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ABSTRACT 

 

TREVIZAN, W. A. Nuclear magnetic resonance and digital rock in oil industry: well 

logging applications. 2017. 175p. Thesis (Doctor in Science) - Instituto de Física de São 

Carlos, Universidade de São Paulo, São Carlos, 2017.  

 

This thesis discusses Nuclear Magnetic Resonance (NMR) techniques for formation 

evaluation in well log analysis for the oil/gas industry. We present the standard ingredients for 

NMR data processing and interpretation, and develop a methodology that extends the 

determination of surface relaxivity from the laboratory to the well site. The methodology 

consists of a processing algorithm for diffusion editing data, which enables surface relaxivity 

determination for conditions close to those found in well logging (regarding data availability 

and noise levels). At moderate noise levels, lower relaxivity values (below 10𝜇𝑚/𝑠) can be 

determined solely from NMR diffusion data, while higher values (~30𝜇𝑚/𝑠) can be 

separated from intermediate ones. Application for actual logging data still requires some noise 

reduction techniques such as stationary measurements downhole or data stacking among 

different depths. However, it provides a way of converting 𝑇2 distributions into actual pore 

size distributions even for downhole acquisitions, before the samples get to the laboratory for 

routine analysis. Besides the logging analysis, we also developed a theoretical approximation 

to the diffusion equation with partial absorptive contour conditions, by calculating appropriate 

transition rates between cells in an arbitrary grid, allowing a simple methodology for 

obtaining the NMR data based on pore imaging. Calculated rates can in principle be used for 

modeling/understanding different diffusion phenomena, such as exchange between pores or 

relaxation sites. 

  

Keywords: Nuclear magnetic resonance. Oil/gas industry. Formation evaluation. Surface 

relaxivity. Digital rock. 

 

 

 

  



 

 

  



 

RESUMO 

 

TREVIZAN, W. A. Ressonância magnética nuclear e rocha digital na indústria do 

petróleo: aplicações em perfilagem de poços. 2017. 175p. Tese (Doutorado em Ciências) - 

Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, 2017.  

 

Neste trabalho são discutidas técnicas de Ressonância Magnética Nuclear (RMN) aplicadas à 

avaliação de formações por meio da perfilagem de poços pela indústria de óleo e gás. São 

apresentados os conceitos básicos para processamento e interpretação dos dados de RMN, e 

desenvolvida uma metodologia para determinação da relaxatividade superficial em poço. O 

método consiste em um algoritmo de processamento de dados de diffusion editing, que 

permite a obtenção da relaxatividade superficial em condições próximas as encontradas na 

perfilagem de poços de petróleo (em relação à disponibilidade de dados e nível de ruído). Para 

níveis moderados de ruído, as relaxatividades mais baixas (menores que 10𝜇𝑚/𝑠) podem ser 

determinadas através das medidas de difusão por RMN, enquanto valores mais altos 

(~30𝜇𝑚/𝑠) podem ser separados dos intermediários. Aplicações em dados de perfilagem 

ainda requerem técnicas de redução de ruído como aquisições estacionárias em poço ou 

empilhamento de dados ao longo de um intervalo de profundidades. Entretanto, o método 

possibilita uma forma de converter as distribuições de 𝑇2 em distribuições de tamanhos de 

poros ainda em poço, antes que as amostras sejam enviadas para o laboratório em análises de 

rotina. Além da perfilagem, foi desenvolvido também uma aproximação para a equação de 

difusão com condições de contorno absortivas, através de equações de taxas. A forma das 

taxas de transição permite o desenvolvimento de metodologias simples para obtenção dos 

dados de RMN através de imagens dos poros das rochas. As taxas de transição podem ser 

utilizadas também para a modelagem de outros fenômenos que envolvam difusão, como 

fenômenos de troca entre poros ou entre sítios com diferentes valores de relaxação. 

 

Palavras-chave: Ressonância magnética nuclear. Indústria de óleo e gás. Avaliação de 

formações. Relaxatividade superficial. Rocha digital.     
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𝑇2𝐵  Bulk transverse relaxation time 

𝜓𝑛  n-th diffusional eigenmode for Bloch-Torrey’s equation 

𝜌1  Longitudinal surface relaxivity 

𝜌2  Transverse surface relaxivity 

𝜌  Surface relaxivity 

𝑆/𝑉  Surface per volume ratio 

𝑓  Distribution function 

𝐷∞  Restricted diffusion coefficient for long diffusion times 

𝑔  Gradient distribution 

𝑇𝐷  Time between first and second echoes in diffusion editing acquisition 

𝒅  General data vector 

𝑨  General model matrix 

𝒇  General distribution vector 

𝑝𝑛  Number of particles in cell n 

𝜆𝑛𝑚  Transition rate from cells n to m 

𝜆𝑛
𝑆   Absorption rate in cell n through surface S 

Δ𝑉𝑛  Volume of cell n 

𝐴̅𝑛  Mean surface area of cell n 
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1 INTRODUCTION AND OBJECTIVES 

 

Nuclear Magnetic Resonance (NMR) comprehends a vast number of techniques based 

on few phenomena arising from the interaction between magnetic fields and the magnetic 

nuclear dipoles of the atoms. All these different measurement styles and techniques are 

nowadays applied in several fields of investigation such as: 

- Physics and chemistry characterization: Materials, molecular spectroscopy 

- Health, medicine, neuroscience: Magnetic Resonance Imaging (MRI) 

- Quantum information 

- Fluid quantification and materials characterization for several industry branches: 

food, oil and gas, construction engineering 

- Subsurface exploration for searching mining sites and oil and gas reservoirs 

We will focus specifically on NMR techniques used in the oil and gas industry for 

reservoir petrophysical characterization. In a standard exploration program, several physical 

properties of potential reservoirs are measured in the well site, including NMR relaxation 

times for saturating fluids and possibly their diffusion coefficients. Under certain 

assumptions, diffusion coefficients and relaxation times correlate with the rock pores 

geometry and specifically pore sizes. Therefore, these techniques are widely used for rock 

porosity determination and permeability prediction.  

Specifically, transverse magnetization relaxation rates can be proportional to rock pore 

sizes under certain circumstances, the proportionality constant being called surface relaxivity. 

Surface relaxivities can be determined in the laboratory by combining NMR diffusion 

measurements and electrical conductivity data. However, downhole NMR data are much 

noisier than lab measurements, and well logging electrical data are usually not robust enough 

to allow such calculations for complex reservoirs. Indeed, electrical conductivity values for 

carbonate reservoirs are usually close to or beyond the tolerable tool limits. Also, NMR 

acquisition schemes for well logging require adaptations of the available methods for 

obtaining relaxivities. Therefore, the main objective of this work is the development of a 

method capable of overcoming these challenges in obtaining surface relaxivities for well 

logging data. The results can then in principle be used to obtain pore size distributions 

downhole, improving permeability predictions and reservoirs’ evaluation. 

As a secondary objective, we analyze the diffusion equation with partial absorptive 

contour conditions (which models NMR relaxation and diffusion measurements) in terms of 

simple rate equations. The resulting transition rates between different sites depend on the 
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geometry of the cells, and can be used for modeling other processes based on diffusion, such 

as exchange measurements and diffusional coupling. 

These objectives and contents are distributed in the thesis in the following way.  

In Chapter 2 we contextualize the topic of formation evaluation and petrophysics, 

giving a brief description of the petroleum exploration chain, and the process of well drilling 

and logging. Chapter 3 is dedicated to the introduction and development of NMR theory and 

basic measurement schemes, including discussion of well site conditions, and behavior of 

relaxation times and diffusion coefficients for fluids trapped inside a porous medium. In 

Chapter 4 we describe a general processing workflow for NMR data inversion, applicable for 

different kinds of data generated downhole. Chapter 5 discusses a way of adapting existing 

methods for determining surface relaxivity via downhole measurements, providing laboratory 

and well logging examples.  

Finally, in Chapter 6 we develop a way of understanding the diffusion of 

magnetization inside a rock pore, based on pore imaging. The method provides analytic 

approximations for the solution of the diffusion equation subject to absorptive contour 

condition for, in principle, an arbitrary shaped pore. The diffusion problem is formulated in 

terms of rate equations, where transition rates are calculated from surface areas and volumes 

of the pore. 
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2 BASIC PETROPHYSICS AND OIL/GAS EXPLORATION 

 

Fossil fuels such as petroleum and coal still constitute the main (nonrenewable) energy 

sources in our global matrix energy. Petroleum, specifically, is a complex mixture of 

hydrocarbons that is stored in the subsurface as a result of millions of years of natural 

processing of organic matter, through exposition to high pressures and temperature. This 

organic matter is the remainder of once living beings (mostly phytoplankton and algae) that 

accumulate in ancient oceans, lakes or riverbeds through geologic time. Oil and gas are then 

found between the pores of reservoir rocks, most of the time sharing this space with water. (1) 

The process of finding new petroleum fields depends firstly on gathering the most 

information available on the geologic history and subsurface structure that result in probable 

reservoir sites, and then, once those plays are identified, on answering with the best precision 

mainly two important questions: how much oil and/or gas are available in such reservoir, and 

how easy it is to get them out. These two questions, on storage capability and fluid 

transport, constitute some of the petrophysical assessments one should be interested in. 

Petrophysics can be defined as the study of physical properties of rocks, as well as 

their interaction with fluids contained in them. (2) These properties are mainly controlled by 

the geologic history of formation and development of the rocks. Therefore in this chapter, we 

will describe how sedimentary rocks are formed and some important factors that control their 

petrophysical properties. We then define the geological components of a petroleum play, as 

well as the ways petrophysics is usually assessed downhole in an oil/gas well. 

 

2.1 Sedimentary rocks – origins and properties 

 There are three general rock types occurring in nature: igneous, metamorphic and 

sedimentary. Igneous rocks result from solidification of magma from cooling either at Earth’s 

surface or subsurface. Metamorphic rocks result from physical and chemical transformations 

occurring in pre-existent ones due to compression, high temperatures and reactions with fluids 

in subsurface. Although in principle any kind rock can hold oil and gas and therefore 

constitute a legitimate petroleum reservoir, we will focus on the third kind, sedimentary, 

which constitute the majority of Earth’s known reservoirs. (3) 

Sedimentary rocks are formed from pieces of preexistent ones or dissolved minerals 

that under certain conditions of burial, compression and or chemical 
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precipitation/transformation, aggregate into new rocks. The origin of such rocks can be 

understood in terms of the following simplified stages: 

 

Weathering and Erosion 

Processes by which rocks are fragmented or dissolved, due to the action of weather 

and chemical reactions, and are mobilized to other locations. Due to mechanical weathering, 

fragmentation can occur because of successive expansions and contractions of the materials 

due to temperature variations, friction with abrasive materials carried by water or wind 

currents as well as with rain water, for example. Weathering can also have chemical origins, 

as contact with water can promote rock dissolution. The sediments are therefore rock 

fragments (or clasts), remains of living beings (bioclasts such as shells) or dissolved 

materials. It is important to notice that the analysis of types of sediments which constitute a 

certain formation can give clues to the type of environment in which those clasts or minerals 

were formed.  

 

Transport and deposition 

Sediments can be carried away mainly by water and air currents to be deposited in 

locations that can be different than those of the source rocks. The intensity of the currents 

determine the size of the sediments that are carried away. Strong water currents of rivers or 

sea waves can carry larger clasts, while calmer waters of less steep streams or deep oceans 

tend to allow deposition of much finer grains. Winds are also usually able to carry only lighter 

grains, and friction between these grains tend to give them rounder shapes. These examples 

show that the types of transport also reflect on the grain size distribution of sedimentary 

rocks. Those resulted from grains carried by the wind, for example, have a sharp size 

distribution and are called well sorted rocks. Figure 2.1 shows an example of a well sorted 

sandstone, where one can see the grains have approximately the same sizes. 
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Figure 2.1 - Thin section of a well sorted Botucatu Sandstone. 

Source: By the author. 

 

On the other hand in Figure 2.2 one can see a sandstone with a broader grain size 

distribution. That could come from sediments carried and deposited by higher energy 

currents, able to transport larger clasts. 

 

Figure 2.2 - Thin section of a poorly sorted Leopard Sandstone. 

Source: By the author. 

 

Deposition can also occur through precipitation of dissolved minerals, through 

favorable chemical reactions of that specific environment. Shallow salt lakes, for example, 

can favor precipitation of salt, creating evaporitic rocks. The action of living organisms can 

also favor de deposition of biochemical sediments. 
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 Once again, these examples show that analysis of textural characteristics of the grains 

composing a sedimentary rock can tell the story of all these transport possibilities, therefore 

giving clues about the entire environment that existed by that time.  

 

Diagenesis 

After deposition, the sediments can be solidified through physical and chemical 

processes, creating the actual sedimentary rocks. Burial increases the pressure over the 

sediments giving rise to a compaction process, which associated with an increase in 

temperature can glue the clasts together. Other diagenetic processes can be produced by 

chemical reactions, as the precipitation of minerals forming cement between the grains 

(cementation process that decreases the space between grains). Chemical reactions can also 

produce the substitution of minerals by others, increasing or decreasing the space between 

grains, or by dissolution of minerals due to contact with water, increasing the space between 

grains. The action of living organisms can also alter the original depositional distribution of 

gains and minerals, via mechanical or chemical processes. 

In this work, we will deal specifically with two classes of sedimentary rocks that are 

described below: clastic or siliciclastic rocks and carbonates. 

 

Siliciclastic rocks 

Frequently called simply as sandstones, they are rocks formed from the aggregation of 

clasts and fragments (usually silicates such as quartz) of other rocks, by the processes 

described before. They can be formed far from the rocks that originated these fragments 

because of the transport processes (water currents, gravity flows), therefore being deposited in 

several environments ranging from riverbeds to deep ocean. They have in general a simple 

pore structure, governed primarily by the grain sizes distribution.  

The grain sizes are usually classified accordingly with Table 2.1 below (intermediate 

grain sizes are called sands, and finer sizes are silts and clays). 
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Table 2.1 - Grain sizes classification 

Particle size (mm) Sediment classification 

> 256 Boulder 

64 −  256 Cobble 

2 − 64 Gravel 

0.062 − 2 Sand 

0.0039 − 0.062 Silt 

< 0.0039 Clay 

Source: Adapted from PRESS et al. (3) 

 

Clastic rocks formed predominantly of sand sized grains are called sandstones, those 

formed of grains with silt size are siltstones. Another important clastic rock type is the one 

formed by a fine mix of silts and clay sized grains, called shale rocks. 

 

Carbonate rocks 

Sedimentary rocks formed by precipitation of dissolved components by chemical 

reactions. Because of the chemical nature of the sediments the depositions are made not too 

far from the original rocks, and therefore are limited to fewer depositional environments, such 

as calm lakes with biological activity, and sea coasts not too deep (within the carbonate 

compensation depth, where the deposition of carbonates is favorable).  

They are mainly limestones, which are formed of calcium carbonates (CaCO3), and 

dolomites (CaMg(CO3)2), formed by substitution processes. 

Since carbonate formation is mainly governed by chemical reactions, they are much 

more subject to diagenetic process, and can have pore structures that are way more complex 

than those of sandstones. Carbonates pore spaces can be intergrain, like clastic ones, but can 

also be extremely impacted by dissolution forming either empty spaces of order of milimiters 

to centimeters (vugs), or microporosity spaces within the grains. On the other hand, 

cementation can close the pore spaces almost completely. Unlike sandstones, carbonate pore 

throats have little to do with the original clasts size distributions. 
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Figure 2.3 - Example of carbonate structure - Indiana Limestone. 

Source: By the author. 

 

In the following section we define the main petrophysical properties of rocks, and how 

they are related with the formation of sedimentary rocks discussed above. 

 

2.2 Petrophysics and petrophysical properties 

The history of a sedimentary rock, specially deposition and diagenetic processes, 

determines its petrophysics properties. As defined in the introduction of this chapter, 

Petrophysics comprises the study of physical properties of rocks, as well as their interactions 

with saturating fluids. We list in this section the main petrophysical parameters one is 

interested in an Exploration or Production program, how they are measured and how they 

relate with the origins of the rock. (2) 

 

Porosity (𝜙) 

It is the ratio between the total empty volume (pore volume 𝑉𝑝) and the bulk rock 

volume 𝑉𝑏 (comprising empty space plus rock matrix), therefore being an indicator of the 

rock’s fluid storage capacity: 

 
𝜙 =

𝑉𝑝

𝑉𝑏
 (2.1) 
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Primary porosity is the pore space fraction at the time of deposition and secondary 

porosity is developed from diagenetic processes such as dissolution (increasing porosity) or 

cementation (decreasing porosity). 

For sandstones, porosity is generally mostly primary, with pore sizes proportional to 

grain sizes. For well sorted grains porosity is maximum, depending only on the grain packing 

configuration. For poorly sorted sandstones, smaller grains tend to occupy spaces inaccessible 

by bigger ones, hence decreasing porosity. Other important factors can decrease porosity in 

clastic rocks such as cementation and the presence of clay minerals that obstruct the pore 

throats. 

Carbonate rocks are much more amenable to chemical reactions, therefore having 

porosities mainly controlled by secondary processes. Porosity is then much governed by 

dissolution, yielding to microporous spaces within grains, or by cementation, sometimes 

closing pore spaces completely. Substitution of minerals are much more present, and can 

either increase or decrease porosity. Presence of clay minerals is much less frequent than in 

sandstones. These factors combine to generate a much more complex pore space structure in 

carbonates than in sandstones, which can affect the flux properties of fluids dramatically. 

Porosity is usually measured in the laboratory by saturating the core with gas such as 

nitrogen or helium, inside a chamber of known volume 𝑉1. The chamber is then coupled with 

a second one (volume 𝑉2, originally evacuated) and pressure values are taken in the initial and 

final condition (𝑃1and 𝑃2respectively). If the temperature is held fixed, Boyle`s Pressure and 

Volume Law for Ideal Gases can be used to determine empty pore space as: 

 
𝑉𝑏 − 𝑉𝑝 = 𝑉1 − 𝑉2 (

𝑃2
𝑃1 − 𝑃2

) (2.2) 

 

 Pore space can also be measured using other fluids. For instance, one could saturate 

the rock with water and obtain porosity by measuring weights differences between initial and 

final conditions. The advantage of using gases instead of liquids is that they are less affected 

by capillary forces and are able to access the whole interconnected pore space, not being 

necessary the application of high confinement pressures.  

It is worth pointing out that these methods measure only effective porosity, which is 

interconnected pore space. Isolated pores are not accounted by these measurements. Typical 

reservoir porosities range from 5 to 15% for carbonates and from 10 to 20% for sandstones. 
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Absolute permeability (𝑘) 

As important as being able to determine the rock`s storage capacity, is the 

quantification of the ability of a fluid to go through the porous medium. Permeability is 

governed by the amount of interconnections between the pores through pore throats, and also 

by the pore throats sizes. Smaller throats for instance will oppose to fluid motion due to 

increasing capillary forces. 

Henry Darcy experimentally studied fluid flow through porous media, and obtained a 

well known relation between flow rate 𝑞 of a fluid passing through a core of length 𝐿, and the 

pressure drop ∆𝑃. Darcy`s Law stands as the definition of permeability 𝑘: 

 
𝑞 = −

𝑘𝐴

𝜇

Δ𝑃

𝐿
 (2.3) 

 

In equation (2.3) 𝜇 is the fluid viscosity and 𝐴 is the cross sectional area of the plug. 

In clean sandstones (with no presence of clay minerals), permeability tend to have 

high values for well sorted big grains, as the pore throat sizes correlate with grain sizes. For 

small, but still well sorted grains, although porosity won`t change, permeability will diminish 

because of decreasing throat sizes. For poorly sorted rocks smaller grains will tend to obstruct 

the pore throats, also decreasing permeability. 

Complex carbonate structure will give rise to more complicated permeability behavior. 

Big pore sizes are not determinant of good flow rates because connections are highly affected 

by diagenetic processes, and do not correlate in general with pore sizes. 

Permeability is measured in the Laboratory by flowing gas such as nitrogen or helium 

through a confined rock plug, and by measuring the pressure drop. Knowledge of the core`s 

dimensions and fluid viscosity allows the use of equation (2.3) to determine 𝑘. 

Typical values of 𝑘 range from below 1mD for bad permeabilities to tenths or 

hundreds of mD for intermediate to good values. 1𝐷𝑎𝑟𝑐𝑦 = 9.869 10−13𝑚2, which is an 

extremely high permeability value. 

A simple model for determining permeability from first principles was developed by 

Kozeny and Carman (2,4) in which they considered a porous medium of length 𝐿 being made 

as a network of tortuous pipes or capillaries of lengths 𝐿𝑐 ≥ 𝐿 and radius 𝑟. Poiseuille’s law 

for flow rate through cylindrical capillaries gives: 

 
𝑞 =

𝜋𝑟4

8𝜇

Δ𝑃

𝐿𝑐
 (2.4) 

 

Comparing with Darcy’s Law, permeability is given by: 
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𝑘 =

𝜙𝑟2

8(𝐿/𝐿𝑐)2
 (2.5) 

 

The ratio (𝐿𝑐/𝐿) is a measure of how “tortuous” the porous medium is. The 

petrophysical parameter tortuosity is defined as: 

 
𝜏 = (

𝐿𝑐
𝐿
)
2

 (2.6) 

 

It is important to notice that equation (2.5) relates permeability with the square of a 

characteristic size of the pore/throat, and also with porosity. This observation is the key for 

the development of permeability models from NMR data, which will be discussed further on 

(Chapter 3). 

 

Pore Size Distribution 

As a result of the ways sedimentary rocks are formed, one should not expect that these 

porous media would be formed of pores with only one well defined pore size. In fact, rocks  

have a distribution of pore sizes, depending on the quality of grain sorting and intensity of 

diagenetic action. 

Well sorted clean sandstones tend to have a narrow single peaked pore size 

distribution such as the one showed in Figure 2.4. A carbonate with high primary porosity but 

with grains highly affected by dissolution could have instead a bimodal pore size distribution 

such as Figure 2.5. 

 

Figure 2.4 - Single peaked pore size distribution. 

Source: By the author. 
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Figure 2.5 - Bimodal pore size distribution. 

Source: By the author. 

 

Measuring pore size distribution is not a trivial task. One useful technique is rock core 

imaging using x-ray tomography. The drawbacks of this method are resolution, that is usually 

not smaller than a few microns, and the difficulty (shared with all other methods) of giving an 

unique mathematical/geometrical definition of pore size. 

An indirect method is to measure the Pore Throats Size Distribution instead, using the 

Mercury Injection Capilary Pressure (HgCP) technique. In this technique the core is confined 

and immersed in liquid mercury, which is submitted to increasing pressures. As the pressure 

increases, mercury becomes able to overcome capillary pressure from smaller throats and to 

invade more of the pore space. The amount of Hg absorbed by the rock at each pressure step 

correlates with the amount of pore throats having a specific radius. 

By converting the pressure axis into pore throat radii through a capillary force model, 

and by changing the y-axis from cumulative to incremental volume, one can get the throat 

sizes distribution as in Figure 2.6. 
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Figure 2.6 - Example of pore throat distribution. 

Source: By the author. 

 

In sandstones, where pore throats are in general proportional to pore sizes, the pore 

throats distribution can be used as a representation of pore sizes distribution. For more 

complex carbonates this is not the case. 

Another extremely useful technique (as it is the only one that can be used downhole) 

for determining pore size distributions is through the measurement of NMR relaxation times 

distributions. As will be seen in Chapter 3, NMR relaxation times of fluids saturating rocks 

correlate under certain conditions with the volume to surface ratio of a pore (hence pore size), 

and can be used to estimate pore structure properties such as permeability. We will leave this 

discussion to Chapter 3. 

 

Fluid saturation 

In an actual oil or gas reservoir, the pore space is filled with more than one fluid. 

Water is always present because sediments are deposited in water environments such as 

rivers, lakes or oceans, and hydrocarbons tend to occupy the pore space after organic matter is 

processed in the subsurface. The fraction of a certain fluid with respect with the whole pore 

volume is that fluid saturation. 
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Because of capillary forces between water and the pore walls, a residual water 

saturation is always expected to remain inside a rock core even after the draining of that plug 

after application of high pressures. Figure 2.7 shows a capillary pressure curve relating 

applied pressure through a rock core as function of remainder water saturation 𝑆𝑤. 

 

Figure 2.7 - Capillary pressure curve. 

Source: By the author. 

 

It can be seen in Figure 2.7 that as the water saturation diminishes, a great increase of 

pressure tends to expel lesser amounts of water. The limit at which an increase of pressure 

expels no water at all defines the irreducible water saturation 𝑆𝑤𝑖𝑟𝑟. This is the water trapped 

inside the reservoir by capillary forces. We can therefore define the following important 

parameters (2,5): 

BVC (Bound Volume Capillary) – Water or oil volume trapped in pores that are too 

small or are connected through small throats so that capillary forces are too strong to allow 

flow. 

CBW (Clay Bound Water) – Water trapped by clay minerals 

BVI (Bound Fluid Irreducible) – CBW + BVC, that is the total amount of fluid that 

cannot flow. 

FF (Free Fluid) – Amount of water or oil inside pores that are big enough or connected 

through larger throats that allow flow. 

With these definitions, we can see that effective porosity defined before comprises the 

fluid portions FF and BVI, while total porosity comprises all the volumes. 
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The amount of free oil available in a reservoir depends on these parameters, and 

irreducible water also affects its flow capability. We will discuss further on how these 

parameters are estimated downhole. 

 

Wettability  

Wettability is the affinity a certain fluid has with the pore walls. During the formation 

of a sedimentary rock, clasts or precipitates are aggregated in a water environment, therefore 

making the pore walls water wet. However when hydrocarbons percolate through the 

reservoir, depending on the pore walls mineralogy, the rock can experience a wettability 

inversion. Sandstones tend to remain water wet, as carbonates are more amenable to become 

oil wet or with mixed wettability.  

Knowing which fluid is touching the pore walls is important for oil recovery 

strategies, once it is easier to flow free oil through a water wet environment, because of less 

capillary interaction with pore throat.  

 

2.3 The Petroleum System and Well Logging 

As briefly described in previous sections, the history of sedimentary and other kinds of 

rocks might be a really complex one, specially when put in context with broader movements 

of Earth and its environments. Consider for instance Plate Tectonics Theory. Relative motion 

between major pieces of Earth crust generating a myriad of environments, ranging from the 

largest mountains, to several different basins and finally the deepest seas. During millions of 

years, these environments change, favoring from time to time exposure to intensive 

weathering, vast deposition and sedimentary processes, exposure to action of living 

organisms, or large periods of deep silence. Each of these processes creates different rock 

formations, organized in complex layers in the subsurface, each one with its particular 

petrophysical properties. For a petroleum system to be able to form in a given sedimentary 

basin, all these processes must converge to the following elements of an conventional oil/gas 

play (1): 

Source rocks: These are sedimentary rocks which were deposited with a great amount 

of organic matter. When subject to enough burial, therefore ideal pressure and temperature, a 

series of chemical reactions occur transforming organic matter in oil and/or gas, depending on 

the composition of the original matter, the amount of pressure and temperature, and the 

duration of the reactions. Petroleum is then expelled from generating rocks in a process called 
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primary migration. Generating rocks are usually shales, that in spite of having a great range 

of porosities, are really little permeable. 

Reservoir rocks: Permeable and porous rocks (mostly generated by the sedimentary 

processes already discussed) that will store petroleum. In conventional fields they can be 

made of sandstones or carbonates. After primary migration, oil and gas must find a permeable 

and porous path to move upwards due to buoyancy forces (these fluids are less dense than 

water), against opposing capillary forces. This process that can also take millions of years and 

is called secondary migration, and goes on until the fluids hit a trap made by a much less 

permeable rock, a seal rock. Sealing rocks can be usually shales or salt. 

 

 

Figure 2.8 - Example of a geologic model containing the elements of a petroleum system. 

Source: By the author. 

 

The last key element is the timing between these events. If a seal forms after 

secondary migration, or if everything is in its correct place but generating rocks had never hit 

a mature stage of pressure and temperature, no oil field will be formed.  

In an Exploration Process, those elements are contextualized in the major low 

frequency history of the basin, and a geologic model of how subsurface should look like is 

developed. For this matter, knowledge of drilled nearby wells and other input data can be 

used. Subsurface can be sounded using seismic, gravitational or electromagnetic methods. In 

seismic exploration, for example, large sources of energy such as explosives or air cannons 

(in marine acquisitions) excite sound waves that propagate downward. As these waves are 

reflected and scattered by the layers of rock formations, their returning times are recorded by 

a large grid of detectors at the surface. These times are processed generating an image of the 
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major structures that exist below the surface, as the one showed in Figure 2.9 (made available 

by Stewart (6) at Virtual Seismic Atlas website). 

 

Figure 2.9 - Example of seismic image. 

Source: Adapted from STEWART. (6) 

 

Based on such images and geological knowledge, a drilling site is chosen for searching 

petroleum accumulations. During well drilling several pieces of information are obtained such 

as a general description of rock types at each depth (sandstones, carbonates, shales, salt…), 

and indicators of oil and gas presence. Once a drilling section of the well is completed, a more 

complete set of petrophysical information is obtained from the exposed well walls, in a 

process known as logging and formation evaluation. 

Logging tools are put inside the well bore and measure a set of physical parameters 

that will be interpreted and converted into petrophysical data for the rock formations. At this 

point, the objective is to find the reservoirs, estimate their porosities and permeabilities, the 

amounts of fluids contained in them, the intervals that are oil/gas filled, among other 

petrophysical parameters. The most common well logging measurements are described below. 

(2,5) 
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Gamma Ray Log 

Measures the natural gamma radiation emitted by elements that compose the 

formation, mostly Uranium, Thorium and Potassium. As these radioactive elements tend to 

sediment with fine sized grains like silt or clays, gamma ray log is usually an indicator of 

shale content in a formation. 

