t′,x)

]〉
Q
.

(4.42)

However, as discussed in Section 2.4.1, a thermal system transitions between states
very rapidly. Thus, what we observe is a thermal average, which may be written for an
operator A as

〈A〉T =
∑
ψ e
−β(Eψ−µNψ) 〈ψ|A |ψ〉∑
ψ e
−β(Eψ−µNψ) . (4.43)

We then obtain an expression identical to Eq. (4.42), but with 〈·〉Q replaced by 〈·〉T. Since
the perturbation is small, we expect that the disturbance

δ〈T 0i(t,x)〉T ≡ 〈T 0i(t,x)〉T − 〈T 0i(t0,x)〉T (4.44)

to be small and thus, at a first order approximation, we may replace T 0i(t′,x) on the
right-hand side of Eq. (4.42) with T 0i(t0,x). We also point out that the disturbance field
Uj(t′,x) is classical and thus factors out of the average. We obtain

δ
〈
T 0i(t,x)

〉
T

= −i
∫ t

t0
dt′
∫
d3x′Uj(t′,x′)

〈[
T 0i(t0,x), T 0j(t′,x′)

]〉
T
. (4.45)

If we introduce a step function θ(t− t′) multiplying the integrand, we may allow the upper
integration limit to go to infinity. Under the hypothesis that the perturbation is turned on
long enough that we may consider the limit t0 → −∞, we obtain

δ
〈
T 0i(t,x)

〉
T

=
∫ ∞
−∞

dt′
∫
d3x′ Ui(t′,x′)G0i, 0j

R (t− t′, |x− x′|) , (4.46)

where G̃0i, 0j
R (t− t′, |x− x′|) is the retarded Green function, given by

G̃0i, 0j
R (t− t′, |x− x′|) = −iθ(t− t′)

〈[
T 0i(t,x), T 0j(t′,x′)

]〉
T
. (4.47)

Notice that although the Green function is computed supposing thermal equilibrium, it
allows for the computation of a dynamical effect, in our case, δ 〈T 0i(t,x)〉.

For the argument that will be developed, it is useful to work in momentum space.
We define the retarded Green function and the classical current in momentum space as

G0i, 0j
R (ω,k) =

∫
dt d3x eiωte−ik·xG̃0i, 0j

R (t, |x|) , (4.48)

Ui(ω, k) =
∫
dt d3x eiωte−ik·xUi(t,x) . (4.49)



95

The oscillation of the momentum density is then put in a very simple form δ 〈T 0i(ω,k)〉Tgiven
by

δ
〈
T 0i(ω,k)

〉
T

= Uj(ω,k)G0i, 0j
R (ω,k) . (4.50)

So far all calculations are performed in Minkowski space. Later, we will be dealing
with Euclidean space and will be computing Green functions via Monte Carlo simulations in
Euclidean time. To connect the Euclidean Green function to the Minkowski one in Eq. (4.48),
one must perform an elaborated procedure of determining spectral functions and performing
an analytic continuationiv. However, a nice property happens at ω = 0. The Green functions
in Euclidean and Minkowski time are equal,54 i.e. G0i, 0j

R (0,k) = G0i, 0j
E (0,k).

Now, we follow the argument of Ref. 62. The only anisotropy of the system comes
from the perturbation itself. Thus it is natural to separate the Green function in components
perpendicular and longitudinal to the perturbation

G0i, 0j
R (0,k) = kikj

k2 G‖(k2) +
(
δij − kikj

k2

)
G⊥(k2) . (4.51)

Defining δ 〈T 0i(0,k)〉Thermal ≡ δpi(0,k), we get

δp(0,k) = U · k
k2 kG‖(k2) +

(
U − U · k

k2 k

)
G⊥(k2) . (4.52)

Let us pick a wave-vector k perpendicular to our perturbation. Thus, δp =
U(0,k)G⊥(|k|). The left panel of Fig. 10 represents the kind of variation in momen-
tum density we expect (in blue). By considering a small loop (in black in the figure),
we conclude that the curl of the system’s response is not zero. Since the vorticity of the
superfluid must be zero, we conclude that, for such mode, the superfluid will not respond
to the perturbation. Conversely, if we pick a wave vector parallel to the perturbation, we
have δp = U(0,k)G‖(|k|). The variation of the momentum will look like Fig. 10, right
panel. In this case, it is clear that the perturbation will not result in a curl for the velocity
and thus both components will respond to the perturbation.

We need to consider a zero-frequency perturbation. This means that this is a static
perturbation and will only push the system to a new equilibrium state. By going to the
limit k→ 0, we will be looking into a uniform perturbation. Since the perturbation is a
velocity field, in the uniform and static limit, the only effect should be a shift in velocity,
i.e. uf = u+U and vf = U + v (only in the case where k is parallel to U).

Let us consider the momentum density, given by pi ≡ T 0i, and with the energy-
momentum tensor given by Eq. (4.38)

p = (εn + Pn)γ2u+ π − γ2uΠ + µsρsγ̃
2v , (4.53)

iv For details, see [Ref. 26, Section 6.2] about Lehmann representation.
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k̂

Û
~k ~U

Figure 10 – Left: Variation of momentum density for a wave mode perpendicular to the
perturbation direction. Right: Variation of momentum density for a wave
mode parallel to the perturbation direction. Source: Elaborated by the author.

where

π = π0ix̂i , γ = (1− u2)−1/2 γ̃ = (1− v2)−1/2 and uµ = γ(1,u) . (4.54)

According to what we said above, in the static and uniform limits, there will be no
disturbance in the thermodynamic properties, just a change in velocities. Thus, by means
of a variational computation, we write

δp(0,k → 0) = (εn + Pn)
[
2γ(δγ)u+ γ2δu

]
+ µsρs

[
2γ̃(δγ̃)v + γ̃2δv

]
+ δπ − 2γ(δγ)uΠ− γ2(δu)Π− γ2uδΠ .

(4.55)

However, we have that δγ = γ3u ·δu and an analogous expression for δγ̃, with u exchanged
by v. The tensor that Refs. 14 and 62 deal with neglects the contributions given by π and
Π, so we do the same here

δp(0,k → 0) = (εn + Pn)
[
2γ4u · δu+ γ2

]
δu+ µsρs

[
2γ̃4v · δv + γ̃2

]
δv . (4.56)

Now, we return to the expressions δp(0,k) = UG⊥(0,k) (valid only if k⊥U ) and
δp(0,k) = UG‖(0,k). In both cases we can isolate the form factors G⊥,‖(k) by computing
U · δp(0,k)/U 2. Therefore, we obtain

U · δp
U 2 = (εn + Pn)

[
2γ4u · δu+ γ2

] U · δu
U 2 + µsρs

[
2γ̃4v · δv + γ̃2

] U · δv
U 2 . (4.57)

Let us consider the case where the wave-vector is perpendicular to the perturbation
U . As exposed above, in this case the superfluid component does not respond and thus
δv = 0. Since δu = U and denoting by θ the angle between the initial velocity u and the
perturbation U , we get

G⊥(k2 → 0) = (εn + Pn)γ2(2γ2 cos2 θ + 1) . (4.58)

The angular dependence comes from the fact that we picked one particular direction for u.
We can get rid of this hypothesis by averaging over all directions, i.e.

G⊥(k2 → 0) = 1
4π

∫
dΩG⊥(k2 → 0) = (εn + Pn)γ2

(
2γ2

3 + 1
)
. (4.59)
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However, for k ‖ U , both components respond to the perturbation and δv = δu =
U . Notice that the term accompanying δv inside the square brackets in Eq. (4.57) is
similar to the term accompanying δu. Therefore, the calculation is similar, and we obtain,
after averaging over all possible directions

G‖(k2 → 0) = (εn + Pn)γ2
(

2γ2

3 + 1
)

+ µsρsγ̃
2
(

2γ̃2

3 + 1
)
. (4.60)

When replacing these form factors at the expression for G0i, 0j
R (0,k), we get

lim
k→0

G0i, 0j
R (0,k) = (εn + Pn − Π) γ2 (2γ2 + 1)

3 δij + µρsγ
2
s

(2γ2
s + 1)
3

kikj

k2 . (4.61)

The test suggested in Ref. 14 consists in computing the off-diagonal components of
G0i, 0j
R (0,k) on a lattice-QCD simulation at finite temperature. If the quark-gluon plasma

is superfluid at a given temperature, we should expect a non-zero value for it.

