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Abstract

FRITSCH, A. R. Thermodynamics of a Bose gas: Sound velocity from global
variables and equivalence with other approaches. 2016. 103 p. Thesis (Doctorate
in Science) - Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos,
2016.

In this thesis we present some studies that were done in a trapped 87Rb Bose-Einstein
condensate using the thermodynamic global variables. We have measured the global sound
velocity by studying the variation of the total number of trapped atoms as a function
of temperature. This method allowed us to determine the contribution of thermal and
BEC components at each temperature. In order to study the sound velocity in each
component, we treated both fluids as they were completely independent and we found
great similarity with a published work. In addition, we analyze theoretically the validity
of the global variables by comparing this approach with other methods. The specific heat
for an ideal gas was evaluated using the global variables and by using the usual statistical
approach found in textbooks. After finding the same result for both methods, we used the
simplicity to implement the interaction in the global approach, to study the variation in
the specific heat when the interactions are taken into account. The last comparison was
done between global variables and the local density approximation. We have obtained
that, for the isothermal compressibility and a equation of state, both methods provide
equivalent results.

Keywords: Bose-Einstein condensation. Global variables. Sound velocity.





Resumo

FRITSCH, A. R. Termodinâmica de um gás de Bose: Velocidade do som a par-
tir de variáveis globais e equivalência com outros métodos. 2016. 103 p. Tese
(Doutorado em ciências) - Instituto de Física de São Carlos, Universidade de São Paulo,
São Carlos, 2016.

Nesta tese descrevemos estudos que foram feitos em um Condensado de Bose-Einstein de
87Rb usando variáveis termodinâmicas globais. A velocidade do som foi medida através de
variações do número de átomos aprisionados em função da temperatura. Com este método
fomos capazes de determinar qual a contribuição da componente térmica e do condensado
em cada temperatura. Com o objetivo de estudar a velocidade do som em cada compo-
nente, analisamos ambas componentes como se elas fossem totalmente independentes, e
encontramos grande similaridade com outro trabalho publicado. Adicionalmente, um es-
tudo teórico foi feito para analisar a validade das variáveis globais comparando com outros
métodos. O calor específico para um gás ideal foi calculado usando as variáveis globais e
também usando o tratamento estatístico convencional encontrado em livros-texto. Depois
de encontrar os mesmos resultados com os dois métodos, usamos a facilidade que temos
em considerar as interações entre os átomos usando as variáveis globais, e estudamos a
variação no calor específico quando estas interações são consideradas. Em um último es-
tudo, comparamos as variáveis globais com o método de aproximação da densidade local.
Para a compressibilidade isotérmica e para uma equação de estado obtemos resultados
equivalentes com os dois métodos.

Palavras-chaves: Condensação de Bose-Einstein. Variáveis globais. Velocidade do som.
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1 Introduction

Bose-Einstein condensation was predicted by Albert Einstein in 1925 after a gen-

eralization of the Bose studies for the black-body radiation. (1–2) The Bose-Einstein

condensation, as it is known, occurs when at very low temperatures a gas of bosons

macroscopically occupy the lowest-energy state of the system, the fundamental state. (3)

Condensation can be considered as a macroscopic and coherent occupation of the

same state, where every atom is equal to all other, and all them behave equally. The

phenomenon can be visualized if we consider the superposition of the wave function of

the atoms. When atoms are cooled until the temperature where the de Broglie wavelength

becomes at the order of the separation between atoms, the wavefunctions will overlap and

will produce a condensate.

Since the prediction until the first evidence of the condensation it has passed many

years. In 1938 London (4) suggested that the superfluidity observed in the liquid helium

(5–6) could be associated to the Bose-Einstein condensation.

In dilute gases, Bose-Einstein condensation occurs at very low temperatures. This

made the condensation a very difficult task, and it took almost six decades to be achieved.

As it has always been, the hydrogen is the easiest element to be theoretically described,

then is natural to think that it would be a good choice to obtain the condensation.

Motivated by theoretical studies (7–8), in 1976 a group led by Greytak and Kleppner at

MIT (9) started the attempt to condensate hydrogen, but it showed to be a formidable

task. Many techniques to cool hydrogen were developed (10–13), but at the same time

many groups started to work in cooling and trapping alkali atoms.

For alkali atoms, many techniques of coolling and trapping (11, 14–20) where de-

veloped, and along years lower temperatures and higher densities were achieved. When the

evaporative cooling technique developed for hydrogen received an inportant improvement

(21), it seemed to be the last step to condensation.
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Finally, condensation was obtained in 1995 by the group of E. A. Cornell and C.

E. Wieman in 87Rb (22), in 23Na by the group of W. Ketterle (23), and in 7Li by the

group led by R. G. Hulet. (24)

In our group, condensation was obtained in 2004 in 23Na (25), but some experi-

mental limitations have motivated the construction of a new experiment, for Rubidium

atoms. (26) In the beginning, the group tested a new method to excite the condensate,

using oscillatory magnetic field, and it culminated with the generation of vortices and

tangle of vortices (27–31) which allowed to study quantum turbulence. (32–33) The latter

has been one of the main focus of the group.

Another area that the group has great interest is thermodynamics, but due to

difficulties in defining valid thermodynamic variables for trapped gases, there are not

many experimental works exploring this field. In most of cases, BEC is achieved in an

harmonic trapping potential, what makes the density of the sample not be uniform. This

non-uniform density implies that the pressure and other variables are dependent on the

position.

To overcome the inconvenient of a non-uniform density, it can be applied the local

density approximation (LDA) (34), that allows to obtain most properties of the gas, such

as the specific heat and the compressibility. (35) In this approximation, the sample is

divided in small cells where the density is considered to be uniform, and it can only be

used when the density inside each cell varies smoothly. For each cell is defined a set of

independent thermodynamic variables, and it is clear that in this approximation we do

not define parameters for the trapped gas as a whole.

This approximation is valid when the density of the gas varies smoothly. If a vortex

is present in a cloud, the density varies abruptly in the border of the core, and we need to

choose a cell much smaller than the vortex to avoid that a single cell contains the frontier

(avoiding abrupt variations). From the theoretical point of view this is not a problem,

because always is possible to choose the size of the cell to be very small. However, the

experimental limitation is that the size of a BEC is of the order of microns, and the cell

would need to be much smaller. In this case, would be very hard to determine the number
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of atoms and other quantities for each cell.

In the search for a global thermodynamic description of trapped gases, the group

and collaborators have developed the thermodynamic global variables. (36–37) In this

approach, it is assumed that the trapped gas can be described by global parameters

associated with the atoms as well as the trapping potential.

These global variables where proposed in 2005 (36–37) and since them they were

successfully applied to a trapped Bose gas. (36,38–42)

With the objective of validate and consolidate the global variables, we developed

this thesis focusing in thermodynamics, where we used them to evaluate the sound velocity

in a Bose gas and also we compared this approach with other methods.

In what follows, we describe how this thesis is organized and

1.1 This thesis

This thesis was developed in a experiment where we focus in two main research

areas: Quantum turbulence and thermodynamic of trapped gases. For studying quan-

tum turbulence, the main technique is to perturb the condensate by using an oscillatory

magnetic field. In 2009 (32) this method was applied and the first evidence of quantum

turbulence was observed.

During this project, we have worked in understanding the effects of this perturba-

tions, mainly in the transition from a non perturbed state to an state were evidences of

turbulence is found. The main studies were published in references (33,43–44) and other

are submitted or in preparation. Also, in search for new methods to produce turbulence,

we have successfully implemented the technique of topological phase imprinting (45–46)

to produce multicharged vortices. The decay of this multicharged vortex into unit charge

vortices is not completely understood and is constantly under investigation.
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Thermodynamic is the other research area of interest. To understand more about

thermodynamic in trapped gases, the group have used the global thermodynamic variables

(36–37) that have been developed to study the global properties of a trapped sample. In

the BEC1 experiment, where this thesis has been developed, we cannot change the trap-

ping frequencies, and it limits the studies that can be done in thermodynamic. However,

another experiment was built a few years ago with a different technique to trap atoms,

using a combination of optical and magnetic trap, instead a pure magnetic trap. In that

system, the trapping volume can be easily changed, allowing a broader study. I could

work for a short time in that experiment, where we have measured the isothermal com-

pressibility of a Bose gas. (42)

This thesis does not contain the studies performed with vortices and turbulence,

and to see our studies about this topic we recommend the reader to reference (47) which

is a thesis that had been developed at almost the same time, and whose focus is on that

other area.

In this thesis, we present more evidences that the global thermodynamic variables

can be used to study thermodynamic properties of the condensate, mainly in cases where

the potential is not uniform. We compare this variables with the local density approxi-

mation and also we present an alternative measurement for the sound velocity.

We start Chapter 2 revisiting the theoretical description of a Bose gas trapped in a

harmonic potential. The concepts involved in this chapter will give us theoretical support

for the others. Many textbooks make a complete description for an ideal Bose gas in a

box potential, but since our trap is harmonic, in Section 2.1 we treat only this specific

trapping geometry. In Section 2.2, we review the weakly interacting Bose gas, where we

show that when the kinetic energy of the atoms is ignored, the atomic density exhibits a

parabolic shape, that is proportional to the inverse of the trapping potential.

In Chapter 3, we make a description of the global variables. We start defining the

global parameters for an ideal gas and then we treat a more realistic system where the

interactions are considered. We finish the chapter obtaining the pressure parameter for

our specific harmonic potential.
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Chapter 4 is used to describe our experimental system. We have separated it in

sections whose sequence is the same of the experimental process used to obtain condensa-

tion. We do not make a very detailed description for every processes, since most of them

are common for many experiments with BEC, and also this experiment is exhaustively

detailed in previous thesis of our group. (48–49)

After the theory and the experimental description, we start detailing the studies

which compose this thesis. In order to test the validity of the global variables, we make

a theoretical study to compare it with other approaches. We start Chapter 5 evaluating

the specific heat for an ideal gas using the global variables and also using the standard

statistical treatment, and we show that they provide the same result. Since we can easily

implement the interaction in the global approach, we used it to study the effect of the

interaction in the specific heat. In Section 5.3 we evaluated the compressibility and an

equation of state using the global variables and also the local density approximation. Using

these two approaches, we can observe the characteristic behavior of the compressibility at

the transition. For the equation of state, the compressibility as a function of the pressure

was evaluated in both methods and we found equivalent results.

In Chapter 6, we describe our alternatively measurement for the sound velocity

in a Bose trapped gas using global variables instead of make a density perturbation in

the BEC. The background theory for the sound velocity is summarized in Section 6.1

and after this we present our method to obtain the sound velocity. We finish this chapter

by presenting the results for this study, where we could evaluate the contribution of the

individual components, normal and BEC, for the sound velocity. We could also separate

the two fluids to analyze them as if they were independent. In both analysis we found

good agreement with the theory and also with measurements.

Finally, in Chapter 7, we conclude this thesis summarizing the results that where

described in previous chapters, and after this we list possibles studies and improvements

that will be done in our experimental system.
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2 Statistical description for a

trapped Bose-gas in harmonic

potentials

Bose-Einstein condensation is well described in many textbooks of statistical me-

chanics. We start with an overview of the statistical description of the non interacting

Bose gas confined in a harmonic external potential based on references (50–52), and in

references (53–54) for the case where the interaction between particles is taken into ac-

count. At the beginning of the chapter we focus on finding the grand canonical potential

and the critical temperature, which allows us to easily find other important variables, and

will also give support to define the global variables which are explained in Chapter 3.

2.1 The ideal Bose gas trapped in a harmonic poten-

tial

In order to statistically describe a Bose gas in a harmonic potential, it is conve-

nient to work in the context of the grand canonical ensemble, where the total number of

particles in the system is not fixed. In this ensemble, we can obtain much information

about the thermodynamic properties of the gas by just taking simple derivatives of the

grand canonical potential Ω. Among these thermodynamic properties, we can cite entropy,

pressure, and number of atoms of the system, given respectively by (51)

𝑆(𝜇, 𝑇, 𝑉 ) = −
[︃
𝜕Ω
𝜕𝑇

]︃
𝑉,𝜇

, (2.1)
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𝑝(𝜇, 𝑇, 𝑉 ) = −
[︃
𝜕Ω
𝜕𝑉

]︃
𝑇,𝜇

, (2.2)

𝑁(𝜇, 𝑇, 𝑉 ) = −
[︃
𝜕Ω
𝜕𝜇

]︃
𝑇,𝑉

, (2.3)

where 𝑇, 𝑉 and 𝜇 are the temperature, volume and chemical potential of the system.

In order to derive the grand canonical potential, we start by writing the Hamilto-

nian for this system

𝐻𝑁 =
∑︁

𝑗

(︃
𝑃 2

𝑗

2𝑚 + 𝑈(𝑟𝑗)
)︃
, (2.4)

where 𝑃𝑗 is the momentum for each particle with mass 𝑚, and 𝑈(𝑟𝑗) is the external

potential. Here if the interaction between particles is taken into account, an additional

term must be considered.

Our external potential is a harmonic oscillator

𝑈(𝑟𝑗) =
∑︁

𝑗

1
2𝑚

(︁
𝜔2

𝑥𝑥
2
𝑗 + 𝜔2

𝑦𝑦
2
𝑗 + 𝜔2

𝑧𝑧
2
𝑗

)︁
, (2.5)

where 𝑚 is the mass of the particles and 𝜔𝑥, 𝜔𝑦, 𝜔𝑧 are the frequencies of the oscillator.

Writing the external potential, the Hamiltonian takes the form

𝐻 =
∑︁

𝑗

[︃
𝑃 2

𝑗

2𝑚 + 1
2𝑚

(︁
𝜔2

𝑥𝑥
2
𝑗 + 𝜔2

𝑦𝑦
2
𝑗 + 𝜔2

𝑧𝑧
2,
𝑗

)︁]︃
(2.6)

which can be written in a more suitable form in terms of the occupation number

𝐻𝑁 =
∑︁

𝑗

~
[︂
𝜔𝑥

(︂
𝑛𝑗

𝑥 + 1
2

)︂
+ 𝜔𝑦

(︂
𝑛𝑗

𝑦 + 1
2

)︂
+ 𝜔𝑧

(︂
𝑛𝑗

𝑧 + 1
2

)︂]︂
. (2.7)

Now we will write the grand canonical potential function 𝒵, given by (50)

𝒵 =
∞∑︁

𝑁=0
𝑒𝛽𝜇𝑁

∑︁
𝑛𝑗

𝑒−𝛽𝜖𝑗𝑛𝑗 , (2.8)

where 𝑁 is the total number of particles in all possible states, 𝜇 is the chemical potential

and 𝛽 = 1/𝑘𝐵𝑇 with 𝑘𝐵 the Boltzmann constant and 𝑇 the temperature. The number of

particles in the state 𝑗, which has energy 𝜖𝑗, is {𝑛𝑗}, and the total energy of this state is

𝐸{𝑛𝑗} = ∑︀
𝑗 𝜖𝑗𝑛𝑗. For the Hamiltonian of Equation 2.7, 𝜖𝑗𝑛𝑗 = ~(𝜔𝑥𝑛

𝑗
𝑥 +𝜔𝑦𝑛

𝑗
𝑦 +𝜔𝑧𝑛

𝑗
𝑧)+𝐸0
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where 𝐸0 = ~
2(𝜔𝑥 + 𝜔𝑦 + 𝜔𝑧) is the ground-state energy of the system. Writing the total

number of particles as 𝑁 = ∑︀
𝑗 𝑛𝑗 we have

𝒵 =
∞∑︁

𝑁=0
exp [𝛽𝜇𝑛1 + 𝛽𝜇𝑛2 + . . .]

∑︁
𝑛𝑗

exp [−𝛽𝜖1𝑛1 − 𝛽𝜖2𝑛2 − . . .] (2.9)

=
∞∑︁

𝑁=0

∑︁
𝑛𝑗

exp [−𝛽(𝜖1 − 𝜇)𝑛1 − 𝛽(𝜖2 − 𝜇)𝑛2 − . . .] . (2.10)

The sum in 𝑛𝑗, which is done for each occupation number 𝑛, is also performed for

the total number of particles, 𝑁 = 𝑛1 + 𝑛2 + . . ., what allow us to write

𝒵 =
∑︁
𝑛1

exp [−𝛽(𝜖1 − 𝜇)𝑛1]
∑︁
𝑛2

exp [−𝛽(𝜖2 − 𝜇)𝑛2] . . . (2.11)

=
∞∏︁

𝑗=0

∞∑︁
𝑛=0

exp [−𝛽(𝜖𝑗 − 𝜇)𝑛] . (2.12)

The sum in the last equation is a geometric series of the form
∞∑︁

𝑛=0
exp [−𝛽(𝜖𝑗 − 𝜇)𝑛𝑛] = 1

1 − exp [−𝛽(𝜖𝑗 − 𝜇)] , (2.13)

which leads to write the grand partition function as

𝒵 =
∞∏︁

𝑗=0

{︃
1

1 − exp [−𝛽(𝜖𝑗 − 𝜇)]

}︃
. (2.14)

Since from Equation 2.8 we have written the energy 𝜖𝑗 of each state 𝑗 in a general

way, the last equation is general for any system, not restricted to an harmonic oscillator.

