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“We can’t stay in the dark about it forever.
Just because it’s dark doesn’t mean it doesn’t matter”

Jorge Cham & Daniel Whiteson
(We Have no idea)





ABSTRACT

NAKASHIMA, D. K. Indirect search for dark matter in dwarf spheroidal
galaxies with Cherenkov Telescope Array. 2018. 77p. Dissertation (Master in
Science) - Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, 2018.

Dark matter (DM), whose nature and interaction mechanisms are still an open issue,
constitutes about 25 % of the Universe energy density. Weakly Interacting Massive
Particles (WIMPs) are considered as strong candidates for particle DM and their search
is conveniently carried out through the detection of gamma rays. The newly discovered
ultra-faint dwarf spheroidal galaxies (dSphs), located in the vicinity of the Galaxy, exhibit
high values of the mass to luminosity ratio, and are therefore considered as strongly
dominated by DM. These objects are within reach of the Cherenkov Telescope Array
(CTA), which is the future project for gamma-ray astronomy, with an better sensitivity
(one order of magnitude) with respect to the current generation experiments. The main
goal of the present work is the study of the sensitivity of CTA to WIMPs DM particles,
by simulating the observation of the ultra-faint dwarf spherical galaxies Triangulum II,
Reticulum II and Carina III, as well as of the classical dwarf galaxy Sculptor, for different
annihilation channels, between 70 GeV and 100 TeV. The sensitivity curve in the WIMPs
parameter space (velocity-averaged annihilation cross section < σv > and DM mass mDM )
was computed. We found that, within the sample of dwarf galaxies tested, Triangulum II is
the most promising source, able to reach the thermal freeze-out values in the annihilation
channel τ+τ− for only 50 hours of observation. Our result, the first estimation of the
sensitivity for DM searches in ultra-faint dwarfs with CTA, is consistent with results from
current generation experiments, showing better performance over an extended energy
range. The limited sample of available stars in the targets induces uncertainties on the DM
content. Future measurements, leading to a better understanding of the sources dynamic
equilibrium, can improve this situation. Even so, the combination of the high DM content
in the ultra-faint dwarf galaxies, together with the excellent expected performance of the
future CTA, provides a promising result for indirect DM searches.

Keywords: Dark matter indirect searches. Cherenkov Telescope Array. Dwarf spheroidal
galaxies. Triangulum II galaxy.





RESUMO

NAKASHIMA, D. K. Detecção indireta de matéria escura em galáxias
esferoidais anãs com o Cherenkov Telescope Array. 2018. 77p. Dissertação
(Mestrado em Ciências) - Instituto de Física de São Carlos, Universidade de São Paulo,
São Carlos, 2018.

A matéria escura, cuja natureza e mecanismos de interação ainda estão em aberto, compõe
25% da densidade de energia do Universo. Weakly Interacting Massive Particles (WIMPs)
apresentam-se como forte candidatas e sua busca é convenientemente conduzida através
de raios gama. As recém descobertas galáxias esferoidais anãs ultra-fracas, situadas nos
arredores da Galáxia, apresentam altos valores da razão entre massa e luminosidade, sendo
portanto consideradas objetos fortemente dominados por matéria escura. Esses objetos
estão ao alcance do Cherenkov Telescope Array (CTA), que é o futuro projeto da astronomia
gama, com sensibilidade de uma order de grandeza melhor do que os experimentos atuais.
O presente trabalho teve como objetivo estudar o potencial de detecção indireta de WIMPs
através de raios gama com o futuro observatório CTA, observando as galáxias esferoidais
anãs ultra-fracas Triangulum II, Retículum II e Carina III e a galáxia anã clássica Sculptor,
para diferentes canais de aniquilação, entre 70 GeV e 100 TeV. A curva de sensibilidade no
espaço de parâmetros livres de WIMPs (massa da partícula mDM e médida da seção de
choque de aniquilação ponderada pela velocidade < σv >) foi calculada. Nós encontramos
que dentro da amostra de galáxias anãs testadas, Triangulum II é a fonte mais promissora,
capaz de testar os valores térmicos no canal de aniquilação τ+τ− considerando apenas 50
horas de observação pelo CTA. Nosso resultado, a primeira estimativa da sensibilidade para
busca de matéria escura em galáxias esferoidais anãs ultra-fracas com CTA, é consistente
com resultados de experimentos da geração atual, e mostra um melhor desempenho em uma
faixa de energia estendida. Os resultados são afetados pelas incertezas devido à pequena
amostra de estrelas dos alvos escolhidos, que se reflete no conhecimento do conteúdo de
matéria escura. Novas medidas podem ajudar a esclarecer essa situação. Ainda assim, a
combinação de galáxias anãs ultra-fracas, aliada às melhorias do futuro CTA, apresenta-se
como um passo muito promissor para buscas indiretas de matéria escura.

Palavras-chave: Detecção indireta de matéria escura. Cherenkov Telescope Array. Galá-
xias esferoidal anã. Galáxia Triangulo II.





LIST OF FIGURES

Figure 1 – The rotation curve for galaxy NGC 6503 with dashed curve representing
the contribution due to visible components, dotted curve due to gas, dash-
dot curve for a non-luminous mass halo and the solid line representing
the rotation curve due to the contribution of the sum of these three
components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 2 – Milky Way rotation curve. . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 3 – CMB temperature map by Planck, in galactic coordinates. . . . . . . . 26
Figure 4 – The Bullet Cluster, the collision between two galaxy cluster, measured

by X-rays and gravitational lensing. Through gravitational lensing a
gravitational map obtained and presented in the green line. Through
the X-ray measurement, the distribution of the gas of each cluster is
revealed and presented in the colors (being the white the region with
higher concentration of gas). . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 5 – WIMP density represented by Y , full black line in case of density in
thermal equilibrium and the dashed line in case of freeze-out, showing
the different abundance for different values of cross-section. All this as
a function of x =mass/temperature. . . . . . . . . . . . . . . . . . . . 29

Figure 6 – Sketch of the complementary DM search methods. The symbol χ repre-
sents the DM particles while P represents the SM particles. The left
down to top arrow indicates the collider search method, in which is ex-
pected DM creation from SM particles. The top arrow from left to right
represents the direct detection, in which scattering is expected between
DM and SM particles. Lastly, the left arrow from top to bottom repre-
sents the indirect searches, in which is expected the DM annihilation
(or decay) into SM particles. . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 7 – The current important constraints on the annihilation cross-section
versus WIMP mass, from gamma rays, cosmic rays and high energy
neutrinos. The gray band represents the thermal value for comparison. 32

Figure 8 – Differential photon spectra for DM mass of mDM = 103 GeV. Each color
represents different annihilation channels. . . . . . . . . . . . . . . . . . 34

Figure 9 – Dark matter density profiles as a function of the radius for the Sculptor
dwarf galaxy. The black curve presents the NFW profile, the red curve
presents the Einasto profile and the blue curve presents the Burket profile. 36

Figure 10 – Illustration of J-factor’s integration parameters. . . . . . . . . . . . . . 37
Figure 11 – Possible astrophysical targets for indirect DM searches with gamma rays. 38
Figure 12 – Schematic description of the Cherenkov emission. . . . . . . . . . . . . 46



Figure 13 – Detection principle of IACTs. A gamma ray interacts with the Earth’s
atmosphere, creates a cascade of new particles, in which some of them
will emit Cherenkov radiation forming a light pool that will be detected
by the ground telescopes. . . . . . . . . . . . . . . . . . . . . . . . . . 47

Figure 14 – Hillas parameters derived from the imaging of the Cherenkov pulse. . . 48
Figure 15 – Comparison between the topology of electromagnetic showers, left, and

hadronic showers, right. . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 16 – Layout of the two CTA sites, in the Northern (left) and Southern

hemisphere (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 17 – Differential sensitivity for CTA North and South compared with present

gamma-ray observatories. . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 18 – Sensitivity curve for CTA Galactic halo, LMC and Sculptor compared

to the H.E.S.S. Galactic halo and Fermi dSph sensitivities. . . . . . . . 52
Figure 19 – CTOOLs functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 20 – CTA sensitivity curve in the gamma-ray flux as a function of energy

(for an observation time of 50 hours), compared to the gamma-ray flux
produced due to the DM annihilation process in the τ+τ− channel, for
the DM particle mass of mDM = 103 GeV and the thermal freeze-out
cross-section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Figure 21 – CTA sensitivity for different observation hours as a function of energy,
for the Northern array in comparison of gamma-ray flux produced by set
of DM parameter labeled in each plot. The figure in the top left presents
a comparison between the generated gamma-ray flux from different
source; top right for different DM mass; down left considering different
annihilation channel and down right for different DM cross-section. . . 59

Figure 22 – Effective collection area for gamma-rays as a function of the photon
energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Figure 23 – Detectability map for (left) Sculptor and (right) for Triangulum II. The
combination of mass and cross-section in green represents the set of DM
parameters probed by CTA. Conversely, the red region represents the
parameters which produces a gamma-ray flux too faint be detectable
by the instruments. The dashed black line represents the thermal cross-
section value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Figure 24 – Sensitivity curve for Sculptor in the DM parameter space. The vertical
axis presents the velocity averaged cross-section and the horizontal axis
shows the DM particle mass. It is obtained considering 500 hours of
observation for the τ+τ− annihilation channel. Our result is shown in the
black curve and it is compared to the result obtained by G. Rodriguez,
member of the CTA Collaboration. . . . . . . . . . . . . . . . . . . . . 62



Figure 25 – Visibility of Triangulum II from the CTA North site, located in La Palma. 63
Figure 26 – Triangulum II and Sculptor sensitivity curve for the τ+τ− annihilation

channel for 50 hours of observation. . . . . . . . . . . . . . . . . . . . . 65
Figure 27 – Comparison of sensitivity curve for Triangulum II and Sculptor dwarf

galaxies for different annihilation channels: left for bb̄, right for W+W−. 66
Figure 28 – Triangulum II sensitivity curve for different values of J-factor is pre-

sented, for the τ+τ− annihilation channel and for 50 hours of observation. 66
Figure 29 – Comparison of sensitivity curve for Sculptor, Reticulum II, Carina III

and Triangulum II for different annihilation channels: top left for bb̄,
top right for W+W− and centered down for τ+τ−. . . . . . . . . . . . . 67

Figure 30 – Most important constraints on DM model from the current experiments
together with the Triangulum II sensitivity curve. . . . . . . . . . . . . 69





LIST OF TABLES

Table 1 – DM indirect searches strategies, pointing the particle in which is detected,
the experiment (the names highlighted in blue represent the panned
experiments), and its inherent advantages and challenges. . . . . . . . . 31

Table 2 – Parameters for the J-factor calculation and its value for the Sculptor
dwarf galaxy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Table 3 – Observed star list for Triangulum II galaxy. . . . . . . . . . . . . . . . . 43
Table 4 – J-factor for Triangulum II calculated by different methods and groups. . 43
Table 5 – Observation strategy for Dark Matter with CTA. . . . . . . . . . . . . . 52
Table 6 – Parameters values used for the Sculptor sensitivity curve presented in

figure 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 7 – Visibility of Triangulum II in minutes per month, for different angles

above the horizon, for year of 2019. . . . . . . . . . . . . . . . . . . . . 64
Table 8 – Parameters values used for the sensitivity curves presented in figure 26. 64
Table 9 – Name, equatorial coordinates and J-factor for the sources studied in this

work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 10 – Parameters used for the analysis showed in figure 29. . . . . . . . . . . . 68





CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 DARK MATTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1 Evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.1 Galaxy scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.2 Galaxy cluster scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.3 Cosmological scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2 Hypothesis for the dark matter contribution . . . . . . . . . . . . . . 26
2.2.1 WIMP as dark matter particle candidate . . . . . . . . . . . . . . . . . . . 28
2.3 Detection techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.1 Dark matter indirect detection . . . . . . . . . . . . . . . . . . . . . . . . 29

3 INDIRECT DETECTION: FROM DARK MATTER TO GAMMA
RAYS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1 The particle physics term . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 The astrophysical term . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.1 Dark matter density distribution . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.2 Calculating the J-factor . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 Astrophysical sources . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4 Dwarf spheroidal galaxies as astrophysical targets . . . . . . . . . . . 39
3.4.1 Sculptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.2 Triangulum II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4.3 Reticulum II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4.4 Carina III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 THE CHERENKOV TELESCOPE ARRAY . . . . . . . . . . . . . . 45
4.1 Ground based gamma rays detection principle . . . . . . . . . . . . . 45
4.2 Current atmospheric Cherenkov experiments . . . . . . . . . . . . . . 48
4.3 The CTA Observatory . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4 Prospects for dark matter detection . . . . . . . . . . . . . . . . . . . 51
4.5 CTOOLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.5.1 Simulation of the detector response with ctobssim . . . . . . . . . . . . . . 54
4.5.2 Binning the photon counts with ctbin . . . . . . . . . . . . . . . . . . . . 55
4.5.3 Estimation of the flux upper limit with ctulimit . . . . . . . . . . . . . . . 55

5 RESULTS AND DISCUSSION . . . . . . . . . . . . . . . . . . . . . 57
5.1 Understanding the parameters of the model . . . . . . . . . . . . . . 57



5.2 Understanding the principle of sensitivity curve . . . . . . . . . . . . 58
5.3 Detailed calculation of the sensitivity curve . . . . . . . . . . . . . . 61
5.3.1 Validating the method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3.2 Estimation of observation time . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3.3 Sensitivity curve for Triangulum II for τ+τ− annihilation channel . . . . . . 63
5.3.4 Sensitivity curve for Triangulum II for different annihilation channels . . . . 64
5.3.5 Sensitivity curve for Triangulum II for different J-factor values . . . . . . . 65
5.3.6 Sensitivity curve for different sources . . . . . . . . . . . . . . . . . . . . . 66

6 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73



21

1 INTRODUCTION

The Universe composition has been discussed for a long time and it still remains
far from being fully understood. With the advance of technology and the development of
different types of sophisticated experiments, it is current known that 25% of the Universe
total energy density is composed by a peculiar type of matter, which does not emit nor
absorb light, called “Dark Matter” (DM). (1)

The first evidence of the non-luminous matter arose in the 30’s (2) and gained
importance during the 70’s thanks to the studies of rotation curves of galaxies. (3)
Such measurements showed that a non-luminous mass contributes significantly to the
gravitational potential, increasing the orbital velocity of stars located far from the galaxy
center. Additional evidence appeared later, allowing to reveal some DM characteristics,
such as the fact that it does not interact electromagnetically, while it is approximately 5
times more abundant than the luminous matter and it does interacts through gravitation.
(4)

Since these characteristics do not correspond to any know astrophysical phenomenon
that science have already experienced, the search for answers beyond the known is necessary.
Many hypotheses arose from the most diverse fields as attempt to solve the DM puzzle.
Weakly Interacting Massive Particles (WIMPs) constitute a popular DM candidate, (5)
since the WIMPs parameter space covers the values that gives the right DM abundance
calculated by Cosmic Microwave Background. In the WIMP scenario, the DM particles
can self-annihilate into Standard Model particles. Many of them, being unstable, will
pass through different processes resulting in stable particles, such as electrons, positrons,
neutrinos and gamma rays. The search for DM via the study of gamma rays produced
in astrophysical sources is a very promising strategy, mainly because by studying these
particles we can point back to the sources. (6)

The gamma-ray signal from DM annihilation is boosted in environments rich in DM.
Moreover, a much cleaner detection could be obtained in case of very low astrophysical
background. The dwarf spheroidal galaxies (dSphs) of the Milky Way are very well suited
in this frame, given their high mass to luminosity ratio and low gamma-ray flux from
other astrophysical processes, proving very promising target for the DM searches. (7) In
particular, the recently discovered ultra faint dwarf galaxies appear to be the most DM
dominated environment known, providing a promising channel to solve the DM mystery.

The future Cherenkov Telescope Array (CTA) observatory, the next generation
of Imaging Atmospheric Cherenkov Technique (IACT) experiment, expected to start its
operations in 2020, will provide an unprecedented sensitivity in the TeV energy range.
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(8) The CTA observatory will be composed by approximately 100 telescopes, divided
in three sizes (small, medium and large) and located in both hemispheres. Thus, with
the unprecedented improvement in sensitivity even the faint gamma-ray signal from DM
annihilation will have the chance to be detected.

Combining the CTA characteristics with the high content of DM in the ultra-faint
dSphs and the low astrophysical background expected from them, the WIMP scenario can
be probed. Within this frame, this work aims to understand the potential of DM detection
for each source by computing its sensitivity curve, which presents the WIMP parameter
values that CTA will be able to detect. The rest of this work is structured as follows:
chapter 2 is devoted to a general description of DM, presenting evidence, hypotheses
about its nature and detection methods. The chapter 3 describes the indirect search for
DM through gamma rays and the importance of the dSphs as astrophysical targets, in
particular discussing the ultra-faint dSphs, the focus of this work. A description of the
CTA observatory is given in chapter 4, together with the prospectives for DM searches and
the description of the analysis pipeline used. The results, namely the sensitivity curves
for several dwarf galaxies, are presented in chapter 5. In particular, our method was
initially established studying the Sculptor galaxy and was later extended to Triangulum
II, Reticulum II and Carina III. Lastly, the conclusions are presented in chapter 6.
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2 DARK MATTER

Understanding the Universe has always been a fascinating and open question for
scientists: cosmology indicates that 25% of the universe energy density is made of an unkown
type of matter which does not emit nor absorb light, and is at most weakly interacting.
This type of matter has been called DM. Because of its peculiar characteristics, DM is
extremely hard to be detected: the search for DM has been a lively field of research since
several decades, at the boundary between cosmology, particle physics and astrophysics.

This chapter provides an overview of the DM evidence, models and search strate-
gies: section 2.1 provides a short description of the DM evidence, while section 2.2 briefly
outlines some of the most popular DM models. The different search strategies will be
described in section 2.3.

2.1 Evidence

Dark matter plays a very important role in the understanding of the Universe
and its existence has been inferred from several observations, both astrophysical and
cosmological. To identify the DM problem, the estimation of the total mass is compared to
the estimated baryonic matter of the system. Interestingly, a mismatch between this two
quantities is found in different scales, providing evidence for the existence of a new type
of matter. In the following we will provide a short overview of some of the most relevant
observations, while a very interesting review of the DM history can be found in (4).

2.1.1 Galaxy scale

A remarkable evidence of DM on galactic scales is the rotation curve of galaxies,
namely the graph of the orbital velocity of stars and gas in the galaxy, as a function
of the distance from the center r. The first application of this method, that points out
the existence of non luminous matter, arose in the 1970s. (3) The kinematics of tracers
(depending on the galaxy, tracers could be gas clouds, masers or even peculiar population
of stars), located at a distance r from the center of the galaxy, is given by the gravitational
field of the mass within the sphere of radius r, (9-10) thus:

Fcent = mtracerv
2

R
= mtracerM(< r)G

r2 . (2.1)

From the equation above, it is expected that the orbital velocity of stars far from
the center, located at distance r, in which inside the sphere delimited by r is enclosed
the majority of the galaxy mass, the relation v ∝ r−1/2 is expected. However, it is not
observed in the data. (11)
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It is noticed that some galaxies present a flat rotation curve even for large r.
To explain this behavior, we have to invoke either the limitation of Newtonian gravity
at galaxy scales, either the existence of a non-luminous massive halo surrounding some
galaxies. The figure 1 presents the measured rotation curve for the galaxy NGC 6503 and
the expected rotation curve due to stellar components (dashed line), due to gas component
(dotted line), due a non-visible matter halo (dash-dot line) and the a rotation curve due to
the sum of these three components (solid line), that is in good agreement with the data. A
discrepancy between the observed data and the expected result from the baryonic matter
contribution is observed. (12)

Figure 1 – The rotation curve for galaxy NGC 6503 with dashed curve representing the con-
tribution due to visible components, dotted curve due to gas, dash-dot curve for a
non-luminous mass halo and the solid line representing the rotation curve due to
the contribution of the sum of these three components.

Source: BEGEMAN (12)

DM is also present in our galaxy, the Milky Way. (13) From a recent analysis, figure
2 shows as a function of the distance, a comparison between the measured rotation curve
(red dots), and the expectations from baryonic matter models (gray band). The black
curve indicates the fiducial model. Once again, the discrepancy between the measured
and the expected curves above 6 kpc represents an evidence for the DM presence in the
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Galaxy.

Figure 2 – Milky Way rotation curve.

Source: IOCCO (13)

2.1.2 Galaxy cluster scale

At the scale of Galaxy Clusters, a discrepancy between the total mass estimated
by the gravitational potential and the baryonic mass estimated by different methods is
present as well.

In the past, the existence of a non-luminous matter appeared by comparing the
luminous mass and the total mass using the Virial theorem, which relates the average of
kinetic energy to the average of potential energy of a bound system of a non-relativistic
particles. This method provided the first indication of DM existence in 1933 to estimate
the mass of the Coma Cluster. (2) In this analysis, two methods were used to estimate the
mass of the cluster: using the luminous matter and using the velocity of the galaxies of
the cluster. The Virial theorem was used to derive the potential energy from the kinetic
energy, estimated using the galaxies velocity measurements. From this calculation it was
found that the luminous matter, measured by spectroscopy, is not enough to generate the
gravitational force that holds the cluster together. The result found was mass-to-light ratio
of approximately 400 M�/L�∗, two orders of magnitude higher than the expected value
due to the contribution of luminous matter only. Despite this method presents equivalent
results to the present methods, it carries larger uncertainties.

Today, a cluster total mass is determined from gravitational lensing, allowing to
map spatially the gravitational potential of the system. The baryonic mass contribution in
∗ 400 solar masses per solar luminosity
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a cluster is mainly due to the presence of hot gas (temperature of order of 107 to 108 K),
which can be weighted by X-ray measurements. (9, 14)

2.1.3 Cosmological scales

Cosmology provides important insights about the DM existence and its contribution
to the energy density of the Universe, by means of the study of the Cosmic Microwave
Background (CMB) radiation. (15) The CMB is an ubiquitous radiation, which follows the
black body spectrum corresponding to a temperature of 2.7 K, (16) picturing the infant
Universe. (17) Because of the coupling of matter and radiation during the early Universe,
the temperature anisotropies in the CMB map, indicate anisotropies in the matter density.
Therefore, based on temperature measurements, information about matter is derived. (18)
Despite the almost homogeneous temperature distribution, tiny anisotropies at the 10−5

K level are present, as it is shown in figure 3.

Figure 3 – CMB temperature map by Planck, in galactic coordinates.