 

Density, Neutron and Sonic logs 

Density tools use a radioactive source to send gamma ray photons to the rock 

formation, which are scattered by formation electrons through Compton Effect. As a 

consequence, these photons have different energy and frequency, which enables their 

detection by an appropriate sensor in the tool. The measured amount of scattered energy 

converts into counting of electron density, which can then be translated in bulk formation 

density 𝜌𝑏. If assumptions are made for rock matrix density 𝜌𝑚 (sandstones have density 

around 2.65𝑔/𝑐𝑚3 and carbonates about 2.71𝑔/𝑐𝑚3) (2-3), and for fluid density 𝜌𝑓, porosity 

can be estimated with: 

 𝜙 =
𝜌𝑚 − 𝜌𝑏
𝜌𝑚 − 𝜌𝑓

 (2.7) 

 

Neutron logs are also used for porosity estimation. The tool uses a high energy neutron 

source which emits neutrons that are scattered in the formation. In this case, scattering is more 

efficient in the interaction with Hydrogen, which slow down the neutrons. Low energy 

scattered neutrons are counted by sensors in the tool, and this measurement is converted in 

total amount of Hydrogen count (or Hydrogen Index). As most of H atoms are found in the 

fluids saturating the formation (water or hydrocarbons), this is finally a measurement of space 

occupied by fluid, hence porosity. 

Sonic tools’ transmitter send a mechanical wave that travels through the bore walls, 

and are detected by the tools’ receivers. The basic measurement is the transit time of the 

wave, hence velocity. Several properties can be calculated from such measurements. For 

instance, assuming a known transit time for rock matrix and fluid, one can estimate porosity 

in a similar way as done with density logs (equation (2.7)).  

Wave velocity can also relate to mechanical properties of rocks, like compressional 

coefficient for example. There are also models for rock permeability that are based on the 

excitation of compressional, sheering and surface waves. 

Porosity logs (density, neutron and sometimes sonic) can be combined for determining 

other petrophysics properties. By analyzing the differences between density and neutron 
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porosity, one can detect packs of sandstone reservoir for example. Comparison between 

neutron and sonic porosities can identify zones with vuggy porosity. 

 

Resistivity logs 

These tools measure bulk resistivity (or conductivity) of rock formations, which can 

be done by applying a potential difference between two detectors or by inductive methods. 

By measuring resistivity of hundreds of rock cores, Archie (7) found empirically a 

relation between bulk resistivity 𝑅𝑡, water resistivity 𝑅𝑤 and porosity (for water saturated 

rocks): 

 
𝐹 ≡

𝑅𝑡
𝑅𝑤

=
𝑎

𝜙𝑚
 (2.8) 

 

Coefficient 𝑚 is the cementation coefficient, with gives a measure of how much the 

porous media deviates from a set of parallel straight tubes. In fact, the Formation Factor 

𝐹 = 𝑅𝑡/𝑅𝑤, is also related to tortuosity defined in equation (2.6), as it measures in some 

sense the distance that an electric current has to run inside a porous medium. 

In a rock saturated with water and oil, Archie found out the following relation that 

includes water saturation 𝑆𝑤 and saturation exponent 𝑛: 

 
𝑅𝑡 = 𝑎

𝑅𝑤
𝜙𝑚𝑆𝑤

𝑛
 (2.9) 

 

Resistivity logs are then extremely important as resistivity contrasts allow the 

determination not only of oil zones, but also a quantification of water/oil saturation using 

equation (2.9). 

These logs can as well be used to investigate invasion profiles. While drilling, some of 

the drilling mud filtrate used in perforation can invade the formation, creating a rock layer 

that includes fluids that are not original from the formation. By changing the frequency of 

resistivity tools or distance between detector, one can vary the depth of investigation and 

check the invasion depth. 

 

Nuclear Magnetic Resonance Logs 

NMR logs are extremely important because they can be used to determine total 

porosity, irreducible water saturation, fluid identification and permeability estimation. (5,8) 

We will leave the details of measurements and petrophysical interpretations to Chapter 3. 

Briefly, NMR logs measure the amount of Hydrogen in saturating fluids (hence porosity) 

through detection of a net magnetization induced by an external magnetic field. The technique 
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also measures at each depth a distribution of magnetization relaxation times to an equilibrium 

condition, which correlates with a pore size distribution. Relaxation times distributions are 

used to estimate absolute permeability. 

NMR diffusion techniques can also be used to determine saturating fluid properties, 

and pore geometry characteristics.  

Figure 2.10 shows an example of the logging results in an oil reservoir. 

In the following Chapter we develop the theory behind NMR relaxation and diffusion 

techniques, as well as discuss their relation to petrophysics, and specific well site and tools 

conditions. 
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Figure 2.10 - Logging results. First track shows gamma ray log in green and the difference between the expected 

well caliper and measured one in shaded light brown. Second track shows the density log in red, 

its corresponding porosity in shaded grey, and Neutron porosity in green. Last track shows the 

NMR transverse relaxation times distributions. Depth increases downwards.   

Source: Provided by Petrobras. 
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3 NUCLEAR MAGNETIC RESONANCE THEORY AND LOGGING 

APPLICATIONS 

 

In this chapter we will introduce the theoretical fundamentals of Nuclear Magnetic 

Resonance (NMR) techniques, with emphasis on relaxation and diffusion, which are the main 

topics for oil and gas industry and petrophysical applications. Then we discuss how these 

concepts apply to fluid saturated rocks. 

Certain nuclei in nature, those with odd mass number like the proton in the Hydrogen 

nucleus, have an intrinsic magnetic dipole moment (𝜇⃗) which arises from the nucleus natural 

angular momentum 𝑆, or Spin. Although this magnet dipole moment resembles (regarding its 

mathematical structure) the one that would arise from a charged rotating particle, the Spin has 

no classical analogue, and should be seen as a purely quantum effect and an intrinsic property 

of particles, instead of an actual rotation. Nevertheless, whatever origin the magnetic dipole 

has, its existence allows nuclei be manipulated by applied magnetic fields.  

In NMR techniques, the sample is submitted to a static magnetic field 𝐵⃗⃗0, which 

causes the intrinsic magnetic moments 𝜇⃗ to ‘align’ in some sense along the applied field, 

resulting in a sample net magnetization 𝑀⃗⃗⃗. Magnetization direction can be manipulated with 

intermittent radio frequency (rf) fields, and the observation of its return to equilibrium gives 

important information about the sample and its environment. For oil and gas applications, the 

sample is a fluid (either water, hydrocarbon, or both) saturating rock pores, and the nucleus of 

interest is the Hydrogen proton.  

We will first introduce the basic ingredients for an NMR measurement, which are: 

equilibrium magnetization establishment in a static field, magnetization manipulation through 

rf fields, relaxation to equilibrium and self-diffusion effects. These elements are combined 

and summarized in equation (3.26), Bloch-Torrey’s equation for transverse magnetization 

evolution. We then apply the solutions of this equation to describe the most common designed 

laboratory measurements of magnetization. Finally, Petrophysical applications and well 

logging considerations are presented. 

 

3.1 Basic NMR theory 

The intrinsic magnetic dipole moment 𝜇⃗ is related to the nucleus Spin angular 

momentum through the relation (9): 

 𝜇⃗ = 𝛾𝑆 (3.1) 
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𝛾 is the gyromagnetic ratio, a physical constant tabled for each nucleus, with value of 

267.513 106 𝑟𝑎𝑑 𝑠−1𝑇−1(𝑜𝑟 2𝜋 42.576 𝑀𝐻𝑧/𝑇) for Hydrogen. 

Angular momentum can be written as 𝑆 = ℏ𝐼, where ℏ is Planck’s constant and 𝐼 is 

the quantum mechanical angular momentum operator that respects the following rules (10): 

 [𝐼𝑥, 𝐼𝑦] = 𝑖𝐼𝑧 , 𝑎𝑛𝑑 𝑐𝑦𝑐𝑙𝑖𝑐 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠 (3.2) 

 𝐼2|𝑚⟩ = 𝐼(𝐼 + 1)|𝑚⟩ (3.3) 

 𝐼𝑧|𝑚⟩ = 𝑚|𝑚⟩,𝑚 = −𝐼,−𝐼 + 1,… , 𝐼  (3.4) 

Equation (3.2) implies the Heisenberg Uncertainty Principle, which in this context 

means that one is unable to determine simultaneously the value of two or more components of 

a nucleus angular momentum. Therefore, a complete description of a nucleus (regarding its 

angular momentum) can only take into account one of its components. Let’s say that all the 

possible states for the z component are labeled as |𝑚⟩. Then equation (3.4) says that if one 

were able to measure the Spin’s z component, the only possible outcome for this measurement 

would be one of the 𝑚ℏ. The other components would remain undetermined and the modulus 

of 𝑆 would always be equal to ℏ√𝐼(𝐼 + 1). 𝐼 is a positive integer or semi integer constant for 

each nucleus. For protons 𝐼 = 1/2, which is why we say that Hydrogen nuclei have Spin ½.  

The z component of Hydrogen nuclei’s angular momentum can then only have the 

values ℏ/2 (its associated magnetic dipole moment is pointing upwards in the z direction) or 

−ℏ/2 (pointing downwards). For Spin ½ particles the states and angular operators can be 

represented as: 

 
|
1

2
⟩ = (

1
0
) , | −

1

2
⟩ = (

0
1
) , 𝐼𝑧 =

1

2
(
1 0
0 −1

) , 𝐼𝑥 =
1

2
(
0 1
1 0

) , 𝐼𝑦 =
𝑖

2
(
0 −1
1 0

) (3.5) 

Suppose we place a sample (water for example) in a static magnet field which we will 

assume is pointing in the z direction, such as  𝐵⃗⃗0 = 𝐵0𝑧̂. The energy operator (Hamiltonian), 

that is, the interaction between one nucleus’ magnetic dipole 𝜇⃗ and the static field, is: 

 𝐻0 = −𝛾ℏ𝐵0𝐼𝑧 (3.6) 

From equation (3.4) follows: 

 𝐻0|𝑚⟩ = 𝐸𝑚|𝑚⟩, 𝐸𝑚 = −𝑚𝛾ℏ𝐵0 (3.7) 

The meaning of this is similar to that of equation (3.4): each nucleus may be found in 

the presence of 𝐵⃗⃗0 at one specific value of energy, given by one of the 𝐸𝑚 = −𝛾𝑚ℏ𝐵0. Spin 

½ particles for example have two possible states: one of lower energy 𝐸1/2 = −
𝛾ℏ𝐵0

2
, where 𝜇⃗ 

is pointing in the positive z direction along with 𝐵⃗⃗0, and one of higher energy 𝐸−1/2 =
𝛾ℏ𝐵0

2
, 
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pointing in the opposite direction, as depicted in Figure 3.1. It is worth noticing that 

regardless the particle’s Spin number, the difference between two consecutive energies is 

always ℏ𝛾𝐵0, suggesting that an electromagnetic interaction in the frequency 𝜔0 = 𝛾𝐵0 might 

induce transitions between these states. This is the Larmor frequency and, as will be seen in 

the following sections, an electromagnetic pulse oscillating at this frequency can alter the 

states’ populations and coherences, therefore, magnetization. 

 

Figure 3-1 - States of a spin ½ particle in a the presence of a static magnetic field. 

Source: By the author. 

 

The evolution of the system comprising all the Spins in the sample, for example all the 

Hydrogen nuclei in water, can be determined by solving Schrodinger’s equation: 

 
𝑖ℏ
𝑑|Ψ⟩

𝑑𝑡
= 𝐻|Ψ⟩ (3.8) 

Depending on the system one is willing to solve, the Hamiltonian might be just 𝐻0 or 

might take into account the interactions between all the Spins and 𝐵⃗⃗0, among themselves and 

even with external sources. The general solution for one nucleus may be written as: 

 |Ψ(t)⟩ =∑𝑐𝑚(𝑡)𝑒
−𝑖𝑚𝜔0𝑡|m⟩

𝑚

 (3.9) 

The amplitudes 𝑐𝑚(𝑡) evolve in time accordingly to 𝐻, and have the property that 

𝑃𝑚(𝑡) = |𝑐𝑚(𝑡)|
2 is equal to the probability that at time 𝑡 the nucleus is measured at state 

|𝑚⟩. However, regardless the specific details of 𝐻, one should expect that a macroscopic 

sample submitted to 𝐵⃗⃗0 might reach at some point a thermal equilibrium state, in which the 
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probabilities 𝑃𝑚(𝑡) are stationary, that is, don’t vary in time anymore. Each state will then be 

populated with a number of nuclei that depends on the competition between the magnetic 

energy 𝐸𝑚, and the available thermal energy 𝑘𝑇, 𝑘 being the Boltzmann constant and 𝑇 the 

absolute temperature. If we assume that equilibrium is well described by Boltzmann statistics 

(and 𝐸𝑚 ≪ 𝑘𝑇), then 𝑃𝑚 ∝ 𝑒𝑥𝑝 (−
𝐸𝑚

𝑘𝑇
), yielding (9,11):  

 
𝑀0 =

𝑁𝛾2ℏ2𝐼(𝐼 + 1)𝐵0
3𝐾𝑇

 (3.10) 

For typical total number of nuclei (𝑁~1023), and at room temperatures, equilibrium 

magnetization will be 𝑀0~10
−6𝐵0. 

Therefore, at thermal equilibrium, a resulting net magnetization is established aligned 

with the external field, with an intensity of about 6 orders of magnitude smaller than 𝐵0. For 

an experiment to be able to detect such a small magnetization, rf pulses are used to drive 𝑀⃗⃗⃗ 

away of equilibrium, where it can be measured. 

 

Manipulation through rf fields 

Before considering how the interaction between 𝑀⃗⃗⃗ and oscillating magnetic fields 

proceeds, it is worth analyzing magnetization’s behavior in the presence of 𝐵⃗⃗0, when it is 

initially not aligned with the external field. The evolution of the mean dipole magnetic 

moment of a single nucleus 〈𝜇⃗〉 = ⟨𝛹│𝛾ℏ𝐼│Ψ⟩ with respect of 𝐻0 can be derived from 

Schrodinger’s equation (through Ehrenfest’s theorem (10)), yielding: 

 𝑑〈𝜇⃗〉

𝑑𝑡
= γ〈𝜇⃗〉 × 𝐵⃗⃗0 (3.11) 

Equation (3.11) has the following interpretation: if one were able to measure at an 

instant 𝑡 one of the components (say z, for example) of a nucleus’ magnetic dipole 𝜇⃗, they 

would obtain one of the 𝑚𝛾ℏ possible values as result. If the system was lead to the same 

initial state, and a similar measurement were made after an interval 𝑡, again one of the discrete 

values would be obtained. If this process was repeated several times, the mean value of the 

results would then be governed by equation (3.11). Therefore, although seemingly classic, 

equation (3.11) is strictly valid in quantum realm, whenever the correct interpretation is given 

for 〈𝜇〉. We might then commit some language abuse by saying ‘magnetization of one 

nucleus’ or ‘orientation of the Spin’, but keeping in mind that these expressions can be made 

precise if we understand them as referring to the mean value of a quantum measurement.  

Total magnetization follows from (3.11): 
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 𝑑𝑀⃗⃗⃗

𝑑𝑡
= γ𝑀⃗⃗⃗ × 𝐵⃗⃗0 (3.12) 

Equation (3.12) has as direct consequences: 

 

{
  
 

  
 𝑑|𝑀⃗⃗⃗|

2

𝑑𝑡
= −2γ𝐵0𝑀⃗⃗⃗ ∙ (𝑧̂ × 𝑀⃗⃗⃗) = 0

𝑑𝑀𝑧

𝑑𝑡
= −γ𝐵0𝑧̂ ∙ (𝑧̂ × 𝑀⃗⃗⃗) = 0

|
𝑑𝑀⃗⃗⃗

𝑑𝑡
| = (γ𝐵0)√𝑀𝑥

2 +𝑀𝑦
2

 (3.13) 

The first and second of (3.13) show that either magnetization modulus as its 

longitudinal component remain constant in time. That means that the magnetization vector 

moves confined to a cone with angle dictated by the initial orientation of 𝑀⃗⃗⃗ and the z axis, 

and its projection in the transversal plane is restricted to a circumference. The third of (3.13) 

shows that the tip of magnetization vector’s linear velocity is proportional to the radius of the 

circumference by a factor 𝜔0 = 𝛾𝐵0, the Larmor frequency. Hence, when in the presence of a 

static magnetic field, a nucleus’ spin or the total magnetization will execute a precession 

movement around 𝐵⃗⃗0 at the Larmor frequency in the clockwise direction (𝜔⃗⃗⃗0 = −𝛾𝐵0𝑧̂). 

Equation (3.14) shows the formal solution and Figure 3.2 illustrates this movement. 

 𝑀⃗⃗⃗(𝑡) = 𝑀𝑧0𝑧̂ + 𝑀𝑇0 cos(𝜔0𝑡 + 𝜙) 𝑥̂ −𝑀𝑇0 sin(𝜔0𝑡 + 𝜙) 𝑦̂ (3.14) 

𝑀𝑧0 = 𝑀𝑧(0) is the initial z component of 𝑀⃗⃗⃗, and 𝑀𝑇0 = √𝑀𝑥(0) + 𝑀𝑦(0) is its 

initial transverse component. Phase angle 𝜙 defines the initial orientation of 𝑀⃗⃗⃗ in the 

transversal plane. 

It will be worth pointing out that in terms of quantum amplitudes 𝑐𝑚(𝑡), solution 

(3.14) writes, for a spin ½ particle: 

 

{
 
 

 
 〈𝐼𝑧〉 =

1

2
(|𝑐1 /2|

2
− |𝑐−1 /2|

2

〈𝐼𝑥〉 =
1

2
(𝑐1 /2𝑐−1 /2

∗ 𝑒𝑖𝛾𝐵0𝑡 + 𝑐1 /2
∗ 𝑐−1 /2𝑒

−𝑖𝛾𝐵0𝑡)

〈𝐼𝑦〉 =
𝑖

2
(𝑐1 /2𝑐−1 /2

∗ 𝑒𝑖𝛾𝐵0𝑡 + 𝑐1 /2
∗ 𝑐−1 /2𝑒

−𝑖𝛾𝐵0𝑡)

 (3.15) 
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Figure 3.2 - Precession of magnetization around a static magnetic field. 

Source: By the author. 

 

Consider now that, besides the original static magnetic field 𝐵⃗⃗0, one could expose the 

sample to an additional time changing field 𝐵⃗⃗1(𝑡), with the particular characteristic that it is 

confined to the transversal plane, and it also rotates in the clockwise direction at the Larmor 

frequency, executing precession around the z axis along with the magnetization. In other 

words, if we consider a new frame of reference 𝑥′, 𝑦′, 𝑧′ (the rotating frame of reference) 

with the property that 𝑧′ = 𝑧, and 𝑥′and 𝑦′ rotating around z with 𝜔⃗⃗⃗ = −𝜔0𝑧̂, then 𝐵⃗⃗1(𝑡) =

𝐵1𝑥̂
′. In the rotating frame of reference, 𝐵⃗⃗1(𝑡) is a static magnetic field. Indeed, with the new 

reference system equation (3.12) becomes simply, 

 𝑑𝑀⃗⃗⃗

𝑑𝑡
= γ𝑀⃗⃗⃗ × 𝐵⃗⃗1 (3.16) 

Which is formally identical to equation (3.12). Therefore, in the rotating frame of 

reference, 𝑀⃗⃗⃗ will execute precession around 𝐵⃗⃗1 with angular frequency 𝜔1 = 𝛾𝐵1, and will 

tilt away from the z direction. Figure 3.3 illustrates the movement of magnetization under the 

application of 𝐵⃗⃗ 0 + 𝐵⃗⃗1(𝑡) in both frames of reference. 



51 

 

 

 

Figure 3.3 -  Precession of magnetization during application of 𝑩⃗⃗⃗𝟏(𝒕), from a) laboratory and b) rotating frames 

of reference. 

Source: By the author. 

 

Magnetization tilting will only be effective if 𝐵⃗⃗1′𝑠 rotating frequency matches or is 

close to the Larmor frequency of the nucleus in 𝐵⃗⃗0. For well logging applications and 

laboratory relaxometry in oil industry, the static field is generally around 500𝐺𝑎𝑢𝑠𝑠, which 
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yields Larmor frequencies of about 2𝑀𝐻𝑧 for Hydrogen nuclei. Therefore, 𝐵⃗⃗1 is generally in 

the spectrum of radio frequencies (rf), hence being called a rf pulse. By adjusting the duration 

𝑡𝑝 and intensity of the pulse, one can control the tilting angle for magnetization: 

 
Δ𝜃 =

𝛾𝐵1
2𝜋

𝑡𝑝 
(3.17) 

If Δ𝜃 = 𝜋/2 we call the rf a 𝜋/2 pulse, and so on for other tilting angles, like the 𝜋 

pulse for example. 

In practical laboratory measurements the rf pulse can be generated by flowing an 

electric current through a coil oriented along the transverse plane, as illustrated in Figure 3.4. 

 

Figure 3.4 - Generating the 𝑩⃗⃗⃗𝟏 rf pulse. 

Source: By the author. 

 

If 𝐵⃗⃗1(𝑡) = 2𝐵1 cos(𝜔0𝑡) 𝑥̂, then it can be expressed in the rotating frame as: 

 𝐵⃗⃗1(𝑡) = 𝐵1𝑥̂′ + 𝐵1(cos(2𝜔0𝑡) 𝑥̂′ + sin(2𝜔0𝑡) 𝑦̂′) (3.18) 

The first term of equation (3.18) is just the static field we have been discussing, that is 

able to change the direction of 𝑀⃗⃗⃗. The other term represents a field that oscillates at twice the 

Larmor frequency, far of resonance, hence not been able to promote alterations in the 

magnetization.  

To sum up, as the sample is submitted to a static magnetic field, magnetization will 

execute precession around that field at the Larmor frequency 𝜔0 = 𝛾𝐵0. Any time changing 

field oscillating at the Larmor frequency (or close), transverse to 𝐵⃗⃗0, is able to deflect the total 

magnetization. As the magnetic energy equals −𝑀𝑧𝐵0, tilting implies in energy transference 

between the alternating field and the sample, happening at the Larmor frequency, therefore 

changes in populations between the energy levels of the quantum system. 
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Relaxation 

Besides the interaction with the static field or rf pulses, each nucleus in the sample is 

always interacting with all the environment around it. The environment can be composed by 

other nuclei that are constantly moving closer and away due to thermal agitation, or to 

minerals present at the pore walls in the case of fluid saturating a rock sample. Therefore, 

each nucleus will ‘feel’ at each instant a local magnetic field varying almost randomly in 

time, that can be represented by 𝐵⃗⃗𝐿𝑜𝑐𝑎𝑙(𝑡) = 𝐵⃗⃗0 + 𝑏⃗⃗(𝑡), where 𝑏⃗⃗(𝑡) is a random fluctuating 

function. These interactions will be responsible for forcing the system back to thermal 

equilibrium described in the first section, with a total net magnetization along the z direction 

(longitudinal, parallel to the static field), and no transverse magnetization. This process is 

called relaxation to equilibrium. 

From the discussion in the previous section, any component of 𝑏⃗⃗(𝑡) that is transverse 

to 𝐵⃗⃗0 and oscillates at the Larmor frequency will be able to change the mean magnetic dipole 

orientation of that nucleus, therefore contributing to relaxation both in longitudinal and 

transverse directions. These interactions will be responsible for dissipating energy of the 

system until thermal equilibrium. However, any component of 𝑏⃗⃗(𝑡) that is longitudinal to 𝐵⃗⃗0 

will change the local Larmor frequency for each nucleus, generating a dephasing process 

between nuclei’s transverse magnetization. This process can hence affect total transverse 

magnetization while leaving the longitudinal one unchanged (it does not change the energy of 

the system, but only induces losses in coherence). Therefore, transverse relaxation always 

occur faster than, or at most at the same pace as, longitudinal relaxation. Bloch (12) found out 

empirically that in liquids relaxation can be described as (in the rotating frame of reference): 

 

{
  
 

  
 
𝑑𝑀𝑧

𝑑𝑡
=
𝑀0 −𝑀𝑧

𝑇1
𝑑𝑀𝑥′

𝑑𝑡
= −

𝑀𝑥′

𝑇2
𝑑𝑀𝑦′

𝑑𝑡
= −

𝑀𝑦′

𝑇2

 (3.19) 

The solutions to the Bloch equations follow below, and are illustrated in Figure 3.5. 

 

{
 
 

 
 𝑀𝑧(𝑡) = 𝑀0 − (𝑀0 −𝑀𝑧0)𝑒

−
𝑡
𝑇1

𝑀𝑥′(𝑡) = 𝑀0𝑥′𝑒
−
𝑡
𝑇2

𝑀𝑦′(𝑡) = 𝑀0𝑦′𝑒
−
𝑡
𝑇2

 (3.20) 
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Figure 3.5 - Relaxation to thermal equilibrium. a) Longitudinal magnetization and b) Transverse magnetization. 

Source: By the author. 

 

Both processes are described by exponentials with characteristics times 𝑇1, for 

longitudinal relaxation, and 𝑇2 for transverse relaxation, with 𝑇1 ≥ 𝑇2. As 𝑇1 refers to the 

establishment of longitudinal magnetization, it is also called polarization time. 

Bloembergen et al. (13) developed an insightful approach (BPP model) for deriving 

Bloch equations and understanding relaxation, by considering the additional random classical 

local field 𝑏⃗⃗(𝑡) as a small perturbation in the system’s Hamiltonian in such a way that 

𝐻 = 𝐻0 + 𝐻1(𝑡), with 𝐻1(𝑡) = −𝛾ℏ(𝑏𝑥(𝑡)𝐼𝑥 + 𝑏𝑦(𝑡)𝐼𝑦 + 𝑏𝑧(𝑡)𝐼𝑧). Recording equation 
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(3.15), magnetization components are expressed in terms of products of type 𝜎𝑛𝑚 = 𝑐𝑛
∗𝑐𝑚. By 

applying perturbation theory to Schrodinger’s Equation one gets (in the rotating frame of 

reference): 

 
𝑑𝜎̃

𝑑𝑡
= −

1

 ℏ2
∫𝑑𝜏 [𝐻̃1(𝑡), [𝐻̃1(𝑡 + 𝜏), 𝜎̃(𝑡)]]

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑡

0

 (3.21) 

The tilde means that the quantities are expressed in the rotating frame of reference, 

and the trace ̅  stands for ensemble average. Equation (3.21) shows that magnetization 

evolves depending on terms like 𝑔𝑞𝑞(𝜏) = 𝑏𝑞(𝑡)𝑏𝑞(𝑡 + 𝜏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, (𝑞 = 𝑥, 𝑦, 𝑧), which have the 

following interpretation. If 𝜏 is big enough (say much bigger than a characteristic correlation 

time 𝜏𝑐) and 𝑏𝑞(𝑡) is random with zero mean, one would expect that the value of the field at a 

time 𝑡 + 𝜏 has nothing more to do with its value at 𝑡, yielding 𝑔𝑞𝑞(𝜏) = 0. On the other hand, 

for small values of 𝜏, 𝑔𝑞𝑞(𝜏) ≠ 0. 𝑔𝑞𝑞(𝜏) is the self-correlation function and 𝜏𝑐 measures in 

some sense the extent of the random function’s memory of its previous values. What causes 

the fluctuations in the local field is mainly translation and rotation of the molecules in the 

fluid. Correlation time 𝜏𝑐 depends then on the translational and rotational diffusion 

coefficients of the fluid and, at the end of the day, on temperature and fluid’s viscosity. As the 

molecules ‘freedom’ increases (higher temperatures and diffusion coefficients, smaller 

viscosities), more random are fluctuations of local fields and smaller is 𝜏𝑐, which will slow 

relaxation. On the other end, greater 𝜏𝑐 will increase relaxation processes 

If each component of the local field can be treated as independent and in a random 

walk fashion, then the correlation function has the form 𝑔𝑞𝑞(𝜏) = (
𝑏2̅̅̅̅

3
) 𝑒−|𝜏|/𝜏𝑐. By continuing 

the calculation of equation (3.21) and comparing with Bloch’s equations one gets (11): 

 

{
 
 

 
 1

𝑇1
=
𝛾2

2
(𝐽𝑥𝑥(𝜔0) + 𝐽𝑦𝑦(𝜔0))

1

𝑇2
=
𝛾2

2
(𝐽𝑥𝑥(𝜔0) + 𝐽𝑧𝑧(0))

 (3.22) 

Where 𝐽𝑞𝑞(𝜔) is the Fourier transform of 𝑔𝑞𝑞(𝜏). 

Expression (3.22) describes mathematically what we intuitively pointed out in the 

beginning of this section. Both relaxation times depend on magnetization flipping induced by 

transverse oscillating fields at the Larmor frequency. However, transverse relaxation depends 

also on the static component of the fluctuation at the z direction, which induces losses in 

coherence between spins. For an exponential self correlation function, relaxation times are: 
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{
 
 

 
 

1

𝑇1
=
2

3
𝛾2𝑏2̅̅ ̅

𝜏𝑐

1 + 𝜔0
2𝜏𝑐2

1

𝑇2
=
1

3
𝛾2𝑏2̅̅ ̅ (𝜏𝑐 +

𝜏𝑐

1 + 𝜔0
2𝜏𝑐2

)

 (3.23) 

These equations show that 𝑇1 ≥ 𝑇2, for all 𝜏𝑐, and that as the correlation time becomes 

really small compared with the inverse of Larmor frequency, 𝑇1 ≅ 𝑇2. In the BPP model, local 

field is modeled as a completely classic magnetic field. If one had explicitly written out the 

perturbing Hamiltonian as the dipolar interaction between spins (which is dominant for 

liquids), one would also get terms depending on twice the Larmor frequency for relaxation 

rates. Nevertheless, the general conclusions remain. 