As discussed in the beginning of this chapter, we can easily obtain some useful

relations by using the grand thermodynamic potential Ω, which is related to the grand

partition function by (50)

Ω(𝜇, 𝑇, 𝑉 ) = −𝑘𝐵𝑇 ln 𝒵. (2.15)

Using Eq. 2.14, we find the grand thermodynamic potential for an ideal gas, given

by

Ω(𝜇, 𝑇, 𝑉 ) = −𝑘𝐵𝑇
∞∑︁

𝑗=0
ln {1 − exp [−𝛽(𝜖𝑗 − 𝜇)]}, (2.16)

and by Equation 2.3 we see that after a simple derivation of Equation 2.16 with respect

to the chemical potential, we get the total number of atoms

�̄� =
∞∑︁

𝑗=0
𝑛𝑗, (2.17)
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with

𝑛𝑗 = 1
exp [𝛽(𝜖𝑗 − 𝜇)] − 1 . (2.18)

The last equation is the Bose distribution, where 𝑛𝑗 gives the mean number of

Bosons in each state 𝑗. From this equation we can conclude that exp [𝛽(𝜖𝑗 − 𝜇)] > 1

always holds, or 𝜖𝑗 > 𝜇, and since the chemical potential must be smaller than the energy

of the lowest level 𝜖0 (𝜖0 = 0), 𝜇 must be always negative. If we consider 𝜇 > 0 and 𝜖0 = 0,

then 𝑛0 would be negative, which is not possible.

We can also observe that when the number of particles is fixed, a decrease in

temperature leads to an increase in the chemical potential and it tends to zero, resulting

in the Bose-Einstein condensation, which means that adding more particles to the system

will cost no energy.

When the spacing between two energy levels becomes small, we can replace sums

by integrals making ∑︀𝜖 =
∫︀
𝑔(𝜖)𝑑𝜖, where 𝑔(𝜖) is the density of space . Using the standard

procedures described in textbooks (51,54) we obtain the density of states for an harmonic

oscillator by evaluating the number of states 𝐺(𝜖) enclosed in an energy surface of radius

𝜖 = 𝜖𝑥 + 𝜖𝑦 + 𝜖𝑧. This is done by

𝐺(𝜖) = 1
~3(𝜔𝑥𝜔𝑦𝜔𝑧)

∫︁ 𝜖

0
𝑑𝜖𝑥

∫︁ 𝜖−𝜖𝑥

0
𝑑𝜖𝑦

∫︁ 𝜖−𝜖𝑥−𝜖𝑦

0
𝑑𝜖𝑧 = 𝜖3

6~3�̄�3 , (2.19)

where �̄� = (𝜔𝑥𝜔𝑦𝜔𝑧)1/3 is the geometric mean of the trap frequencies. The density of

states is

𝑔(𝜖) = 𝑑𝐺(𝜖)
𝑑𝜖

, (2.20)

then

𝑔(𝜖) = 1
2

𝜖2

(~�̄�)3 . (2.21)

The density of states can be generalized for a d-dimensional harmonic oscillator and

results in (54)

𝑔(𝜖) = 𝜖𝑑−1

(𝑑− 1)!∏︀𝑑
𝑖=1 ~𝜔𝑖

. (2.22)

Here we need to pay attention that in Equations 2.16 and 2.17 there can be a

state with 𝜖 = 0, but if we consider just the replacement from sum to integrals using
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Equation 2.21 this state disappear because 𝑔(0) = 0, and it will lead to a mistake. To

make a correct replacement we need to take into account the term with 𝜖 = 0, what leads

to an additional term in both equations after the replacement. It will lead Equation 2.17

to be written as

𝑁 = 1
2(~�̄�)3

∫︁ ∞

0

𝜖2

exp [𝛽(𝜖− 𝜇)] − 1𝑑𝜖+𝑁0, (2.23)

where 𝑁0 = 𝑧/(1 − 𝑧) is the number of atoms in the ground state ( 𝜖 = 0) and 𝑧 = exp 𝛽𝜇

is the fugacity.

For the grand canonical potential, Equation 2.16, we have

Ω(𝜇, 𝑇, 𝑉 ) = −1
2𝛽(~�̄�)3

∫︁ ∞

0
𝜖2 ln {1 − exp [−𝛽(𝜖− 𝜇)]}𝑑𝜖+ 1

𝛽
ln(1 − 𝑧), (2.24)

which becomes

Ω(𝜇, 𝑇, 𝑉 ) = 1
6(~�̄�)3

∫︁ ∞

0

𝜖3

𝑧−1 exp(𝛽𝜖) − 1𝑑𝜖+ 1
𝛽

ln(1 − 𝑧). (2.25)

If we write 𝑥 = 𝛽𝜖 in Equations 2.23 and 2.25, we see that both integrals can be

expressed in the form

𝑔𝑛(𝑧) = 1
Γ(𝑛)

∫︁ ∞

0

𝑥𝑛−1

𝑧−1 exp(𝑥) − 1𝑑𝑥 =
∞∑︁
1

𝑧𝑘

𝑘𝑛
, (2.26)

which is known as the Bose function (51) and Γ(𝑛) is the Gamma function. Using the last

expression we can write the number of atoms and the grand canonical potential as

𝑁 = 1
2(𝛽~�̄�)3 𝑔3(𝑧)Γ(3) +𝑁0, (2.27)

Ω = 1
6𝛽4(~�̄�)3 𝑔4(𝑧)Γ(4) − 1

𝛽
ln(1 − 𝑧). (2.28)

For 𝑧 = 1, it means 𝜇 = 0, the Bose function is related to the Riemann’s Zeta

function 𝜁(𝑛) , by

𝑔𝑛(1) =
∞∑︁

𝑘=1

1
𝑘𝑛

= 𝜁(𝑛) 𝑛 > 1, (2.29)

which is very important in finding the maximum number of particles in the excited state*.

We see in Equation 2.27 that the total number of particles is expressed as the sum of the
* Here the limit when 𝑧 = 1 need to be analyzed with care. In principle, 𝑁0 in Equation 2.23 and

the grand canonical potential in Equation 2.28 are divergent, and both can not be determined in
this condition. However, both are well determined when the thermodynamic limit is analysed. In this
limit, the last therm in Equation 2.28 always is smaller than the first one, and can be neglected. We
recommend the Chapter 13 of reference (51) for more details.
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particles in the fundamental state (𝑁0 with 𝜖 = 0) and the particles in the excited states

𝑁𝑒, the first term. As discussed, the chemical potential must be always negative and it

establishes that 1 is the maximum value for 𝑧. Now, using Equation 2.29 we find that

𝑁𝑚𝑎𝑥
𝑒 = 𝑁 −𝑁0 = 1

2(𝛽~�̄�)3 𝜁(3)Γ(3) (2.30)

is the maximum number of particles in the excited states.

If we fix the volume and the temperature of the gas and we add particles, the pop-

ulation of the excited states cannot increase beyond its maximum value, and the ground

state becomes macroscopically populated, which leads to the Bose-Einstein condensation.

Thus, Equation 2.30 defines the critical temperature where it occurs, and if we suppose

that at this temperature 𝑁0 ≪ 𝑁 we obtain

𝑇𝑐 = ~�̄�
𝑘𝐵

(︃
𝑁

𝜁(3)

)︃1/3

≈ 0.94~�̄�
𝑘𝐵

𝑁1/3. (2.31)

Using this temperature, we can find the population of the ground state as a func-

tion of the temperature. Dividing 2.27 by 𝑁 and using the critical temperature, we find

𝑁0

𝑁
= 1 −

(︂
𝑇

𝑇𝑐

)︂3
, (2.32)

that shows the dependence of the condensed fraction with the temperature.

2.2 Weakly interacting Bose gas

In the previous section we just considered an ideal Bose gas in a harmonic potential.

However, in experiments with Bose-Einstein condensates, the density is relatively high

and a complete description of the condensed properties must include interactions. When

interactions are taken into account we can describe the condensate, at zero temperature †

and in the regime of weak interaction, using the Gross-Pitaevskii equation (GPE), which
† At finite temperature large condensed fraction is necessary.
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was formulated independently by E. Gross (55) and L. Pitaevskii (56) and has proved

excellent to describe these systems. A more detailed discussion can be found in references.

(53,57–58)

2.2.1 The Gross-Pitaevskii equation

We can describe a system of𝑁 interacting bosons by using the Hamiltonian written

in second quantization as (53)

�̂� =
∫︁
𝑑3rΨ̂†(r, 𝑡)

[︃
− ~2

2𝑚∇2 + 𝑈ext(r)
]︃

Ψ̂(r, 𝑡) (2.33)

+ 1
2

∫︁
𝑑3r

∫︁
𝑑3r′Ψ̂†(r, 𝑡)Ψ̂†(r′, 𝑡)𝑉 (r − r′)Ψ̂(r′, 𝑡)Ψ̂(r, 𝑡), (2.34)

where Ψ̂†(r, 𝑡) and Ψ̂(r, 𝑡) represent the creation and annihilation of a boson at the position

r, 𝑈ext is the external potential and 𝑉 (r − r′) is the interaction potential.

The energy of the atoms in a dilute and cold gas is sufficiently low such that the

collisions are characterized by the s-wave scattering length. These are considered elastic

hard-sphere collisions between two atoms, and we can write the interaction potential as

𝑉 (r − r′) = 𝑔𝛿(r′ − r) (2.35)

where 𝑔 = 4𝜋~2𝑎/𝑚, with 𝑎 being the s-wave scattering length. Inserting the potential of

Equation 2.35 into Equation 2.33 we obtain

�̂� =
∫︁
𝑑3rΨ̂†(r, 𝑡)

[︃
− ~2

2𝑚∇2 + 𝑈ext(r)
]︃

Ψ̂(r, 𝑡) + 𝑔

2

∫︁
𝑑3rΨ̂†(r, 𝑡)Ψ̂†(r, 𝑡)Ψ̂(r, 𝑡)Ψ̂(r, 𝑡),

(2.36)

where the dependence on r′ was removed.

Now, in order to derive the system dynamics we are going to write the time evolu-

tion of 𝜓(r) using the Heisenberg picture with the Hamiltonian of equation 2.36. Knowing

the Bose commutation relations

[︁
Ψ̂ (r′, 𝑡) , Ψ̂† (r, 𝑡)

]︁
= 𝛿(r − r′) (2.37)
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and [︁
Ψ̂ (r′, 𝑡) , Ψ̂ (r, 𝑡)

]︁
=
[︁
Ψ̂† (r′, 𝑡) , Ψ̂† (r, 𝑡)

]︁
= 0 (2.38)

we have

𝑖~
𝜕Ψ̂(r′, 𝑡)

𝜕𝑡
=
[︁
Ψ̂ (r′, 𝑡) , �̂�

]︁
,

= Ψ̂ (r′, 𝑡) �̂� − �̂�Ψ̂ (r′, 𝑡) ,

= Ψ̂ (r′, 𝑡) �̂� −
∫︁
𝑑3rΨ̂†(r, 𝑡)𝐻0Ψ̂(r, 𝑡)Ψ̂ (r′, 𝑡)

− 𝑔

2

∫︁
𝑑3rΨ̂†(r, 𝑡)Ψ̂†(r, 𝑡)Ψ̂(r, 𝑡)Ψ̂(r, 𝑡)Ψ̂ (r′, 𝑡) ,

= Ψ̂ (r′, 𝑡) �̂� −
∫︁
𝑑3r

[︁
Ψ̂ (r′, 𝑡) Ψ̂† (r, 𝑡) − 𝛿(r′ − r)

]︁
𝐻0Ψ̂ (r, 𝑡)

− 𝑔

2

∫︁
𝑑3r

[︁
Ψ̂ (r′, 𝑡) Ψ̂† (r, 𝑡) − 2𝛿(r′ − r)

]︁
Ψ̂† (r) Ψ̂ (r, 𝑡) Ψ̂ (r, 𝑡) ,

= Ψ̂ (r′, 𝑡) �̂� − Ψ̂ (r′, 𝑡) �̂� +
∫︁
𝑑3r𝐻0Ψ̂ (r, 𝑡) 𝛿(r′ − r)

+ 𝑔
∫︁
𝑑3rΨ̂† (r, 𝑡) Ψ̂ (r, 𝑡) Ψ̂ (r, 𝑡) 𝛿(r′ − r),

where �̂�0 = − ~2

2𝑚
∇2 + 𝑈ext(r). The last equation results in

𝑖~
𝜕Ψ̂(r, 𝑡)
𝜕𝑡

= �̂�0(r)Ψ̂(r, 𝑡) + 𝑔Ψ̂†(r, 𝑡)Ψ̂(r, 𝑡)Ψ̂(r, 𝑡). (2.39)

When the Bose-Einstein condensation occurs, a single state is macroscopically

occupied, and we can make this by separating the Bose operator into two parts and treat

the non condensed state as a perturbation. By splitting we have

Ψ̂(r, 𝑡) = 𝜓(r, 𝑡) + 𝛿Ψ̂(r, 𝑡) (2.40)

where 𝜓(r) =< Ψ̂(r, 𝑡) > represent the condensed part and 𝛿Ψ̂(r, 𝑡) represent the atoms

in other states. This is usually referred as the Bogoliubov approximation. Then, in the

limit of zero temperature and weak interaction, we can consider that all particles are in

the condensate, and we can ignore 𝛿Ψ̂(r, 𝑡). Making the substitution of 2.40 into 2.39 we

find

𝑖~
𝜕𝜓(r, 𝑡)
𝜕𝑡

=
[︃
− ~2

2𝑚∇2 + 𝑈ext(r) + 𝑔|𝜓(r, 𝑡)|2
]︃
𝜓(r, 𝑡), (2.41)
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which is the time-dependent Gross-Pitaevskii equation. If we consider a non-interacting

system, 𝑔 = 0, the GPE becomes the Schrödinger equation.

For stationary solutions we can make the substitution 𝜓(r, 𝑡) = 𝜑(r)𝑒−𝑖𝜇𝑡/~ in the

GPE to have [︃
− ~2

2𝑚∇2 + 𝑈ext(r) + 𝑔|𝜑(r)|2
]︃
𝜑(r) = 𝜇𝜑(r) (2.42)

which is the time-independent GPE and 𝜇 is the chemical potential.

2.2.2 Thomas-Fermi approximation

For condensates with repulsive interactions and a large number of atoms, the

interaction energy is much higher than the kinetic energy and the first term in the GPE

can be neglected. This is the Thomas-Fermi approximation (TFA) (53–54), which leads

to [︁
𝑈ext(r) + 𝑔|𝜑(r)|2

]︁
𝜑(r) = 𝜇𝜑(r), (2.43)

or

|𝜑(r)|2 = 𝜇− 𝑈ext(r)
𝑔

. (2.44)

This predicts that the density (𝑛(r) = |𝜑(r)|2) of an interacting gas takes the in-

verted shape of the potential where the gas is confined. Typically, Bose-Einstein conden-

sation is achieved in harmonic potentials with the form 𝑈ext(r) = 1
2𝑚

∑︀
𝑗 𝜔

2
𝑗 𝑟

2
𝑗 , 𝑗 = 𝑥, 𝑦, 𝑧.

For this potential we have

𝑛(r) =
2𝜇−𝑚

∑︀
𝑗 𝜔

2
𝑗 𝑟

2
𝑗

2𝑔 . (2.45)

We note that if 𝑟 → ∞ the density would become negative, which is not physical,

thus we need to establish the limit when 𝑛(r) = 0. This limit is then

𝜇 = 1
2𝑚

∑︁
𝑗

𝜔2
𝑗𝑅

2
𝑗 , (2.46)
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where 𝑅𝑗 are called the Thomas-Fermi radii and are the boundary for the existence of

the condensed. With this condition, the correct way to write Equation 2.47 is

𝑛(r) =
(︃

2𝜇−∑︀
𝑗 𝜔

2
𝑗 𝑟

2
𝑗

2𝑔

)︃
Θ(𝑅2

𝑗 − 𝑟2
𝑗 ), (2.47)

where Θ(𝑟) is the Heaviside function. The normalization condition will give the total

number of atoms, 𝑁 =
∫︀
𝑛(r)𝑑3r, and using the condition of Equation 2.46 for determining

where the Thomas-Fermi density is valid, we find the relation between the number of

atoms and the chemical potential

𝑁 = 8𝜋
15𝑔

(︂ 2
𝑚�̄�2

)︂3/2
𝜇5/2, (2.48)

where �̄� is the geometric mean of the oscillator frequencies. If we solve for 𝜇 we obtain

𝜇 =
(︂15𝑁𝑎

�̄�

)︂2/5 ~�̄�
2 . (2.49)

Here �̄� =
√︁

~
𝑚�̄�

is the characteristic length of the harmonic oscillator.
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Global thermodynamic variables (GV) have been defined as a new and alternative

approach to describe thermodynamics in trapped gases in arbitrary potentials. The pres-

sure depends on the density, and since in a harmonic trap the density of the trapped gas

is not uniform, we can not write a single pressure which describe the whole system.