Yet another test that is closely related to the one above comes from noting that
G‖(|k| → 0)− G⊥(|k| → 0) ∝ µρs. Thus, we must compute the form factors separately
and then subtract one from the other. A zero result will tell us that the model does not
apply to the theory. We stress that, in general, µ is not a microscopic chemical potential.
Thus, even at zero chemical potential, the presence of a condensate may induce an effective
chemical potential.

The form factors can be easily extracted from the Green functions by

G‖(|k|) = kikj

k2 G0i, 0j
R (0,k) , (4.62)

G⊥(|k|) =
(
δij − kikj

k2

)
G0i, 0j
R (0,k) . (4.63)

Thus, as a test of the validity of the model for the gluon-plasma, one can compute
G‖(|k| → 0) − G⊥(|k| → 0). If the result is zero, it is a sign that there is no superfluid
component.

In the next chapter, we will detail the simulation performed and the methods used
to compute the form factors, as well as the results we obtain from the simulations.
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Chapter 5

Methods and Results

“I often say that when you can measure what you are speaking about,
and express it in numbers, you know something about it.”

Baron William Thomson Kelvin
From lecture to the Institution of Civil Engineers, London (3 May 1883),

’Electrical Units of Measurement’, Popular Lectures and Addresses
(1889), Vol. 1, 80-81.

By now we have overviewed quantum field theory, explored its symmetries in the
case of a gauge theory and described a way to compute observables in it. We also presented
the phenomenology of Heavy-Ion Collisions and saw that there is the possibility to model
the quark-gluon-plasma stage as a superfluid of two components, similar to liquid helium.
We also saw that an ab initio verification of the viability of such model would be the Green
function’s computation of the energy-momentum tensor via lattice QCD. In this chapter,
we will outline the Monte Carlo algorithm used to generate the lattice configurations as
well as the discretization of the tensor on the lattice. Lastly, we present the averaging
method used, the lattice parameters adopted and present our results.

5.1 Generation of gauge field configurations via Cabbibo-Marinari pseudo-heat-
bath

The first step into any lattice QCD simulation is to generate the samples of field
configurations, as explained in Section 3.3. To do so, one must take care of how to store
these fields in memory. The wrong parameterization for the group elements Uµ(m) may
result in a slower computation or increase in the memory usage. Typically, a representation
which saves memory is computationally more intensive. Thus, one must seek a compromise
between these two.
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By memory, we refer to both volatile and permanent kinds. During the simulation
execution, a single field configuration is stored in RAM and its value is updated as the
Monte Carlo algorithm progresses. In a very large lattice (number of sites of order 1004),
a single configuration may get to the size of tens or hundreds of gigabytes. Since the
generation of field configurations is computationally intensive, it is a common practice to
store them in the hard disk, allowing multiple observables to be computed with a single
simulation. Here, one may face storage issues even with smaller lattices (number of sites
of order 304), since each lattice will have of order of hundreds of megabytes and one tries
to store hundreds or even thousands of configurations, depending on the statistical errors.

Notice that, as we have seen in Section 3.2.2, the fermion fields are Grassmann
variables. Thus, their path integrals are analytically evaluated and given in terms of the
matrix KF . These depend on the gauge fields Uµ(x). For this reason, we do not need to
store fermion field values. Since the gauge links are SU(3) group elements, we need to
study the possible parameterizations of these. We will follow the suggestions in Ref. 30.

Before parameterizing the SU(3) group elements, it is useful to study the SU(2)
group. This is because it is easier to deal with, compared to SU(3) but, despite its simplicity,
the methods applied to it are portable to SU(3). The second reason is that the method to
generate the configurations builds upon the fact that SU(2) is a subgroup of SU(3).

Once could be tempted to use the exponential mapping U = eiα
aTa as a parame-

terization of the groups. This has the advantage of being immediately generalizable to
any SU(N) group and requiring the minimal amount of memory usage: only N2 − 1 real
numbers. Despite this advantage, one must remember that, each time we desire to perform
an operation, we will need to determine all the N2 matrix elements, thus requiring the
evaluation of the exponential of a matrix. This is an expensive operation to perform and,
typically, the memory economy does not outweigh the increase in computational cost.

We turn to the defining properties of this group, i.e. UU † = 1 and detU = 1. After
a small amount of algebra, one gets the following set of equations

|U11|2 + U12U
∗
21 = 1 , (5.1)

U11U
∗
12 + U12U

∗
22 = 0 , (5.2)

U21U
∗
11 + U22U

∗
12 = 0 , (5.3)

U21U
∗
12 + |U22|2 = 1 . (5.4)

This set of equations can be satisfied by

U =
 x y

−y∗ x∗

 , with x, y ∈ C / |x|2 + |y|2 = 1 = detU . (5.5)

Thus, one needs only two complex numbers (four real numbers) to parameterize the group.
Alternatively, if storage is a crucial problem, it is possible to omit one of the real numbers
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and compute it only when needed. Notice that this reduces the number of parameters to
be the same as in the exponential mapping, but the additional cost is much smaller than
when one needs to exponentiate a matrix.

Another way to write the same condition, which is also very popular and is used in
Ref. 32, can be derived by expanding the complex numbers of the above parameterization
in its real and imaginary part. The matrix is then written

U =
 a4 + ia3 a2 + ia1

−a2 + ia1 a4 − ia3

 = a41 + ia · σ, a4, a ∈ R and a2
4 + a2 = 1 . (5.6)

Both parameterizations are equally valid. Since we will implement the code in Fortran
language, which has native support to complex numbers, we will adopt the former param-
eterization.

As said above, the SU(2) strategy of using the defining property of the group to
determine a reasonable parameterization is portable to SU(3). We start by writing the
matrix U as

U =


u

v

w

 , (5.7)

where u, v and w are complex vectors of dimension 3. When we write V = UU †, each
element of V will be given by a scalar product of these vectors. By setting V = 1 (to
impose unitarity in U), we arrive at

u · v∗ = 0 u ·w∗ = 0 v ·w∗ = 0 and |u|2 = |v|2 = |w|2 = 1 . (5.8)

The above conditions tell us that u, v and w must form an orthogonal basis. Therefore, a
way to implement this is by setting w∗ = ±u× v. The sign to be used can be determined
from the remaining constraint, detU = 1. We have that

detU = εijkuivjwk = u · (v ×w) = w · (u× v) = w ·w∗ = 1 . (5.9)

The above can only be satisfied by choosing the positive sign for the vector w. Summarizing,
the parameterization for an SU(3) group element can be written as

U =


u

v

u∗ × v∗

 , with |u| = |v| = 1 and u · v∗ = 0 . (5.10)

When implementing this parameterization, we may choose between storing only
the vectors u and v, or storing all three rows. The former case saves memory, but has
as drawback a greater use of computational time due to the need to compute the cross
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product every time we need to access the third row. We consider the 33 % saving in
memory use does not outweigh the increased computational cost and we use all 9 complex
numbers.

Also, notice that variations of this parameterization are valid, e.g. by interpreting
the matrix columns as vectors. However, those variations are conceptually equivalent,
obeying the same constraints and procedure to check its properties.

Having determined how to parameterize the link variables, we proceed to the
generation of field configurations. We will be adopting the (pseudo-)heat-bath methodi,
as outlined in the next section. In short, the heat-bath algorithm consists in freezing all
variables in the system, except one [in our case, the variables are the gauge links Uµ(n)].
Then, one factors out from the action the unfrozen variable and gets an expression where
it is possible to interpret the frozen variables as an external classical field that acts solely
on the target variable. Under these conditions, it may be possible to propose a new value
for the unfrozen variable that follows its probability distribution exactly. We will show the
algorithm in the next section.

The question that follows is how one chooses the link to be updated. There are two
possibilities that are usually adopted: to pick a link to update randomly or systematically
iterate over all links on the lattice. We use the latter, since it better decorrelates the
generated configurations.