Source: THE PLANCK COLLABORATION (16)

From the power spectrum of the temperature anisotropies, informations about
cosmological parameters can be obtained, such as the contribution of baryonic matter
and DM to the Universe energy density. This analysis indicates that the baryonic matter
composes 5% of the Universe energy density, being 5 times less than the total matter
contribution, 25% of the Universe energy density. (1) Such difference indicates the necessity
of a type of non-baryonic matter even on cosmological scales.

2.2 Hypothesis for the dark matter contribution

As showed above, the discrepancy between the estimated baryonic matter and the
total matter in different scales is undeniable. Over the past years, several hypothesis to
solve it arose and in the following, a brief description of some of them will be given.



2.2 Hypothesis for the dark matter contribution 27

An hypothesis for the missing mass considered in the past is the MAssive Compact
Halo Objects (MACHOs). The MACHOS are astrophysical objects which do emit little or
no radiation, with mass in the range of 10−7 until some hundreds of solar masses, such as
brown dwarf, neutron stars and black holes, and they should be measured by microlensing
effects. (19-20) However, since the CMB gives a intrinsic beautiful probe that DM cannot
be baryonic, this hypothesis was ruled out as the only explanation for DM.

Assuming the DM is made of a cold gas, it not expected to shine in X-rays, but its
effect could be observed in a merger of clusters, for instance. The Bullet Cluster, a collision
between two galaxy clusters, presented in figure 4 was measured by combination of X-rays
and gravitational lensing methods, exhibits the spatial map of two clusters: the green line
shows the reconstruction of gravitational potential and the white area the measurement of
the hot gas. (21) The observed spatial separation between the center of the gravitational
potential and the gas of the cluster indicates a collisionless characteristic of DM in form of
cold gas, otherwise they should be approximately at the same spatial position of the hot
gas of the cluster. This result provides a threshold for the DM self-interaction, the ratio of
the cross-section and the DM particle mass σ/mDM . (22)

Figure 4 – The Bullet Cluster, the collision between two galaxy cluster, measured by X-rays and
gravitational lensing. Through gravitational lensing a gravitational map obtained
and presented in the green line. Through the X-ray measurement, the distribution
of the gas of each cluster is revealed and presented in the colors (being the white
the region with higher concentration of gas).

Source: CLOWE (21)

Several observations on different scales can convincingly explained by the existence
of a new and yet unknown type of particles. In this frame, several hypotheses were proposed.
Some examples are: (i) Neutrinos, from the Standard Model (SM) of particle physics; (ii)
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the Lighest Kaluza-Klein Particle (LKP), derived from extra dimension theory; (iii) the
axions, from the Quantum Chromo Dynamics; (iv) neutralinos, from the Super Symmetry
of the Standard Model (SUSY); (v) Weakly Interacting Massive Particles (WIMPs). (4)
Since this work is focused on the search for a gamma ray signal from WIMPs as DM
candidates, in the next section we will discuss this hypothesis in more detail.

2.2.1 WIMP as dark matter particle candidate

Weakly Interacting Massive Particles (WIMPs) have been a very popular DM
particle candidate over last decades. They were produced with the thermal mechanism in
the early Universe. Being in both collisional and chemical equilibrium to SM particles (to
which they are coupled through weak scale process), until they “freeze-out”. (10)

The thermal freeze-out is reached when the WIMPs annihilation rate equals the
universe expansion rate H(t):

n < σv > ≈ H(tfreeze−out). (2.2)

In this scenario, the bigger is the cross section, the later the freeze-out will occur,
resulting in a lower abundance. Thus a link between the WIMP abundance and the
annihilation cross-section is stated. A sketch of this process is presented in figure 5: the
vertical axis indicates the WIMPs abundance and the horizontal axis shows WIMP mass
divided by the universe temperature, such ratio being proportional to the time. The full
black line is the co-moving WIMP equilibrium abundance in case of the coupling with
SM particles, the dashed lines presents the WIMP abundance today for three different
scenarios assuming different DM cross-section and the encounter of the black and dashed
line represents the freeze-out time. (18)

In order to measure the relic abundance inferred by the CMB, one recovers the
value of < σv >= 3× 10−26 cm3/s for a DM particle averaged velocity cross section and
DM particle mass of order of some hundred GeV, mDM ≈ 100 GeV. This combination
of mass and cross-section values obtained are known as thermal values and they have
the order of magnitude of the weak scales. Such coincidence, named as “WIMP miracle”,
constitutes the main motivation for the WIMPs popularity as DM candidates. (18)

2.3 Detection techniques

Different physical phenomena can be exploited to search for DM: annihilation (or
decay) of DM particles into SM particles, the scattering between DM and SM particles
and the production of DM particles through SM particle collisions. This allows different
experimental strategies, schematically described in figure 6.
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Figure 5 – WIMP density represented by Y , full black line in case of density in thermal
equilibrium and the dashed line in case of freeze-out, showing the different abundance
for different values of cross-section. All this as a function of x =mass/temperature.

Source: KOLB (18)

The work described in this is dissertation was carried out in the frame of the indirect
searches for WIMP DM particles, and for this reason the next subsection is devoted to a
short description of this detection strategy.

2.3.1 Dark matter indirect detection

The indirect detection follows the idea to search for DM annihilating into SM
particles. Because the new created particles from DM annihilation are usually unstable, the
indirect method searches for stable particles resulted from subsequent process of the created
instable particles. Therefore, the indirect search can be carried out by observing photons,
charged cosmic rays and neutrinos. Each of them, with their own inherent characteristics
provides unique advantages and also challenges, which are presented in Table 1, together
with their specific experiments. This subsection is based on the review of indirect searches
for particle DM available in (24).

Gamma-rays for DM indirect searches is convenient mainly because the mass scale of
WIMPs implies gamma-ray emission detectable by the experiments. Additionally, because
the photons have no charge, they can travel through the Universe without being deflected
by magnetic field, thus their source direction can be inferred. Besides, the shape of the
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Figure 6 – Sketch of the complementary DM search methods. The symbol χ represents the DM
particles while P represents the SM particles. The left down to top arrow indicates
the collider search method, in which is expected DM creation from SM particles.
The top arrow from left to right represents the direct detection, in which scattering
is expected between DM and SM particles. Lastly, the left arrow from top to bottom
represents the indirect searches, in which is expected the DM annihilation (or decay)
into SM particles.

Source: UNDAGOITIA (23)

expected gamma-ray spectrum carries basic information on DM particle properties, such
as the mass and annihilation cross-section, and its coupling to the SM. The detection of
the gamma rays can be performed directly by space-borne experiment, such as Fermi-LAT,
or indirectly (because the Earth atmosphere is opaque to gamma rays) by ground based
Imaging Atmospheric Cherenkov Telescopes (H.E.S.S., MAGIC, VERITAS and the future
CTA) and water Cherenkov experiments, as HAWC.

Neutrinos also have no electric charge, meaning that they can indicate the source
direction. The detection basic idea is to measure the Cherenkov light as result of the inter-
action of neutrinos with water (ANTARES/KM3NET, BAIKAL-GVD, Super-Kamiokande
and Hyper-Kamiokande) or ice (Ice-Cube/DeepCore/PINGU). The neutrino experiments
use large detection volumes (water, ice) in order to increase the detection probability,
given by the low interaction cross-section of neutrinos, typical weak interactions.

The DM indirect searches through cosmic rays are performed by measuring the
tiny antimatter component of cosmic rays, mainly made of positrons and antiprotons.
Antimatter particles, as gamma rays, can be final product of the DM annihilation and they
have low flux compared with matter particles, like electrons and protons. The search for
dark matter with charged cosmic rays can be mainly performed by searching for spectral
features in the particle fluxes. The search for light antinuclei, like antideuterons and
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Table 1 – DM indirect searches strategies, pointing the particle in which is detected, the
experiment (the names highlighted in blue represent the panned experiments), and
its inherent advantages and challenges.

Particle Experiments Advantages Challenges
Gamma-ray Fermi LAT, GAMMA-400, point back to sources, backgrounds,
photons H.E.S.S.(-II), MAGIC, spectral signatures attenuation

VERITAS, HAWC, CTA
Neutrinos IceCube/DeepCore/PINGU, point back to sources, background,

ANTARES/KM3NET, spectral signatures low statistics
BAIKAL-GVD,
Super-Kamiokande,
Hyper-Kamiokande

Cosmic Rays PAMELA, AMS-02, ATIC, spectral signatures, diffusion, do
IACTs, Fermi LAT, Auger, low backgrounds for not point
CTA, GAPS antimatter searches back to sources

Source: GASKINS (24)

antihelium, is also a promising target for dark matter studies, since the expected flux
of these particles from conventional astrophysical processes is extremely faint compared
to the flux of protons. The cosmic rays experiments can be either in space (PAMELA,
AMS-02, ATIC, Fermi LAT and GAPS), either on the ground (IACTs, CTA and Auger).

Figure 7 shows a summary of recent constraints set in the WIMP parameter space
from indirect searches, for the DM annihilation into b b̄. Results from gamma rays, cosmic
rays and high energy neutrinos are displayed. From this plot it can be seen that the
gamma-rays experiments provide the most stringent constraints.
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Figure 7 – The current important constraints on the annihilation cross-section versus WIMP
mass, from gamma rays, cosmic rays and high energy neutrinos. The gray band
represents the thermal value for comparison.

Source: CONRAD (7)
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3 INDIRECT DETECTION: FROM DARK MATTER TO GAMMA RAYS

Gamma rays being neutral, they can travel through the Universe without being
deviated by galactic and extra-galactic magnetic fields, indicating their origin, unlike
charged particles. (5,25) The expected γ-ray flux (dΦγ

dE
) from DM annihilation, that is the

number of photons per area per time and per energy, encloses the DM particle mass mDM ,
the velocity averaged cross-section < σv >, the annihilation channel f with its respective
branching ratio Bf , the DM density distribution over the observed target ρ and the target
distance from the observer d, as follows:

dΦγ

dE
(E) = 1

4π
< σv >

2m2
DM

∑
f

dN f

dE
Bf ×

∫
∆Ω

∫
V

ρ2(r)
d2 dV ′dΩ′. (3.1)

For convenience, the 3.1 can be separated in two parts: one, dΦPP
dE

, encoding the
particle physics information:

dΦPP

dE
= 1

4π
< σv >

2m2
DM

∑
f

dN f

dE
Bf , (3.2)

and one encoding the astrophysical characteristics of the target, labeled as J :

J =
∫

∆Ω

∫
los

ρ2(r)
d2 dV ′dΩ′. (3.3)

Therefore, the gamma-ray flux from DM annihilation can be written as:

dΦγ

dE
(E) = dΦPP

dE
× J. (3.4)

This chapter is devoted to the indirect searches for WIMPs with gamma rays. In
particular, the section 3.1 describes the particle physics term of equation 3.4, while the
astrophysical term is described in section 3.2. The section 3.3 describes the most popular
astrophysical targets for DM searches, while section 3.4 focuses on dwarf spheroidal galaxies
as targets for DM searches.

