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Abstract

GETELINA, J. C. A. On the critical behavior of the XX spin-1/2 chain under
correlated quenched disorder. 2016. 82 p. Dissertation (Master in Science) - Instituto
de Física de São Carlos, Universidade de São Paulo, São Carlos, 2016.

This work provides a full description of the critical behavior of the XX spin-1/2 chain under
correlated quenched disorder. Previous investigations have shown that the introduction
of correlation between couplings in the random XX model gives rise to a novel critical
behavior, where the infinite-randomness critical point of the uncorrelated case is replaced
by a family of finite-disorder critical points that depends on the disorder strength. Here it
is shown that most of the critical exponents of the XX model with correlated randomness
are equal to clean (without disorder) chain values and do not depend on disorder strength,
except the critical dynamical exponent and the anomalous dimension. The former increases
monotonically with disorder strength, whereas the results obtained for the latter are
unreliable. Furthermore, the scaling relations between the critical exponents were also tested
and it was found that those involving the system dimensionality, namely the hyperscaling
and Fisher’s scaling relations, are not respected. Measurements of the Rényi entanglement
entropy of the system at criticality have also been performed, and it is shown that the
scaling behavior of the correlated-disorder case is similar to the theoretical prediction
for the clean chain, displaying the same finite-size correction and a disorder-dependent
effective central charge in the leading term of the scaling. Further corrections to the scaling
of the entanglement entropy were also investigated, but the results are inconclusive. The
model was studied via exact numerical diagonalization of the corresponding Hamiltonian.

Keywords: Spin-1/2 chains. Disordered systems. Phase transitions.





Resumo

GETELINA, J. C. A. O comportamento crítico da cadeia XX de spin-1/2 sob
desordem correlacionada e independente do tempo. 2016. 82 p. Dissertação (Mes-
trado em Ciências) - Instituto de Física de São Carlos, Universidade de São Paulo, São
Carlos, 2016.

Este trabalho proporciona uma descrição completa do comportamento crítico da cadeia
XX de spin-1/2 sob desordem correlacionada e independente do tempo. Investigações
prévias mostraram que a introdução de correlação entre os acoplamentos da cadeia XX
desordenada ocasiona o aparecimento de um novo comportamento crítico, onde o ponto
crítico de desordem infinita da cadeia não-correlacionada é substituído por uma família de
pontos críticos com desordem finita que depende da intensidade da desordem. Mostra-se
aqui que a maioria dos expoentes críticos da cadeia XX com desordem correlacionada são
iguais aos valores da cadeia limpa (sem desordem) e não dependem da intensidade da
desordem, com exceção do expoente dinâmico crítico e da dimensão anômala. O primeiro
cresce monotonicamente com a intensidade da desordem, enquanto que para o segundo os
resultados obtidos não são confiáveis. Além disso, as relações de escala entre os expoentes
críticos também foram testadas, e encontrou-se que aquelas envolvendo a dimensionalidade
do sistema, isto é as relações de hiperescala e de Fisher, não são respeitadas. Medidas da
entropia de emaranhamento de Rényi do sistema na criticalidade também foram efetuadas,
e mostra-se que o comportamento de escala do caso com desordem correlacionada é
semelhante à previsão teórica para a cadeia limpa, exibindo a mesma correção de tamanho
finito e uma carga central dependente da desordem no termo principal da função de
escala. Correções adicionais à função de escala da entropia de emaranhamento também
foram investigadas, mas os resultados são inconclusivos. O modelo foi estudado pela
diagonalização numérica exata do Hamiltoniano correspondente.

Palavras-chave: Cadeias de spin-1/2. Sistemas desordenados. Transições de fase.
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1 Introduction

Most of the research in theoretical condensed matter physics is concerned about
the elaboration and solution of homogeneous (clean) models, mainly because these models
are easier to solve and may even have an analytical solution. However, an idealized clean
system does not describe quite well how real matter is. Materials usually have impurities
or defects randomly distributed throughout them, i.e. they are disordered. (1–3) The
study of disordered models came into prominence recently, thanks to the advance in
computer simulations and the development of new mathematical techniques, such as the
renormalization group. (4–6) Clean models are now being compared to their disordered
counterpart to investigate how the introduction of disorder may affect the system behavior.

One example of such model is the XX spin-1/2 chain, which consists of a one-
dimensional (1D) lattice of interacting spins whose x and y components are coupled. For
the clean version of the XX model all those couplings are equal to the same constant,
whereas for the disordered version they are realizations of a random variable with a given
probability distribution. As a critical system, the XX model is fully described by its set
of critical exponents. Research shows that the introduction of any amount of disorder
completely changes the critical behavior of the XX model. (7)

Recently, a new configuration for the disordered XX model was proposed. (8) In
this special setup, called here as the XXCD model, the random couplings Ji are correlated,
such that the odd couplings are equal to their first right neighbor, i.e. J2i−1 = J2i. At
first glance one could infer that this change would not affect the system properties, since
from a macroscopic perspective the model is unaltered. However, it has been shown that
the XXCD model behaves in a unique way: Some of its critical exponents depend on how
strong the disorder is, being equal to the clean value for weak disorder and exhibiting
novel critical behaviors as disorder gets stronger. (9) This unusual behavior motivates a
detailed study about the XXCD model. Until now only a few properties of this system
have been evaluated; a complete description of its critical behavior is still lacking.

The XX model displays a so-called quantum critical behavior, i.e. it undergoes a
quantum phase transition (QPT). (10–14) QPTs are phase transitions driven by quantum
fluctuations alone; they occur at zero temperature (T = 0). Thus, one could infer that the
interest in QPTs is just theoretical. However, it has been observed experimentally systems
with quantum critical behavior. (15–17) To observe this behavior one should consider
sufficiently low temperatures, such that the thermal fluctuations are less significant than
the quantum ones, i.e. kT . ~ωC , where ωC is the characteristic frequency of the system.



16 Chapter 1. Introduction

The difference between classical and quantum phase transitions is that the latter
does not allow temperature as a control parameter; all known properties of CPTs are
extended to QPTs, such as the classification in first-order and continuous phase transitions,
scale invariance, universality classes, etc. (For more details on CPTs see (18–20).) The
similarities between quantum and classical phase transitions have been reinforced after
the development of the quantum-to-classical mapping, which transforms a d-dimensional
quantum critical system in a (d+ 1)-dimensional classical one. (12,21) This mathematical
trick consists of inserting an extra imaginary time dimension, which is represented as
infinite copies of the original system. Using this technique one can, for instance, map a
single quantum spin (with dimension d = 0) into a classical 1D Ising model.

Since the temperature T is not a possible control parameter for QPTs, these
transitions are usually tuned by the parameters that appear in the Hamiltonian of the
system. For spin chains, for example, such parameters are the couplings between spins
or the external magnetic field. Therefore, to introduce disorder in a spin chain model
one must make the couplings or the external field random. The former case is known as
random-TC disorder (or random mass in analogy with field theory), while the latter is
known as random field disorder. (22) Randomness can be further classified according to
its relation with the typical time scale of measurements: If disorder is time independent
it is known as quenched disorder (i.e. frozen), whereas if it depends on time it is called
as annealed disorder. In general, quenched disorder is more interesting than annealed
disorder, because the effects of randomness are enhanced.

The XX model under uncorrelated quenched disorder has already been fully de-
scribed. (23) Conversely, for the XXCD model there are not many results available. First
investigations, though, show that the introduction of correlated quenched disorder gives
rise to novel critical behavior. Besides the theoretical interest in describing the XXCD

model, recent investigations have shown that a similar correlated-random model describes
the behavior of a polymer with high conductivity. (24–26)

What follows in the next chapters is a complete description of the critical behavior
of the XXCD model, by determining the full set of critical exponents and checking the
so-called scaling relations that connect these exponents with each other. Furthermore,
entanglement properties of the XXCD model are also studied. The results are compared
to the theoretical predictions of the clean chain.

The remainder of this text is organized as follows. Chapter 2 presents the model
and the method used for solving it, besides providing a discussion about the effects of
disorder on the phase transition. In Chapter 3 the quantities of interest are evaluated and
their corresponding critical exponents are determined. Chapter 4 shows the entanglement
measurements, which is a trending topic in condensed matter physics. Concluding remarks
are reported in Chapter 5.
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2 The XX model

This chapter gives a discussion about the general properties of the XX model. In the
first section the Hamiltonian is introduced, followed by an outline of the Jordan-Wigner
transformation, which maps the interacting spin problem to a free fermion one. The second
section presents the condition for criticality and the phases of the XX model. A derivation
of the so-called Harris criterion is also presented, which determines whether weak disorder
is perturbatively relevant for the critical behavior. The last section finally introduces the
Hamiltonian of the XXCD model in the appropriate basis. There is also a comment about
a mathematical trick that yields faster calculations.

2.1 Mapping to free fermions

The general Hamiltonian of the 1D XX spin-1/2 chain with nearest neighbor
interactions is

HXX =
L∑
i=1

Ji
(
Sxi S

x
i+1 + Syi S

y
i+1

)
, (2.1)

where Ji > 0 are the couplings, Sαi are the usual spin-1/2 operators∗ and L is the system
size which shall be considered always even. For the clean chain the couplings are constant
(i.e. Ji = J), whereas for the disorder chain the couplings Ji are realizations of a random
variable.

The subject of this work is the so-called XXCD model, where the couplings are
random and also correlated with each other. To introduce this correlation between couplings,
the odd sublattice couplings (i.e. J2i−1) are randomly generated and the even sublattice
ones are defined as equal to their left neighbor, i.e. J2i = J2i−1. Thus, the Hamiltonian of
the XXCD model can be written as

H =
L
2∑
i=1

Ji
(
Sx2i−1S

x
2i + Sy2i−1S

y
2i + Sx2iS

x
2i+1 + Sy2iS

y
2i+1

)
. (2.2)

However, before giving further details about this model, in this section it is considered the
Hamiltonian as in Eq. 2.1 to show some general properties of the XX model that are valid
independently of the couplings nature.
∗Throughout this paper it is considered that ~ = 1 and k = 1, where ~ is the Planck constant over 2π and
k is the Boltzmann constant.
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Rewriting Eq. 2.1 with the raising and lowering operators S±i ≡ Sxi ± iS
y
i gives

HXX = 1
2

L∑
i=1

Ji
(
S+
i S
−
i+1 + h.c.

)
. (2.3)

To solve the Hamiltonian above one can transform S±i into fermionic creation and an-
nihilation operators c†i and ci, respectively. (27) Such operators respect the following
anti-commutation relations

{ci, cj} =
{
c†i , c

†
j

}
= 0, (2.4){

ci, c
†
j

}
= δi,j, (2.5)

and are defined as

c†i ≡ S+
i exp

i−1∑
j=1
−iπS+

j S
−
j

 , (2.6)

ci ≡ exp
i−1∑
j=1

iπS+
j S
−
j

S−i . (2.7)

This change of basis is known as the Jordan-Wigner transformation. Notice that it
preserves the form of Eq. 2.3, since c†icj = S+

i S
−
j , except for the last term in the summation,

which depends on the boundary conditions. Considering a cyclic chain, i.e. S±L+1 = S±1 ,
and using Eq. 2.6 and Eq. 2.7 one finds

S+
LS
−
1 = c†L exp

L−1∑
j=1

iπc†jcj

 c1,

= exp
 L∑
j=1

iπc†jcj

 exp
(
−iπc†LcL

)
c†Lc1,

= (−1)N+1 c†Lc1, (2.8)

where N = ∑L
i=1 c

†
ici is the total number operator.

Thus, the transformed Hamiltonian with periodic boundary conditions is

HXX = 1
2

[
L−1∑
i=1

Ji
(
c†ici+1 + h.c.