There is one additional consideration we must make. From the probability density,
as defined in the partition function in Eq. (3.73), and the detailed balance condition in
Eq. (3.77), we have that the transition amplitudes must obey

P (i → j)
P (j → i) = detKj

F

detKi
F

e−(SjG−S
i
G) . (5.11)

This means that, for each link we update, it will be necessary to take into account
detKF , i.e. we must compute it. There are some strategies that one can adopt, as seen
in [Ref. 30, Chap. 8]. However, even with these tricks, such computations are much
more expensive than the computation of SjG − SiG alone. Because of that, a common
approximation is to set detKj

F/detKi
F = 1. The simulations where such an approximation

is performed are usually called quenched simulations, since one interprets it as a suppression
of the virtual quark-antiquark sea in the simulation. Contrasting to this, the full simulation,
taking into account the computation of the determinant, is called a dynamical fermion
simulation. In our work, we will be using quenched simulations.

5.1.1 (Pseudo-)heat-bath method for SU(3)

The heat-bath method is the name given to any algorithm that draws a new
link variable independently of the previous value.63 Notice that this does not imply that
i The justification for this name follows in the next section.
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successive configurations will not be correlated, since the neighboring links affect the
probability distribution used in the new value’s drawing process.

For SU(3), the most popular method is the one developed by Cabibbo and Mari-
nari,64 referred to as Cabibbo-Marinari method. This method is powerful because it is
built on top of the well-known SU(2) algorithm and is applicable for SU(N). Ref. 30 briefly
outlines it. For completeness, I will present here the algorithm in detail.

We start with the local probability distribution

dP = dU exp
(
β0

3 <Tr [Uµ(n)Aµ(n)]
)
, (5.12)

where Uµ ∈ SU(3) is the link which will be updated, the index µ is not summed over and
Aµ is the staple, which is defined as the sum of plaquettes which contained Uµ(n) (or U †µ)
with Uµ(n) factored out. One can express Aµ as

Aµ =
∑
ν

ν 6=µ

Uν(n+µ̂)U−µ(n+µ̂+ ν̂)U−ν(n+ ν̂)+U−ν(n+µ̂)U−µ(n+µ̂− ν̂)Uν(n− ν̂) . (5.13)

From now on, all operations will be referent to the update of the link Uµ(n), thus we omit
the argument n and the index µ to simplify our notation.

For the purpose of developing the algorithm, we say that the new link U ′ is given
byU ′ = V U , with V ∈ SU(3). The link U is fixed and given by the initial configuration.
Thus, we may look at this operation as a variable change U → U ′ = V U in Eq. (5.12), with
V being the variable we are integrating over. Due to the property of the Haar measureii

dU = d(V U), this variable change keeps Eq. (5.12) invariant

dP = dU ′ exp
(
β0

3 <Tr [U ′A]
)

= d(V U) exp
(
β0

3 <Tr [V UA]
)

= dV exp
(
β0

3 <Tr [VW ]
)
,

(5.14)

where W = UA.

As said above, SU(2) is a subgroup of SU(3). In fact, we can identify three copies
of SU(2) inside SU(3). The elements belonging to these copies can be expressed as

R =


r1 r2 0
−r∗2 r∗1 0

0 0 1

 , S =


s1 0 s2

0 1 0
−s∗2 0 s∗1

 and T =


1 0 0
0 t1 t2

0 −t∗2 t∗1

 (5.15)

with ri, si, ti,∈ C and ∑2
i=1|ai|

2 = 1 for a = r, s, t. One can verify, after some algebra, that
any element V of SU(3) can be obtained as V = TSR.
ii For details in the Haar measure, see Refs. 19 and 32.
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The approach adopted in the Cabbibo-Marinari method is to set T = S = 1 and
thus the trace inside the exponential becomes

<Tr [VW ] = < [r1w11 + r2w21 − r∗2w12 + r∗1w22 + w33]
= <(r1)< (w11 + w22) + =(r1)=(w22 − w11) + <(r2)<(w21 − w12)
−=(r2)=(w21 + w12) + <(w33) .

(5.16)

Setting aside the term <(w33), this expression is very similar to what one obtains by the
trace of the multiplication of an SU(2) link with its plaquette in an SU(2) gauge theory

<Tr[USU(2)ASU(2)] = 2 [<(r1)<(a1)−=(r1)=(a1)−<(r2)<(a2)−=(r2)=(a2)] , (5.17)

where ai is the parameterization of the staple A. In fact, if we define

w1 ≡
< (w11 + w22) + i= (w11 − w22)

2

w2 ≡
< (w12 − w21) + i= (w12 + w21)

2 ,

(5.18)

the exponent becomes exactly the same. Due to this result, we reorganize the W matrix’s
block elements (equivalent to the subgroup R) in a 2× 2 matrix WR, parameterized in the
same fashion as an SU(2) matrix [see Eq. (5.5)], except that the parameters w1 and w2

will not obey the constraint |w1|2 + |w2|2 = 1. The probability density is then

dP = dR exp
[
β0

3 Tr(RWR)
]
, (5.19)

where R ∈ SU(2). The probability distribution in Eq. (5.19) is very similar to the one in
an SU(2) simulation, with R being analogous to a link being updated and WR analogous to
the plaquette. Therefore, the issue now is to find an element R following Eq. (5.15). Then,
one promotes R to an SU(3) group element, following Eq. (5.15), and computes U ′ = RU ,
generating a new link. To guarantee that we can generate any SU(3) element, one must
repeat the process using matrices S and T in place of R [see Eq. (5.15)]. The drawback
of such an approach is that the new element U ′ is drawn based on the old element U .
This dependence happens at two moments: when one uses W = UA to build the “SU(2)
plaquette” WR and when we set the new link to U ′ = TSRU . Because of this, even if
an SU(2) heat-bath algorithmiii is used to generate the matrices T , S and R, there is a
chance that a high correlation between successive states will persist. Due to the reasons
iii We point out that one could use for link generations the more usual Metropolis algorithm,

where one proposes a new link that deviates from the previous one by a random small amount,
and accept or reject it according to the constraint in Eq. (5.11). However, since the link
deviates just a little from the original configuration, it is more correlated than the heat-bath
configurations, where a new link value is drawn independently from its previous configuration
and following exactly a local probability distribution. Therefore, the Metropolis algorithm is
less efficient than the heat-bath one.
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just presented, when we use an SU(2) heat-bath in the above procedure, we call this a
pseudo-heat-bath algorithm.

We will now dive into the heat-bath algorithm for SU(2). We start by noticing that
any matrix which is parameterized as WR is proportional to an SU(2) group, with the
proportionality constant given by the matrix determinant. In other words, we may write

WR = αV , V ∈ SU(2) and α =
√

detWR . (5.20)

In this way, the argument inside the trace is RV ∈ SU(2) and the probability
density is written asiv

dP = dR exp
[
αβ0

3 Tr(RV )
]
. (5.21)

Next, we perform a change of variable R = XV † and obtain

dP = dX exp
[
αβ0

3 TrX
]

= dX exp
[

2αβ0

3 <x1

]
. (5.22)

It remains to express the Haar measure dX in terms of the groups parameters.
This will be easier if one decomposes the complex parameters x1 and x2 as x1 = a4 + ia3

and x2 = a2 + ia1, as done in Eq. (5.6). The Haar measure is then expressed as

dX = d4a
1
π2 δ

(
a2

4 + |a|2 − 1
)

= d|a|da4dΩ |a|
2

2π2

δ
(
|a| −

√
1− a2

4

)
+ δ

(
|a|+

√
1− a2

4

)
√

1− a2
4

,

(5.23)

where we used the property

δ(f(x)) =
∑
i

δ (x− xi)
|f ′(xi)|

, (5.24)

and xi are the roots of f(x). We integrate out the variable |a|, eliminating the Dirac deltas
and obtain

dP = d|a|da4dΩ |a|
2

2π2

δ
(
|a| −

√
1− a2

4

)
+ δ

(
|a|+

√
1− a2

4

)
√

1− a2
4

exp
[

2αβ0

3 a4

]

= dΩda4
1− a2

4
2π2

exp (αβ0a4/3)√
1− a2

4

= dΩda4

√
1− a2

4

2π2 exp
(

2αβ0

3 a4

)
.