In order to study thermodynamics in this system, we can use the local-density

approximation (LDA). In this approximation, the fluid is divided in many parts where

the density is assumed to be constant, then is possible to attribute thermodynamic local

variables for each position. Using this approximation, the thermodynamic variables still

have dependence with the position and, for example, we can not assign a single pressure

for the whole system. But, can we find equivalent parameters to describe all the system

instead locally?

Global variables has a different meaning. In this approach, the purpose is to study

the system as a whole by using appropriated global parameters. These variables were

proposed in 2005 by Romero-Rochín and Bagnato (36–37) to study thermodynamic prop-

erties of trapped gases considering that the gas has only a global pressure and a global

volume. This new approach was initially proposed for harmonic potentials but it can be

generalized to arbitrary external potentials. (59) A detailed description for the global

variables can be found in references (36–37), and in (40–42) measurements can be found.

In this chapter we will introduce these variables, and in Chapter 6 we apply them to

evaluate the first sound.

In Chapter 5 we will compare the validity of these two treatments for same prop-

erties of the gas, such as the specific heat, the compressibility, and the equation of state.
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3.1 Volume and Pressure parameters

In Chapter 2 we have reviewed the statistical treatment for a non-interacting

Bose gas in a harmonic trap potential. Although these systems are excellent to test and

explore new concepts, the study of thermodynamics are not always appropriate. We need

to observe that since the density of a cloud in harmonic traps is not uniform, the pressure,

and many other thermodynamics variables, have different local values for the same cloud.

Bose-Einstein condensation occurs at a macroscopic level, thus is can be more

appropriate to study thermodynamics by means of parameters that can be associated

with the macroscopic system.

In the search for a global description of thermodynamics in trapped gases that

new variables were proposed. The idea is that the gas with 𝑁 atoms at a temperature

𝑇 , can be described by a global pressure and a global volume parameters, and they are

sufficient to obtain the equation of state for the gas.

We start by using fundamental thermodynamic relations and the grand canonical

potential definition

𝑈 = 𝑇𝑆 − 𝑃𝑉 + 𝜇𝑁 (3.1)

Ω = 𝑈 − 𝑇𝑆 − 𝜇𝑁 (3.2)

to show that the grand canonical potential is related with the pressure and the volume

by

Ω = −𝑃𝑉. (3.3)

We see from the last equation, that the grand thermodynamic potential is the

product of an extensive (𝑉 ) and a intensive thermodynamic variable (𝑃 ). For harmonic

traps, as it can be checked by Equation 2.28 in the thermodynamic limit

Ω = 1
6𝛽4(~�̄�)3 𝑔4(𝑧)Γ(4),

the grand canonical potential of a non-interacting gas is proportional to the frequencies

of the trap, instead its volume.
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Since many properties for this systems are obtained from derivation of the grand

canonical potential, we conclude that the trapping frequency is a thermodynamic variable.

(36) For a fixed number of atoms, any variation of the trapping frequencies will modify

the temperature and the entropy of the atoms.

With this argument, we motivate the definition of a variable proportional to the

trapping frequencies, given by

𝒱 = 1
𝜔𝑥𝜔𝑦𝜔𝑧

= 1
�̄�3 , (3.4)

that is called as harmonic volume parameter because it was originally defined for har-

monic trap potentials. The quantity �̄� is the geometric mean of the harmonic oscillator

frequencies, and is often used to simplify the calculations. Obviously the volume parame-

ter does not have units of the real spatial volume. Nevertheless, for a harmonic trap, small

trapping frequencies imply in a higher physical volume of the cloud than for a trap with

higher trapping frequencies, what gives for the volume parameter the same interpretation

as the physical volume of a bulk of rigid walls.

To find an equation of state we need to write the conjugate variable for the volume

parameter. This conjugated variable we will call pressure parameter, and it is found by

derivation of the grand canonical potential

Π = −
(︃
𝜕Ω
𝜕𝒱

)︃
𝑇,𝜇

, (3.5)

what leads to

Π = (𝑘𝐵𝑇 )4

~3 𝑔4(𝑧), (3.6)

and using this conjugated variable we can see that Ω = −Π𝒱 .

Now, we will describe a more realistic case, considering a fluid with interaction. The

volume parameter, by definition, is not affected by considering the interaction between

atoms, but the pressure parameter needs to be rewriten. In order to obtain Π we start to

consider the grand partition function, defined in Equation 2.8 as

𝒵 =
∑︁

𝑒−𝛽(𝐻𝑁 −𝜇𝑁)
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and now into the Hamiltonian of Equation 2.4 is inserted the interaction term: 𝐻 =

𝐾 + 𝑈𝑖𝑛𝑡 + 𝑈𝑒𝑥𝑡 with the kinetic energy given by 𝐾 = ∑︀
𝑖

𝑃 2
𝑖

2𝑚
, and the interaction energy

𝑈 = ∑︀
𝑖<𝑗

𝑈 (𝑟𝑖𝑗). We will write the external potential as a harmonic oscillator 𝑉𝑒𝑥𝑡 =∑︀
𝑖

1
2𝑚

(︁
𝜔2

𝑥𝑥
2
𝑖 + 𝜔2

𝑦𝑦
2
𝑖 + 𝜔2

𝑧𝑧
2
𝑖

)︁
. The grand partition function is then

𝒵 = exp
⎡⎣−𝛽

⎧⎨⎩∑︁
𝑖

𝑃 2
𝑖

2𝑚 +
∑︁

𝑖

1
2𝑚

(︁
𝜔2

𝑥𝑥
2
𝑖 + 𝜔2

𝑦𝑦
2
𝑖 + 𝜔2

𝑧𝑧
2
𝑖

)︁
+
∑︁
𝑖<𝑗

𝑈𝑟𝑖𝑗 − 𝜇𝑁

⎫⎬⎭
⎤⎦ . (3.7)

Just to simplify the calculations, we can write the harmonic external potential in

therms of the mean geometric frequency, 𝑉𝑒𝑥𝑡 = ∑︀
𝑖

1
2𝑚 (�̄�2𝑟2

𝑖 ), where 𝑟2
𝑖 = 𝑥2

𝑖 + 𝑦2
𝑖 + 𝑧2

𝑖 .

Then, using Equation 3.4, the external potential can be written in therms of the volume

parameter 𝑉𝑒𝑥𝑡 = ∑︀
𝑖

1
2𝑚𝒱−2/3𝑟2

𝑖 , and Equation 3.7 becomes

𝒵 = exp
⎡⎣−𝛽

⎧⎨⎩∑︁
𝑖

𝑃 2
𝑖

2𝑚 +
∑︁

𝑖

1
2𝑚𝒱−2/3𝑟2

𝑖 +
∑︁
𝑖<𝑗

𝑈𝑟𝑖𝑗 − 𝜇𝑁

⎫⎬⎭
⎤⎦ . (3.8)

Using the definition of the pressure parameter, Equation 3.5,

Π = −
(︃
𝜕Ω
𝜕𝒱

)︃
𝜇,𝑇

and the relation between the grand canonical potential function and the grand potential,

Equation 2.15, we write

Π = − 1
𝛽

1
𝒵

(︃
𝜕𝒵
𝜕𝒱

)︃
𝜇,𝑇

, (3.9)

and making the derivative of 𝒵
(︃
𝜕𝒵
𝜕𝒱

)︃
𝜇,𝑇

= − 2𝛽
3𝒱

∑︁
𝑖

1
2𝑚𝒱−2/3𝑟2

𝑖 𝑒
−𝛽(𝐻𝑁 −𝜇𝑁), (3.10)

we obtain the pressure parameter

Π = 2
3𝒱

1
𝒵
∑︁

𝑖

1
2𝑚𝒱−2/3𝑟2

𝑖 𝑒
−𝛽(𝐻𝑁 −𝜇𝑁). (3.11)

Now, in order to obtain Π in a more convenient form, we can change from discrete

to continuous writing

∑︁
𝑖

1
2𝑚𝒱−2/3𝑟2

𝑖 =
∫︁
𝑑3𝑟

1
2𝑚�̄�

2𝑟2∑︁
𝑖

𝛿(𝑟 − 𝑟𝑖), (3.12)
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which leads to

Π = 2
3𝒱

∫︁
𝑑3𝑟

1
2𝑚�̄�

2𝑟2 1
𝒵

Tr
[︃∑︁

𝑖

𝛿(𝑟 − 𝑟𝑖)𝑒−𝛽(𝐻𝑁 −𝜇𝑁)
]︃
, (3.13)

and since the density is given by

𝑛 (𝑛) = 1
𝒵

Tr
[︃∑︁

𝑖

𝛿(𝑟 − 𝑟𝑖)𝑒−𝛽(𝐻𝑁 −𝜇𝑁)
]︃
, (3.14)

we finally obtain

Π = 2𝑚
3𝒱

∫︁
𝑑3𝑟𝑛(𝑟)

(︁
𝜔2

𝑥𝑥
2
𝑖 + 𝜔2

𝑦𝑦
2
𝑖 + 𝜔2

𝑧𝑦
2
𝑖

)︁
(3.15)

which is a very useful expression for the pressure parameter in terms of the cloud density

and the external potential. This expression shows that the pressure parameter is obtained

directly from the cloud analysis, since all quantities involved are easily measured with

standard methods for extracting information of the clouds.

The pressure parameter depends on the density of the cloud, which is not homo-

geneous, and has two components for temperatures below 𝑇𝑐. These two components are

well described by a Thomas-Fermi distribution (See Equation 2.47) for the condensed

part and by a Gaussian distribution for the thermal part. The Thomas-Fermi distribution

is given by

𝑛𝐵𝐸𝐶 (𝑥, 𝑦, 𝑧) = 𝑛0
𝐵𝐸𝐶 max

⎡⎣1 −

⎧⎨⎩
(︂
𝑥

𝑅𝑥

)︂2
+
(︃
𝑦

𝑅𝑦

)︃2

+
(︂
𝑧

𝑅𝑧

)︂2
⎫⎬⎭ , 0

⎤⎦ (3.16)

where 𝑅𝑥, 𝑅𝑦, 𝑅𝑧 are the BEC radii, and 𝑛0
𝐵𝐸𝐶 = 15𝑁𝐵𝐸𝐶

8𝜋𝑅𝑥𝑅𝑦𝑅𝑧
is the peak density of the

distribution which is found by the normalization condition for the number of condensed

atoms 𝑁𝐵𝐸𝐶 =
∫︀
𝑛𝐵𝐸𝐶(𝑟)𝑑3𝑟.

In a similar way, the Gaussian distribution is given by

𝑛𝑡ℎ (𝑥, 𝑦, 𝑧) = 𝑛0
𝑡ℎ exp

⎡⎣−1
2

⎧⎨⎩
(︂
𝑥

𝜎𝑥

)︂2
+
(︃
𝑦

𝜎𝑦

)︃2

+
(︂
𝑧

𝜎𝑧

)︂2
⎫⎬⎭
⎤⎦ (3.17)

where 𝑛0
𝑡ℎ = 𝑁𝑡ℎ

(2𝜋)3/2𝜎𝑥𝜎𝑦𝜎𝑧
is the peak of the Gaussian distribution, 𝑁𝑡ℎ is the number of

thermal atoms, and 𝜎𝑥, 𝜎𝑦, 𝜎𝑧 are the cloud widths (Gaussian function width).

Using the equations above, we evaluate Equation 3.15 and obtain the final equa-

tions for the two components of the pressure parameter,

Π𝐵𝐸𝐶 = 𝑚𝑁𝐵𝐸𝐶

21𝒱
(︁
𝜔2

𝑥𝑅
2
𝑥 + 𝜔2

𝑦𝑅
2
𝑦 + 𝜔2

𝑧𝑅
2
𝑧

)︁
(3.18)
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Π𝑡ℎ = 𝑚𝑁𝑡ℎ

3𝒱
(︁
𝜔2

𝑥𝜎
2
𝑥 + 𝜔2

𝑦𝜎
2
𝑦 + 𝜔2

𝑧𝜎
2
𝑧

)︁
. (3.19)

We observe that the pressure parameter depends on the characteristics of the

potential and the size of the cloud. The procedures to extract the number of atoms in

each component, the widths of the thermal cloud, and the radii of the condensate will be

described in Section 4.7.

The physical meaning of this parameter is discussed in references (36,40), where it

is demonstrated that it has the same physical meaning that the local pressure of a fluid.

The pressure parameter is related with the hydrostatic pressure by

Π𝒱 =
∫︁
𝑝(�⃗�)𝑑3𝑟. (3.20)

The last equation show us that although the pressure parameter does not have the

same unit that the hydrostatic pressure, both have the same physical meaning, and also

that we can find the pressure parameter from the hydrostatic pressure.

In Chapter 5, we will use this variables to evaluate the specific heat at constant

volume for an ideal gas and we compare with the usual specific heat. Also, for an inter-

acting system, we compare this variables with the local density approximation, and we

will show that they are equivalent for the compressibility and for the equation of state.
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This chapter describes our experimental apparatus to produce Bose-Einstein con-

densation of 87𝑅𝑏 atoms either in |𝐹 = 2,𝑚𝐹 = 2⟩ or |𝐹 = 1,𝑚𝐹 = −1⟩ states *, and

where this thesis has been developed. Some brief description can also be found in recent

group’s papers (43–44) and more details about the current version can be found in the

master thesis. (48)

4.1 Experiment overview

There are many experimental configurations that are used to achieve Bose-Einstein

condensation. The main goal is to capture the atoms at relatively high temperatures and

taking them to very low temperatures, typically a few hundred nK, and densities on the

order of 1014 cm−3. Among many configurations, there is always a common requirement:

the low background pressure required to achieve the condensation. The setup chosen by

our group is the double-MOT (MOT - Magneto-Optical Trap) configuration (61), that is

composed by two regions at different pressures, each one with an independent MOT.

The second chamber is built in order to obtain lower pressures, since the atoms

source (dispensers) limits the pressure at about 10−9 Torr, which is not low enough to

achieve Bose-Einstein condensation.

The atoms captured in the first MOT are continuously transferred to the second

chamber, where again are captured in another MOT (named MOT2). The absence of the

dispensers in the second chamber allows achieving very low pressures. In our experiment,

* Here 𝐹 represent the hyperfine structure, that results from the coupling of the total angular momentum
of the electron J with the total nuclar momentum (I). The label 𝑚𝐹 represent the sublevels due the
Zeeman effect for the hyperfine structure. For more details we recommend the reader to the reference
(60).
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Figure 1 – Overview of the processes involved in the production of BEC in our experiment.
Source: By the author.

this pressure is around 10−12 Torr, an ideal pressure to perform experiments in Bose-

Einstein condensation.

The laser system is composed by three commercial diode lasers from TOPTICA
R○Photonics (two DLX110L and one TA pro). They are electronically locked to a hyperfine

line obtained from a saturated absorption spectroscopy signal. The frequency of these

lasers is manipulated using acousto optic modulators to obtain other frequencies necessary

for the experiment.

From the MOT to the condensation there are many steps needed to cool the atoms

and to increase the phase space density. The main sequence used in our experiment is

summarized in Figure 1. Basically, the atoms from the MOT2 are prepared in a sub-

level magnetically trappable and then transferred to a magnetic harmonic trap, where we

perform evaporative cooling and the BEC is produced.

To produce BEC there are many critical processes, where some microseconds are

decisive in the reproducibility. To run the experiment we program a time sequence in

a computer which controls all the analog and digital channels of two cards (National

Instruments PCI 6259 and PXI 6733). The sequence is programmed using Python and
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compiled with Labview, having a time precision of 5𝜇s, which means that is possible to

generate pulses or ramps with duration as low as of 5𝜇s.

In what follows, we describe in more detail each one of these processes.

4.2 Vacuum system

The vacuum system is the first part to be built and one of the most important

in the experiment. The goal in construct the vacuum system is to remove, as much as

possible, the particles inside the chamber to avoid collisions with the trapped atoms. Once

the high vacuum is reached the pressure is maintained the same for years, without any

intervention.

