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ABSTRACT

AURICHIO, V. H. Immersed-interface methods in the presence of shock
waves. 2019. 85p. Thesis (Doctor in Science) - Instituto de Física de São Carlos,
Universidade de São Paulo, São Carlos, 2019.

Fluid motion has always been of great importance for humanity since much of our progress
has been related to our understanding of fluid dynamics and to our control over the fluids
surrounding us. In particular, the experimental techniques and the methods for numerical
simulation developed during the last century allowed for great progresses both in creating
new technologies and in improving old ones. Despite the great importance of experimental
techniques, measuring all properties of a fluid throughout the whole domain, without
intefering with the flow to be studied, is impossible. Also, building models even in scale
is usually expansive. Both of these reasons have driven the development of numerical
methods to the point they became an invaluable tool for fluid dynamic studies and the
main tool for developing engineering solutions. If numerical methods are to be of any
use, though, they have to correctly describe the problem geometry as well as capture the
rich dynamics in a variety of flow situations, such as turbulence, boundary-layers and
shock-waves. This thesis addresses two of these problems. In particular, I show modified
versions of two immersed-interface methods to describe the geometry, simplifying their
implementations with no impact to their applicability. I also introduce two methods
for handling shock-waves: first aiming to minimize computational costs, then improving
shock-wave resolution without increasing the number of grid points.

Keywords: Immersed-interface methods, Navier-Stokes equations, shock waves.





RESUMO

AURICHIO, V. H. Métodos de interface imersa na presença de ondas de
choque. 2019. 85p. Tese (Doutorado em Ciências) - Instituto de Física de São Carlos,
Universidade de São Paulo, São Carlos, 2019.

O movimento dos fluidos sempre foi de grande importância para a humanidade, dado
que muito de nosso progresso esteve intimamente relacionado a um entendimento mais
profundo de fluidodinâmica e de como controlar os flúidos ao nosso redor. Em particular,
os métodos experimentais e de simulação computacional, desenvolvidos no último século,
nos permitiram grandes avanços na criação de novas tecnologias e na otimização das já
existentes. Apesar de sua grande importância, as dificuldades de se mensurar todas as
propriedades de um flúido em todo o espaço, sem interferir com o comportamento do
fluxo, além dos custos de se elaborar experimentos em tamanho real ou em escala, fez com
que cada vez mais os métodos numéricos se tornassem uma importante ferramenta no
estudo da fluido dinâmica e a principal ferramenta para o desenvolvimento de soluções de
engenharia. Porém, para efetivamente substituir experimentos, os métodos numéricos tem
que ser capazes de corretamente descrever a geometria do problema, além de capturarem
todo tipo de comportamento apresentado pelos flúidos, como turbulência, camada limite
e ondas de choque. Esta tese busca contribuir com dois destes desafios. Em particular,
mostro versões modificadas de métodos de interface imersa para a descrição da geometria,
simplificando as implementações originais sem prejudicar sua aplicabilidade. Também
abordo métodos para tratar ondas de choque: primeiro buscando minimizar o esforço
computacional e depois buscando aumentar a resolução do choque sem precisar refinar a
malha computacional.

Palavras-chave: Métodos de interface imersa, equações de Navier-Stokes, ondas de
choque.
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1 INTRODUCTION

Fluids are fundamental in our everyday lives: our bodies are composed of about
70% water, we constantly breath air, Earth has most of its surface covered by water,
and learning to manipulate water to irrigate crops enabled humans to settle and build
societies.3 For millennia, most of human understanding of fluids came from the necessity to
transport them to specific areas, be it for agriculture, for human and cattle consumption,
or for flood protection. This only changed when the Greek scientist Archimedes, in his
work On Floating Bodies, introduced the law of buoyancy, also known as Archimedes’
Principle. After him, various complex tools were created to manipulate fluids: water
pumps were studied in Alexandria around 120 BC under Ptolemies, Roman aqueducts
efficiency was studied by Sextus Julius Frontinus around 90 DC, and the study of specific
weights, automatic controls, plug valves by Islamic engineers led to the development of
mathematical theories of ratios and infinitesimals.

Significant progress was made on the theory of fluids when the Renaissance began.
Leonardo da Vinci took rich notes while observing the movement of fluids, which foresaw
the conservation of mass in one-dimensional steady flow. Galileo’s disciples Benedetto
Castelli and Evangelista Torricelli applied the discoveries of their master to study the
motion of rivers and canals, as well as the velocity of a water jet coming from the bottom
of a vessel. These works summarized years of observation and enabled further progress
in the theory of fluid motion. In 1663, a treatise by Blaise Pascal on the equilibrium of
liquids4 was published after his death, effectively elevating hydrostatics to a science. Pascal
developed simple proofs to the laws of the equilibrium of fluids that were amply confirmed
by experiments. Also Sir Isaac Newton turned his attention to the movement of fluids. In
his work Philosophiae Naturalis Principia Mathematica, while trying to understand what
made fluids slow down, Newton concluded that the sheer stress, on an interface tangent
to the direction of flow, is proportional to the velocity gradient. This particular form of
the sheer stress is called Newton’s viscosity law, and fluids which obey this law are called
Newtonian fluids.

Leonhard Euler published the general form of the continuity equation and of the
momentum equation in 1757.5 This allowed for a full description of the movement of
incompressible fluids. Let us recall that these equations were among the first partial
differential equations to be written down. The last equation of fluid motion, the energy
conservation equation, was derived 59 years later by Laplace and together with Euler’s
equations of fluid dynamics allow to fully describe the movement of inviscid fluids.

Euler’s equations had an obvious flaw that made it of limited use for engineering
though: it did not account for viscosity. In 1752, Jean le Rond d’Alembert showed that
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Euler’s equations implied that immersed objects, moving at constant speed relative to the
fluid, would not experience drag, in direct contradiction with experiments and experience.
This is known as d’Alambert’s paradox and, until a solution was found, theoretical fluid
mechanics and engineering were developed separately.

Even though Newton introduced the basic ideas of a mathematical formulation
for viscous effects, it was only in 1822 that Claude-Louis Navier introduced the correct
term in the momentum equation.6 Navier derived the dissipative term from intermolecular
forces, but his derivation was valid only for incompressible fluids. In 1845, George Gabriel
Stokes finally derived the same equation as Navier, only this time in a way valid for
compressible fluids as well. This equation, representing the momentum dynamics in a
Newtonian dissipative medium, is know as the Navier-Stokes equation. When bundled
with the mass conservation equation and the energy equation (including the dissipative
effects as well), they are collectively known as the Navier-Stokes equations. Analytical
solutions to the full equations are available for a few cases, but a general solution is not
known.

Boundary-Layer theory is an interesting approach to study fluid dynamics ana-
lytically. In this method, the flow far from an immersed-body is computed using Euler’s
equations, since the viscous terms are negligible compared to the convective terms. Near
the body, on the contrary, the flow is dominated by viscous effects and different solutions
need to be found in this limit. Finally, a prescription for matching both solutions is used to
compute the flow in the whole domain. Analytical solutions can only take us so far, though.
To study flows in complex geometries, such as those of interest in engineering, numerical
solutions had to be constructed. Various methods have been developed to generate such
solutions and the impact they had in our world is impossible to overestimate. Numerical
solutions to the Navier-Stokes equations have been successfully used (to mention a few
applications) to improve the aerodynamics of cars and airplanes by reducing drag and
improving lift, to ameliorate the hydrodynamics of boats and submarines, to design better
water pumps and valves. Modified versions of the equations have also been used to study
reactive flows, plasma moving under magnetic fields—such as in fusion reactors, stars and
interstellar space—, granular media and non-Newtonian fluids.

Yet another challenge appears when dealing with high-speed flows: shock-waves can
form. Pressure and density gradients can increase more and more as the fluid velocity gets
larger, which can lead to discontinuities. These discontinuities then have to be appropriately
handled both numerically and analytically. Shock-waves are found in front of high-speed
projectiles and intercontinental ballistic missiles, and are the destructive drive of high-
explosives. Then, it is no surprise that much of the research on shock-waves were sponsored
by military branches. There are also less belligerent applications to shock-waves, though.
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Shock waves are used, for example, for kidney stones treatment7 and for some types of
tendinopathy.8

In this thesis, I will describe methods that allow us to account for immersed solid
bodies in a simulation, and the modifications demanded by the presence of shock waves in
the fluid flow. To this end, I will first introduce the main numerical methods used to study
fluid flows in chapter 2. Then I will address two of the many problems that arise in the
numerical study of fluids. First, in chapter 3, I will show methods capable of describing
complex geometries, which are at the same time simple to implement, capable of handling
moving boundaries, and parallelizable. Second, in chapter 4, I will describe the many
ways shock-waves can be handled, giving special attention to the shock-fitting method. In
chapter 5 I show some numerical results obtained using the techniques introduced in the
previous chapters and I conclude the thesis in chapter 6 by summarizing my work.
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2 NUMERICAL SIMULATIONS OF FLUIDS

Developing a numerical method for fluid simulation is difficult, as will be discussed
in this chapter and in the next two. In particular, the non-linear nature of the governing
equations of motion—the Navier-Stokes equations—creates a coupling between small
numerical errors and the desired solution which, if not appropriately treated, can lead to
unstable or unphysical solutions. An example of these types of effects will be shown in (fig
28).

Here, I will first recall the Navier-Stokes equations and write them as two equivalent
sets of differential equations. Then, I will discuss how numerical methods can be classified
with respect to both their spatial and temporal discretization. I will discuss also the topic
of filtering, which helps to deal with numerical errors when using a central differencing
scheme for spatial discretization. In section 2.4, in order to avoid differentiating across
shock-wave discontinuities, I will introduce shock detectors. Finally, in the last part of
this chapter, I will present the specific methods used in this thesis: central and upwind
finite-difference schemes, weighted essentially non-oscillatory method (WENO), a filter
method and a shock-detector method.