(5.25)

This gives us that a4 must be picked following the probability density e
2αβ0

3 a4
√

1− a2
4,

while the vector a should be uniformly distributed on the surface of a sphere of radius√
1− a2

4. Notice that, from our parameterization, we must constrain ai ∈ [−1, 1].
iv In SU(2), the normalization in the denominator is a 2. However, we will use this algorithm

in an SU(3) simulation. Thus, we changed the normalization to the one present in Eq. (5.19).
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For a4, a variable change a4 = 1− 2λ2 yields

da4

√
1− a2

4

2π2 exp
(

2αβ0

3 a4

)
= dλ

π2 exp
(

2αβ0

3

)
exp

(
−4αβ0

3 λ2
)

2λ2√1− λ2 . (5.26)

We absorb the λ-independent factors as a normalization constant. Thus, we must generate
numbers λ following the polynomial Gaussian distribution λ2 exp

(
−4αβ0

3 λ2
)
and accept

them with probability
√

1− λ2. The algorithm to draw the random numbers λ2 and the
points on the surface of the sphere can be chosen at will. For λ2, the algorithm chosen
is the one in Ref. 30, which consists in drawing three random numbers (r1, r2 and r3)
uniformly in the range ]0, 1]. Then λ2 is given by

λ2 = − 3
4αβ0

[
ln(r1) + cos2(2πr2) ln(r3)

]
. (5.27)

As usual, the acceptance step is made by drawing a fourth random number in the range
]0, 1] and testing if it is smaller than

√
1− λ2. If this is not the case, we reject the value of

λ2 found and run the algorithm again.

To pick points uniformly on the surface of a sphere of radius R =
√

1− a2
4, we use

the Marsaglia algorithm.65–66 We draw two random numbers in range [−1, 1] and accept
them only if x2

1 + x2
2 ≤ 1. Then the coordinates x1, x2 and x3 are given by

a1 = 2Rx1

√
1− x2

1 − x2
2 ,

a2 = 2Rx2

√
1− x2

1 − x2
2 ,

a3 = R− 2R(x2
1 + x2

2) .

(5.28)

Once we finish this process, we have an SU(2) element X drawn following Eq. (5.22).
We then can compute R ∈ SU(2) as R = XV † = XW †

R/α. Then it is just a matter of
promoting R to be an SU(3) group element belonging to the appropriate subgroup and
update the link with U ′ = RU . Of course, we must repeat the entire procedure for the
other two subgroups.

Thus, the pseudo-heat-bath algorithm for an SU(3) gauge theory can be summarized
by the following steps

1. Compute the staple A using Eq. (5.13).

2. For each SU(2) subgroup of SU(3):

a) Close the staple with the link U to form the matrix W .

b) Write W as a 2×2 matrix WR proportional to a SU(2) element using Eq. (5.18).

c) Compute the determinant of α = detWR.

d) Obtain an SU(2) group element V = WR/α.
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e) Draw four random numbers r1, r2, r3 and r4 to find λ2 following Eq. (5.27).

f) If r2
4 > 1− λ2, repeat the previous step.

g) Set a4 = 1− 2λ2.

h) Draw two random numbers x1 and x2.

i) If x2
1 + x2

2 > 1, then repeat the previous step.

j) Set a1, a2 and a3 according to Eq. (5.28), with R =
√

1− a2
4.

k) Interpret a1, a2, a3 and a4 as an SU(2) matrix X, parameterized as in Eq. (5.6)
and use it to generate another SU(2) group element R = XV † = XW †

R/α.

l) Promote R to an element of SU(3) belonging to the SU(2) subgroup of the
current step.

m) Update the link U with U → U ′ = RU .

n) Use the updated link in the next subgroup.

There is a subtlety that we must be aware of. Computers use floating-point numbers
and thus have a limited precision when storing them. Once the above algorithm is executed
many times for the same lattice, it is natural the accumulation of numerical errors. These
errors lead the matrix U ′ generated to be slightly outside of the SU(3) group. One can
easily verify such an effect by computing their determinants and multiplying them by
their transpose conjugate, or yet by checking if the parameters are following the imposed
parameterization constraints. For a short run, the deviations will be small and this should
not be an issue. However, for longer runs, we frequently check these parameters looking if
they deviate more than a tolerated amount. In case this happens, we project them back
onto SU(3).

The projection procedure is based on the observation that the three rows of the
group elements form an orthonormal base. We use the Gram-Schmidt approach to fix
this30

u′ = u

|u|
, v′ = ṽ

|ṽ|
with ṽ = v − u′(v · u′∗) . (5.29)

A last issue remains. As mentioned above, this is a pseudo-heat-bath. Thus, the
gauge configurations being generated may be highly correlated. If this happens, we will
need to discard a large amount of configurations because they are correlated. It would be
beneficial if one could devise a way for the new configurations to be as far as possible, in
the configuration space, from the previous one, which would minimize the computational
effort. This is the aim of the overrelaxation procedure and will be the subject of the next
section.
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5.1.2 Overrelaxation

As we just stated, the overrelaxation method is a way to mitigate correlations
between two successive gauge configurations. The idea is to modify the link proposed by
the heat-bath, as a way to get “as far as possible” from the previous configurations. There
are several tactics that are used, especially by proposing to choose another link which does
not change the value of S. If the value of S does not change, neither does the probability
of selecting the proposed configuration instead of the previous one. Thus, one does not
change the sampling performed by the Monte Carlo algorithm. The approach we used is
based in the one proposed by Creutz67 and we present it bellow.

The overrelaxation procedure is applied after the heat-bath algorithm explained
above is finished and a new link U ′ = TSRU is available. We use the staple that is already
computed and project it onto the SU(3) group, using the Gram-Schmidt procedure of
Eq. (5.29). Then we compute the transpose conjugate of it. The result of this operation
we call V0. We then propose a new U ′ by U ′ = V0U

†V0.

The above procedure, for SU(2), draws a new link that has the same probability
to be drawn as the one from the heat-bath algorithm. This can be easily verified by
remembering the property in Eq. (5.20), which states that the sum of SU(2) group
elements is proportional to an SU(2) matrix as well. Thus our transformation takes
Tr[UA]→ Tr[A†U †]. Now, in SU(2) the trace is real and thus our transformation does not
change the value of the action of the new configuration.

The above reasoning does not hold for SU(3), however. The property in Eq. (5.20)
holds only for the SU(2) group and thus the transformation Tr[UA]→ Tr[A†U †] does not
hold true. This means that once the above procedure is applied, we will not be drawing
U ′ with the Boltzmann weight exp[β0<Tr(UA)/3]. The result is that if we always accept
U ′, we will thermalize to the wrong states.

The solution found was to apply a Metropolis acceptance test once the link is
modified by the overrelaxation procedure. More precisely, when a modification of the link
is proposed, one must accept or reject it, in such a way that the detailed balance equation
in Eq. (5.11) is respected (in our case, in the quenched approximation). This is done by
computing ∆S = SjG − SiG. If ∆S < 0, the proposed link is always accepted. Else, one
draws a random number r ∈ [0, 1[ and accepts it only if r ≤ e−∆S.

The Metropolis algorithm can be used as the main engine in generation of new links.
In these cases, one typically proposes the new link by introducing a small modification in
the previous one. This is not the case here. The proposed link comes from the overrelaxation
procedure. In case the link is rejected by the Metropolis algorithm, we simply keep it as it
was, i.e. with the value coming from the heat-bath algorithm.
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5.1.3 Implementation details

To generate the lattice configurations, the program needs to know some parameters.
The application developed reads these parameters from an XML file, using the FoX
Fortran library.68 The parameters read are the lattice sides Nx, Ny, Nz, Nτ and the
coupling parameter β0. Furthermore, we also read how the lattice will be initialized. We
allow three options for this. The first one is called cold start and consists in setting all link
values to Uµ(x) = 1. The name is due to the fact that such a configuration resembles the
equilibrium state of an Ising model at zero temperature. The second possibility of start
is called a hot start, which consists of randomly picking SU(2) group elements R, S and
T , promoting them to SU(3) matrices, as in Eq. (5.15), and multiplying them to get a
random SU(3) group elementv. This is analogous to what one would observe in an Ising
model at infinite temperature, thus the name hot start. The last option given is to use
a lattice configuration previously generated. This enables one to skip the thermalization
steps, since we start from an already thermalized lattice. It can be also used to simulatevi

the continuation of a previously stopped simulation.