To load a MOT, a pressure around 10−8 Torr is already enough, but this pressure

does not allow the BEC achievement because at this pressure the losses by collisions with

background vapor during the evaporative cooling overcome the increase in phase-space

density. Using dispensers as the source of atoms to load the MOT limits the pressure in

a value too high for studying Bose-Einstein condensation. A very common configuration,

which solves this problem, is to build the system with two chambers, one to produce a first

MOT and another one to make the other processes. This system is named as double-MOT

configuration, and allows to reach low pressures.

Our system was built in this configuration and its three-dimensional representation

is shown in Figure 2, which, in terms of pressure, can be differentiated in three regions: The

MOT1 region, the differential pumping, and the science chamber. In the MOT1 chamber,

the pressure is limited in 10−9 Torr, the second region, which is the connection between

the two chambers, contain a narrow tube which provides the differential pumping between

them. The third region is the science chamber and is kept at 10−12 Torr, that is already

ultra-high-vacuum, ideal to produce and study BEC. Details about the construction and

specifications can be found in reference. (48)
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Figure 2 – Schematic drawing to the vacuum system. In the first chamber there are the dis-
pensers, which are the atoms source for the experiment. In this chamber the atoms
are trapped in a MOT which works as the atoms source for the science chamber. In
the science chamber we perform all the other process required to obtain the conden-
sation.

Source: By the author.

4.3 Double-MOT configuration

In the first chamber of our experiment there are the dispensers, which are the

atoms source. It is a filament containing the atoms to be evaporated. The atoms are

encapsulated with a reducing agent and the mixture is stable at room temperature but

when it is heated at around 600 ∘C it spreads atoms. (62) The heating is usually done by

means of an electric current, and the temperature of the dispenser is proportional to the

current that flows through it. Typical values of current are between 1 ∼ 6 A.

The atoms released from the dispenser are trapped in a MOT. The MOT combines

the radiation pressures of the laser with an inhomogeneous magnetic field and is able to

confine about 109 atoms. The first realization of a MOT was in 1987 (18) and because it

needs relatively weak magnetic field and power for the lasers, it became a very common

choice to experiments in cold atoms.
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Figure 3 – Illustration for the magneto-optical trap configuration. The 3D-MOT is composed
of three pairs (beams with opposite circularization) orthogonal counterpropagating
laser beams and an inhomogeneous magnetic field produced by a pair of coils in
anti-Helmholtz configuration.

Source: By the author.

A MOT is formed by three pairs of independent retro-reflected, circularly polarized,

laser beams and a pair of coils in anti-Helmholtz configuration. Using an inhomogeneous

magnetic field the energy levels of the atoms are shifted (Zeeman effect) and it makes

the force experienced by their atoms dependent on the position and the frequency of the

light. Figure 3 presents a representation of a MOT configuration, details and the theory

about MOT and optical molasses can be found in references. (63–67)

The frequency of the trap beams is red-detuned with the 5𝑆1/2(𝐹 = 2) → 5𝑃3/2(𝐹 =

3) transition to cool the atoms rather than heat them. Also, when this detuning is com-

bined with the correct polarization and magnetic field gradient creates the restoring force

that confine the atoms.

Another beam is necessary to recover the atoms that occasionally decay to the

(𝐹 = 1) state. This light, called repumper light, is superimposed with the trap beams

and is resonant with the 5𝑆1/2(𝐹 = 1) → 5𝑃3/2(𝐹 = 2) † transition.

† Here we are using the spectroscopic notation in which the atomic state is labeled by 2𝑆+1𝐿𝐽 . Us-
ing this notation, the orbital angular momentum (𝐿 = 0, 1, 2, 3, ...,) is associated with the a letter
(𝑆, 𝑃, 𝐷, 𝐹, ...,). 𝑆 and 𝐽 are the spin angular momentum and the total angular momentum of the
electron respectively. We recomend the reference (60) for more details.
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The magnetic gradient field for the MOT does not have to be intense, about

10 G/cm is enough, and is generated by two coils in anti-Helmholtz configuration. Three

additional pairs of coils are orthogonally positioned to change the position of the MOT

and to help better transfer them to the second chamber. Using a total power of about

100 mW for the trap beams and around 25 mW for the repumper, the MOT1 traps around

3 × 108 atoms with a temperature of ∼ 320𝜇K.

The atoms in the MOT1 are the source for the MOT2 and are continuously trans-

ferred to the second chamber by a beam (push beam) with 2 mW of power resonant with

the trap transition of the MOT1. In the second chamber the atoms are captured by an-

other magneto-optical trap. This trap is similar to the MOT1, the difference is that the

beams for the MOT2 are totally independent instead of being retro-reflected, since this

gives more control to transfer the atoms to the magnetic trap. The MOT2 traps about

2 × 109 atoms at the same temperature of the MOT1, and it is necessary 30 s to fully

load this MOT. Once the MOT2 is loaded, the atoms are transferred to a pure magnetic

trap where it will be performed evaporative cooling. Some procedures need to be done

to efficiently transfer the atoms from the MOT to the magnetic trap and they will be

described in the next section.

4.4 Transference to the magnetic trap

This MOT to magnetic trap transference is very critical for some reasons that

we will discuss here, and the main goal is to optimize the number of atoms loaded in

the magnetic trap and its phase space density. The higher the number of atoms and the

lower the temperature after these processes will maximize the efficiency in the evaporative

cooling.

During the transference , the cloud size and its position are very important . The

position of the quadrupole trap center is fixed by the position of the coils, and the cloud
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position needs to match the trap center to avoid heating. The position of the cloud can

be set by the alignment of the beams, but it is also easier to transfer smaller clouds.

We make the following sequence to maximize this transference and to prepare the cloud

before evaporative cooling.

The first step is a compression of the cloud, which was first demonstrated by

Petrich et al in 1994. (68) In this process the frequency of the cooling laser is red detuned

to decrease the photon scattering rate and make the atoms accumulate in the trap center,

reducing the cloud size. There is the possibility to make this process at the same time of an

increasing in the magnetic field gradient. In our experiment we found the best parameters

changing the detuning frequency from Δ = −20 MHz to Δ = −60 MHz in 5 ms and it

makes no difference in changing the magnetic field gradient, which remains fixed during

this process.

The next step, known as optical molasses or sub-Doppler cooling (69), is used

to decrease the temperature of the cloud. The magnetic field is switched off and the

cloud expands in the presence of light, whose frequency again is shifted further from

the transition. The power in this process is naturally decreased by the efficiency of the

modulators when the frequency is set far from the value where they are optimized. In the

experiment the frequency is shifted to −70 MHz and the cloud expands for 4 ms. The final

temperature of the cloud after this process is around 50𝜇K.

Finally, when all the processes to decrease the temperature of the cloud and to

increase its density are finished, the atoms have to be prepared in a state magnetically

trappable. After the optical molasses, the atoms are in a mixture of all the five Zeeman

states of the 𝐹 = 2, and only two of them are magnetically trappable. Because of its higher

magnetic moment, the |𝐹 = 2,𝑚𝐹 = 2⟩ has stronger confinement in magnetic traps, which

makes easier the process of evaporative cooling. Since the first version of this experiment

the |𝐹 = 2,𝑚𝐹 = 2⟩ state has been chosen for all research topics, but recently, in a study

by our group involving quantized vortices in BEC, the |𝐹 = 1,𝑚𝐹 = −1⟩ became an

option to generate vortices with different charges.

To choose between the two states, the optical pumping process needs to be different
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to make it efficient in transfer the atoms into the desired state. Both states need to

be optically pumped with pulses of circularly polarized light, since it makes transitions

between the 𝑚𝐹 and 𝑚𝐹 ±1 state. Two pulses of light resonant with a defined transition

are applied to increase the probability that the atom will be in the desired state after the

optical transitions.

When we select the |𝐹 = 2,𝑚𝐹 = 2⟩ state, we make a pre-optical pumping switch-

ing off the trap light 0.5 ms before the repumper light, and it places most of the atoms

in the 𝐹 = 2 manifold. After this, we apply a homogeneous magnetic field of about 1 G

which split the Zeeman levels. The efficiency in populating the |𝐹 = 2,𝑚𝐹 = 2⟩ state has

a maximum in about 70 % when two pulses of right-circular polarized light are applied,

one is resonant with the 5𝑆1/2(𝐹 = 1) → 5𝑃3/2(𝐹 = 2) transition and the other is set in

the 5𝑆1/2(𝐹 = 2) → 5𝑃3/2(𝐹 = 2) transition. The first pulse (1 − 2) stays on for 120𝜇s,

and the second one (2 − 2) for 25𝜇s.

In order to populate the |𝐹 = 1,𝑚𝐹 = −1⟩, the pre-optical pumping is done switch-

ing off the repumper light 0.5 ms before the trapping light to place most of atoms in the

𝐹 = 1 manifold. After this, we need to apply left-circular polarized light in the atoms to

induce 𝑚𝐹 →𝑚𝐹 −1 transitions. We turn on the homogeneous magnetic field to split the

Zeeman states and then we apply two pulses of left-circularly polarized light, one of them

resonant in the 5𝑆1/2(𝐹 = 1) → 5𝑃3/2(𝐹 = 1) transition, with duration of 80𝜇s and the

other one in the 5𝑆1/2(𝐹 = 2) → 5𝑃3/2(𝐹 = 2) transition which stays on for 1.2 ms. Fol-

lowing this procedure the efficiency in transfer the atoms to the |𝐹 = 1,𝑚𝐹 = −1⟩ state

is about 50 %.

After the optical pumping process all the light in the science chamber is turned

off and the atoms are prepared to be caught in the pure magnetic trap.
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4.5 Magnetic trap

Magnetic traps work due to the interaction of the magnetic moment −→𝜇 of an atom

with a magnetic field −→
𝐵 . The potential energy of this interaction is given by 𝑉 = −→𝜇 ·

−→
𝐵 =

𝑚𝐹𝑔𝐹𝜇𝐵|
−→
𝐵 |, where 𝑚𝐹 is the Zeeman level, 𝑔𝐹 is the Landé g-factor, and 𝜇𝐵 is the Bohr

magneton.

The energy interaction between the atom and the magnetic field depends on the

atom state. For 87𝑅𝑏, 𝑔𝑓 = −1/2 for the 𝐹 = 1 state and is 𝑔𝑓 = 1/2 for 𝐹 = 2. So, the

energy of the states |𝐹 = 2,𝑚𝐹 = 2⟩, |𝐹 = 2,𝑚𝐹 = 1⟩ and |𝐹 = 1,𝑚𝐹 = −1⟩ increase as

the magnetic field increases, what makes them "low-field seekers". The states whose energy

decreases as the magnetic field increases are known as "high-field seekers". By creating a

trap with a minimum in the magnetic field it is possible to capture the "low-field seekers".

Between all the three magnetically trappable states the |𝐹 = 2,𝑚𝐹 = 2⟩ has the

strongest interaction with the magnetic field, and since for this state the trap is tighter,

this is the most favorable to be condensed through the magnetic evaporative cooling

process.

We capture the atoms in a magnetic trap after the optical pumping process by

increasing the current in the quadrupole coils. The magnetic field is increased, from about

20 G/cm used in the MOT, to 75 G/cm in a few milliseconds, optimized to capture the

largest number of atoms.

After capturing the atoms, we increase the gradient to a value which allows an

effective collision rate for evaporative cooling. This increasing is performed to a final

value of 330 G/cm in a linear ramp of 400 ms and it remains fixed to the end.

Advantages in magnetic quadrupole traps include its high efficiency in capture

the atoms from the MOT, due to its large trapping volume, the inconvenient is that its

minimum is a point with zero magnetic field, and for "low-field seekers" this is the point

where it minimizes the energy, and where they are susceptible to suffer a change for a

non-trappable state, known as Majorana spin flips (70) which push the atoms outside the
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Figure 4 – Illustration for QUIC trap configuration used in our experiment. The QUIC trap
is formed by a pair of coils in anti-Helmholtz configuration (quadrupole coils) and
another coil (Ioffe) which transforms the minimum (which is zero) for the quadrupole
potential into a harmonic potential with a non-zero minimum.

Source: By the author.

trap.

To solve this inconvenient some solutions were implemented using blue detuned

laser (23), red detuned lasers (71), and using other configurations for the magnetic field.

(72–74) The last reference uses a single coil (Ioffe coil) perpendicular to the quadrupole

axis which, combined with the quadrupole field, results in a harmonic potential. This

configuration is known as Quadrupole-Ioffe configuration (QUIC) and was adopted in our

system. The correspondent drawing is presented in Figure 4.

The quadrupole and Ioffe coils are in series connected and the conversion from the

quadrupole trap to harmonic QUIC trap is done by slowly increasing the current in the

Ioffe. The time duration for this conversion is 600 ms and, as can be observed in Figure

5, when the current in the Ioffe has almost the same value of the quadrupole current, the

potential has a harmonic profile which can be described as

𝑉 (𝑥, 𝑦, 𝑧) = 𝑉0 + 𝑚

2 (𝜔2
𝑥𝑥

2 + 𝜔2
𝑦𝑦

2 + 𝜔2
𝑧𝑧

2) , (4.1)

where 𝑉0 is the non-zero potential minimum value (this minimum value is proportional to
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Figure 5 – Magnetic field magnitude in the Ioffe direction (x-direction of Figure 4) for a few
values of current in the Ioffe coil. Increasing the current in the Ioffe to almost the
same as the current in the quadrupole coils, the field becomes harmonic.

Source: By the author.

a magnetic field of about 1.4 G). The theoretical values for the frequencies are given by

𝜔𝑟 =
√︃
𝑚𝐹𝑔𝐹𝜇𝐵

𝑚

(𝐵′
𝑟)2

𝐵0
, and 𝜔𝑧 =

√︁
𝑚𝐹𝑔𝐹𝜇𝐵𝐵′′/𝑚,

where 𝑚 is the atomic mass, 𝐵0 is the minimum value of the magnetic field, 𝐵′ is the

gradient in the radial direction and 𝐵′′ is the curvature (75). The values 𝐵0, 𝐵′, e 𝐵′′

are given by the coils geometry and the current through them. In our experiment the

maximum current is 25 A and for this value we obtain 𝐵0 = 1.22G, 𝐵′
𝑧 = 162G/cm, 𝐵′

𝑟 =

165G/cm, and 𝐵′′
𝑧 = 282.8G/cm2. Using these parameters we can calculate the frequencies

for the trap which depend on the 𝑚𝐹 state. We obtain 𝜔𝑥 = 𝜔𝑦 = 𝜔𝑟 = 2𝜋 × 190.5Hz

and 𝜔𝑧 = 2𝜋 × 21.4Hz for the |𝐹 = 2,𝑚𝐹 = 2⟩ and for |𝐹 = 1,𝑚𝐹 = −1⟩ we obtain

𝜔𝑟 = 2𝜋 × 137.7Hz and 𝜔𝑧 = 2𝜋 × 15.2Hz

The frequencies of the trap can be measured by exciting the condensate dipolar

mode, which can be done by modulating the magnetic field. The measured frequencies for

our experiment are given by 𝜔𝑥 = 2𝜋×21 Hz, 𝜔𝑦 = 2𝜋×189 Hz and 𝜔𝑧 = 2𝜋×187 Hz, for

the |𝐹 = 2,𝑚𝐹 = 2⟩ states and 𝜔𝑥 = 2𝜋× 15 Hz, 𝜔𝑦 = 2𝜋× 133 Hz and 𝜔𝑧 = 2𝜋× 134 Hz

for the |𝐹 = 1,𝑚𝐹 = −1⟩ state. All of them are very close to the expected theoretical

values.

After all these process we obtain ∼ 4×108 atoms at about 450𝜇K and ∼ 2.5×108 atoms
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Figure 6 – Representation of the evaporative cooling process. When the most energetic atoms
are removed from the trapping potential, the atomic sample retermalizes and its
temperature decreases.

Source: By the author.

at about 250𝜇K for the states |𝐹 = 2,𝑚𝐹 = 2⟩ and |𝐹 = 1,𝑚𝐹 = −1⟩ respectively. The

next step is to cool the atoms using evaporative cooling to achieve the condensation.

4.6 Evaporative cooling induced by radio-frequency

Atoms or molecules in a gas have an atomic velocity distribution well described by

the Maxwell-Boltzmann distribution. Evaporative cooling is the process of removing the

most energetic atoms (hottest atoms) from the ensemble, allowing the remaining atoms to

rethermalize in a lower temperature by elastic collisions. A representation of this process

is shown in Figure 6.

Evaporative cooling of trapped atoms was first proposed in 1985 to cool spin-

polarized hydrogen (10), and the first demonstration was done in 1988 (11). Evaporative

cooling works in a competition between cooling and lifetime of the sample: For an efficient

process the thermalization must allow decreasing the temperature in a time shorter than
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the lifetime of the cloud inside the trap.