2.1 Navier-Stokes equations

The Navier-Stokes equations describe the motion of heat-conducting viscous fluids.
When studying these equations, it is useful to cast them in non-dimensional form.9 This
is achieved by writing any dimensional variable φ̂ as φφ∗, where φ is an adimensional
quantity, and φ∗ is a dimensional reference value. For instance, the density ρ∗ of dry air at
standard temperature and pressure (STP) conditions is 1.2754kg/m3. If we use this density
as our reference, we can obtain the adimensional density ρ for any value of the dimensional
density ρ̂ as ρ = ρ̂/ρ∗. The reference values can then be combined into three dimensionless
constants that are characteristic of the system being considered: the Reynolds number Re,
the Prandtl number Pr and the freestream Mach number Ma∞. The Reynolds number
Re = ρ∗v∗L∗/µ∗ depends on the reference values of density ρ∗, velocity v∗, length L∗ and
viscosity µ∗ and is usually interpreted as the ratio between inertial (convective) forces
(ρ∗v∗) and viscous (dissipative) forces (µ∗/L∗). The Prandtl number Pr = Cpµ

∗/k depends
on the heat capacity at constant pressure Cp, the viscosity µ∗ and the thermal conductivity
k, and is defined as the ratio of viscous diffusion rate to the thermal diffusion rate. The
freestream Mach number Ma∞ = v∗/c∞ is the ratio between the reference velocity v∗ and
the speed of sound c∞ computed from the reference values for temperature, density and
velocity. This adimensionalization procedure has two benefits: any bounds derived for the
stability of the numerical methods will depend only on the characteristic constants, not



30

(a) Vortices near an island. (b) Vortices near a cylinder.

Figure 1 – von Kármán vortices. Even though a mountain in an island (hundreds of meters) and
a small cylinder (few centimeters) have different scales, the flow around the body in
both systems exhibit the same vortex pattern, the so-called von Kármán vortex sheet.
The occurrence of this effect depends mainly on the Reynolds number of the flow, one
of the characteristic values obtained by combining the reference values of the system.
Source: (a) EARTH OBSERVATORY 10 (b) VAN DYKE 11.

on the actual reference values; it also becomes evident that solutions of the equations are
dependent only on the characteristic constants. From the second statement it follows that
systems with different sizes can have identical dynamics as long as their characteristic
constants are the same, as the example shown in (fig 2).

In their original version, the Navier-Stokes equations are written in terms of fluid’s
density ρ, the velocity components ui, the total energy E, the pressure p, the heat-flux
components qi and the stress-tensor components τij.6,12 In non-dimensional form, their
2D version are written as9

∂ρ

∂t
+ ∂

∂xj
(ρuj) = 0 (2.1)

∂

∂t
(ρui) + ∂

∂xj
(ρuiuj + pδij − τji) = 0, i = 1, 2 (2.2)

∂E

∂t
+ ∂

∂xj
(ujE + ujp+ qj − uiτij) = 0, (2.3)

where the implied summation over repeated indices is used. Also, the characteristic
constants are incorporated to the definitions of τij and qi, so this form of the Navier-Stokes
equations is the same for every system. The equations are in conservation form and they
describe the mass conservation (eqn 2.1), the momentum conservation (eqn 2.2), and the
energy conservation (eqn 2.3). Note that there are more variables than equations, so we
have to combine the Navier-Stokes equations with the constitutive relations of the fluid of
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interest, which in our case are

p = (γ − 1)ρe (2.4)

qj = − µ

(γ − 1)Ma2
∞RePr

∂T

∂xj
(2.5)

τij = 2µ
Re

Sij (2.6)

Sij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
− 1

3
∂uk
∂xk

δij, (2.7)

where δij is the Kronecker delta. From the above equations we see that this fluid is an
ideal gas (eqn 2.4), obeys the Fourier law for heat transfer by conduction (eqn 2.5), is
Newtonian (eqn 2.6), and has negligible bulk viscosity, which yields a viscous strain tensor
with a simple form (eqn 2.7).

It is useful to define the vectors

U =


ρ

ρu

ρv

E

 (2.8)

F =


ρu

ρu2 + p

ρuv

(E + p)u

 (2.9) G =


ρv

ρuv

ρv2 + p

(E + p) v

 (2.10)

FD =


0
τxx

τxy

τxxu+ τxyv − qx

 (2.11) GD =


0
τyx

τyy

τyxu+ τyyv − qy

 (2.12)

so that (eqn 2.1), (eqn 2.2), and (eqn 2.3) can be summarized as

∂U

∂t
+ ∂F

∂x
+ ∂G

∂y
= ∂FD

∂x
+ ∂GD

∂y
. (2.13)

The vectors F and G are called the fluid’s x and y fluxes respectively, while FD and GD

contain the dissipative terms.

When studying shock-waves in chapter 4 it will be convenient to use an alternative
form of the Navier-Stokes equations. This form can be obtained from the first one by a
series of variable changes. Instead of using the density ρ, the velocities u and v, and the
total energy E, this form uses the sound speed c, the velocities u and v, and the entropy
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S. Then, using δ = (γ − 1)/2, the Navier-Stokes equation become13

1
δ

∂c

∂t
+ 1
δ
ui
∂c

∂xi
− c∂S

∂t
− cui

∂S

∂xi
= 2δc

γp

(
∂qi
∂xi

+ ∂

∂xi
(ujτij)

)
(2.14)

∂ui
∂t

+ uj
∂ui
∂xj

+ c

δ

(
∂c

∂x1
+ ∂c

∂x2

)
− c2

(
∂S

∂x1
+ ∂S

∂x2

)
= 1
ρ

∂τij
∂xj

, i = 1, 2 (2.15)

∂S

∂t
+ ui

∂S

∂xi
= 1
γp

(
∂qi
∂xi

+ ∂

∂xi
(ujτij)

)
. (2.16)

2.2 Discretizations

To obtain numerical solutions for the Navier-Stokes equations, presented in the last
section, there are various possible approaches. For the purpose of this thesis it will suffice
to consider Eulerian methods—in which we describe the fluid properties in fixed points in
space—capable of simulating compressible high-speed flows. This means I will not describe
Lagrangian methods (e.g. Smoothed Particle Hydrodynamics14)—where the fluid particles
are tracked individually and no grid is necessary—, nor the Lattice Boltzmann method15

(suited for low Mach number, incompressible flows), nor spectral methods16 (not suited
for flows with discontinuities such as shock waves).

2.2.1 Truncation errors

An important concept when studying numerical approximations is the truncation
error. A numerical solution obtained by any method will almost always differ from the exact
solution to the problem, and so it is necessary to measure how large is the error introduced
by the approximations. Besides the absolute value of the error, different discretization
methods have different convergence ratios with respect to refining the discretization. To
make these ideas more concrete, let f(x) be an infinitely differentiable function, and
D(f, xi) = F (fi−k, . . . , fi+m), k,m ∈ N an approximation for the first derivative, defined
on a regular grid, with spacing ∆x, and evaluated at x = xi. The difference between the
real derivative and the proposed approximation is given by

df

dx

∣∣∣∣∣
x=xi
−D(f, xi) = TE(D) =

+∞∑
m=l

αm
dm+1f

dxm+1 (∆x)m, (2.17)

with αm ∈ R, l ∈ N. As shown above, the truncation error TE(D) of the approximation
given by D can be written as a power series of the grid width ∆x. Notice that, as the grid
is refined, ∆x goes to zero and so the approximation converges to the real value of the
derivative. Moreover, the error term is dominated by (∆x)l, the first term in the series
expansion, and this determines the convergence rate of this particular approximation.
It is then said that the discretization D has a truncation error of order (∆x)l, or, in a
shorthand notation, that TE(D) = O

(
(∆x)l

)
. As a consequence, the discretization D

itself is said to have order l.
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2.2.2 Spatial discretization

For the purpose of this thesis I only consider three categories of spatial discretization:
finite difference, finite volume, and finite element methods.

2.2.2.1 Finite difference (FD) methods

Finite difference methods, as the name implies, approximate the spatial derivatives
by differences. The points used in the discretization must form a grid, regular or not, as
in (fig 2a). The accuracy of the approximation is related to the number of points used to
reconstruct the derivatives. All methods employed in this thesis belong to this category
and a more detailed description will be given in section 2.5.3.

2.2.2.2 Finite volume (FV) methods

In finite volume methods, the space is partitioned in arbitrarily shaped, non-
overlapping pieces called cells. Although it is possible to combine cells of different shapes,
it is usual to consider one specific shape (triangles or quadrilaterals are the most common
choices in 2D). This allows for much more flexible meshes as shown in (fig 2b) and (fig 2c).
Instead of directly computing the derivatives as in the finite difference methods, we use
the divergence theorem to pose the question differently: the rate of change of a quantity
within a cell equals the net flux across its boundaries, so if we compute the fluxes at
the boundaries we can obtain the variation in the flow variables. The accuracy of a FV
discretization is related to the reconstruction of the fluxes at the cells interfaces.

2.2.2.3 Finite element (FE) methods

The same meshes used in FV methods can be used to perform computations using
the finite element methods. Here, the pieces covering the space are called elements instead
of cells. The flow-variable values are computed at some points in the element (the nodes),
which allows their values at all points inside each element to be computed by interpolation.
The compatibility relations between neighboring elements is given by the Navier-Stokes
equations, resulting in a set of algebraic equations that must be solved at each time step.
The accuracy in a FE discretization is related to the number of nodes in each element,
which in turn determines the degree of the interpolating function used, as well as to the
size of each element.

2.2.3 Temporal integration

Once the space is discretized using one of the previous schemes, it is necessary to
choose a method to compute the time evolution of the Navier-Stokes equations. At any
time t of the computation the values of all flow variables φ(t) will be known and we would
like to determine their values at t+ ∆t, i.e. φ(t+ ∆t). There are two families of methods
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(a) Structured mesh. (b) Multiblock mesh. (c) Unstructured mesh.

Figure 2 – Examples of body-fitted meshes around a NACA0012 airfoil. Structured meshes are
topologically equivalent to a Cartesian grid. Multiblock meshes combine multiple
structured meshes to adapt to more complex geometries. Finally, unstructured meshes
partition the domain in arbitrarily-shaped non-overlapping pieces.
Source: (a) JAVADI 17, (b) MANISHA 18, (c) CHEN 19

that we cover next. To this end, consider the differential equation
dφ

dt
= F(φ(t), t), (2.18)

where F is an arbitrary function depending on φ and t.

2.2.3.1 Explicit time-integration methods

In an explicit time-integration methods, the values of φ(t+ ∆t) depend only on the
values of φ at previous times.20 Therefore, given φ(t) (and possibly φ(t−∆t), φ(t− 2∆t)
etc), the values of φ(t+ ∆t) are immediately computable. The simplest explicit method is
due to Euler, usually called Euler method. If we apply it to (eqn 2.18) we obtain

φ(t+ ∆t)− φ(t)
∆t = F(φ(t), t) (2.19)

φ(t+ ∆t) = φ(t) + ∆t F(φ(t), t). (2.20)

Notice that (eqn 2.20) explicitly gives us the value of φ(t+ ∆t).