)
+ (−1)N+1 JL

(
c†Lc1 + h.c.

)]
. (2.9)

This is the free fermion representation of the XX model. The spins are now represented by
fermionic particles hopping in the lattice with a energy cost equal to the coupling. The
mapping between spins and fermions is given by

Szi = c†ici −
1
2 . (2.10)

Therefore, according to Eq. 2.10, if the action of the number operator c†ici in the i-th site
gives one, there is a spin up in the z-direction in that site (〈Szi 〉 = 1/2), while if the result
is zero there is a spin down (〈Szi 〉 = −1/2).
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The problem now is to find the eigenvalues and eigenvectors of Eq. 2.9. For the clean
case (Ji = J) this can be done exactly via a Fourier transform on the fermionic operators
in Eq. 2.9, whereas the disordered case requires a numerical routine. The advantage of the
free fermion representation for the disordered model is that it reduces significantly the size
of the matrix to be diagonalized — from a 2L × 2L to a L× L matrix — and, therefore,
requires much less computational effort.

Nevertheless, there are some interesting properties of the Hamiltonian that are
regardless of the couplings nature. For instance, as it is shown in Appendix A, the spectrum
of H is symmetric, i.e. there are L/2 positive and negative eigenvalues (recall that L is
always even) such that λi = −λL+1−i, where λi is the i-th eigenvalue and the spectrum is
in ascending order (λ1 < λ2 < · · · < λL).

The ground state |GS〉 is obtained by filling the vacuum |0〉 with quasiparticles
whose energy is below the Fermi level, which is µ = 0. Therefore, since half of the
eigenvalues are negative, the ground state is

|GS〉 =
L/2∏
i=1

η†i |0〉 , (2.11)

where η†i is the i-th fermionic creation operator in the momentum space (see Appendix A).
The ground-state energy E0 is equal to the sum of all negative eigenvalues, i.e. E0 = ∑L

2
i=1 λi.

Furthermore, it is shown in Appendix A that 〈GS| c†ici |GS〉 =
〈
c†ici

〉
= 1/2, which yields

〈Szi 〉 = 0. The spin average for the other directions is also zero, because Sxi and Syi are
written as linear combinations of S±i and

〈
S±i
〉

= 0, since these operators do not preserve
the number of particles. Thus, there is no magnetization in the ground state of the XX
model, even though the temperature is zero. Those spin fluctuations are, thereby, caused
uniquely by quantum effects.

2.2 The dimer phase transition and the effects of disorder

The seminal work that provided the solution of the XX model by mapping to free
fermions also shows that the spin-spin correlation function scales as a power law. (27)
The power-law scaling of the correlation function is a signature of a critical system. Thus,
this result indicate that the XX model is critical. Indeed, the condition for criticality is
guaranteed whenever (28)

L
2∏
i=1

J2i−1 =
L
2∏
i=1

J2i. (2.12)
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Figure 1 – Phase diagram of the XX model. The order parameter m is defined in Eq. 3.12.

Source: By the author.

It is clear that this criterion is fulfilled for the clean chain and for the XXCD model,
since the former has constant coupling and the latter has J2i = J2i−1. Conversely, for the
uncorrelated random chain one can choose a probability distribution that still satisfies
Eq. 2.12.

Using Eq. 2.12 one can define the distance from criticality as

θ = ln


(∏L

2
i=1 J2i−1

)
(∏L

2
i=1 J2i

)
 . (2.13)

According to Eq. 2.13, the system is driven out of criticality if the values of the odd or
even couplings are changed. Multiplying the even couplings by a constant a, Eq. 2.12 gives,
for the clean chain and for the XXCD model,

θ = ln (a) . (2.14)

For a→ 0 the even couplings vanish, yielding the formation of dimers in the odd sublattice.
Similarly, if a� 1 the interactions from the odd sublattice are negligible, which results
in dimers in the even sublattice (see the phase diagram in Fig. 1.). Hence, there are two
ordered phases in the phase diagram of the XX model which are called as the odd-dimer
and even-dimer phases. The critical exponents can be found in either of the ordered phases
for θ close to zero. Thus, expanding Eq. 2.14 for a close to one gives

θ ≈ 1− a. (2.15)

Here it is chosen the odd-dimer phase to make the measurements, i.e. a < 1.

With the distance from criticality defined, one can now ask about the effects of
disorder under the phase transition (PT) of the XX model. The most fundamental question
would be if the PT occurs at all after introducing randomness. It has been already shown
that disordered systems can indeed undergo a PT, but in early studies it was believed that
randomness would eventually destroy the transition. To understand this concern, let the
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uncorrelated random XX chain be divided in subsystems of equal size. Since the couplings
are random, each subsystem could have its own distance from criticality θ and it was not
known how to evaluate θ for the bulk system. This is the reason why random couplings
are known as the random-TC disorder.

This same argument, however, was used later to deduce a criterion that determines
whether disorder is relevant to the PT of a system, as it is shown in the following. Suppose
that a d-dimensional spin chain has a bulk nonzero θ and a corresponding correlation
length ξ. This chain is divided in n subsystems of size ξd. One can calculate the average
distance from criticality θ and also its standard deviation ∆θ. According to the central
limit theorem, the standard deviation scales as ∆θ ∼ ξ

−d
2 . Dividing this relation by θ and

using that ξ ∼ θ−ν , where ν is the clean correlation length exponent, one finds

∆θ
θ
∼ ξ

−d
2 + 1

ν . (2.16)

For consistency of the clean criticality, ∆θ/θ → 0. This is satisfied if the exponent on the
right-hand side of Eq. 2.16 is negative, since ξ →∞ at the critical point. Hence,

dν > 2. (2.17)

The expression above is known as the Harris criterion (12, 29, 30), and it gives
a necessary but not sufficient condition for preserving the clean critical behavior of a
system under the influence of disorder. When Eq. 2.17 is not fulfilled, disorder becomes
relevant and a new critical behavior emerges. There are two known possibilities for this new
behavior, namely the finite-disorder critical point (FDCP) and the infinite-randomness
critical point (IRCP). The former changes the universality class of the clean critical
point (CCP), yielding new critical exponent values. Conversely, the difference between the
IRCP and the CCP is more significant: The usual power-law scaling of some quantities is
replaced with an exponential scaling, i.e. the scaling becomes activated. An example of
such activated scaling in the IRCP is the relation between the relaxation time and the
correlation length. (12)

Notice that any amount of disorder affects the PT of the XX model, since dν = 1.
Indeed, it was observed that under uncorrelated disorder this system exhibit the so-called
activated scaling, which is a characteristic of the IRCP. (5, 23) Another property of those
random critical points is that the observables are not self-averaging at criticality. (31–34)
This means that the width of an observable distribution either stays constant (FDCP)
or increases (IRCP) under coarse-graining, i.e. as L gets bigger. The consequence of
non-self-averaging quantities is requirement of more disorder realizations as the lattice
size increases.

The surprising result of the XXCD model is that the CCP is preserved for weak
disorder, even though the Harris criterion is not fulfilled. The criterion, however, should be
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rewritten to consider the correlation between couplings. Assuming that there is a spatial
correlation between the couplings Ji and Jj that decays with the distance r = |j − i| as a
power law with exponent b > 0, Eq. 2.17 is thus rewritten as (35)

min {d, b} ν > 2. (2.18)

Nonetheless, for the case studied here the correlation is irrelevant to the criterion, since to
obtain J2i−1 correlated only with its right neighbor one must have b→∞.

This contradiction between the Harris criterion and the behavior observed for the
XXCD model does not indicate that the former is wrong. Rather, the criterion is not
applicable to the XXCD model because of the way it is constructed. Making J2i = J2i−1

removes the random-TC property of the system, which was the starting point in the
deduction of Eq. 2.17. Therefore, using the Harris criterion to evaluate the XXCD model
is a fallacy. Furthermore, other apparent violations of the Harris criterion have already
been reported. (36)

2.3 The correlated disorder case

The Hamiltonian of the XXCD model in the free fermion basis with periodic
boundary conditions is

H =
L
2−1∑
i=1

[
Ji
(
c†2i−1c2i + ac†2ic2i+1 + h.c.

)]
+JL

2

[(
c†L−1cL + h.c.

)
+ a (−1)N+1

(
c†Lc1 + h.c.

)]
,

(2.19)
or in the matrix form

H =



0 J1 0 · · · 0 (−1)N+1 aJL
2

J1 0 aJ1 · · · 0 0
0 aJ1 0 . . . ... ...
... ... ... . . .
0 0 · · · 0 JL

2

(−1)N+1 aJL
2

0 · · · JL
2

0


. (2.20)

This chain is depicted in Fig. 2. The couplings Ji are generated by a pseudo-random
numerical routine with a uniform distribution bounded between zero and one. The default
distribution can be modified by taking the D-th power of the given random number, which
yields a new parameterized probability density function

P (J) = 1
D
J

1
D
−1, (2.21)
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Figure 2 – Schematic picture of the XX model under correlated disorder.

Source: By the author.

where D is the so-called disorder strength.

Using Eq. 2.21 one can show that the ratio between the standard deviation σJ and
the average 〈J〉 of the couplings is

σJ
〈J〉

= D√
2D + 1

. (2.22)

Since the ratio σJ/ 〈J〉 increases monotonically with D, this definition of disorder strength
is a reasonable one. Such definition, though, is not unique. One could choose, for instance,
a truncated Gaussian distribution with fixed average and define disorder strength as the
variation of the standard deviation. The distribution in Eq. 2.21 is preferred because it
allows to investigate the effects of relatively strong disorder. Besides, it gives smooth
curves for the critical exponents as a function of D, as shown in the next chapter.

For disordered systems each observable must be averaged over various disorder
realizations. To obtain a reliable statistics, it is considered here at least 103 disorder
realizations. Each one of them represents a unique Hamiltonian with a given set of
couplings. The Hamiltonian is diagonalized through a LAPACK subroutine and, with
the eigenvalues and eigenvectors in hand, one should be able to compute the observables.
When the observable requires some algebra to find the final expression, the procedure is
shown in the appendices.

Some quantities of interest may take a considerable amount of time to give a reliable
precision. Thus, to reduce this computation time one can diagonalize H2 instead of H.
With this trick the problem changes to diagonalizing two L/2 × L/2 matrices instead
of one L× L matrix. Taking the square of Eq. 2.20 and making the following change of
basis {|1〉 , |2〉 , |3〉 , · · · , |L− 1〉 , |L〉} → {|1〉 , |3〉 , |5〉 , · · · , |L− 1〉 , |2〉 , |4〉 , |6〉 , · · · , |L〉},
where |i〉 represents the i-th site, gives a block diagonal matrix. The upper left block H2

odd

corresponds to fermions hopping in the odd lattice, and it is given by

H2
odd =



J2
1 +

(
aJL

2

)2
aJ2

1 0 · · · (−1)N+1 aJ2
L
2

aJ2
1 J2

2 + (aJ1)2 aJ2
2 · · · 0

0 aJ2
2

. . . . . .
... · · · . . . J2

L
2−1 +

(
aJL

2−2

)2
aJ2

L
2−1

(−1)N+1 aJ2
L
2

· · · aJ2
L
2−1 J2

L
2

+
(
aJL

2−1

)2


,

(2.23)



24 Chapter 2. The XX model

while the matrix for fermions hopping in the even lattice is

H2
even =



J2
1 (1 + a2) aJ1J2 0 · · · (−1)N+1 aJL

2
J1

aJ1J2 J2
2 (1 + a2) aJ2J3 · · · 0

0 aJ2J3
. . . . . .