We recall that, due to the renormalization procedure one must perform, the
parameter g0 =

√
6/β0 depends on the lattice spacing. Or conversely, fixing the parameter

β0 will fix the lattice spacing. We recall yet that the temperature of the simulation will
be given by Nτa(β0) = 1/T . Thus, the value of β0 and lattice dimensions must be chosen
with care. Fortunately, there are works performed tabling these values. We use Ref. 69,
which gives us directly the ratio between the temperature and the temperature of the
phase transition, TC

T

TC
= 1

34.38NτR(β0)λ(β0) , R(β0) =
(
β0

6b0

) b1
2b20
e
− β0

12b0 ,

b0 = 11
16π2 , b1 = 34

3

( 3
16π2

)2
(5.30)

and λ(β0) is tabled in Ref. 69.

There is yet other two parameters which are read from the XML file: The number
of Monte Carlo steps which will be computed and the interval, in Monte Carlo steps,
between configurations that are saved to disk. A Monte Carlo step is defined as a sweep
across the entire lattice of the heat-bath plus overrelaxation algorithm.

In a first run, we do fewer Monte Carlo steps, but saving every configuration
generated. This allows one to determine the correlation and thermalization times. After
v For the generation of random SU(2) group elements, one must pick a random point on the

surface of a hyper-sphere. This is done by drawing four random numbers following a normal
distribution and normalizing them. See Appendix A for details.

vi To really be a continuation of the simulation, we should supply the state of the random
number generator at the time that the configuration was saved. This is something which we
plan to implement some time in the future.
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this, we perform a long run, saving to disk only the uncorrelated configurations. In addition
to saving space, this saves time as well, since the operation of writing a configuration to
disk is a slow one.

The above determinations (correlation and thermalization times) may depend
on the choice of operator. Thus, we should use the operator which we are interested in
measuring, i.e. the energy-momentum tensor. However, its calculation is expensive and
the thermalization and correlation times should not be significantly different if a simpler
operator is chosen. Thus, we use the average plaquette to perform these calculations,
defined by

P = 1
6NxNyNzNτ

∑
n

∑
C(µ, ν)

1
3<Tr [Uµν(n)] . (5.31)

Once we obtain the sequence of values of the average plaquette, we use the methods
presented in Appendix B. It is also possible to plot P vs. the Monte Carlo time, allowing
an estimation of the thermalization time. Once this procedure is finished, one proceeds to
the production run, generating the field configurations that will be used in the subsequent
steps.

5.2 Energy-momentum-tensor discretization

Once the gauge configurations are generated, one must work on the computation
of the energy-momentum tensor. As usual, we break the problem into the gauge term and
the fermion term. We recover from Eq. (2.61)

TGµν = 2 Tr
[
FµρFνρ −

δµν
4 FρσFρσ

]
. (5.32)

The strategy is to find a discrete version of the tensor Fµν(n) and then employ
Eq. (5.32) to compute TGµν . Fortunately, a good discretization of Fµν is easy to come by.
We start by recovering from Eq. (3.60)

Uµν(x) = 1 − ig0a
2Fµν −

g2
0a

4

2 F 2
µν + O(a6) . (5.33)

We then define a clover as

Qµν(n) = Uµν(n) + Uν,−µ(n) + U−µ,−ν(n) + U−ν, µ(n) . (5.34)

The name clover comes from the resemblance to a clover when the graphic representation
of it is drawn, as seen in Fig. 11. We stress that the clover-leafs(i.e., plaquettes) must
always start from the point n, and follow the counter-clock wise orientation.

Under the assumption that Fµ,−ν(x) = −Fµν , the clover term can be approximated
as

Qµν = 4
[
1− ig0a

2Fµν(x)− g2
0a

4

2 F 2
µν(x)

]
+O(a6) . (5.35)
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n
Qµν(n) =

ν

µ

Figure 11 – Representation of the clover operator. Source: Elaborated by the author.

Notice also that Q†µν = Qνµ. Thus, we get

Qµν −Qνµ = −8ig0a
2Fµν +O(a6) . (5.36)

The above discretization for Fµν is called clover-leaf discretization and is suggested
for the calculation of the gauge part of the energy-momentum tensor by Ref. 21. It is also
present in Ref. 30 as a discretization of the field strength tensor, but in the context of
improvement of the Wilson action.

We proceed to compute the Fermionic part of the tensor. Recovering Eq. (2.73) we
get

T Fµν = ψ̄
[
γµ
↔
Dν + γν

↔
Dµ

]
ψ − δµνψ̄

(↔
/D −m

)
ψ. (5.37)

The term accompanying δµν is just the fermion Lagrangian and one may use the
Wilson fermion discretization in Eq. (3.70), with the modification of excluding the sum in
m and the global factor a4. We now worry about the discretization of the first factor. To
this end, let us recall the definition of

↔
Dµ

↔
Dµ = 1

2(
←
Dν +Dµ) , Dµψ = ∂µψ̄ − igψ̄Aµ , ψ̄

←
Dµ = −∂µψ̄ − igψ̄Aµ . (5.38)

We have already discretized the covariant derivative Dµ in Section 3.2.2. We use it
as an inspiration to propose the following discretization for ψ̄

←
Dµ

ψ̄
←
Dµ →

ψ̄(n− µ̂)Uµ(n− µ̂− ψ̄(n+ µ̂)U−µ(n+ µ̂)
2a . (5.39)

Thus, a term like ψ̄(n)γν
↔
Dµψ(n) is written as

ψ̄(n)γν
↔
Dµψ(n) = 1

4a
[
ψ̄(n)γνUµ(n)ψ(n+ µ̂)− ψ̄(n)γνU−µ(n)ψ(n− µ̂)

+ψ̄(n− µ̂)γνUµ(n− µ̂)ψ(n)− ψ̄(n+ µ̂)γνψ(n)U−µ(n+ µ̂)
]
.
(5.40)

The above relation may be put into a more palatable way by noticing that
ψ̄(n)ψ(m) = −Tr[ψ(m)ψ̄(n)] = −a−3 Tr[S(m|n)], where S is the fermion propagator,
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i.e. the inverse of the Dirac operator K(m|n), given by the term inside square brackets in
Eq. (3.70). The factor a−3 comes from the scaling of the propagator, performed to obtain
a dimensionless observable, better suited for numerical evaluation. After these operations,
the fermionic energy-momentum tensor can be written as

T Fµν(n) = − 1
4a4 Tr [S(n+ ν̂|n)γµUν(n)− S(n− ν̂|n)γµU−ν(n)

+S(n+ µ̂|n)γνUµ(n)− S(n− µ̂|n)γνU−µ(n)
+S(n|n− ν̂)γµUν(n− ν̂)− S(n|n+ ν̂)γµU−ν(n+ ν̂)
+S(n|n− µ̂)γνUµ(n− µ̂)− S(n|n+ µ̂)γνU−µ(n+ µ̂)] .

(5.41)

The above discretization matches the one proposed in Ref. 21. However, we may
simplify the calculation further. Notice that the first and second lines in the above equation
are the same tensor, with its indices µ and ν swapped. The same happens between the
third and fourth line. However, it is possible to reduce it in terms of a single object. To
this end, we use the γ5-hermiticity property, which states30 S(m|n) = γ5S†(n|m)γ5. We
also write Uν(n− µ̂) = U †−µ(n) and use γµ = γ†µ. Since TrA† = (TrA)∗, and picking the
third line of Eq. (5.41), we rewrite it as

Tr
[
U−ν(n)γµγ5S(n− ν̂|n)γ5 − Uν(n)γµγ5S(n+ ν̂|n)γ5

]∗
. (5.42)

However, we may use the cyclic property of the trace to bring the γ5 at the end of the
expression to the beginning. We also know that the gamma matrices commute with the
links and thus in both terms we have a factor γ5γµγ

5 = −γµ. If we use again the cyclic
property of the trace to bring the propagator to the expression’s beginning, we find that
the third line is just the complex conjugate of the first line. Thus, if we define

Cµν = 1
4 Tr [S(n− µ̂|n)U−µ(n)γν − S(n+ µ̂|n)Uµ(n)γν ] , (5.43)

we have that the energy-momentum tensor may be written as

T Fµν(n) = 2
a4< [Cµν(n) + Cνµ(n)] , for µ 6= ν . (5.44)

Notice yet that the Green function which we wish to calculate depends solely on
off-diagonal components of the tensor. For this reason, we will not dwell on the diagonal
components’ calculation.