2.2.3.2 Implicit time-integration methods

Implicit time-integration methods require the solution of an equation to obtain
φ(t+ ∆t).20 This equation is sometimes linear, and it is then solvable using exact methods,
such as Gaussian elimination, but it can also be non-linear and some approximation might
be needed. The simplest implicit method is also due to Euler, the so-called backward Euler
method, which when applied to (eqn 2.18) results in

φ(t+ ∆t)− φ(t)
∆t = F(φ(t+ ∆t), t+ ∆t) (2.21)

φ(t+ ∆t) = φ(t) + ∆t F(φ(t+ ∆t), t+ ∆t). (2.22)

Note that, in contrast to explicit methods, it is not possible, in general, to obtain an
explicit expression for φ(t+ ∆t) from (eqn 2.22).
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2.3 Filtering

Finite-difference schemes with central stencils (central-difference schemes) are
interesting because, as a consequence of their symmetry, there are no even derivatives
in the truncation error, and so they have no numerical dissipation. This, however, leads
to instabilities,21 as there are no mechanism to control the growth of numerical errors.
The errors can accumulate and the numerical solution becomes unphysical. A possible
solution to this issue is to introduce filtering, a mechanism through which the highest
frequencies are attenuated. It is important to realize that the appeal of a central-difference
scheme is precisely its zero-dissipation nature and that filtering introduces an artificial
mechanism that is similar to dissipation to control the numerical errors. This means that
the filtering mechanism must be chosen carefully, otherwise there will be no advantage in
using a central-difference scheme.

2.4 Shock detectors

Under certain circumstances the flow variables may develop discontinuities—such
as gradient discontinuities, contact discontinuities, and shock-waves—due to the transition
from subsonic to supersonic flow. It is important to detect the formation of these disconti-
nuities early in the simulation in order to avoid taking numerical derivatives across them.
Indeed, not only the numerical result would be unphysical, as the information can only
travel one-way across shock-waves, but also oscillations would form, as a consequence of
the Gibbs phenomenon. 22–24 Shock detectors are methods that can detect sharp variations
in the function, so that in regions with sharp variations an appropriate method can then
be used.

2.5 Methods used in this thesis

After this short overview of numerical discretizations, I will detail the numerical
approximations used in this thesis. All the spatial discretizations are in the finite-difference
category, and the time discretization used is a member of the Runge-Kutta family of
methods.

2.5.1 Flux splitting

Two of the methods that follow depend on a separation of the flux F (G) into two
components, representing waves travelling along the positive and negative directions of
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the x(y)-axis. Steger and Warming25 described a method to compute one such separation
for an ideal gas. Defining the general flux F as

F [λ1, λ3, λ4; k1, k2] = ρ

2γ



2(γ − 1)λ1 + λ3 + λ4

2(γ − 1)λ1u+ λ3(u+ ck1) + λ4(u− ck1)

2(γ − 1)λ1v + λ3(v + ck2) + λ4(v − ck2)

(γ − 1)λ1(u2 + v2) + λ3
2 [(u+ ck1)2 + (v + ck2)2]

+λ4
2 [(u− ck1)2 + (v − ck2)2] + (3−γ)(λ3+λ4)

2(γ−1)



, (2.23)

where

λ1 = k1u+ k2v (2.24)

λ3 = λ1 + c (2.25)

λ4 = λ1 − c, (2.26)

and considering

λ̂±1 = λ1 ± |λ1|
2 (2.27)

λ̂±3 = λ3 ± |λ3|
2 (2.28)

λ̂±4 = λ4 ± |λ4|
2 , (2.29)

then we can write

F+ = F
[
λ+

1 , λ
+
3 , λ

+
4 ; k1 = 1, k2 = 0

]
(2.30)

F− = F
[
λ−1 , λ

−
3 , λ

−
4 ; k1 = 1, k2 = 0

]
(2.31)

G+ = F
[
λ+

1 , λ
+
3 , λ

+
4 ; k1 = 0, k2 = 1

]
(2.32)

G− = F
[
λ−1 , λ

−
3 , λ

−
4 ; k1 = 0, k2 = 1

]
. (2.33)

One can verify that F = F+ + F− and G = G+ +G−, where F and G are the x
and y fluxes defined in (eqn 2.9) and (eqn 2.10).

2.5.2 Weighted essentially non-oscillatory method (WENO)

Introduced by Liu, Shu and Osher26 the weighted essentially non-oscillatory method
(WENO) is a popular method to compute numerical solutions of the Navier-Stokes
equations, since it is capable of yielding high-order of accuracy, of handling shock-waves
and it is not very difficult to implement.
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i i+1 i+2i-1i-2 i+3

i+1/2i-1/2i-3/2 i+3/2 i+5/2

Figure 3 – Regular grid with ∆x spacing. Dashed lines are at the mid-point between two con-
secutive grid points. The labels are simplified, so a point marked with i should be
interpreted as being at position xi.
Source: By the author.

I will illustrate the WENO procedure by considering the x derivative of one
component φ of the F+ flux. The first step is to define the following expression

∂φ

∂x

∣∣∣∣∣
x=xi+1/2

= Φi+1/2 − Φi−1/2

∆x , (2.34)

which is exact as long as a suitable expression for Φ is determined. We then proceed
to construct three approximations for Φi+1/2, obtained by interpolating values of Φ at
different grid points:

Φ̂(1)
i+1/2 = 1

3φi−2 −
7
6φi−1 + 11

6 φi (2.35)

Φ̂(2)
i+1/2 = −1

6φi−1 + 5
6φi + 1

3φi+1 (2.36)

Φ̂(3)
i+1/2 = 1

3φi + 5
6φi+1 −

1
6φi+2. (2.37)

Notice that the above approximations are not symmetrical with respect to the point
xi+1/2, but show a bias towards the left. This is because F+ corresponds to right-running
waves, and so the left region is the origin of these waves. These interpolations are obtained
using second degree polynomials and have third order accuracy. It is possible to combine
the three of them and obtain a fifth order interpolation, and this is what the essentially
non-oscillatory method (ENO) does. The WENO method adds an extra step so that
interpolations are only made using regions where the flow is continuous, avoiding the
degradation of the accuracy. To achieve this it is necessary to compute three smoothness
indicators for the region considered, i.e.

β1 = 13
12 (φi−2 − 2φi−1 + φi)2 + 1

4 (φi−2 − 4φi−1 + 3φi)2 (2.38)

β2 = 13
12 (φi−1 − 2φi + φi+1)2 + 1

4 (φi−1 − φi−1)2 (2.39)

β3 = 13
12 (φi − 2φi+1 + φi+2)2 + 1

4 (φi+2 − 4φi+1 + 3φi)2 . (2.40)

The next step will create ponderators that will make a particular approximation
more important than the others if it is in a smoother region. These ponderators (after
the next step) are identical to those obtained in the ENO method if the three regions are
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equally smooth. The ponderators σ are

σ1 = 1
10

1
(β1 + ε)2 (2.41)

σ2 = 3
5

1
(β2 + ε)2 (2.42)

σ3 = 3
10

1
(β3 + ε)2 , (2.43)

where ε is a small number (e.g. 10−30) to avoid a division by zero. Also, the sigmas are
normalized to create the final ponderators ω

ω1 = σ1

σ1 + σ2 + σ3
(2.44)

ω2 = σ2

σ1 + σ2 + σ3
(2.45)

ω3 = σ3

σ1 + σ2 + σ3
. (2.46)

Finally the approximated value of Φi+1/2 can be obtained as

Φi+1/2 = ω1Φ̂(1)
i+1/2 + ω2Φ̂(2)

i+1/2 + ω3Φ̂(3)
i+1/2. (2.47)

This procedure is repeated with the adequate shift to obtain Φi−1/2 and (eqn 2.34) is then
used to obtain ∂φ/∂x.

A similar calculation can be employed to compute all four components of the
derivative of the flux vector F+. We must also compute the derivative of F− following
essentially the same procedure. It suffices to note that if we reverse the x-axis, the F−

waves are now running in the same direction of the reversed axis, so we can repeat exactly
the same procedure. Of course, as there is no essential difference between the x and y axis,
it is trivial that the same procedure applies also to G±.

2.5.3 Finite differences

Sometimes the WENO method described above is not necessary or it is not practical.
Simple problems do not need its adaptative behaviour, and it might be too slow for the
application, because of the number of operations necessary to compute it. Finite differences
methods are reasonable alternatives in these cases. I will consider two categories of points:
regular and irregular. Points in the fluid bulk are in the former category, and points near
interfaces are in the latter one.
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Figure 4 – The function in blue has a discontinuity at a point between xi and xi+1, marked by
the dashed red line. The discontinuity is at a distance η∆x from xi. The points at
either side of the discontinuity are marked green.
Source: By the author.

Figure 5 – A simplified view of (fig 4). The discontinuity is shown as a red dot with two green
dots inside and the function is omitted. This representation will be useful later as it
can be used for any type of discontinuity, such as those originating from immersed
bodies and shock waves.
Source: By the author.

2.5.3.1 Regular points

For a flow variable φ, the second-order accurate first and second derivatives are
calculated as

∂φ

∂x

∣∣∣∣∣
x=xi

= 1
2∆x (φi+1 − φi−1) +O((∆x)2) (2.48)

∂2φ

∂x2

∣∣∣∣∣
x=xi

= 1
(∆x)2 (φi+1 − 2φi + φi−1) +O((∆x)2), (2.49)

in the case of a regular point at x = xi.

2.5.3.2 Irregular points

If the expressions in (eqn 2.48) and (eqn 2.49) are applied to the function in figure
(fig 4) at xi+1 the result is non-zero in both cases, but clearly the function is constant to
the right of the discontinuity, and the analytical result is zero for both derivatives. Also,
the O((∆x)2) truncation error derived for the expressions above is only valid where the
function being derived is smooth. Indeed, the actual error when taking a derivative across
a discontinuity is O(1). It is then necessary to derive special expressions to compute the
derivatives near discontinuities.
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Figure 6 – Two discontinuities surrounding the point xi. The first is at a distance ε∆x from xi−1.
The second is at a distance η∆x from xi.
Source: By the author.