Finally, we choose to write Bloch’s Equations in the following way (in the rotating 

frame of reference): 

 

{
 

 
∂𝑚𝑧

𝜕𝑡
=
𝑚0 −𝑚𝑧

𝑇1
𝜕𝑚𝑇

𝜕𝑡
= −𝑖𝛾Δ𝐵0(𝑟, 𝑡)𝑚𝑇 −

𝑚𝑇

𝑇2

 
(3.24) 

In the rotating frame of reference there are no effects of 𝐵⃗⃗0, as in this system of 

coordinates magnetization executes no precession. However, any additional local field 

Δ𝐵0(𝑟, 𝑡) still appears in that frame of reference. We consider as additional field anyone that 

has not been taken into account as a fluctuating random function leading to 𝑇1 or 𝑇2 

relaxation. For the same (yet subtle) reason, we treat Δ𝐵0 as a scalar, meaning that those are 

differences only in the longitudinal component of local fields. We do so because, as already 

pointed out, if any additional transverse fields are not too big compared to 𝐵⃗⃗0, they will only 

affect longitudinal magnetization if they fluctuate at the Larmor Frequency, which will not be 

the case. We will then consider only spatial or time field changes that are able to affect 

transverse magnetization. As x and y magnetization behavior are essentially the same, we 

chose to define transverse magnetization as 𝑀𝑇 = 𝑀𝑥′ + 𝑖𝑀𝑦′ , 𝑖 being the imaginary unit such 

as 𝑖2 = −1. Also, as we will allow spatial variations in the local fields, we will work with 

local magnetization densities 𝑚⃗⃗⃗(𝑟, 𝑡), which relate to total magnetization by 𝑀⃗⃗⃗(𝑡) =

∫ 𝑚(𝑟, 𝑡)𝑑𝑉
𝑉

. 

 

Inhomogeneous static field and diffusion effects 

Consider the simplest NMR relaxation measurement, in which the initial 

magnetization of a fluid sample 𝑀⃗⃗⃗ = 𝑀0𝑧̂ (in thermal equilibrium with 𝐵⃗⃗0) is excited by a 
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𝜋/2 pulse, tilting it to the transversal plane. If the system is then let to evolve, transverse 

magnetization will execute precession around z direction at the Larmor frequency, while 

relaxing exponentially. The resulting oscillating transverse field induces in the same exciting 

coil (through Faraday’s Law) an oscillating and decaying electric tension, which is 

proportional to transverse magnetization. The result is represented in Figure 3.6. 

 

Figure 3.6 - Free induction decay (FID) signal. 

Source: By the author. 

 

The acquired oscillating and decaying tension is called the free induction decay (FID). 

The dotted line enveloping the signal is an exponential with a characteristic relaxation time 

𝑇2
∗ < 𝑇2. The reason is the following: no matter how well a magnet is designed for generating 

𝐵⃗⃗0, it will never create a perfectly homogeneous magnetic field. This situation is even worse 

for logging acquisitions where the sample (rock formation) is located outside of the NMR 

tool, hence the static field is most generally a decaying function on the distance of the tool. 

Therefore, the additional local field experienced by the spins is a spatial varying function 

ΔB0(𝑟), which gives for total transverse magnetization from equation (3.24): 

 𝑀𝑇(𝑡) = 𝑀0𝑒
−𝑡/𝑇2〈𝑒−𝑖𝛾Δ𝐵0(𝑟)𝑡〉 (3.25) 

The term in brackets represents an average through all the spins, which are distributed 

spatially. Each one of them hence feels a slightly different static field, yielding different 
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Larmor frequencies and different accumulated phases. When summed up through all the 

nuclei, most complex exponentials will interfere destructively accelerating relaxation. 

Before discussing the traditional way of getting rid of inhomogeneity effects, let’s 

consider another important phenomenum. Throughout measurement, the nuclei do not stand 

still in the same position, but instead molecules diffuse through the sample carrying 

magnetization to different places. As they do so, each nucleus accumulate a phase that is also 

dependent on the specific trajectory that molecule went through. This effect can be taken into 

account by adding a diffusion term on the transverse part of equations (3.24): 

 𝜕𝑚𝑇

𝜕𝑡
= 𝐷0∇

2𝑚𝑇 − 𝑖𝛾Δ𝐵0(𝑟, 𝑡)𝑚𝑇 −
𝑚𝑇

𝑇2
 (3.26) 

This is the Bloch-Torrey (14) equation, which sums up all relaxation and diffusion 

effects discussed throughout this Chapter, and is extremely important in understanding 

acquisition techniques, as well as magnetization behavior for fluid saturated rocks. 

Its solution for the FID experiment on a bulk fluid sample, considering a constant 

gradient 𝐺⃗ for field variation (Δ𝐵0(𝑟, 𝑡) = 𝐺⃗ ⋅ 𝑟), is: 

 
𝑀𝑇(𝑡) = 𝑀0𝑒

−𝑡/𝑇2𝑒−
𝐷(𝛾𝐺)2𝑡3

3 〈𝑒−𝑖𝛾Δ𝐵0(𝑟)𝑡〉 (3.27) 

This solution shows the intuitive result that transverse relaxation is increased even 

more when diffusion is taken into account. 

 

3.2 Laboratory acquisition techniques 

In this section we will present the standard techniques for measuring 𝑇1, 𝑇2 and 𝐷. 

 

Transverse relaxation time (𝑇2) acquisition, the CPMG pulse sequence 

After the application of a 𝜋/2 pulse on a sample thermalized with 𝐵⃗⃗0, magnetization 

will tilt to the transversal plane and evolve accordingly to equation (3.27), generating a FID in 

the coil. The signal decays faster than 𝑇2 because of inhomogeneity in the static field and 

diffusion. 

Carr, Purcell, Meiboom and Gill (15-16) proposed that a time 𝜏 after the 𝜋/2 pulse, 

one should apply a sequence of 𝜋 pulses in the transverse plane, spaced in an interval of 2𝜏, 

as shown schematically in Figure 3.7 (CPMG pulse sequence). The rectangular shapes 

represent the rf pulses. 
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Figure 3.7 - CPMG pulse sequence. 

Source: By the author. 

 

After the first pulse, signal will oscilate and decay and, immediately before the first 𝜋 

pulse it will have the form: 

 
𝑀𝑇(𝜏) = 𝑀0𝑒

−𝜏/𝑇2𝑒−
𝐷(𝛾𝐺)2𝜏3

3 〈𝑒−𝑖𝛾Δ𝐵0(𝑟)𝜏〉 (3.28) 

If the 𝜋 pulse is applied for instance in the 𝑥′ (rotating frame) direction, then it will 

have the effect of turning 𝑚𝑦′ into −𝑚𝑦′, or simply 𝑖 → −𝑖 in 𝑚𝑇. Transverse magnetization 

evolution will then be: 

 
𝑀𝑇(𝜏 + Δ𝑡) = 𝑀0𝑒

−𝜏/𝑇2𝑒−Δ𝑡/𝑇2𝑒−
𝐷(𝛾𝐺)2τ3

3 𝑒−
𝐷(𝛾𝐺)2Δ𝑡3

3 〈𝑒𝑖𝛾Δ𝐵0(𝑟)𝜏𝑒−𝑖𝛾Δ𝐵0(𝑟)Δ𝑡〉 (3.29) 

It can be seen that as time evolves, the terms into brackets tend to be equal to 1 as 

another time 𝜏 passes, making an echo signal appear. Transverse 𝜋 pulses have the ability of 

re-focalize magnetization, as it dephases the spins among each other in such a way that the 

losses of phase during de-coherence are recovered after the pulse. If the process is repeated 

continuously, at each interval 𝑇𝐸 = 2𝜏, the inhomogeneous term disappears and the 

enveloping exponential is recovered. 𝑇𝐸, the time between 𝜋 pulses is known as echo-time, 

and can be seen as a sampling time for 𝑇2 relaxation curve. The collection of points acquired 

is also called in oil industry as echo-train. Acquired signal then becomes: 

 
𝑀𝑇(𝑡) = 𝑀0𝑒

−𝑡/𝑇2𝑒−
𝐷(𝛾𝐺𝑇𝐸)

2

12
𝑡
 (3.30) 

If 𝑇𝐸 is chosen small enough, diffusion term is suppressed and equation (3.30) 

becomes a measurement of transverse relaxation time. 
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Longitudinal relaxation time (𝑇1) acquisition 

For 𝑇1 to be measured, one has to be able to sample the exponential solution of 

equation (3.20). That is traditionally done in two ways. 

 

Inversion recovery 

A 𝜋 pulse is applied to the sample initially in equilibrium with the static field, tilting 

the magnetization into direction −𝑧. After a time 𝑇𝐼, longitudinal magnetization will have 

evolved and a 𝜋/2 pulse is applied. The resulting FID will have the amplitude given by: 

 

𝑀𝑧(𝑡) = 𝑀0 (1 − 2𝑒
−
𝑇𝐼
𝑇1), (3.31) 

Which stands for a measurement of 𝑇1. The pulse sequence is shown in Figure 3.8. 

 

Saturation recovery 

The 𝜋 pulse in Inversion Recovery is substituted by a fast train of 𝜋/2 pulses that 

destroys magnetization completely. After a time 𝑇𝑆 a detection 𝜋/2 pulse is applied and 

resulting FID amplitude behaves as: 

 
𝑀𝑧(𝑡) = 𝑀0 (1 − 𝑒

−
𝑇𝑆
𝑇1) (3.32) 

Saturation recovery is preferred for well logging applications because it is twice faster 

than Inversion Recovery, as one only needs to acquire half of the exponential build up. On the 

other hand, measuring amplitudes around zero is always less precise, hence Saturation 

Recovery is more noisy for small 𝑇1𝑠. 
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Figure 3.8 - Pulse sequence for a) Inversion Recovery and b) Saturation Recovery. 

Source: By the author. 
 

Pulsed Field Gradient (PFG) sequence for diffusion (D) acquisition 

Stejskal and Tanner (17-18) proposed the following pulse sequence for diffusion 

coefficient acquisition, shown in Figure 3.9. 

After the application of a 𝜋/2 pulse over the equilibrium initial magnetization, and 

before the re-focusing 𝜋 pulse, an artificial field gradient is imposed over 𝐵⃗⃗0 by flowing 

electric current through gradient coils, during a time 𝛿. During the application of this extra 

current, the additional field term of Bloch-Torrey’s equation (3.26) will be Δ𝐵0(𝑟, 𝑡) = 𝐺⃗(𝑡) ⋅

𝑟. What the gradient pulse does is include an additional controlled dephasing which depends 

on 𝐷, encoding diffusion into the signal. The nuclei are then let to diffuse, and a time Δ after 

the beginning of the first gradient pulse (and after the rf re-focusing 𝜋), an identical gradient 
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pulse decodes diffusion. The echo amplitude is given by (solution of Bloch Torrey’s equation 

for rectangular gradient pulses): 

 𝑀𝑇 = 𝑀0𝑒
−𝐷(𝛾𝐺)2𝛿2(Δ−𝛿/3) (3.33) 

 

Figure 3.9 - Pulsed Field Gradient acquisition. 

Source: By the author. 
 

Combined Measurements 

If instead of using a 𝜋/2 detection pulse at the end of Inversion Recovery, Saturation 

Recovery or Stejkal-Tanner, one uses a CPMG pulse sequence, that is a 𝜋/2 followed by 

equally spaced 𝜋 train, one gets a combined measurement of 𝑇1 − 𝑇2 or 𝐷 − 𝑇2. Equations 

(3.31), (3.32) and (3.33) then become, respectively: 

 
𝑀𝑇(𝑡) = 𝑀0 (1 − 2𝑒

−
𝑇𝐼
𝑇1) 𝑒

−
𝑡
𝑇2 

(3.34) 

 
𝑀𝑇(𝑡) = 𝑀0 (1 − 𝑒

−
𝑇𝑆
𝑇1)𝑒

−
𝑡
𝑇2 (3.35) 

 
𝑀𝑇 = 𝑀0𝑒

−𝐷(𝛾𝐺)2𝛿2(Δ−𝛿/3)𝑒
−
𝑡
𝑇2 (3.36) 

 

3.3 NMR in porous media – Petrophysical Interpretations 

Up to this point we presented basic NMR relaxation and diffusion principles, as well 

as acquisition techniques, though these principles were only applied to bulk fluids, that is, 

fluids that are not saturating porous media. Now we will discuss how the presence of pore 
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walls and tight spaces modify relaxation times and diffusion coefficients, allowing these 

quantities to carry information about pores themselves. 

  

Relaxation processes inside porous media 

A single nucleus inside a fluid sample feels as an NMR experiment goes on, a 

fluctuating local field from the environment around it. This induces a relaxation process 

expressed by relaxation time in the Bloch-Torrey equation (3.26), which also includes 

diffusion and gradient effects. Consider now that the fluid is confined inside a small rock 

pore. Although all those processes described by equation (3.26) still persist inside the pore, an 

additional local field fluctuation source comes into play, that is, the pore walls. As a molecule 

gets closer to a wall, their interaction has the effect of restricting the molecule’s movements, 

that is, its translation and diffusion get slowed down by surface forces. The results are local 

field fluctuations that are ‘less random’ near the walls, increasing correlation time 𝜏𝑐 and as 

consequence relaxation times. Studies (19-23) correlate this additional surface relaxation 

process to the presence of paramagnetic elements at the pore walls, yielding interactions that 

should be restricted to few nanometers, which indicates that this additional process can be 

modeled by an additional contour condition to equation (3.26), valid only at the pore surface 

(equation 3 – 40). Figure 3.10 shows schematics the action of the pore wall over a molecule. 

 

Figure 3.10 - Molecule’s thumbling and diffusion restricted by interface interactions. 

Source: By the author. 

 

Consider a magnetization density function valid inside the pore, 𝑚(𝑟, 𝑡), which stands 

either for longitudinal (𝑚𝑧) or transversal (𝑚𝑇) magnetization. Fick’s Law of diffusion then 

states that the amount of magnetization that flows by an unit transverse area and unity time, 
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that is the current density, is given by the vector 𝐽 = 𝐷0 ∇⃗⃗⃗𝑚. If 𝑛̂(𝑟𝑆) is a unit vector 

perpendicular to the pore wall at a point 𝑟𝑆 in the surface, pointing outwards the pore volume, 

then the total magnetization per unit time lost through the walls (through additional 

relaxation) is given by (𝐽 ⋅ 𝑛̂)
𝑆
, where the subscript 𝑆 states that the quantities are calculated 

at the surface. In this mechanistic view of diffusion, if a magnetization carrier gets to the wall, 

it has a probability of leaving the system. It is reasonable to suppose that the higher is the 

quantity of carriers, higher is the probability of one of them to leave the system, which 

implies (𝐽 ⋅ 𝑛̂)
𝑆
= −𝜌1,2𝑚(𝑟𝑆). The proportionality constant 𝜌1,2 is called surface relaxivity 

(subscript 1 and 2 stand respectively for longitudinal and transverse relaxivities). 

Surface relaxivity indicates how much of magnetization can be lost at the interface due 

to relaxation processes at the pore walls. From the discussion presented up to this point, it 

measures how strong the interaction between the wall and the fluid molecules are. In some 

sense, it measures the affinity between the fluid and the pore walls. Therefore, surface 

relaxivity depends on fluid type and pore interface mineralogy. Typical values for relaxivities 

reported in literature are greater than 10𝜇𝑚/𝑠 for sandstones (24), and it is usually assumed 

that they are one order of magnitude lower for carbonates. We will comment briefly in 

following sections the standard way these values are obtained and their limitations. 

Considering that equation (3.26) is still valid for a fluid saturated pore, that static field 

inhomogeneity is corrected by CPMG like pulse sequences, and that diffusion through 𝐵⃗⃗0 

gradients is reasonably well described by free fluid solution 𝑒−
(𝛾𝐺𝑇𝐸)

2
𝐷0

12
𝑡
 (CPMG, transverse 

magnetization), magnetization density inside a single pore is given by: 

 
𝑚𝑧(𝑡) = 𝑚0 − (𝑚0 −𝑚𝑧0)𝑒

−
𝑡
𝑇1𝐵∑𝐶𝑛𝜓𝑛(𝑟)𝑒

−𝜆𝑛𝑡

𝑛

 (3.37) 

 
𝑚𝑇(𝑡) = 𝑚0𝑒

−
𝑡
𝑇2𝐵𝑒−

(𝛾𝐺𝑇𝐸)
2𝐷0

12
𝑡∑𝐶𝑛𝜓𝑛(𝑟)𝑒

−𝜆𝑛𝑡

𝑛

 (3.38) 

We added subscript 𝐵 for relaxation times, indicating those are bulk fluid values, 

coming from free relaxation. Spatial eigenfunctions 𝜓𝑛(𝑟) and eigenvalues 𝜆𝑛 are solutions of 

the Bloch-Torrey equation with relaxivity contour condition: 

 𝐷0∇
2𝜓𝑛 + 𝜆𝑛𝜓𝑛 = 0 (3.39) 

 (𝐷0∇⃗⃗⃗𝜓𝑛 ⋅ 𝑛̂ + 𝜌1,2𝜓𝑛)𝑆 = 0 (3.40) 

It can be seen then that, for a single pore, total magnetization has in general a multi-

exponential decay induced by interaction with pore walls. All surface relaxation times 1/𝜆𝑛 
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depend on the specific pore geometry, and roughly on the characteristic pore size. Brownstein 

and Tarr (25) calculated the exact solutions (equation 3 – 38) for simple geometries 

(spherical, cylindrical and plate shaped pores) and defined the diffusion limits explained in 

the next topic.   

 

Time scales and diffusion limits 

There are two coupled processes governing the surface relaxation rates 𝜆𝑛 of solutions 

(3.37) and (3.38): relaxation at the interface and diffusion through the pore space. In order to 

see why diffusion is important for surface relaxation times, consider an extreme (imaginary) 

example where surface relaxation occurs in a characteristic time 𝜏𝑆, but the molecules don’t 

diffuse at all. No matter how strong is the surface relaxation process (that is, how small is 𝜏𝑆 

meaning fast relaxation), once the molecules near the walls have relaxed, the rest of the fluid 

will continue to follow the slower bulk process, surface relaxation hence remaining virtually 

undetected. Diffusion has the important role of ‘refilling’ pore walls with new nuclei that have 

not relaxed yet. The time at which a molecule diffuses through a pore of characteristic length 

𝑟 is 𝜏𝐷 = 𝑟
2/𝐷0, and is the matching between this time scale, 𝜏𝑆, and the more or less 

accessible areas of the pore geometry by each eigenmode 𝜓𝑛, that gives rise to several 

decaying rates in solution (3.37) and (3.38). 

 

Figure 3.11 - Magnetization profile in a “1D pore” for Slow and Fast diffusion limits. 

Source: Adapted from DUNN et al. (8) 

 

One particular important scenario is when diffusion dominates over surface relaxation, 

known as the fast diffusion limit (𝜏𝐷 ≪ 𝜏𝑆). In this case, diffusion rapidly redistributes all 

nuclei that yet carry magnetization through the whole pore, resulting in an magnetization 

density that is approximately uniform all times (Figure 3.11). Hence, the solution of Bloch-

Torrey’s equation in this case should be dominated by the eigenmode that satisfies 𝜓(𝑟) ≅

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. By integrating equation (3.40) through the entire pore surface, using the result 

∮ ∇⃗⃗⃗𝜓 ⋅ 𝑛̂
𝑆

𝑑𝑎 = ∫ ∇2𝜓𝑑𝑉
𝑉

 (Gauss’ Theorem), and combining with equation (3.39), comes: 
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−𝜆∫ 𝜓

𝑉

𝑑𝑉 + 𝜌1,2∮ 𝜓𝑑𝑎
𝑆

= 0 (3.41) 

Using the fact that 𝜓 should be approximately constant, equation (3.41) yields: 

 
𝜆 ≈ 𝜌1,2

𝑆

𝑉
 (3.42) 

In the fast diffusion limit, magnetization decay is again mono exponential even for a 

fluid saturated pore, and surface relaxation time depends on the volume per surface ratio of 

the pore, that is 𝜏𝑆 =
1

𝜌1,2
𝑉/𝑆 ~ 𝑟/𝜌1,2. 

Fast diffusion condition can be rephrased as 
𝜏𝐷

𝜏𝑆
≪ 1 ⇒

𝜌1,2𝑟

𝐷0
≪ 1. On the other hand, if 

𝜌1,2𝑟

𝐷0
≥ 1, the system is in the intermediate to slow limit, yielding multiexponential decay for a 

single pore.  

Considering water diffusion coefficient at room temperature as 2.4 10−9𝑚2/𝑠, a 

typical 10𝜇𝑚 pore and relaxivity as big as 10𝜇𝑚/𝑠, one has 
𝜏𝐷

𝜏𝑆
~0.1, which is still in the fast 

diffusion limit. In this case, relaxation rates for a fluid saturated pore are: 

 1

𝑇1
=

1

𝑇1𝐵
+ 𝜌1

𝑆

𝑉
 (3.43) 

 1

𝑇2
=

1

𝑇2𝐵
+ 𝜌2

𝑆

𝑉
+
𝐷0(𝛾𝐺𝑇𝐸)

2

12
 (3.44) 

Summing up, the decay rate for relaxation processes in a single pore has three distinct 

origins for transverse relaxation: bulk interaction between other molecules of the fluid, 

diffusion through field gradients and interaction with the pore wall (hence dependent of rock 

mineralogy and minerals distribution). In the fast diffusion limit surface relaxation time is 

then proportional to the pore size. 

 

Relaxation time distribution and petrophysics 

As explained in Chapter 2, rock structure generates a composition of several pores and 

throats, with different sizes and shapes. Therefore, even in the fast diffusion limit, NMR 

relaxation signal (transverse or longitudinal) will have a multiexponential behavior, as the 

ratio 𝑉/𝑆 changes from pore to pore. This information is extremely important for 

petrophysics, as it allows to correlate relaxation times to pore sizes. If total pore space can be 

subdivided in smaller volumes, each one with its defined size (
𝑉

𝑆
)
𝑖
, then each fluid volume 
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will contribute to transverse magnetization decay (from an CPMG measurement) accordingly 

to equation (3.44), yielding (26): 

 𝑀𝑇(𝑡) =∑𝑓𝑖𝑒
−𝑡/𝑇2𝑖

𝑖

 (3.45) 

Amplitude 𝑓𝑖 is proportional to the amount of magnetization (hence fluid volume) that 

relaxes with that specific 𝑇2𝑖. The total sum ∑ 𝑓𝑖𝑖  is then proportional to total fluid volume and 

can be easily converted to total porosity. If we consider the proportions 𝑓𝑖 as a continuous 

function of relaxation time, then the CPMG result can be written as: 

 

𝑀𝑇(𝑡) = ∫ 𝑓(𝑇2)𝑒
−
𝑡
𝑇2𝑑𝑇2

∞

0

 (3.46) 

Function 𝑓(𝑇2) is the 𝑇2 distribution and has the property that the area underneath it 

between two relaxation time values, is equal to the amount or fluid (or fluid fraction) that 

relaxes in that relaxation time range. Total area can then be expressed in terms of total 

porosity. 𝑓(𝑇2) can be obtained from CPMG measurements through an inversion process 

described in Chapter 4. 

If the time between echoes 𝑇𝐸 is chosen small enough and considering that surface 

dominates over bulk relaxation, then equation (3.44) becomes: 

 
𝑇2 ≈

1

𝜌2

𝑉

𝑆
 (3.47) 

Under these conditions, and considering that the rock is saturated with a single fluid, 

𝑓(𝑇2) is proportional to the pore size distribution introduced in Chapter 2. This allows some 

important petrophysical interpretations. 

 

Porosity fractions 

Considering that as the pores become smaller, capillary forces tend to increase, it is 

customary to define a limiting pore length that separates fluids that are still movable from 

those that are irreducible. Consequently, there should be a relaxation time cutoff (𝑇2𝐶) that 

separates those two fluid fractions. 𝑇2𝐶 can be obtained in laboratory by extracting movable 

fluids (𝐹𝐹) from a rock core and solving: 

 
∫ 𝑓(𝑇2)𝑑𝑇2

∞

𝑇2𝑐

= 𝐹𝐹 (3.48) 

Justification for a 𝑇2 cutoff depends on the assumption of a strong correlation between 

pore sizes and pore throat sizes, because capillary forces are essentially ruled by the throat 

system. Therefore, it is expected that interpretations based on cutoffs should give better 
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results for sandstones. On the other hand, throat sizes do not always correlate with pore sizes 

for carbonates, misleading interpretations. Nevertheless, standard literature values for 𝑇2𝐶 are 

33𝑚𝑠 for sandstones (27) and 100𝑚𝑠 for carbonates. 

Another cutoff value stands for clay bound water (CBW), which relaxes at fast rates 

because of little molecule mobility, and is standardly defined as fluids relaxing below 3𝑚𝑠. 

In Figure 3.12, a well log result is shown with the standard 𝑇2 distribution 

interpretation. Second track brings the distributions at each depth, and the first one brings 

Free Fluid (FF) in blue, Bound Volume Capillary (BVC) in light brown and Clay Bound 

Water (CBW) in dark brown, all adding up to total porosity. 
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Figure 3.12 - Example of well log result with NMR standard petrophysical interpretation. 

Source: Provided by Petrobras. 

 

Figure 3.13 shows a schematic diagram relating portions of a 𝑇2 distribution with fluid 

fractions and porosity. For formations saturated with water and oil, if the rocks remain water 

wet, then oil does not experience surface relaxation. For this reason light oils may be detected 

in 𝑇2 distributions as they relax with more than 1𝑠. If the rock is mixed to oil wet, or if the oil 
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has high viscosity, then bulk oil 𝑇2 will overlap with water distribution, making 

interpretations harder. 

 

Figure 3.13 - Fluid fractions in a standard 𝑻𝟐 distribution. 

Source: By the author. 

 

For fluid typing, it might be more useful to look at diffusion coefficient distribution, as 

𝐷0 can be much smaller for oils than for water. Diffusion distribution (𝑓(𝐷)), joint diffusion-

relaxation or relaxation-relaxation distributions (𝑓(𝐷, 𝑇2) and 𝑓(𝑇1, 𝑇2), respectively), can 

also be obtained through an inversion process from measurement styles described in Chapter 

4, and correlate with petrophysical properties (28), including wettability (29): 

 
𝑀𝑇 = ∫𝑑𝑇1𝑑𝑇2 𝑓(𝑇1, 𝑇2) (1 − 𝑒

−
𝑇𝑆
𝑇1)𝑒

−
𝑡
𝑇2 (3.49) 

 
𝑀𝑇 = ∫𝑑𝐷𝑑𝑇2𝑓(𝐷, 𝑇2)𝑒

−𝐷(𝛾𝐺)2𝛿2(Δ−𝛿/3)𝑒
−
𝑡
𝑇2 (3.50) 

 

Permeability 

Permeability relates fluid flow rate with pressure difference through a rock path. For a 

simple model consisting of interconnected tubes, permeability is given by equation (2.5), 

hence has a strong correlation with the square of a characteristic length of the pore/throat 



71 

 

system. Based on the proportionality between 𝑇2 and pore size, and on empirical correlations 

from experiments, Kenyon et al. (26) obtained the following permeability expression: 

 𝑘𝑆𝐷𝑅 = 𝐴𝜙
4𝑇2𝐿𝑀

2  (3.51) 

𝑇2𝐿𝑀 is the logarithmic mean of 𝑓(𝑇2), and 𝐴 a scaling constant. Again, this method 

will have a better performance when pore sizes correlate well with pore throats, which is 

expected for sandstones. Another drawback is that 𝑘𝑆𝐷𝑅 assumes that all pores are 

interconnected, in a way that permeability is mostly ruled by pore sizes, in spite of pore 

connectivity. 

If surface relaxivity is known equation (3.51) can be corrected yielding: 

 𝑘𝜌 = 𝐴𝜙
4(𝜌2𝑇2𝐿𝑀)

2, (3.52) 

as not only 𝑇2, but 𝜌𝑇2 equates to pore size. This correction has proved to have a good 

performance in predicting permeability for complex pore systems like carbonates (30-31), as 

it puts 𝑓(𝑇2) in the correct length scale when one has large heterogeneity on relaxivities. (32) 

Timur and Coates (33) proposed a different permeability predictor that takes into 

account the proportion of free fluid over irreducible: 

 
𝑘𝑇𝐶 = 𝐴𝜙

4 (
𝐹𝐹

𝐵𝑉𝐼
)
2

 (3.53) 

As it is dependent of a 𝑇2 cutoff reasoning it suffers from the same drawbacks of 𝐾𝑆𝐷𝑅, 

although it is also useful. Applications of NMR data for permeability and also bulk fluid 

properties have been extensively studied. (4, 34-35)  

 

Diffusion processes inside porous media 

If one could follow a single fluid molecule diffusing through the fluid in a Brownian 

motion fashion during a time Δ, they would see an erratic motion as depicted in Figure 3.14. 

 

Figure 3.14 - Erratic motion of a molecule inside a fluid. 

Source: By the author. 
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As diffusion time Δ increases, it becomes more likely for the particle to be found 

farther from its original position. In these kinds of motion, mean square distance increases 

linearly with diffusion time, in such a way that one can define the constant 𝐷0 as: 

 
𝐷0 =

〈‖𝑟(Δ) − 𝑟(0)‖2〉

6Δ
 (3.54) 

If one attempts to use equation (3.54) as an operational definition of fluid diffusion 

coefficient inside a pore, they would find the following results (36): for small diffusion times, 

a particle inside the bulk pore space would still behave similar to a molecule in a free fluid, as 

it would not have time to feel the restriction imposed by pore walls. However, as Δ increases, 

numerator of equation (3.54) can only get as high as the square of the pore length, while the 

denominator increases indefinably. Restricted diffusion coefficient is then a monotonic 

decreasing function of diffusion time Δ. For an isolated pore, 𝐷(Δ) will tend to zero as Δ 

increases. In the case of interconnected pores, when Δ is big enough for the particle to travel 

to several pores, the whole pore system will be seen as a macroscopic homogeneous  medium, 

with an effective constant diffusion coefficient dependent on tortuosity (remind 𝐹 is the 

electric formation factor). 

 
𝐷∞ =

1

𝐹𝜙
 (3.55) 

For small Δ, only the fraction of molecules that are close enough to the pore walls will 

contribute to the reduction of 𝐷, which are those as far as about √𝐷0Δ of the walls. The total 

amount of particles contributing for restrictions in 𝐷 is then proportional to the volume 

𝑆√𝐷0Δ, 𝑆 being total pore surface area. Then, at first order, restriction should depend on the 

ratio 
𝑆

𝑉
√𝐷0Δ. In fact, Mitra et al (37) showed analytically that when √𝐷0Δ ≪ (𝑉/𝑆), 

 
𝐷(Δ) = 𝐷0 (1 −

4

9√𝜋

𝑆

𝑉
√𝐷0Δ) (3.56) 

The concept of restricted diffusion along with equation 3 – 56 has been used to obtain 

petrophysical properties such as connectivity between pores and fluid saturation corrections 

(38), (39).  