In 1989 (21) this technique receives its major improvements: The proposal was to

use radio frequency (RF) radiation to remove atoms in a selective way. The first demon-

stration of forced evaporative cooling using RF was reported in 1993 (76) and it proved to

be effective in increasing the phase-space density. The radio frequency changes the atomic

state taking them to a non-trappable state, expelling the atoms from the trap.

This technique has high efficiency in selective removal of atoms because the energy

between two Zeeman levels is proportional to the magnetic field. The most energetic

atoms will fell higher magnetic fields, consequently, the resonant frequency can be set to

remove only the most energetic atoms without affecting the colder atoms. A more detailed

discussion about evaporative cooling in magnetic traps can be found in reference (77) and

here we will discuss just the procedure followed in our experiment.

In our experiment, the separation between the Zeeman levels is about 20 MHz for

the hottest atoms, defining the appropriate value to start the evaporation. To find the

exact value we turn on the RF when the atoms are in the QUIC trap and we keep it

on for some time, starting with high values of RF and decreasing this value observing

the number of atoms remaining in the trap. When the RF affects the most energetic

atoms they are removed from the trap and then we know the value of RF for starting the

evaporative process.

Starting with this value we need to optimize the evaporation in order to reach

the condensation, which occurs only if the phase space density (PSD) is greater of equal

to 2.612. The efficiency of the evaporation is determined by the number of atoms which

remain at the end of the process. In this way, evaporation needs to be performed with a

maximum increase in phase-space density with the smallest loss in the number of atoms.

In this process, when the hottest atoms are removed, the collisions between atoms allow

the rethermalization of the cloud in a lower temperature. The objective is to make a

runaway evaporation, which consists in decreasing the temperature, keeping constant or

increasing the collision rate.
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Figure 7 – Experimental evaporation ramp applied in the atoms to reach the condensation. The
ramp is broken in small ramps to improve the optimization. The best final ramp
presents a typical exponential curve.

Source: By the author.

After a good and detailed discussion about all the relevant quantities in the evap-

oration process, Ketterle (77) point that since the goal is to increase the phase space

density, the best parameter to be optimized is given by

𝛾 = ln(𝑃𝑆𝐷𝑓𝑖𝑛𝑎𝑙/𝑃𝑆𝐷𝑖𝑛𝑖𝑡𝑖𝑎𝑙)
ln(𝑁𝑓𝑖𝑛𝑎𝑙/𝑁𝑖𝑛𝑖𝑡𝑖𝑎𝑙)

. (4.2)

To improve the efficiency, we break the RF ramp in many other linear ramps, and

for each one we optimize 𝛾. These small ramps are defined with an initial and a final

frequency and the velocity for this swap is optimized to find the best 𝛾. After optimized

the first section we add a new one and we repeat the process. The entire ramp is shown

in Figure 7, and it is possible to observe an exponential behavior starting in 23 MHz and

finishing in 1.6 MHz. In fact, after we have found the frequency to start the evaporation,

one exponential ramp is sufficient to reach the condensation, and the only parameter to

be optimized is the time constant of the exponential function.

As discussed in the previous section, the processes used to increase the PSD before

the transference to the QUIC trap are more efficient for the 𝐹 = 1 than for the 𝐹 = 2. On

the other hand, in forced evaporative cooling, the potential is stronger for the 𝐹 = 2, which

makes the rethermalization faster, resulting in a shorter time to achieve the degeneracy. In
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our experiment, the duration for evaporation of either state are almost the same, because

for the 𝐹 = 1 the cloud is a lot colder, consequently, the variation in the temperature

required to achieve the condensation is smaller.

After evaporative cooling, we obtain an almost pure BEC of around 2 × 105 atoms

in the |𝐹 = 2,𝑚𝐹 = 2⟩ or around 3 × 105 atoms in the |𝐹 = 1,𝑚𝐹 = −1⟩.

In the following section, we describe the last step of the experiment, which consists

in imaging the atoms to obtain all the relevant information.

4.7 Probing the atoms

In our experiment, we use absorption image to obtain all information about the

atom cloud. In this technique, a resonant probe beam is used to illuminate the cloud and

its shadow is imaged in a camera CCD. The image profile is then analyzed and it provides

the quantities such as atom number, dimensions of the cloud, temperature, and phase-

space density. Since the cloud is too dense to be imaged in trap, the atoms are released

and allowed to freely expand before probing, what is known as time-of-flight (TOF).

4.7.1 Imaging

For absorption image it is necessary to have a normalized image constructed from

three different images. The first image (atoms) is taken with the atoms to obtain its

shadow. The second image (probe) is taken without atoms to capture the intensity of the

probe, and finally, the third one (background) is taken without any light in the experiment,

which gives information about the background level.

We make all pulses with 40𝜇s with power about 800𝜇W. The CCD, triggered
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and synchronized by the computer control, capture the intensity of each image and send

it to a computer which makes the normalization: 𝐼𝑁 = (𝐼𝑎𝑡𝑜𝑚𝑠 − 𝐼𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑)/(𝐼𝑝𝑟𝑜𝑏𝑒 −

𝐼𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑). The normalized image 𝐼𝑁 will provide the density profile of the cloud which

is then analyzed to extract relevant information. The absorption of the probe light is well

described by the Beer’s law

𝐼(𝑥, 𝑦) = 𝐼0(𝑥, 𝑦)𝑒−𝑂𝐷(𝑥,𝑦) , (4.3)

where 𝐼(𝑥, 𝑦) is the intensity of the light propagating along the 𝑧 direction, 𝐼0(𝑥, 𝑦) is the

initial probe beam intensity,𝑂𝐷(𝑥, 𝑦) = 𝜎0
∫︀
𝑛(𝑥, 𝑦, 𝑧)𝑑𝑧 is the optical density distribution

of the sample and 𝜎0 is the absorption cross-section (for 87Rb, 𝜎0 ≈ 1.36×10−9 cm2 (78)).

From Equation 4.3 we obtain

𝑂𝐷(𝑥, 𝑦) = − ln
(︃
𝐼(𝑥, 𝑦)
𝐼0(𝑥, 𝑦)

)︃
, (4.4)

which is the optical density profile of the cloud. The quantity 𝐼(𝑥,𝑦)
𝐼0(𝑥,𝑦) is exactly the result of

the normalized image and is used to extract information of the cloud. The optical density

profile of the normalized absorption image is fitted by the theoretical distribution which

is defined according to the characteristic of the cloud (thermal or condensed). The routine

is programmed in a computer using Python, and soon after the image is received on the

computer all the calculations are done and the information is available.

In the following, we describe the theoretical functions that are used to extract

information of the cloud.

4.7.2 Fitting

In section 2.2 we found the density distribution of a Bose-Einstein condensate

making the Thomas-Fermi approximation. For a harmonic trapping potential the density

distribution 𝑛𝑇 𝐹 (𝑥, 𝑦, 𝑧) for the cloud has a parabolic profile (See Equations 2.44 and

3.16). The absorption image is the integration of this distribution in the probe direction,
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what results in a 2D density distribution given by

𝑂𝐷𝑇 𝐹 (𝑥, 𝑦) = 𝑂𝐷𝑝𝑒𝑎𝑘
𝑇 𝐹 max

⎡⎣(︃1 − (𝑥− 𝑥0)2

𝑅2
𝑥

− (𝑦 − 𝑦0)2

𝑅2
𝑦

)︃3/2

, 0
⎤⎦ (4.5)

where 𝑂𝐷𝑝𝑒𝑎𝑘
𝑇 𝐹 is the peak value of the distribution, 𝑥0 and 𝑦0 are the center of mass coor-

dinates. For thermal cloud the density distribution is described by the classical Maxwell-

Boltzmann distribution (See Equation 3.17). In this way, we can fit the thermal cloud by

a Gaussian function

𝑂𝐷𝑡ℎ(𝑥, 𝑦) = 𝑂𝐷𝑝𝑒𝑎𝑘
𝑡ℎ exp

[︃
−(𝑥− 𝑥0)2

𝜎2
𝑥

− (𝑦 − 𝑦0)2

𝜎2
𝑦

]︃
(4.6)

where 𝑂𝐷𝑝𝑒𝑎𝑘
𝑇 𝐹 is the peak value of the distribution.

When the cloud is partially condensed, i.e. below the critical temperature, there

are thermal and condensed atoms, and to extract the information we need to fit it with

an appropriate function that we call bimodal function, which is the sum of Gaussian and

Thomas-Fermi functions defined above. Using the optical density for each part, we write

the bimodal optical density of the cloud as 𝑂𝐷𝑏𝑖𝑚(𝑥, 𝑦) = 𝑂𝐷𝑇 𝐹 (𝑥, 𝑦) +𝑂𝐷𝑡ℎ(𝑥, 𝑦).

The number of thermal atoms can be obtained by integrating the thermal density,

𝑁𝑡ℎ =
∫︁
𝑛𝑡ℎ(𝑥, 𝑦, 𝑥)𝑑𝑥𝑑𝑦𝑑𝑧 = 1

𝜎0

∫︁
𝑂𝐷𝑡ℎ(𝑥, 𝑦)𝑑𝑥𝑑𝑦, (4.7)

which results in

𝑁𝑡ℎ = 2𝜋𝑂𝐷𝑝𝑒𝑎𝑘
𝑡ℎ

𝜎0
𝜎𝑥𝜎𝑦, (4.8)

and by integrating the condensate density we obtain the number of condensed atoms

𝑁𝐵𝐸𝐶 = 2𝜋𝑂𝐷𝑝𝑒𝑎𝑘
𝑇 𝐹

5𝜎0
𝑅𝑥𝑅𝑦. (4.9)

The temperature of the cloud can be obtained by the expansion of the cloud in

TOF since the cloud expands freely. The expansion velocity (𝑣) is constant and related

to the temperature through the expression

1
2𝑘𝐵𝑇 = 1

2𝑚𝑣
2, (4.10)
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where 𝑚 is the mass of the atoms. When the cloud is released from the trap, its width

in each direction (𝑖) will increase linearly, and after a time 𝑡 (which is the time-of-flight),

𝜎2
𝑖 = 𝜎2

𝑖0 + 𝑣2
𝑖 𝑡

2. After a large time-of-flight‡ we can assume 𝜎𝑖0≪𝜎𝑖, resulting in

𝑇 = 𝑚

𝑘𝐵

(︂
𝜎

𝑡

)︂2
. (4.11)

‡ for a harmonic trap this condition is valid when 𝑡 > 1/𝜔𝑖, where 𝜔𝑖 is the frequency of the trap in the
𝑖 direction.
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5 Comparison between global vari-

ables and other approaches

An inconvenient to study thermodynamics in trapped Bose gases is that the usual

variables are not always good variables to study this system. We are familiarized to

work with the usual equation of state for a gas in a bulk of rigid walls, where we can

directly define pressure and volume. However, Bose-Einstein condensates are produced in

trapping potentials where the trap interacts with the gas everywhere, what leads us to

make considerations about the volume and pressure. If we consider a thermal cloud in

a harmonic trapping potential, its density has a Gaussian profile, and is not possible to

define a finite space for the volume occupied by the cloud.

Other inconvenient is that most of the traps where BEC is achieved are harmonic,

and this leads to a non uniform density profile. With such a versatile system to test many

fields of physics, there are not many studies involving thermodynamics in trapped gases,

and this comes from the difficulty to obtain valid thermodynamic parameters, such as

volume and pressure. Some properties of the gas can be measured by using the local

density approximation (LDA), which consist in consider that locally the density, or the

potential, can be considered uniform. One important work where the LDA is applied was

published by a group at MIT (35), where they used this theory to study thermodynamics

on a Fermi gas.

One alternative is to use the global variables, which were defined specifically for

these systems. These variables have been used in our group to study thermodynamics

in trapped gases, and they have presented the typical behavior that is expected to be

observed with the conventional treatment. In every work where global variables are used,

it is difficult to compare with other approaches because these variables do not have the

same usual meaning, and the analogy needs to be done with attention. For this reason,

only qualitative comparisons were done until now.
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In this chapter, we theoretically test the validity of the global thermodynamic

variables by comparing it, as much as possible, with other methods.

For an ideal gas we compare the specific heat evaluated using the global variables

with that evaluated using the standard statistic treatment. We use the simplicity to

obtain an expression for the interacting gas in the global approach, to see the effects of

the interaction in the specific heat.

Then, for the same interacting system we use the local-density approximation to

obtain expressions for the compressibility and the equation of state. We used the global

variables to obtain equivalent expressions and then we make a comparison between both

methods.

5.1 Specific heat for an ideal gas: Conventional ver-

sus global variables

5.1.1 Conventional specific heat

The specific heat for an ideal gas is vastly discussed in standard books of ther-

modynamics and statistical mechanics, and is obtained by first writing the energy, and

then deriving it with respect to the temperature. We will call this procedure conventional

specific heat.

By definition, the specific heat is given by

𝐶𝑉 =
(︃
𝜕𝐸

𝜕𝑇

)︃
𝑉

. (5.1)

For an ideal Bose gas, the internal energy is obtained by summing the energy of all states,
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𝐸 = ∑︀
𝑗 𝜖𝑗𝑛𝑗. With 𝑛𝑗 given by Equation 2.18,

𝑛𝑗 = 1
exp [𝛽(𝜖𝑗 − 𝜇)] − 1 , (5.2)

we obtain

𝐸 =
∞∑︁

𝑗=0

𝜖𝑗

exp [𝛽(𝜖𝑗 − 𝜇)] − 1 . (5.3)

In a BEC we have two important regimes of temperature, these regimes are defined

by the transition where the condensation takes place. Above the critical temperature there

is only thermal component, and consequently, we need to compute only the energy of

thermal atoms. Below the critical temperature condensed atoms also are present, and we

need to analyze its fraction as a function of temperature.

We start evaluating the energy for the condensed phase. In this regime we need

just to evaluate the energy of the excited atoms, since the energy of the condensate is

zero, as well as the chemical potential for non interacting particles. In the last equation,

since the condensed atoms do not contribute for the total energy, we can simple convert

the sum into an integral without an additional term, what leads to

𝐸 = 1
2(~�̄�)3

∫︁ ∞

0

𝜖3

exp(𝛽𝜖) − 1𝑑𝜖, (5.4)

which, after using the integral

∫︁ ∞

0

𝑥𝑛−1

𝑒𝑥 − 1𝑑𝑥 = Γ(𝑛)𝜁(𝑛) (5.5)

results in

𝐸 = 1
2𝛽4(~�̄�)3 Γ(4)𝜁(4) = 1

2(~�̄�)3 Γ(4)𝜁(4)(𝑘𝐵𝑇 )4. (5.6)

In order to write the energy as a function of the number of atoms and the critical

temperature, we can use Equation 2.31

𝑇𝑐 = ~�̄�
𝑘𝐵

(︃
2𝑁

Γ(3)𝜁(3)

)︃1/3

, (5.7)

which allows us to rewrite the energy. After replacing the last expression, we obtain

𝐸 = 3𝑁𝑘𝐵
𝜁(4)
𝜁(3)

𝑇 4

𝑇 3
𝑐

. (5.8)
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Finally, after finding the equation for the energy, we derive it with respect to 𝑇 to

obtain the specific heat at constant volume for the condensed phase,

𝐶𝐵𝐸𝐶
𝑉 = 12𝑁𝑘𝐵

𝜁(4)
𝜁(3)

(︂
𝑇

𝑇𝑐

)︂3
. (5.9)

To find the expression for the specific heat valid above and close of 𝑇𝐶 we need to

expand the exponential term in the expressions for the number of atoms and the energy.

(54) This expansion can be done because at higher temperatures the exponential term,

which is proportional to 𝑇−1, becomes small.

Using the expansion (𝑒𝑥 − 1)−1 in the general expression for the number of thermal

atoms, Equation 2.23, and for the energy , Equation 5.4 with 𝜇 ̸= 0, we obtain

𝑁 ≃ 1
2(~�̄�)3

∫︁ ∞

0
𝜖2
[︁
𝑒𝛽(𝜇−𝜖) + 𝑒2𝛽(𝜇−𝜖)

]︁
𝑑𝜖, (5.10)

and

𝐸 ≃ 1
2(~�̄�)3

∫︁ ∞

0
𝜖3
[︁
𝑒𝛽(𝜇−𝜖) + 𝑒2𝛽(𝜇−𝜖)

]︁
𝑑𝜖. (5.11)

From these two expressions, and using Equation 2.31 for the critical temperature,

we obtain

𝐸 ≃ 3𝑁𝐾𝐵𝑇

[︃
1 − 𝜁(3)

16

(︂
𝑇𝑐

𝑇

)︂3]︃
, (5.12)

and then

𝐶𝑡ℎ
𝑉 ≃ 3𝑁𝐾𝐵

[︃
1 + 𝜁(3)

8

(︂
𝑇𝑐

𝑇

)︂3]︃
. (5.13)

Analyzing this expression for very high temperature we obtain

𝐶𝑡ℎ
𝑉 = 3𝑁𝐾𝐵, (5.14)

that is the known result for the specific heat of an ideal gas.