Denoting the value to the left of the discontinuity as φld and the value to the right
as φrd, a first-order expression for the first derivative, at a point with a discontinuity to it’s
left, e.g. xi+1 in (fig 4), or to it’s right, is given by

∂φ

∂x

∣∣∣∣∣
l

x=xi
= 1

(1 + (1− η))∆x (φi+1 − φrd) +O(∆x) (2.50)

∂φ

∂x

∣∣∣∣∣
r

x=xi
= 1

(1 + η)∆x
(
φld − φi−1

)
+O(∆x). (2.51)

The expression for a second derivative with a discontinuity to it’s left is

∂2φ

∂x

∣∣∣∣∣
l

x=xi
= 2

(2− η)(3− η)(∆x)2 (φrd − (3− η)φi+1 + (2− η)φi+2) +O(∆x). (2.52)

Another possibility is that two discontinuities surround the point where the deriva-
tive is being computed as in (fig 6). The expression obtained for the first derivative is then

∂φ

∂x

∣∣∣∣∣
x=xi

= 1
((1− ε) + η)∆x

(
φldη − φ

r
dε

)
+O(∆x), (2.53)

where φrdε is the value to the right of the discontinuity to the left of xi, and φrdη is the
value to the left of the discontinuity to the right of xi. For stability reasons this derivative
is only computed if (1− ε) + η > 1, otherwise it is set to zero. The second derivative is
always set to zero in this configuration.

Figure 7 – Two discontinuities surrounding points xi and xi+1. This is similar to (fig 6) but with
two regular points in between the discontinuities.
Source: By the author.

A final case to consider is shown in (fig 7). The first derivatives are computed using
(eqn 2.50) and (eqn 2.51), but the second derivative must be computed using

∂2φ

∂x

∣∣∣∣∣
x=xi

= 4
((2 + η − ε) ∆x)2

(
φrdε − 2

(
η + ε

2 (φi+1 − φi)
)

+ φdη

)
. (2.54)
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2.5.3.3 Upwind methods

We can explore further25 the flux-splitting method introduced in section 2.5.1.
Let’s consider only the flux component F+ for a moment. As mentioned, the flux F+

represent waves travelling from left-to-right along the x-axis. We can incorporate this
physical interpretation into the numerical method by computing one-sided (or biased)
derivatives of F+, favoring the direction where the waves are coming from. This can be
interpreted as a mean to enforce the correct dependency domain at a given point. Only
the region from where the waves are coming (i.e. upwind from the point) will influence it.
Of course the same arguments are equally applicable to the F− component. The simplest
approximation for the convective term derived from this idea is

∂F

∂x

∣∣∣∣∣
x=xi

= F+
i − F+

i−1
∆x + F−i+1 − F−i

∆x . (2.55)

2.5.4 Filtering

As mentioned in section 2.3, when applying FD methods based on central-differences,
the numerical errors accumulate due to the lack of numerical dissipation, and high-frequency
unphysical oscillations are generated. This effect is enhanced when the Reynolds number
is high, as the system’s dissipation is low. However, if a filtering operation is applied to the
grid before each timestep, this unphysical oscillations can be controlled and a reasonable
numerical solution can be obtained. Here, I chose to apply the filter introduced by Vasilyev
27 to control the oscillations. In this case, a filtered flow variable φ̄ is computed as

φ̄i = − 1
16φi−1 + 1

4φi−1 + 5
8φi + 1

4φi+1 −
1
16φi+2 (2.56)

φ̄i = + 1
16φi−1 + 3

4φi + 3
8φi+1 −

1
4φi+2 + 1

16φi+3 (2.57)

φ̄i = +15
16φi + 1

4φi+1 −
3
8φi+2 + 1

4φi+3 −
1
16φi+4, (2.58)

where (eqn 2.56) is to be used in the fluid bulk, and (eqn 2.57) and (eqn 2.58) near
the domain boundaries. No special treatment is necessary near discontinuities due to
shock-waves.

2.5.5 Shock detector

Two different methods were used to detect shocks. In this chapter I will only
describe one of them, leaving the other to chapter 4. In 2016, Bambozzi and Pires 28

introduced a shock-detector capable of detecting discontinuities not only in the function,
but in any of it’s derivatives. The shock detector works by comparing the approximation
obtained using all the grid points with the approximation obtained using, say, only the
odd grid points. If the function is sufficiently smooth, both approximations will be very
similar, but if there is a discontinuity they will be different. Let F (n)

∆x denote the n− th
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derivative of function F approximated using all grid points, and F (n)
2∆x the same derivative

approximated using only the odd numbered grid points. The shock detector∗ compares
these approximations by computing

Sd = log2

(2∆x)2
∣∣∣F (2)

2∆x

∣∣∣+ (2∆x)3
∣∣∣F (3)

2∆x

∣∣∣
(∆x)2

∣∣∣F (2)
∆x

∣∣∣+ (∆x)3
∣∣∣F (3)

∆x

∣∣∣
 . (2.59)

The value of Sd is enough to infer the function continuity since

Sd ≈

2, if F is continuous up to it’s 1st derivative

p, if F has a jump in it’s p < 2 derivative.
(2.60)

2.5.6 Runge-Kutta integration

Runge-Kutta methods are a family of iterative methods, used to compute ap-
proximate solutions for the time-evolution of systems described by ordinary differential
equations. This family includes both explicit and implicit methods. In particular, the Euler
method and the backward Euler method of section 2.2.3 are examples of Runge-Kutta
methods. The system time evolution in every simulation in this thesis is computed using
the following third-order explicit method

∂φ

∂t
= F(φ(t), t) (2.61)

k1 = F(φ(t), t) (2.62)

k2 = F(φ(t) + ∆t
2 k1, t+ ∆t

2 ) (2.63)

k3 = F(φ(t)−∆tk1 + 2∆tk2, t+ ∆t) (2.64)

φ(t+ ∆t) = φ(t) + ∆t
6 (k1 + 4k2 + k3) . (2.65)

Here F is a generic function. In particular, if we identify φ with U from (eqn 2.8) and use

F(φ(t), t) = −∂F
∂x
− ∂G

∂y
+ ∂FD

∂x
+ ∂GD

∂y
(2.66)

we can time-evolve the Navier-Stokes equations.

∗ This is not the shock-detector version used in28, but the same results apply to this one.
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3 IMMERSED-INTERFACE METHODS

In 1952, Hyman 29 introduced a method to solve elliptic equations using an arbitrary
interface embedded in the domain with a Cartesian grid-based discretization. This method
was further developed and is now well established in the works of Leveque30, Li31,32 and
Zhong.33 These fictitious domain methods present two advantages: first, numerical solvers
can be made very efficient by leveraging the regularity from the underlying Cartesian
grid and second, introducing new arbitrary interfaces is inexpensive in comparison with
remeshing.

In 1971, Charles Peskin was studying the blood flow in the heart. He developed a
numerical method 34 to simulate the presence of a moving, flexible immersed boundary to
account for the presence of a leaflet in a heart valve. Peskin’s method was the first work
to apply the ideas from Hyman’s work to fluid dynamical problems, creating a class of
methods known as immersed-boundary methods (IBM). In this method, the boundary
movement is coupled to the fluid movement using a distributed force that spreads the
boundary influence to neighbouring points, making the interface diffuse. Other methods,
such as those used by Ghias35 and Karagiozis,36compute the effects of the interface at
its exact position keeping the interface sharp. I will describe how these last two methods
work in this chapter.

3.1 Boundary description

Consider the solid-fluid interface in (fig 8). The interface is described as series of
marker points, shown as blue dots in the figure, that are later interpolated. In this thesis,

Fluid

Solid

Figure 8 – A Cartesian grid with a blue curve representing the interface between a solid region
and the fluid. The blue line is the result of the interpolation of the blue points.
Source: By the author.
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Fluid

Solid

Figure 9 – The ghost-point construction. The cyan dots are the mirror image of the red dots
with respect to the interface. The black squares are the midpoint between the red and
cyan points. The shaded regions mark the regions in which the bilinear interpolations
are constructed.
Source: By the author.

I have used cubic splines to obtain the blue curve. See ref.37 for a detailed explanation on
how splines are computed.

Both Karagiozis and Ghias methods are identical up to this point. I will now
describe how each proceed from this point.

3.2 Ghias method

Ghias employs a ghost-point based method to account for immersed interfaces. The
effect of the boundary is substituted by flow-variable values, attributed to some points
inside the immersed bodies (the ghost points).

Before further discussing the advantages and disadvantages of this method, let’s
see in detail how the ghost-points values are obtained. Using (fig 9) as a reference:

• For each point inside the body with at least one neighbour in the fluid (the ghost
points, marked as red circles) compute the point on the boundary that is closest to
it (the boundary intercepts, marked as black squares);

• Compute the mirror image of the ghost point with respect to the boundary intercept
(the image points, marked as cyan circles);

• For each image point, determine the four grid points closest to it. If one of such
points is a ghost point, replace it for it’s corresponding boundary intercept. The
shaded quadrilateral regions are formed connecting the four points obtained for each
image point in the figure;
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• Compute the flow variables at the image points using a bilinear interpolation (detailed
in section 3.2.1) constructed using the four points obtained in the last step;

• Use the values at the image points and their corresponding boundary intercepts to
extrapolate the ghost-point values.

The method I have described has an important difference when compared to the
original paper.35 I substitute the ghost points for their boundary intercept at the third
step. Ghias only makes this substitution when the neighbouring ghost point is the one
corresponding to the image point, such as in the leftmost shaded region. He later uses an
iterative method to solve the coupled equations. I find the method I employed easier to
implement and it also produces good results.

This procedure keeps the computational grid regular everywhere making the use
of irregular derivatives unnecessary, and makes it easy to use powerful methods—such
as the WENO method—in combination with it. On the downside, however, computing
suitable values for the ghost points needs a bilinear interpolation and an extrapolation,
and there is also a significant increase in the overall computational geometry complexity.
The computational geometry steps required to determine both the image points and the
interpolation weights also makes the handling moving boundaries more involved.

Now that we know how to compute the flow variables at the ghost points, we can
time-evolve the system. For each Runge-Kutta substep:

• Compute the flow variables at the grid points;

• Compute the fluxes at all grid points using derivatives for regular points;

• Time-evolve the solution using the computed fluxes.