LaTour et al. proposed an insightful method for determining surface relaxivity from 

restricted diffusion measurements. (40-41) By using relation (3.56), 𝐷(Δ) can also be seen as 

a function of 𝑇2: 

 
𝐷(Δ, T2) = 𝐷0 (1 −

4

9√𝜋

√𝐷0Δ

𝜌2𝑇2
) (3.57) 
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By measuring tortuosity through electric formation factor (equation (2.6)), diffusion 

coefficients for short Δ, and interpolating both limits using a mathematical method called 

Padè fitting, one can solve equation (3.57) to obtain 𝜌2 as a fitting parameter. 

This method has been used to determine relaxivities for sandstones and carbonates, 

yielding good permeability estimations from equation (3.52). (30-31) 

In Chapter 5 we discuss and develop a way to extend this methodology for 

determining surface relaxivity to data acquired in well logging. 

 

Other diffusion techniques 

NMR techniques can also be used to map internal magnetic field gradients arising at 

the interface between rock and fluids. (42-43)   

 

3.4 NMR Well logging: general tool’s characteristics and acquisition protocols 

In order to fit into a wellbore that typically has 8 to 12 inches, NMR apparatus 

(magnet, antenna and spectrometer) are arranged into a case with cylindrical symmetry, that 

goes down into the well coupled with other logging tools. The magnet section is usually one 

meter long, with an antenna filling about 30𝑐𝑚 in the middle, for generating rf pulses and 

detecting transverse magnetization. Combination of magnet and antenna design generates 

inside the formation a sensitive volume schematized in Figure 3.15. 
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Figure 3.15 - Two common types of sensitive volumes: a) one sided or b) ring shaped. 

Source: By the author. 

 

For centralized tools such as Halliburton’s MRIL Prime, Baker Hughes’ Magtrak or 

Schlumberger’s Provision, the static field 𝐵⃗⃗0 is axially symmetric, and the resulting sensitive 

volume forms a ring around tool’s axis, inside formation, as in Figure 3.15a. A different 

magnet configuration can focus the static field to a preferably longitude of the wellbore (the 

tool then runs ‘pressed’ against the pore wall as in Figure 3.15b), which is the case for 

Halliburton’s MRIL XL, Baker Hughes’ MREX and Schlumberger’s MRScanner. Either way, 

sensitive volume is actually composed of several shells, because of pulse tuning and 

selectivity in a field gradient. As one walks away from the tool (towards the formation), 𝐵0 

decreases as a function of the distance 𝑟 from the tool, hence so does the Larmor Frequency. 

Therefore, by tuning the rf pulse at different frequencies 𝑓𝑝, one can excite just the spins 

located at a distance correspondent to that frequency. Due to the fact that finite pulses will 

always have a band of frequencies Δ𝑓 (refer to Figure 3.16), all spins with Larmor 

frequencies between 𝑓𝑝 − Δ𝑓 and 𝑓𝑝 + Δ𝑓 will be excited, hence an excitation slice is 

generated in the formation. 



75 

 

 

Figure 3.16 -  A simple 𝑩⃗⃗⃗𝟏 rf pulse and its corresponding Fourier Transform. Even if the pulse is tuned to a 

single frequency, its limited duration carries a band of frequencies around the predominant one. 

Source: By the author. 

 

Typical 𝐵0 fields through the slices range from 350 to 500𝐺𝑎𝑢𝑠𝑠 (Larmor frequencies 

between 0.8 to 2𝑀𝐻𝑧), and field gradient in each slice with values of 10 − 30𝐺𝑎𝑢𝑠𝑠/𝑐𝑚. 

The depth of investigation (from wellbore interface towards the formation) typically ranges 

from 2 to 4 inches, and shells’ thickness are of the order of millimeters, extending to about 

10𝑐𝑚 the direction parallel to the well. 

Well logging uses the existence of different shells to optimize the trade of between 

logging speed and signal to noise ratio (SNR), as the tool is always sliding through the well 

during acquisition, so that the measurement can be made as fast as possible for economic 

reasons. While the signal is being detected from spins in one of the slices, the static magnetic 

field is already polarizing the other shells. Therefore, as soon as the first CPMG is acquired, 

one can immediately start the acquisition of the other one in a different shell. During this 

second acquisition, magnetization of the first one is repolarized, and so on. Resultant CPMGs 

can be averaged to increase SNR or processed simultaneously, as will be described in Chapter 

4. Figure 3.17 shows how such an acquisition diagram looks like. 
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Figure 3.17 - CPMG blocks at several different frequencies (shells) through acquisition time (time increases to 

the right). Each acquired echotrain can have different waiting times (𝑻𝑾), echo times (𝑻𝑬), number 

of echoes (𝑵𝑬) and repetition number (𝑵𝒓𝒆𝒑).  

Source: By the author. 
 

Table 3.1 - 𝑻𝟐 distribution acquisition scheme 

𝑪𝑷𝑴𝑮 𝑰𝑫 𝑻𝑾 (𝒎𝒔) 𝑻𝑬 (𝒎𝒔) 𝑵𝑬 𝑵𝒓𝒆𝒑 

𝐴 ∞ 0.2 5000 1 

𝐵 ∞ 0.6 600 1 

𝐶 20 0.2 30 20 

⋮ ⋮ ⋮ ⋮ ⋮ 

Source: By the author. 

 

Table 3.1 shows a typical acquisition scheme for 𝑇2 distribution. Waiting times (𝑇𝑤), 

that is, the time one should wait for magnetization build up in the static field before starting 

the acquisition, are predominantly long (virtually infinity considering prepolarization in 

different shells). Time between echoes (𝑇𝐸) are short, reducing diffusion effects. Number of 

echoes (𝑁𝐸) is simply the total number of points acquired in one CPMG, and repetition 

number (𝑁𝑟𝑒𝑝) refers to the amount of times the same CPMG is acquired in sequence (then 

averaged). For this specific acquisition scheme, one small echotrain is acquired 20 times 

using short 𝑇𝑊, which guarantees a good SNR for fast decaying signals. This short CPMG can 

be incorporated during inversion.  

For acquiring joint 𝑇1𝑇2 distribution, one can vary the wait time 𝑇𝑊 from slice to slice, 

as in Table 3.2. 
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Table 3.2 - 𝑻𝟏𝑻𝟐 distribution acquisition scheme 

𝑪𝑷𝑴𝑮 𝑰𝑫 𝑻𝑾 (𝒎𝒔) 𝑻𝑬 (𝒎𝒔) 𝑵𝑬 𝑵𝒓𝒆𝒑 

𝐴 12000 0.4 2500 1 

𝐵 500 0.4 2500 1 

𝐶 100 0.4 2500 10 

𝐷 10 0.4 2500 10 

⋮ ⋮ ⋮ ⋮ ⋮ 

Source: By the author. 

 

Each CPMG will then work as one step of an Saturation Recovery experiment. 

For diffusion measurements, one cannot vary gradient intensity as easily as can be 

done in a PFG experiment, as gradient in each shell is fixed. What can then be done is vary 

echo time (𝑇𝐸) from slice to slice, as in Table 3.3. 

 

Table 3.3 -  𝐷𝑇2 acquisition scheme 

𝑪𝑷𝑴𝑮 𝑰𝑫 𝑻𝑾 (𝒎𝒔) 𝑻𝑬 (𝒎𝒔) 𝑵𝑬 𝑵𝒓𝒆𝒑 

𝐴 ∞ 0.4 2500 1 

𝐵 ∞ 1 1000 1 

𝐶 ∞ 5 200 1 

𝐷 ∞ 12 100 1 

⋮ ⋮ ⋮ ⋮ ⋮ 

Source: By the author. 

 

For all well logging acquisition schemes presented until now, each echotrain can be 

written in general as: 

 
𝑀𝑇(𝑇𝑊𝜂, 𝑇𝐸𝜂 , 𝑡) = ∫𝑑𝐷𝑑𝑇1𝑑𝑇2𝑓(𝐷, 𝑇1, 𝑇2)(1 − 𝑒

−𝑇𝑊𝜂/𝑇1)𝑒−
𝐷(𝛾𝐺𝑇𝐸𝜂)

2

12
𝑡𝑒−𝑡/𝑇2 (3.58) 

Index 𝜂 = 𝐴, 𝐵, 𝐶, … represents each CPMG block from different shells. All CPMG 

blocks acquired in one acquisition cycle can be composed together in an inversion method 

described in Chapter 4, in order to obtain desired distributions. 

Besides the ones described in this section, another tool design is available, which is 

Schlumberger’s CMR tool. Instead of generating a series of sensitive shells, the magnets are 

arranged in a way that a sweet spot of low gradient is generated inside the formation. The 

sensitive volume is big enough to achieve good SNR with less CPMG acquisitions. This 
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configuration is less amenable to diffusion effects, although high gradients can be found at the 

edges of the sensitive volume.  

For diffusion measurements under highly inhomogeneous fields, net magnetization 

arises from the sum of several different coherence pathways, altering relaxation times and 

diffusion modulation of the echotrain. (44-45) However, the sensitive volume can in general 

be mathematically subdivided in smaller sections of constant gradient, defining a gradient 

distribution function 𝑔(𝐺) (46). Signal processing can be held in this case by writing any 

function 𝐹(𝐺) appearing in expressions such as (3.58) and (3.60) as: 

 
𝐹(𝐺) → ∫ 𝑔(𝐺)𝐹(𝐺)𝑑𝐺

∞

0

 (3.59) 

Gradient distribution function 𝑔(𝐺) is tool specific and can be measured by mapping 

its field distribution or estimated with an adequate inversion processing of a diffusion 

measurement. Figure 3.18 shows an example of how such a gradient distribution could look 

like. It is predominantly low gradient, but has values as high as 20𝐺𝑎𝑢𝑠𝑠/𝑐𝑚. 

 

Figure 3.18 - Example of gradient distribution. 

Source: Adapted from HURLIMANN et al. (46) 

 

Diffusion editing  

For 𝐷𝑇2 example presented in previous section, diffusion relaxation rate will affect 𝑇2 

as shown in equation (3.44), which means that acquired signal will suffer from diffusion 

losses throughout all CPMG duration. This reduces signal considerably, making CPMG’s 
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with long 𝑇𝐸′𝑠 very poor regarding SNR. In order to overcome this effect, HURLIMANN et 

al (47) proposed the diffusion editing technique, shown in Figure 3.19. 

 

Figure 3.19 - Diffusion Editing pulse sequence. 

Source: By the author. 

 

A main CPMG is acquired with small 𝑇𝐸 to suppress diffusion losses, except for the 

first one or two echoes. In this way, a diffusion-free CPMG is acquired, but modulated by a 

diffusion term: 

 
𝑀𝑇(𝑇𝐷 , 𝑡) = ∫𝑑𝐷𝑑𝑇2𝑓(𝐷, 𝑇2)𝑒

−
𝐷(𝛾𝐺)2𝑇𝐷

3

12 𝑒
−
𝑡
𝑇2 (3.60) 

𝑇𝐷 is the long echo time for first echoes, and equals twice the diffusion time Δ 

introduced in previous sections. By varying 𝑇𝐷 one gets a resulting set of CPMGs that can be 

inverted for 𝐷𝑇2 distribution. 

In Chapter 5 we show how diffusion editing like sequences can be used to allow 

relaxivity estimation downhole. 
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4 DATA PROCESSING 

 

In Chapter 3 we showed that the basic NMR magnetization signal obtained from a 

CPMG pulse sequence can be mathematically described at an instant 𝑡𝑖 after the 𝜋/2 pulse as: 

 

𝑀𝑇(𝑡𝑖) = ∫ 𝑓(𝑇2)𝑒
−
𝑡𝑖
𝑇2𝑑𝑇2

∞

0

 (4.1) 

 

Index 𝑖 ranges from 1 to 𝑁𝐸 (number of echoes = number of 𝜋 pulses), and 

consecutive 𝑡𝑖 are spaced by an interval 𝑇𝐸, the echo time, resulting in a multiexponential 

decay sampled with 𝑁𝐸 points. 𝑓(𝑇2) is the 𝑇2 distribution, which we are interested in 

obtaining from acquired signal. By writing the distribution over a predetermined discreet set 

of relaxation times 𝑇2,1, 𝑇2,2, 𝑇2,3…, of size 𝑁𝑏𝑖𝑛𝑠𝑇2, equation (4.1) becomes: 

 
𝑀𝑇(𝑡𝑖) =∑𝑒

−
𝑡𝑖
𝑇2,𝑗𝑓(𝑇2,𝑗)

𝑖

 
(4.2) 

 

In matrix form it can be written as: 

 𝒅 = 𝑨𝒇 (4.3) 

 

With: 

 

{
 
 
 
 
 
 

 
 
 
 
 
 
𝒅 = (

𝑀𝑇(𝑡1)
𝑀𝑇(𝑡2)
⋮

𝑀𝑇(𝑡𝑚)

)

𝒇 =

(

 

𝑓(𝑇2,1)

𝑓(𝑇2,2)

⋮
𝑓(𝑇2,𝑛))

 

𝐴𝑖𝑗 = 𝑒
−
𝑡𝑖
𝑇2,𝑗

 
(4.4) 

 

𝒅 is the collection of all acquired points (data vector) and has in general size 𝑚, which 

for a simple CPMG sequence equals number of echoes 𝑁𝐸. 𝒇 is the collection of all  

parameters used to model the data (parameter vector), which in above example is simply the 

𝑇2 discreet distribution with total number of points 𝑛 = 𝑁𝑏𝑖𝑛𝑠𝑇2, logarithmic spaced. 

Consequently, 𝑨 is a 𝑚 × 𝑛 matrix (model matrix) that connects model parameters with the 

theoretical description of acquired data, through equation (4.3). All acquisition schemes 

described in Chapter 3 can be put in the form of equation (4.3), as we will show in next 

section. 
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Equation (4.3) is often called the direct problem, as it allows a straightforward 

calculation of expected output from a measurement, once the fluid/formation characteristics 

are known, and an appropriated model is given. In real life we are interested in the inverse 

problem, where data 𝒅 and model 𝑨 are known but system properties 𝒇 are to be determined. 

This chapter is devoted on explaining basic inversion techniques developed in this work based 

on literature algorithms, that can be used for downhole applications. Through this chapter we 

will adopt the convention that vectors are represented by bold short letters and matrices by 

bold capital letters. 

 

4.1 Determining model matrix 𝑨  

1D distributions 

In the introductory section we defined model matrix 𝑨, data vector 𝒅 and parameter 

vector 𝒇 for an 1D 𝑇2 distribution, acquired through a simple CPMG pulse sequence. For 

other 1D distributions the process is straightforward. Consider for example the results of an 

Saturation Recovery 𝑇1 acquisition. The magnetization amplitude for a certain wait time 𝑇𝑊𝑖 

is given by: 

 
𝑀𝑇(𝑇𝑊,𝑖) = ∫𝑑𝑇1𝑓(𝑇1)(1 − 𝑒

−𝑇𝑊,𝑖/𝑇1) (4.5) 

 

Data vector will then be the collection of all magnetization amplitudes at different wait 

times: 

 

𝒅 =

(

 

𝑀𝑇(𝑇𝑊,1)

𝑀𝑇(𝑇𝑊,2)
⋮

𝑀𝑇(𝑇𝑊,𝑚))

  (4.6) 

 

Similarly to 𝑇2, 𝑇1 distribution will be the collection of all amplitudes at pre-defined 

𝑇1 values 𝑇1,1, 𝑇1,2, … , 𝑇1,𝑛, 𝑛 = 𝑁𝑏𝑖𝑛𝑠𝑇1: 

 

𝒇 =

(

 

𝑓(𝑇1,1)

𝑓(𝑇1,2)
⋮

𝑓(𝑇1,𝑛))

  (4.7) 

 

Model matrix 𝑨 will then be written as: 

 
𝐴𝑖𝑗 = 1 − 𝑒

−
𝑇𝑊,𝑖
𝑇1,𝑗  

(4.8) 

 

For a PFG diffusion measurement, diffusion distribution will be written for predefined 

diffusion values 𝐷1, 𝐷2, … , 𝐷𝑛, 𝑛 = 𝑁𝑏𝑖𝑛𝑠𝐷, data vector will be the collection of 
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magnetization amplitudes for different gradients, and matrix 𝑨 will be given from equation 

(3.33) as: 

 𝐴𝑖𝑗 = 𝑒
−𝐷𝑗(𝛾𝐺𝑖)

2𝛿2(Δ−𝛿/3) (4.9) 

 

𝑇1𝑇2  distributions 

Consider the well logging 𝑇1𝑇2 acquisition described by table 2, where several CPMG 

echotrains are measured and labeled as 𝐴, 𝐵, 𝐶, … Each one of them has essentially a different 

wait time, and assuming that echo time 𝑇𝐸𝜂 is small enough so that diffusion can be neglected, 

or that diffusion effects are implicitly included in 𝑇2 distribution, a single CPMG result at a 

time 𝑡𝑖 will be given from equation (3.58) as: 

 
𝑀𝑇(𝑇𝑊𝜂 , 𝑡𝑖) = ∫𝑑𝑇1𝑑𝑇2𝑓(𝑇1, 𝑇2)(1 − 𝑒

−𝑇𝑊𝜂/𝑇1)𝑒−𝑡𝑖/𝑇2 (4.10) 

 

Besides the differences in wait times and possibly echo times, repetition numbers can 

also change from one CPMG to another. That means that each echotrain was acquired 𝑁𝑟𝑒𝑝,𝜂 

times and averaged into a single response, which will consequently have a smaller noise level 

than those acquired a single time. Each echotrain will then have a different standard deviation 

𝜎𝜂 measured from the noise channel. 

A single CPMG decay data can be written as: 

 

𝒅𝜂 =

(

 
 

𝑀𝑇(𝑇𝑊,𝜂𝑡1)

𝑀𝑇(𝑇𝑊,𝜂𝑡2)

⋮
𝑀𝑇(𝑇𝑊,𝜂𝑡𝑁𝐸,𝜂))

 
 

 (4.11) 

 

The whole data vector 𝒅 will then be given by the collection of all acquired points: 

 

𝒅 = (

𝒅𝐴/𝜎𝐴
𝒅𝐵/𝜎𝐵
𝒅𝐶/𝜎𝐶
⋮

) (4.12) 

 

Each result is divided by its standard deviation so that the inversion algorithm can give 

a bigger weight to data acquired at smaller noise levels, as will be explained in following 

sections. 𝒅 has size 𝑚 = ∑ 𝑁𝐸,𝜂𝜂 . 

Acquired data is represented by a bi dimensional distribution 𝐹(𝑇1, 𝑇2), that gives the 

amount of fluid relaxing at each (𝑇1, 𝑇2) pair inside the rock sample or formation. By writing 

the distribution over a predefined discreet set of relaxation times 𝑇1,1, 𝑇1,2, … , 𝑇1,𝑁𝑏𝑖𝑛𝑠𝑇1 , and 

𝑇2,1, 𝑇2,2, … , 𝑇2,𝑁𝑏𝑖𝑛𝑠𝑇2, distribution 𝐹 will have the following natural matrix form: 
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𝑭 =

(

 

𝐹(𝑇1,𝑁𝑏𝑖𝑛𝑠𝑇1 , 𝑇2,1) 𝐹(𝑇1,𝑁𝑏𝑖𝑛𝑠𝑇1 , 𝑇2,2)

⋮ ⋮

⋯ 𝐹(𝑇1,𝑁𝑏𝑖𝑛𝑠𝑇1 , 𝑇2,𝑁𝑏𝑖𝑛𝑠𝑇2)

⋰ ⋮
𝐹(𝑇1,2, 𝑇2,1)           𝐹(𝑇1,2, 𝑇2,2)

𝐹(𝑇1,1, 𝑇2,1)           𝐹(𝑇1,1, 𝑇2,2)

⋯          𝐹(𝑇1,2, 𝑇2,𝑁𝑏𝑖𝑛𝑠𝑇2)

⋯          𝐹(𝑇1,1, 𝑇2,𝑁𝑏𝑖𝑛𝑠𝑇2))

  (4.13) 

 

In order to pose the inversion problem in the form of equation 3, matrix 𝑭 needs to be 

“unfolded” into a vector 𝒇, which can be done in the following way (48). Consider the 𝑇2 

distribution 𝒇𝑇1,𝑘 given by all elements of 𝑭 that have a fixed 𝑇1 value, say 𝑇1,𝑘: 

 

𝒇𝑇1,𝑘 =

(

 

𝑓(𝑇1,𝑘, 𝑇2,1)

𝑓(𝑇1,𝑘, 𝑇2,2)

⋮
𝑓(𝑇1,𝑘, 𝑇2,𝑁𝑏𝑖𝑛𝑠𝑇2))

  (4.14) 

 

In terms of the sub distributions 𝒇𝑇1,𝑘, whole matrix 𝑭 is given by: 

 

𝑭 =

(

 
 

𝒇𝑇1,𝑁𝑏𝑖𝑛𝑠𝑇1
𝑇

⋮
𝒇𝑇1,2
𝑇

𝒇𝑇1,1
𝑇

)

 
 

 (4.15) 

 

Unfolded vector 𝒇 has length 𝑛 = 𝑁𝑏𝑖𝑛𝑠𝑇1 × 𝑁𝑏𝑖𝑛𝑠𝑇2 and writes: 

 

𝒇 =

(

 
 

𝒇𝑇1,1  

𝒇𝑇1,2
⋮

𝒇𝑇1,𝑁𝑏𝑖𝑛𝑠𝑇1)

 
 

 (4.16) 

 

Equation (4.10) can then be used to relate 𝒅 and 𝒇 as in (4.3) through the following 

construction of model matrix 𝑨: 

 

(

𝒅𝐴/𝜎𝐴
𝒅𝐵/𝜎𝐵
𝒅𝐶/𝜎𝐶
⋮

) =

(

 
 

1

𝜎𝐴
𝑨(𝑇𝑊,𝐴, 𝑇1,1)

1

𝜎𝐴
𝑨(𝑇𝑊,𝐴, 𝑇1,2) ⋯

1

𝜎𝐵
𝑨(𝑇𝑊,𝐵, 𝑇1,1)

1

𝜎𝐵
𝑨(𝑇𝑊,𝐵, 𝑇1,2) ⋯

⋮ ⋮ ⋱)

 
 
(

𝒇𝑇1,1  

𝒇𝑇1,2
⋮

) (4.17) 

 

With: 

 [𝑨(𝑇𝑊,𝜂 , 𝑇1,𝑘)]𝑖𝑗
= (1 − 𝑒−𝑇𝑊𝜂/𝑇1,𝑘)𝑒−𝑡𝑖/𝑇2,𝑗 (4.18) 

 

Standard deviations 𝜎𝜂 were included for the same reason as in equation (4.12). 

 

𝐷𝑇2  distributions 

Depending on the acquisition scheme, transverse magnetization decay for each 

acquired echotrain can be written from equation (3.58) (for an acquisition such as described in 

table 3) or from equation (3.60) (for diffusion editing), yielding: 
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𝑀𝑇(𝑇𝐷,𝜂 , 𝑡𝑖) =

{
 
 

 
 ∫𝑑𝐷𝑑𝑇2𝑓(𝐷, 𝑇2)𝑒

−
𝐷(𝛾𝐺𝑇𝐷,𝜂)

2

12
𝑡𝑖𝑒

−
𝑡𝑖
𝑇2

∫𝑑𝐷𝑑𝑇2𝑓(𝐷, 𝑇2)𝑒
−
𝐷(𝛾𝐺)2𝑇𝐷,𝜂

3

12 𝑒
−
𝑡𝑖
𝑇2

 (4.19) 

 

Acquired points are then: 

 

𝒅𝜂 =

(

 
 

𝑀𝑇(𝑇𝐷𝜂 , 𝑡1)

𝑀𝑇(𝑇𝐷𝜂 , 𝑡2)

⋮

𝑀𝑇 (𝑇𝐷𝜂 , 𝑡𝑁𝐸,𝜂))

 
 

 (4.20) 

 

With definitions above data vector 𝒅 is written in the exact same way as described in 

equation (4.12). 

For bi dimensional distribution 𝐹(𝐷, 𝑇2), matrix distribution 𝑭 and its correspondent 

unfolded vector 𝒇 are defined in analogy to equations (4.13) to (4.16) as (48): 

 

𝑭 =

(

 

𝐹(𝐷𝑁𝑏𝑖𝑛𝑠𝐷 , 𝑇2,1) 𝐹(𝐷𝑁𝑏𝑖𝑛𝑠𝐷 , 𝑇2,2)

⋮ ⋮

⋯ 𝐹(𝐷𝑁𝑏𝑖𝑛𝑠𝐷 , 𝑇2,𝑁𝑏𝑖𝑛𝑠𝑇2)

⋰ ⋮
𝐹(𝐷2, 𝑇2,1)           𝐹(𝐷2, 𝑇2,2)

𝐹(𝐷1, 𝑇2,1)           𝐹(𝐷1, 𝑇2,2)

⋯          𝐹(𝐷2, 𝑇2,𝑁𝑏𝑖𝑛𝑠𝑇2)

⋯          𝐹(𝐷1, 𝑇2,𝑁𝑏𝑖𝑛𝑠𝑇2))

  (4.21) 

 

 

𝒇 =

(

 
 
 
 

𝐹(𝐷1, 𝑇2,1)
⋮

𝐹(𝐷1, 𝑇2,𝑁𝑏𝑖𝑛𝑠𝑇2)

𝐹(𝐷2, 𝑇2,1)
⋮

𝐹(𝐷2, 𝑇2,𝑁𝑏𝑖𝑛𝑠𝑇2)

⋮ )

 
 
 
 

 
(4.22) 

 

Matrix 𝑨 then becomes: 

 

𝑨 =

(

 
 

1

𝜎𝐴
𝑨(𝑇𝐷,𝐴, 𝑇1,1)

1

𝜎𝐴
𝑨(𝑇𝐷,𝐴, 𝑇1,2) ⋯

1

𝜎𝐵
𝑨(𝑇𝐷,𝐵, 𝑇1,1)

1

𝜎𝐵
𝑨(𝑇𝐷,𝐵, 𝑇1,2) ⋯

⋮ ⋮ ⋱)

 
 

 (4.23) 

 

With: 

 

[𝑨(𝑇𝐷,𝜂 , 𝐷𝑘)]𝑖𝑗
= {𝑒

−
𝐷𝑘(𝛾𝐺𝑇𝐷,𝜂)

2

12
𝑡𝑖𝑒

−
𝑡𝑖
𝑇2,𝑗

𝑒−
𝐷𝑘(𝛾𝐺)

2𝑇𝐷,𝜂
3

12 𝑒
−
𝑡𝑖
𝑇2,𝑗

 (4.24) 

 

The same reasoning can be applied to higher dimensional distributions coming from 

general measurements such as described by equation  (3.58), through concatenation of data 

points, unfolding of the multidimensional distribution, and building up of an appropriate 

model matrix 𝑨 that correctly connects model parameters 𝒇 with data 𝒅. The same logic is 
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used if the unknowns compose the gradient distribution 𝑔(𝐺) (49) instead of relaxation times 

or diffusion distributions, as will be exemplified in the following sections. One can also use 

concatenation and unfolding for one dimensional inversions coming from data acquired with 

different parameters, generally used in well logging to increase signal to noise of fast 

decaying short components of echotrains. 

Other formulations are available in literature that allow a faster solution of the 

inversion problem. Venkataramanan et al. (50-51) decomposes matrix 𝑨 into a tensor product 

of smaller matrices, which speed up inversion computation. However, the method requires 

that the Kernels in integrals such as equation (3.58) are separable, which does not happen for 

sequences as diffusion editing, for example. We instead choose to use the method described in 

this Chapter that in principle can always be applied, with computational issues being 

overcome by the choice of smaller distribution matrices 𝑭 or compaction techniques 

mentioned in following sections. For the problems approached in this work, this method 

behaved goodly enough. 

 

4.2 Ill posed nature of the inversion problem 

Matrix expression (4.3) is actually a set of 𝑚 equations that must be solved for 𝑛 

model parameters 𝑓𝑖 organized in vector 𝒇. In general, this constitutes an overdetermined 

system with 𝑚 > 𝑛, with no possible solution. Instead, we search for a vector 𝒇∗ that best 

approximates all 𝑚 equations accordingly to some predefined error measurement. The 

traditional functional to be minimized is the squared error sum defined as: 

 ϕ𝑀𝑄 = ‖𝒅 − 𝑨𝒇‖2 (4.25) 

 

The function 𝒇∗ that minimizes functional 𝜙𝑀𝑆𝑄 is given by: 

 𝒇∗ = (𝑨𝑇𝑨)−1𝑨𝑇𝒅  (4.26) 

 

Equation (4.26) is known as the minimum squared solution of equation (4.3). 

Inversion problems that arise from Helmholtz Integrals of the first kind such as equations 

(3.58) and (3.60) are essentially ill posed (52), in the sense that there are virtually infinite 

solutions that reasonably minimize functional (4.25). What we mean by “virtually” is that 

although numerically one could always find a solution 𝒇∗ through equation (4.26), that 

solution would be so affected by the initial data that the smallest practical variations (even 

computer rounding in a noisyless signal!) would lead to a complete different solution, equally 
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acceptable mathematically. This can be understood in terms of the Singular Value 

Decomposition (SVD) of matrix 𝑨. 

SVD theorem states that any rectangular matrix 𝑨 can be written in terms of simpler 

matrices as: 

 𝑨 = 𝑼𝑺𝑽𝑇 (4.27) 

 

𝑽 is a square 𝑛 × 𝑛 matrix satisfying orthogonality relation 𝑽𝑻𝑽 = 𝑽𝑽𝑻 = 𝟏𝑛×𝑛, 𝟏 

being the identity matrix. That means that the columns 𝒗𝑖, 𝑖 = 1,… , 𝑛 of 𝑽 are linearly 

independent vectors forming a basis for parameter space, that is, any parameter vector 𝒇 can 

be written as 𝒇 = ∑ 𝛽𝑖𝒗𝑖
𝑛
𝑖=1 . The 𝒗𝑖 are eigenvectors of 𝑨𝑻𝑨. 