The last expression can also be obtained if we consider that at higher temperatures

the occupation number becomes small and the Bose-Einstein distribution reduces to the

Maxwell-Boltzmann distribution (𝑒𝛽(𝜖−𝜇) ≫ 1), what leads to the number of atoms and

the energy to be written as

𝑁 = 1
2(~�̄�)3

∫︁ ∞

0
𝜖2𝑒𝛽(𝜇−𝜖)𝑑𝜖, (5.15)
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and

𝐸 = 1
2(~�̄�)3

∫︁ ∞

0
𝜖3𝑒𝛽(𝜇−𝜖)𝑑𝜖, (5.16)

respectively.

After making an integration by parts of Equation 5.16 we obtain

𝐸 = 1
2(~�̄�)3 3𝑘𝐵𝑇

[︂∫︁ ∞

0
𝜖2𝑒𝛽(𝜇−𝜖)𝑑𝜖

]︂
. (5.17)

The term in brackets is the equation for the number of atoms, then the energy is

given by

𝐸 = 3𝑁𝑘𝐵𝑇, (5.18)

and consequently the specific heat for the thermal part is

𝐶𝑡ℎ
𝑉 = 3𝑁𝑘𝐵. (5.19)

5.1.2 Global specific heat

The energy is the fundamental part to obtain the specific heat. Using global vari-

ables, the internal energy of a trapped gas in a harmonic trap is 𝐸𝑡ℎ = 3Π𝑡ℎ𝒱 for the

thermal atoms and 𝐸𝐵𝐸𝐶 = 5
2Π𝐵𝐸𝐶𝒱 for the condensate. (41) The energy for the thermal

part is easily obtained if we write the internal energy following the derivation of Equation

2.27, the difference is just that the energy is given by 𝐸 = ∑︀
𝑗 𝜖𝑗𝑛𝑗 and the number of

atoms is just 𝑁 = ∑︀
𝑗 𝑛𝑗.

If we follow the same procedures we will obtain that the internal energy for a

thermal cloud is given by

𝐸𝑡ℎ = 1
2𝛽4(~�̄�)3 𝑔4(𝑧)Γ(4), (5.20)

and using Equations 3.4 and 3.6, and the numerical value Γ(4) = 6 we direct obtain that

𝐸𝑡ℎ = 3Π𝒱 .
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We can separate the pressure parameter in thermal and BEC parts, in other words,

Π = Π𝑡ℎ + Π𝐵𝐸𝐶 what allow us to write

𝐸 = 3Π𝑡ℎ𝒱 + 5
2Π𝐵𝐸𝐶𝒱 = 3Π𝒱 − 1

2Π𝐵𝐸𝐶𝒱 . (5.21)

Now we can obtain the specific heat at constant volume parameter as 𝐶𝒱 =(︁
𝜕𝐸
𝜕𝑇

)︁
𝑁,𝒱

. The energy of the condensate is almost irrelevant for the specific heat since(︁
𝜕Π𝐵𝐸𝐶

𝜕𝑇

)︁
≪

(︁
𝜕Π𝑡ℎ

𝜕𝑇

)︁
. In our experiment

(︁
𝜕Π𝐵𝐸𝐶

𝜕𝑇

)︁
/
(︁

𝜕Π𝑡ℎ

𝜕𝑇

)︁
< 0.1 even for the lowest tem-

peratures. By neglecting the last therm of Equation 5.21 we find that the approximated

specific heat is given by

𝐶𝒱 = 3𝒱
(︃
𝜕Π
𝜕𝑇

)︃
𝑁,𝒱

. (5.22)

5.1.3 Comparison

Global variables were defined in Chapter 3 and we have obtained expressions for

the pressure parameter either for an interacting or non interacting systems. Also, we have

shown in Equation 5.22 that the specific heat is proportional to a derivative of the pressure

parameter with the temperature.

Since the pressure parameter is different for an ideal and an interacting system,

we will first consider the ideal gas that is the simplest case, then we treat a more realistic

case considering the interaction.

For an ideal gas, i.e. without interaction, the global variables must provide the same

results that the conventional statistical treatment. This is clear if we look at the beginning

of Chapter 3, where we have introduced the global variables. We defined the volume

parameter after making the standard statistical treatment to find the grand canonical

potential Ω, and see that Ω is proportional to the inverse of the frequencies of the trapping

potential.
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By writing the pressure parameter for an ideal gas (Equation 3.6)

Π = (𝑘𝐵𝑇 )4

~3 𝑔4(𝑧),

and deriving it with respect to temperature to find the specific heat (See Equation 5.22)

we will find

𝐶𝒱 = 12𝒱 𝑘
4
𝐵𝑇

3

~3 𝑔4(𝑧), (5.23)

which is equivalent to the expression for the specific heat that we have found in the

statistical treatment (Equation 5.9). This expression is valid for the condensed part. For

the thermal atoms, the specific heat does not depend of either the pressure parameter or

the volume parameter for high temperatures.

After showing that, for an ideal gas, the global variables provide the same result

as the conventional approach, we will take advantage that in the global variables it is easy

to treat interacting systems, to study the effect of the interaction in the specific heat.

5.2 Effects of interaction on the specific heat

When the interaction is taken into account, the Hamiltonian for the system has

one more term and the pressure parameter becomes proportional to the integration of the

density. As already discussed, the density of an interacting Bose gas is well established to

obey a Thomas-Fermi distribution for the condensed part, and a Gaussian distribution

for the thermal part. For this comparison we are considering just 1D, then the densities

are given by

𝑛𝐵𝐸𝐶 (𝑥, 𝑦, 𝑧) = 15𝑁𝐵𝐸𝐶

8𝜋𝑅3 max
[︃
1 −

(︂
𝑟

𝑅

)︂2
, 0
]︃

(5.24)

and

𝑛𝑡ℎ (𝑥, 𝑦, 𝑧) = 𝑁𝑡ℎ

(2𝜋)3/2 𝜎3
exp

[︃
−1

2

(︂
𝑟

𝜎

)︂2
]︃
. (5.25)
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Using these equations above, we evaluate Equation 3.15, obtaining the final equa-

tions for the two components of the pressure parameter

Π𝐵𝐸𝐶 = 𝑚𝑁𝐵𝐸𝐶

21𝒱
3
(︁
𝜔2𝑅2

)︁
(5.26)

Π𝑡ℎ = 𝑚𝑁𝑡ℎ

𝒱
(︁
𝜔2𝜎2

)︁
. (5.27)

Now that the equations for the pressure parameter were obtained, we just need

to derive it with respect to temperature to obtain the specific heat. Here the pressure

parameter has two components, and the specific heat will be

𝐶𝒱 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3𝒱

(︁
𝜕(Π𝐵𝐸𝐶+Π𝑡ℎ)

𝜕𝑇

)︁
𝑁,𝒱

, for 𝑇 < 𝑇𝐶

3𝒱
(︁

𝜕Π𝑡ℎ

𝜕𝑇

)︁
𝑁,𝒱

, for 𝑇 > 𝑇𝐶

(5.28)

This expression is valid for an interacting system, and since we have obtained the

specific heat also for an ideal gas, we can compare both expressions to see the effect of

the interaction. In Figure 8 we show the specific heat evaluated for both the interacting

and ideal gas.

Figure 8 – Specific heat as a function of temperature. In blue we show the specific heat evaluated
from an ideal gas. In red we show the effect of interaction in the specific heat. The
interactions were taken into account in the pressure parameter.

Source: By the author.
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In this comparison we see that the interaction almost does not change the behavior

of the specific heat. For very low temperatures the curves are very close to each other,

and they start to separate when the temperature is close to the transition.

This is expected in the temperature scale where the condensations takes place. For

very low temperatures, the interaction potential between atoms is governed by the s-wave

scattering. In this model of scattering, the interacting potential is given by 𝑔 = 4𝜋~2𝑎/𝑚,

with 𝑎 the s-wave scattering length, that does not depend on temperature.

Then, we can conclude that the small deviation that we have found on the specific

heat when the interaction were considered, may be associated with small variation at

the energy level of the system. Also, we may associate it with small corrections at the

interaction potential with the temperature, since the deviation only appears for higher

temperatures.

We know that this comparison is not very accurate because we assumed the bi-

modal model to simulate the density of the cloud. In this model, the Thomas-Fermi

approximation is used for the condensed part and it results in a parabolic shape for the

density. For thermal atoms it is assumed that the density obeys a Gaussian distribution.

What we emphasize in this model is that the interaction between BEC and thermal atoms

is not taken into account, and it could lead to a higher difference in the specific heat.

There are other methods that consider the interaction between BEC and thermal

atoms, but to obtain the density profile we need to make numerical integration, since they

do not provides analytic solutions for the density.

Numerical simulations (79) shows that there is no big differences in the density

profile when interaction between thermal and condensed atoms is considered. However, the

density is not what determine the characteristic of the specific heat, but is the energy. We

can expect that if these interactions were considered, the specific heat would be different

from what we have obtained.

For a simple comparison, we think that our results present good accordance what

is expected for the specific heat, and a more accurate comparison would need a more
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elaborated theory for the global variables.

5.3 Compressibility and equation of state for an in-

teracting gas: LDA versus global variables

In the last section we have shown that for a non interacting system the global

variables provide the same results that the conventional variables. We also have done a

simple study showing the effect of the interaction in the specific heat.

Here we make another comparison, comparing the GV and the local-density ap-

proximation, that is a widely used method to study properties of the trapped gases.

We start developing the LDA to find expressions that we can compare with the

GV. Immediately after we will write the same expressions using the global approach and

then we will make the comparison between these approaches.

All data in this comparison were obtained using this parameters: 𝑁 = 1 × 105

atoms, 𝜔 = 2𝜋 × 30 Hz and 𝑇 = 60 nK, except when one of them is variable.

5.3.1 Compressibility and equation of state in the LDA

Local density approximation consists in considering that the cloud is composed by

discrete portions where the density is uniform, and we can define local properties for each

position. Since the density of the cloud reflects the trap potential, we can make a change

of variables, writing the density as a function of the potential instead of the position.

This procedure was used in reference (35) to study thermodynamics in a Fermi gas.

For that system, they measured the density as a function of the local potential and they
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could observe the signatures of the phase transition after evaluating a few thermodynamic

variables. Here, we will evaluate some of these variables using the global approach to see

if they are equivalent.

A very useful way to characterize a system is by means of the equation of state

(EoS). The most known EoS, the ideal gas law, is clearly not useful to describe a trapped

Bose gas at low temperatures. For this system, we can find other thermodynamic vari-

ables that can express its behavior in a more appropriated way. We are going to write

an equation of state which is valid and appropriate for this system. We start with the

achievement of these state variables which will allow us to find an equation of state.

Thanks to the Gibbs-Duhem relation (51) 𝑆𝑑𝑇 − 𝑉 𝑑𝑃 + 𝑁𝑑𝜇 = 0, at a given

temperature we find a relation between the variation of the pressure and the chemical

potential

𝑑𝑃 = 𝑁

𝑉
𝑑𝜇 = 𝑛𝑑𝜇, (5.29)

which can be rearranged to obtain

𝑛 =
(︃
𝑑𝑃

𝑑𝜇

)︃
𝑇

. (5.30)

In harmonic trapping potentials the density is not uniform, and we see that the

last equation is one equation of state for this system (35) because it relates variations of

two functions of state, the pressure and the chemical potential, in each position. However,

we will see soon that the chemical potential is not a good variable to write the EoS.

For a more complete notation we need to write the dependence with the position

𝑛(𝑟) = 𝑑𝑃 (𝑟)
𝑑𝜇(𝑟) . (5.31)

In a Bose gas, it is expected that some variables present a discontinuity at the transition for

the condensation. The isothermal compressibility and the specific heat are clear variables

which present an abrupt change of behavior at the transition.

We start with the compressibility which is defined to be proportional to the vari-

ation of the volume for a change in pressure, or

𝜅 = − 1
𝑉

(︃
𝜕𝑉

𝜕𝑃

)︃
𝑇

. (5.32)
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The volume is not so much useful in LDA, because thermodynamic is written to

be local. For this reason, instead of the volume we write the density 𝑛 = 𝑁/𝑉 . We have

𝑑𝑉 = − 𝑁
𝑛2𝑑𝑉 and Equation 5.32 becomes

𝜅 = 1
𝑛(𝑟)

(︃
𝜕𝑛(𝑟)
𝜕𝑃

)︃
𝑇

. (5.33)

However, the chemical potential can not be directly measured, but it is related

with the local potential, 𝑑𝜇(𝑟) = −𝑑𝑈(𝑟) *. The potential can be found because the

density profile of the cloud provides information from it, then measurements of the local

density reveal the local potential.

Using this information we can write the compressibility as

𝜅 = − 1
𝑛(𝑟)2

(︃
𝜕𝑛(𝑟)
𝜕𝑈(𝑟)

)︃
𝑇

. (5.34)

Also, it is possible to write the local pressure by using Equation 5.31. Solving for

the pressure and integrating we have

𝑃 (𝑈) =
∫︁ ∞

𝑈(𝑟)
𝑛(𝑈 ′)𝑑𝑈 ′, (5.35)

where we have used the relation between the chemical potential and the trapping potential.

For the analysis we will consider a harmonic trapping potential with the form

𝑈(𝑟) = 1
2𝑚𝜔

2𝑟2. (5.36)

Now, we will make a change of variables to write the properties of the gas as a function

of the potential instead of the position. To do it, we need to isolate 𝑟 in the last equation

to obtain

𝑟 =
√︃

2𝑈
𝑚𝜔2 . (5.37)

In order to show how is the density written as a function of this potential, we plot it in

Figure 9. In (a) the density is shown as a function of the position from the center of the

cloud, and in (b) it is plotted as a function of the harmonic potential. In (a) one can easily

see the change from thermal to condensate at about 10𝜇m, in (b) it occurs at around

0.02𝜇K.
* This relation is obtained by the effective potential 𝜇(𝑟) = 𝜇0 − 𝑈(𝑟)
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Figure 9 – Normalized density of the cloud as a function of the (a) position from the center of
the cloud and (b) the potential.

Source: By the author.

Figure 10 shows the compressibility of Equation 5.34 as a function of the potential.

Since our objective is to compare the two approaches, and the global variables do not have

the same units of the usual pressure and volume, we normalized the compressibility by

its maximum value. We see in this figure that the compressibility presents a peak at the

transition between the thermal and the condensed components.

Figure 10 – Normalized compressibility as a function of the potential. The compressibility is nor-
malized by its maximum value at the transition from the thermal to the condensed
component.

Source: By the author.

Until now we have written the compressibility and the pressure as a function of
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the position, i.e, as a function of the potential. This means that for each position we can

evaluate pressure and compressibility. If we write the compressibility as a function of the

pressure, one obtains an EoS for this system. The graph of this EoS is presented in Figure

11.

Figure 11 – Normalized compressibility as a function of the normalized pressure. The compress-
ibility was normalized by its maximum value and the pressure was normalized with
the value where the compressibility is maximum.

Source: By the author.

In what follows we are going to obtain the equivalent quantities using the global

approaches and then compare both.

5.3.2 Global compressibility and EoS

In this section we will write the compressibility and the global EoS to test it

against the local density approximation. Global variables do not use the assumption that

the thermodynamic variables are dependent on the position. Instead, we have only global

parameters which may be enough to describe the system.
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The global compressibility is defined in reference (42) as

𝜅𝐺 = − 1
𝒱

(︃
𝜕𝒱
𝜕Π

)︃
𝑇

, (5.38)

where 𝒱 is the volume parameter and Π is the pressure parameter. We see great similarity

with the usual definition of the compressibility (See Equation 5.32), but for the GV we

have other parameters.

Since these parameters are defined globally, we do not need to make any replace-

ment to write it locally. In Figure 12 we show the isothermal compressibility as a function

of the global volume parameter, where one can see that it presents a similar behavior to

the LDA compressibility at the transition.

Figure 12 – Normalized global compressibility as a function of the normalized volume parameter.
The global compressibility was normalized by its maximum value and the volume
parameter was normalized with the value where the compressibility is maximum.

Source: By the author.

With the compressibility we also can find an EoS in the global approach. Similarly

as it was done for the LDA, we show in Figure 13 the global compressibility versus the

global pressure.

In this graph we see great similarity with the EoS obtained by using the LDA. In

what follows, we will make a more clear comparison of these two approaches, LDA and

GV, for the quantities that where defined independently for each method.
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Figure 13 – Global equation of state (𝜅 vs Π). The global compressibility was normalized by its
maximum value and the global pressure parameter was normalized with the value
where the compressibility is maximum.

Source: By the author.