The implementation of the bosonic tensor’s computation is straightforward. The
program receives as input the lattice dimension, the value of β0 and the file name where
the field states are stored, which is then loaded to memory. A shell script is used to
run the application several times, each one for a different field configuration previously
generated. Once a configuration is loaded, Fµν(n) is computed for ν > µ. The remaining
components are then computed using the symmetry property Fµν(n) = −Fνµ(n). Then it
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is just a matter of employing Eq. (5.32) for µ ≥ ν. Once again, we use the tensor symmetry
Tµν(n) = Tνµ(n) to fill the remaining of the tensor. Once the computation is done, the
result is saved to disk for later use.

For fermions, the procedure is more involved, due to the need to compute the
propagator S(n± µ̂|n). The algorithms most widely known, such as the Bi-CGStab,30,70

compute only one column of S, i.e., for fixed α0, a0 and m0, one computes Saa0
αα0(n|m0)

for every α, a and n. However, since we will take the Fourier transform later, we need
Saa0
αα0(n+ µ̂|n) for all sites n. As one can see, we are not interested in a single column, but

rather in the elements neighboring the diagonal S(n|n). At the time of the writing of this
thesis, it is not clear to us how best to proceed. One possibility is that, if one manages to
compute the propagator already in momentum space, as in Ref. 71, then the issue might
not matter. For the time being, the result presented does not include contributions coming
from the fermionic term and should be seen as a simulation of a “gluon plasma”, without
any contributions from fermions.

5.3 Green-function computation

We are finally in a position where we can compute our observable, the Euclidean
Green function for the energy-momentum tensor, which can be written from Eq. (4.47)
and Eq. (4.48), after Wick rotation, as

GE
4i, 4j(k) =

∫
d4x e−ikµxµ 〈T4i(x)T4j(0)〉 . (5.45)

To compute the correlation function, one uses the procedures outlined in Appendix
B. Since we are interested in the Green function in momentum space, we have

GE
4i, 4j(k) = 〈F [T4i(x)T4j(0), k]〉 = 1

NxNyNzNτ

〈
F
[
F−1

[
T̃4i(p)T̃ ∗4j(p), x

]
, k
]〉

=
〈
T̃4i(k)T̃ ∗4j(k)

〉
,

(5.46)

where T̃4i(k) is the Fourier transform of T4i(n).

The above computations are not particularly intensive, thus it is worth it to
load all values of the Tµν(n) for all field configurations. Then, for each configuration,
we compute T̃4i(k)T̃4j(k). To perform the transformation, we use the discrete Fourier
transforms provided in the Intel Math Kernel Library (MKL). It has the advantage that it
can be easily configured to run on a cluster, if necessary in the future.

The operation performed by the library is given by [Ref. 72, Chap. 9]

f̃(k1, . . . , kd) = σ
nd−1∑
jd=0
· · ·

n1−1∑
j1=0

f(j1, . . . , jd) exp
[
δi2π

d∑
l=1

jlkl
nl

]
. (5.47)

In our case, d = 4 and we choose σ = 1 and δ = −1. The output will be a complex
array of the same size as the input. Since our input data are real, ki ∈ [Ni/2 + 1, Ni− 1] is
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the complex conjugate of the data in [1, Ni/2]. Thus, we only save to file the data in the
range [0, Ni/2].

After the computation of T4i(k)T4j(k), for each i, j and k, it is employed the
procedure of statistical treatment in Appendix B. Contrary to what was done for the
generation of configurations and for the computation of the energy-momentum tensor, the
results are stored as a text file, instead of in a binary format.

5.4 Orbit average

The last step consists of reading the text file and treating it to generate plots.
The low computational cost made us switch from Fortran to Python, which is easier to
program.

We start by assuming that the lattice has an H(3) symmetry, i.e. we should be
able to rotate on space planes by 90 degrees and not see difference in results. Notice that
time direction does not take part in this symmetry. This is because in finite temperature
simulations we need a lattice in which the time direction is smaller than the spatial ones,
breaking the H(4) symmetry into H(3).

The consequence of the H(3) symmetry is that an observable O can be written as
O(p[2], p[4], p[6], ω), where

p[n] = pnx + pny + pnz . (5.48)

This allow us to define an “orbit”, which consists of all points with the same set of
p[2], p[4], p[6], ω. These points should have the same values of the observable and thus we
can average over them, which is the job of this application.

In the continuum, is expected that we recover the O(4) symmetry and we should see
a very strong dependence on p2 (if the observable depends on it) and a weak dependency
on p[4], p[6], ω, which can be regarded as lattice artifacts. Details of all these issues can be
found in Ref. 73. Notice that although we are using the momentum notation, this will
hold in the coordinate space as well.

After the average over orbits is performed, we may employ Eq. (4.62) and Eq. (4.63)
to compute G‖(|k|) and G⊥(|k|). We them perform the plot of G‖(|k|)−G⊥(|k|) to perform
the test, as suggested at the end of Section 4.3.2.

5.5 Results

We start by performing some test runs using small lattices. The idea is to be able
to compare the average plaquette with data from Ref. 74. These tests were made on a
computer equipped with an Intel(R) Core(TM) i5-4460 CPU @ 3.20GHz, with 8 GB of
RAM available, running Arch Linux. The compiler used was the PGI Fortran Compiler,
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available in the PGI Community compiler suit. We choose this compiler because it is the
only one which supports GPU parallelization natively in Fortran. Although we did not
use this feature in the present work, we plan to incorporate it later. All code developed is
publicly available at https://github.com/willian-m/SU3SimSuit/tree/v0.2.

We start by generating 1000 configurations on an 84 lattice with β = 5.7. We
choose to perform a “hot” lattice initialization. For this run, we record every configuration
generated. The entire execution takes around two minutes to complete. We also measure
the acceptance rate of the Metropolis test in the overrelaxation method and obtain that it
was 52.50% . This number is important because it asserts the efficacy of the overrelaxation
step. If we had a low acceptance rate it would mean that we just wasted computational
time trying to guess an uncorrelated field configuration but ended up using mostly the
ones from the pseudo-heat-bath.

Next, we proceed to run the program to compute the average plaquette. It outputs
just the average plaquette for each configuration in a text file, which later is read by a
Python script, which does the statistic work. We estimate the exponential correlation
time to be around 7 and thus set the thermalization time to be 70. This is in line with
the estimate of the integrated correlation time of 8. We obtain an average plaquette of
〈P 〉 = 0.54924(42), thus in agreement with Ref. 74. We performed a couple more runs, at
different lattice spacings and coupling values, to guarantee that our field configuration
generator is working. A summary of the results is presented in Table 1. We also present
in Fig. 12 the thermalization evolution for all our test cases. The acceptance rate of the
overrelaxation step did not change much, staying in the 52-55% range.

Table 1 – Results for the average plaquette in several test scenarios and their comparison
with the values present in Ref. 74.

Lattice size β0 Therm. time Int. correlation time 〈P 〉 Ref. 74
84 5.70 70 8 0.54924(42) 0.549123(56)
104 5.80 80 9 0.56742(22) 0.567633(12)
104 5.90 30 5 0.58197(16) 0.58187(3)
124 5.90 30 10 0.58188(19) 0.58185(2)
124 5.90 20 6 0.58570(19) 0.585600(15)

Source: Elaborated by the author.

The above results give us confidence that using as thermalization time 100 Monte
Carlo steps and saving to disk in steps of 10 Monte Carlo steps will yield good results.
But, as a precaution, we executed the same procedure for our finite temperature lattice.
For these, we use Ns = 32 and Nτ = 6. To generate 1000 configurations (saving every one
of them to disk) takes about 110 minutes. No significant change of the acceptance rate
of the overrelaxation step was noticed. In Table 2 we summarize what we obtain at all
temperatures used. We see that our criteria of discarding the first 100 steps and recording
at each 10 steps are good enough.
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Figure 12 – Average plaquette values as a function of Monte Carlo time for several lattice
sizes and coupling values. Source: Elaborated by the author.

Table 2 – Results for the average plaquette at finite temperature. We always used Ns = 32
and Nτ = 6.

β0 T/Tc Therm. time Int. correlation time 〈P 〉
5.70 0.67 50 7 0.549659(68)
5.90 1.01 40 11 0.582096(94)
6.00 1.20 80 26 0.5941(10)
6.10 1.42 40 28 0.60427(17)

Source: Elaborated by the author.