Likewise, 𝑼 is a square 𝑚×𝑚 matrix satisfying orthogonality relation 𝑼𝑻𝑼 =

𝑼𝑼𝑻 = 𝟏𝑚×𝑚. The columns 𝒖𝑖, 𝑖 = 1,… ,𝑚 of 𝑼 are linearly independent vectors forming a 

basis for data space, that is, any data vector 𝒅 can be written as 𝒅 = ∑ 𝛼𝑖𝒖𝑖
𝑚
𝑖=1 . The 𝒖𝑖 are 

eigenvectors of 𝑨𝑨𝑻. 

𝑺 is a rectangular 𝑚 × 𝑛 matrix that connects parameter space to data space, and is 

given by: 

 

𝑺 =

(

 
 
 
 

𝑠1
0
⋮
0
0
⋮
0

 

0
𝑠2
⋮
0
0
⋮
0

 

0
0
⋱
0
0
⋮
0

 

0
0
⋮
𝑠𝑛
0
⋮
0 )

 
 
 
 

 (4.28) 

 

The 𝑠𝑖, 𝑖 = 1…𝑛 are eigenvalues of 𝑨𝑨𝑻, and are also called singular values of 𝑨. 

They are all non-negative and are organized in descending order in 𝑺. Action of model matrix 

𝑨 on any parameter space basis vector 𝒗𝑖 is given by: 

 𝑨𝒗𝑘 = 𝑠𝑘𝒖𝑘 (4.29) 

 

The central role of equation (4.29) in understanding the ill posed nature of inverse 

problem (4.3) happens when at least one of the singular values is zero, yielding 𝑨𝒗𝑖 = 𝟎 for 

the corresponding 𝑖. Suppose that the first 𝑞 singular values are positive, remaining 𝑛 − 𝑞 are 

null, and that 𝒇∗ is the minimum squared solution, that is, 𝜙𝑀𝑆𝑄
∗ = ‖𝒅 − 𝑨𝒇∗‖2 is the smallest 

possible value for the error. Consider the new parameter vector 𝒇∗∗ = 𝒇∗ + ∑ 𝛽𝑖𝒗𝑖
𝑛
𝑖=𝑞+1 , with 

arbitrary 𝛽𝑖. From equation (4.29) one has: 
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Φ𝑀𝑄
∗∗ = ‖𝒅 − 𝑨𝒇∗∗‖2 = ‖𝒅 − 𝑨𝒇∗ − ∑ 𝛽𝑖𝑨𝒗𝑖

𝑛

𝑖=𝑞+1

‖

2

= 

= ‖𝒅 − 𝑨𝒇∗‖2 ⇒ Φ𝑀𝑄
∗∗ = Φ𝑀𝑄

∗  

(4.30) 

 

Therefore, 𝒇∗∗ is an equally valid minimum squared error solution for the same 

problem. As the 𝛽𝑖 are arbitrary, there is an infinite number of such solutions. The condition 

for existence of at least one null singular value, hence infinite solutions, is the appearance of 

linearly dependent lines or columns in matrix 𝑨. Although NMR problems do not generate 

any null 𝑠𝑖, due to the exponential nature of matrices’ elements the singular values cover 

several orders of magnitude from the largest to the smallest. Relative change in 𝒇∗ due to 

small changes in 𝒅 is governed by relation 
‖Δ𝒇∗‖

‖𝒇∗‖
≤

𝑠1

𝑠𝑛

‖Δ𝒅‖

‖𝒅‖
, so that even fluctuations of the 

order of 10−13 (typical computer precision) will lead to relative changes in the distribution of 

more than 103. 

Indeed, minimum squared error solution (4.26) can be written in terms of SVD as: 

 
𝒇∗ =∑

(𝑼𝑇𝒅)𝑖
𝑠𝑖

𝑛

𝑖=1

𝒗𝑖 (4.31) 

 

Again, small variations in the input data will lead to big changes in the solution as the 

singular values (including the smallest) appear in the denominator of (4.31). 

 

Tikhonov’s Regularization 

Due to the ill posed nature of inversion problem stated by equation (4.3), one is forced 

to face the challenging task of choosing among an infinite number of solutions, the one that is 

most physical reasonable or acceptable. Fortunately, mathematician Andrey Tikhonov 

developed a systematic way of choosing such distribution. (53) He proposed that instead of 

looking for the minimum of the error 𝜙𝑀𝑆𝑄, one should minimize the following functional: 

 Φ𝑇𝐾 = ‖𝒅 − 𝑨𝒇‖
2 + 𝛼‖𝑹𝒇‖2 (4.32) 

 

𝛼 is a free parameter known as regularization constant, and 𝑹 is a regularization 

matrix. If 𝛼 is small, 𝜙𝑇𝐾 approaches the error and inversion tends to reproduce the same 

results as minimum squared method. For big 𝛼 on the other hand, inversion process imposes 

the minimization of ‖𝑹𝒇‖, which has nothing to do with the modeled system and only poses 

restrictions over the resulting distribution. Therefore, minimizing 𝜙𝑇𝐾 is a way of searching 

for a distribution that best reproduces data 𝒅, while restricting features of 𝒇, reducing the 

infinite space of possible solutions to a few that are physically acceptable. One can impose 
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smoothness over 𝒇 by making 𝑹 equal to the identity matrix, which is called zeroth order 

regularization. If 𝑹 is the difference or second difference operator, one is then imposing 

smoothness over the derivative or curvature of 𝒇, respectively (first and second order 

regularization). (54-55) 

Regularization parameter is chosen through the following tradeoff. For 𝛼 = 0, the 

error expressed by minimum squared functional 𝜙𝑀𝑆𝑄 is the smallest possible one. As 𝛼 

increases, the error does not change too much as a result of an infinitude of solutions. 

However, when 𝛼 values keep going up the results tend to differ from the original data, 

increasing the error until it reaches a maximum for when 𝒇 approaches a constant. This is 

expressed in Figure 4.1. 𝛼 should be chosen as the bigger value for which the error had still 

not increased too much from its minimum. There are several ways to automatically determine 

the regularization parameter overcoming the vagueness of that expression (56), although they 

are all based on the search of the highlighted area in Figure 4.1. Even a visual inspection of 

the error as function of 𝛼 will lead to consistent results as the distribution’s shape is more 

sensitive to changes in the order of magnitude of the regularization parameter. 

 

Figure 4.1 - Error 𝝓𝑴𝑺𝑸 as a function of regularization parameter 𝜶. 

Source: By the author. 
 

When 𝑹 = 𝟏, minimization of 𝜙𝑇𝐾 leads to: 
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𝒇∗ =∑

𝑠𝑖

𝑠𝑖
2 + 𝛼

𝑛

𝑖=1

(𝑼𝑇𝒅)𝑖𝒗𝑖 (4.33) 

 

𝑼𝑇𝒅 is a vector with the projections o data 𝒅 over each one of the basis’ vectors 𝒖𝑖. 

Therefore, zeroth order Tikhonov’s regularization has the effect of filtering out parts of the 

data corresponding to small singular values, as 
𝑠𝑖

𝑠𝑖
2+𝛼

≈
1

𝑠𝑖
, for 𝛼 ≪ 𝑠𝑖 and 

𝑠𝑖

𝑠𝑖
2+𝛼

≈ 0, for 𝛼 ≫

𝑠𝑖. It smoothly peeks the solution less influenced by small singular values, stabilizing it under 

small changes in 𝒅. 

In general, for 𝑹 ≠ 𝟏: 

 
𝒇∗ =∑𝐶𝑖(𝑠1, … , 𝑠𝑛, 𝛼, 𝑹)

𝑛

𝑖=1

(𝑼𝑇𝒅)𝑖𝒗𝑖 (4.34) 

 

The 𝐶𝑖 are obtained from the direct solution of: 

 𝒇∗ = (𝑨𝑇𝑨 + 𝛼𝑹𝑇𝑹)−1𝑨𝑇𝒅 (4.35) 

 

 

4.3 Inversion algorithm description 

The inversion method described up to this point takes care of the infinitude of 

minimum squared solutions and numeric stability, however, it does not impose any restriction 

over the sign of elements in 𝒇. Physically, as 𝒇 represents a probability distribution function 

or fluid volume fractions, one has also to demand that any acceptable solution should be 

strictly non-negative. BUTLER et al. (54) (BRD method) achieve this goal by simultaneously 

solving the pair of equations: 

 
{
𝒇∗ = (𝑨𝑇𝑨 + 𝛼𝟏)−1𝑨𝑇𝒅 

𝒇∗ ≥ 𝟎
 (4.36) 

 

The analytic solution allows for an algorithm to iteratively search for the solution 

through the minimization of a functional that comprehends both of equations (4.36). Although 

the BRD method has a robust analytic solution, it is applicable only for 𝑹 = 𝟏. We then 

choose to use the following algorithm instead: 

1 – For a given 𝛼, equation (4.35) is directly solved for a first estimate of 𝒇∗. 

2 – The indices 𝑖 for which 𝑓𝑖
∗ < 0 are found and regularization matrix is changed in 

such a way that (𝑹𝑇𝑹)𝑖𝑖 → (𝑹𝑇𝑹)𝑖𝑖 + 𝑁, 𝑁 being a large number. (57-58) This forces 𝑓𝑖
∗ to 

approach zero at each iteration. As only the regularization matrix is modified, the original 

inversion problem does not change and the solution converges to a reasonable representation 

of 𝒅. 



91 

 

3 – Steps 1 and 2 are repeated until the difference between two consecutive solutions 

is smaller than a selected precision threshold. 

Solution of equation (4.35) is achieved by using Matlab function tikhonov from a 

library made available by van HANSEN. (59) 

Before initializing inversion an additional data compression step can be done, for 

reducing model matrix and data sizes. (48) Solution (4.31) for minimum squared inversion 

states that the projection (𝑼𝑇𝒅)𝑖 of original data 𝒅 over each basis vector 𝒖𝑖 is amplified in 

the final solution by a factor 1/𝑠𝑖. A typical plot of the projections (in absolute value) as a 

function of the singular value position is shown in Figure 4.2. 

 

Figure 4.2 - Data projection for each eigenvector 𝒖𝒊. The red dotted line represents the noise level of the data. 

Source: By the author. 
 

Constant red line in Figure 4.2 represents the noise level of original data, the standard 

deviation of the noise channel. If the projection (𝑼𝑇𝒅)𝑖 is below the noise level of the data, 

there is no point in trusting in that component for inversion, as the correspondent singular 

value would essentially amplify noise. Assuming the projections cross the noise level before 

the 𝑞𝑡ℎ singular value, one can build truncated versions 𝑼̃ and 𝑺̃ of the original matrices by 

eliminating the last 𝑚− 𝑞 columns of 𝑼 and the last 𝑛 − 𝑞 lines of 𝑺. By defining 𝒅̃ = 𝑼𝑻𝒅, 

𝑨̃ = 𝑺̃𝑽𝑇, and noticing that orthogonality relation 𝑼̃𝑇𝑼̃ = 𝟏 still holds, equation (4.3) 

becomes 𝒅̃ = 𝑨̃𝒇. Vector 𝒅̃ and matrix 𝑨̃ are much smaller than the original ones and can be 

used in the inversion algorithm as the new data and model. 
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We pointed out earlier that in the definitions of data vector 𝒅 and model matrix 𝑨, 

standard deviations were included in order to give bigger weights to best acquired data. That 

happens because minimum squared error functional is then written as: 

 
𝜙𝑀𝑆𝑄 =∑

𝜙𝑀𝑆𝑄,𝜂

𝜎𝜂2
𝜂

 
(4.37) 

 

Where 𝜙𝑀𝑆𝑄,𝜂 represents the error for each echotrain 𝜂. Therefore, terms with smaller 

standard deviations will give higher contributions to the total error, forcing the algorithm to 

privilege parameters that reduce them. 

 

4.4 Application for 𝑫𝑻𝟐 well logging acquisition: fluid typing 

In this section we show an example of diffusion and relaxation data acquired in a 

Petrobras well with carbonate reservoirs, in a section comprehending sandstone reservoirs. 

Figure 4.3 shows a plot of density and neutron porosity logs throughout reservoirs’ section. 
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Figure 4.3 - Density (red), neutron (blue), and sonic (pink) logs for well in a sandstone field. 

Source: Provided by Petrobras. 
 

As explained in Chapter 2, density is measured indirectly by counting the amount of 

electrons existing in the formation, through scattering of incident gamma ray (Compton 

effect) emitted by the tool. It measures an average density from both rock matrix and fluid. 

Therefore, as fluid density becomes smaller, porosity calculation through equation (2.7) with 

fixed parameters for matrix and fluid densities tends to overestimate results. On the other 

hand, as neutron porosity depends on the presence of hydrogen atoms, hence measuring only 

fluids, lighter oils or gas tend to underestimate porosities because of lower hydrogen indexes. 
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This leads to the separation between porosities estimated from density and neutron logs in 

Figure 4.3, and are an indicative of fluid filled sandstones. As the fluid becomes lighter, 

separation tends to increase. 

 

Table 4.1 - Well logging 𝑫𝑻𝟐 distribution acquisition 

𝑪𝑷𝑴𝑮 𝑰𝑫 𝑻𝑾 (𝒎𝒔) 𝑻𝑬 (𝒎𝒔) 𝑵𝑬 𝑮 (𝑮𝒂𝒖𝒔𝒔/𝒄𝒎) 

𝐴 12000 1.2 800 5.5 

𝐵 12000 3.6 266 5.5 

𝐶 12000 7.2 133 6.9 

𝐷 12000 12 80 6.9 

     

Source: By the author. 

 

In order to characterize the fluids present in each sandstone pack identified in Figure 

4.3, a 𝐷𝑇2 NMR acquisition was made through the interval, with parametrization of Table 4.1, 

and the averaged resultant echotrains (averaged through the whole interval) are shown in 

Figure 4.4: 

 

Figure 4.4 - Averaged echotrains from 𝑫𝑻𝟐 acquisition. 

Source: By the author. 
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For inversion bi dimensional distribution 𝑭 (equation (4.21)) was built considering 30 

bins for diffusion dimension, with diffusion coefficient values ranging logarithmicly from 

10−11 to 10−6𝑚2/𝑠, and also 30 bins in the relaxation dimension, with 𝑇2 values ranging 

logarithmicly from 0.5 to 3000𝑚𝑠. Data vector 𝒅 was built as in equation (4.20) and matrix 

𝑨 using equation (4.23) and the first of (4.24). 

A data compaction step was made using singular values decomposition of 𝑨, and the 

projections of data 𝒅 over data space basis as function of singular values position is shown in 

Figure 4.5. 

 

Figure 4.5 - Data projection for each eigenvector 𝒖𝒊 in a 𝑫𝑻𝟐 well data. 

Source: By the author. 

 

It can be seen that the majority part of the projected data follows a constant trend that 

lies below the normalized noise level shown in red (as each echotrain is divided by its own 

standard deviation in equation (4.20), the noise level of 𝒅 is then equal to 1). Truncated vector 

𝒅̃ and matrix 𝑨̃ were then built by retaining the first 100  singular values. The resultant error 

curve as function of regularization parameter is presented in Figure 4.6. 
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Figure 4.6 - Error as a function of regularization parameter 𝜶 in a 𝑫𝑻𝟐 well data. 

Source: By the author. 

 

By choosing 𝛼 = 10, the following fit is obtained: 

 

Figure 4.7 - Data fit for a) echotrains as function of time and b) echotrains and noise as function of the position 

in the data vector 𝒅. 

Source: By the author. 

 

Inverted 𝐷𝑇2 distribution is shown in Figure 4.8 below: 
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Figure 4.8 - Diffusion-relaxation distribution for the whole averaged interval shown in Figure 4.3. The dotted    

reference line corresponds to water diffusion coefficient at room temperature. 

Source: By the author. 

 

There can be identified in Figure 4.8 two main fluid portions, one located below the 

water line and another with higher diffusion coefficients. The main peak is identified with 

either light oil or drilling mud filtrate, both having similar properties as water, regarding 

viscosity and diffusion coefficient. The other portion has higher diffusion coefficient, 

indicating an even lighter oil, which can be resultant of dissolved gas.  

Other low intensity signals can be seen around 0.5 and 20𝑚𝑠. The slower component 

is likely to be associated with microporous regions of the rock, or even water associated with 

clay filled pores. The signal around 20𝑚𝑠 can be even from irreducible water or a heavier oil. 

However the resolution in diffusion dimension achieved in this particular acquisition cannot 

separate diffusion coefficients associated with relaxation times lower than 200𝑚𝑠. An 

acquisition with higher gradients would be necessary. 

The sandstones packs were divided in two main reservoirs (labeled as 1 and 2 in the 

following figures), and 𝐷𝑇2 acquisition was used to identify differences between both 

reservoirs, and specially between the upper and lower intervals within each one of them. 

Figure 4.9 to Figure 4.12 show the decaying data for each interval (reservoirs 1 and 2 

top and bottom zones), resulting fit, singular value decomposition and error curve as function 

of regularization parameter. 
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Resulting 𝐷𝑇2 distributions are shown Figure 4.13. They show an increase in diffusion 

coefficient as one moves to upper parts of the reservoir. That is a result of an expected 

gravitational segregation, where gas tends to move up due to buoyance forces acting through 

geological times. As a consequence, the upper part of those reservoirs are composed of 

condensed gas, while oil remains in the lower parts. 

 

 

Figure 4.9 - Reservoir 1 top zone. a) acquired data and fit as function of time b) normalized data, normalized 

noise and fit as function of position in data vector c) data projection over data space basis (SVD) d) 

fit error as function of regularization parameter 𝜶. For final inversion there were used 100 singular 

values and 𝜶 = 𝟐, based on fit curve. 

Source: By the author. 
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Figure 4.10 - Reservoir 1 bottom zone. a) acquired data and fit as function of time b) normalized data, 

normalized noise and fit as function of position in data vector c) data projection over data space 

basis (SVD) d) fit error as function of regularization parameter 𝜶. For final inversion there were 

used 100 singular values and 𝜶 = 𝟐, based on fit curve. 

Source: By the author. 
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Figure 4.11 - Reservoir 2 top zone. a) acquired data and fit as function of time b) normalized data, normalized 

noise and fit as function of position in data vector c) data projection over data space basis (SVD) 

d) fit error as function of regularization parameter 𝜶. For final inversion there were used 100 

singular values and 𝜶 = 𝟐, based on fit curve. 

Source: By the author. 



101 

 

 

Figure 4.12 - Reservoir 2 bottom zone. a) acquired data and fit as function of time b) normalized data, 

normalized noise and fit as function of position in data vector c) data projection over data space 

basis (SVD) d) fit error as function of regularization parameter 𝜶. For final inversion there were 

used 100 singular values and 𝜶 = 𝟐, based on fit curve. 

Source: By the author. 
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Figure 4.13 - 𝑫𝑻𝟐 distributions for a) reservoir 1 top zone b) reservoir 2 top zone c) reservoir 1 bottom zone d) 

reservoir 2 bottom zone. 

Source: By the author. 
 

4.5 One dimensional 𝑻𝟐 distributions and 𝑻𝟏/𝑻𝟐 ratio estimation 

It is common that even for one dimensional log acquisitions, such as for 𝑇2 

distribution, more than one echotrain is acquired (with different parametrization) at each 

depth, as exemplified in Table 4.2 below. 

 

Table 4.2 - Well logging 𝑻𝟐 distribution acquisition 

𝑪𝑷𝑴𝑮 𝑰𝑫 𝑻𝑾 (𝒎𝒔) 𝑻𝑬 (𝒎𝒔) 𝑵𝑬 

𝐴 17000 0.2 3000 

𝐵 32 0.2 30 

Source: By the author. 
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In this example a long and a short echotrain are acquired, the later using a much 

smaller wait time. As mentioned before this allows enough time for the same short echotrain 

to be acquired several times approximately in the same depth (remember the logging tool is 

always moving even during acquisition). Repeated signals are averaged resulting in one decay 

with less noise, which improves precision for shorter relaxation times, hence porosity 

estimation.  

This sort of acquisition poses an additional problem to the inversion process. Wait 

times enter in matrix 𝑨 through a factor (1 − 𝑒−𝑇𝑊/𝑇1), however neither do we have a value 

for 𝑇1 nor enough resolution to determine an accurate 𝑇1𝑇2 distribution based on only two 

echotrains. Assuming that the rock is saturated with only one fluid, and that diffusion and 

bulk effects can be neglected, both 𝑇1 and 𝑇2 become proportional to pore size, yielding a 

constant ratio 𝑅 = 𝑇1/𝑇2. With this assumption, inverted distribution remains one 

dimensional and an additional parameter 𝑅 to be determined is included, as the polarization 

factor becomes (1 − 𝑒−𝑇𝑊/(𝑅𝑇2)). 

In the following paragraphs we describe a way to determine 𝑅 for an actual log data 

acquired with parameters described in Table 4.2, for a Petrobras well in a sandstone interval. 

We illustrate the method applying it to the averaged signal through all the logging interval, 

shown in Figure 4.14. 

 

Figure 4.14 - Averaged log data acquired with parametrization of Table 4.2. 

Source: By the author. 

 

By choosing 30 𝑇2 values logarithmicly spaced from 0.3 to 3000𝑚𝑠, and building 

matrix 𝑨𝐿𝑜𝑛𝑔 with the exact same prescription described in equation (4.4), the long echotrain 
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can be inverted yielding a 𝑇2 distribution shown in Figure 4.15. Zeroth order regularization 

with 𝛼 = 1 was used. 

 

Figure 4.15 - 𝑻𝟐 distribution and data fit for long echotrain. 

Source: By the author. 

 

In order to include the short echotrain, one can follow the ideas described in previous 

sections and the introduction of ratio 𝑅, writing: 

 

{
 
 
 
 

 
 
 
 𝒅 = (

𝒅/𝜎𝐴
𝒅/𝜎𝐵

)

𝑨 = (
𝑨Long/𝜎𝐴
𝑨Short/𝜎𝐵

)

[𝑨𝑆ℎ𝑜𝑟𝑡]𝑖𝑗 = (1 − 𝑒
−
𝑇𝑊𝐵
𝑅𝑇2,𝑗) 𝑒

−
𝑡𝑖
𝑇2,𝑗

 (4.38) 

 

The inversion can be quickly performed for several different values of ratio 𝑅. The 

error between the acquired echotrain and resultant fit, for the short signal only, is shown in 

Figure 4.16. 
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Figure 4.16 - Error between fit and acquired data for short echotrain, as a function of 𝑹 = 𝑻𝟏/𝑻𝟐. 

Source: By the author. 

 

The minimum shown in Figure 4.16 happens for the best ratio 𝑅 = 2.1. Corresponding 

fit and 𝑇2 distribution are shown respectively in Figure 4.17 and Figure 4.18. 

 

Figure 4.17 -  Fit for long and short echotrains using 𝑹 = 𝟐. 𝟏 and full inversion described by matrix 𝑨 of 

equation (4.38). 

Source: By the author. 

 

The two resulting distributions agree for long times, but the complete one resolves 

better lower relaxation times, showing that the lower peak is centered in 2𝑚𝑠. By looking at 

the inversion through all the well shown in Figure 4.20, this peak corresponds to non-

reservoir intervals, that present only short relaxation times ranging from 1 to 3𝑚𝑠. 
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Figure 4.18 - Comparison between distributions obtained from inversion of long echotrain only, and from 

complete data. 

Source: By the author. 

 

This method for determining relaxation times ratio is fast enough so that it can be 

applied to the entire log, resulting in the traditional 𝑇2 distribution and an extra logging curve, 

the 𝑇1/𝑇2 log. It can be used as an indicative of heavy oil presence, or unconventional 

reservoir identification in shale intervals. (60) Figure 4.19 shows the resulting fit for long and 

short echotrains in a small section of the well. In Figure 4.20 is shown a comparison between 

the inverted distribution and 𝑇1/𝑇2 curve from our processing and the one commercially 

delivered by the logging company. 

Both 𝑇2 distributions show the same features, identifying the reservoir zones with 

longer times. 𝑇1/ 𝑇2 ratios also agree on average. 
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Figure 4.19 - Data fit for long and short echotrains in a well section. 

Source: By the author. 
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Figure 4.20 - Comparison with the commercially delivered distribution and T1/T2 curve (black – service 

company and red – in house processing). 

Source: By the author. 
 

4.6 Determining gradient distribution for inhomogeneous magnetic fields 

In Chapter 3 we mentioned that the static magnetic field generated by NMR logging 

tools is inhomogeneous, with field gradients present through the sensitive volume or shell. 

Some tool designs generate well defined gradient value, while others have a broad gradient 

distribution 𝑔(𝐺) in the sensitive volume. Specially in the latter case, inversion processing for 

diffusion measurements will have better resolution if 𝑔(𝐺) is known and incorporated in 

matrix 𝑨. In this section we show some results based on laboratory NMR experiments done 

with a single sided apparatus, emulating the field geometry that one would expect in a logging 

environment. We show how the gradient distribution can be obtained from diffusion 

acquisitions (similar to reported by d’Eurydice (49)) and how it can be incorporated in 

processing of diffusion editing measurements. 

We used a commercial magnet (61) (Figure 4.21) which consists internally of two 

parallel polar plates with inverted polarities with respect to each other. This configuration 

generates a 𝐵⃗⃗0 field that is parallel to the device’s surface (at its center), and it decays as one 
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moves away from the apparatus. Magnetic field intensity as a function of the distance to the 

magnet is shown in Figure 4.22. 

 

Figure 4.21 - Single sided magnet. 

Source: By the author. 

 

Figure 4.22 - Field intensity as a function of the distance from the magnet. 

Source: By the author. 

 

It can be seen from the simple profile of Figure 4.22 that field gradients tend to be 

smaller near magnet surface, increasing as one moves away from it up to a value of about 

1500𝐺𝑎𝑢𝑠𝑠/𝑐𝑚. Using a probe tuned in 16𝑀𝐻𝑧, one can excite spins that feel a magnectic 

field of 4000𝐺𝑎𝑢𝑠𝑠 at the surface. These values are far off the ones used for well logging, but 

the concepts involved in the inversion are the same. 

Initially simple CPMG decays were measured with interecho spacing of 0.1𝑚𝑠 and 

radio frequency pulses of 0.6𝜇𝑠. Solutions with 0.01, 0.1 and 1𝑀 of 𝐶𝑢𝑆𝑂4 concentration 
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were used to vary water’s transverse relaxation time. 𝜋 pulses were generated by doubling 

𝜋/2’s intensity, and their durations were held fixed in order to guarantee that all the pulses 

would act in the same volume. Because of high selectivity of short pulses in the presence of 

gradients Figure 3.16, a pulse duration of 0.6𝜇𝑠 in this setup corresponds to a sensitive shell 

of about 0.2𝑚𝑚 width from the probe surface. If the pulses duration is decreased to 0.2𝜇𝑠, 

the shell extends to 1𝑚𝑚 from the surface. Because of the field profile in Figure 4.22, it is 

expected that the larger sensitive shell would experience higher gradients than the smaller 

one. 

Results for 𝑇2 distributions (Figure 4.23) show that the three solutions tested (0.01, 

0.1 and 1𝑀 respectively) have relaxation times of 100, 10 and 1𝑚𝑠, as the dissolved ions 

interact magnetically with Hydrogen nuclei in water, enhancing relaxation proportionally with 

ions concentration. 

 

Figure 4.23 - a) CPMGs and b) 𝑻𝟐 distributions for solutions with 𝟎. 𝟎𝟏, 𝟎. 𝟏 and 𝟏𝑴 of 𝑪𝒖𝑺𝑶𝟒 measured using 

a single sided magnet. 

Source: By the author. 

 

In order to investigate gradient distributions and inversion for diffusion, a diffusion 

editing sequence was measured for the three water samples. Echotime 𝑇𝐷 for the first echo 

(equation (3.60) and Figure 3.19) was varied from 0.1 to 2.5𝑚𝑠, totalizing 37 echotrains 

acquired. Figure 4.24 shows all the echotrains for the sample with 0.1𝑀, for illustration. 
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Figure 4.24 - Echotrains acquired for solution with 𝟎. 𝟏𝑴 𝑪𝒖𝑺𝑶𝟒 in a diffusion editing experiment. 

Source: By the author. 

 

In Figure 4.25 we show the first echo amplitude for each one of the echotrains 

acquired in the diffusion editing experiment, as a function of first echotime 𝑇𝐷. 

 

Figure 4.25 - First echo amplitude as function of 𝑻𝑫 in diffusion editing sequences, for solutions with different 

concentrations of 𝑪𝒖𝑺𝑶𝟒. 

Source: By the author. 

 

Accordingly to equation (3.60), the amplitude for first echotrain should follow the 

relation: 
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𝑀𝑇(𝑇𝐷) ∝ 𝑒

−
𝐷(𝛾𝐺)2𝑇𝐷

3

12  (4.39) 

 

This expression is plotted in green considering self-diffusion coefficient of water at 

room temperature (𝐷 = 2.4 10−9𝑚2/𝑠) and a gradient value of 𝐺 = 6𝑇/𝑚. It follows the 

same trend as samples with 0.1 and 0.01𝑀 concentrations, although it doesn’t match 

experimental results completely. This is an indication that the sensitive shell actually feels a 

gradient distribution that is broader than a single well defined value. Sample with 1𝑀 

concentration falls completely off this trend because its relaxation time is much smaller, about 

1𝑚𝑠, and relaxation process 𝑒−𝑡/𝑇2 competes with expression (4.39), obliterating diffusion.  