... · · · . . . J2
L
2−1 (1 + a2) aJL

2−1JL2
(−1)N+1 aJL

2
J1 · · · aJL

2−1JL2
J2
L
2

(1 + a2)


.

(2.24)
The (L/2 + i)-th eigenvalue of H is equal to the square root of the i-th eigenvalue of either
H2
odd or H2

even. The eigenvectors of the original Hamiltonian can also be retrieved, as it is
shown in Appendix A.

However, despite the reduction of computation time, one should be considerate while
calculating observables from the eigenvalues or eigenvectors of the squared Hamiltonian.
As it is discussed in Appendix B, the precision of this method is only reliable for D ≤ 2.0.
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3 Critical exponents of the XX model with correlated
disorder

This chapter gives the full set of critical exponents, namely {α, β, γ, δ, η, ν}, of the
XXCD model. The chapter is divided in two sections, one for the system at the critical
point (a = 1) and the other for the system out of criticality (a 6= 1). In each section the
quantities of interest are calculated for various disorder strengths D. The corresponding
critical exponents are determined via linear regression and are usually shown as a function
of D. Furthermore, the four scaling relations between the exponents are investigated and
it is shown that two of them are only satisfied for the clean system (D = 0), while the
other two still hold for D > 0.

3.1 Exponents at criticality

At criticality there is the correlation function exponent η to be determined; the
other critical exponents are found exclusively out of criticality. Besides η, here are also
determined the so-called critical dynamical exponent z and two thermodynamic exponents
αT and γT which are related to the specific heat and the magnetic susceptibility, respectively.
The thermodynamic quantities are shown in the first part of this section, whereas the
second one is dedicated to correlation function calculations.

It is important to remark, though, that in general the observables for a disordered
system are averages and, therefore, have an associated error. Here, however, the error
bars are not shown for simplicity, mostly because they are about the size of the points.
Moreover, the errors of the critical exponents given by the fitting method are also neglected,
since they may not represent the actual uncertainty. Instead, it is considered an a priori
absolute error in the order of 10−2 for every critical exponent, which is the usual precision
in studies of critical behavior.
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3.1.1 Dynamical and thermodynamic exponents

The first exponent evaluated here is the critical dynamical exponent z. This exponent
establishes an interplay between the relaxation time ξτ and the correlation length ξ by the
relation ξτ ∼ ξz. To determine z without considering the temporal evolution of the system,
one can replace the typical time scale ξτ with the inverse of the typical energy scale, i.e.
ξτ ∼ ∆−1, where ∆ is the gap energy. Moreover, the finiteness of the system prevents the
divergence of the correlation length at criticality. Thus, according to finite-size scaling
methods (37,38), one can replace ξ by the lattice size L, which yields

∆ ∼ L−z. (3.1)

The gap ∆ in the equation above is defined as the energy difference between the first
excited state |ψ1〉 and the ground state |GS〉. The first excited state is built by creating
the lowest-energy particle above the Fermi level, i.e.

|ψ1〉 = η†L
2 +1 |GS〉 . (3.2)

Notice that the additional fermion changes the sign of the boundary term in the Hamil-
tonian. Thus, for each disorder realization one must diagonalize two matrices, one for
N = L/2 and another for N = L/2 + 1. Denoting the i-th eigenvalue of the former and
the latter matrices as λi and λ′i, respectively, the gap energy is, thereby,

∆ =
L
2−1∑
i=1

λ′i −
L
2∑
i=1

λi. (3.3)

Fig. 3 shows the plot of ∆ vs. L for various disorder strengths D. The correlated
disorder case is also compared to the uncorrelated one. Notice that the curves of the former
respect the power-law scaling and have a disorder varying slope, while the curves of the
latter start to bend as L increases. The bending is a signature of the activated scaling,
which is a known feature of the IRCP. For D = 0.1 this behavior cannot be observed
because L is much smaller than the so-called crossover length ξC ; only for L � ξC the
true scaling behavior of the system is achieved.

From Fig. 3 it is clear that exists a disorder-dependent crossover length for the
uncorrelated chain. Indeed, previous studies show this crossover for other quantities of
interest. (39, 40) Conversely, it turns out that for the XXCD model there is no such
crossover length, as indicated by renormalization group studies. (41) The proof of this
statement, however, is beyond the scope of the present work.

The curves slope in Fig. 3 correspond to the critical dynamical exponent, which is
shown as a function of disorder strength in Fig. 4∗. From this figure one can notice that
∗The plot of z vs. D has already been reported (9), but here a wider disorder range was considered.



3.1. Exponents at criticality 27

10
1

10
2

L

10
-6

10
-4

10
-2

10
0

∆
clean
D=0.1
D=0.5
D=1.0
D=2.0
D=3.0

10
1

10
2

L

10
-6

10
-4

10
-2

10
0

∆

D=0.1 (uncorr)
D=0.5 (uncorr)
D=1.0 (uncorr)

Figure 3 – Gap energy ∆ vs. the chain size L for several disorder strengths D. For D ≤ 1.0 it is also shown
the gap for the uncorrelated (uncorr) case. The data points were averaged until its relative
error was about 1%. The black dashed line corresponds to the clean system. The colored lines
are guide to the eyes.

Source: By the author.

the CCP is preserved up to a critical disorder DC ≈ 0.3. For stronger disorder (D > DC)
the system falls into a line of FDCPs, where the critical dynamical exponent z grows
linearly with D. Moreover, one can compare the two sets of data points and observe that
they approach the line z = D + 1/2 as the exponent is fitted from larger chains. This line,
however, was not predicted theoretically; it is rather an observation.

Besides the critical dynamical exponent, one can also evaluate the exponents of
the specific heat C and the magnetic susceptibility χ. These quantities are defined as
derivatives of the free energy. Thus, one must consider finite temperature to use statistical
mechanics methods and compute the partition function and, consequently, the free energy
(for more details see Appendix C). After some algebra one can find the following expressions

C = 1
2T 2L

L
2∑
i=1

λ2
i cosh−2

(
λi
2T

)
, (3.4)

χ = − 1
2TL

L
2∑
i=1

cosh−2
(
λi
2T

)
. (3.5)

It is expected that the thermodynamic quantities above exhibit a power-law behavior
with respect to the temperature T , i.e. C ∼ TαT and χ ∼ T γT at criticality. Fig. 5 shows
a plot of the specific heat vs. the temperature for the clean system and various lattice
sizes. Notice that there is a region where the power-law scaling is violated. This region
corresponds to temperature values that are smaller than the finite-size gap. Thus, since the
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gap is inversely proportional to L, the range of temperature where the power-law scaling
is observed is wider for larger chains, as one can verify in Fig. 5. Furthermore, T should
not get large enough to the point where the thermal fluctuations overcome the quantum
ones and the quantum critical behavior is lost. Therefore, one must assure that the fitting
region fulfills ∆ < T < 1.

Setting L = 212 and T = e−x, with x integer and x ∈ [2, 6], the specific heat and
the magnetic susceptibility were computed for various disorder strengths, averaging over
104 disorder realizations. The respective exponents αT and γT were fitted from the data.
Fig. 6 shows those exponents plotted as a function of disorder strength D. Notice that
αT and γT are related with the critical dynamical exponent z according to the following
expressions

z = 1
αT

, (3.6)

and

z = 1
γT + 1 . (3.7)

This is in agreement with the results of the renormalization group methods introduced in
Ref. (41).
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3.1.2 Spin-spin and dimer-dimer correlation functions

The spin-spin correlation function in the α-direction is defined as

Gα (r) =
〈
Sαi S

α
j

〉
− 〈Sαi 〉

〈
Sαj
〉
, (3.8)

where r = |j − i| is the distance between spins. It was discussed in Chapter 2 that the
single-operator average vanishes, i.e. 〈Sαi 〉 = 0, which leaves only the double-operator
average

〈
Sαi S

α
j

〉
to be determined. Appendix D outlines the procedure to compute

〈
Sαi S

α
j

〉
for the longitudinal (α = z) and transverse (α = x) components. Here the y-component is
equivalent to x one, since the system is invariant under a rotation of π/2 about the z-axis.

It is known that the correlation function scales as

Gα (r) ∼ r−aα exp
(
−r
ξ

)
, (3.9)

where · · · represents the average†. Thus, since the correlation length diverges at criticality,
i.e. ξ →∞, Gα (r) should scale as a power law. Fig. 7 shows the x and z-components of the
spin-spin correlation function for various disorder strengths D and chain size L = 1024. The
data were averaged over 103 disorder realizations. Taking the absolute value is necessary to
show the log-log plot, since Gα (r) has negative values. Notice that the power-law scaling
is respected for the longitudinal and transverse components. The curves of the former,
however, do not change significantly as disorder gets stronger, but for the latter the slope
is clearly disorder dependent.

Fig. 7 also compares the average correlation to the typical one Gα
typ (r), which is

defined as
Gα
typ (r) = exp

[
lnGα (r)

]
. (3.10)

Comparing the average and typical correlations may provide a further understanding about
the random critical point. For instance, it has been observed that for a system in an FDCP
the average and typical correlations display similar behaviors, whereas for the IRCP those
quantities behave differently from each other. (42) Indeed, for the uncorrelated disorder
case it has been shown that Gα

typ (r) scales exponentially instead of the power-law scaling
of the average correlation. (23) Thus, the purpose of computing the typical correlation of
the XXCD model is to contrast with the known results for the uncorrelated disorder case.

From the plot of Fig. 7, and within the region 1� r � L, one can also determine
the critical exponent aα for each of the correlation functions. Fig. 8 shows aα vs. the
disorder strength D for α = x and α = z. Notice that the former is different than the latter,
which is in agreement with the results for the clean chain. Conversely, for the uncorrelated
†For simplicity, hereafter the average symbol · · · is dropped, but recall that for random systems all
measurements are averages.
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Figure 7 – Average and typical (typ) spin-spin correlation function for various disorder strengths D and
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disorder case it has been shown that ax = az, regardless of D. (40) Furthermore, for
the transverse component, the exponent of the average correlation grows with D in a
similar fashion as the exponent of the typical one. For the longitudinal component, though,
az = 2.0 for every value of D, whereas the exponent of the typical correlation grows
linearly with disorder for D > DC .

Knowing the correlation function exponent aα allows one to determine the critical
exponent η. However, for the XX model in general (i.e. for the clean and random cases) one
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should not evaluate η from the spin-spin correlation function. The actual exponent must
come from the correlation function of the operator that gives the order parameter of the
model. For instance, the sum of the spin operator Si over the chain gives the magnetization.
This quantity, though, is not a suitable order parameter for the XX model, since it is equal
to zero in the ordered phase.

Therefore, one must define another operator that yields a valid order parameter for
the XX model. Here it is chosen the so-called dimer operator Mi, which is defined as

Mi ≡ −
(
Sx2i−1S

x
2i + Sy2i−1S

y
2i

)
+
(
Sx2iS

x
2i+1 + Sy2iS

y
2i+1

)
. (3.11)

The index i represents the i-th dimer of the chain. One can check for the clean chain
that 〈Mi〉 = 0 at criticality and 〈Mi〉 6= 0 in the ordered phase. The corresponding order
parameter m of the dimer operator is defined as the average over the lattice of the dimer
operator Mi, i.e.

m = 2
L

L
2∑
i=1
〈Mi〉 . (3.12)

It is important to remark, though, that the choice of the order parameter for a model
may not be unique; the only requirement is that it must be zero at the critical point and
nonzero out of criticality. For the XX model, for example, it has also been proposed the
so-called string order parameter. (42–44)

With the definition of the dimer operator in Eq. 3.11, one can now compute the
dimer-dimer correlation function Gdd (r), which is given by

Gdd (r) = 〈MiMj〉 − 〈Mi〉 〈Mj〉 . (3.13)

Fig. 9 shows the typical and average Gdd (r) for various disorder strengths D and lattice
size L = 1024. The samples were averaged over 104 disorder realizations. Notice that
for weak disorder (D < DC) the typical correlation coincides with the average one. As
disorder increases, though, the slope of the former varies more rapidly. This can be verified
in Fig. 10, which gives the plot of the exponents add as a function of D for the average
and typical correlations.