Notice that it is not necessary to recompute the fluxes this time.

3.2.1 Bilinear interpolation

As mentioned at the end of chapter 2 I will describe the bilinear interpolation35

used to compute the flow variables values at the image points. We consider a function of
the form

Φ(x, y) = a+ bx+ cy + dxy, (3.1)

where the values of a, b, c, d are obtained from the four image-point neighbours. Remember
that some of the neighbours might be boundary-intercept points, and that at these points
a Neumann boundary condition can be enforced. When that is the case, we do not have
direct access to the function value at the neighbour point, but only to it’s normal derivative
at that point.
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I will first describe how to obtain the coefficients when the function values are
known at all four points. This situation arises when either all four neighbours of the image
point are fluid points, or the boundary conditions being enforced are Dirichlet boundary
conditions.
To this end, write 

1 x1 y1 x1y1

1 x2 y2 x2y2

1 x3 y3 x3y3

1 x4 y4 x4y4




a

b

c

d

 =


Φ1

Φ2

Φ3

Φ4

 , (3.2)

where xi, yi are the coordinates x and y of the image-point neighbours and Φi is the
function value at that point. Once solved, (eqn 3.2) yields the four coefficients a, b, c, d
and it is possible to compute Φ(x, y) at the image point. If the boundary is static, the
coordinates xi, yi are fixed and the square matrix on the left hand side of (eqn 3.2) can
be inverted once at the start of the computation and stored to be reused.

Let’s now consider the case of Neumann boundary conditions. Suppose without
loss of generality that the fourth neighbour of an image point is a boundary-intercept
point and that the boundary condition

~n · ~∇Φ = Ψ (3.3)

is to be enforced. Careful manipulation of the equations will lead to the new system of
equations 

1 x1 y1 x1y1

1 x2 y2 x2y2

1 x3 y3 x3y3

0 nx ny nxy4 + nyx4




a

b

c

d

 =


Φ1

Φ2

Φ3

Ψ

 (3.4)

where nx, ny are the components of the outward-normal unit vector at the boundary point.
Once again, if the boundary is static the matrix can be inverted once at the beginning of
the computation and stored to be reused.

3.3 Karagiozis method

Instead of constructing auxiliary points as in Ghias method, Karagiozis utilizes the
boundary explicitly in his method. Karagiozis method begins marking the points where
the interpolated interface crosses the grid lines as shown in (fig 10). Then, it enforces
Dirichlet or Neumann boundary conditions on the flow variables at these points, and that
is how the immersed interface is accounted for in the simulation.

Dirichlet boundary conditions are used to enforce the no-slip condition for viscous
flows, and to fix the body temperature. Remember from (fig 5) that each discontinuity has
an internal structure, so enforcing Dirichlet boundary conditions is as simple as setting
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Fluid

Solid

Figure 10 – The same interface as in (fig 8), but with the crossings between the interface and the
grid lines marked in red. These points are the same type of discontinuity represented
in (fig 5), but I have omitted the internal green dots for simplicity.
Source: By the author.

the internal values appropriately. Density values at the boundary are obtained using a
linear extrapolation from the neighboring points.

Consider the discontinuity in (fig 5). To compute the density ρ to the left (ρld) of
and to the right (ρrd) of the discontinuity we use

ρld = ρi + (ρi − ρi−1) η (3.5)

ρrd = ρi+1 + (ρi+1 − ρi+2) (1− η). (3.6)

Now that we have a procedure to enforce the boundary conditions we can compute
the time evolution of the system. For each Runge-Kutta substep:

• Enforce all boundary conditions;

• Compute the fluxes at all grid points using derivatives for regular points;

• Recompute the fluxes at points near immersed interfaces using derivatives for irregular
points;

• Time-evolve the solution using the computed fluxes.

In this chapter I showed two methods to describe solid bodies embedded in fluid
using immersed-interfaces that are suitable for numerical simulations of fluids. In the next
chapter I will introduce another type of discontinuity: shock waves.
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4 SHOCK WAVES

One way to classify flows is in subsonic and supersonic flows. Flows are subsonic if
the magnitude of the velocities is lower then the speed of sound, and supersonic otherwise.
One interesting effect can manifest in the transition between subsonic and supersonic: shock
wave formation. A variety of situations can create the right circumstances for formation of
shock waves. The rapid gas expansion from an exploding agent, a sudden change in the
flow direction caused by a blunt body, and the recompression midway through an airplane
wing are some examples, as shown in (fig 11).

As mentioned in section 2.4, when shock waves appear during a simulation they
must be adequately treated. In this section, I will first introduce the Rankine-Hugoniot
jump conditions, a compatibility relation between the two sides of a discontinuity. Then, I
will discuss two classes of numerical methods—conservative and non-conservative—and
I will combine them using the shock detector from section 2.4. In particular, the shock
detector will be used to determine the regions where a conservative method must be used.
Finally, I will show a completely different approach to handle shock waves, i.e. the so-called
shock-fitting method.

4.1 Rankine-Hugoniot jump conditions

In this section I will derive the main relation in the field of shock-waves: the
Rankine-Hugoniot jump conditions. Shock-waves manifest as discontinuities in the flow
variables. This is a problem for the differential form of the Navier-Stokes equations, so we
must evoke the integral form of the equations. I will make a simplifying consideration by

(a) An explosion induced shock. (b) Bow shock near a
blunt body.

(c) A recompression shock on an
airplane wing.

Figure 11 – Different causes for shock-wave formation. In every case, flow variables become
discontinuous at the shock-layer.
Source: (a) SHIN 38 (b) SALAS 39 (c) WU 40
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(a) Schematic shock wave (b) Detailed view

Figure 12 – A shock wave separating high- and low-pressure regions. In the vicinity of the dashed
rectangle we consider only the flow component normal to the shock interface. The
shock-wave velocity w is positive in the normal direction facing the high-pressure
region. In (b) we have a more detailed view of the dashed rectangle, including the
sizes hy, hax, hbx of each side.
Source: By the author.

ignoring the dissipative terms at the position of the shock. This is justified, considering that
shock-waves are found in flows with a high Reynolds number and therefore the influence
of the dissipative terms is relatively small. From now on in this chapter I will take the
dissipative terms qi and τij to be zero.

Notice that all components of the Navier-Stokes equations can be written as

∂φ

∂t
+ ∂f

∂x
+ ∂g

∂y
= ∂φ

∂t
+ ~∇ · ~H = 0 (4.1)

where φ, f and g are the components of the vectors in (eqn 2.8), (eqn 2.9) and (eqn 2.10)
respectively, and ~H = fx̂+ gŷ. Consider the region marked by the dashed rectangle in
(fig 12) to be infinitesimal and that the only discontinuity in the flow is due to the shock
wave. Using a coordinate system with the x axis normal to the shock interface, near the
dashed rectangle, we write the integral form of the equation as

d

dt

∫∫
rectangle

φ dx dy = −
∫∫

rectangle

~∇ · ~H dx dy (4.2)

= −
[
(fb − fa)hy +

((
gta − gba

)
hax +

(
gtb − gbb

)
hbx
)]

+O
(
h2
)
,

where I employed the divergence theorem to go from the first to the second line and
h, in the error term, stands for anyone of the lengths. Also, the lengths hax and hbx are
the rectangle’s width to either side of the shock, and hy it the rectangle’s height. The
subscripts a and b in the flux components f and g indicate if they are computed in the low-
or high-pressure region, respectively. Also, the superscripts t and b in g indicate if the flux
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is computed on the top or bottom side of the rectangle respectively. We now manipulate
the left hand side of (eqn 4.2). If we keep the outer limits of the rectangle fixed, i.e hy and
hax + hbx are constant, but allow for the shock-wave to move we can write

d

dt

∫∫
rectangle

φ dx dy = d

dt

[(
φah

a
xhy + φbh

b
xhy

)
+O

(
h3
)]

(4.3)

=
(
dφa
dt

hax + φa
dhax
dt

+dφb
dt
hbx + φb

dhbx
dt

+O (h)
)
hy.

Also, notice that
dhax
dt

= −dh
b
x

dt
= w. (4.4)

Combining 4.2, 4.3 and 4.4, we obtain

w (φa − φb) + dφa
dt

hax + dφb
dt
hbx = (fa − fb)−

gta − gba
hy

hax −
gtb − gbb
hy

hbx +O(h)

= (fa − fb)−
dga
dy

hax −
dgb
dy
hbx +O(h), (4.5)

where we took the limit hy → 0 and used the continuity of g to identify the terms on the
right hand side as derivatives. Taking the limit as hax and hbx go to zero, we finally obtain

w (φa − φb) = fa − fb. (4.6)

This is known as the Rankine-Hugoniot jump condition of a conservation law. Replacing
the specific values of φ and f found in Euler equations, we obtain

w (ρa − ρb) = ρaua − ρbub (4.7)

w (ρaua − ρbub) =
(
ρau

2
a + pa

)
−
(
ρbu

2
b + pb

)
(4.8)

w (ρava − ρbvb) = ρauava − ρbubvb (4.9)

w (Ea − Eb) = (Ea + pa)ua −
(
E2
b + pb

)
ub. (4.10)

By multiplying 4.7 by vb and subtracting 4.9 from it, we find

wρa (vb − va) = ρaua (vb − va) (4.11)

va = vb, (4.12)

where we have to impose the condition 4.12 in order to make (eqn 4.11) valid in general. The
combination of (eqn 4.7), (eqn 4.8), (eqn 4.10) and (eqn 4.12) are the Rankine-Hugoniot
jump conditions for Euler equations. They are the fundamental relations in the shock-wave
theory and will be the basis of the shock-fitting method described in section 4.3
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Had we used the alternative form of the Navier-Stokes presented in 2.14, 2.15 and
2.16, we would have obtained the equivalent jump conditions53

cb = ca

√
(γM2 − δ) (1 + δM2)

(1 + δ)M (4.13)

ub = ua + ca
1−M2

(1 + δ)M (4.14)

Sb = Sa + 1
2δγ

[
ln γM

2 − δ
1 + δ

− γ ln (1 + δ)M2

1 + δM2

]
(4.15)

vb = va (4.16)

M = ua − w
ca

, (4.17)

where M is the relative shock Mach number.