3.1 The particle physics term

In the frame of the DM particle scenario, the information about the gamma rays
from WIMP annihilation are included in the particle physics term, namely:

dΦPP

dE
= 1

4π
< σv >

2m2
DM

∑
f

dN f

dE
Bf . (3.5)
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The annihilation process encloses all the model characteristics: the velocity-averaged
cross-section < σv > and the DM particle mass mDM , that are free parameters and in
which particle physics channel (f) the DM particles are annihilated, weighted by the
branching ratio Bf . (6)

The detection of a gamma-ray line would be considered as a compelling signature for
the existence of dark matter, since it would be a clear signature of the direct annihilation
of DM particles in two photons. However, due to the very low probability of this process
to occur, it turns out to be more interesting to consider the DM annihilating into others
channels, in which the newly created particles will pass through several subsequent
processes resulting a continuum spectrum of gamma rays. Figure 8 presents the differential
gamma-ray spectrum (per annihilation process), as a function of energy normalized to the
DM mass of mDM = 103 GeV, for several annihilation channels. The spectrum of photons
for each annihilation channel is generated using the information available in (26). In order
to generate the gamma-ray spectrum, two process are necessary to be considered: the
decay of heavier particles and hadronization for quarks∗. (27)
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Figure 8 – Differential photon spectra for DM mass of mDM = 103 GeV. Each color represents
different annihilation channels.

Source: By the author

From figure 8, it can be seen that the channels follow roughly the same shape,
except for the τ+τ−. Such difference is due to the peculiar τ decay chain. The τ− decay
channels, together with the respective probabilities, are presented below (28):
∗ The hadronization occurs due to the color confinement (which does not allow quarks to exist

freely), consisting of the creation of hadrons by combining the quarks created from the DM
annihilation and the spontaneously created quarks pair from the vacuum.
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τ− → π−π0ντ 25.5%
τ− → e−ν̄eντ 17.8%
τ− → µ−ν̄µντ 17.4%
τ− → π−ντ 10.8%.

The channel with higher probability contains π0, who will decay in one of the
following channels:

2γ 98.8%
e+e−γ 1.2%.

Thus, for the τ channel, the production of photons occurs promptly in the second
step of the decay chain, while for other particles it takes some more steps. Consequently,
the photons produced from the τ particle will be more energetic resulting into different
shape on the differential spectrum of photons.

3.2 The astrophysical term

The astrophysical term, often referred to as J-factor, includes all the features of
the astrophysical target relevant for the DM study: its density and distance from the
Earth. To characterize this parameter it is necessary to assume a DM density distribution
ρ, integrated over the volume defined by volume along the line of sight los, as defined
according to equation below: (6,25,29)

J =
∫

∆Ω

∫
los

ρ2(r)
d2 dV ′dΩ′. (3.6)

3.2.1 Dark matter density distribution

In order to describe the DM density profile, several shapes arose, either guided by
numerical simulations, either by observations. A discrepancy between the two classes of
profiles is observed at small radii. In particular, some density profiles are called “cuspy”,
since they increase steeply at small radii, while the opposite behavior with a flattish density
profile at small radii is usually called “cored”.

All profiles depend on at least two free parameters: the density ρ0 and radius
scale rs. One general equation for the density profile is described by Zhao (30), whose
combination of three more free parameters α, β and γ can describe different DM profiles.
The DM density profile derived by Navaro-Frenk-White (NFW) (31) is derived from
N-body simulations and depends on 3 more parameters (α = 1, β = 3, γ = 1). It is a cuspy
profile, like the Einasto profile, (32-33) which depends on just one parameter α. Among
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the family of cored profile, one example is the Burkert profile (34), derived from the fit to
the data from dSphs. The mentioned profiles are described by the equations below:

ρZHAO(r) = ρ0

( r
rs

)γ[1 + ( r
rs

)α](β−γ)/α , (3.7)

ρEin(r) = ρ0exp
[
− 2
α

((
r

rs

)α
− 1

)]
, (3.8)

ρBur(r) = ρ0
r3
s

(r + rs)(r2 + r2
s)
. (3.9)

As an example, figure 9 shows the different density profile as a function of the
radius for the Sculptor dwarf galaxy. By the plot is evidenced the flat behavior of the
Burkert profile and the cuspy shape of NFW and Einasto profiles.
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Figure 9 – Dark matter density profiles as a function of the radius for the Sculptor dwarf galaxy.
The black curve presents the NFW profile, the red curve presents the Einasto profile
and the blue curve presents the Burket profile.

Source: By the author

The free parameters of each model for each source are obtained from the fit to the
observational data: the light surface brightness of the galaxy, the position in the sky and
the velocity in the line of sight direction of the stars in it. There are different methods
for obtaining the parameters of the DM density profile from observation of different
astrophysical targets. Once one has the shape of the density profile, the J-factor can be
calculated.
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Figure 10 – Illustration of J-factor’s integration parameters.

Source: Provided by Céline Armand

3.2.2 Calculating the J-factor

In order to turn the computation of the J-factor (equation 3.6) more manageable,
the integration can be described by new variables:

J =
∫ 2π

0

∫ αc

0

∫ smax

smin
ρ2(s, α)sinαdsdαdφ. (3.10)

The new frame is represented in figure 10, in which d is the distance from the
astrophysical target, the line of sight is the represented by the parameter s and the
parameters from the solid angle are φ and α, being the integration limits: αc, smin and
smax. Assuming the distance d, the parameter r can be defined by the cosine law as a
function of the new variables as:

r2(s, α) = s2 + d2 − 2dscosα. (3.11)

By assuming the size of the DM halo as R, which is the maximum distance of r,
the values of smin and smax can be obtained solving the following equation:

R2 = s2 + d2 − 2sdcosα. (3.12)

The limit values are:

smax = dcosα +
√
R2 − d2sin2α, (3.13)

smin = dcosα−
√
R2 − d2sin2α. (3.14)

In order to validate the two equations above, we need to require:

α ≤ arcsin
(
R

d

)
. (3.15)
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However, the parameters above depend on the size of the dark matter halo R,
which is unknown. In order to solve this, different assumptions are used, for instance, the
radius R being the distance of the farthest star of the system, relating it to an angle αmax.
Or, in a more conservative scenario, the radius R can be related to the the angle α0.5, in
which is valid the relation J(α0.5) = 0.5J(αmax). (6, 25)

3.3 Astrophysical sources

Due to the faint expected gamma ray signal from DM annihilation, identifying
the sources which present the highest potential plays a crucial role in order to maximize
the odds for DM detection. Within this context, two main features have significant
weight on the source decision: the DM density and gamma-ray background from standard
astrophysical processes. (35-36)

Figure 11 presents the gamma-ray sky map measured by Fermi-LAT experiment
together with most promising targets for the DM indirect searches in gamma rays.

Figure 11 – Possible astrophysical targets for indirect DM searches with gamma rays.

Source: CONRAD (7)

The most promising targets include:
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• The Galactic Center (GC) is a very popular target for DM searches due to its
expected high density of DM and the short distance (≈ 8 kpc) from Earth. However,
this region hosts many active gamma-ray sources, producing a huge foreground
for the search for DM, making the detection of an unambiguous DM signal very
challenging. Several claims of DM signals from the GC were made in the past decade,
see for example (37).

• Dwarf Spheroidal galaxies (dSphs) have very high mass to luminosity ratio, thus
they are dominated by DM. Besides, the lack of astrophysical background in this
type of sources increases the chance of DM detection.

The dSphs are the targets for the work presented in this dissertation, therefore the
next section is devoted to them.

3.4 Dwarf spheroidal galaxies as astrophysical targets

The dSphs are very promising targets for DM indirect searches, being small systems,
composed by old star populations, with low luminosity and dust content. (35) They are
known to have high mass-to-light ratio, of order of ≈ 102 †, implying that they are
dynamically dominated by DM. Dwarf spheroidal galaxies are usually divided in two
categories: classical dwarf galaxies such as Draco, Sculptor, and Fornax and ultra-faint
such as Triangulum II or Reticulum II. Classical dwarf galaxies have significantly smaller
uncertainties on the J-factor than the ultra-faint dSphs, but some of the recently discovered
ultra-faint dSphs have big J-factors, very promising for indirect DM search. Ultra-faint
dSphs being spheroidal in some cases is not yet unambiguously established, but this
assumption is needed to investigate the presence of a dense dark matter halo.

Since the luminous mass in the dSphs is mainly composed of stars, without a
sizable contribution from gas and other form of baryonic matter, all the characterization
of the system is based on stars measurable components, such as: the line of sight velocity
of each star and the light distribution of the entire sample. (36, 38) The description of the
dynamics of the galaxy, whose precision depends crucially of the stellar sample available,
is essential for the system description. In particular the inference of the dynamics of the
system is needed to obtain the parameters of the DM density profile for dSph, which can
be obtained applying the Jeans equation. (38) The equation presents six degree of freedom:
three spatial and three in the velocity. However, the measurements provides only 2 spatial
component (the star latitude and longitude, translated into projected distance R) and
one component in velocity (along the line of sight). In order to overcome this mismatch
between the number of degrees of freedom and the number of measured components, it is
assumed a free parameter βa named anisotropy parameter, which is a function only of r,
† while it is usually ≈ 5
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the distance from the center of the galaxy‡. The anisotropy parameter characterizes the
shape of the orbit of a star around the galaxy§, and it is defined as:

βa(r) ≡ 1−
¯2v2
θ(r)

v̄2
r(r)

, (3.16)

with v̄2
θ(r) and v̄2

r(r) being the velocity dispersion in spherical coordinates θ and r
respectively.

Photometry measurements provide the projected light profile Σ(R) (also known as
surface brightness), that is necessary because it relates to the star density distribution
ν(r), which is required in the Jeans equation. The relation between these two parameters
is given by:

Σ(R) = 2
∫ ∞
R

ν(r)rdr√
r2 −R2

. (3.17)

Assuming spherical coordinates for a system in dynamical equilibrium, the Jeans
equation can be written relating the kinematics of the star and the gravitational potential
from DM distribution:

1
ν(r)

d

dr
(ν(r)v̄2

r) + 2β
r
v̄2
r = −GM(r)

r2 = −G
r2 4π

∫ r

0
ρDM(s)s2ds. (3.18)

Although the strong feature of the Jeans equation is the relation between the DM
density profile and the stars measurements, this equation has parameters regarding of 3D
space, while the observed measurements provides information only in the 2D space, the
projected plane. This issue is overcome by considering the following equation 3.19, which
relates the line of sight velocity dispersion as a function of the projected radius σp(R) with
the anisotropy parameter βa and the radial velocity dispersion v̄2

r(r):

σ2
p(R) = 2

Σ(R)

∫ ∞
R

(
1− βa(r)

R2

r2

)
ν(r) ¯v2

r(r)√
r2 −R2

dr. (3.19)

Combining equations 3.18 and 3.19, we can define the DM density parameters by
fitting the free parameters: the βa and the free parameters of the DM density profile. (38)
An open software widely used for this analysis is CLUMPY (39), using the Markov Chain
Monte Carlo method to optimize and encounter the value of the best fit. (29)

An example of J-factor and its parameter values calculated with this method is
presented in Table 2 for the Sculptor galaxy. (40)
‡ Note: the variable r is the radial component in spherical coordinates, while the variable R is

the projected distance (in a 2D plane) from the center
§ For instance, for a circular orbit βa → −∞; for an open orbit, with only variation in r,
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Table 2 – Parameters for the J-factor calculation and its value for the Sculptor dwarf galaxy.