3.2 Exponents at the dimer phase (out of criticality)

Similarly to the previous section, this one is divided in two parts. The first part is
dedicated to the thermodynamic quantities, while the second one provides the study of
the correlation function. In the first part the thermodynamic critical exponents, namely
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{α, β, γ, δ}, are determined and the respective scaling relations are tested. The last critical
exponent ν is determined in the second part, where the other two scaling relations are
also investigated.

3.2.1 Thermodynamic exponents

Before discussing the quantities that give the remaining critical exponents, it is
investigated here what happens to the gap energy ∆ when the system is driven out of
criticality. It has been already reported that for clean half-integer spin chains the gap is
closed (∆ = 0) at criticality and it begins to open as the system is driven out of the critical
point. (45,46) The numerical results from the previous section show that the finite-size gap
of the clean and correlated-random chains exhibit a power-law decay with the chain size
L, i.e. ∆ ∼ L−z. Thus, at the thermodynamic limit (L→∞) both systems are gapless.
However, it is shown in the following that in the ordered (dimer) phase the XXCD model
behaves differently from the clean chain; the gap is still closed out of criticality.

Fig. 11 shows the gap ∆ plotted as a function of θ for various lattice sizes and two
values of disorder strength. Plotting an observable for various L allows one to determine
whether the displayed behavior represents the one expected at the thermodynamic limit.
For instance, if the separation between curves for a fixed D diminishes as L increases
one may conclude that the observed behavior is correct. This is clearly not the case for
D = 1.0, where the separation between curves remains approximately constant. Thus,
the gap in Fig. 11 for D = 1.0 is due to finite-size effects; for a sufficiently large chain
the system is gapless. However, for D = 0.1 one cannot derive the same conclusion by
analyzing Fig. 11 alone.

The reason why the gap is indeed closed even for every value of D is that the
introduction of randomness provides a nonzero probability of existing a region of size l
where the couplings are small. The probability of finding such region increases with lattice
size L and disorder strength D. Furthermore, this region of small couplings will dominate
the behavior of the system only if it is much larger than the characteristic scale of the
system, i.e. l� ξ. One can test this statement with the following model: the clean chain
is divided in two complementary parts, A and B of sizes l and L− l, respectively. For the
subsystem A the constant coupling is defined as JA = 0.1, while for the subsystem B the
coupling is JB = 1. The gap energy ∆ is thus calculated for various l.

Fig. 12 shows ∆ vs. l for three distances from criticality. Notice that, as expected,
there is a transient behavior where the ratio ∆/θ approaches JB as ξ � l and JA as
l� ξ. The inset of Fig. 12 shows the average minimum coupling Jmin, evaluated from 105
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disorder realizations, vs. the chain size L for three disorder strengths. Observe that Jmin
decays with an exponent equal to D. Thus, neglecting the disorder dependent prefactor,
to get a Jmin for D = 0.1 close to the one obtained for D = 1.0 one should consider a
lattice L10 times larger. Therefore, one can conclude that the XXCD model is also gapless
in the ordered phase regardless of disorder strength; the gap in Fig. 11 is due to finite-size
effects. This conclusion can be extended for every random spin-1/2 chain with a probability
distribution that allows couplings close enough to zero.

After discussing what happens to the gap energy out of criticality, the focus returns
to determining the critical exponents. The first one evaluated here is α, which is related
to the specific heat. Differently from the previous section, the exponent is now determined
by varying θ and setting T = 0. However, the problem is how one can compute specific
heat without temperature, since this quantity is defined as the derivative of the internal
energy with respect to T .

Using the statistical mechanics definition of C, one can make an analogy and define
a specific heat C ′ for QPTs. For instance, at T = 0 the ensemble-averaged (internal) energy
corresponds to the ground-state energy E0. Furthermore, for the XX model the constant a
is the parameter that has the same role of temperature for classical transitions. Thus, C ′

can be defined as
C ′ = ∂E0

∂θ
, (3.14)

where it was used that dθ = da. Since the derivative in Eq. 3.14 cannot be calculated
analytically, one must consider methods of numerical differentiation.



3.2. Exponents at the dimer phase (out of criticality) 37

10
-3

10
-2

10
-1

l
-1

0.2

0.4

0.6

0.8

1

∆
 /

 θ

θ=2
-6

θ=2
-7

θ=2
-8

-7 -6 -5

-ln L

-6

-4

-2

0

ln
 J
m
in

L=2
12

a
1.0

= 0.99

a
0.5

= 0.50

a
0.1

= 0.10

Figure 12 – Gap energy ∆ of the clean chain divided in two subsystem A and B of sizes l and L − l,
respectively. The former has couplings JA = 0.1, whereas the latter has couplings JB = 1.0.
The gap energy ∆ is plotted as a function of l for various distances from criticality θ. The
lines are guide to the eyes. Inset: Average minimum coupling Jmin vs. the chain size L for
three disorder strengths D, averaged over 105 disorder realizations. The black lines are the
best fit with respective exponent aD.

Source: By the author.

Fig. 13 shows the plot of C ′ as a function of θ for various disorder strengths D.
The ground-state energy E0 was computed for θ = 2−x, with x integer and x ∈ [2, 9], and
averaged over 105 disorder realizations. The plot of E0 vs. θ was interpolated using a cubic
spline, giving 12 equally spaced points. The data from Fig. 13 correspond to the centered
differentiation of the interpolated lines. Notice that C ′ becomes smaller as disorder is
increased.

Moreover, it is possible to affirm from Fig. 13 that all curves are consistent with an
exponent α = 0, even though the rule of thumb for determining critical exponents was not
respected. This rule states that one should consider at least three orders of magnitude
for θ to obtain a reliable estimate for the exponent. One can notice, however, that the
curves tend to a constant as they approach criticality. Thus, to consider smaller θ the
number of disorder realizations should increase to guarantee that a given point does not
have a greater E0 than another one to its right side. If, however, the ground-state energy
is calculated with a poor statistics, the numerical differentiation may provide misleading
results.

The next critical exponent evaluated is γ, which describes the scaling of the
susceptibility χ with respect to θ. The susceptibility can be calculated from the dimer-
dimer correlation function Gdd (r). According to the fluctuation-dissipation theorem (18),
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the susceptibility is proportional to the sum of the Gdd (r) over the distance r, i.e.

χ ∝
L
4∑

r=1
Gdd (r) . (3.15)

Fig. 14 shows the susceptibility χ vs. the distance from criticality θ for several disorder
strengths D. The susceptibility was calculated from Gdd (r) averaged over 103 disorder
realizations and for chain size L = 512. Notice that χ behaves similar to C ′; it tends to
a constant as θ gets closer to zero. Thus, one can conclude once again that the data are
consistent with a critical exponent γ = 0.

The last thermodynamic quantity to be evaluated is the order parameter m, as
defined in Eq. 3.12. It is important to remark that the dimer operator calculated out
of criticality exhibits an unexpected behavior. Fig. 15 shows the dimer operator Mi vs.
its respective position i for various disorder strengths D and chain size L = 128. Notice
that there are some points where Mi < 0; i.e. they are at even dimer phase. This was not
expected to occur for the XXCD model, since the correlation between couplings followed
by the dimerization should assure that the odd sublattice had stronger couplings than the
even one. Thus, Mi should be positive all over the chain. Indeed, one can verify this for
the clean chain.

The introduction of randomness in the chain apparently creates a collective effect
that allows the existence of negative values of Mi. Nonetheless, one can observe in Fig. 15
that the density of points above the dashed line is greater than below. If, however, the



3.2. Exponents at the dimer phase (out of criticality) 39

10
-3

10
-2

10
-1

θ

0.15

0.2

0.25

χ

clean

D=0.1

D=0.5

D=1.0

D=1.5

L=512

Figure 14 – Susceptibility χ vs. the distance from criticality θ for several disorder strengths D. Here the
susceptibility is the sum of the dimer-dimer correlation function Gdd (r) over the distance r.
Gdd (r) was computed for chain size L = 512 and averaged over 103 disorder realizations. The
lines are guide to eyes.

Source: By the author.

number of positive and negative points were equal to each other, the order parameter m
would be zero and the system would be at the critical point.

For systems under random-TC disorder, such as the uncorrelated random XX model,
there is a nonzero probability of finding a relatively large region that is in a different phase
than the bulk system. (47–49) These are known as rare regions and they usually dominate
the behavior of the phase transition. (12,50) However, even though Fig. 15 shows dimers
at opposite phases, these rare regions are fundamentally different and do not play an
important role at the QPT.

From the order parameter defined in Eq. 3.12 one can determine two critical
exponents, viz. β and δ. To find the former the procedure is the same as before; i.e.
plotting m vs. θ. Conversely, to find the other exponent the distance from criticality is
fixed at θ = 0 and the order parameter is plotted as a function of the so-called conjugate
field B. The introduction of this field leads to a new Hamiltonian H ′, which is given by

H ′ = H −B
L
2∑
i=1

Mi,

=
L
2∑
i=1

(Ji +B)
(
Sx2i−1S

x
2i + Sy2i−1S

y
2i

)
+ (Ji −B)

(
Sx2iS

x
2i+1 + Sy2iS

y
2i+1

)
, (3.16)

where B > 0. Thus, one just need to replace the odd and even couplings by (Ji +B) and
(Ji −B), respectively.

Fig. 16 shows the order parameter m vs. the distance from criticality θ and the
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Table 1 – The critical exponents β and δ fitted from Fig. 16 for several disorder strengths D.

Exponent D = 0.1 D = 0.5 D = 1.0 D = 1.5
β 0.99 0.99 1.00 1.00
δ 1.00 1.00 1.01 1.09

Source: By the author.

conjugate field for various disorder strengths and lattice size L = 512. The data were
averaged over 105 disorder realizations. The curves are compared to a dashed line with
slope equal to clean exponent values, i.e. β = 1.0 and 1/δ = 1.0. Notice that the curves
tend to become parallel to the dashed line as θ decreases. Table 1 gives the fitted exponent
values for each disorder strength. The fitting region corresponds to the four leftmost points.
Observe that only for D = 1.5 the δ exponent is relatively apart from the clean value; the
others are in good agreement. Thus, to find a slope closer to unity one should consider
smaller values of B.

From the results shown in this section, one can reasonably assume that for the
XXCD model the four thermodynamic critical exponents remain equal to the clean value
as disorder is introduced. Furthermore, one can substitute α = γ = 0 and β = δ = 1.0 in
the following scaling relations

2− α = 2β + γ, (3.17)

2− α = β (δ + 1) , (3.18)

and check that they are indeed respected. However, one cannot assert from numerical
results alone that the critical exponents are indeed disorder independent; other theoretical
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Source: By the author.

methods are required to prove the independence with respect to D. Nevertheless, it is
rather unreasonable to believe that there may exists a disorder value above D = 1.5 from
which the behavior of the system suddenly changes.

3.2.2 Spin-spin and dimer-dimer correlation functions

The last critical exponent to be determined is ν which describes the scaling of the
correlation length ξ, i.e. ξ ∼ θ−ν . Thus, according to Eq. 3.9, one can find the correlation
length from the linear regression of the logarithmic of the correlation function. Fig. 17
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and Fig. 18 show, respectively, the spin-spin and dimer-dimer correlation functions for
several distances from criticality θ. Notice that for all correlation functions the behavior
of the disordered chain with D = 1.0 (continuous lines) is similar to clean one (dot-dashed
lines), which suggests that the correlation length exponent ν is disorder independent.