4.2 Numerical methods to handle shock waves

4.2.1 Conservative and non-conservative methods

Terminology can be confusing when using this classification. The components of
the Navier-Stokes equations are conservation laws, so what is meant by a non-conservative
method? Conservative methods are derived from the equations put in divergence form,
while non-conservative methods are derived from the equations after the chain rule has
been applied to expand the derivatives into more terms. The methods derived from the
divergence form automatically guarantees the conservation of fluxes through a particular
control volume, and are thus called conservative methods. On the contrary, this is not
exactly guaranteed when the method is derived from the expanded equations, and that is
why they are called non-conservative methods.

To compare conservative and non-conservative methods I will consider the 1-D
Burgers equation, which is a limiting case of the Navier-Stokes equations, i.e.

∂u

∂t
+ u

∂u

∂x
= 0 (4.18)

∂u

∂t
+ 1

2
∂u2

∂x
= 0. (4.19)

Analytically, (eqn 4.18) and (eqn 4.19) are equivalent. However, (eqn 4.18) is in non-
conservative form, and (eqn 4.19) is in conservative form. Moreover, consider the following
upwind discretizations (for u ≥ 0)

un+1
i − uni

∆t + uni
uni − uni−1

∆x = 0 (4.20)

un+1
i − uni

∆t + 1
2

(uni )2 −
(
uni−1

)2

∆x = 0. (4.21)
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Figure 13 – Discretization of a step function. The discontinuity between xi−1 and xi makes it
impossible for uni−1 = uni to apply, even when the grid is refined.
Source: By the author.

It is clear that it is impossible to reduce one equation to the other. Let’s now manipulate
the second term on the left-hand side of (eqn 4.21):

1
2

(uni )2 −
(
uni−1

)2

∆x = 1
2

(
uni + uni−1

) (
uni − uni−1

)
∆x

= ¯un
i+ 1

2

uni − uni−1
∆x (4.22)

¯un
i+ 1

2
= uni + uni−1

2 . (4.23)

Thus, the term obtained in (eqn 4.21) equals to the second term in (eqn 4.20) if and only
if uni = uni−1. Let us note that, for a continuous function,

uni−1 = uni −∆x ∂u
∂x

∣∣∣∣∣
x=xi

+O
(
(∆x)2

)
. (4.24)

Therefore, even though (eqn 4.20) and (eqn 4.21) are inequivalent, they will converge
to the same solution in the limit ∆x → 0 if u is continuous. On the other hand, if u is
discontinuous this argument is no longer valid. Indeed, looking at the simple example in
(fig 13) it is clear that, even taking the continuum limit, uni−1 and uni will never be equal.
Analytically, the derivative in (eqn 4.24) becomes ill-defined at the discontinuity in the
limit ∆x→ 0, so it is not possible to justify the equality of (eqn 4.21) and (eqn 4.20).

As I have shown, in the presence of a discontinuity, discretizations (eqn 4.20) and
(eqn 4.21) give different results, and so it is natural to ask which of them is the correct one
in this case. To answer this question we must use another physical condition to justify a
choice.∗ In this case, we look for a violation of the second-law of Thermodynamics. It turns
out that (eqn 4.21) is the discretization that yields the physically correct solution and so we
should always apply it near discontinuities. This is a general result: the physically relevant
solutions of hyperbolic partial differential equations are obtained from the conservative
form of the equations.41 Another natural question to ask is where does the solution obtained
using (eqn 4.20) comes from. Both solutions are in fact weak solutions of (eqn 4.18). For a
∗ This has the same rationale as evoking causality to choose the retarded potentials as the

physically acceptable solution in electrodynamics.
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more in-depth discussion on the topic of weak solutions, refer to the excellent book by
Randal J. LeVeque.41

It is well known that conservative methods effectively reduce to first-order accuracy
at the shock-position.42 As a consequence, in this case, the effects of numerical dissipation
are larger and they smooth out the discontinuity across a few grid points. To describe this
effect, it is said that the shock is captured within a narrow region, motivating another
name for this type of method: shock-capturing methods. As a final check, we can derive
the Rankine-Hugoniot jump condition (eqn 4.6) for Burgers’ equation and obtain the
speed of the discontinuity:

w (ul − ur) = u2
l − u2

r

2 (4.25)

w = ul + ur
2 . (4.26)

If we use (eqn 4.21) in a numerical simulation we verify that the obtained shock speed is
indeed the one predicted by (eqn 4.26).

4.2.2 The role of shock detectors

In the previous section I have shown that conservative methods must be used near
a shock-wave. Yet, sometimes, it can be useful to employ a non-conservative method,
such as the finite-difference schemes of section 2.5.3, to take advantage of their lower
computational cost. By using the shock detector discussed in section 2.4 we can selectively
apply conservative methods (e.g. WENO), near shock-waves, and a finite-difference method,
everywhere else. In the simulations I present in chapter 5 I also applied the filter introduced
in section 2.3 to control unphysical oscillations.

The overall algorithm employed can be schematized as follows:

• Before each timestep:

- Use shock detector to find discontinuities in the flow;

- Filter all flow variables;

• At all Runge-Kutta substeps:

- Compute fluxes using finite-differences discretization, in shock-free regions, and
WENO, near shock waves.

4.3 Principles of shock-fitting

Shock-capturing methods became popular for the simplicity of their implementation,
even though the shock is spread over a region which is orders of magnitude larger than the
actual physical shock. As computational power became less of an issue nowadays, people
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can refine more and more their grids in order to obtain better approximation to the real
solutions. Nevertheless, using these methods the numerical representation of shock-waves
will always be much wider than they physically are. In fact, the Navier-Stokes equations
themselves are only valid when the fluid can be described as a continuous medium, while
shock waves in air are only about 200nm thick43—comparable to one mean free path of air
molecules. Thus, it would not be justifiable to use the Navier-Stokes equations in a grid
thin enough to describe a shock. Moreover, shock-capturing methods (specially high-order
methods such as WENO) propagate waves across the shock, carrying information from
the subsonic region into the supersonic region, violating physical causality.44 This clearly
does not happen in the exact solution and it would be desirable that numerical methods
preserve this property for the sake of physical correctness.

These problems, however, are not enough to dismiss shock-capturing methods.
Indeed, the shock thickness is almost irrelevant for the shock movement, and the information
leakage across the shock is usually small. But these issues raise the following question: is
there a numerical method which treats shocks as localized discontinuities and enforces the
appropriate Rankine-Hugoniot jump conditions exactly? The answer is yes. Shock-fitting
methods have been around since 1960s in works by Gino Moretti2 and they address both
issues present in shock-capturing methods.

There are two types of shock-fitting methods that I will detail next: boundary
shock fitting, and floating shock fitting.

4.3.1 Boundary shock-fitting

In the 1966 paper by Gino Moretti and Michael Abbett,2 a novel technique for
solving the general blunt-body problem in high-Mach number flows was presented. To
this end, they consider the problem represented in panel (a) of figure (fig 14), where the
segment BC represents the surface of a solid body which is immersed in a fluid with
freestream velocity V∞. The line AD represents the bow-shock that forms ahead of the
body. As a first step to obtain a numerical solution, the physical domain is mapped into
the computational domain ABCD shown in panel (b). Then, in order to compute both
the bow-shock position and the flow variables in the ABCD domain at the steady state,
one usually employs an iterative procedure. In the boundary shock-fitting method, at each
iteration the bow-shock is considered as a supersonic inlet in which the Rankine-Hugoniot
jump conditions are enforced exactly. The results obtained by Moretti and Abbett, reported
in (fig 15), showed excellent agreement with the best available simulations and experiments
at the time.1

Many authors used boundary shock fitting in different applications since its incep-
tion. For example, Kutler45 and Marconi46 used it to study supersonic airplanes, Zhong47,48

studied boundary layer receptivity to perturbations, and Romick49 considered shock-waves
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(a) A blunt body in a high-Mach number flow. (b) Computational domain repre-
sentation after a coordinate
transformation.

Figure 14 – Panel (a) shows a solid body (segment BC) in a high-Mach number flow (V∞/c∞ > 1).
The body abscissa b is a given fixed function. The shock abscissa s is a function of time
and y that we want to determine. A coordinate transformation f : (x, y)→ (ζ, Y )
maps the physical domain in (a) into the computational domain in (b).
Source: (a) and (b) ABBETT 2

Figure 15 – Solution for the flow around a circular cylinder body obtained using the boundary
shock-fitting method (the x and y coordinates are rescaled by R = ln ρ). The dots
and the dashed line were obtained by Belotserkivskii1 and were used for comparison
by Abbett and Moretti.2
Source: ABBETT 2
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emanating from high-explosives detonations. Modern implementations of this method, see
Zhong48 and Romick49, introduced improved grid descriptions, new ways to compute shock
velocities using the Rankine-Hugoniot jump conditions, and can also simulate the full
time evolution of the system. Yet, they are conceptually the same as the one implemented
by Abbett and Moretti in 1966. In Rawat and Zhong’s paper 50 there is a comparison of
various boundary shock-fitting methods.

Let us stress that boundary shock fitting solves two important problems that
shock-capturing methods have. First, the shock is sharp, as there is no need for numerical
dissipation across the domain boundary, and the correct jump conditions are applied
exactly. Second, there is no computational power wasted on the supersonic region of the
flow, where all flow variables are constant. Computations are only made where necessary.

It is not always possible to identify shock waves with a domain boundary though.
A second type of shock fitting was also developed by Moretti51 and that is the topic of the
next section.

4.3.2 Floating shock-fitting

Soon after developing the boundary shock-fitting method, Moretti went further and
developed methods capable of tracking the shock discontinuities. First, in 1969, he studied
piston-driven flows,51 where a gas initially at rest in a tube is suddenly compressed by a
moving piston. These settings are simple enough to allow for analytical solutions which can
then be compared to the numerical results. Also the resulting flow itself is relatively simple:
two regions separated by a single shock-wave. This means the numerical method employed
can also be relatively simple. Moretti ends this paper stating that the treatment of flows
with multiple shocks will be found in another paper. Indeed, two years later he published
the aptly named paper Complicated one-dimensional flows, 52 where he showed that his
technique could handle multiple shocks, shock-shock interactions, shock-reflections and
contact discontinuities without introducing any oscillations. One of his results is presented
in (fig 16), where two moving pistons create colliding shock-waves.