5.3.3 Comparison

First we have evaluated the compressibility using both approach, and it is possible

to see in Figures 10 and 12 that the behaviour is similar, but not identical. It happens

because in the local approach we plotted the compressibility as a function of the potential,

while in the global approach we have plotted it as a function of the volume parameter.

We see that although both are not identical, the isothermal compressibility has the

same behaviour independently of the approach used to obtain it. The main differences are

in the condensed part, where is clear that both approaches do not coincide at the origin.

Since the global variables do not have the same meaning of the usual definitions

of pressure and volume, we can not expect that the global compressibility gives the same

numerical values than the usual definition of the compressibility.

Now we will compare how is the EoS in both methods. We have previously found

the EoS independently for both, LDA and GV, and we could observe that both present

a similar behavior. To make it more clear we present both together in Figure 14. Now it

is more evident that the equation of state presented in this picture is independent of the
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approach used to obtain it. Small differences are more visible in the thermal part, but

for the condensed they are almost equal. The peak is evident in both methods and the

difference in the width is insignificant for the evidence of the transition. Moreover, the

imprecision in measurements may lead to a broadening in the peak. (35)

Figure 14 – Comparison between the EoS evaluated in both approaches. The normalization was
done following the method presented in previous figures

Source: By the author.

In conclusion, we could show that the global variables can be an alternative to

study thermodynamics in trapped gases. With this comparison we can not claim that one

method is better than the other, because the comparison showed that they are equivalent.

We can say that both methods are good enough to show the singularities at the

phase transition, such as shown for the specific heat and the isothermal compressibility.

Both can present advantages dependent on the purpose. As discussed in reference (35),

the LDA presents advantages over other methods because we can extract thermodynamic

properties without making any fitting, since all quantities are obtained by measurements

of the density.

However, the LDA is not an efficient tool to study thermodynamics in a cloud

with many vortices. In a region with a vortex, the density can vary abruptly, and we will

lose important information about the system if we are not able to map the density in

an appropriate way. On the other hand, although been dependent on fittings, the global
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approach is not sensible to local perturbation or singularities, and we can eventually study

how vortices and perturbations modify the thermodynamic properties of the BEC.
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6 Sound velocity determination us-

ing global termodynamic vari-

ables

As we have shown in Chapter 3, thermodynamic global variables can be applied

in studing properties of a trapped Bose gas. One advantage is that the pressure and the

volume parameter are easily obtained from standard methods of analysis. The first mea-

surement using this approach was the phase diagram for 87𝑅𝑏, where using the variation

of the pressure parameter as a function of the temperature, for different number of atoms,

one obtains the critical temperature for the transition. (40) Then, the heat capacity at

constant volume parameter was found to be proportional to the variation of the pressure

parameter as a function of temperature. (41) Exploring the variation of the volume and

the pressure parameter, was also possible to measure the isothermal compressibility (42)

in terms of the global variables.

Here, we use the global variables to measure the sound velocity in a wide range of

temperature, above and below the critical temperature and we compare with the expected

value of the sound velocity for zero temperature, known as Bogoliubov sound velocity.

We found the expected theoretical value for the sound velocity at zero temperature and

we identify the contribution of each component, normal and superfluid, for this velocity.

6.1 Background

The equation for the sound velocity in Bose-Einstein condensates at zero temper-

ature was first derived by Lee and Yang (80) based on the Bogoliubov theory for the
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superfluidity, and it is frequently refereed as the Bogoliubov speed of sound, given by

𝑐2
𝐵 = 𝑛(𝑟)𝑈

𝑚
(6.1)

where 𝑈 = 4𝜋~2𝑎/𝑚 is the interaction parameter for bosons with mass 𝑚 and scattering

length 𝑎.

In 1997 (81), it was published the first measurement for wave propagation in BEC.

In that experiment, they used a laser beam detuned far off-resonance to induce density

perturbations in the BEC. The laser was focused into the center of the trap and after

the condensed had formed it was turned on, expelling the atoms from the center. Also,

the condensate was produced in the presence of this laser beam and to generate the

perturbation the laser was switched of.

The propagation of the perturbation travel with the speed of the sound, and mul-

tiples images from the same cloud allowed to measure this velocity. The first measurement

did not complete agree with the equation for the sound velocity given by equation 6.1.

Since the density of the cloud is not uniform for harmonic traps, the equation should be

written in terms of the average density 𝑛 = 𝑛0/2, where 𝑛0 is the density at the center of

the cloud. Using this consideration they found (82)

𝑐2
𝐵 = 𝑛0𝑈

2𝑚 , (6.2)

and the results better fitted with the theory. These results also were confirmed theoreti-

cally by Zaremba (83) and Kavoulakis (84) by simulating a wave propagation induced in

the BEC, the same way as it was done in the experiment.

Considering the Bose-Einstein condensation at zero temperatures does not treat the

most general condition. Bose-Einstein condensation takes place at a critical temperature

(which is not zero), and below this value the fluid has two components, normal and

condensed. The sound velocity in the condensate may be affected by the presence of

thermal atoms.

The sound velocity in this condition can be obtained by using the theory developed

by Landau (85) for two-fluid systems. This theory was orinally developed by Landau to
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study the superfluidity observed in 4He in 1938 (5–6), but it is valid for any Bose fluid of

two components.

Details about the Landau theory for the two fluids, and the derivation of the

equations to evaluate the sound speed are found in references. (54, 86–87) Here we will

focus only on the main results.

The basis of the Landau theory starts by writing the equation for the density of

the fluid that obeys the continuity equation

𝜕𝜌

𝜕𝑡
+ ∇ · (𝑚j) = 0 (6.3)

and the linearized Euler equation

𝑚
𝜕j
𝜕𝑡

= −∇𝑝 (6.4)

where j is the current density and 𝑝 is the pressure of the fluid. Here we have introduced the

mass density 𝜌, that is related to the number density (𝑛 = 𝑁/𝑉 ) by 𝜌 = 𝑛𝑚. According

to the Landau theory, the superfluid part can be separated from the normal component,

so, we can write the fluid density as the sum 𝜌 = 𝜌𝑠 + 𝜌𝑛 of a superfluid and a normal

component moving with independent velocities v𝑠 and v𝑛. Then, the mass current is given

by

𝑚j = 𝜌𝑠v𝑠 + 𝜌𝑛v𝑛. (6.5)

Now we need to obtain an equation for the entropy. If there is no dissipation, we

can consider that the entropy is conserved and its transport is governed by the velocity

of the normal fluid v𝑛. In this way, the entropy can be written in the form of a continuity

equation
𝜕𝑠

𝜕𝑡
+ ∇ · (𝑠v𝑛) = 0 (6.6)

where 𝑠 is the local entropy density (entropy per unit volume). It is assumed that the two

component are in local equilibrium and obey the Gibbs-Duhem equation

𝜌d𝜇 = −𝑚𝑠d𝑇 + d𝑝. (6.7)

By taking the gradient of Equation 6.4 and then using Equation 6.3, we obtain

𝜕2𝜌

𝜕𝑡2
= ∇2𝑝, (6.8)
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which is a important relation between the temporal variation of the density with the

spatial variation of the pressure.

Now, in order to find a similar expression for the entropy, we can write Equation

6.6 in terms of the entropy per unit mass 𝑠 = 𝑠/𝜌

𝜕(𝑠𝜌)
𝜕𝑡

+ ∇ · (𝑠𝜌v𝑛) = 0. (6.9)

The second term of the left side of this equation can be replaced using Equation 6.3 to

obtain
𝜕𝑠

𝜕𝑡
− 𝑠

𝜌
∇ · (𝑚j) + ∇ · (𝑠𝜌v𝑛)

𝜌
= 0. (6.10)

Now, using Equation 6.5 and rearranging the terms we have

𝜕𝑠

𝜕𝑡
+ 𝑠𝜌𝑠

𝜌
∇ · (v𝑛 − v𝑠) = 0, (6.11)

which can be written as
𝜕2𝑠

𝜕𝑡2
= 𝑠2𝜌𝑠

𝜌𝑛

∇2𝑇. (6.12)

To obtain the last equation we have used Equations 6.6 and 6.7.

Since 𝜌 ≡ 𝜌(𝑝, 𝑇 ) and 𝑠 ≡ 𝑠(𝑝, 𝑇 ) we can expand its derivative

𝛿𝜌 = 𝜕𝜌

𝜕𝑝
𝛿𝑝+ 𝜕𝜌

𝜕𝑇
𝛿𝑇 (6.13)

𝛿𝑠 = 𝜕𝑠

𝜕𝑝
𝛿𝑝+ 𝜕𝑠

𝜕𝑇
𝛿𝑇 (6.14)

and we identify that equations 6.8 and 6.12 are coupled equations for pressure and tem-

perature.

Solving the coupled equations by looking for plane wave solutions like 𝑒𝑖𝜔(𝑡−𝑥/𝑐) and

using a few thermodynamic relations we find that the sound velocity is is the solution of

𝑐4 −
[︃(︃
𝜕𝑝

𝜕𝜌

)︃
𝑠

+ 𝜌𝑠𝑘𝐵𝑇𝑠
2

𝜌𝑛𝑐𝑉

]︃
𝑐2 + 𝜌𝑠𝑘𝐵𝑇𝑠

2

𝜌𝑛𝑐𝑉

(︃
𝜕𝑝

𝜕𝜌

)︃
𝑇

= 0, (6.15)

where 𝑐𝑉 = 𝑇
(︁

𝜕𝑠
𝜕𝑇

)︁
𝜌

is the specific heat at constant volume. This equation shows that if

the supefluid density is not zero there are two solutions for the sound velocity.

The existence of two velocities is due to the presence of two fluids, where the

first/second sound involves in-phase/out-of-phase motion of the superfluid and normal
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fluid components. If 𝜌𝑠 = 0 there is just a solution, and this is the usual sound velocity for

a normal gas. If 𝜌𝑛 = 0 it can be shown (57) that the solution for this equation recovers

the Bogoliubov sound, given by Equation 6.2.

The meaning of the two velocities can be understood if we consider what happens

when a fluid is perturbed. The sound velocity for a normal fluid is defined as the variation

of the pressure as a function of the density. It means that when a density perturbation is

induced in a fluid, this perturbation will propagate with a velocity that is referred as the

sound velocity.

However, when a BEC below the critical temperature is perturbed, the motion

between the two components can also induce a temperature wave, which will propagate

with a velocity different from the density wave. These two velocities are called first (density

wave) and second sound (temperature wave).

Density perturbation can be generate by an abrupt variation in the BEC density,

as it was done in the first measurement. On the other hand, a temperature wave is only

generated if the external perturbation induce the out-of-phase motion between the two

fluids.

Since in diluted gases the two components are weakly coupled, the out-of-phase

motion is very difficult to be induced, and in general, most of external perturbation will

produce an oscillation of the BEC with the non condensed atoms staying at rest. For a

strong interacting system, as a Fermi gas, the two fluids are coupled by interactions and

the second sound velocity can be measured. (88)

The coupling between two fluids leads to Equation 6.15 which is not easily solved.

This equation depends on many thermodynamic variables that not always have simple

expressions. We can find exact solution for the sound velocities in the regimes of very low

and very high temperatures. For very low temperatures, where 𝑘𝐵𝑇 ≪ 𝜇, the first sound

velocity is given by

𝑐2
1 =

(︃
𝜕𝑝

𝜕𝜌

)︃
𝑇

(6.16)

and the second sound velocity is given by 𝑐2
2 = 1

3𝑐
2
1. (57, 87) Of course, at very low
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temperature it is possible to show that this expression for the first sound approaches the

zero-temperature Bogoliubov value given by Equation 6.1.

Knowing the dependence of the superfluid density with the temperature,

𝜌𝑠 = 𝜌

[︃
1 −

(︂
𝑇

𝑇𝑐

)︂3]︃
, (6.17)

and using some thermodynamic relations, one can show that at higher temperatures,

𝑘𝐵𝑇 ≫ 𝜇, the predominant part of the first sound is given by

𝑐2
1 = 5

3
𝑔5/2

𝑔3/2

𝑘𝐵𝑇

𝑚
, (6.18)

and the second sound is

𝑐2
2 = 𝜌𝑠

𝜌

(︃
𝜕𝑝

𝜕𝜌

)︃
𝑇

, (6.19)

where 𝑔5/2 = 1.342 and 𝑔3/2 = 2.612. To obtain Equation 6.18 reference (57) argue that in

Equation 6.15 the derivative
(︁

𝜕𝑝
𝜕𝜌

)︁
at constant temperature is small because the pressure

in a ideal Bose gas does not depend on the volume, and then this equation for the first

sound velocity is obtained only from the derivative
(︁

𝜕𝑝
𝜕𝜌

)︁
at constant entropy*.

It is possible to show that the equation for the second sound at higher temper-

atures results in the expression for the first sound at low temperatures. This feature is

frequently refereed as the hybridization of the first and second sound. A good discussion

and demonstration can be found in reference. (54)

6.2 Global sound velocity

Now, we are going to redefine the equation for the sound velocity writing it in

terms of the global variables which were described in Chapter 3.

In Chapter 3 we showed that Ω = −𝑃𝑉 = −Π𝒱 . It means that when we have

expressions containing the conventional pressure and volume, we can study the same
* We will show in our results that we measure the term whose derivative is done at constant temperature,

which is expected to be smaller.
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properties by using the equivalent pressure and volume parameters, as it was done for the

equation of state (37) for the heat capacity (41) and for the isothermal compressibility

(42). The first sound velocity is given by

𝑐2
1 = 𝜕𝑝

𝜕𝜌

and the density is 𝜌 = 𝑚𝑁
𝑉

, where 𝑁 is the total number of atoms each with mass 𝑚

confined in a volume 𝑉 . Replacing the density we obtain that

𝑐2
1 = 1

𝑚

𝜕𝑝

𝜕
(︁

𝑁
𝑉

)︁ (6.20)

which depends on the pressure and the volume. It means that we can obtain a similar

equation in terms of the global pressure and volume.

Motivated by the last expression, we define the global sound as

𝑐2
1𝑔 = 𝜕Π

𝜕𝜌
(6.21)

which, after to replace the density, results a similar expression for the sound velocity

𝑐2
1𝑔 = 1

𝑚

𝜕Π
𝜕
(︁

𝑁
𝒱

)︁ . (6.22)

The volume parameter 𝒱 only depends on the trapping frequencies, what means

that it is always constant since the trap parameters are not modified, which leads to

𝑐2
1𝑔 = 𝒱

𝑚

𝜕Π
𝜕𝑁

. (6.23)

that is the global sound velocity for the cloud. We can observe in this equation that the

sound velocity can be evaluated by computing the variation of Π with 𝑁 . Since we can

evaluate this variation for a constant temperature, we will determine the sound velocity

as a function of temperature.

We need to draw attention to the units of the sound speed. Although either Π and

𝒱 separately do not have units of the usual pressure and volume, we can check which the

global sound velocity is really expressed in velocity units.

As can be seen by Equation 3.20, the pressure parameter is proportional to the

hydrostatic pressure. It means that the global sound velocity is related to the local sound
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velocity, and is possible to find the equation which relate both. The direct relation that

the global sound velocity has with the local sound velocity is still being investigated.

What we can observe is that since the local pressure varies for a cloud trapped

in a harmonic potential, the sound velocity will be depend on the position. In contrast,

each cloud has only one pressure parameter and in consequence, it has only one global

sound. Then, the main difference between both is that the usual sound velocity is locally

defined, while the global sound is defined globally.

Now we are going to describe the procedures to measure the sound velocity in the

cloud.

6.3 Experimental sequence

In equation 6.23 we see that the global sound velocity is determined by the vari-

ation of the pressure parameter with the number of atoms. For this measurement, the

number of atoms and its temperature need to be changed in order to obtain a wide range

of data to determine the sound velocity as a function of temperature. In the experiment,

the final number of atoms can be controlled by the initial number of atoms loaded in the

magnetic trap and/or by the evaporative cooling process that is performed to cool down

the sample.

Figure 15 summarizes the procedure to evaluate the sound velocity. Changing the

number of atoms and the temperature, we run the experiment continuously to obtain a

large set of data. We analyze the data with the appropriated fitting function as described

in Section 4.7, which provides the temperature, number of atoms and dimensions, that

are the most relevant information for evaluating the sound velocity.

All measurements are performed in time-of-flight, and to obtain the in situ radii we

use the Castin-Dum regression (89) that provides the dimensions of the cloud in trapping.
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Figure 15 – Sequence used to evaluate the sound velocity. The measurements are performed in
TOF to avoid saturation. We use fitting functions to extract all information of the
cloud. Then, we group images in the same range of temperatures. With this data
we plot the pressure parameter versus the total number of atoms, from where we
extract the slope. With the slope of these graphs we can evaluate the sound velocity
as discussed in the text.

Source: By the author.

The Castin-Dum regression is well established for determining the dimensions of the cloud

as a function of the TOF, and our measurement are in good agreement with the method.