In order to obtain the gradient distribution 𝑔(𝐺), one can think of the collection of 

data points shown in Figure 4.25 as the new data vector 𝒅, and the distribution to be obtained 

as 𝒇 = (𝑔(𝐺1), 𝑔(𝐺2), 𝑔(𝐺3),… )
𝑇. Then, our standard inversion problem posed by equation 

3 remains valid with the following definition for matrix 𝑨: 

 
𝐴𝑖𝑗 = 𝑒−

𝐷(𝛾𝐺𝑗)
2
𝑇𝐷,𝑖
3

12  
(4.40) 

 

Inversion is then done in the exact same way described in previous sections. By 

choosing 𝐷 = 2.4 10−9𝑚2/𝑠, and the data from 0.1𝑀 concentration sample, resulting 

gradient distribution is shown in Figure 4.26. 

 

Figure 4.26 -  Gradient distributions calculated from data acquired with 𝟎. 𝟏𝑴 concentration sample, using 𝟔 and 

𝟐𝝁𝒔 for radiofrequency pulses. 

Source: By the author. 
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For data acquired using radiofrequency pulses of 6𝜇𝑠 duration, the gradients are 

predominantly of 4𝑇/𝑚, but can reach values as high as 10 to 20𝑇/𝑚. When data is acquired 

using pulses with 2𝜇𝑠, hence with larger excited shells, gradient distribution tends to move 

towards 10𝑇/𝑚, confirming the expected tendency of increasing gradients towards the upper 

limit of 15𝑇/𝑚. 

𝐷𝑇2 inversion of the whole diffusion editing data (such as the one shown in Figure 

4.24) can be done incorporating the calculated gradient distribution into the processing by 

using equations from (4.20) to (4.24) to build the problem, but substituting matrix 𝑨 by: 

 
[𝑨(𝑇𝐷,𝜂 , 𝐷)]𝑖𝑗

= ∑𝑔(𝐺𝑘)

𝑘

𝑒−
𝐷(𝛾𝐺𝑘)

2𝑇𝐷,𝜂
3

12 𝑒
−
𝑡𝑖
𝑇2,𝑗 

(4.41) 

 

The results for three samples are shown in Figure 4.27. 

 

Figure 4.27 - 𝑫𝑻𝟐 maps for samples with 𝟎. 𝟎𝟏, 𝟎. 𝟏 and 𝟏𝑴 𝑪𝒖𝑺𝑶𝟒 concentrations, obtained from diffusion 

editing acquisition, and incorporating gradient distribution in the inversion. 

Source: By the author. 

 

Distributions have a well defined value for relaxation time 𝑇2 (matching with the one 

dimensional data of Figure 4.23) and diffusion coefficient, except for the one with 1𝑀 

concentration that, as mentioned before, doesn’t have enough resolution as bulk relaxation 

dominates over diffusion. 

If the data were inverted without the complete gradient distribution, 𝐷𝑇2 map would 

lose resolution in the diffusion dimension, as shown in the result for sample with 0.1𝑀 in 

Figure 4.28, where we considered a single gradient of 6𝑇/𝑚. 
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Figure 4.28 - 𝑫𝑻𝟐 map for samples with 𝟎. 𝟏𝑴 𝑪𝒖𝑺𝑶𝟒 concentration, obtained from diffusion editing 

acquisition, and considering a single gradient in the inversion. 

Source: By the author. 
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5 SURFACE RELAXIVITY FOR WELL LOGGING 

 

In Chapter 3 it was shown that when a spin is subject to an external magnetic field, its 

average angular momentum executes precession movement with frequency dependent on the 

field. As the molecule diffuses through the medium, variations in the field locally enhance 

and diminish this frequency, inducing losses in coherence between spins, hence relaxation. 

When these variations are resultant of local fields produced by the pore walls, relaxation 

caries information on pore geometry, expressed approximately as (equation (3.47)): 

 1/𝑇1,2 ≈ 𝜌1,2 𝑆/𝑉 (5.1) 

Surface relaxivity 𝜌 can then be seen as a measure of the strength of interaction 

between molecules and walls, as relaxation enhancement results from restrictions in 

molecular thumbling, increasing correlation times 𝜏𝑐 (refer to equations (3.23)). Equation 

(5.1) stresses that surface relaxivity makes the connection between relaxation times and pore 

size properties. As this connection is the key property that allows permeability models to be 

made, its determination brings improvements in permeability predictors’ performance. (30-

31)  

There are laboratory approaches to determine relaxivity, as mercury injection (62) and 

𝐷𝑇2 analysis. However, these methods do not easily extend to well logs, where the 

applications would be most beneficial. In this chapter, we briefly review 𝐷𝑇2 relaxivity 

determination with Padè fitting (introduced in Chapter 3), and then propose a new method 

that could extend its applications to well logging. 

 

5.1 Laboratory determination of surface relaxivity and challenges for well logging 

In laboratory conditions, fluid diffusivity (𝐷) and transverse relaxation times (𝑇2) can 

be measured using a Pulsed Field Gradient (PFG) technique, where transverse magnetization 

behaves as: 

 
𝑀𝑇 = ∫𝑑𝐷𝑑𝑇2𝑓(𝐷, 𝑇2)𝑒

−𝐷(𝛾𝐺)2𝛿2(Δ−𝛿/3)𝑒
−
𝑡
𝑇2 (5.2) 

Transverse magnetization is measured as a function of acquisition time 𝑡 for several 

different field gradient amplitudes 𝐺. This allows for an inversion process (discussed in 

Chapter 4) to obtain the diffusion and relaxation distribution 𝑓(𝐷, 𝑇2). One example of such 

an inversion map for a water saturated rock core is shown in Figure 5.1: 
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Figure 5.1 -  𝑫𝑻𝟐 map obtained from a PFG experiment on water saturated rock core 

Source: Adapted from SOUZA et al. (31) 

 

As the rock is saturated with only one fluid, it would be expected that one would 

detect only water’s diffusion coefficient in the map. However, it can be seen a continuum of 

values below the expected one. This is a result of restricted diffusion, introduced in Chapter 3, 

forcing the diffusion coefficient 𝐷 to behave as: 

 
𝐷(Δ, 𝑇2) = 𝐷0 (1 −

4

9√𝜋

√𝐷0Δ

𝜌2𝑇2
) , 𝑓𝑜𝑟 

√𝐷0Δ

𝜌2𝑇2
≪ 1 (𝑏𝑖𝑔 𝑝𝑜𝑟𝑒𝑠) (5.3) 

 
𝐷(Δ, 𝑇2) =

𝐷0
𝐹𝜙

 , 𝑓𝑜𝑟 
√𝐷0Δ

𝜌2𝑇2
≫ 1 (𝑠𝑚𝑎𝑙𝑙 𝑝𝑜𝑟𝑒𝑠) (5.4) 

If the diffusion length is smaller than pore sizes, restricted diffusion coefficient 

depends on surface relaxivity, as in equation (5.3), the big pores regime. On the other hand, if 

diffusion length is much bigger than the pore sizes, restricted diffusion will tend to a constant 

value (small pores regime) that depends on electrical properties (the formation factor  

𝐹). An important feature of 𝐷𝑇2 measurement and restricted diffusion modelling is the 

diffusion time Δ. This is the time between gradient pulses during which the spins are allowed 

to diffuse, and is responsible for encoding restricted diffusion information. It can be seen as a 

fixed parameter in the PFG acquisition scheme. 

No relaxation signals that decay faster than Δ can be measured in a PFG experiment, 

which implies that the small pores regime (equation (5.4)) is effectively never measured in 

such an experiment. However, if one can obtain the correspondent diffusion coefficient 

through other methods (say through resistivity measurements), equations (5.3) and (5.4) can 
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be interpolated through a mathematical process known as Pade fitting. 𝐷0 and 𝜌 are then 

obtained as fitting parameters.  

Souza et al. (31) showed that surface relaxivities obtained from this method can vary 

from 1 − 5𝜇𝑚/𝑠 up to 30𝜇𝑚/𝑠. They also showed that the permeability prediction 

performance through SDR model (equations (3.51) and (3.52)) can be increased when one 

uses the correct values of 𝜌, instead of treating it as a constant. Figure 5.2 shows the 

improvement on permeability. 

 

Figure 5.2 -  Permeability prediction improvement by introducing surface relaxivity 𝝆 in the model. a) standard 

𝒌𝑺𝑫𝑹 model (equation 3 – 51) and b) 𝒌𝝆 model (equation 3 – 52), compared with core 

permeability. 

Source: Adapted from SOUZA et al. (31) 

 

As the permeability models assume that relaxation times relate to pore sizes, their 

performances are enhanced as surface relaxivity gives the correct correspondence between 𝑇2 

and geometry. 

For well logging techniques, magnetic field gradients are fixed and are determined by 

geometrical characteristics of tools’ magnet. Therefore, diffusion measurements are made 

through variation of diffusion times, yielding for transverse magnetization: 

 
𝑀𝑇(𝑇𝐸 , 𝑡) = ∫𝑑𝐷𝑑𝑇2𝑓(𝐷, 𝑇2)𝑒

−
𝐷(𝛾𝐺𝑇𝐸)

2

12
𝑡𝑒−𝑡/𝑇2, (5.5) 

for standard acquisition where interecho times are varied, or: 

 
𝑀𝑇(𝑇𝐷, 𝑡) = ∫ 𝑑𝐷𝑑𝑇2𝑓(𝐷, 𝑇2)𝑒

−
𝐷(𝛾𝐺)2𝑇𝐷

3

12 𝑒
−
𝑡

𝑇2, (5.6) 

for Diffusion Editing. 

In both cases, interecho intervals equal twice the diffusion time Δ. Considering well 

logging acquisition schemes, we enumerate three challenges that must be overcome in 

extending the surface relaxivity method to the well site:  
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1) In well logging diffusion acquisitions, there is not a well defined diffusion time Δ. 

Consequently, the tendency expressed by continuous line in figure 1 cannot be exactly 

described by expressions such as (5.3) and (5.4), but by some sort of average expression on Δ. 

2) The second challenge lies on the fact that, in general, electrical measurements used 

for determining the small pores regime (equation (5.4)), are either not available in the same 

depth of investigation of NMR acquisitions, or are not precise enough for complex carbonate 

reservoirs. Therefore, extending the 𝜌 determination method to well logs should consider the 

case where one has only NMR measurements, which means dealing only with information on 

the big pores limit. 

3) Finally, we should take into account that logging measurements are much noisier 

than laboratory ones, implying that whatever method is developed, it should be able to 

perform well at low Signal to Noise Ratios (SNR). 

 

5.2 Developing 𝝆 logging method – forward simulations and 𝑫𝑻𝟐inversions 

In the next two sections we will consider simulated acquired diffusion editing data, 

contaminated with random noise at different SNR levels, to develop a method that can address 

the three challenges presented before, and determine at which noise extent one can still trust 

that method. At first, we will mostly show the implications of naively trying to use inverted 

𝐷𝑇2 maps to fit the expression described by regime (5.3), addressing mainly challenges 2 and 

3. Then, in the following section, we show how one can take advantage of challenge 1 to 

develop a more robust method that performs better at smaller SNR. We finish the Chapter by 

showing laboratory and well logging data that work as a proof of concept for the developed 

method. 

Consider a water saturated reservoir, with corresponding 𝑇2 distribution 𝑓(𝑇2) showed 

in Figure 5.3 below: 
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Figure 5.3 - 𝑻𝟐 distribution for a water saturated reservoir. 

Source: By the author. 

 

The magnetization decay for a diffusion editing echotrain obtained with first echo 

spacing 𝑇𝐷 can then be forward modeled as: 

 
𝑀𝑇(𝑇𝐷 , 𝑡) = ∫𝑑𝑇2𝑓(𝑇2)𝑒𝑥𝑝 {−

(𝛾𝐺)2𝑇𝐷
3

12
𝐷𝑟𝑒𝑠𝑡(𝑇𝐷/2, 𝑇2)} 𝑒

−
𝑡
𝑇2 (5.7) 

Function 𝐷𝑟𝑒𝑠𝑡(Δ, 𝑇2) describes the restricted diffusion effect. In expression 6, each 

bin in the 𝑇2 distribution represents a group of spins located in a pore with given size 

(proportional to 𝑇2), which are consequently subject to a restriction in diffusion correspondent 

to that pore size. Instead of describing the whole diffusion-relaxation phenomena with a bi 

dimensional distribution, we treat it as a forward effect on the pore sizes represented by a 

single relaxation distribution. Modeled 𝐷𝑟𝑒𝑠𝑡(Δ, 𝑇2) must roughly capture the key features of 

restricted diffusion such as the existence of big/small pore limits, and a smooth transition 

interpolating both. We choose that function to be: 

 

ln𝐷𝑟𝑒𝑠𝑡(Δ, 𝑇2) = {
ln {𝐷0 (1 −

4

9√𝜋

√𝐷0Δ

𝜌𝑇2
)} , 𝑓𝑜𝑟 𝑇2 > 𝑇2𝑐 ≡ √𝐷0Δ/𝜌

ln(𝑅𝐷0) + 𝐴(ln 𝑇2 − ln𝑇𝑚𝑖𝑛)
2 + 𝐵(ln 𝑇2 − ln𝑇𝑚𝑖𝑛)

3, 𝑓𝑜𝑟 𝑇2 < 𝑇2𝑐 ≡ √𝐷0Δ/𝜌

 (5.8) 

The first part of equation (5.8) ensures the big pore limit when 
√𝐷0Δ

𝜌𝑇2
< 1. The second 

part is the simplest polynomial function (on ln 𝑇2) with enough degrees of freedom to ensure 

that when 𝑇2 → 𝑇𝑚𝑖𝑛, 𝐷𝑟𝑒𝑠𝑡 → 𝑅𝐷0, with 0 ≤ 𝑅 < 1 (small pore limit), and that it has 

continuous values and first derivative everywhere, including the transition point 𝑇𝑐 =

√𝐷0Δ/𝜌. This last constraint allows parameters 𝐴 and 𝐵 to be calculated by solving: 
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(
𝐴
𝐵
) = (

(ln 𝑇2𝐶 − ln𝑇𝑚𝑖𝑛)
2 (ln 𝑇2𝐶 − ln𝑇𝑚𝑖𝑛)

3

2(ln 𝑇2𝐶 − ln𝑇𝑚𝑖𝑛)/𝑇2𝐶 3(ln 𝑇2𝐶 − ln𝑇𝑚𝑖𝑛)
2/𝑇2𝐶

)

−1

(
ln𝐷𝑟𝑒𝑠𝑡(Δ, 𝑇2𝐶) − ln𝑅𝐷0
𝐷𝑟𝑒𝑠𝑡
′ (Δ, 𝑇2𝐶)/𝐷𝑟𝑒𝑠𝑡(Δ, 𝑇2𝐶)

) (5.9) 

 

In our simulations we chose 𝑇𝑚𝑖𝑛 = 10−3𝑠, 𝑅 = 0.01 and 𝐷0 = 2.3 10
−9𝑚2/𝑠. 

Specifics of the small pore limit behavior are not determinant for the method developed here, 

as NMR acquisitions will be most sensitive to the other limit, where we will apply approaches 

using equation (5.3). Figure 5.4 and Figure 5.5 show examples of 𝐷𝑟𝑒𝑠𝑡 for different values of 

𝜌 and Δ. 

 

Figure 5.4 - Modeled restricted diffusion coefficient using function 𝑫𝒓𝒆𝒔𝒕(𝚫, 𝑻𝟐), with 𝝆 = 𝟓𝝁𝒎/𝒔 and 𝚫 = 𝟏, 𝟓 

and 𝟏𝟎𝝁𝒎/𝒔. As diffusion time increases, long pore limit shrinks as more spins are subject to 

stronger restriction. 

Source: By the author. 
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Figure 5.5 - Modeled restricted diffusion coefficient using function 𝑫𝒓𝒆𝒔𝒕(𝚫, 𝑻𝟐), with 𝚫 = 𝟓𝒎𝒔 and 𝝆 = 𝟓, 𝟏𝟓 

and 𝟑𝟎𝝁𝒎/𝒔. An increase of 𝝆 makes the restriction for big pores less severe, making it difficult to 

detect. 

Source: By the author. 

 

As surface relaxivity increases, spins that reach the walls tend to rapidly loose 

coherence in relation to the other ones. Therefore, less “survivor” molecules (those who still 

contribute to net magnetization) will feel the movement restrictions imposed by the grain/pore 

interface, leading to smaller restriction in diffusion coefficients. In these cases, as measured 

restricted diffusion coefficients tend to be closer to the bulk value 𝐷0, determining surface 

relaxivity should be a difficult task. Likewise, an increase in diffusion times Δ will also be a 

limiting factor as measured data will tend to drift away from the big pores limit. 

We modeled a series of well logging diffusion editing data assuming the reservoir is 

filled with water with 𝑇2 distribution as in Figure 5.3, using equations (5.7) and (5.8) with the 

following parameters: 𝐷0 = 2.3 10
−9𝑚2/𝑠, 𝑅 = 0.01, 𝑇𝑚𝑖𝑛 = 1𝑚𝑠 and echo time 𝑇𝐸 =

0.6𝑚𝑠. We assumed at first a single gradient tool with 𝐺 = 30𝐺/𝑐𝑚. In each “experiment”, 

ten 𝑇𝐷 values were used, varying logarithmically from 0.6 to 15𝑚𝑠. Reservoir surface 

relaxivities were varied from 5 to 35𝜇𝑚/𝑠, in steps of 5𝜇𝑚/𝑠. SNR was also varied from 

100 to 10, in steps of 10. We defined SNR as the ratio between the total amount of signal (set 

to 1 through normalization of 𝑇2 distribution amplitudes) and the standard deviation of the 

random noise. Figure 5.6 shows the modeled data at 𝑆𝑁𝑅 = 100, for varying relaxivities. 

Similarly, Figure 5.7 shows an example of varying SNR at fixed surface relaxivity. 
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Figure 5.6 - Modeled well logging diffusion editing data for various reservoir surface relaxivities. 

Source: By the author. 
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(continued) 
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           (continuation) 

 

Figure 5.7 - Modeled well logging diffusion editing data for various SNR and 𝝆 = 𝟓𝝁𝒎/𝒔. 

Source: By the author. 

 

It is worth noticing the 𝐷𝑇2 map behavior for such an acquired data. Figure 5.8 shows 

the bidimensional distribution for data expressed in Figure 5.6a. Superimposed to the 

distribution are the restricted diffusion coefficients as a function of 𝑇2 (accordingly to 

equation (5.7)) for each one of the 𝑇𝐷′𝑠 used in the “acquisition”. As pointed out before, 

diffusion editing techniques do not have a well defined diffusion time, consequently the 

bidimensional 𝐷𝑇2 map will have a width governed by the distribution of restricted 

coefficients as a function of 𝑇𝐷. However, it has been shown that the logarithmic mean of the 

restricted diffusion coefficient as function of 𝑇2, 𝐷𝐿𝑀(𝑇2), follows reasonably well the trend 

defined by equation (5.8), when Δ is substituted by its root mean square value Δ𝑅𝑀𝑆 =

√
1

𝑁
 ∑ (𝑇𝐷𝑖/2)2

𝑁
𝑖=1 . Figure 5.9 shows 𝐷𝐿𝑀(𝑇2) obtained from the maps in Figure 5.6 (star dots) 

, along with 𝐷𝑟𝑒𝑠𝑡(Δ𝑅𝑀𝑆, 𝑇2) (continuous black line) . 
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Figure 5.8 - Inversion of diffusion editing data showed in Figure 5.6a. Continuous lines represent restricted  

diffusion coefficients 𝑫𝒓𝒆𝒔𝒕(𝑻𝑫, 𝑻𝟐), for each one of the diffusion times used in the modeling. 

Source: By the author. 

 

Considering that the use of Δ𝑅𝑀𝑆 and measurement of 𝐷𝐿𝑀(𝑇2) solves challenge 1, one 

would have to take into account the lack of information NMR Diffusion Editing data has on 

the small pores limit (challenge 2). There is no use working with detailed information on 

smaller 𝑇2 values (such as in equation (5.8)) in the bidimensional map, as those are generally 

not available. The simplest way to proceed would be to consider a simplified version of 𝐷𝑟𝑒𝑠𝑡, 

with information only on the big pores limit: 

 
𝐷𝑠𝑖𝑚𝑝(Δ, 𝑇2) = 𝐷0 (1 −

4

9√𝜋

√𝐷0Δ

𝜌2𝑇2
) (5.10) 

By choosing Δ = Δ𝑅𝑀𝑆, free parameters 𝐷0 and 𝜌 would then be obtained as fitting 

constants when expression (5.11) was compared to 𝐷𝐿𝑀(𝑇2) from the map, in a region where 

𝑇2 was greater than some 𝑇2𝐶, as exemplified in by the blue lines in Figure 5.9. The question 

that remains to be answered is: is there a way to determine a limiting 𝑇2𝐶, such as the fitting 

parameters remain close to the real ones, in a wide range of relaxivities? The answer is, 

unfortunately: only for a very limited range of SNR, in an even more limited tool scenario, as 

explained next. 
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Figure 5.9 -  Restricted diffusion coefficient logarithmic mean 𝑫𝑳𝑴(𝑻𝟐) (star dots) compared with 

𝑫𝒓𝒆𝒔𝒕(𝚫𝑹𝑴𝑺, 𝑻𝟐) (continuous line). 

Source: By the author. 
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Average surface relaxivities were obtained from the maps in Figure 5.9 as fitting 

constants based on equation (5.11), for several different 𝑇2𝐶. The fitting procedure was made 

through the Levenberg-Marquadt algorithm, implemented in Matlab’s built in function nlinfit. 

Figure 5.10 shows the relative difference between fitted parameters 𝜌𝑓𝑖𝑡 and real ones, as a 

function of 𝑇2𝐶. 

 

Figure 5.10 - Fitting results as a function of 𝑻𝟐𝑪, for all surface relaxivity simulated data. 

Source: By the author. 

 

As it is expected, there is no special value for 𝑇2𝐶 that minimizes all relative errors, as 

the limiting value 𝑇2𝐶~√D0Δ/𝜌 depends on 𝐷0 and 𝜌 themselves. It can be seen that for 

𝑇2𝐶~0.1𝑠, smaller relaxivities are privileged, as the opposite is true for 𝑇2𝐶~0.05𝑠. If we 

choose the latter one, the biggest error will be of about 30% for the smallest relaxivity, 

𝜌 = 5𝜇𝑚/𝑠, but rapidly diminishes as 𝜌 increases. Allowing ourselves to tolerate such 

disparity for the sake of analyzing noise behavior, fitted values for other SNR’s with fixed 

𝑇2𝐶 = 0.05𝑠 are shown in Figure 5.11a. As each SNR experiment was repeated 30 times with 

different realizations of noise, Figure 5.11b shows the average fitted 𝜌 values with errorbars 

corresponding to twice the standard deviation.  



128 

 

 

 

 

Figure 5.11 - a) Average fitted surface relaxivities as function of SNR and b) Average fitted surface relaxivities 

and standard deviations. Each noise level was repeated 30 times for calculating statistics. Dotted 

lines correspond to the real values used in the forward modeling. 

Source: By the author. 

 

Despite the superestimation of very low relaxivities, this naive approach can separate 

low, intermediate and high 𝜌′𝑠 until SNR’s as low as 40. Below this value, small and 

intermediate relaxivities become superestimated and their ranges start to mix as the errorbars 

rapidly increase. For reference, logging data have typical SNR of 10 to 20.  
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If we model the data using a logging tool that has a distributed gradient, such as 

Schlumberger’s CMR, the situation is even more dramatic. Data can be modeled by 

substituting 𝑒𝑥𝑝 {−
(𝛾𝐺)2𝑇𝐷

3

12
𝐷𝑟𝑒𝑠𝑡(𝑇𝐷/2, 𝑇2)} → ∑ 𝑔(𝐺𝑖)𝑒𝑥𝑝 {−

(𝛾𝐺𝑖)
2𝑇𝐷

3

12
𝐷𝑟𝑒𝑠𝑡(𝑇𝐷/2, 𝑇2)}𝑖  in 

equation 5 – 6, with gradient distribution 𝑔(𝐺) given in Figure 3.18. The results are then 

sown in Figure 5.12. 

 

 

 

Figure 5.12 -  a) Average fitted surface relaxivities as function of SNR for data modeled from a distributed 

gradient tool, and b) Average fitted surface relaxivities and standard deviations. Each noise level 

was repeated 30 times for calculating statistics. Dotted lines correspond to the real values used in 

the forward modeling. 

Source: By the author. 
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In the case of distributed gradient logging tools differentiation of relaxivities is 

virtually impossible through this method, because every broadening in the gradient 

distribution implies (through equation (5.7)) in a loss of resolution in the diffusion dimension. 

This effect is much more dramatic for high relaxivities, as the consequently smaller restriction 

in 𝐷 demands higher resolution. 

 

5.3  𝝆 logging method – raw data non-linear regression 

 

In dealing with surface relaxivity extraction from 𝐷𝑇2 maps, different diffusion times 

(coming either from diffusion editing or standard acquisition) end up mixing restricted 

diffusion regimes yielding a sort of averaged bidimensional distribution. Although distorted, 

relaxivity information is still present in the long 𝑇2 portion of the map, and can be decoded by 

means of Δ𝑅𝑀𝑆. However, this solution to Challenge 1 ended up being not feasible for well 

logging, as it behaves poorly as SNR decreases. In this section, we propose a different 

solution that uses directly the raw data, skipping the 2D inversion procedure. Indeed, 

restricted diffusion information coded by different 𝑇𝐷′𝑠 is already present in the 

magnetization decays and, as far as it concerns to 𝜌 extraction, there is no point in mixing and 

distorting it in an average 𝐷𝑇2 map.  

Considering that equation (5.7) fairly represents magnetization decays, it can be turned 

into a function of 𝐷0 and 𝜌 by making the approximation 𝐷𝑟𝑒𝑠𝑡 ≈ 𝐷𝑠𝑖𝑚𝑝. That eliminates the 

necessity of knowing detailed information on the small pores limit, and takes advantage of 

variations in 𝑇𝐷, which directly encode the slope of equation (5.11), hence relaxivity. 

However, this alone does not solve Challenge 2 completely, as this approximation for the 

echotrains remains good only for longer times, where 
√𝐷0(𝑇𝐷/2)

𝜌𝑇2
< 1. We propose an iterative 

procedure that, at each step, calculates an approximation for 𝐷0 and 𝜌, and then uses them to 

determine a cutoff value 𝑇2𝐶 = √𝐷0(𝑇𝐷/2)/𝜌. There will be one cutoff value for each 

echotrain, as they were acquired at different 𝑇𝐷′𝑠. In the next iteration only the portions of 

echotrains greater than their respective 𝑇2𝐶 are used. The algorithm is detailed below: 

1) The acquisition corresponds of a set of magnetization decays 𝑀𝑇(𝑇𝐷
𝜂
, 𝑡), each one 

acquired with a different 𝑇𝐷
𝜂
. A simple 𝑇2 inversion is made using solely the 

echotrain corresponding to the smaller diffusion time, which usually equals the 
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echotime (𝑇𝐷
1 = 𝑇𝐸). If  𝑇𝐸 was chosen small enough to suppress diffusion effects, 

resulting 𝑇2 distribution 𝑓(𝑇2) can be considered diffusion free. 

2) Raw data is then expressed by the following function: 

 

𝑀𝑇
𝜂
=

{
  
 

  
 ∫𝑑𝑇2𝑓(𝑇2)𝑒𝑥𝑝 {−

(𝛾𝐺)2(𝑇𝐷
𝜂
)3

12
𝐷𝑠𝑖𝑚𝑝(𝑇𝐷

𝜂
/2, 𝑇2)} 𝑒

−
𝑡
𝑇2

𝐷𝑠𝑖𝑚𝑝(TD
η
/2, 𝑇2) = 𝐷0

(

 1 −
4

9√𝜋

√𝐷0(TD
η
/2)

𝜌2𝑇2
)

 

 (5.11) 

All parameters above are known, except for bulk diffusion coefficient and surface 

relaxivity, which makes 𝑀𝑇
𝜂
 a function of 𝐷0 and 𝜌. Equation (5.11) is implemented in a 

Levemberg-Marquadt non-linear regression algorithm, by means of Matlab’s built in function 

nlinfit, where the free parameters can be determined by minimizing the squared error sum 

relative to the data. In this procedure, we limit possible relaxivities by demanding 0 < 𝜌 <

100𝜇𝑚/𝑠. nlinfit takes as input a vector with the acquisition times 𝑡, the corresponding data 

vector 𝑀𝑇
𝜂
 (all echotrains), and an initial guess for the free parameters. A scaling step helps 

convergence with the substitution 𝐷0 → 𝐷0 ⋅ 10
10 and 𝜌 → 𝜌 ⋅ 106. Only for the first 

iteration, 𝐷𝑠𝑖𝑚𝑝 ≡ 𝐷0, and an average bulk diffusion coefficient 𝐷0
1 is determined as first 

approximation. First approximation for 𝜌 is then manually set as 𝜌1 = 90𝜇𝑚/𝑠. This 

procedure pushes the algorithm away from an infinitude of local minima located at high 𝜌′𝑠 

and arbitrary 𝐷0′𝑠. 

3) For each echotrain, a cutoff value is determined as (𝑇2𝐶
𝜂
)
𝑖
= (√𝐷0

𝑖 (
𝑇𝐷
𝜂

2
)) /𝜌𝑖  . All 

data corresponding to 𝑡 < (𝑇2𝐶
𝜂
)
𝑖
, for each decay, are discarded. 

4) 𝐷0
𝑖  and 𝜌𝑖 are used as initial values in step 2, and the non-linear regression returns 

𝐷0
𝑖+1 and 𝜌𝑖+1. 

5) Steps 3 and 4 are repeated until |𝜌𝑖+1 − 𝜌𝑖| < 𝜖, or the number of iterations 

reaches a predefined maximum. No more than 10 iterations were needed for 

convergence in all tested cases. A good stopping rule is 𝜖 = 1 − 3𝜇𝑚/𝑠. 

 

Figure 5.13 shows the iteration steps for example data of Figure 5.6 a to c. 
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Figure 5.13 -  a) 𝑫𝟎 and b) 𝝆 determined at each iteration, for example cases where data was simulated with 

𝝆 = 𝟓, 𝟏𝟎 and 𝟏𝟓𝝁𝒎/𝒔. 

Source: By the author. 