One can determine the critical exponent from the plot of ξ vs. θ. The correlation
length can be fitted from Fig. 17 and Fig. 18 in the region where the curves are linear.
However, notice that for θ = e−5 this linear behavior is not clear. This occurs when
the correlation length is much larger than the lattice size (i.e. ξ � L) and the system
is essentially at criticality and the power-law behavior dominates. Therefore, for the
considered chain size (L = 211) there are only three points available to fit the exponent
ν, which gives only one order of magnitude (e−2–e−4) in the range of θ. Nonetheless, one
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Table 2 – Critical exponent να and the correlation function exponent at criticality aα for various disorder
strengths D.

x spin-spin: νx, ax z spin-spin: νz, az dimer-dimer: νdd, add
clean(D = 0) 1.00(2), 0.50 1.00(2), 2.00 0.96(4), 2.00
D = 0.5 0.99(2), 0.55 1.00(2), 2.01 0.96(4), 2.15
D = 1.0 0.99(2), 0.66 1.00(2), 1.99 0.95(4), 2.48
D = 1.5 0.99(3), 0.75 1.00(2), 1.99 0.97(3), 2.70

Source: By the author.

can get a rough estimate of the exponent from just three points. If more data are desired
one should consider larger chains, which may increase significantly the computation time
required and, consequently, become unpractical.

Table 2 shows the fitted exponent ν for the spin-spin and dimer-dimer correlation
functions, for various disorder strengths D. Notice that ν is indeed disorder independent,
within the given error, for every correlation function. Furthermore, even though it is not
possible to know the exact exponent value, one can conclude that ν is close to unity for
the dimer-dimer correlation function, regardless of disorder strength. For the spin-spin
correlations, ν = 1 corresponds to clean chain exponent value, which can be determined
exactly.

To check whether ν = 1 is a good estimate for the critical exponent one can observe
if the data shown in Fig. 17 and Fig. 18 collapse into a single universal function. One
can determine this function from the scaling hypothesis, which states that the correlation
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function Gα (r) is homogeneous with respect to its parameters (18,19), i.e.

λGα (r, θ) = Gα
(
λar, λbθ

)
, (3.19)

where λ, a and b are constants to be determined.

The first step is to eliminate the dependency on θ, which is achieved by making
λbθ = 1, yielding thereby

θ−
1
bGα (r, θ) = Gα

(
rθ−

a
b , 1

)
. (3.20)

It is also desired that the universal scaling Φ depends only in the parameter x = r/ξ,
such that Φ (x) comprises the two limiting cases, namely the power-law (x → 0) and
exponential (x→∞) behaviors. Thus, since ξ ∼ θ−ν one can find that a/b = −ν, which
gives

Gα (r, θ) = θ
1
bΦ (rθν) . (3.21)

Furthermore, using that Φ (x) ∼ x−aα and Gα (r, θ) ∼ r−aα in the limit x → 0, one can
find that 1/b = aαν. Therefore, the universal scaling function is

Φ (rθν) = Gα (r, θ)
θνaα

. (3.22)

Fig. 19 and Fig. 20 show Φ (x) for the spin-spin and dimer-dimer correlations,
respectively, for the clean and disordered chains with D = 0.1 and D = 0.5. The distance
r was replaced with the so-called chord length r′, which is defined as

r′ = L

π
sin

(
πr

L

)
. (3.23)

The chord length is the natural finite-size length of the clean critical chain. Here it is
assumed that this correction is also valid for the XXCD model. Indeed, Chapter 4 shows
that this correction is satisfactory for the disordered chain. The chord length is employed
to minimize finite-size effects, such as the curve bending in its rightmost end (see, for
example, Fig. 17 and Fig. 18). Furthermore, to guarantee that all curves end in the same
point it is fixed Lθ = 16.

Notice from Fig. 19 and Fig. 20 that the collapse fails for r′θ < 1, except for the
longitudinal spin-spin correlation. The reason of this failure can be the neglected further
corrections of the power-law scaling. For instance, to obtain a more accurate exponent one
should consider

Gα (r) ∝ 1
raα

(
1 + 1

rbα

)
, (3.24)

or even more corrections. This is generally true for every quantity that exhibits power-law
scaling. Conversely, the z spin-spin correlation shows a good collapse because it is known
that for the clean chain the scaling is exactly

Gz (r′) = − 1
(πr′)2 , (3.25)
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Figure 19 – Scaling of the x and z-component spin-spin correlation functions for various distances from
criticality θ and disorder strengths D. The input exponent values ax and az are shown in
Table 2.

Source: By the author.

with r odd. Thus, since only relatively small D was considered in Fig. 19, the clean chain
scaling is sufficient. If, however, one considers stronger disorder the curves would start to
separate from each other, since disorder introduces further corrections that become more
relevant as D increases.

Nevertheless, one should observe that the points below r′θ = 1 correspond to about
6% of the chain. Thus, for the great majority of the lattice, the collapse is satisfactory for
all the correlation functions evaluated. Therefore, the results suggest that for the XXCD

model the correlation length exponent ν is disorder independent and ν = 1 is a reliable
estimate.

Finally, with an estimate of the critical exponent ν one can now check the validity
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of the other two scaling relations, viz.

γ = ν (2− η) (3.26)

and
2− α = (d+ z) ν, (3.27)

which are known as Fisher’s scaling and hyperscaling relations, respectively. The original
hyperscaling relation, though, does not include the critical dynamical exponent z. The
substitution d→ d+ z is motivated from the quantum-to-classical mapping, which states
that for a d-dimensional quantum critical system there is a classical (d+ z)-dimensional
equivalent. However, one should be concerned about this substitution, since not every
quantum critical system have a classical counterpart. Nevertheless, if the critical dynamical
exponent is not included the hyperscaling relation does not hold even for the clean chain.

Although replacing d with d+z is necessary to fulfill the scaling relations, the Harris
criterion in Eq. 2.17 does not require such replacement and the reason is the following: The
quantum-to-classical mapping introduces an imaginary time direction where the couplings
are constant instead of random. This extra direction, therefore, do not contribute to the
distribution of distances from criticality, which was the starting point in the deduction of
the criterion.

Even though it is not explicit, Eq. 3.26 also depends on the critical dynamical
exponent z, because of the relation between η and add which is given by

η = add − (d+ z) + 2. (3.28)
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Fig. 21 shows the anomalous dimension η vs. the disorder strength D. This exponent
was obtained by inserting in Eq. 3.28 the values of a1 and z from Fig. 10 and Fig. 4,
respectively. Fisher’s scaling relation would hold for every disorder strength if η = 2, since
γ = 0 and ν = 1. However, according to Fig. 21, Eq. 3.26 fails for the XXCD model with
disorder strength D > DC . One could say that the scaling relation is respected up to
D = 1.0 if there were points distributed above and below the dashed line in the region
DC ≤ D ≤ 1.0; one cannot trust, though, the curve pattern shown in Fig. 21.

Moreover, it is clear that the hyperscaling relation in Eq. 3.27 also fails for D > DC .
The breakdown of the hyperscaling relation is a known characteristic of systems that are
above the so-called upper critical dimension d+

c . For instance, the mean-field Ising model
(which is above d+

c ) has exponents α = 0 and ν = 1/2, thereby violating Eq. 3.27.

Recently, though, it has been proposed that the hyperscaling relation for systems
with d ≥ d+

c should be rewritten as (51)

2− α = νd

q
, (3.29)

where q = d/d+
c . Notice that for Eq. 3.29 the substitution d → d + z is not important,

since d cancels out. However, for the XX model the upper critical dimension is d+
c = 3

and, consequently, Eq. 3.29 does not hold. Similarly, it has also been suggested a different
Fisher’s scaling relation for finite-size systems with d ≥ d+

c (52), but since Eq. 3.29 fails as
well this assumption of the emergence of a system with d ≥ d+

c seems rather implausible.

Another explanation that one may deliver is that Eq. 3.27 is indeed respected, but
the order parameter chosen here does not provide the actual critical exponents of the
system. Therefore, assuming that Eq. 3.27 holds and noticing that α and z are independent
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of the chosen order parameter, the actual correlation length exponent ν should give

ν = 2
z + 1 . (3.30)

Since for strong disorder z ∝ D, ν → 0 as D →∞, which is an unlikely scenario.
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4 Entanglement properties of the XX model with cor-
related disorder

This chapter provides calculations of the so-called Rényi entanglement entropy for
the XXCD model. The first section shows that the clean chain scaling function also holds
for the XXCD model (this result is published in (41)). Furthermore, the central charge is
determined and plotted as a function of disorder strength. Higher-order corrections in the
scaling of the entanglement entropy are considered in the second section.

4.1 Scaling function and the central charge

Entanglement measurements used to be a exclusive topic of quantum information
studies. Recently, however, such measurements became popular in condensed matter
physics (53, 54), mainly because it provides an insight on long-range correlations. The
most used quantity for measuring entanglement in many-body systems is the so-called
von Neumann entropy SvN . Dividing the system in two complementary parts A and B of
sizes x and L− x, respectively, SvN is thus given by

SvN = −TrρA ln ρA, (4.1)

where ρA = TrBρ is the reduced density matrix, i.e. the partial trace of the density matrix
ρ over the subsystem B.

For every 1D clean critical system it is known that the leading scaling behavior of
the entanglement entropy is logarithmic (55,56), i.e.

SvN (x) ∼ c

3 ln (x) , (4.2)

where c is the so-called central charge. Entanglement measurements became so widespread
because of their relation with the central charge, which is used for classifying the system.
For instance, it is known that the XX model belongs to the universality class with c = 1.
Recently, it has been found that the XX chain with uncorrelated disorder also exhibits a
logarithmic scaling for the entanglement entropy, similar to Eq. 4.2 but with an effective
central charge ceff = ln 2 instead. (57)

Eq. 4.2 describes well the scaling of the entanglement entropy in the limit of
large systems. For numerical studies, though, finite-size corrections are important. Such
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Figure 22 – Schematic of two spins i and j in a periodic spin chain of size L connected by the chord length
(dashed line).

Source: By the author.

corrections can be found for the clean chain using conformal field theory (CFT) methods.
Conformal invariance is the combination of rotational, translational and scale invariance.
CFT approaches are best employed for two-dimensional (2D) classical critical points, or
equivalently 1D quantum critical points.

Using CFT methods it has been found that finite-size effects diminish as one
replaces x in Eq. 4.2 with the so-called chord length (58,59)

f (x) = L

π
sin

(
πx

L

)
. (4.3)

The chord length is the line that connects two points of a circle, as Fig. 22 shows. Such
scaling function, though, is not valid for random systems, since the introduction of disorder
breaks conformal invariance. For instance, a conformally invariant model should have a
dynamical exponent z = 1. However, for the XXCD model Fig. 4 shows that z 6= 1 above
DC , while for the uncorrelated case z →∞.

Nevertheless, one can search for a scaling function for random chains by expanding
f (x) as a Fourier series, regarding periodic boundary conditions and symmetric properties.
(60) For instance, it has been found that a good approximation for the scaling function of
the uncorrelated random XX chain is

f (x) = L

π
sin

(
πx

L

) [
1 + b1 sin2

(
πx

L

)]
, (4.4)

with b1 ≈ 0.153. (61) Conversely, for the XXCD model it is shown in the following that a
satisfactory scaling function is the clean system chord length, i.e. Eq. 4.3, even for D > DC

where the necessary condition z = 1 is not obeyed.