Distance 86± 6 kpc
NFW log10ρs -1.33 M�pc−3

NFW log10rs 3.02 pc
NFW α 1.68
NFW β 5.80
NFW γ 0.81
αmax 1.94◦
α0.5 0.15± 0.05◦

log10J(αmax) 18.57+0.07
−0.05 GeV2/cm5

log10J(α0.5) 18.54+0.06
−0.05 GeV2/cm5

Source: GERINGER-SAMETH (40)

Notably, since the J-factor is computed by integrating over the DM density profile,
it is sensitive to the shape of DM density profile assumed: core or cuspy. A distant source
may be identified as point-like (as it is the case for dSphs): in this case the uncertainties
due to different DM profiles are negligible compared to the uncertainties related to the stars
measurements. For nearby sources, observed as extended objects, the spatial resolution
plays an important role. In this case, different assumptions for the DM density profile play
an important role. (36)

The J-factor for dSphs is dependent on the quality and precision of star measure-
ments. This dependence does not limit only its calculation, but also the robustness of
the result: the smaller is the stars sample, the less reliable is the result. This issue is
particularly relevant for the recently discovered ultra faint dwarf galaxies: systems with
few known stars, with possibly higher DM content than the classical dSphs. As it will be
discussed in more detail in section subsection 3.4.2, the DM content of the ultra-faint dSph
is not yet well established, due to the limited knowledge of the baryonic matter. (35-36)

The galaxies used as a target in work will be described in the following.

3.4.1 Sculptor

Among the classical dSph of the Milky Way, one of the best known is Sculptor: (41)
it was discovered in 1937 and it was the first source to be classified as dSph, with mass to
light ratio of 158±33 M�/L�. (42) This source is visible from the Southern hemisphere,
having equatorial coordinates RA=15.03◦ and Dec=-33.71◦. It is located at 86±6 kpc
from the Sun.

The Sculptor galaxy includes 1365 stars¶ and for this abundant sample, its J-factor

βa = 1.
¶ While the majority of dwarf galaxies contain about 101 ∼ 102 known stars
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is known with low uncertainties, as presented in Table 2. (40) Consequently, due to this
reliable results, Sculptor is often used as a benchmark for DM searches.

3.4.2 Triangulum II

The Triangulum II ultra faint dwarf galaxy was discovered in 2015. It is visible from
the Northern hemisphere, with equatorial coordinates: RA=33.32◦ and Dec=36.18◦ and it
lays 30±2 kpc away from the Sun. Its detection was first conducted by the photometric
measurements using the Panoramic Survey Telescope and Rapid Response System (PAN-
STARRS 1). (43-44) In the same year, Triangulum II was confirmed as a galaxy by the
spectroscopy measurements carried out by two independent groups, using the data collected
with the KECK II telescope. (45)

The group lead by Martin (46) reported the observation of 13 stars, while the group
lead by Kirby (47) reported initially the observation of 6 stars, while an reviewed analysis
published in 2017 reported the observation of 14 stars (48). Data collected using two
techniques, photometry and spectroscopy, point to a high ratio mass-luminosity: 3600+3500

−2100

M�/L�, a strong indication of presence of DM. (47,49)

As of today, only 14 stars are known to belong to Triangulum II. With this small
sample it is very challenging to firmly conclude characteristics of the galaxy, carrying large
uncertainties on each parameter value, which can lead to different conclusions, even in the
same group with the same data, as presented by Kirby group in 2015 (47) and 2017 (48).
Given the limited information on the stellar content of this particular object, its dynamics
is at present poorly understood. For this reason, it is necessary to make some assumptions
in order to perform the Jeans analysis used to derive its J-factor.

Photometric measurements by the Martin and Kirby groups, as well as the
CLUMPY software for the Jeans analysis, were used by Dr. F. G. Saturni, a collab-
orator within our working group, to obtain an updated estimation of the J-factor of
Triangulum II. ‖ The data used as input are the surface brightness from (35) for the
measured photometric data in (41) and the stars data presented by Martin and Kirby. The
Einasto DM density profile is assumed, due to the smaller number of free parameters for a
cuspy shape. The sample of stars is presented in Table 3, where for each star ID(M) and
ID(K) respectively indicate the star identification number for the Martin group and for
the Kirby group, RA and Dec are the equatorial coordinates, R is the projected distance
from the center of the galaxy, vr indicates the star heliocentric velocity and δvr indicates
the star velocity uncertainties. For the overlapping stars presented by both groups, the
weighted average is provided.

The J-factor obtained has the value of log10J(αop) = 20.7 GeV2/cm5, calculated at
the optimal angle defined as αop ≈ 2rh/d = 0.13◦ (rh is the half light radius), where the
‖ Value obtained in private communication.
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Table 3 – Observed star list for Triangulum II galaxy.

ID (M) ID(K) RA Dec R [pc] vr [km/s] δvr [km/s]
08 33.26 36.21 36.8 -387.1 7.7
09 33.36 36.23 32.7 -404.7 5.1
20 91 33.33 36.19 8.5 -382.1 2.1
21 116 33.32 36.17 5.0 -380.7 2.4
22 33.30 36.15 19.4 -387.0 3.8
23 76 33.36 36.16 10.7 -389.0 2.3
24 33.34 36.17 10.3 -383.1 4.9
25 33.32 36.12 30.3 -362.8 5.6
27 33.34 36.14 21.2 -401.4 6.6
29 33.38 36.20 31.4 -397.1 7.8
31 33.47 36.22 80.4 -375.8 3.1
40 106 33.32 36.18 1.9 -381.4 1.3
46 65 33.32 36.18 11.2 -373.8 1.4

128 33.31 36.16 10.2 -384.9 3.2

Source: GENINA (49)

J-factor has the smallest error bars, as used in (35-36). Table 4 reports the Triangulum II
J-factors obtained by independent groups. The first three results are very close, since the
method used is equivalent, while the result published by the Fermi-LAT Collaboration,
published in (50), is quite different but still compatible with the others. In particular, the
Fermi-LAT J-factor result is obtained using a different method, where no definition of α
is required.

Table 4 – J-factor for Triangulum II calculated by different methods and groups.

Group Log10J [GeV2/cm5] α
F. Saturni 20.7± 0.6 αop

A. Genina (49) 20.77+0.60
−0.41 αc

K. Hayashi (51) 20.44+1.20
−1.17 αc

Fermi-LAT (50) 19.1

Source: By the author

The J-factor for Triangulum II is one of the highest among the dSph, approximately
100 times higher than the ones of the classical dSph. However, we strongly highlight the
lack of information about the system dynamics, critical factor for the J-factor calculation.
(35-36)

In our analysis, the value of J-factor calculated by Saturni will be used, since we
consider it as the most updated one and it is the one from the CTA Consortium. The
effect of a different choice will also be discussed.
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3.4.3 Reticulum II

The photometric data of Dark Energy Survey (DES) in 2015, analyzed by (52),
revealed 9 ultra faint objects in the vicinity of the Large Magellanic Cloud. Later in the
same year, Reticulum II was confirmed as an ultra faint dwarf galaxy by spectroscopy
measurements presented by three different groups (53–55), using different telescopes
(Michigan/Magellan Fiber System (M2FS), VLT/GIRAFFE and Gemini South/GMOS).

Reticulum II has equatorial coordinates RA= 53.92◦ and Dec= −54.05◦, with
heliocentric distance of 30±2 kpc. Based on the spectroscopic data, its radial velocity
indicates that the system is gravitationally independent from the Large Magellanic Cloud,
despite being very close. Moreover, the mass to light ratio obtained from spectroscopy, of
≈ 500 M�/L�, indicates that Reticulum II is a promising target for DM searches.

The Reticulum II J-factor was calculated by (56), resulting in log10J(αc) = 18.8±0.6
GeV2/cm−5 within αc = 0.1◦ and independently confirmed by (57). The data used to
calculate it were the photometric measurement presented in (52) and the star sample
presented in (53), composed by 18 star members. Like for Triangulum II, the dynamics of
Reticulum II is not yet fully understood confirmed, due to the limitations of the available
stellar sample.

3.4.4 Carina III

Carina III (58) was discovered in the beginning of 2018, by photometric data from
the Magellanic Satellites Survey (MagLiteS), together with Carina II, in the Large Magel-
lanic Cloud neighborhood. Spectroscopy data using Magellan/IMACS, Anglo-Australian
Telescope/AAOmega+2dF, and Very Large Telescope/GIRAFFE+FLAMES measured 14
stars members for Carina II and only 4 belonging to Carina III. From the data, Carina II
was confirmed as an ultra faint dSph, however Carina III, due to small star sample, is still
a non-confirmed dSph candidate.

Carina II and Carina III have RA= 114.11◦ and 114.63◦, Dec=−58.00◦ and −57.90◦,
with heliocentric distance of 37.4± 0.4 kpc and 27.8± 0.6 kpc, respectively.

Once again, few stars members are known, driving to a fragile J-factor value, spe-
cially for Carina III. Current estimations of the J-factor for Carina II are log10J(0.1◦)=17.9+0.6

−0.5

GeV2/cm5 while for Carina III , log10J(0.1◦)=19.9+1.0
−0.9 GeV2/cm5. (59) Given its promising

J-factor value together with the distance, in this work we will only focus on Carina III,
under the assumption it is a ultra faint dSph.
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4 THE CHERENKOV TELESCOPE ARRAY

Along the past years the scientific community acquired one more window to observe
the universe: the gamma rays. The 10 m mirror array at the Whipple Observatory, located
in Arizona, was the first example of an Imaging Atmospheric Cherenkov Telescope (IACT),
that led to the first ever detection of TeV emission from the Crab Nebula in 1989. (60)
Motivated by the success on the first demonstrations, the use of IACTs became a robust
and high performance detection technique to explore the high energy universe.

This chapter is devoted to a general discussion about the ground based gamma-ray
detection, to the current experiments and in particular to the future project Cherenkov
Telescope Array (CTA). In section 4.1 we will discuss the ground based gamma-ray
astronomy principle, while in section 4.2 and 4.3 we will describe the current experiments,
together with the Cherenkov Telescope Array and its expected performance. In section 4.4
we will focus on the detector expected performance for dark matter searches, while in
section 4.5 we will describe the CTA analysis pipeline, used to carry out the analysis
presented in the next chapter.

4.1 Ground based gamma rays detection principle

Since the energetic gamma rays are absorbed by the Earth’s atmosphere, they can
either be observed directly using detectors operating in space or indirectly using ground
based experiments that can detect the electromagnetic cascades generated by gamma rays.
Gamma rays entering the Earth’s atmosphere interact with the atmospheric molecules
and will produce an extensive particle cascade made of electrons, positrons and photons,
that is called electromagnetic air shower.

Two physical processes are essential to describe the development of extensive air
showers initiated by photons in the atmosphere: pair production and bremsstrahlung.
Photons undergo pair production in the vicinity of the nuclei of atmospheric molecules,
when the energy is above the threshold energy (1.052 MeV). The bremsstrahlung effect
occurs when an electron or positron, due to the Coulomb field of the atoms, is slowed
down and deflected from the initial direction and as consequence radiation is emitted. This
radiation is itself extremely energetic, with many of the photons undergoing further pair
production that can again radiate energy and feed the cascade multiplication, that will go
on until the particle energy reaches the value E = Ec, the critical energy, when ionization
losses become dominant and no further radiation or pair production processes are possible.
The critical energy in the atmosphere is around 100 MeV. (61)

The emission of coherent electromagnetic radiation, the Cherenkov light, is schemat-
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ically described in figure 12. It takes place whenever a charged particles propagates with
velocity higher than the speed of light in a medium. Cherenkov light is emitted along the
surface of a cone, whose axis is coincident with the charged particle path. An important
parameter to characterize the Cherenkov effect is the angle θC , defined as:

cosθC = 1
βn

. (4.1)

where β = v/c and n is the refraction index of the medium. (61)

Figure 12 – Schematic description of the Cherenkov emission.