 

Figure 5.14 shows the fit produced by equation 5 – 11 and parameter pair 𝐷0
𝑒𝑠𝑡 =

2.25 10−9𝑚2/𝑠, 𝜌𝑒𝑠𝑡 = 5.70𝜇𝑚/𝑠, estimated from the algorithm, real values been 𝐷0 = 2.3 ⋅

10−9𝑚2/𝑠 and 𝜌 = 5𝜇𝑚/𝑠. As pointed out before, the fitting procedure commits only with 

the part of the data greater than cutoff values determined recursively. 
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Figure 5.14 - Example of data fit (continuous black lines) generated by the non-linear regression algorithm. Data 

was simulated with 𝝆 = 𝟓𝝁𝒎/𝒔, and estimated parameters were 𝝆𝒆𝒔𝒕 = 𝟓. 𝟕𝟎𝝁𝒎/𝒔 and 𝑫𝟎
𝒆𝒔𝒕 =

𝟐. 𝟐𝟓 𝟏𝟎−𝟗𝒎𝟐/𝒔. 

Source: By the author. 

 

The method was tested for all simulated examples represented by Figure 5.6 (30 

different realizations of each one of the 10 SNR levels, with 7 values of 𝜌) and results are 

summarized in Figure 5.15. 

(continued) 
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(continuation) 

 

Figure 5.15 - a) Average fitted surface relaxivities (using the non linear regression algorithm) as function of SNR 

and b) Average fitted surface relaxivities and standard deviations. Each noise level was repeated 

30 times for calculating statistics. Dotted lines correspond to the real values used in the forward 

modeling. 

Source: By the author. 

 

Comparison with Figure 5.11 shows a great improvement in determination of 

relaxivities as a function of SNR. In the present case, low and intermediate parameters can be 

found with fairly good precision (although with some overestimation), and higher values 

(more rare) can be at least separated from smaller ones up to an SNR level of about 25. 

Usually a 𝐷𝑇2 acquisition can be made slow enough to reach SNR’s of about 20, even in the 

well bore. If that is not possible, some stacking of the data (about four levels) would be 

necessary in order to reach the desired noise level. 

When the method is applied to distributed gradient tools (making use of gradient 

distributions) the results are much better than the ones shown in Figure 5.12, as shown in 

figure Figure 5.16. Separation of relaxivities is now possible in a similar fashion as with 

single gradient tools, to a SNR level as low as 30. 
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Figure 5.16 - a) Average fitted surface relaxivities (using the non linear regression algorithm) as function of SNR 

for data modeled from a distributed gradient tool, and b) Average fitted surface relaxivities and 

standard deviations. Each noise level was repeated 30 times for calculating statistics. Dotted lines 

correspond to the real values used in the forward modeling. 

Source: By the author. 
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5.4 Laboratory Experimental Results 

The ideas presented in previous sections for the relaxivity non-linear regression 

method were tested in the laboratory with a 9 sample set of carbonate reservoir rock cores. 

The core plugs are 1.5𝑖𝑛 diameter cylinders, with lengths ranging between 3 and 4𝑐𝑚. Their 

petrophysical properties (from routine core analysis) and surface relaxivity are described in 

Table 5.1. 

 

Table 5.1 -  Routine core analysis (porosity and permeability) and surface relaxivity, for the core samples 

studied. 

𝑺𝒂𝒎𝒑𝒍𝒆 𝑷𝒐𝒓𝒐𝒔𝒊𝒕𝒚 𝝓  

(𝒑𝒖) 

𝑷𝒆𝒓𝒎𝒆𝒂𝒃𝒊𝒍𝒊𝒕𝒚 𝒌 

 (𝒎𝑫) 

𝑹𝒆𝒍𝒂𝒙𝒊𝒗𝒊𝒕𝒚 𝝆  

(𝝁𝒎/𝒔) 

1 15.4 17.50 7.2 

2 13.7 66.10 5.1 

3 5.6 0.44 16.9 

4 8.8 3.40 28.9 

5 4.7 0.04 5.9 

6 8.6 36.10 26.6 

7 11.8 556.00 11.4 

8 10.3 0.65 5.6 

9 10.9 11.30 3.9 

Source: By the author. 

 

Surface relaxivities were obtained through Padé interpolation between NMR and 

electric limits in the 𝐷𝑇2 maps, described in the beginning of the Chapter. 

For the following NMR experiments, samples were saturated with brine at a salinity of 

20000𝑝𝑝𝑚, prepared with deionized water and 𝑁𝑎𝐶𝑙. They were performed in a magnetic 

field corresponding to a Larmor frequency of 1.8𝑀𝐻𝑧 for Hydrogen, with 50𝑝𝑝𝑚 in a 5𝑚𝑚 

sphere of homogeneity in the middle of a 40𝑐𝑚 bore cylindrical magnet. Both magnet and 

spectrometer were acquired from Tecmag. Rock core NMR probes and gradient coils were 

built by the NMR group (LEAR – Laboratório de Espectroscopia de Alta Resolução por 

Ressonância Magnética Nuclear) of São Carlos Institute of Physics, University of São Paulo 

(IFSC/USP). 
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The ideal scenario for reproducing well log acquisitions in the lab would be to 

continuously apply a background linear magnetic field, imposing over the initial 

homogeneous field a controlled gradient. Due to limitations in the power amplifier circuits 

feeding the gradient coils, gradients as high as 10 − 30𝐺/𝑐𝑚 (covering the typical ranges for 

logging tools) cannot be sustained during the whole echotrain acquisition time. In fact, we 

could safely have a maximum gradient of about 2𝐺/𝑐𝑚 in this setup. Considering a diffusion 

editing experiment, the diffusion time needed for reducing magnetization to about 35% (1/𝑒) 

of its initial value is (equation (5.6)), due only to diffusion effects is Δ = √
3

2(𝛾𝐺)2𝐷

3
, which 

gives in this case Δ~30𝑚𝑠, for water bulk diffusion coefficient at 25𝑜𝐶. For the smallest 

relaxivities the only 𝑇2 values for which we would remain in the NMR sensitive region 

√𝐷0Δ/𝜌𝑇2 < 1 would be those greater than 1.6𝑠. In order to be able to detect surface 

relaxivity effects, we should have enough NMR signals decaying with such long times, which 

would be difficult for water saturated rock samples. In addition, radiofrequency pulses applied 

in an inhomogeneous field become selective, exciting a smaller part of the sample and 

diminishing SNR. We then opted for emulating diffusion editing acquisitions through an 

adaptation of the pulse field gradient sequence (Figure 3.9), proposed by MITCHELL et al. 

(63) Instead varying the gradient strengths, one can change their durations δ, which implies in 

changing diffusion times Δ, hence encoding information on 𝜌. The downside is when gradient 

coils are turned off, variations in magnetic fields inside the bore induces eddy currents within 

the magnet, which in turn generate more distortions in the fields. Therefore, a time delay 𝛿𝐺 is 

needed after the gradient pulse for 𝐵0 to stabilize. In our experiments we were able to increase 

gradient strength up to 10𝐺/𝑐𝑚, with a delay of 𝛿𝐺 = 10𝑚𝑠. Consequently, diffusion times 

are of at least Δ~10𝑚𝑠, which allows detection of 𝜌 for relaxation times greater than or of 

order of 0.9𝑠 (smaller relaxivities) of 0.1𝑠 (bigger relaxivities). This constitutes a better 

scenario than the one with constant background gradients, but is still near the limits of validity 

of equation (5.10), for samples studied. 

Figure 5.17 sums up acquired data for the carbonate samples, along with 

corresponding 𝑇2 distributions (inverted for each echotrain). 
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(continued) 



139 

 

(continuation) 

 

(continued) 
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(conclusion) 

 

Figure 5.17 - PFG data for brine saturated carbonate samples, along with corresponding 𝑻𝟐 distributions. 

Source: By the author. 

 

In order to apply the non-linear regression method for 𝜌, the kernel in equation (5.11) 

must be modified to take into account the PFG data acquisition scheme. This can be done 

through the modification 𝑒𝑥𝑝 {−
(𝛾𝐺)2(𝑇𝐷

𝜂
)3

12
𝐷𝑠𝑖𝑚𝑝(𝑇𝐷

𝜂
/2, 𝑇2)} → 𝑒𝑥𝑝 {−(𝛾𝐺Δ𝜂)2 (Δ𝜂 −

𝛿𝜂

3
)𝐷𝑠𝑖𝑚𝑝(Δ

𝜂, 𝑇2)}. Another modification was made regarding the definition of limiting 𝑇2𝐶. 

Approximation 𝐷𝑟𝑒𝑠𝑡(Δ, 𝑇2) ≈ 𝐷𝑠𝑖𝑚𝑝(Δ, 𝑇2) is valid only when √D0Δ/(ρT2) is smaller than 

1. In the simulations, we set the cutoff value 𝑇2𝐶 above which that condition is valid by 

demanding that ratio to be precisely 1. For real samples, one should expect that √D0Δ/

(ρT2c) = 𝑟, where 𝑟 is some number around 1. Fitted 𝜌 values for the studied rock cores were 

obtained for several different values of 𝑟. For those above 1, results tend to severely 

overestimate the relaxivities. On the opposite direction, the algorithm diverges for some 

samples, as 𝑇2𝑐 becomes too big consequently discarding most of the data. We found out 

𝑟 = 0.8 to give the best estimations for 𝜌. These results are shown in Figure 5.18. 
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Figure 5.18 - Relaxivities from non-linear regression as function of expected ones, for several 𝒓 values. 

Source: By the author. 

 

Results corresponding to 𝑟 = 0.8 are shown in Figure 5.19. 

 

 

Figure 5.19 - Relaxivities from non-linear regression as function of expected ones, for 𝒓 = 𝟎. 𝟖. 

Source: By the author. 
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Similar to what was observed in the simulations, this procedure in general 

overestimates relaxivities. The reason can be twofold: 1) as already discussed, this data is 

acquired near the limit of applicability of approximation 𝐷𝑟𝑒𝑠𝑡 ≈ 𝐷𝑠𝑖𝑚𝑝. Therefore, during the 

fit, 𝐷𝑠𝑖𝑚𝑝 will try to reproduce the transition from small to big pores limit. In Figure 5.9, this 

is analogous to trying to use the blue curve (𝐷𝑠𝑖𝑚𝑝) to reproduce the black one (𝐷𝑟𝑒𝑠𝑡), in a 

region where they are not alike. The least mean squared error solution is then to increase both 

𝐷0 and the steepness of the curve, by increasing 𝜌. 2) The algorithm might stop at a local 

minimum before reaching the correct parameter values. 

For sample 8, marked as a red square in Figure 5.19, estimated relaxivity was four 

times bigger than the expected value, more than any other sample. However, for this sample, 

𝑇2𝐶 = √𝐷0
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑Δ𝑅𝑀𝑆/(𝑟𝜌

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑)~1𝑠, and observation of 𝑇2 distributions in figure 18h 

shows that all its relaxation times are way below this value. Therefore an abnormal 

overestimation is expected. In fact, Figure 5.20 shows a correlation between 𝜌𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑/

𝜌𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑, and the ratio 𝑇2𝑚𝑎𝑥/𝑇2𝑐, 𝑇2𝑚𝑎𝑥 being the point of maximum of the 𝑇2 distribution. 

As most of the data becomes smaller than 𝑇2𝑐, overestimation tends to increase. 

Ignoring sample 8, Figure 5.19 shows that the estimated relaxivities are compatible 

with the expected ones, and can even separate the samples into groups of small and high 

values. In the well site, this information can solve some pitfalls in the formation evaluation 

based only on 𝑇2 distributions, as distributions with long times can correspond to low 

permeability reservoirs, if relaxivity is small, for example.  

Although we cannot translate the results of this section directly to the well because of 

the differences in acquisition scheme and validity region (regard √𝐷0Δ/(𝜌𝑇2)~1 in our 

acquisitions), the laboratory showed that this approach is indeed sensitive to rock core 

relaxivities. 
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Figure 5.20 - 𝝆𝒆𝒔𝒕𝒊𝒎𝒂𝒕𝒆𝒅/𝝆𝒆𝒙𝒑𝒆𝒄𝒕𝒆𝒅 as a function of 𝑻𝟐𝒎𝒂𝒙/𝑻𝟐𝒄, for all samples. 

Source: By the author. 
 

5.5 Well Logging Experimental Results 

In this section we show the application of the relaxivity non-linear regression method 

to a well log acquired data. Data corresponds to a diffusion editing experiment made 

downhole in a sandstone reservoir from Petrobras, using a tool with broad gradient 

distribution represented by Figure 3.18. The well was drilled using water based mud, which 

implies that the tool should read a region in the formation saturated with original water/oil, 

and invaded water. As we are dealing with a sandstone reservoir (which tends to be water 

wet), it is expected that invaded water occupies the bigger pores, remaining oil being in the 

smaller ones. 

Four echotrains were acquired, with first interecho time 𝑇𝐷 = 2, 4, 8 and 10𝑚𝑠, and  

small interecho time 𝑇𝐸 being equal to 0.2𝑚𝑠. In this specific acquisition, the tool stopped at 

the target area and acquired the data for about 30 minutes, to guarantee good SNR. For well 

logging, diffusion editing sequence acquires two first echoes with longer time interval 

between 𝜋 pulses, yielding two consecutive applications of the diffusion exponential part of 

the inversion kernel in equation (5.11). Therefore, the kernel must be modified with the 

substitution 𝑒𝑥𝑝 {−
(𝛾𝐺)2(𝑇𝐷

𝜂
)3

12
𝐷𝑠𝑖𝑚𝑝(𝑇𝐷

𝜂
/2, 𝑇2)} → ∫𝑑𝐺𝑔(𝐺)𝑒𝑥𝑝 {−

(𝛾𝐺)2(𝑇𝐷
𝜂
)3

6
𝐷𝑠𝑖𝑚𝑝(𝑇𝐷

𝜂
/
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2, 𝑇2)}, 𝑔(𝐺) taking into account the broad gradient distribution of Figure 3.18. Data is shown 

in Figure 5.21, along with 𝑇2 distributions. 

 

 

Figure 5.21 - a) Well logging diffusion editing acquisition and b) corresponding 𝑻𝟐 distributions. 

Source: By the author. 

 

The standard interpretation using the 𝐷𝑇2 inversion is reproduced from an internal 

Petrobras report in Figure 5.22. 
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Figure 5.22 - 𝑫𝑻𝟐 map for well logging diffusion editing data. 

Source: Provided by Petrobras. 

 

The peak near 10−2𝑠 reveals a fluid with diffusion coefficient one to two orders of 

magnitude smaller than water’s, corresponding to a heavy oil. Consequently, the signal 

appearing from 0.1 to 1𝑠 should correspond to water in the bigger pores. 

 

Figure 5.23 - Relaxivity iteration steps for well logging diffusion editing data. 

Source: By the author. 
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Application of the non-linear regression yields after few iterations (shown in Figure 

5.23) a relaxivity value of 𝜌 ≈ 14𝜇𝑚/𝑠, which is a reasonable value for this kind of rock. 

Sandstones are expected to have higher surface relaxivities (> 10𝜇𝑚𝑠/𝑠), specially because 

of clay minerals that might accumulate at the grain surfaces. The estimated limiting value for 

validity of 𝐷𝑠𝑖𝑚𝑝 is then ~0.13𝑠, meaning that the algorithm automatically discarded any data 

below this time value in computing relaxivity. From the diffusion map in Figure 5.22, one can 

see that the oil signal was ignored, as well as the steepest part of water signal. This result 

shows that the method has potential to be applied even if the reservoir is saturated with 

multiple fluids, as long as oil and water signals are resolved in the 𝑇2 dimension. This is not 

true for oil base muds, as the oil filtrate is usually extremely light with diffusion coefficient 

and bulk 𝑇2 close to water values. 
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6 ANALYTICAL APPROXIMATIONS FOR DIFFUSION IN POROUS MEDIA – 

DIGITAL ROCK 

 

The main objective in analyzing a porous medium, regardless the physical technique 

used (NMR, resistivity, acoustic velocities), is to obtain or relate the measurements with its 

petrophysical properties, mainly porosity, permeability, or features that correlate with 

multiphase flow such as wettability. For this matter, a discussion on the time and space scales 

at which each phenomenum takes place is necessary.  

Regarding NMR, from competition between diffusion time through a characteristic 

dimension 𝑎 of a pore (𝑎2/𝐷), and the surface relaxation time (𝜌/𝑎), emerges the correlation 

between magnetization decay times and pore geometry. If the ratio 𝜌𝑎/𝐷 is greater than one 

(slow diffusion limit where surface relaxation is dominant), magnetization carriers that reach 

the pore walls are “whipped out” of the system, and magnetization density 𝑚(𝑟, 𝑡) assumes a 

spatial distribution much governed by the pore borders. In this scenario, total magnetization is 

expressed in terms of diffusional normal modes expressed in equation 3 – 38, with 

correspondent relaxation times carrying a detailed information of the pore geometry. On the 

other hand, in the fast diffusion limit each molecule has enough time to travel throughout all 

the pore space before losing coherence relative to the others. Therefore, relaxation times do 

not carry geometry information more detailed than the average surface per volume ratio. 

Another example present in this work up to this point is the observation of restricted 

diffusion. In Chapter 5 we saw that the effects could be observed if the particles were allowed 

to move through diffusion no more than the characteristic pore length. Also, the time at which 

this displacement takes place should be compatible to the surface relaxation in such a way that 

there were still coherent spins to be measured. For much longer times one particle could be 

able to travel through several different small pores, in a way that diffusion could be 

represented by a single restricted diffusion coefficient that does not depend on relaxivity 

anymore. 

Consider the following scheme of a pore system, that could come from a rock’s thin 

section, a detailed micro tomography scan or another conceivable imaging technique. 
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Figure 6.1 - Schematics of a pore system. 

Source: By the author. 

 

It is natural for the human eye to identify and subdivide this image in three important 

regions. A big pore, a small one and a throat connecting both. Any model based on this 

subdivision will only succeed in explaining a physical property, if the latter scales in the same 

way as the image. Flow properties, for example, are mainly controlled by capillary forces, 

which vary with the transverse area of the system. Therefore a permeability model coming 

from Figure 6.1 with this natural segmentation might obtain consistent results, as the 

subdivision directly enhances the region that dominates the flow capacity (throat).  

However, that same porous medium might generate an NMR signal that brings a 

different classification for the system, even if always in the fast diffusion limit. If the two 

pores are poorly connected, one would see a clear division of two peaks in the 𝑇2 distribution, 

with relaxation times corresponding to the pore sizes. In this scenario one sees the two pore 

classification in the NMR data, but does not have information on the throat. As the connection 

becomes stronger (even by increasing diffusion coefficient, throat size or decreasing 

relaxivity) the peaks will come closer to each other due to diffusional coupling (64-65), that 

is, a spin relaxing in one pore changes its relaxation time as it moves to another one. In this 

case one starts to loose information on the pores, but gains information on their connectivity. 

In the extreme scenario of even faster diffusion, the whole system will be seen as a single 

pore, with one relaxation time. On the other direction (towards slow diffusion limit) the 

system will also be seen as a single pore, but with an extremely detailed information on pore 

geometry encoded in complex diffusion-relaxation normal modes. 

The following question emerges: how to treat the image data in a way that the 

dynamical processes are described with time and spatial scales compatible with NMR 
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relaxation? This question is part of a larger discipline that has been called by the petroleum 

industry as “Digital Rock”, and consists of obtaining all the physical or petrophysical 

properties based on images from rock cores (mainly micro tomography). This is an important 

matter as such images offer complementary geological description of the rocks, as well as 

detailed spatial information that allow in principle physical information to be obtained. 

In this Chapter we develop one possible solution for this question, describing the 

system in terms of a rate equation between almost arbitrary subdivisions (cells) of the pores. 

This formulation is compatible with the diffusion equation, therefore reproducing NMR data. 

Also, the obtained rate expressions (equation  (6.21)) give an insightful way on how to create 

the cells themselves. We compare the approximation with analytical solutions. 

 

6.1 Rate equations and transition rates 

Consider the description of the pore system in terms of an arbitrary grid, as the one 

represented in Figure 6.2. 

 

Figure 6.2 - Grid subdivision of a schematic pore system. 

Source: By the author. 

 

The dynamics of diffusion can be described in a random walk fashion of particles 

carrying magnetization from cell to cell. Let 𝑝𝑛be the total number of “magnetization 

particles” within the nth cell. Its variation in time can be described by a rate equation below: 

 𝑑𝑝𝑛
𝑑𝑡

=∑𝜆𝑘𝑛𝑝𝑘
𝑘

−∑𝜆𝑛𝑘𝑝𝑘
𝑘

 (6.1) 

 

The rates 𝜆𝑛𝑚 have a precise interpretation in the master equation formulation (or 

microscopically in a Markov random walk process). 𝜆𝑛𝑚Δ𝑡 is the probability that within a 
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time interval Δ𝑡, one particle randomly placed within any part of cell 𝑛, jumps to a neighbor 

cell 𝑚. The total number of particles that make this transition from 𝑡 to 𝑡 + Δ𝑡 is then 

𝜆𝑛𝑚𝑝𝑛(𝑡)Δ𝑡. Consequently, the first sum in equation (6.1) represents the total particle flow 

towards cell 𝑛, and the second sum the total particle flow outwards that cell. Writing equation 

(6.1) in vector form yields 

 𝑑

𝑑𝑡
𝑝⃗ = 𝚲𝑝⃗ (6.2) 

 

Matrix 𝚲 is composed by all transition rates. With the initial condition that 

magnetization is created uniformly through all space at 𝑡 = 0, that is, 𝑝𝑛(0) = (𝑀0/𝑉)𝑉𝑛 (𝑉𝑛 

is the volume of cell 𝑛 and 𝑉 is the total volume of the system), the solution of (6.2) becomes: 

 𝑝⃗(𝑡) = 𝑀0𝑒
𝚲𝑡(𝑉⃗⃗/𝑉) (6.3) 

𝑉⃗⃗ is the vector of cell volumes. If 𝚲 can be diagonalized, then exists a matrix 𝑩 which 

columns are eigenvectors of 𝚲, and a diagonal matrix 𝑫 of their eigenvalues such as 𝚲 =

𝑩𝑫𝑩−1. Total magnetization 𝑀(𝑡) = ∑ 𝑝𝑛(𝑡)𝑛  then becomes: 

 
𝑀(𝑡) = 𝑀0∑𝐶𝑛𝑒

−𝛽𝑛𝑡

𝑛

,   𝐶𝑛 = (∑𝐵𝑚𝑛
𝑚

)(
𝑩−1𝑉⃗⃗

𝑉
)
𝑛

 (6.4) 

In expression (6.4) 𝛽𝑛 is the nth eigenvalue of 𝚲. This solution is formally identical to 

equation 3 – 38, which is the exact solution of the Bloch-Torrey equation (3 – 39 and 3 – 40) 

describing the NMR system. Therefore, the rate equation approach can in principle 

approximate the exact solution.  

The only question that remains is how to calculate the rates 𝜆𝑛𝑚 for the cells, in a 

manner that solution (6.4) approximates the exact one. More technically, we are searching for 

rate expressions that, when the dimension of cells tends to zero and their number tends to 

infinity, then equation (6.1) or (6.2) tends to the diffusion equation for the particle density 

𝑓(𝑟, 𝑡): 

 𝜕𝑓

𝜕𝑡
= 𝐷∇2𝑓 

(𝐷∇⃗⃗⃗𝑓 + 𝜌𝑓)
𝑆
= 0 

(6.5) 

Another expected property for the rates is that they should depend on geometric 

features of the corresponding cell, specially their surface areas. Consider one cell from Figure 

6.2: 
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Figure 6.3 - Representation of a single cell in the pore system. 

Source: By the author. 

 

If a particle is randomly placed at any point within that cell, it is more likely that it 

jumps after a time Δ𝑡 to a neighbor cell to the right, rather than each one of the neighbors in 

the other directions, for its surface area is the biggest one. Therefore rates must have an 

explicit dependence on cell areas. 

 

Rate equation in a cubic grid 

Starting with the simplest system, consider a cubic subdivision of the porous space in 

cells with volumes Δ𝑉 = Δ𝑥Δ𝑦Δ𝑧, that are naturally described by the Cartesian coordinates 

(𝑥, 𝑦, 𝑧). We will omit two dimensions and consider only the 𝑥 axis, as allowed by the 

symmetry of the coordinate system. Figure 6.4 shows the nth cell located at 𝑥 = 𝑛Δ𝑥. It 

connects along the 𝑥 dimension with two other cells, 𝑛 + 1 to its right at 𝑥 + Δ𝑥, and 𝑛 − 1 to 

its left at 𝑥 − Δ𝑥. Each particle located at this cell (between 𝑥 − Δ𝑥/2 and 𝑥 + Δ𝑥/2) has a 

probability per unit time 𝜆+(𝑥) to jump to the right, and 𝜆−(𝑥) to jump to the left. 

 

Figure 6.4 - Cubic cell represented along the 𝒙 axis, located at 𝒙 = 𝒏𝚫𝒙. 

Source: By the author. 

 

Equation (6.1) then becomes: 

 𝑑𝑝𝑥
𝑑𝑡

= 𝜆−(𝑥 + Δ𝑥)𝑝𝑥+Δ𝑥 − (𝜆
−(𝑥) + 𝜆+(𝑥))𝑝𝑥 + 𝜆

+(𝑥 − Δ𝑥)𝑝𝑥−Δ𝑥 (6.6) 

The discreet nature of (6.6) is implicit in 𝑥, as 𝑥 = 𝑛Δ𝑥. In terms of the particle 

density 𝑓𝑥(𝑡), defined as 𝑝𝑥 = 𝑓𝑥Δ𝑥Δ𝑦Δ𝑧, one has simply: 

 𝑑𝑓𝑥
𝑑𝑡

= 𝜆−(𝑥 + Δ𝑥)𝑓𝑥+Δ𝑥 − (𝜆
−(𝑥) + 𝜆+(𝑥))𝑓𝑥 + 𝜆

+(𝑥 − Δ𝑥)𝑓𝑥−Δ𝑥 (6.7) 
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There is no geometrical reason to assume that the rates to the right and to the left 

should be different. In fact, by making 𝜆+(𝑥) = 𝜆−(𝑥) = 𝐷/(Δ𝑥)2, one promptly gets: 

 𝑑𝑓𝑥
𝑑𝑡

= 𝐷 (
𝑓𝑥+Δ𝑥 − 2𝑓𝑥 + 𝑓𝑥−Δ𝑥

(Δ𝑥)2
) (6.8) 

In the continuum limit, as Δ𝑥 → 0 and 𝑛 → ∞, with 𝑛Δ𝑥 → 𝑥, equation (6.8) 

reproduces the diffusion equation. 

 𝜕𝑓

𝜕𝑡
= 𝐷

𝜕2𝑓

𝜕𝑥2
 (6.9) 

From this simplest case, we can learn that the time scale for the rates is given by the 

ratio between diffusion coefficient and the square of a characteristic length throughout the 

cell, which is already expected for a diffusion process. However, nothing can be said about 

the dependence on surface areas for the cells, as in this example they are all the same.  

 

Rate equation in a spherical grid 

In order to extract a surface dependency on the rates, we will proceed to a more 

complex subdivision of cells, in which each one of them has some inner structure. Consider a 

subdivision of the pore space in a grid that matches the spherical coordinate system, where 

each cell is located by the radial, azimuthal and polar coordinates (𝑟, 𝜃, 𝜙), and has a volume 

Δ𝑉 = 𝑟2 sin(𝜃) Δ𝑟Δ𝜃Δ𝜙. 

In this scenario, whatever rate expressions we find, at the continuum limit the master 

equation (6.1) must lead to: 

 𝜕𝑓

𝜕𝑡
= 𝐷 (

𝜕2𝑓

𝜕𝑟2
+
2

𝑟

𝜕𝑓

𝜕𝑟
 ) +

𝐷

𝑟2
(
𝜕2𝑓

𝜕𝜃2
+
cos(𝜃)

sin(𝜃)

𝜕𝑓

𝜕𝜃
) +

𝐷

𝑟2 sin2(𝜃)

𝜕2𝑓

𝜕𝜙2
 (6.10) 

Figure 6.5 shows the scheme of one cell (focused on the 𝑟 coordinate). 



153 

 

 

Figure 6.5 - Spherical cell located at 𝒓 = 𝒏𝚫𝒓, 𝜽 = 𝒎𝚫𝜽 and 𝝓 = 𝒍𝚫𝝓, focused mainly on the 𝒓 dimension. 

Source: By the author. 

 

From Figure 6.5 representation, it can be seen that the most external area (along the 𝑟 

axis) is bigger than the inner one. Therefore we should expect that the rates 𝜆±(𝑟) must have a 

general time dependence governed by 𝐷/(Δ𝑟)2, along with some correction dependent on the 

areas. Considering only the 𝑟 coordinate, the rate equation is written similarly to (6.6): 

 𝑑𝑝𝑟
𝑑𝑡

= 𝜆−(𝑟 + Δr)𝑝𝑟+Δr − (𝜆
−(𝑟) + 𝜆+(𝑟))𝑝𝑟 + 𝜆

+(𝑟 − Δr)𝑝𝑟−Δr (6.11) 

Particle density is now given by 𝑝𝑟 = 𝑓𝑟𝑟
2 sin(𝜃) Δ𝑟Δ𝜃Δ𝜙, so that equation (6.11) 

leads to: 

 𝑑𝑓𝑟
𝑑𝑡

= 𝜆−(𝑟 + Δ𝑟)
(𝑟 + Δ𝑟)2

𝑟2
𝑓𝑟+Δ𝑟 + 𝜆

+(𝑟 − Δ𝑟)
(𝑟 − Δ𝑟)2

𝑟2
𝑓𝑟−Δ𝑟  

− (𝜆−(𝑟) + 𝜆+(𝑟))𝑓𝑟 

(6.12) 

If we chose the rates the same way it worked out for the cubic grid, then we should 

have 𝜆±(𝑟) = 𝐷/(Δ𝑟)2, yielding in the continuum limit to: 

 𝜕𝑓

𝜕𝑡
=
𝐷

𝑟2
𝜕2

𝜕𝑟2
(𝑟2𝑓(𝑟)) = 𝐷

𝜕2𝑓

𝜕𝑟2
+
4𝐷

𝑟

𝜕𝑓

𝜕𝑟
+
2𝐷

𝑟2
𝑓(𝑟)  (6.13) 

Equation (6.13) does not reproduce the radial part of the diffusion equation (6.10), as 

it was expected. Therefore, some modifications should be made on the rates. First, we will 

show that any expressions in the rates that are independent of Δ𝑟, or dependent on powers 

equal to or higher than Δ𝑟1, will make no contributions to the diffusion equation. In fact, by 

choosing 𝜆±(𝑟) = 𝜆0
±(𝑟) + 𝑂(Δ𝑟), plugging it in equation (6.12) and expanding all the terms 

in powers of Δ𝑟, one would get: 
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 𝑑𝑓𝑟
𝑑𝑡

= (𝜆0
−(𝑟) − 𝜆0

+(𝑟))(𝑓𝑟 − 𝑓𝑟) + 𝑂(Δ𝑟) (6.14) 

The first term of (6.14) is already zero, and the other one tends to zero in the 

continuum limit. Therefore, the rates must have the following form: 

 
𝜆±(𝑟) =

𝐷

(Δ𝑟)2
+𝐷

𝜆1
±(𝑟)

Δ𝑟
 (6.15) 

Solution (6.15) is not unique, as any other function independent of Δ𝑟 that is added to 

that one, or expandable on positive powers of Δ𝑟, will produce the same results in the 

continuum limit.  