Since the data from Table 2 show that 1000 samples seems to yield a good statistic,
we will perform 10 000 Monte Carlo steps to get the thousand samples above mentioned.

We present our results as a plot of G‖(0,k2) and G⊥(0,k2), computed as defined
in Eqs. (4.62) and (4.63). We also average points in the same orbit, as described in Section
5.4. These results are presented in Fig. 13. Notice the “fish bone” structure towards higher
momentum. This is a direct consequence of the orbit averaging procedure and thus caused
by the breaking of rotational symmetry by the lattice discretization. However, we are
interested in the limit k2 → 0 and thus we do not worry about the removal of these lattice
artifacts.

As noted at the end of 4, if there is a superfluid, we should see G‖(0,k2 → 0) 6=
G⊥(0,k2 → 0). However, the data obtained suggest that G‖(0,k2) = G⊥(0,k2). If we
neglect for a moment the lattice artifact by averaging over all points with the same k2

and then compute G‖(0,k2)−G⊥(0,k2), this becomes more evident, as Fig. 14 shows.

Therefore, the simulations performed indicate that Landau’s two-component model
is not applicable to a pure-gluon theory at finite temperature. However, one must be
careful not to generalize this result to the QGP. We must remember that we did not
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Figure 13 – Computation of the decomposition of the Green function in its longitudinal
and transverse component, as a function of the wave mode k2, for several
temperatures. Source: Elaborated by the author.

take into account the fermionic term of the energy-momentum tensor. To be certain, one
must compute it as well. In fact, Kalaydzhyan proposes75 that the superfluid component
consists of fermionic states moving freely. Chernodub et. al. also propose76 a mechanism
that would allow these fermionic states «««< HEAD to move freely. Therefore, we plan to
corry out a simulation including the fermionic term as soon as possible. ======= to
move freely. Therefore, we plan to execute a simulation of the fermionic term as soon as
possible. »»»> ebed36c4cbe0fe329566eb59dffbd52f0bfad281
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Chapter 6

Conclusions

“Look at me still talking when there’s science to do”

Jonathan Coulton
Song “Still Alive”

In this thesis we initially reviewed the motivation for building a field theory with
gauge symmetry and explored Noether’s theorem to build conserved quantities, giving
special attention to the energy-momentum tensor. We also noticed that such a procedure
gives us a problematic tensor since it is not symmetrical and breaks gauge symmetry.
Nevertheless, we showed that it is possible to patch it and obtain a result which matches
an alternative approach, which uses General Relativity.21 Next, we used the quantum
formulation of statistical mechanics to quantize the field theory and arrived at the path
integral formulation of quantum field theory in imaginary time, taking as a toy model
a complex scalar theory. We used it to show the need of a regulator in quantum field
theories, especially in interacting ones. Our choice was to use the lattice as a regulator
since it allows non-perturbative calculations, even if they are numerical ones.

We then turned to study our system of interest, the quark-gluon plasma. We saw
that it may occur naturally at the early moments of the universe as well as in the interior
of neutron stars, which makes the determination of its properties of cosmological and
astrophysical interest as well. We outlined the phenomenological aspects of relativistic
heavy-ion collisions, used for experimental study of the QGP. We took this opportunity to
make a brief introduction to relativistic hydrodynamics, used to model the plasma. Since
the QGP hydrodynamic model points at a low viscosity liquid, the idea to treat it as a
superfluid is natural. Hence, we presented Landau’s two-component model for superfluids.
As the name suggests, this model says that the plasma should have two components: one
of near-zero viscosity and a second one with higher viscosity. We then explained in detail
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the test suggested by Chernodub14 et. al. to validate its applicability to the QGP, i.e. the
computation of the correlation function of the energy-momentum tensor.

After this lengthy theoretical overview, we showed the implementation details of
our Monte Carlo simulation, as well as the discretization used for the energy-momentum
tensor, necessary for the execution of tests. Our simulation has the shortcoming of not
taking into account any form of fermions, due to the complexity of its implementation.
Therefore, our results are applicable to a “gluon plasma” rather than QGP itself. With
this in mind, we computed the correlation function of the energy-momentum tensor to
execute the test for several temperature ranges. Our results did not indicate the presence
of the superfluid component. However, there are arguments75–76 for the fermions being
responsible for the superfluid component. Thus, we are working towards the computation
of the fermionic term of the tensor to get a better idea of the feasibility of the model.
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APPENDIX A

Uniform hypersphere point-picking

When performing a lattice simulation, we need to randomly generate SU(N) group
elements, usually for N = 3, to perform the “hot” initialization of the lattice. As we have
seen in the main body of the thesis, a SU(3) element may be generated by getting three
SU(2) elements, properly embedding them in SU(3) matrices and multiplying them. This
reduces the problem to the random generation of SU(2) group elements. A SU(2) group
element U may be parameterized by U = a01 + iajσj, where σj are the Pauli matrices.
The variables aµ are real numbers that must obey the constraint aµaµ = 1. This is the
equation of an hyperspherei. Thus, we need to uniformly pick random points in the surface
of this hypersphere. This appendix will focus on demonstrating that this is possible by
picking 4 random numbers following a Gaussian distribution and normalizing them.

Our aim is to demonstrate an algorithm which can be used to pick a point in the
surface of a hypersphere following an uniform distribution, i.e. avoiding to generating
spots where points concentrate.

The method consists in picking four numbers xµ that will be chosen randomly
following a Gaussian distribution P (xµ) = e−x

2
µ/2/
√

2π. Then we obtain the coordinates
aµ of our point through the following operation

aµ = xµ√
xνxν

. (A.1)

The coordinates aµ are the object of interest in our application, since we can readily
use them to build the SU(2) group elements. But they are not practical to show that the
points will be uniformly distributed in the surface of the hypersphere. It will be useful to

i We stress that this is an object immersed in a 4D euclidean space.
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jump to hyperspherical coordinates

r = √aµaµ = 1

θ = arccos a0 = arccos x0√
xµxµ

ϕ = arctan

√
a2

2 + a2
3

a1
= arctan

√
x2

2 + x2
3

x1

ψ = arctan a3

a2
= arctan x3

x2

(A.2)

One easy way to check that the distribution is uniform is to check if the following
condition holds

dP

dΩ = 1
2π2 , (A.3)

where dΩ = sin2θ sinϕdθ dφ dψ is the four-dimensional analogue of the solid angle.

We know the probability density function for the variables xµ

dP = 1
4π4 e

−
x2

0+x2
1+x2

2+x2
3

2 dx0 dx1 dx2 dx3 . (A.4)

However, we desire it as a function of the hyperspherical coordinates, i.e. the p(r, θ, ϕ, ψ) in
dP = p(r, θ, ϕ, ψ) dr dθ dφ dψ. If we show that it is a constant, then we prove our algorithm.
Fortunately, it is easy to calculate it60

p(r, θ, ϕ, ψ) =
 3∏
µ=0

∫ ∞
−∞

dxµ

 δ(r − 1) δ
(
θ − arccos x0√

xνxν

)
×

δ

ϕ− arctan

√
x2

2 + x2
3

x1

 δ(ψ − arctan x3

x2

)
e−

xµxµ
2

4π2

(A.5)

This integral can be solved in a much easier way if we perform the following change
of variables

x0 = ρ cos q
x1 = ρ sin q cos f
x2 = ρ sin q sin f cos y
x3 = ρ sin q sin f sin y ,

(A.6)

which have the Jacobian
J(ρ, q, f, y) = ρ3 sin2 q sin f . (A.7)

The integral becomes

p(r, θ, ϕ, ψ) =
∫ ∞

0

∫ π

0

∫ π

0

∫ 2π

0

δ(r − 1) e−ρ2/2

4π2 ×

δ(θ − q) δ(ϕ− f) δ(ψ − y) ρ3 sin2 q sin fdy df dq dρ .
(A.8)
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Thanks to the Dirac deltas, the integral trivially reduces to

p(r, θ, ϕ, ψ) = δ(r − 1)
4π2 sin2 θ sinϕ

∫ ∞
0

ρ3e−ρ
2/2 dρ . (A.9)