Before showing the results for the scaling function of the XXCD model, it is outlined
the procedure to compute the entanglement entropy. Here it is investigated the so-called
Rényi n-entropies, which are defined as

Sn = 1
1− n ln (TrρnA) . (4.5)
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Notice that in the limit n→ 1 Eq. 4.5 retrieves the von Neumann entropy (Eq. 4.1).

To calculate the entanglement entropy, one must first define the so-called correlation
matrix

Ci (x) =



〈
c†ici

〉 〈
c†ici+1

〉
· · ·

〈
c†ici+x−1

〉〈
c†i+1ci

〉 〈
c†i+1ci+1

〉
· · ·

〈
c†i+1ci+x

〉
... ... . . . ...〈

c†x−1+ici
〉 〈

c†x−1+ici+1
〉
· · ·

〈
c†x−1+icx−1+i

〉

 , (4.6)

where the expectation values
〈
c†icj

〉
are calculated from the eigenvectors of the Hamiltonian

at criticality, as shown in Appendix A. Since the chain is periodic, the subsystem size x
ranges from one to L/2. For each value of x one must diagonalize Eq. 4.6 and with the
respective eigenvalues λi calculate the entanglement entropy, which is given by (62,63)

Sn (x) = 1
1− n

x∑
i=1

ln [λni + (1− λi)n] , (4.7)

and
SvN (x) = −

x∑
i=1

λi ln λi + (1− λi) ln (1− λi) (4.8)

for the von Neumann entropy (n = 1). Notice that, besides averaging over the number of
disorder realizations, one can also average the entanglement entropy over the chain by
varying the index i in Eq. 4.6.

From CFT methods it has been shown that the Rényi entanglement entropy of the
clean chain scales as (58,59)

Sn (x) = c

6

(
1 + 1

n

)
ln [f (x)] + a0 + subleading terms. (4.9)

Cancelling out the constant a0 by subtracting Sn (L/2) from Sn (x) and neglecting the
subleading terms one can find

f (x) = exp

6
c

[
Sn (x)− Sn

(
L
2

)]
(
1 + 1

n

)
 . (4.10)

Thus, one can use Eq. 4.10 to determine the scaling function. Notice, however, that an
input value for the central charge is required. This value is not known a priori for the
XXCD model, but one can consider a self-consistent approach. Such approach consists of
fitting the central charge from the entanglement entropy calculations by assuming that
the CFT scaling is valid. Then, using the fitted central charge as input in Eq. 4.10, one
can show that the data is in good agreement with the proposed scaling.

Fig. 23 shows the entanglement entropy scaling function for the XXCD model. The
data were averaged over 105 disorder realizations, using disorder strength D = 1.0 and
lattice size L = 1024. The entanglement entropy was computed for two values of n, namely
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Figure 23 – Scaling function of the Rényi entanglement entropy Sn (x) for n = 1 (black points) and n = 2
(red points), using c = 1.20 as the input central charge. The data were calculated for disorder
strength D = 1.0 and chain size L = 210, averaging over 105 disorder realizations. The green
line represents the expected scaling.

Source: GETELINA (41).

n = 1 and n = 2. Observe that the data are in good agreement with the chord length.
For instance, the inset gives a closer look on the data, and it shows that the points are
relatively close to the expected scaling. To give a quantitative estimate, the points were
fitted to Eq. 4.4 and it was obtained b1 ≈ 10−3, which is below the given precision. Thus,
for the XXCD model the expanded scaling function reduces to the chord length (Eq. 4.3)
even though conformal invariance is lost.

After determining the scaling function of Sn (x) for the XXCD model, one can now
find the central charge for various disorder strengths. Fig. 24 shows Sn (x) for various
n and two chain sizes L. It was also considered two values of disorder strength, namely
D = 1.0 (top panel) and D = 2.0 (bottom panel). The data were averaged over 103 disorder
realizations. Notice that all curves are parallel to the dashed lines, which give an estimate
of the central charge. The value of c is also increasing as disorder gets stronger, contrasting
with the uncorrelated disorder case where the effective central charge is universal. (57)
Moreover, observe that an oscillatory behavior appears for n 6= 1 and the amplitude of the
oscillations increases with n. These oscillations are due to higher-order corrections in the
scaling of Sn (x), which are considered in the next section.

Fig. 25 shows the central charge c as a function of disorder strength D. The central
charge was fitted from S1 (x) for two chain sizes L and within the region 1 � x � L.
Observe that for weak disorder (D ≤ DC) the central charge is equal to the clean chain
value and for stronger disorder c increases monotonically with D. This result is shown
here only for completeness, since it has already been reported. (9)
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Source: GETELINA (41).

4.2 Higher-order corrections of the scaling

The previous section shows that the finite-size correction of the clean chain, viz.
the chord length (Eq. 4.3), is also in good agreement with the XXCD model. This result
instigates an extension of the comparison with the clean chain by considering the subleading
terms of the scaling. Up to first order, the CFT scaling of the Rényi entanglement entropy
Sn (x) is (64–66)

Sn (x) = a0 + c

6

(
1 + 1

n

)
ln [f (x)] + a2

(−1)x

[f (x)]
φ
n

. (4.11)



54 Chapter 4. Entanglement properties of the XX model with correlated disorder

0 1 2 3 4 5
D

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

c

clean

L=200
L=400

Figure 25 – Central charge c vs. disorder strength D fitted from the von Neumann entanglement entropy
S1 (x). The entanglement entropy was calculated for two chains with size L = 200 (blue
triangles) and L = 400 (red circles), averaging over 103 disorder realizations for each value of
D. The black dashed line is the clean chain central charge. Colored lines are guide to the eyes.

Source: By the author.

Therefore, in this section the data of Sn (x) for the XXCD model are fitted to Eq. 4.11.
For every disorder strength and chain size, the entanglement entropy is averaged over 103

disorder realizations. The four parameters, namely a0, c, a2 and φ, are shown as a function
of n, which varies from one to ten with a step of 0.1. To determine the parameters, the
usual least-squares method is accompanied by a numerical procedure, as explained in
Appendix E, because of the nonlinear parameter φ.

Fig. 26 shows the parameters a0 and a2 vs. n (panels (a) and (b), respectively) for
various disorder strengths D. These parameters are not compared to clean chain. It is
important, though, to observe that in panel (b) the parameter a2 goes to zero as n→ 1
for each of the considered value of D. This result is in agreement with the clean chain
behavior, where a2 = 0 for n = 1.

Fig. 27 and Fig. 28 show the central charge c as a function of the parameter n for
three disorder strengths, namely D = 0.1, D = 1.0 and D = 2.0. It is expected that the
central charge is constant with respect to n. However, from Fig. 27 and Fig. 28 one can
clearly observe that c varies with n. An explanation for such unexpected behavior are
the finite-size effects. Thus, to test this hypothesis, the central charge is fitted for various
chain sizes L. As the lattice size gets larger, one should observe the curves becoming more
horizontal, which is indeed verified for every disorder strength. It is also expected that the
curves approach each other with increasing L, which is not observed in Fig. 28. Another
issue is that higher-order corrections should be considered as n increases. (66) However,
this would make the fitting procedure even more difficult. In addition, the introduction of
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Figure 26 – The parameters a0 and a2 (see Eq. 4.9) vs. n (panels (a) and (b), respectively) for various
disorder strengths D. The parameters were fitted from the average entanglement entropy
Sn (x), which was calculated for chain size L = 1024.

Source: By the author.

disorder may also require further corrections that cannot be predicted by CFT.

Lastly, Fig. 29∗ shows the exponent φ vs. the parameter n for disorder strength
D = 0.1 and D = 1.0. For D = 0.1, notice that the curves become more horizontal as the
chain size L is increased and they stay relatively close to the clean chain value. The region
n < 2 is not reliable, since as n→ 1 the prefactor a2 gets closer to zero and the subleading
correction is irrelevant. One can also observe that the exponent φ changes with disorder,
as for D = 1.0 it remains approximately close to three. The data for D=2.0 is not shown
because the results were not satisfactory.

For completeness, Fig. 30 compares the data of Sn(x) with the corresponding best
fitting curve (dashed lines), which was obtained using Eq. 4.11. The inset gives a closer look

∗Recall that the data are not continuous lines; the points were neglected for simplicity.
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Figure 27 – Central charge c vs. the parameter n for disorder strength D = 0.1 (panel (a)) and D = 1.0
(panel (b)). The central charge was fitted from the average entanglement entropy Sn (x), which
was calculated for various chain sizes L. The dashed line in panel (a) is the clean chain central
charge.

Source: By the author.

for n = 3 in the region 1� x� L. Notice that the fitted curves are in good agreement
with the numerical data. As the parameter n increases, though, the difference between
them becomes more significant. One can explain such discrepancy with the neglected
higher-order corrections, which are required for greater n.
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5 Conclusion

The complete set of critical exponents of the XXCD model, namely {α, β, γ, δ, η, ν},
has been determined. It has been found that most of them are universal, i.e. disorder
independent, and equal to the clean chain exponent. The only exception is the anomalous
dimension η. Besides the usual set of critical exponents, the so-called critical dynamical
exponent z was also determined. It has been shown that z increases monotonically with
disorder strength D and is equal to the clean value for D ≤ DC ≈ 0.3. Thus, one may
conclude that for weak disorder (i.e. below DC) the clean critical point is preserved. As
disorder gets stronger, though, the system falls into a family of finite-disorder critical
points, each of them characterized by a unique z.

However, this disorder-dependent dynamical exponent results in unreliable values
for the anomalous dimension η. For instance, for sufficiently strong disorder, η < 0 which
is not acceptable. Such negative values of η are obtained from the premise that, for
quantum critical systems, one should replace d with d+ z. As another consequence of this
substitution, two scaling relations, viz. hyperscaling and Fisher’s scaling relations, do not
hold for disorder strength above DC . The other two scaling relations that do not involve
dimensionality are respected even for D > DC .

There is not much literature available about the validation of the hyperscaling
and Fisher’s scaling relations for random quantum phase transitions. Thus, it would be
interesting to test such relations for other models. However, a more appropriate procedure
would be to derive those relations from the beginning for quantum critical points and see
where the introduction of disorder may interfere. As shown here, just replacing d for d+ z

is not sufficient to validate the scaling relations. In addition, the failure of two scaling
relations may indicate that there are more than two independent critical exponents.

The observed numerical results strongly suggest that the critical exponents are
disorder independent (except for η and z). However, from numerical studies alone it is not
possible to prove this independence. This study should be accompanied with theoretical
approaches, such as the renormalization group. It is not known, though, how to extract all
quantities of interest from the renormalization group of finite-disorder critical points; this
method is best employed for infinite-randomness critical points, such as the XX model
with uncorrelated disorder.

Alongside the usual study of the critical behavior, it has also been performed
calculations of the Rényi entanglement entropy. Surprisingly, it has been found that the
leading scaling behavior in Eq. 4.9 and the finite-size correction of the clean system
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(namely the chord length) are in good agreement for the XXCD model as well. This result
is intriguing because the entanglement entropy scaling and the chord length are derived
from conformal field theory methods and a necessary condition for conformal invariance
is that z = 1, which does not occur for D > DC . Thus, this result suggests that the
logarithmic scaling in Eq. 4.9 and the chord length may be derived from a more general
assumption than conformal invariance, which may also include random systems.