By plugging in equation (6.15) into expression (6.12) one finally gets as Δ𝑟 → 0 and 

𝑛 → ∞ with 𝑛Δ𝑟 → 𝑟: 

 𝜕𝑓

𝜕𝑡
= 𝐷

𝜕2𝑓

𝜕𝑟2
+
2𝐷

𝑟

𝜕𝑓

𝜕𝑟
(2 −

𝑟

2
(𝜆1
+ − 𝜆1

−)) +
𝐷𝑓(𝑟)

𝑟2
(2 −

𝜕

𝜕𝑟
{𝑟2(𝜆1

+ − 𝜆1
−)}) (6.16) 

The choice 𝜆1
+(𝑟) − 𝜆1

−(𝑟) = 2/𝑟 turns equation (6.16) directly into the radial part of 

the diffusion equation (6.10).  

The final information needed to determine expression (6.15) completely, lies within 

the following question. If one asked for the probability that a particle initially in cell n, was 

found outside of it, regardless of which wall it had gone through, the answer should be 

dependent only on the time scale defined by 𝐷/(Δ𝑟)^2, and not on the details of the walls. 

Therefore, 𝜆+ + 𝜆− =
2𝐷

Δ𝑟
⇒ 𝜆1

+ + 𝜆1
− = 0.  

These two equations combine to give 𝜆1
±(𝑟) = ±1/𝑟, which yields: 

 
𝜆±(𝑟) =

𝐷

(Δ𝑟)2
(1 ±

Δ𝑟

𝑟
) (6.17) 

As expected, the rates are mainly controlled by the time scale of diffusion, corrected 

by a geometrical factor which is greater than one for the bigger surface, and smaller than one 

for the other. 

The external surface of Figure 6.5 (in the radial direction) has an area of 𝐴+ =

(𝑟 +
Δ𝑟

2
)
2

sin(𝜃)Δ𝜃Δ𝜙, while the internal one has area 𝐴− = (𝑟 −
Δ𝑟

2
)
2

sin(𝜃) Δ𝜃Δ𝜙. 

Therefore, the following relation holds: 

 𝐴+ − 𝐴−

𝐴+ + 𝐴−
=
(𝑟 + Δ𝑟/2)2 − (𝑟 − Δ𝑟/2)2

(𝑟 + Δ𝑟/2)2 + (𝑟 − Δ𝑟/2)2
=
Δ𝑟

𝑟
+ 𝑂(Δ𝑟2) (6.18) 

Therefore, correction Δ𝑟/𝑟 equals the ratio between areas despite an additive term of 

order Δ𝑟2, that would generate on the rates expression a term independent of Δ𝑟, which as 
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discussed does not change the diffusion equation. It is then safe to replace 
Δ𝑟

𝑟
→

𝐴+−𝐴−

𝐴++𝐴−
 in 

expression (6.17): 

 
𝜆±(𝑟) =

𝐷

(Δ𝑟)2
𝐴±

𝐴̅
, 𝐴̅ =

𝐴+ + 𝐴−

2
 (6.19) 

Expression (6.19) makes explicit the correction on the rates based on surface areas 

information. Adaptation of this equation to 𝜃 or 𝜙 coordinates could be made by replacing 

Δ𝑟 → 𝑟Δ𝜃 for the former, or Δ𝑟 → 𝑟𝑠𝑖𝑛(𝜃)Δ𝜙 for the latter. However, in order to make the 

rates completely independent of the coordinate system, consider the ratio 𝐴̅/Δ𝑉: 

 

(
𝐴̅

Δ𝑉
)

2

= {
(𝑟 +

Δ𝑟
2 )

2

+ (𝑟 −
Δ𝑟
2 )

2

2
⋅
1

𝑟2Δ𝑟
}

2

=
1

(Δr)2
(1 + 𝑂(Δ𝑟2)) 

(6.20) 

Again, the diffusion equation does not change by replacing 1/Δ𝑟 → 𝐴̅/Δ𝑉, and the 

rate expression finally becomes dependent only on the geometrical features of the cell: 

 
𝜆± = 𝐷

𝐴̅

Δ𝑉2
𝐴± (6.21) 

We can check expression (6.21) for the other coordinates, 𝜃 and 𝜙. Consider the cell 

in Figure 6.5, but now from the point of view of the azimuthal coordinate, ignoring 𝑟 and 𝜙. 

 

Figure 6.6 - Spherical cell located at r=nΔr, θ=mΔθ and ϕ=lΔϕ, focused mainly on the θ dimension. 

Source: By the author. 

 

The surface areas can now be written as 𝐴± = 𝑟𝑠𝑖𝑛(𝜃 ± Δθ/2)ΔrΔϕ. The master 

equation for particle densities now becomes (analogous to expression (6.12) for the 𝑟 part): 

 𝑑𝑓𝜃
𝑑𝑡

= 𝜆−(𝜃 + Δ𝜃)
sin (𝜃 + Δ𝜃)

sin (𝜃)
 𝑓𝜃+Δ𝜃 + 𝜆

+(𝜃 − Δ𝜃)
sin (𝜃 − Δ𝜃)

sin (𝜃)
 𝑓𝜃−Δ𝜃  

− (𝜆−(𝜃) + 𝜆+(𝜃))𝑓𝜃 

(6.22) 

Expanding expression (6.21) up to the appropriated power of Δ𝜃 yields: 
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𝜆±(𝜃) =

𝐷

𝑟2Δ𝜃2
(1 ±

cos(𝜃)

2sin (𝜃)
Δ𝜃) (6.23) 

By substituting expression (6.23) into equation (6.22) and taking the continuum limit 

one gets: 

 𝜕𝑓

𝜕𝑡
=

𝐷

𝑟2sin (𝜃)
{
𝜕2

𝜕𝜃2
(sin(𝜃) 𝑓(𝜃)) −

𝜕

𝜕𝜃
(cos (𝜃)𝑓(𝜃))}

=
𝐷

𝑟2
(
𝜕2𝑓

𝜕𝜃2
+
cos(𝜃)

sin(𝜃)

𝜕𝑓

𝜕𝜃
), 

(6.24) 

which is exactly the 𝜃 part of the diffusion equation (6.10). 

For the polar 𝜙 coordinate verification is much simpler, as 𝐴± = 𝑟Δ𝑟Δ𝜃, and the 

continuum limit goes similarly as the cubic grid, yielding 
𝜕𝑓

𝜕𝑡
=

𝐷

𝑟2 sin2(𝜃)

𝜕2𝑓

𝜕𝜙2
. 

 

Detailed Balance 

Expression (6.21) for the rates only guarantees that the correct diffusion equation is 

obtained when the physical dimensions of the cells approach zero. It does not ensure that the 

error in the macroscopic approach with the master equation will remain tolerable whatever 

cell size one has. However, one can always build the cells in accordance with the detailed 

balance principle, in order to obtain physical correct answers. 

When the diffusional system is in equilibrium, the particle density in each cell is the 

same for the whole pore, and cannot vary in time anymore (ignoring losses at the walls 

through surface relaxitivity). As a consequence, any particle flux outwards a cell must be 

compensated by an equal influx coming from the neighboring cells. The detailed balance 

principle states that this compensation must happen for each pair of cells, throughout all pairs. 

It is reasonable to assume that this holds for our system as there is an infinite number of 

possible arbitrary subdivision of space. 

Considering two neighbor cells, 1 and 2, connected by a common surface of area 𝐴, 

detailed balance implies that: 

 
Δ𝑉1

𝐷𝐴̅1

Δ𝑉1
2 𝐴 = Δ𝑉2

𝐷𝐴̅2

Δ𝑉2
2 𝐴 ⇒

𝐴̅1
Δ𝑉1

=
𝐴̅2
Δ𝑉2

 (6.25) 

Therefore, the “characteristic length” (more precisely the volume per mean surface) 

must be the same throughout all the cells. One is not obliged to follow this constraint in 

building the grid, as they can always make the cells small enough so that expression (6.21) 
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holds. However, there are some cases shown further in this chapter in which detailed balance 

proved to be advantageous. 

 

Surface losses 

In order to complete the master equation approach (6.1) to the NMR diffusion within a 

pore, one must calculate the magnetization loss rate when a cell is in contact with a pore wall. 

From diffusion theory, the amount of magnetization per unit time that hits a transverse unit 

area is given by the density current vector 𝐽 = 𝐷∇⃗⃗⃗𝑓, 𝑓 being the magnetization density. 

However, at the pore wall vector 𝐽 is promptly determined by the contour condition of 

equation (6.5). Therefore, magnetization rate loss through a pore wall of area 𝑆𝑛, in a cell 𝑛 is 

given by 
𝑑𝑝𝑛

𝑑𝑡
= ∫ 𝐽 ⋅ 𝑛̂𝑑𝑎 = −𝜌∫ 𝑓𝑛𝑑𝑎 = −𝜌𝑆𝑛𝑓𝑛 = −𝜌

𝑆𝑛

Δ𝑉𝑛
𝑝𝑛𝑆𝑛𝑆𝑛

. Loss rate through a pore 

wall in cell 𝑛 is then given by: 

 
𝜆𝑛
𝑆 = 𝜌

𝑆𝑛
Δ𝑉𝑛

 (6.26) 

Master equation can then be rewritten to make the losses explicit: 

 𝑑𝑝𝑛
𝑑𝑡

=∑𝜆𝑘𝑛𝑝𝑘
𝑘

−∑𝜆𝑛𝑘𝑝𝑘
𝑘

− 𝜆𝑛
𝑆𝑝𝑛, (6.27) 

where the 𝜆𝑖𝑗 are given by expression (6.21) and 𝜆𝑛
𝑆  by (6.26). 

If one sums equation (6.27) through all cells, total magnetization 𝑀(𝑡) = ∑ 𝑝𝑛(𝑡)𝑛  

evolution becomes: 

 𝑑𝑀

𝑑𝑡
= −∑𝜆𝑛

𝑆𝑝𝑛
𝑛

 (6.28) 

If the system is in the fast diffusion limit, the density becomes uniform throughout all 

pore space. In that condition, 𝜆𝑛
𝑆𝑝𝑛 = 𝜌𝑆𝑛(𝑝𝑛/Δ𝑉𝑛) = 𝜌𝑆𝑛(𝑀/𝑉), 𝑉 being the total pore 

volume. Equation (6.28) then becomes 
𝑑𝑀

𝑑𝑡
= −𝜌

(∑ 𝑆𝑛𝑛 )

𝑉
𝑀 = −𝜌

𝑆

𝑉
𝑀, giving as solution: 

𝑀(𝑡) = 𝑀0𝑒
−𝜌

𝑆

𝑉
𝑡
, which is the exact solution in the fast diffusion limit. 

Therefore, the master equation approach (6.27) not only gives the correct solution in 

general (expression (6.4)), but also the fast diffusion approximation. 
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6.2 Comparison with exact solutions 

Master equation approach in a sphere 

Consider a spherical pore of radius 𝑎. The exact solution of (6.5) for total 

magnetization is then given by: 

 
𝑀(𝑡) =∑𝐼𝑛𝑒

−
𝑡
𝑇2𝑛

𝑛

 

1

𝑇2𝑛
=
𝐷

𝑎2
𝜉𝑛
2 

𝐼𝑛 = 3
(∫ 𝑢2𝜓𝑛(𝑢)𝑑𝑢

1

0
)
2

∫ 𝑢2𝜓𝑛2(𝑢)𝑑𝑢
1

0

 

(6.29) 

The eigenfunctions 𝜓𝑛 are given by 𝜓𝑛(𝑢) =
sin(𝜉𝑛𝑢)

𝜉𝑛𝑢
, and the 𝜉𝑛 are roots of: 

 cos(𝜉𝑛) + (
𝜌𝑎

𝐷
− 1) sin(𝜉𝑛) = 0 (6.30) 

The master equation approach can be applied by dividing the pore in terms of 𝑁 

spherical surfaces of radii 𝑟𝑖, with the last one being 𝑟𝑁 = 𝑎, as represented in Figure 6.7. 

They can be calculated in a way that the resulting cells (spherical shells) respect the detailed 

balance principle. 

 

Figure 6.7 - Example of cell subdivision in a spherical pore. 

Source: By the author. 

 

The surface areas are given by 𝐴𝑖 = 4𝜋𝑟𝑖
2, cell volumes being Δ𝑉𝑖 =

4𝜋

3
(𝑟𝑖
3 − 𝑟𝑖−1

3 ), 

except for the first one which is just Δ𝑉1 =
4𝜋

3
𝑟1
3. For the 2𝑛𝑑 up to the (𝑁 − 1)𝑡ℎ shell, the 

rates can be calculated as: 
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𝐴̅𝑖 =

𝐴𝑖 + 𝐴𝑖−1
2

 

𝜆𝑖
+ =

𝐷𝐴̅𝑖𝐴𝑖

Δ𝑉𝑖
2 , 𝜆𝑖

− =
𝐷𝐴̅𝑖𝐴𝑖−1

Δ𝑉𝑖
2  

(6.31) 

The extremal ones are: 

 
𝜆1
+ =

𝐷𝐴1
2

Δ𝑉1
2 , 𝜆1

− = 0 

𝜆𝑁
+ = 𝜆𝑁

𝑆 =
𝜌𝐴𝑁
Δ𝑉𝑁

, 𝜆𝑁
− =

𝐷𝐴𝑁
2

Δ𝑉𝑁
2  

(6.32) 

Matrix 𝚲 in expression (6.2) can then be calculated as: 

 

𝚲 =

(

 
 
 
 

−(𝜆1
+ + 𝜆1

−) 𝜆2
− 0

𝜆1
+ −(𝜆2

+ + 𝜆2
−) 𝜆3

−

0 𝜆2
+ ⋱

0

0

⋱ 𝜆𝑁−1
− 0

𝜆𝑁−2
+ −(𝜆𝑁−1

+ + 𝜆𝑁−1
− ) 𝜆𝑁

−

0 𝜆𝑁−1
+ −(𝜆𝑁

+ + 𝜆𝑁
−))

 
 
 
 

 
(6.33) 

Solution through the master equation approach can then be calculated as in expression 

(6.4).  

Considering a sphere of radius 𝑎 = 10𝜇𝑚, 𝐷 = 2.3 ⋅ 10−9𝑚2/𝑠, the fast diffusion 

limit with 𝜌𝑎/𝐷 = 0.1, using 𝑁 = 4 cells, the resulting amplitudes of the normal modes and 

corresponding relaxation times are shown by the red star dots in Figure 6.8. The black circles 

correspond to the exact solution (6.29). 
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Figure 6.8 - Comparison between exact solution (black circles) and master equation approach (red star dots) for 

normal modes and relaxation rates in a sphere of radius 𝒂 = 𝟏𝟎𝝁𝒎 in the fast diffusion limit, using 

4 cells. 

Source: By the author. 

 

Figure 6.8 shows that the master equation solution correctly reproduces the exact one. 

If detailed balance were not used in building the cells, the same level of accuracy would be 

achieved using about 15 cells. The results for the slow diffusion limit with 𝜌𝑎/𝐷 = 10 are 

shown in Figure 6.9. 

 

Figure 6.9 - Comparison between exact solution (black circles) and master equation approach (red star dots) for 

normal modes and relaxation rates in a sphere of radius 𝒂 = 𝟏𝟎𝝁𝒎 in the slow diffusion limit, using 

39 cells. 

Source: By the author. 
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Master equation approach in a cube 

As a second example of application, consider a cubic pore of side 𝑎 = 10𝜇𝑚. In this 

case, the exact solution for magnetization is given by (analogous to expressions (6.29) and 

(6.30)): 

 
𝑀(𝑡) = ∑ 𝐼𝑛𝐼𝑚𝐼𝑙𝑒

−
𝑡

𝑇𝑛𝑚𝑙

𝑛𝑚𝑙

 

1

𝑇𝑛𝑚𝑙
=
𝐷

𝑎2
(𝜉𝑛
2 + 𝜉𝑚

2 + 𝜉𝑙
2) 

𝐼𝑛 =
(∫ 𝜓𝑛(𝑢)𝑑𝑢

1

0
)
2

∫ 𝜓𝑛2(𝑢)𝑑𝑢
1

0

 

(6.34) 

The eigenfunctions 𝜓𝑛are given by 𝜓𝑛(𝑢) = cos(𝜉𝑛𝑢) +
𝜌𝑎

𝐷

sin (𝜉𝑛𝑢)

𝜉𝑛
, and the 𝜉𝑛 are 

roots of: 

 
((
𝜌𝑎

𝐷
)
2

− 𝜉𝑛
2) sin(𝜉𝑛) + 2

𝜌𝑎

𝐷
𝜉𝑛 cos(𝜉𝑛) = 0 (6.35) 

It is natural to try following the pore symmetry by building the cells in this case using 

𝑁 concentric cubes of side 𝐿𝑖, with 𝐿𝑁 = 𝑎, as shown in Figure 6.10. Again the lengths 𝐿𝑖 can 

be calculated in a way that respects detailed balance principle. 

 

Figure 6.10 - Attempt of cell subdivision in a cubic pore. 

Source: By the author. 

 

The rates and rate matrix 𝚲 have the exact same expressions as (6.31), (6.32) and 

(6.33), except that the areas and volumes are now calculated as 𝐴𝑖 = 6𝐿𝑖
2 and Δ𝑉𝑖 = 𝐿𝑖

3 −

𝐿𝑖−1
3 , with Δ𝑉1 = 𝐿1

3 . The results for fast and slow diffusion limits are shown in Figure 6.11. 
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Figure 6.11 - Comparison between exact solution (black circles) and master equation approach (red star dots) for 

normal modes and relaxation rates in a cube of side 𝒂 = 𝟏𝟎𝝁𝒎 in the a) fast diffusion limit with 10 

cells and b) slow diffusion limit with 19 cells. 

Source: By the author. 

 

Although the fast diffusion limit can be reproduced reasonably well, in the slow 

diffusion case the relaxation times are all severely underestimated. When we subdivided the 

pore space in a set of cubic concentric shells, we implicitly imposed over the system a 
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symmetry constraint that is not completely natural to it. In fact, like it was discussed in the 

introduction of this Chapter, magnetization density spatial distribution will be much governed 

by the shape of the pore, a cube in this case. It is then expected that magnetization density 

would follow a cubic spatial distribution nearby the pore walls. However, as one moves away 

from every wall (towards the center in this geometry), it is expected that physically the pore 

effects become less and less important, and magnetization spatial distribution becomes closer 

to that of free space, that is, a sphere. It is precisely this symmetry (near the center) that is not 

been respected by the cell scheme of Figure 6.10. A much more natural subdivision would be 

like the one represented in Figure 6.12, where the shells start cubic like near the walls, and 

smoothly change to sphere like as one moves to the center. In the next section we present an 

algorithm to determine these cells for, in principle, any pore shape. 

 

Figure 6.12 - Natural shell subdivision for a cubic pore, respecting pore geometry and free diffusion symmetries. 

Source: By the author. 

 

The symmetry argument is highlighted when we look at the normal modes 

eigenfunction 𝜓𝑛(𝑥)𝜓𝑚(𝑦)𝜓𝑙(𝑧) of solution (6.34) and (6.35). The dominant mode (with 

highest amplitude in Figure 6.11b is mode 111, whose slice at 𝑧 = 0 is shown in Figure 6.13.  
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Figure 6.13 - Diffusion-relaxation eigenmode 111 contour plot for a cubic pore. 

Source: By the author. 

 

The dominant mode follows exactly the physically intuitive spatial distribution 

discussed in the paragraph that leads to Figure 6.12. The higher order modes, although not 

exactly, also hold a resemblance to this symmetry. Figure 6.14 shows the two other dominant 

modes of Figure 6.11b, which are 113 and 115. 

 

(continued) 
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(continuation) 

 

Figure 6.14 - Diffusion-relaxation eigenmodes a) 113 and b) 115 contour plots for a cubic pore. 

Source: By the author. 

 

Higher order modes allow for a more complex magnetization distribution in the 

intermediate pore space, but still generate surfaces that are sphere like away from the walls, 

and cubic like nearby them. 

 

6.3 Generating diffusional and geometrical symmetric cells for an arbitrary pore 

In this section we propose an algorithm that generates cells symmetric in the sense that 

they resemble the pore shape near the pore walls, and smoothly tend to a sphere away from 

every wall, as the ones represented in Figure 6.12. They also respect the detailed balance 

principle. 

Consider 𝑁 surfaces in Figure 6.12, with areas 𝐴𝑖 and inner volumes 𝑉𝑖. These are not 

to be confused with the cell volumes Δ𝑉𝑖, which in turn are determined as Δ𝑉𝑖 = 𝑉𝑖 − 𝑉𝑖−1, 

Δ𝑉1 = 𝑉1. The most external surface (𝑁), has area 𝐴𝑁 = 𝑆 (the pore surface area) and 

encloses a volume 𝑉𝑁 = 𝑉 (the pore volume). Let the characteristic length 𝑟𝑖 of each surface 

be defined as 𝑟𝑖 = 𝑉𝑖/𝐴𝑖. Once all the 𝐴𝑖 and Δ𝑉𝑖 are known, the rates and rate matrix are 

determined in the exact same way as expressions (6.31), (6.32) and (6.33). 



166 

 

The first step is to determine the point that is most distant from every wall, which in 

the case of a cubic pore is its center. At this point, let a small sphere of volume 𝑉𝑠𝑝ℎ, area 

𝐴𝑠𝑝ℎ, and characteristic length 𝑟𝑠𝑝ℎ = 𝑉𝑠𝑝ℎ/𝐴𝑠𝑝ℎ be placed, as in Figure 6.15. 

 

Figure 6.15 - Building symmetrical surfaces for a cubic pore. 

Source: By the author. 

 

At each step one should generate a surface that resembles its external neighbor, but 

smoothly turns into that small sphere. Assuming one has surfaces 𝑖 + 1 and 𝑖 + 2, the 

question is how to generate surface 𝑖. If surface 𝑖 were simply a scaled down version of 

surface 𝑖 + 1, then it would have a characteristic length 𝑟𝑖 = 𝛼𝑟𝑖+1, with 𝛼 < 1 to be 

determined. In this case, its surface area would simply equal 𝛼2𝐴𝑖+1. On the other hand, if 

surface 𝑖 were a scaled up version of the small sphere, then its area would equal 

(
𝛼𝑟𝑖+1

𝑟𝑠𝑝ℎ
)
2

𝐴𝑠𝑝ℎ. The desired surface is located somewhere in between these former two, 

therefore we will assume that it has an area given by: 

 
𝐴𝑖(𝛼) =

𝛼2

2
{𝐴𝑖+1 + (

𝑟𝑖+1
𝑟𝑠𝑝ℎ

)

2

𝐴𝑠𝑝ℎ} 
(6.36) 

Following the same reasoning for volumes, one has: 

 
𝑉𝑖(𝛼) =

𝛼3

2
{𝑉𝑖+1 + (

𝑟𝑖+1
𝑟𝑠𝑝ℎ

)

3

𝑉𝑠𝑝ℎ} 
(6.37) 

Finally, detailed balance principle requires that: 

 𝑉𝑖+1 − 𝑉𝑖(𝛼)

𝐴𝑖+1 + 𝐴𝑖(𝛼)
=
𝑉𝑖+2 − 𝑉𝑖+1
𝐴𝑖+2 + 𝐴𝑖+1

 (6.38) 
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Once (6.38) is solved for 𝛼, equations (6.36) and (6.37) give the desired properties for 

the surface. The algorithm can be initiated assuming that surface 𝑁 − 1 is a slightly scaled 

down version of the pore. 

We applied this method for the cube in the slow diffusion limit (the same condition as 

in Figure 6.11b) and results are shown below, for 𝑁 = 30 cells. 

 

Figure 6.16 - Comparison between exact solution (black circles) and master equation approach (red star dots) for 

normal modes and relaxation rates in a cube of side 𝒂 = 𝟏𝟎𝝁𝒎 in the slow diffusion limit with 30 

cells. The cells were made symmetrical with respect to the pore shape and free diffusion. 

Source: By the author. 

 

 Comparison with Figure 6.11 shows that this method successfully corrects the decay 

rates for the most relevant diffusion modes. The main advantage of the method is that 

expressions (6.36) to (6.38) do not make any reference to the detailed shape of the pore, or to 

the ability one has to analytically describe (or draw) each one of the surfaces. The only 

information needed is the total volume and area of the pore, to allow a recursive 

determination of surfaces’ areas and volumes. The details of pore geometry are of course 

implicit in the method. Specifically, for placing the small sphere in the pore, one must be able 

to determine the point that is the most farther away from every wall. This can be done in 

image analysis by means of a distance transform. 
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7 CONCLUSION AND PERSPECTIVES    

  

The ideas exposed through Chapter 4 and developed in Chapter 5 indicate that a better 

calculation of actual pore size distributions are feasible downhole, through the continuous 

determination of surface relaxivity in the well logging operation. The key for obtaining 

relaxivity in situ using only NMR diffusion techniques lies on the understanding that 

downhole acquisition schemes and protocols encode diffusion and restricted diffusion by 

varying the diffusion times at which data are acquired (as in the diffusion editing technique 

for instance). The acknowledgement of this fact allows for the inversion machinery described 

in Chapter 4 to be adapted to decode relaxivity information, as described in Chapter 5. This 

compensates the lack of electrical information necessary for the Padé fitting approach (31) 

and allows restricted diffusion to be determined reasonably well. 

Figures 5.15 and 5.16 show that noise level impacts differently the determination of 

higher and lower relaxivities. It can be seen that lower values of 𝜌 such as 5𝜇𝑚/𝑠 are well 

estimated, almost independently of noise levels. For SNRs as low as 20, intermediate 𝜌 values 

around 10 to 15𝜇𝑚/𝑠 can still be reasonably well estimated, especially for single gradient 

tools. Highest relaxivities (~20 to 30𝜇𝑚/𝑠) cannot be precisely determined, however, they 

can be separated from intermediate values. This separation alone can represent qualitative 

information of elevated value in formation evaluation discipline, as it may represent the 

difference between a good or poor reservoir, even if the exact value of pore size cannot be 

exactly determined. 

Achieving an SNR of 20 downhole still requires some noise attenuation techniques. 

For well logging, that can be achieved by making several measurements at the same depth 

with the tool being held still, such as in the laboratory, or by stacking data from different 

depths. However, by trying to obtain relaxivities just by fitting a 𝐷𝑇2 map as shown in Figure 

5.11 (for single gradient tools), a similar performance as obtained by the new method, able to 

separate high and intermediate relaxivity values, would be able with SNRs of about 40. 

Therefore, the method presented here reduces the required SNR by a factor of about 2, which 

reflects in an acquisition 4 times faster, or a smaller stacking, either reducing acquisition costs 

or improving vertical resolution. It also makes 𝜌 determination possible for distributed 

gradient tools as shown by the comparison of Figures 5.12 and 5.16. 

Experimental results with laboratory and well logging data indicate that the relaxivity 

information can be in fact “decoded” through the proposed method, although in principle it 

can be made more robust with more experimentation. As perspectives and next steps, new 
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logging runs can be made with the diffusion editing techniques. Also, the LEAR group in 

IFSC/USP is developing an experimental apparatus that emulates a logging acquisition, with a 

constant background field gradient produced by a single sided magnet, at the same typical 

values as the ones observed downhole. This apparatus can be used to obtain more data from 

rock samples without the limitations described in Chapter 5, regarding the laboratory 

restrictions in emulating data acquisition in a log like fashion.  

 In Chapter 6 we explored a deeper understanding of the dynamics governing the 

relaxation rates for the surface diffusion-relaxation process. The most important result is that 

the exact solution of diffusion equation inside the pore can be much simplified with rate 

equations, as long as equilibrium and symmetries information are correctly introduced in the 

solution. With the transition rates 𝜆𝑛𝑚 introduced in the Chapter, the diffusional symmetry 

can be considered in a quite simple way, by using mainly the information of pore surface area 

and volume. 

Although we restricted the applications of the calculated rates to the problem of 

obtaining NMR response based on pore imaging (Digital Rock), these results can be extended 

to other fields. For instance, the connection between transition rates and geometrical 

information can in principle be used for dealing with diffusional coupling between pores. 

Also, NMR techniques that measure directly the connection between pore sites, such as 

exchange techniques (66), can also benefit from such an approach. In other words, we saw 

that even for an arbitrary segmentation of space, transition rates between different cells 

depend only on the total volume of the cell and on the interface area between consecutive 

sites. Therefore, the theoretical link between cells’ geometry and pore connectivity, for 

example, can be easily modeled or understood in exchange experiments. 

As further applications on the digital rock front, we will validate the theoretical 

apparatus developed here, regarding transition rates and symmetries, by comparing 

experimental NMR relaxation data with calculated signal based on pore imaging. 
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