Source: GRIEDER (61)

The IACTs work by imaging the very short flash of Cherenkov radiation generated
by the extensive air shower initiated in the atmosphere at an altitude of 10–20 km. Figure
13 presents an overview of the detection principle. The total area on the ground illuminated
by this flash, also called the “light pool”, is of the order of 100 m2.

The IACTs have an angular resolution of the order of 0.1 degrees together with
background rejection power better than 99%. The drawback of IACTs is the low duty cycle,
of the order of 10 %, together with the limited field of view, of the order of 5 degrees. (61)
IACTs consist of a set of mirrors reflecting the Cherenkov light into a single focus, where a
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camera is placed. The camera has two main components: (i) an array of photo-multipliers,
which converts the light signal into electrical signal and transmit it to (ii) trigger systems
to manage the data and convert it to data acquisition systems. Since the Cherenkov pulse
has a short duration, approximately a few tens of nanoseconds, the trigger needs to operate
with a frequency higher than the GHz. In order to measure the light pulse, one telescope is
enough, however combining measurements of more telescopes a better angular resolution
and background suppression can be achieved.

Figure 13 – Detection principle of IACTs. A gamma ray interacts with the Earth’s atmosphere,
creates a cascade of new particles, in which some of them will emit Cherenkov
radiation forming a light pool that will be detected by the ground telescopes.

Source: THE CTA CONSORTIUM (8)

The image of the Cherenkov light flash on the camera has an elongated elliptic shape,
whose parameters, also known as Hillas parameters, contain the necessary information to
reconstruct the air shower. Figure 14 presents the Hillas parameters, being l and w the
length and width of the shower respectively, D is the distance between the ellipse center
and the position of the source pointed by the camera, the θ represents the angular distance
of the reconstructed source and the real source on the camera and α is the angle between
the ellipse’s axis and the line linking the ellipse’s center to the real source position. The
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particle identification, energy and arrival direction are obtained by comparing the Hillas
parameters from the data with the same parameters given by the simulations. (62)

Figure 14 – Hillas parameters derived from the imaging of the Cherenkov pulse.

Source: VIANA (62)

Besides gamma rays, others types of particles can also reach the Earth and produce
air showers. When the initial particle is a proton or nucleus, as the majority of the cosmic
rays, the cascade of new particles is mainly hadronic. An important difference can be
observed: in the hadronic showers we can find many particles, including muons, pions
and kaons, while in electromagnetic showers we mainly have pairs e± and photons. Such
difference will lead to a different topology of the air showers, as presented in figure 15.
The identification of the gamma ray signal and the rejection of cosmic ray background is
mainly based on this characteristics.

4.2 Current atmospheric Cherenkov experiments

The present generation of IACTs is composed by the High Energy Stereoscopy
System (H.E.S.S.), the Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) and
the Very Energetic Radiation Imaging Telescope Array System (VERITAS) experiments.
A short description of each of them is given in the following.

The H.E.S.S. observatory (63) started its operations in 2002, is located in Namibia
at 1800 meters above the sea level, and it is currently the only gamma-ray observatory
located in the southern hemisphere. Given its location, H.E.S.S. can observe the Galactic
center. The array was composed initially by 4 telescopes, with mirror area of 107 m2, with
focal length of 15 m. However, in its Phase II, the array was updated by the addition of a
bigger telescope, with a mirror area of ≈600 m2 and a focal length of 36 m. The H.E.S.S.
energy range cover from 30 GeV to few TeV.
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Figure 15 – Comparison between the topology of electromagnetic showers, left, and hadronic
showers, right.

Source: VIANA (62)

The MAGIC observatory (64) is located ≈2,400 m above the sea level in La Palma,
Canary Islands. The observatory is composed by two large telescopes, with mirror area
of ≈240 m2, with low energy threshold of ≈50 GeV. Since it is located in the northern
hemisphere, MAGIC targets are the extra-galactic sources, and due to the unique design of
“lightweight” the telescopes have fast slewing system allowing to pursuit alerts of transient
sources.

The VERITAS experiment (65) started its operations in 2007, and it is composed
by four telescopes each of them covering 106 m2 of the telescope mirror. Located in the
United States (Arizona), the array is at 1268 meters above the sea leveal and covers the
energy range from 50 GeV to 50 TeV.

These three telescopes compose the current generation of IACT and they suit as
basis for the next generation of gamma-ray observatories.

4.3 The CTA Observatory

The CTA Observatory (8) will be operated by an international collaboration of
more than one thousand scientists spread over 32 countries. (66) It is currently under
construction and the first scientific data are expected to be taken in 2020. The main goals
are: understand the origin of relativistic cosmic particles, probe extreme environment and
explore the frontier of physics, such as understanding the nature of dark matter. The main
characteristics of the future CTA observatory can be summarized as follows:
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• Extended field of view: It will be the first ground-based observatory capable to
observe the entire sky. To achieve this goal, the telescopes will be located in both
hemispheres. The Northern site is located on the island of La Palma in the Canary
Islands (Spain) and it will be mainly dedicated to extra-galactic objects, while the
Southern site is located near Paranal (Chile), and it will focus on Galactic sources.

• Large energy coverage: It will explore wide energetic window (from 20 GeV to at
least 300 TeV). For this purpose 3 different telescopes will be used: Large Size
Telescopes (LST) with 23 meters diameter to explore lowest energies (above 100
GeV), Medium Size Telescopes (MST) with 12 meters diameter for the intermediate
energy range and the Small Size Telescope (SST) with ≈ 4 meters diameter, for the
highest energies (up to hundreds of TeV).

• Large detection area: The observatory will cover 4 km2 in the South and 0.6 km2 in
the North. The proposed layout for both hemispheres is presented in figure 16.

• Improved sensitivity: Combining the previous improvements, CTA will have enhanced
sensitivity with respect to current generation detectors. Figure 17 presents the
CTA sensitivity curve for both hemispheres compared to the present gamma-ray
observatories.

• Simultaneous observations: Due to the large number of telescopes composing the
array, CTA will be able to point at different targets simultaneously.

• Open observatory: the scientific community will have the access to the data collected
by the observatory. This is a unique feature for the ground based telescopes.

Figure 16 – Layout of the two CTA sites, in the Northern (left) and Southern hemisphere
(right).

Source: THE CTA WEBSITE (66)
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Figure 17 – Differential sensitivity for CTA North and South compared with present gamma-ray
observatories.

Source: THE CTA WEBSITE (66)

4.4 Prospects for dark matter detection

As discussed in chapter 3, indirect searches for DM can be carried out with
gamma-ray detectors. Given the expected powerful performance, in particular in terms
of the extended energy range, CTA will reach unprecedented values of cross-section for
self-annihilating DM for a wide range of DM masses, including those inaccessible to
H.E.S.S..

The search for DM is one of the study themes of the CTA Consortium, and a
research plan has been developed and published in the document that summarizes the
Science with CTA (8), presented in Table 5.

The Galactic halo is the main CTA target in the context of DM searches, however,
due to the large uncertainties regarding its background, the dwarf galaxies are also proposed
as an additional primary target for observation. The observation strategy for dSph is not
yet finalized, since the search proposal will be guided according to the results obtained in
the initial years.

The sensitivity curve for the the Galactic halo, Sculptor and the Large Magellanic
Cloud (LMC)is presented in figure 18. The results from CTA are compared to present
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Table 5 – Observation strategy for Dark Matter with CTA.

Year 1 2 3 4 5 6 7 8 9 10
Galactic halo 175 h 175 h 175 h
Best dSph 100 h 100 h 100 h

in case of detection at GC, large σv
Best dSph 150h 150 h 150 h 150h 150 h 150 h 150h
Galactic halo 100h 100 h 100 h 100h 100 h 100 h 100h

in case of detection at GC, small σv
Galactic halo 100h 100 h 100 h 100h 100 h 100 h 100h

in case of no detection at GC
Best Target 100h 100 h 100 h 100h 100 h 100 h 100h

Source: THE CTA WEBSITE (66)

generation experiments (H.E.S.S. and Fermi). This figure also shows that the Galactic
Center observed with CTA will be able to reach the thermal cross-section, with almost
improvement of one order of magnitude with respect to H.E.S.S. experiment. However,
it should be noticed that the large uncertainty on both the DM content and the astro-
physical foreground for this source can change dramatically the detection prospects in the
forthcoming years.

Figure 18 – Sensitivity curve for CTA Galactic halo, LMC and Sculptor compared to the
H.E.S.S. Galactic halo and Fermi dSph sensitivities.

Source: THE CTA CONSORTIUM (8)
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4.5 CTOOLs

In order to analyze the data collected by CTA and to provide a flexible analysis
pipeline, the CTOOLs software package (67) was developed, with its first version release
in end of 2015. Despite its creation was motivated to attend the CTA needs, the idea is
to extend the software to be suitable for all IACT telescopes data. In order to minimize
software maintenance cost and to open the use to a large variety of operating systems, the
CTOOLs package is entirely dependent on the external GammaLib library. Both CTOOLs
package and GammaLib library are open source codes available at (68).

All the events measured by IACT telescopes are characterized by three fundamental
properties: trigger time t′, instrument direction p′ and measured energy E ′. However, due
to instrument limitations, the t′, p′ and E ′ are not the intrinsic characteristics of the
photon originated in the source: the true time t, the true photon direction p and the
true photon energy E. In order to correct these differences, the Instrument Response
Function (IRF) is needed. The IRF, R(p′, E ′, t′|p, E, t) is a set of air shower simulations
used to convert the photon true informations to the measured information, in units of
cm2sr−1s−1MeV−1 and can be written as follows:

R(p′, E ′, t′|p, E, t) = Aeff (p, E, t)× PSF (p′|p, E, t)× Edisp(E ′|p, E, t). (4.2)

where the Aeff is the effective area of the observatory, the PSF is the instrument
Point Spread Function, which relates the spatial deviation between the photon true direction
and the measured direction and lastly, the Edisp is the instrument energy dispersion, taking
into account the energy resolution of the instrument. For each particular analysis, different
parameters of the IRF are required:

• the location of the used array (North or South);

• the software used to reconstruct the air shower;

• the observation angle of the telescope from the zenith;

• the location of the source;

• the number of telescopes used for observation;

• the type of telescope (SST, MST or LST);

• the observation time.

The IRF is available within the calibration database (caldb), whose last released
calibration is named ‘prod3b’. Thus, choosing a caldb and IRF, any CTOOLs function
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can be used. A sketch of all the functions available in CTOOLs version 1.0 is presented in
figure 19.

Figure 19 – CTOOLs functions.

Source: KNÖDLSEDER (67)

Within the DM context, the CTOOLs can be applied for the computation of
the upper limit on the gamma-ray flux from DM annihilation. Such value indicates the
boundary of the gamma-ray flux detectable by CTA. With this purpose, three CTOOLs
functions are used: ctobssim, ctbin and ctulimit. The description of the functions as well
as the details about the DM signal simulation are presented in the following.

4.5.1 Simulation of the detector response with ctobssim

The ctobssim function simulates a CTA observation according to the gamma-ray
model provided. The inputs to produce the mock data are separated in two groups: the
characteristics of the target (spatial coordinates and gamma-ray flux spectrum expected
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from the source) and the characteristics of the observation (observation time, energy
interval, calibration data base and IRF). Two gamma-ray flux models are considered as
input for ctobssim: the signal and the background. In this work, the signal comes from
DM and it is several orders of magnitude weaker than the background, and its strength
depends on the particular value of the < σv > chosen. The background is given by the
cosmic rays misinterpreted as photons that remained after the data cuts treatment. It is
enclosed within the IRF and obtained from several simulations.

