• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.76.2005.tde-11062008-152430
Documento
Autor
Nome completo
Anderson Augusto Ferreira
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2005
Orientador
Banca examinadora
Alcaraz, Francisco Castilho (Presidente)
Salinas, Silvio Roberto de Azevedo
Wreszinski, Walter Felipe
Título em português
Modelos de vértices exatamente integráveis
Palavras-chave em português
Exatamente integráveis
Fenômenos críticos
Transições de fase
Vértices
Resumo em português
Nesta dissertação, mostramos as primeiras aplicações do recém criado Anstz do Produto Matricial [8] na solução exata das matrizes de transferência associadas a modelos de vértices. A integrabilidade dos modelos é obtida diagonalizando-se a matriz de transferência diagonal-para-diagonal. Foram estudados duas classes de modelos. Na primeira delas introduzimos novos modelos de vértices, que denominamos de modelos de 5 vértices interagentes. Nestes modelos os vértices além das interações usuais de vizinhos próximos, dadas pela regra do gelo, possuem também interações de natureza repulsiva ao longo da diagonal. O famoso modelo de 6 vértices é obtido num limite particular deste novo modelo. O espectro da matriz de transferência, analogamente ao que acontece no ansatz de Bethe tradicional é dado em termos de solução de equações não lineares. Um estudo analítico e numérico destas equações foi feito para o modelo de 6 vértices que está contido nesta primeira classes de modelos. Tais resultados, juntamente com as idéias de invariância conforme, nos permitiram estudar o modelo em seu regime crítico. A segunda classe de modelos que estudamos foram os modelos de 10 vértices que satisfazem às regras do gelo. Obtivemos todos os possíveis modelos exatamente integráveis desta classe, reobtendo resultados da literatura bem como novos resultados.
Título em inglês
Exactly solved vertex model
Palavras-chave em inglês
Bethe-ansatz
Bethe-equations
Exactly models
MPA
Phase transitions
Vertex
Resumo em inglês
In this dissertation we present the first application of a recent introduces Matrix Product Ansatz [8], in the exact solution of the transfer matrices associated to vertex models. The exact integrability is obtained through the diagonalization of the diagonal-to-diagonal transfer matrix. We studied two classes of models. In the first one we introduced new vertex models, that we call as interacting 5 vertex models. On these models beyond the nearest-neighbor interactions among the vertices, imposed by the ice rule, they also have repulsive interactions along the diagonal. The famous 6-vertex model is just a special case this class of models. The eigenspectrum of this transfer matrix, analogously as in the traditional Bethe ansatz, is obtained in terms of the roots of nonlinear equation. An analytical and numerical study of these equations we done on the first class. These results together with the machinery coming from conformal invariance allow us the study the model on its critical region. The second class of models we considered were the 10 vertex models that satisfy ice rules we obtained all the possible exact integrable models on this class, rederiving earlier results on the literature as were producing new ones.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
AndersonFerreira_M.pdf (636.01 Kbytes)
Data de Publicação
2008-06-12
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.