The remaining integral can be easily by noticing that

ρ3e−ρ
2/2 = d

dβ

[
1

2β
d

dρ
e−βρ

2
]∣∣∣∣∣
β=1/2

. (A.10)

Thus ∫ ∞
0

ρ3e−ρ
2/2dρ = d

dβ

[
1

2β

∫ ∞
0

d

dρ
e−βρ

2
dρ

]∣∣∣∣∣
β=1/2

= 2 . (A.11)

We finally obtain that

dP = p(r, θ, ϕ, ψ)dr dθ dφ dψ = δ(r − 1)
2π2 sin2 θ sinϕdr dθ dφ dψ

= δ(r − 1)
2π2 dr dΩ

(A.12)

The remaining Dirac delta is there just to remember us that our results is constrained
to r = 1, as desired. Thus, we can integrate in r to get rid of it. After this, we obtain
Eq. (A.3) as we desired.
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APPENDIX B

Statistical Error and
Correlation Functions

The Monte Carlo method generates field states following a specified distribution.
However, since a finite number of configurations is drawn, we are able to only approximate
the distribution. Of course, the law of large numbers guarantees that the more configurations
are drawn, more accurately we will represent the probability distribution. As a complication,
the above holds only for independently drawn samples. Thus we must deal with the
correlation between samples. This appendix is a summary on how we deal with such issues.
It is based in Refs. 77 and 78 with some tricks learned informally along the way.

The two main components in our analysis are the estimator f̄ of the expectation
value f̂ , given by

f̄ = 1
NMC

NMC∑
i=1

fi (B.1)

and the autocorrelation function of the operator f̂ , defined as

Cij = 〈(fi − 〈fi〉)(fj − 〈fj〉)〉 = 〈fifj〉 − f̂ 2 , (B.2)

where we are assuming that, since we are in a equilibrium situation, we have Monte Carlo
time invariance and thus a periodic boundary condition.

Our main concern is with the correct assessment of the standard deviation σ2(f̄),
which will tell us the statistical error present in the estimation f̄ , defined as

σ2(f̄) = 〈(f̄ − f̂)2〉 = 1
N2
MC

NMC∑
i=1

NMC∑
j=1
〈(fi − f̂)(fj − f̂)〉 = 1

N2
MC

NMC∑
i=1

NMC∑
j=1

Cij . (B.3)

Notice that, due to the Monte Carlo invariance, the only thing that matters is
the distance t = |i− j|. We have N terms for which i = j. The remaining terms appears
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2(N − t) times. Defining C(t) = Cij , we also have that C(0) = σ2(f). Thus, we may write

σ2(f̄) = 1
N2
MC

σ2(f)NMC + 2
NMC−1∑
t=1

(NMC − t)C(t)


= σ2(f)
NMC

1 + 2
NMC−1∑
t=1

(
1− t

NMC

)
C(t)
C(0)

 .
(B.4)

The prefactor σ2(f)/NMC is what one would expect if the samples drawn were
completely uncorrelated. This can be seen by setting C(t) = 0 for t 6= 0. The term inside
the square bracket defines the integrated autocorrelation time τint. The motivation for
such nomenclature come from the supposition that

C(t) = C(0)e−t/τexp . (B.5)

if NMC →∞. Then a way to compute the correlation time would be

τexp =
∫ ∞

0

C(t)
C(0) dt . (B.6)

In Eq. (B.6), we are approximating the discrete time by a continuous one. However, if
consider the discrete version of the integral, we have

τexp =
∞∑
t=1

C(t)
C(0) . (B.7)

Thus, in the limit of large NMC , we have

τint = 1 + 2τexp . (B.8)

The above give us two ways one may use the integrated autocorrelation time. The
first one is as a factor that will increase the statistical error as naively calculated, i.e. as
the data were uncorrelated. The second one is as the number of Monte Carlo steps one
must take before one may consider the two points of data to be uncorrelated.

For the time being, let us suppose that we computed the autocorrelation function.
Since it is numerically calculated over a finite number of samples, C(t) does not dies off
exponentially, as in Eq. (B.5), but rather fluctuates around zero. Thus, when one tries to
compute

τint = 1 + 2
∞∑
t=1

C(t)
C(0) , (B.9)

we will sum a lot of noise for t� τexp. Two solutions may be adopted. The first one is to
define

τint(t) = 1 + 2
t∑

t′=1

C(t′)
C(0) , (B.10)
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and look for a value of t where τint(t) is approximately constant. Ref. 77 proposes as an
algorithm that one must set t as the minimum value for which t ≥ cτint(t), where c is a
fixed integer. The suggestion in the aforementioned reference is for c to be at least 6, but
according the needs, values as large as 10 may be used.

The other method is known as binning method, and is explored in Ref. 78. The
idea behind it is that one can estimate correctly the error if the data is binned in bins
large enough to hold at least one set of correlated data, i.e. if the bin is larger than the
autocorrelation time. To this end, one averages the data inside each bin and uses this set
of averages to compute the standard deviation. The ratio between this standard deviation
and the one calculated with the full data set then yields the integrated autocorrelation
time.

It remains to compute the autocorrelation function. We will derive a way to perform
such computation using discrete Fourier transform. From the computational point of view,
this allows one to use libraries which are readily available, turning the implementation of
this calculation easier.

Correlation functions computed via Fourier transform

To employ this method, it is necessary that the data obeys a periodic boundary
conditions, e.g. fi+NMC

= fi. We will go further and consider the case of a correlation
function instead of a autocorrelation function, i.e. we will consider two distinct observables
A and B and compute

CAB(t) = 〈A(t)B(0)〉 ≡ 1
N

N∑
j=1

A(j + t)B(j) . (B.11)

The result derived here holds for any correlation function, even if we are not in
the context of a Markov chain. For instance, we may be interested in the correlation
between two observables evaluated at points which are distant of each other by an amount
d = |n−m| in a fixed field configuration. In such a example, the correlation CAB(d), for
every d, would be the observable f which we are interested in estimating its expected value.
In this case, one would employ the method in two moments. First for computing CAB(d)
in each field state. Then later for computing the autocorrelation of CAB(d) between the
different field configurations. Then one could obtain the integrated autocorrelation time
and estimate the statistical errors associated to it.

Since by hypothesis there is periodicity in the time t, we may decompose the
operators A(t) and B(t) in their Fourier components a(ω) and b(ω)

A(t) = 1
N

N∑
ω=1

a(ω)e−2πi ω
N
t and B(t) = 1

N

N∑
ω=1

a(ω)e−2πi ω
N
t . (B.12)
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The correlation function in Eq. (B.11) will then be written as

CAB(t) = 1
N3

N∑
j=1

N∑
ω=1

N∑
ρ=1

e−
2πi
N

(ω+ρ)je−
2πi
N
ωta(ω)b(ρ) . (B.13)

The sum in j will yield Nδ(ω,−ρ). This allow us to perform the sum in ρ, to obtain

CAB(t) = 1
N2

N∑
ω=1

a(ω)b(−ω)e− 2πi
N
ωt ≡ 1

N
F−1 [a(ω)b(−ω), t] , (B.14)

where F−1 [f(ω), t] denotes the inverse of the Fourier transform of the function f(ω). The
autocorrelation function is a particular case of correlation when B = A and thus, we may
write

C(t) = CAA(t) = 1
N
F−1 [a(ω)a(−ω)] . (B.15)

Another interesting case happens when B(t) ∈ R. Then its Fourier components
obeys b(−ω) = b∗(ω). Then the correlation and auto-correlation functions becomes

CAB(t) = 1
N
F−1 [a(ω)b∗(ω), t] (B.16)

CAA(t) = 1
N
F−1

[
|a(ω)|2

]
. (B.17)

As a bonus of computing the Fourier transform, one has that

a(ω = 0) =
N∑
t=1

A(t) = N〈A〉 , (B.18)

i.e. we get for free the computation of the expected value of A.

The reader may notice that the correlation function definition in Eq. (B.11) does
not match the autocorrelation function in Eq. (B.2). The formula that matches it will be
given by the connected (auto)correlation function

Cc
AB(t) = CAB(t)− 〈A〉〈B〉 . (B.19)

We stress that, albeit we consider the one dimensional case, all the results are readily
generalizable for more dimensions, by simply using the Fourier transform appropriate for
the problem dimension.
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