Moretti continued to improve the shock-fitting method until he retired from aca-
demic work. The last section in this chapter presents a simplified version of his 1983 and
1987 papers on this technique.53,54

4.4 A shock-fitting method for integrating Euler equations

The mathematical structure of Euler equations is richer than what we have explored
so far. Indeed, I mentioned that flux-splitting procedures represent waves travelling in
different directions, but this fact was not further used. Next I will explore the method of
characteristics for Euler equations.
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Figure 16 – Two moving pistons generating shock-waves. The thick solid lines show the pistons
paths and the shock paths. The point in the space-time diagram where shock-waves
are formed can be found analytically and are marked as hollow circles. The dashed
lines are the contact discontinuities and the thin solid lines are lines of constant
velocity.
Source: MORETTI52

4.4.1 Lambda scheme

The lambda scheme55 was introduced in 1979 by Moretti as an alternative to
MacCormack’s method.56 I will not use the lambda scheme in any simulations reported in
chapter 5, but it is useful to understand how the mathematical structure of Euler equations
can be explored to construct a numerical method.

As shown below, the lambda scheme is based on the Euler equations written in
terms of Riemann variables, so I start by deriving them. Consider the one-dimensional
form of (eqn 2.14), (eqn 2.15) and (eqn 2.16) with zero dissipation (qi = τij = 0):

1
δ

∂c

∂t
+ 1
δ
u
∂c

∂x
− c∂S

∂t
− cu∂S

∂x
= 0 (4.27)

∂u

∂t
+ u

∂u

∂x
+ c

δ

∂c

∂x
− c2∂S

∂x
= 0 (4.28)

∂S

∂t
+ u

∂S

∂x
= 0. (4.29)

By defining

R1 = c

δ
+ u, R2 = c

δ
− u, λ1 = u+ c, λ2 = u− c, (4.30)
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Figure 17 – Schematic representation of Riemann variables following the characteristics lines in
the space-time diagram. Black solid lines represent constant R1 and gray dashed
lines represent constant R2. The blue line at the bottom is the dependency domain
of the blue circle.
Source: By the author.

we can rewrite (eqn 4.27), (eqn 4.28) and (eqn 4.29) as

∂R1

∂t
+ λ1

(
∂R1

∂x
− c∂S

∂x

)
− c∂S

∂t
= 0 (4.31)

∂R2

∂t
+ λ2

(
∂R2

∂x
− c∂S

∂x

)
− c∂S

∂t
= 0 (4.32)

∂S

∂t
+ u

∂S

∂x
= 0. (4.33)

The R1, R2 in (eqn 4.30) are known as Riemann variables. To understand their meaning,
let’s first consider a simple case. For an isentropic flow (constant S) we obtain

∂R1

∂t
+ λ1

∂R1

∂x
= 0 (4.34)

∂R2

∂t
+ λ2

∂R2

∂x
= 0 (4.35)

with (eqn 4.33) being trivially satisfied. Then the Riemann variable R1(2) is simply being
convected by the term ∂R1(2)/∂x. This implies that R1 and R2 are constant along the
characteristic lines

dx

dt
= λ1,

dx

dt
= λ2, (4.36)

respectively. In this case R1 and R2 are called Riemann invariants. As we started with
three equations, we must also obtain three groups of characteristics. The third of them
are the particle paths defined by

dx

dt
= u, (4.37)

along which S is constant (in fact, in this simple case S is constant everywhere, at all
times).

Consider the blue circle in (fig 17). The values of the Riemann variables at the blue
circle are entirely determined by the initial conditions at the domain region marked by
the blue line. The Riemann variables are therefore the fundamental information carriers in
Euler equations. This is true even when the flow is no longer isentropic. By computing
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the Riemann variables R1, R2 at any time after the initial conditions we can reconstruct
the original flow variables c, u. The paths where R1, R2 are constant are not obtained
using the simple expressions in (eqn 4.36), but the interpretation remains the same: the
Riemann variable R1(2) is convected by the non-linear term ∂R1(2)/∂x− c ∂S/∂x in the
presence of the source term c ∂S/∂t.

The core of the lambda scheme is that it accounts for the above results when
discretizing the equations of motion (eqn 4.31), (eqn 4.32) and (eqn 4.33). The scheme has
the form of a predictor-corrector method and so it is divided in two steps. To compute a
time-step from a time-level n to n + 1, for the case u > 0, the first step in the lambda
scheme is computing the values fni defined as

(f1)ni =− 1
2∆x

([
(λ1)ni + (λ1)ni−1

] [
(R1)ni − (R1)ni−1

]
−
[
(cλ1)ni + (cλ1)ni−1

] [
Sni − Sni−1

])
(4.38)

(f2)ni =− 1
2∆x

([
(λ2)nj + (λ2)nj′

] [
(R2)nj − (R2)nj′

]
−
[
(cλ2)nj + (cλ2)nj′

] [
Snj − Snj′

])
(4.39)

(f3)ni =− 1
2∆x

[
uni + uni−1

] [
Sni − Sni−1

]
, (4.40)

where the sites i, j, j′ are such that j = i if λ2 > 0, j = i+1 if λ2 < 0 and j′ = j−1. Similar
expressions are obtained when u < 0. We then update the variables to an intermediate
time-level n+ 1/2 using

S
n+1/2
i = Sni + (f3)ni

∆t
2 (4.41)

(R1)n+1/2
i = (R1)ni + [cni (f3)ni + (f1)ni ] ∆t

2 (4.42)

(R2)n+1/2
i = (R2)ni + [cni (f3)ni + (f2)ni ] ∆t

2 . (4.43)

This allows to compute fn+1/2
i using the intermediate values just obtained. Next, we

compute the values F n+1/2
i to be used in the correction step considering the relations

(F1)n+1/2
i = 2 (f1)n+1/2

i − (f1)ni−1 (4.44)

(F2)n+1/2
i = 2 (f2)n+1/2

i − (f2)nj (4.45)

(F3)n+1/2
i = 2 (f3)n+1/2

i − (f3)ni−1 , (4.46)

where j = i− 1 if λ2 > 0 and j = i + 1 if λ2 < 0. Finally, we use (eqn 4.41), (eqn 4.42)
and (eqn 4.43) with n+ 1/2 instead of n, and F n+1/2

i instead of fni , to obtain the updated
variables Sn+1, Rn+1

1 and Rn+1
2 .

4.4.2 Shock computations

In (fig 17) one can see that characteristics lines of constant R1 or R2 never crosses
another line of the same family. Of course, it is inadmissible for a point in a continuous
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Figure 18 – Schematic representation of R2 Riemann variable following the characteristics lines
in the space-time diagram near a shock. The black solid line represent the shock
path at the transition between a supersonic region (to the left) and a subsonic region
(to the right).
Source: By the author.

flow to simultaneously have two different R1 or two different R2 values. On the contrary, at
the position of a shock-wave we do have different R1 and R2 values at either side as shown
in (fig 18) because continuity is lost. By virtue of the Rankine-Hugoniot jump conditions,
the shock-wave speed and the values of the Riemann variables on both sides of the shock
are related. This relation can be used to efficiently compute the shock velocity w. To this
end, consider the conveniently defined dimensionless quantity

Σ = δ
R2b −R2a

ca
+ 1 = δ

R2b + ua
ca

, (4.47)

where δ = (γ − 1)/2, ua is the flow speed on the low-pressure side of the shock, and ca is
the speed of sound on the same side. The quantity Σ is clearly related to the jump of R2

across the shock. Combining the Rankine-Hugoniot conditions with (eqn 4.47) we obtain
another expression for Σ, i.e.

Σ =

√
(γM2 − δ) (1 + δM2) + δ (M2 − 1)

(1 + δ)M . (4.48)

Notice now that Σ can be computed from known values, using (eqn 4.47), which
can then be used as an input in (eqn 4.48). On the other hand, (eqn 4.48) has a dependency
on the unknown shock-velocity w via the relative Mach number M = (ua − w)/ca defined
in (eqn 4.17). It is also useful to invert the question: what is the relative Mach number
M that yields the known Σ value? Looking at the plot in (fig 19) we see that Σ is a
monotonically increasing function of M , and so there is only one value of M for each Σ.
Also, the function is well approximated by a line for M > 1. The dashed line in (fig 19) is
the function

γ1 =

√
(16γ − δ)(1 + 16δ) + 11δ − 4

12 (1 + δ) (4.49)

Σ = γ1 (M − 1) + 1, (4.50)
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Figure 19 – The solid line is a plot of the function defined by (eqn 4.48). The function is almost
linear for all M > 1 values. Also, Σ > 1 if and only if M > 1. The dashed line is the
function defined in (eqn 4.50) and is used as a first guess in the iterative procedure.
Here, we considered γ = 7/5 for a diatomic gas.
Source: By the author.

which coincides with the value given by (eqn 4.48) at M = 1 and M = 4.

We can now compute w with a simple iterative procedure:

(a) Compute Σ using (eqn 4.47);

(b) Obtain M from (eqn 4.50);

(c) Use M to compute Σ from (eqn 4.48) and denote it as Σ1;

(d) Update M by adding (Σ− Σ1)/γ1 to it;

(e) Iterate (c) and (d) until |Σ− Σ1| < ε, where ε is the desired accuracy;

(f) Compute w from the obtained M .

Typically only five iterations of the procedure are necessary to obtain an accuracy of 10−6.
After w and M have been computed, the Rankine-Hugoniot jump conditions are simple to
enforce as we can use (eqn 4.13), (eqn 4.14) and (eqn 4.15) to compute the values at the
high-pressure side from those at the low-pressure side and the computed M . The R2 value
on the high-pressure side will be the same as before the update, but R1 and S do not
have to be preserved. Notice that in this procedure the values on the high-pressure side
change the shock-speed w, but have no influence over the values on the low-pressure side,
respecting the domain of dependency. A worked example using this procedure is shown in
appendix A.

4.4.3 Shock detection

The method presented in section 2.4 detects shocks by comparing how well a region
is described by different interpolating polynomials. This means a shock will be numerically
detected shortly before being fully developed. A different method based on the ideas
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Figure 20 – Two characteristic lines carrying R2 with slopes λ(a)
2 , λ

(b)
2 starting at points xi, xi+1

respectively. After a time t∗ the lines meet. If ∆t > 0.22t∗ we include a tentative
shock between xi and xi+1 and keep it if it is strong enough.
Source: By the author.

presented in this chapter can also be used to preemptively detect shocks. The latter is not
a complete substitute for the former, since it cannot detect jumps in the first derivative,
but it can place incipient discontinuities more precisely on the grid.