The gamma-ray flux from DM annihilation, assuming it occurs into a single channel,
is given by:

dΦ
dE

= < σv >

8πm2
DM

dN

dE
× J. (4.3)

The output of ctobssim is a event list containing information of the detection time,
sky coordinates and energy for each detected photon.

4.5.2 Binning the photon counts with ctbin

From the event list provided by ctobssim the tool ctbin creates a three dimensional
counts cube in order to make the information more manageable. The counts cube is
composed by 2 axis for space: the Right Ascension and Declination and 1 axis for the
energy.

4.5.3 Estimation of the flux upper limit with ctulimit

The count cube obtained with ctbin, is used as input for the ctulimit function.
The ctulimit provides as output a limit on the detectable gamma-ray flux for the adopted
model, in this case for DM. In order to compute the flux upper limit, the background
gamma-ray flux derived from the residual CR is compared with the gamma-ray flux from
DM model (equation 4.3) where a free normalization parameter µ is added, namely:

dΦU.L.

dE
= µ

< σv >

8πm2
DM

dN

dE
× J. (4.4)

Applying the fitting algorithm, based on the maximum likelihood ratio method
(with 95% of confidence level), the best value for the µ parameter will be produced.
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5 RESULTS AND DISCUSSION

In light of the main features of dSphs, namely the high mass to luminosity ratio
(M�/L�) and the low astrophysical background, the expected gamma-ray flux from DM
annihilation (obtained in equation 3.1) can be compared with the instrumental sensitivity
curve. In the DM parameter space, < σv > versusmDM , such comparison can be translated
into the sensitivity curve, to evaluate quantitatively the potential for DM detection in a
source.

This chapter is structured as follows: the section 5.1 describes the DM model
parameters, and section 5.2 presents a first estimation for the sensitivity curve, while a
more detailed calculation obtained with CTOOLs is presented in section 5.3. Enclosed to
the last section is presented the estimation of the sensitivity curve considering different
parameter values (annihilation channels and J-factor) for the same source, Triangulum II,
and the sensitivity curve for Reticulum II and Carina III.

5.1 Understanding the parameters of the model

The gamma-ray flux from DM annihilation is given by the following equation, as
discussed in section 3.2.

dΦ
dE

= < σv >

8πm2
DM

∑
f

Bf
dNf

dE
× J. (5.1)

A gamma-ray flux will be detectable if it lies above the instrument sensitivity. Figure
20 shows the sensitivity of the CTA Northern array as a function of energy, for 50 hours
observations, compared with the expected gamma-ray flux from DM annihilation, using
Triangulum II as a target. The gamma-ray flux is obtained from DM annihilation into τ+τ−,
assuming the thermal value for the velocity-averaged cross-section < σv >= 3×10−26cm3/s,
and DM particle mass mDM = 1 TeV.

Figure 21 shows the sensitivity of the CTA Northern array as a function of energy,
compared to the gamma ray flux from DM annihilation obtained considering different
parameters configurations. In particular, the top left panel shows the gamma ray flux
obtained by changing the astrophysical target, including the classical dSph Sculptor, the
top right shows the gamma ray flux obtained by changing the DM particle mass from 1 TeV
to 0.1 TeV, the bottom left panel shows the result obtained by changing the annihilation
channel from τ+τ− to bb̄ and the bottom right panel shows the gamma ray flux obtained
by changing the velocity averaged cross-section from 3× 10−26 to 10−31 cm3/s. Thus, it is
noticed the different sets of DM parameter values can produce a detectable gamma-ray
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Figure 20 – CTA sensitivity curve in the gamma-ray flux as a function of energy (for an
observation time of 50 hours), compared to the gamma-ray flux produced due to
the DM annihilation process in the τ+τ− channel, for the DM particle mass of
mDM = 103 GeV and the thermal freeze-out cross-section.

Source: By the author

signal and the definition of such values is essential to build the sensitivity curve.

5.2 Understanding the principle of sensitivity curve

To provide a first estimation of the sensitivity curve, we compare directly the DM
annihilation flux expected from a given source with the sensitivity curve of the instrument.
We define as “detectable” a signal that provides at least 10 photon counts in the instrument,
in a given time interval and in a given energy range. In order to count the detectable
number of photons in a given energy range, it is considered the differential flux dΦdet/dE

(photon number per area per second per energy) that can be observed by the detector.
Such a flux is described as:

dΦdet

dE
= dΦsrc

dE
− dΦsen

dE
. (5.2)

Where dΦsrc/dE is the flux expected from the source (Equation 5.1) and dΦsen/dE

is the instrument sensitivity, the lowest flux measurable by the instrument. The total
number of detected photons is given by:

N = ∆t
∫
Aeff (E)dΦdet

dE
(E)dE. (5.3)
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(a) Effect of different sources.
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(b) Effect of different DM masses.
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(c) Effect of different annihilation channels.
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(d) Effect of different DM cross-sections.

Figure 21 – CTA sensitivity for different observation hours as a function of energy, for the
Northern array in comparison of gamma-ray flux produced by set of DM parameter
labeled in each plot. The figure in the top left presents a comparison between the
generated gamma-ray flux from different source; top right for different DM mass;
down left considering different annihilation channel and down right for different
DM cross-section.

Source: By the author

Being ∆t the time of observation and Aeff(E) the effective area of the detector.
The effective area presented in figure 22, extracted from (66).

Since dΦsrc/dE depends on mDM and 〈σv〉, as presented in equation 3.5, we seek
for the set of parameter values which correspond to a detectable number of gamma-ray
photons above the threshold. The outcome of this analysis is better illustrated by the
detectability map shown in figure 23, where the velocity-averaged cross section 〈σv〉 is
shown as a function of the DM mass mDM , for Sculptor (left) and Triangulum II (right).
The green area indicates the allowed values in the parameter space, namely the sets of
parameters values that can be detected above our threshold, while the red region falls
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Figure 22 – Effective collection area for gamma-rays as a function of the photon energy.

Source: THE CTA WEBSITE (66)

below the CTA sensitivity. This plot is obtained considering 50 hours of observation, for
the annihilation channel τ+τ−, for the Sculptor J-factor presented in Table 2 for α0.5 and
Triangulum II J-factor value calculted by Saturni, presented in Table 4.

(a) Sculptor detectability map. The black dashed
line presents the value of the thermal freeze-
out cross-section.

(b) Triangulum II detectability map. The black
dashed line presents the value of the thermal
freeze-out cross-section.

Figure 23 – Detectability map for (left) Sculptor and (right) for Triangulum II. The combination
of mass and cross-section in green represents the set of DM parameters probed
by CTA. Conversely, the red region represents the parameters which produces a
gamma-ray flux too faint be detectable by the instruments. The dashed black line
represents the thermal cross-section value.

Source: By the author

Therefore, the bigger is the green region, the wider is the accessible region in the
parameter space. Notably, the Triangulum II detectability map shows that the allowed
(green) region is bigger than the one of Sculptor, revealing its higher potential for DM
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searches. Moreover, the comparison of the boundary between the green and red regions
shows that Triangulum II can probe values close to the ones which match with cosmological
observations, illustrating even more the interesting potential of this source.

5.3 Detailed calculation of the sensitivity curve

For a detailed calculation of the sensitivity curve, it is considered the specific
instrumental limitation for a given pointing direction, enclosed in the IRF and the method
described in section 4.5, applying the CTOOLs. The upper limit (at 95% C.L.) on the
gamma-ray flux from DM annihilation is obtained for the DM particle mass mDM range
between 70 and 105 GeV, using the following CTOOLs functions: ctobssim, ctbin and
ctulimit.

An upper limit on 〈σv〉 is obtained, for each DM mass value, by inverting the
equation 5.1 as follows:

< σv >U.L.=
8πm2

DM

J

dΦU.L./dE

dN/dE
. (5.4)

This procedure is repeated 20 times per each value of the simulated DM particle
mass mDM . Thus, the sensitivity curve shows the values of < σv >U.L. as a function of
the DM mass mDM . For simplicity, < σv >U.L. will be labeled as < σv > in the following
sensitivity curves.

5.3.1 Validating the method

In order to validate our method, we first estimate the sensitivity for Sculptor, a
classical dSph widely studied in the literature and within the Dark Matter group of CTA.
For this source, we compute the sensitivity curve for the DM annihilation into τ+τ− for
500 hours. Figure 24 shows the sensitivity curve for Sculptor. The black line shows the
result of this work, while the red line shows the official result of the CTA consortium. The
good agreement between the two results indicates the robustness of the method. Confident
about the method, we apply the same strategy to the study of ultra-faint dSphs. The
details about the parameters used to obtain this result are presented in Table 6.

5.3.2 Estimation of observation time

The observation time of 500 hours, used to estimate the sensitivity for Sculptor
(figure 24), is much higher than the actual observation time currently scheduled for the
observation of dSphs with CTA. This value was only used for comparison, to validate our
method. To perform a realistic assessment of the sensitivity to the search for DM with
CTA for Triangulum II, we estimate the source visibility using an online tool provided by
the HESS collaboration (69).
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Table 6 – Parameters values used for the Sculptor sensitivity curve presented in figure 24.

Annihilation channel τ+τ−

J-factor 3.5× 1018 GeV2/cm5

< σv > 10−31 cm3/s
CTOOLs version 1.4.2
Observation time (hours) 500
Calibration database cald3b
IRF South_z20_average_50h
Number of simulations (per each mass) 20 times
Number of DM mass values 11

Source: By the author

210
3

10 410
5

10

Mass (GeV)

26−10

25−10

24−10

23−10

22−10

21−10/s
3

 v
>

 c
m

σ
<

Sculptor Sensivity curve

G. Rodriguez 2017

K. Nakashima 2018

Figure 24 – Sensitivity curve for Sculptor in the DM parameter space. The vertical axis presents
the velocity averaged cross-section and the horizontal axis shows the DM particle
mass. It is obtained considering 500 hours of observation for the τ+τ− annihilation
channel. Our result is shown in the black curve and it is compared to the result
obtained by G. Rodriguez, member of the CTA Collaboration.

Source: By the author

We compute the visibility of Triangulum II from the Canary Islands, where the
CTA North will be located, for the year 2019, and the results are shown in figure 25. The
white areas indicate the presence of the Sun in the sky, the gray regions correspond to civil,
naval, and astronomical twilight, respectively and the yellow region indicates when the
moon is above the horizon. Lastly, the times when the object is above given altitudes angle
are indicated by the different degrees of the purple color. The visibility of Triangulum
II in minutes per month, for different angles above the horizon, is presented in Table 7.
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Figure 25 – Visibility of Triangulum II from the CTA North site, located in La Palma.

Source: THE H.E.S.S. COLLABORATION (69)

Considering the visibility of Triangulum II, combined with the scheduled observation time
for dSphs by the CTA Collaboration, it is reasonable and conservative to consider for the
analysis 50 hours of observation.

5.3.3 Sensitivity curve for Triangulum II for τ+τ− annihilation channel

The sensitivity curve for Triangulum II was calculated. Figure 26 shows the results
obtained considering the annihilation of DM particles into τ+τ−: the blue curve shows the
sensitivity for Triangulum II, where the blue shaded region includes the uncertainties on
the J-factor. For comparison, the green curve represents the sensitivity curve for Sculptor.
The dashed black line is the value of the thermal cross-section, for reference. Table 10
shows all the parameters used in order to achieve this result.