Furthermore, it has been found that the corresponding central charge c increases
monotonically with disorder strength D, contrasting with the uncorrelated disorder case
where the effective central charge is universal. It has also been shown the central charge
as a function of the parameter n of the Rényi entanglement entropy. It was expected
that c and the exponent φ (introduced in the first-order correction) were universal, i.e.
independent of n. However, this independence was not verified, mostly because of finite-size
effects. Nevertheless, one could obtain better results if chains with open boundaries were
considered instead. (67) Moreover, to achieve a deeper understanding of the entanglement
properties of the XXCD model one should consider a study of the real-space entanglement
spectrum. (68)

The next step is to investigate other systems under correlated disorder and check if
the same behavior occurs. Indeed, the correlated disorder XXZ spin-1/2 chain has been
investigated and it turns out that it behaves similarly to the XXCD model. (41) However,
renormalization group calculations show that this behavior for the XXZ model is due to
finite-size effects; for sufficiently large lattices the uncorrelated case is retrieved. Conversely,
for the XXCD model there is no such crossover length, although it has not been proven
here.
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APPENDIX A – Some properties of the Hamiltonian

This appendix outlines the procedure to write the Hamiltonian in its diagonal basis.
This is a necessary step to evaluate expectation values such as

〈
c†icj

〉
, which are related to

some of the quantities of interest, e.g. the correlation function. Some matrix properties
that simplify calculations are also presented.

The matrix representation of H in the old basis is

H = c†Mc, (A.1)

where M is the matrix in Eq. 2.20 and c† (c) is a row (column) vector with the L fermionic
operators, i.e.

c =


c1

c2
...
cL

 , c† =
(
c†1 c†2 · · · c†L

)
. (A.2)

It is desired to rewrite the Hamiltonian in the diagonal basis, i.e.

H = η†Dη, (A.3)

where η† and η are the diagonal fermionic operators and

D =



λ1 0 · · · 0
0 λ2 0 ...
... ... . . . 0
0 · · · 0 λL

 , (A.4)

where λi is the i-th eigenvalue of M with λ1 < λ2 < · · · < λL.

The change of basis above is called a similarity transformation, in which the
eigenvalues of the matrix are unaltered. This transformation can be represented in general
as

D = V −1MV, (A.5)

where V (V −1) is the (inverse) transformation matrix to be determined. For hermitian
matrices, such as M , one can show that V is the matrix with the eigenvectors v of M
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stored column wise, i.e.,

V =


v1,1 v1,2 · · · v1,L

v2,1 v2,2 · · · v2,L
... ... ... ...

vL,1 vL,2 · · · vL,L

 ,

=
[
v1 v2 · · · vL

]
. (A.6)

To show that the matrix above satisfies the transformation notice that

MV = M
[
v1 v2 · · · vL

]
,

=
[
λ1v1 λ2v2 · · · λLvL

]
. (A.7)

Since the eigenvectors matrix V is unitary (or orthogonal, since v ∈ R), V −1 = V T and
V TV = V V T = I, where V T is the transpose of V and I is the identity matrix. Thus,

V TMV =


v1

v2
...
vL


[
λ1v1 λ2v2 · · · λLvL

]
,

=



λ1 0 · · · 0
0 λ2 0 ...
... ... . . . 0
0 · · · 0 λL

 , (A.8)

which is indeed the matrix D.

Using the transformation in Eq. A.5 and comparing Eq. A.1 with Eq. A.3 one finds
that c†Mc = η†V TMV η. Therefore, the i-th component of c† and c is, respectively,

c†i =
L∑
j=1

η†jvi,,j, (A.9)

ci =
L∑
j=1

ηjvi,j. (A.10)

The expectation value
〈
c†icj

〉
is evaluated on the ground state |GS〉 of the system.

The ground state is constructed by creating fermions up to the Fermi level µ = 0, i.e.

|GS〉 =
L
2∏
i=1

η†i |0〉 , (A.11)

where |0〉 is the vacuum. Hence, the expectation value is
〈
c†icj

〉
=

〈(
L∑
k=1

η†kvi,k

)(
L∑

m=1
ηmvj,m

)〉
. (A.12)



69

The operator ηm will first act on the ground state and annihilate a preexisting fermion.
Therefore m < L/2+1, which can be represented as a step function θ

(
L
2 −m

)
. The second

operator η†k will create a fermion in a vacancy. However, if k 6= m the right eigenstate will
be different than the left one, which will result

〈
c†icj

〉
= 0. Thus, a Kronecker delta (δk,m)

is also needed, yielding〈
c†icj

〉
=

L∑
k=1

L∑
m=1

vi,kvj,mθ
(
L

2 −m
)
δk,m,

=
L
2∑

k=1
vi,kvj,k. (A.13)

Notice that the interchange between i and j do not change the result, i.e.
〈
c†icj

〉
=〈(

c†icj
)†〉

.

As it turns out, the eigenvectors matrix V has a property that results in
〈
c†icj

〉
= 0

whenever i+ j is even. One can check from V that

vi,,j = (−1)i−j vi,L−j+1. (A.14)

Moreover, the orthonormality condition of eigenvectors requires that
L∑
k=1

vi,kvj,k = δi,j. (A.15)

Rewriting the relation above using Eq. A.14 gives

[
1 + (−1)i+j

] L
2∑

k=1
vi,kvj,k = δi,j. (A.16)

If i = j the equation above gives
〈
c†ici

〉
= ∑L

2
k=1 vi,kvj,k = 1/2. For i 6= j the right side of

the equation is zero, which means that one of the multiplying terms on the left side must
be zero as well. If i+ j is even the term within brackets equals two, which implies that
the summation is zero, i.e.

〈
c†icj

〉
= 0 for i+ j even. Thus it is only necessary to evaluate〈

c†icj
〉
when i 6= j and their sum gives an odd number.

Besides using this property one can further reduce computation time by diagonaliz-
ing the squared Hamiltonian H2 instead of H, as discussed in Chapter 2. Let Vodd and Veven
be the eigenvector matrices of H2

odd and H2
even, respectively. The procedure to retrieve the

eigenvector matrix V of H from the two block matrices is straightforward: Insert the entries
of Vodd and Veven in the odd and even lines of V , respectively; i.e. v2i−1 = voddi /

√
2 and

v2i = veveni /
√

2. The entries must be divided by
√

2 because the program gives normalized
eigenvectors. Furthermore, the given eigenvectors are stored column wise in crescent order.
Thus, the combination of the first column of Vodd and Veven corresponds to either the
L/2-th or L/2 + 1-th column of V . To check whether the i-th eigenvalue is positive or
negative one can compute λi = viHvi. Using Eq. A.13 one can obtain right after the
opposite eigenvector.
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APPENDIX B – Numerical instabilities

This appendix contains a discussion about the diagonalization of the squared
Hamiltonian H2, which may lead to imprecise eigenvalues and eigenvectors. It is shown
that using H2 is reliable for D ≤ 2.0; for stronger disorder one should stay with the original
Hamiltonian H.

To check whether the i-th eigenvalue λi given by the program is reliable, one can
compute the corresponding relative error σi, which is defined as

σi = 1− λ′i
λi
, (B.1)

where λ′i = viHvi is the expectation value and vi is the i-th column of the eigenvector
matrix V .

Fig. 31 shows σi vs. λi for various chain sizes L and disorder strength D = 5.0
(panel (a)) and also for various D and L = 210 (panel (b)). The eigenvalues were calculated
from H and H2, averaging over 103 disorder realizations. The dashed line delimits the
desired precision; only the points below it are reliable. Notice that the number of imprecise
eigenvalues rises as disorder and chain size increase. Furthermore, the eigenvalues of H2

(non-filled symbols) are clearly less reliable than those of H (filled symbols).

Imprecise eigenvalues (or eigenvectors) may generate misleading results for the
quantities of interest. For instance, it has been observed that the correlation function
violated the expected scaling when calculated using H2 eigenvectors for D ≥ 3.0 and
L = 29. Therefore, according to Fig. 31, one can say that squaring the Hamiltonian is a
reliable procedure only for disorder strength D ≤ 2.0.
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Figure 31 – Relative error σi vs. the eigenvalue λi for (a) various chain size L and disorder strength
D = 5.0 and (b) several disorder strengths and chain size L = 210. The eigenvalues were
averaged over 103 disorder realizations. Eigenvalues calculated from H and H2 are represented
as filled and open symbols, respectively. The dashed line delimits the desired precision. Colored
lines are guide to the eyes.

Source: By the author.
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APPENDIX C – Expressions for the specific heat and
the magnetic susceptibility

This appendix shows how to derive expressions for the specific heat and magnetic
susceptibility using the statistical mechanics approach.

From the canonical ensemble formalism, the specific heat C is defined as (19)

C = −T
(
∂2f

∂T 2

)
, (C.1)

where f is the free energy density and T is the temperature. The definition of the magnetic
susceptibility χ is similar to the specific heat, except that the derivative is with respect to
an external magnetic field B, i.e.

χ = −
(
∂2f

∂B2

)
B=0

, (C.2)

where the derivative is taken in the limit B → 0.

The introduction of the field B changes the Hamiltonian of the system, since one
must also considered the interaction of the spins with the field. Thus, the new Hamiltonian
is defined as H ′ = H +HB, where

HB = B
L∑
i=1

Szi (C.3)

is the term that comprises the spin-field interactions, considering that B is constant and
points in the z-direction.

To compute the free energy it is easier to write the new Hamiltonian H ′ in its
diagonal basis, as shown in Appendix A for H. To write HB in the same basis one can
use Eq. 2.10 to map Szi to the fermionic operators c† and c. Furthermore, according to
Eq. A.9 and Eq. A.10, one can find that

L∑
i=1

c†ici =
L∑
i=1

 L∑
j=1

η†jvi,j

( L∑
k=1

ηkvi,k

)
,

=
L∑
j=1

L∑
k=1

η†jηk

(
L∑
i=1

vi,jvi,k

)
. (C.4)

Thus, since the eigenvectors are orthogonal (i.e. ∑L
i=1 vijvik = δj,k),

∑L
i=1 c

†
ici = ∑L

i=1 η
†
i ηi.

Using the notation ni = η†i ηi, H ′ in the diagonal basis is, thereby,

H ′ = −BL2 +
L∑
i=1

ni (λi +B) . (C.5)
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The next step is to calculate the so-called partition function Z, which is defined as

Z = Tr

∑
{nj}

e−
1
T
H′

 , (C.6)

where the set {nj} represents the j-th microstate of the system. Substituting Eq. C.5 in
Eq. C.6 gives

Z = e
BL
2T
∑
{nj}

exp
[
− 1
T

L∑
i=1

ni (λi +B)
]
. (C.7)

The sum of exponents can be replaced with a product of exponentials. This product
commutes with the sum over all microstates. Since the value of ni is either one or zero,
the expression for the partition function becomes

Z = e
BL
2T

L∏
i=1

[
e−

1
T

(λi+B) + 1
]
,

= e
BL
2T

L∏
i=1

e−
1

2T (λi+B) 2
2
[
e

1
2T (λi+B) + e−

1
2T (λi+B)

]
,

= e
BL
2T

L∏
i=1

e−
1

2T (λi+B)2 cosh
(
λi +B

2T

)
. (C.8)

The free energy F is given in terms of the partition function as

F = −T ln (Z) , (C.9)

Thus, substituting Eq. C.8 in the equation above gives

F = −T
{
BL

2T +
L∑
i=1

[
ln 2− λi

2T −
B

2T + ln cosh
(
λi +B

2T

)]}
. (C.10)

Noticing that the sum over all eigenvalues is zero and that the two terms with B cancel
out, one can divide Eq. C.10 by L and find the free energy density

f = −T
[
ln 2 + 1

L

L∑
i=1

ln cosh
(
λi +B

2T

)]
. (C.11)

Therefore, with Eq. C.11 the calculation of the specific heat and the magnetic
susceptibility is straightforward. The first derivative with respect to the temperature is

∂f

∂T
= − ln 2− 1

L

L∑
i=1

ln cosh
(
λi
2T

)
+ 1

2LT

L∑
i=1

λi tanh
(
λi
2T

)
, (C.12)

using B = 0. The second derivative is

∂2f

∂T 2 = − 1
4LT 3

L∑
i=1

λ2
i cosh−2

(
λi
2T

)
. (C.13)
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Substituting Eq. C.13 in Eq. C.1 gives

C = 1
2LT 2

L
2∑
i=1

λ2
i cosh−2

(
λi
2T

)
, (C.14)

since the spectrum is symmetric and cosh (x) = cosh (−x). Similarly, one can take the
second derivative of Eq. C.11 and find that

χ = 1
2LT

L
2∑
i=1

cosh−2
(
λi
2T

)
. (C.15)
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APPENDIX D – Spin-spin and dimer-dimer
correlation functions

This appendix provides a detailed deduction of the expressions for the correlation
functions.

