• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.76.2013.tde-13012014-135024
Document
Author
Full name
Poliana Heiffig Penteado
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2013
Supervisor
Committee
Menezes, Jose Carlos Egues de (President)
Miranda, Eduardo
Oliveira, Luiz Nunes de
Pereira, Rodrigo Gonçalves
Silva, Luis Gregorio Godoy de Vasconcellos Dias da
Title in English
Transport through leaked Majorana modes in quantum dots and adatoms
Abstract in English
We investigate quantum resonant transport in two different systems: (i) a ferromagnetic Scanning Tunneling Microscope (STM) tip coupled to an adatom (interacting) on a host surface (metallic or semiconductor), and (ii) a quantum dot connected to source and drain leads and side-coupled to a superconducting nanowire sustaining Majorana zero modes (Kitaev chain). Both problems are studied within the Green’s functions approach, which allows us to determine the transport properties of the system. In the first setup, due to the ferromagnetic and nonmagnetic ‘natures’ of the tip and host, respectively, it is possible to obtain the spin-diode effect, which occurs only in the singly occupied regime. In addition, because of the presence of the adsorbed atom on the surface, Friedel oscillations are observed in the current. The second system differs from the first mainly because it is spinless and there is no Coloumb interaction. Interestingly, we find that the Majorana mode of the wire leaks into the dot thus giving rise to a Majorana (zero mode) resonance in the dot, pinned to the Fermi level of the leads. Surprisingly, this resonance occurs even when the gate-controlled dot level is far above or far below the Fermi level of the leads. We study three possible experimental scenarios to probe unambigoulsy this Majorana mode in wires via these leaked/pinned modes.
Title in Portuguese
Transporte através de modos de Majorana em pontos quânticos e adátomos
Keywords in Portuguese
Diodo de spin
Férmions de Majorana
Funções de Green
Modelo de Kitaev
Modos de energia zero
Transporte quântico
Abstract in Portuguese
Nesta tese investigamos transporte quântico ressonante em dois sistemas diferentes: (i) uma ponta STM ferromagnética acoplada a um átomo (interagente) adsorvido em uma superfície metálica ou semicondutora, e (ii) um ponto quântico conectado a reservatórios de elétrons e lateralmente acoplado a um nanofio supercondutor que possui modos de Majorana (cadeia Kitaev). Ambos os problemas são estudados no contexto de funções de Green, o que nos permite determinar as propriedades de transporte do sistema. Na primeira configuração, devido à natureza ferromagnética e não magnética da ponta STM e da superfície e, respectivamente, é possível obter o efeito diodo de spin, que ocorre apenas no regime em que o adátomo está ocupado com um único elétron. Além disso, por causa da presença do átomo adsorvido sobre a superfície, oscilções de Friedel são observadas na corrente. O segundo sistema é diferente do primeiro, principalmente pela ausência da interação de Coloumb e pelo fato de não ter spin. Curiosamente, vemos que o modo de Majorana do fio vai para o ponto quântico dando origem assim a um modo com energia zero no ponto quântico localizado sempre no nível de Fermi dos contatos. Surpreendentemente, essa ressonância ocorre mesmo quando o nível do ponto quântico, controlado por uma tensão externa, está muito acima ou muito abaixo do nível de Fermi dos contatos. Propomos três possíveis cenários experimentais para identificar de maneira conclusiva este modo de Majorana em fios através do modo que aparece no ponto quântico.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2014-01-28
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2024. All rights reserved.