For TOF lower than 15 ms the cloud has a high density, and can saturate the image,

what would lead to unreliable data. For this reason, we choose to take all measurements

in 23 ms of time-of-flight.

With all data we use Equations 3.18 and 3.19 to evaluate the pressure parameter

for the condensed and thermal part respectively, and since the sound velocity depends

on the temperature, we group together all data in the same temperature range within

±5 nK.

For each temperature we plot the pressure parameter versus the number of atoms

as shown in Figure 16 that presents typical data for three different temperatures. We

observed that in these temperatures the variation of Π is linear with 𝑁 . In fact, we found

small deviation from the linearity only for very low temperatures and also for small
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number of atoms. Since our measurements were done changing the number of atoms

in a large scale, we have the majority of data obeying the linear behavior of Π vs 𝑁 , and

just a few points with number of atoms in the not linear region. Then, assuming that the

behavior is linear, is expected that the confidence of our data for very low temperatures

will be a slightly smaller than for higher temperatures.

From this information, we see that the quantity 𝜕Π
𝜕𝑁

in equation 6.23 is the slope

of these curves, and multiplied by 𝒱
𝑚

results in the sound speed for a given temperature.

Figure 16 – Typical sets of data which are used to evaluate the sound velocity. Here the data
are presented for three different temperatures to show the differences in the slope.
The triangles are data for 500 nK, the squares are data for 300 nK and the circles
are data for 200 nK. The lines for each temperature are linear fittings which we use
to obtain the slope.

Source: By the author.

In our experiment the volume parameter is 𝒱 = 5.4 × 10−9 s3 and the mass of
87𝑅𝑏 atoms is 1.44 × 10−25 kg. Just to give one example, the slope for 𝑇 = 200 nK is

7.66 × 10−23 J · s3 and using Equation 6.23, it results in 𝑐1𝑔 = 1.69 mm/s. Doing the same

procedures, we can evaluate the sound velocity for all temperatures, whose results we will

show in the next section.
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Figure 17 – Squared first sound velocity of a Bose-Einstein condensate as a function of temper-
ature. The linear behavior is evident to the right of the vertical dashed line that
represented the approximate critical temperature.

Source:By the author.

6.4 Results

We start showing in Figure 17 the global first sound velocity, 𝑐2
1𝑔, obtained from

equation 6.23 for a wide range of temperatures. For the thermal part it is expected that

the square sound velocity is linear with the temperature, and this is clear in Figure 17

above the vertical dashed line, which is approximate the critical temperature. The solid

line is a linear fitting of the data above the dashed vertical line.

In Figure 18 we show the sound for a smaller range of temperature to emphasize

the region which contain the superfluid. We show the value for the first sound at zero

temperature, given by Equation 6.2, in the horizontal dashed line.. We see that the global

sound velocity approaches the first sound when the temperature tends to zero. The vertical

line is the approximate limit for where we observe just thermal atoms.

As discussed, Equation 6.18 is the predominant part of the first sound velocity and

it was obtained after neglecting the term whose derivative is done at constant temperature.
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Figure 18 – Global first sound velocity as a function of temperature. Solid lines are guides for the
eye following the points. Dashed horizontal line is the Bogoliubov sound speed, which
is the theoretical sound velocity evaluated for zero temperature. Dashed vertical line
is the approximate temperature for the critical temperature.

Source:By the author.

In our method, we do not know how to evaluate the entropy, and we can only determine the

sound velocity at constant temperature, which is the less significant term of the equation.

For this reason, we can not expect that our measurement for the sound velocity at higher

temperatures gives the same result that when evaluated using equation 6.18. We evaluate

the slope (Δ(𝑐2
1)/Δ𝑇 ) of this linear behavior with our method and also using Equation

6.18 and we found respectively 1.3 × 10−2 mm2s−2nK−1 and 8.2 × 10−2 mm2s−2nK−1.

Now we present one advantage of our method, which allows us to determine which

fluid contributes more in each temperature. The pressure parameter of Equation 6.23 is

given by the sum Π = Π𝐵𝐸𝐶 + Π𝑡ℎ, and we can use this to separate the first sound as

𝑐2
1𝑔 = 𝑐2

𝐵𝐸𝐶−𝑝𝑎𝑟𝑡 + 𝑐2
𝑡ℎ−𝑝𝑎𝑟𝑡 (6.24)

with the components given by

𝑐2
𝐵𝐸𝐶−𝑝𝑎𝑟𝑡 = 𝒱

𝑚

𝜕Π𝐵𝐸𝐶

𝜕𝑁
(6.25)
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and

𝑐2
𝑡ℎ−𝑝𝑎𝑟𝑡 = 𝒱

𝑚

𝜕Π𝑡ℎ

𝜕𝑁
. (6.26)

Here we emphasize that the fluids are not independent, since in these equation the

number of atoms involved in the total number. This separation represent the participation

of each component for the first sound velocity.

With this separation, we present in Figure 19 the contribution of each component,

BEC and Thermal, for the global first sound velocity. Here the solid lines are only guides

for the eyes to show that there is a temperature where the most predominant part becomes

the less one. Vertical and horizontal lines have the same meaning that in Figure 18.

We can see that around 150 nK there is an inversion of the influence for each

component. Before this temperature, we see that the BEC is predominant and it inverts

above this point, where the thermal part becomes more influential. This change in behavior

is similar to the observed in reference (80, 90) and discussed in references (54, 57) and is

commonly called hybridization between the first and second sound. Here is important to

say that the hybridization of these references occurs for the first and second sound, and in

our results the behavior occurs for the contribution of the BEC and thermal components

in the first sound.

In addition, we also can analyze both fluids as if they were completely independent.

If we evaluate

𝑐2
𝐵𝐸𝐶 = 𝒱

𝑚

(︃
𝜕Π𝐵𝐸𝐶

𝜕𝑁𝐵𝐸𝐶

)︃
𝑇

(6.27)

and

𝑐2
𝑡ℎ = 𝒱

𝑚

(︃
𝜕Π𝑡ℎ

𝜕𝑁𝑡ℎ

)︃
𝑇

, (6.28)

in our understanding, we are evaluating the velocity of sound waves traveling in the

condensate and in the thermal part independently as if they were only one fluid.

We know that

𝑐2
1𝑔 ̸= 𝑐2

𝐵𝐸𝐶 + 𝑐2
𝑡ℎ, (6.29)
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Figure 19 – Contribution of each component for the global first sound velocity. Blue squares are
the contribution of the thermal part and green diamonds represent the contribution
of the BEC. The solid lines are guides to the eye to show that around 150 nK the
fluid with less contribution becomes the fluid which contributes more for the sound
velocity. Horizontal and vertical lines have the same meaning that in Figure 18.

Source: By the author.

but treating separately the fluids can bring information of how the first sound in the BEC

is affected by the presence of the thermal atoms, and we can compare it with a previous

work.

Figure 20 shows the sound velocity for each component, evaluated from Equations

6.27 and 6.28.

In Figure 20 one can observe that the sound velocity in the thermal part is linear

with temperature, as expected for a normal fluid and it tends to zero at zero temperature.

For the condensate part, we can see that the sound speed oscillates around a value and

does not present an abrupt change.

A similar behavior was observed in reference (91) when the sound velocity was

studied as a function of the temperature. In that work, the authors induced density

perturbations in the condensate and measured the velocity for these propagation. The

manner as the sound propagation was induced is similar to the first measurement of the
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Figure 20 – Independent speed of sound in the BEC (violet up-triangles) and in the thermal part
(magenta circles). To evaluate these velocity we treat each component separately as
if thew were totally independent (see text). In this figure, the magenta solid line is
a linear fitting for 𝑐2

𝑡ℎ𝑒𝑟𝑚𝑎𝑙 and the violet solid line is a guide for the eyes following
the points. Dashed lines have the same meaning of the previous figures.

Source: By the author.

sound velocity of reference. (81)

They measure the propagation of the sound for many temperatures and mapped

this dependence. The number of atom in the thermal part is totally dependent on the tem-

perature, therefore variations in the temperature will lead to variation in the interaction

between BEC and thermal atoms.

They found that the sound velocity in the BEC is almost constant with the temper-

ature. We see in their measurements that the sound velocity oscillates around a normalized

value but it almost does not change. For this reason, we can conclude that the thermal

atoms do not modify the velocity of density perturbations in the BEC.

We may say that our measurement for 𝑐2
𝐵𝐸𝐶 , presented in Figure 20, may be the

same velocity which they measured, because for us the idea is almost the same. When

we treated the fluids totally independent to evaluate 𝑐2
𝐵𝐸𝐶 , we have evaluated the sound

velocity in the BEC without to consider any thermal participation.
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In our measurement for the 𝑐2
𝐵𝐸𝐶 as a function of the temperature, we also found

that the sound speed is almost constant around a value, and it leads to conclude that the

thermal atoms almost do not affect the sound velocity in the BEC.

To summarizing this chapter, we have measured the sound velocity as a function

of the temperature. We found expressions for the sound velocity in a new description

using the global variables. We found good agreement with the theory of Bogoliubov for

zero temperature, and also we found the same linear behavior expected for the sound

propagation in thermal atoms.

Also, with this method we could treat the fluids totally independent, and it allowed

us to determine how the velocity in the BEC is affected by the presence of thermal atoms.

We found similar results of presented in the literature. Besides that, our measurement

made it possible to determine the contribution of each component for the sound velocity,

that, in our knowledge, it is the first time that it was possible.
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7 Conclusions and prospects

We start this chapter summarizing the results obtained in this thesis, and then we

give an overview about the prospects for research topics in our group and improvements

in our experimental system.

7.1 Conclusions

This thesis was based on testing the validity of the global thermodynamic variables

and in the measurement of the sound velocity using this approach.

In Chapter 6, we use the global thermodynamic variables to obtain equations for

the sound propagation in trapped gases. Then, we could measure this sound velocity by

studying the variation of the pressure parameter with the variation of the number of

atoms.

We were able to make different analysis by separating the components of the

pressure parameter and also separating the two fluids to treat them independently.

For the first global sound velocity, we found good agreement with theory for two

regions where we could make a simple comparison, and we conclude that:

1. The dependence of the first sound with the temperature is linear for a normal gas;

2. The first sound approaches the Bogoliubov sound for very low temperatures.

We also could use our method to analyze which fluid contribute more in each

temperature range. We could observe that for lower temperatures the BEC contribution

is more expressive for the first sound velocity, and for higher temperatures it inverts, and

the thermal atoms become more influential.
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The last topic for the sound velocity was studying the fluids as they were com-

pletely independent. For this, we separated the two fluids and measured the first sound

velocity in each component. For this measurement we observed that:

1. The sound propagation in the thermal atoms is linear with the temperature as

expected for any normal fluid;

2. The sound propagation in the BEC is almost constant with the temperature and its

value almost match the Bogoliubov value for zero temperature.

In a general way, the global variables have provided a simple way to measure

the sound velocity in a Bose gas either in the BEC and thermal atoms. This method

is more simple than produce density perturbation in the cloud, mainly in the thermal

atoms, where the propagation of a density perturbation would be almost impossible to be

observed.

In Chapter 5 we compare the global variables with other methods and we analyzed

different properties of the BEC, such as the specific heat, the compressibility and one of

the equations of state.

For the specific heat, we have studied the ideal and the interacting gas. We have

shown that for an ideal gas the global variables yield exactly the same result that the

statistical treatment found in standard thermodynamics.

Also, comparing the interacting and non interacting gas, we could see the specific

heat is almost not affected by the interactions, and this can be expected since the inter-

action energy do not change in the typical scale of temperature that the Bose-Einstein

condensation occurs. We could see a small deviation from the ideal gas that may be as-

sociated with the change in the energy levels, when the interaction is taken into account.

We also compare the global variables with the local-density approximation. Using

these two methods we have evaluated the compressibility and the equation of state 𝜅 vs 𝑝.

For the compressibility we could reinforce that the volume parameter represent

the effect of the potential over the atoms. Both approaches presented the typical peak on
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the compressibility at the phase transition from thermal to condensate.

We plotted the compressibility versus the pressure using the local-density approx-

imation, and we compared with the plot of the global compressibility versus the global

pressure, and they present a great similarity.

With this comparison we conclude that both approaches are good enough to study

thermodynamics. While LDA present the advantage of extract the density profile without

making fittings, it is not applicable when there is great variations of density in the systems.

On the other hand, the global variables are dependent on fittings, but they could be

applied to the study of vortices and turbulence, and any perturbed system.

7.2 Prospects

Our group follows two main research areas: Thermodynamics using global variables

and production of vortices and turbulence in superfluids.

In thermodynamics our group have published a few papers measuring the heat

capacity, the compressibility, equation of state, among others. (36,38–42) Also, there is a

work in progress in measuring the thermal expansion coefficient.

In this topic, we intend to explore thermodynamics close to the phase transition,

where we want to investigate the frontier between the BEC and the thermal atoms. We

have interest in this region because there is not much investigation about it and we know

that some properties are not well defined in this region.

Also these variables are important because they can be applied to study thermo-

dynamics in perturbed BECs and also with vortices. Since the LDA can not be applied

in systems with abrupt changes in density

On the other main area, our group has great interest in studying vortices and

turbulence. The group is known by the first evidence of quantum turbulence (32–33) but
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many other studies with vortices where published (27–31), as well as some investigating

the evolution to and of a turbulent state. (43–44)

In order to investigate the vortex formation, and also the turbulence, in a more

controlable way, we have implemented the technique of topological phase-imprinting. (46)

In this method, vortices are produced by the inversion of the bias magnetic field and the

charge of the vortex is proportional to the hyperfine state of the atoms.

In our experiment, since the experiment was built, the atoms were always produced

in the 𝑚𝐹 = 2 hyperfine state. For this state the charge of the vortex is 𝑛 = 4.

The idea in producing this vortex is to study its decay. It is known that any

multicharged vortex is unstable and it must to decay into unitary-charged vortex, but the

details of the decay process has been constantly studied.

When we started to produce vortex using this mechanism, we soon observed an

interference pattern that had not been reported in previous work where they used this

method. Figure 21 shows what we see when the vortex is produced. These images were

taken in a axis that is perpendicular to the line of the vortex.

Figure 21 – Typical images of interference that appears when we make the bias inversion to
produce vortex.

Source: By the author.

Although interference is evident when a BEC is separated and then recombined,

in our method we do not separate the condensate. The way that the interference appears

is not clear yet, and we are motivated to explore this.

This was one of the reasons why we started to produce condensates in the 𝐹 = 1
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state. When the bias is inverted, the condensate spend a short time in zero magnetic field,

and it makes part of the atoms to be transferred to other states. One of these states is

the 𝑚𝐹 = 1, that also is magnetically trappable, and it appears as the smallest cloud in

Figure 22. This two clouds are in different 𝑚𝐹 states, but they were originated from the

same cloud. These images were taken in an axis parallel to the vortex line.

Figure 22 – Typical images of the vortex produced by the bias inversion. The clouds are in the
two magnetically trapped states of the 𝐹 = 2 state, 𝑚𝐹 = 2 and 𝑚𝐹 = 1.

Source: By the author.

The second cloud may be not desirable in some moments. For example, if we

perturb the cloud to "maybe" accelerate the decay process, the two clouds can oscillate

around each other and generate some inconvenient phenomenons, such as an overlapping,

that may cover the effects.

On the other hand, the 𝐹 = 1 state has only one sublevel Zeeman that is mag-

netically trappable. It means that when we invert the magnetic bias, the atoms that are

transferred to another states will not return to the trap, and we will end with just a cloud

in the trapping potential.

We are not able to produce vortex in the 𝐹 = 1 state yet, but this is an important

step in our goals. The production of vortex in the 𝐹 = 1 state means that we will able

to study vortex with different charges. Besides that, we will be able to investigate if the

interference may provide information about the charge of the vortex.

At the moment, we are making the bias inversion in a way that do not produce
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vortex, but that produces interference. We are going to make a further investigation to

see if the interference give information about the vortex charge.

After this, we will spend more time trying to generate vortex in the 𝐹 = 1 state

to follow our goals in compare vortex of different charges.

Thinking about improvements, we want to implement other techniques of imaging

and trapping in the next months. We are planning to implement a non destructive image

system and also a pure optical trap or a hybrid trap.

The non destructive image will probably be the phase-contrast imaging (79), that

presents many advantages over the absorption imaging. With this technique it is possible

to take up to 100 images from the same cloud, allowing us to better study phenomena

that evolves in time.

The optical trap also bring another prospects for the experiment. One of them is

that the optical potential is easier to be controlled and the frequencies of it can be easily

changed. More than this, with this optical trapping we also want to make experiments

with turbulent clouds in a double well potential (92), an experiment that was never done

to perturbed clouds.

With these implementations and the studies that are been proposed, we believe

that the group will continue to produce a good work in this area.
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