The first conclusion is that the sensitivity curve of Triangulum II is about two orders
of magnitude better the one of Sculptor, as it was already pointed out in (section 5.2),
meaning that Triangulum II presents a more promising chance of DM detection than
Sculptor. The allowed region of the parameter space that is found for Triangulum II is not
only wider than that of Sculptor, but it includes the thermal values, presented as dashed
line in figure 26. It is worth stressing that Triangulum II is probably the only dSph that
can reach this value.
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Table 7 – Visibility of Triangulum II in minutes per month, for different angles above the
horizon, for year of 2019.

Month above 0◦(min) above 30◦ (min) above 45◦(min) above 70◦ (min)
1/2019: 7887 4872 3501 1263
2/2019: 4581 2031 897 0
3/2019: 3045 459 0 0
4/2019: 594 0 0 0
5/2019: 0 0 0 0
6/2019: 0 0 0 0
7/2019: 1545 522 261 0
8/2019: 6531 3825 2601 606
9/2019: 7728 5835 4692 2508
10/2019: 9171 8535 6918 2958
11/2019: 9339 7944 6537 2796
12/2019: 9162 6225 4914 2568

Overall total: 59583 40248 30321 12699

Source: H.E.S.S. COLLABORATION (69)

Table 8 – Parameters values used for the sensitivity curves presented in figure 26.

Annihilation channel τ+τ−

J-factor 5+15
−4 × 1020 GeV2/cm5

< σv > 10−31 cm3/s
CTOOLs version 1.4.2
Observation time (hours) 50
Calibration database cald3b
IRF version North_z20_average_50h
Number of simulations (per each mass value) 20 times
Number of DM mass values 11

Source: By the author

5.3.4 Sensitivity curve for Triangulum II for different annihilation channels

The sensitivity curve for the same target was also computed for other annihilation
channels, namely: bb̄ andW+W−∗ with results presented in figure 27. Different annihilation
channels provide different gamma-ray flux shapes, due to the channel inherent features.
All channels present very good discovery perspectives, however it is concluded the τ+τ−

can cover a bigger region of the parameter space, including the thermal values.

∗ For W +W − annihilation channel, the quantity of photons produced is negligible when considering DM mass
of 70 GeV, therefore the plot presents results from DM particles mass starting from mDM =100 GeV.
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Figure 26 – Triangulum II and Sculptor sensitivity curve for the τ+τ− annihilation channel for
50 hours of observation.

Source: By the author

5.3.5 Sensitivity curve for Triangulum II for different J-factor values

In order to understand the influence of different J-factor values on the Triangulum
II sensitivity curve, we performed the same analysis using the J-factor estimated by
the Fermi-LAT team (50), whose value is 1.25 × 1019 GeV2/cm5. The blue solid line
in figure 28 presents the Triangulum II sensitivity curve obtained with our benchmark
parameter values, shown in Table 8, and the shaded area indicates the effect of the J-factor
uncertainties. The dot-dashed line shows the sensitivity curve assuming the J-factor from
the Fermi-LAT team. The use of the latter, about one order of magnitude smaller than
our benchmark value, provides a worse sensitivity.

We are aware of the fact that our result depends strongly on the J-factor value used
to compute the flux upper limit. The J-factor is estimated based on the stellar kinematics
data available for the source and, since for Triangulum II, as for many other ultra-faint
dSphs, the sample is very limited the assumption on the dynamic equilibrium is not yet
fully confirmed. By presenting the source with the highest potential for discovery, this
work also aims at motivating more measurements in order to confirm its in dynamical
equilibrium.
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Figure 27 – Comparison of sensitivity curve for Triangulum II and Sculptor dwarf galaxies for
different annihilation channels: left for bb̄, right for W+W−.

Source: By the author
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Figure 28 – Triangulum II sensitivity curve for different values of J-factor is presented, for the
τ+τ− annihilation channel and for 50 hours of observation.

Source: By the author

5.3.6 Sensitivity curve for different sources

Additionally, the method described in the previous sections was applied to obtain
the sensitivity curve for Reticulum II and Carina III using the CTOOLs analysis pipeline,
using the software version 1.4.2 and the Calibration database cald3b and the results
are shown in figure 29. The sensitivity curves are obtained for different sources and for
different annihilation channels. The green curve in shows the sensitivity curve for Sculptor,
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the yellow for Reticulum II, the purple for Carina III and the last is the blue curve for
Triangulum II. The results for three annihilation channels are presented: bb̄ (top left),
W+W− (top right) and τ+τ− (bottom). The equaorial coordinates of the sources as well as
the value of the J-factor used in this analysis are shown in Table 9, while the parameters
used for the simulations are indicated in Table 10.
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Figure 29 – Comparison of sensitivity curve for Sculptor, Reticulum II, Carina III and Triangu-
lum II for different annihilation channels: top left for bb̄, top right for W+W− and
centered down for τ+τ−.

Source: By the author

In conclusion, within the recently discovered ultra faint dSphs studied in this
work, Triangulum II is the source which provides the best chance for DM detection. We
compared our result with the current limits on DM searches obtained by several indirect
DM search experiments, as it shown in figure 30. All the curves in this plot, adapted
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Table 9 – Name, equatorial coordinates and J-factor for the sources studied in this work.

Source Name R.A.[deg] Dec [deg] Log10J [GeV2/cm5]
Sculptor 15.3 -33.71 18.54
Triangulum-II 33.32 36.18 20.7
Reticulum-II 53.92 -54.05 18.8
Carina-III 114.63 -57.90 19.9

Source: By the author

Table 10 – Parameters used for the analysis showed in figure 29.

Source Name IRF version Observation time [h]
Sculptor South_z20_average_50h 50
Triangulum-II North_z20_average_50h 50
Reticulum-II South_z20_average_50h 50
Carina-III South_z20_average_50h 50

Source: By the author

from subsection 2.3.1, are obtained for DM annihilation into bb̄. However, it is worth
stressing that our best result is obtained for the τ+τ− channel. Figure 30 shows that our
result, obtained simulating an observation time of 50 hours, is better than the H.E.S.S.
sensitivity, obtained with a larger data set. Moreover, our result covers a broader energy
range, between 70 GeV and 100 TeV.

Triangulum II appears to be a very promising target, providing a wide range of
testable DM parameters values with CTA. Therefore, with the unprecedented sensibility
of the CTA observatory, combined with the high potential of Triangulum II, the WIMP
paradigm have a real chance to be tested.
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Figure 30 – Most important constraints on DM model from the current experiments together
with the Triangulum II sensitivity curve.

Source: Adapted from CONRAD (7)
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6 CONCLUSIONS

The present research project was carried out in the frame of the indirect searches
for DM with gamma rays, a well-suited method to detect WIMPs, with masses in the GeV
to multi-TeV range and producing gamma rays of similar energies. If DM consists entirely
of WIMPs produced thermally in the early universe, this implies that the velocity averaged
annihilation cross section < σv > is of the order of 10−26cm3s−1. Indirect searches in
gamma rays carried out by the Fermi-LAT have recently reached the sensitivity required
to test this canonical annihilation cross section for low WIMP masses. However, the
Fermi-LAT sensitivity is weaker for higher-mass WIMPs. In this context, very promising
results have been obtained by the current generation IACTs, namely H.E.S.S., MAGIC
and VERITAS. The upcoming CTA will improve significantly the current sensitivity to
annihilation signals for DM masses above ≈ 100 GeV , probing a parameter space that is
complementary to that of the Fermi-LAT and extending the energy range and performance
of current generation IACTs.

This study aimed at evaluating the sensitivity of the upcoming CTA to DM from
the ultra-faint dSphs of the Milky Way. These objects are particularly promising targets
for the indirect search for DM in gamma rays, and currently provide the best constraints
on the properties of DM particles. Limits on annihilation cross-sections begin to probe
regions favored by DM models, but they crucially depend on the information on the DM
content of the sources. The dSphs are inferred to be highly dominated by DM, with large
mass to light ratio of order of ≈ 103 M�/L�. Moreover, they present very low gamma-ray
astrophysical background.

By comparing the CTA lowest detectable gamma-ray flux and the expected gamma-
ray flux from DM annihilation for a given dSph, we obtained limits on the DM parameter
space (< σv > and mDM), producing a detectability map, which indicates the DM
parameters values that could produce a signal detectable by the instrument. The boundary
between the allowed and the forbidden regions of this detectability map provides a simplified
estimation of the sensitivity curve between 70 GeV and 100 TeV.

A more refined result is obtained using one of the official analysis tools of the CTA
consortium, called CTOOLs. By running a simulation of several observations considering
only instrumental background and fitting the DM model, a limit to the detectable gamma-
ray flux by CTA was obtained. The analysis was performed considering 11 DM mass values,
between 70 and 105 GeV, and for each value of the DM mass the limit on the averaged
velocity cross-section was calculated. In this way, the sensitivity curve in the parameter
space < σv > and mDM was derived for 3 ultra-faint recently discovery dSphs, namely
Triangulum II, Reticulum II and Carina III, assuming an observation time of 50h, for
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the following annihilation channels: W+W−, bb̄ and τ+τ−. The sensitivity curve for the
classical dSph Sculptor was also computed for comparison. This work constitutes the first
attempt to estimate the sensitivity of CTA to DM from these recently discovered, whose
DM content is extremely promising, though not yet fully understood.

We found that, within the sources investigated, Triangulum II is the best target
for DM searches, and the annihilation channel τ+τ− is the most promising since it can
probe the thermal values. This result is extremely attractive since Triangulum II is one of
few current dSphs to reach this sensitivity value. This source is located at 37 kpc, and it
was discovered in 2015 using the Pan-STARRS telescope. Its 14-member kinematic sample
was obtained only two years ago, allowing to estimate its stellar kinematics and to infer
its DM content. Jeans analyses conducted by several authors suggest an extremely strong
J-factor for this object, greater than 1020 GeV2/cm5. For our work, we have used the value
of Log10J = 20.7 GeV2/cm5 obtained by F. G. Saturni using a Jeans analysis, who is a
collaborator of our working group within the CTA consortium. If this dSph is confirmed
in dynamical equilibrium, it could be the most promising target for indirect DM searches.

Even though less optimistic than for Triangulum II, the results obtained for
Reticulum II and Carina III also appear as very encouraging, since the sensitivity curve
for these sources is still lower than that obtained for Sculptor. Highlighting the prominent
potential of such sources, this work also aimed at motivating future observations and
studies of the ultra-faint dSphs, in order to turn more robust the result.

To conclude, it is important to discuss the future perspectives of this work. The
most important limitation of this analysis is the knowledge of the J-factor, due to the little
information on the sources stellar kinematics. In order to understand this point we have
repeated the analysis of Triangulum II using the J-factor provided by the Fermi-LAT. In
this case, our result is about one order of magnitude lower, obtaining a more conservative
result. It is worth mentioning that the J-factor used by the LAT team is obtained in a
different way, not using a Jeans analysis, that is in this moment appears to be as the most
accurate method to infer the J-factor, and for this reason we chose not to use it as our
benchmark value.

The natural extension of this work is the application of described method to the
CTA data, that will be available in 2020.

Lastly, the potential for Triangulum II combined with the high sensitivity of the
future CTA, showed that this analysis constitutes an important step to solve the puzzle of
the sources of DM.
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