From the definition in Eq. 3.8, one can apply Eq. 2.10 and find that the z-component
spin-spin correlation function in terms of fermionic operators is

Gz (r) =
〈(
c†ici −

1
2

)(
c†jcj −

1
2

)〉
,

=
〈
c†icic

†
jcj
〉
− 1

4 , (D.1)

since
〈
c†ici

〉
= 1/2,∀ i. Using Wick’s theorem (27,69) one can show that the expectation

value of the product of four fermionic operators (namely A, B, C and D) is

〈ABCD〉 = 〈AB〉 〈CD〉 − 〈AC〉 〈BD〉+ 〈AD〉 〈BC〉 , (D.2)

Thus,
〈
c†icic

†
jcj
〉

=
〈
c†ici

〉 〈
c†jcj

〉
−
〈
c†ic
†
j

〉
〈cicj〉+

〈
c†icj

〉 〈
cic
†
j

〉
,

=
〈
c†icj

〉 〈
cic
†
j

〉
+ 1

4 ,

= −
〈
c†icj

〉2
+ 1

4 , (D.3)

since
〈
c†ic
†
j

〉
= 〈cicj〉 = 0 and

〈
cic
†
j

〉
= −

〈
c†jci

〉
= −

〈
c†icj

〉
. Hence, substituting Eq. D.3 in

Eq. D.1 gives

Gz (r) = −
〈
c†icj

〉2
,

= −


L
2∑

k=1
vikvjk


2

. (D.4)

The approach to find the expression for Gx (r) is similar. Using that Sxi =(
S+
i + S−i

)
/2 one finds

Gx (r) = 1
4
〈(
S+
i + S−i

) (
S+
j + S−j

)〉
,

= 1
4
〈
S+
i S

+
j + S+

i S
−
j + S−i S

+
j + S−i S

−
j

〉
. (D.5)
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Substituting in the relation above the inverse of Eq. 2.6 and Eq. 2.7, i.e.

S+
i = c†ie

iπφi , S−i = e−iπφici, (D.6)

where φi = ∑i−1
k=1 c

†
kck, gives

Gx (r) = 1
4
〈
c†ie

iπφic†je
iπφj + c†ie

iπφie−iπφjcj + e−iπφicic
†
je
iπφj + e−iπφicie

−iπφjcj
〉
. (D.7)

It is useful here to expand the exponential as a Taylor series and verify that

exp
(
±iπc†ici

)
=

∞∑
j=0

(±iπ)j

j!
(
c†ici

)j
,

= 1 + c†ici
(
e±iπ − 1

)
,

= 1− 2c†ici, (D.8)

since
(
c†ici

)j
= c†ici,∀ j > 0. Therefore, the exponential products in Eq. D.7 can be

rewritten as

e±iπφie±iπφj =
[
i−1∏
k=1

(
1− 2c†kck

)]  j−1∏
m=1

(
1− 2c†mcm

) ,
=

j−1∏
k=i

(
1− 2c†kck

)
, (D.9)

since
(
1− 2c†ici

)2
= 1. Thus,

Gx (r) = 1
4

〈(
c†ic
†
j + c†icj + cic

†
j + cicj

) j−1∏
k=i

(
1− 2c†kck

)〉
,

= 1
4

〈(
c†i + ci

) (
1− 2c†ici

)  j−1∏
k=i+1

(
1− 2c†kck

) (c†j + cj
)〉

,

= 1
4

〈(
c†i − ci

)  j−1∏
k=i+1

(
c†k + ck

) (
c†k − ck

) (c†j + cj
)〉

. (D.10)

Defining new operators Ai ≡
(
c†i + ci

)
and Bi ≡

(
c†i − ci

)
and substituting them

in the equation above gives

Gx (r) = 1
4 〈BiAi+1Bi+1 . . . Aj−1Bj−1Aj〉 . (D.11)

Once again one can use Wick’s theorem to write the product of 2 (i+ j − 1) operators as
a sum of the product of pairs. Notice, though, that some of the pairs are equal to zero by
definition. For instance,

〈AiAj〉 = −〈BiBj〉 = δi,j, (D.12)
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which is always equal to zero for Eq. D.11, since no index is repeated. Conversely, the
pairs 〈BiAj〉 = −〈AjBi〉 are given by

〈BiAj〉 =
〈(
c†i − ci

) (
c†j + cj

)〉
,

=
〈
c†icj

〉
−
〈
cic
†
j

〉
,

= 2
〈
c†icj

〉
− δi,j. (D.13)

Hence one can write the product of operators in Eq. D.11 as the determinant of
the matrix G (r) which has entries Gi,j = 〈BiAj〉 (70), i.e.

G (r) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2
〈
c†ici+1

〉
0 2

〈
c†ici+3

〉
· · · 2

〈
c†icj

〉
0 2

〈
c†i+1ci+2

〉
0 · · · 2

〈
c†i+1cj

〉
2
〈
c†ici+3

〉
0 2

〈
c†i+2ci+3

〉
· · ·

... ... ... . . . ...
2
〈
c†icj

〉
· · · 0 2

〈
c†j−1cj

〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (D.14)

The x-component spin-spin correlation function is, thereby,

Gx (r) = 1
4 det (G (r)) . (D.15)

Lastly, the dimer-dimer correlation function Gdd (r). The first step is to insert
Eq. 3.11 in Eq. 3.13, which yields

Gdd (r) =
〈(
−Sx2i−1S

x
2i − S

y
2i−1S

y
2i + Sx2iS

x
2i+1 + Sy2iS

y
2i+1

)
×

(
−Sx2j−1S

x
2j − S

y
2j−1S

y
2j + Sx2jS

x
2j+1 + Sy2jS

y
2j+1

)〉
−

〈(
−Sx2i−1S

x
2i − S

y
2i−1S

y
2i + Sx2iS

x
2i+1 + Sy2iS

y
2i+1

)〉
×

〈(
−Sx2j−1S

x
2j − S

y
2j−1S

y
2j + Sx2jS

x
2j+1 + Sy2jS

y
2j+1

)〉
(D.16)

For simplicity, it is considered the following substitution: 2i− 1→ i, 2i→ j, 2i+ 1→ k,
2j − 1→ l, 2j → m, 2j + 1→ n.

Notice that the distance between pairs of spin operators is always one. Thus,
according to Eq. D.11 one can write

Sxi S
x
j = 1

4BiAj. (D.17)

Similarly, for the y-direction one can find that

Syi S
y
j = 1

4BjAi. (D.18)
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Therefore, Gdd (r) can be written as

Gdd (r) = 1
16 (〈BiAjBlAm〉+ 〈BiAjBmAl〉+ 〈BjAiBlAm〉+ 〈BjAiBmAl〉 − 〈BiAjBmAn〉

− 〈BiAjBnAm〉 − 〈BjAiBmAn〉 − 〈BjAiBnAm〉 − 〈BjAkBlAm〉 − 〈BjAkBmAl〉

− 〈BkAjBlAm〉 − 〈BkAjBmAl〉+ 〈BjAkBmAn〉+ 〈BjAkBnAm〉+ 〈BkAjBmAn〉

+ 〈BkAjBnAm〉 − 4 〈BiAj〉 〈BlAm〉+ 4 〈BiAj〉 〈BmAn〉+ 4 〈BjAk〉 〈BlAm〉

− 4 〈BjAk〉 〈BmAn〉) . (D.19)

Using Eq. D.2 and that 〈BiAj〉 = 0 for |j − i| even, one can simplify the expression above
until it reads

Gdd (r) = 1
8 (〈BiAm〉 − 〈BkAm〉) (〈BjAn〉 − 〈BjAl〉) . (D.20)

Retrieving the original indexes and using Eq. D.13 gives

Gdd (r) = 1
2
(〈
c†2i−1c2j

〉
−
〈
c†2i+1c2j

〉) (〈
c†2ic2j+1

〉
−
〈
c†2ic2j−1

〉)
. (D.21)
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APPENDIX E – Fitting method of the entanglement
entropy scaling with subleading terms

This appendix explains the fitting procedure of the entanglement entropy with a
subleading correction to the scaling (Eq. 4.11).

The least-squares method consists in determining the set of parameters a that
minimize the following quantity

Q =
N∑
i=1

[yi − f (xi,a)]2 , (E.1)

where N is the number of points, yi are the measured data and f (xi,a) is the theoretical
scaling function. For the entanglement entropy, N = L/2 and

f (xi,a) = a0 + a1h1 (x) + a2h2 (x) , (E.2)

where x is the subsystem size and

h1 (x) = ln
[
L

π
sin

(
πx

L

)]
, (E.3)

h2 (x) = (−1)x[
L
π

sin
(
πx
L

)]a3 . (E.4)

Taking the gradient of Q with respect to a and setting it equal to zero gives the
following system of equations

∑
i

a0 + a1
∑
i

h1 (xi) + a2
∑
i

h2 (xi) =
∑
i

yi, (E.5)

a0
∑
i

h1 (xi) + a1
∑
i

[h1 (xi)]2 + a2
∑
i

h2 (xi)h1 (xi) =
∑
i

yih1 (xi) ,

(E.6)

a0
∑
i

h2 (xi) + a1
∑
i

h2 (xi)h1 (xi) + a2
∑
i

[h2 (xi)]2 =
∑
i

yih2 (xi) ,

(E.7)

a0
∑
i

h2 (xi)h1 (xi) + a1
∑
i

h2 (xi) [h1 (xi)]2 + a2
∑
i

[h2 (xi)]2 h1 (xi) =
∑
i

yih2 (xi)h1 (xi) .

(E.8)

Notice that all the equations above are nonlinear with respect to a3 and linear with respect
to the other parameters. The linear parameters can be calculated exactly, after determining
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the nonlinear one. To determine a3 one can apply Newton’s method, which is an iterative
method represented as the following

a
(k+1)
3 = a

(k)
3 −

g
(
a

(k)
3

)
g′
(
a

(k)
3

) , (E.9)

where k is the k-th step of the iteration. It is considered the function g
(
a

(k)
3

)
as the

difference between the left and right-hand side of Eq. E.8, and the derivative g′
(
a

(k)
3

)
is

calculated with respect to a3.

The objective is to plot the fitting parameters a as a function of the parameter n
of the Rényi entanglement entropy. The best results were obtained by calculating a3 for
n = 10 first, using as initial guess the clean chain value a(0)

3 = 1/5. The iterative method
stops whenever

∣∣∣g (a(k)
3

)∣∣∣ ≤ 10−5, or when the maximum of 103 iterations is reached. If an
iteration yields an unreliable value of a3, i.e. a3 < 0 or a3 > 5, the next step returns to the
initial guess a(0)

3 . Substituting the final value of a3 in Eq. E.5, Eq. E.6 and Eq. E.7 gives
the other parameters. This procedure is repeated for every value of n, which is varied from
n = 10 to n = 1 with a step of 0.1. However, for n < 10 the initial guess a(0)

3 corresponds
to the final value of a3 computed for the previous n.
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