We know that shocks are formed when the characteristics corresponding to Riemann
variables of the same family coalesce, and that the slope of the Riemann variables in a
space-time diagram is given by (eqn 4.36) in isentropic regions. If we now consider two
neighbouring points xi, xi+1 it is reasonable to assume that the entropy is approximately
constant during a short period of time, justifying the use of (eqn 4.36). This, in turn,
allows us to determine where the characteristic lines would intercept, if their slope really
were constant. If the lines would intercept within 4 or 5 time-steps of integration, we
introduce a point of discontinuity that will move according to it’s calculated velocity w.
This discontinuity is what is called a floating shock point. Let us note that if we introduce
a shock too early the simulation will become filled with shock-waves. On the contrary, if
we try to introduce it only when the characteristics intercept within 1 or 2 time-steps we
could miss the shock formation and introduce non-physical oscillations. Also, one should
only keep shocks that are sufficiently strong, so we opted to introduce it only if Σ > 1.05.
(Recall that Σ is a dimensionless number.)

We can now describe how the shock-fitting method of Moretti uses these ideas to
accurately simulate a flow with shock-waves. In each computational time-step:

• Detect new shocks using the criteria in 4.4.3;

• Remove any shocks that are weak (Σ < 1.05);

• Update the flow variables disallowing derivatives across the shocks (e.g. use the
expressions for irregular points in section 2.5.3.2 or an adapted lambda-scheme13,53);

• Enforce the Rankine-Hugoniot jump conditions using the procedure in 4.4.2;

• Move the shock discontinuities using the computed shock-speed w.
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5 RESULTS

In this chapter, I present results obtained using some of the methods discussed in
this thesis. In no way this is a complete set of the possible results obtainable from the
ideas presented so far, but it is, in my opinion, a succinct demonstration of the power of
the methods presented.

All simulations were performed on an Intel(R) Core(TM) i5-3450 CPU @ 3.10GHz
using three cores. Typical execution time for the one-dimensional simulations was 10
seconds, and for the two-dimensional simulations it was about 2 hours.

5.1 One-dimensional simulations

I will first present some results for one-dimensional simulations. For this I will
use a standard test-case: Sod’s shock-tube problem.57 This problem is an instance of the
Riemann problem, where two fluid regions of different densities and pressures are initially
at rest separated by a membrane. When the membrane is removed the dynamics starts and,
with the initial conditions of Sod’s shock-tube problem shown in (fig 21), a shock-wave
appears. Using Euler’s equations this problem is exactly solvable through an iterative
procedure and the solution at t = 1 can be seen in (fig 22).

Figure 21 – Initial conditions for the standard Sod’s shock-tube problem. On the left side of the
membrane the fluid has ρL = 1.0, uL = 0, pL = 1.0, while it has ρR = 0.125, uR =
0, pR = 0.1 on the right side. The values of e are a direct consequence of the others
quantities.
Source: By the author.
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Figure 22 – Exact results for Sod’s shock-tube problem at t = 1. Three main structures are
evidenced in gray from left to right: an expansion fan, a contact discontinuity, and a
shock-wave.
Source: By the author.

We can now compare the results obtained for the same initial conditions using
different numerical methods presented in this thesis. In particular, I will show results
obtained using three different shock-capturing methods and results obtained using the
shock-fitting method of chapter 4. A grid extending from x = −5 to x = 5 with a spacing
∆x = 0.05 was used in all simulations in this section.

5.1.1 Shock-capturing

In (fig 23) I show the results obtained using the upwind flux-splitting method
presented in 2.5.3.3. The first-order derivatives used introduce an error proportional to the
second-derivative of the flux components. This means that regions where sharp gradients
suddenly appear, such as in contact discontinuities and shock-waves, are damped by the
second-derivatives in the error term.

The numerical dissipation introduced by the simple first-order upwind method is
large and makes it impractical for the accuracy requirements of most practical problems.
The WENO method introduces numerical dissipation in a more controlled way, as it
continuously switches between a fifth-order method, where the flow variables change slowly,
and a first-order method, in regions where they change rapidly. The result of the simulation
is show in (fig 24). In particular, the WENO simulation shows a shock-wave captured
within fewer mesh points then in the results in (fig 23).

The main problem of the WENO method is that it is more computationally
demanding than the simple upwind method, or than methods based on central differences.
As the error term in the simple upwind method is dominated by a second-order derivative,
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Figure 23 – Results of Sod’s shock-tube problem simulated using flux-splitting technique. Some
dissipative effects are evident across the contact discontinuity and the shock wave.
Source: By the author.

Figure 24 – Sod’s shock-tube problem simulated using WENO convection scheme. The numerical
solution is closer to the exact solution and the discontinuities are resolved withing
fewer mesh points in comparison to (fig 23).
Source: By the author.
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Figure 25 – Sod’s shock-tube problem simulated using the hybrid method. The solution is almost
identical to the one obtained using WENO method, but the use of a computationally
inexpensive method in the continuous regions makes it run about four times faster
then a WENO simulation.
Source: By the author.

this can be used in regions where the flow is smooth, since in this case the error is negligible.
Therefore, one should use a method, such as the shock-detector method described in 2.5.5,
that can determine the smoothness of a flow region in order to differentiate where the
WENO method is necessary and where it is not. This can reduce execution time with little
to no impact on the overall method’s numerical accuracy. Let us recall that the shock
detector is able to determine the maximum derivative order Sd that can be considered
continuous in a region, when reconstructed using the function values at the grid points.
Thus, we can use Sd as a smoothness indicator in order to decide in which regions the
lower order method is acceptable. In (fig 25) we can see the results using a hybrid method,
combining WENO and an upwind-biased FD scheme. Clearly they are almost identical to
those obtained using only the WENO method, but were obtained in four times less time,
even considering the overhead of detecting the shocks.

To see how small is the difference between the WENO and hybrid methods, and
how they differ from the flux-splitting method I plot all three results in (fig 26).

5.1.2 Shock-fitting

Now I will show an example using the shock-fitting technique, described in section
4.3.2, combined with the immersed-interface method of section 3.3. This simple proof-
of-concept simulation shows the compatibility of these methods. Let us stress that this
is the first instance of a simulation using simultaneously both a shock-fitting and an
immersed-interface approach.
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Figure 26 – The three solutions discussed are compared on the same plot. The colors are the
same as in (fig 23), (fig 24) and (fig 25): flux-splitting in blue, WENO in red, and the
hybrid method in green. The difference between the red and green curves is minimal.
Source: By the author.

In (fig 27) we can see the density profile of a shock, with relative Mach number
M = 2, moving towards a fixed adiabatic wall (first panel). After that, the shock moves
without spreading (second panel) and reflects from the wall (third panel). Finally, after
the collision, the shock continues to move in the opposite direction, again without any
numerical dissipation (fourth panel).

5.2 Two-dimensional simulations

The study of one-dimensional systems such as Sod’s shock-tube in the previous
section is instructive, but not of much practical use. In this section I will show how some
of the ideas presented in one-dimension can be applied to two-dimensional problems. I
will also show examples using both immersed-interface methods described in chapter 3.
All simulations in this section use the full Navier-Stokes equations.

5.2.1 Immersed-interface methods

In many points throughout this thesis I mentioned that there are many pitfalls in
solving the Navier-Stokes equations. Most times an inappropriate method will generate
infinite values, or negative pressures and ultimately result in a crash, but that is not always
the case. In (fig 28) we can see one such case where the simulation yields wrong results
without breaking down completely. This simulation uses the Ghias method, explained
in section 3.2, to describe the immersed-interface. The issue is that, when combined
with a central-differencing scheme, as done here, numerical errors accumulate due to an
odd-even decoupling between the pressure and velocity fields. Indeed, the pressure values
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Figure 27 – Density profile of a floating-shock reflecting from a wall (black dashed line). The
initial conditions are such that ρl = 8/3, ul = 5/4, pl = 45/14 to the left of the shock,
and ρr = 1, ur = 0, pr = 5/7 to the right of it. From top to bottom the panels show:
the system’s initial conditions, the shock approaching the wall, the system moments
after the shock interacts with the wall, the shock moving away from the wall. Both
the shock and the wall boundaries are described by the same base data-structure
and are treated identically when computing numerical derivatives.
Source: By the author.

at odd-numbered points depend on the velocity values at the even-numbered points and
vice-versa. Moreover, in these settings the viscosity is too low to ensure the coupling of
even and odd points through the second-order derivatives. This checkerboard pattern is a
well known problem in fluid simulations and a clear indication of unphysical behaviour.

On the other hand, if we use a different convection scheme, such as WENO, we can
avoid the odd-even decoupling to once again obtain a physically correct solution. Indeed,
in (fig 29) we can see that, when using the WENO method, the checkerboard pattern is
no longer present and the solution is indeed physically acceptable.

However, using WENO or any other convection scheme is not the only way of
eliminating the unphysical oscillations. Indeed, if we apply the filter method of section
2.5.4 we recouple the values of odd- and even-numbered points, avoiding the high-frequency
oscillations in the checkerboard pattern. In (fig 30) we show the result obtained using the
same central-differencing scheme considered in (fig 28) combined with this filter.

It is interesting to point out that the change in convection scheme and the use of
filtering did not require any changes in the immersed-interface method being used.

As a final example in this section I also simulate the same cylinder using central-
differences convection and filtering, but using Karagiozis IIM, described in 3.3, for the
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Figure 28 – Navier-Stokes simulation of a cylinder of unit diameter at Mach number Ma = 0.5,
Reynolds number Re = 500, and Prandtl number Pr = 1, performed on a 400× 200
regular Cartesian grid over the domain [0, 10] × [−2.5, 2.5]. The top and bottom
domain boundaries are adiabatic no-slip walls. The left domain boundary is a subsonic
inlet with a parabolic velocity profile. The right domain boundary is a subsonic outlet.
The cylinder is described using Ghias IIM and convection is performed using a simple
central-differencing scheme for all derivatives. Time evolution is obtained using the
third-order accurate Runge-Kutta scheme of section 2.5.6. The accumulation of
numerical errors leads to an unphysical checkerboard pattern in the density field,
visible in the center of the figure.
Source: By the author.

boundary description instead of Ghias IIM. The results in (fig 31) are not completely
comparable to the others, since the Karagiozis IIM uses Dirichlet boundary conditions for
the temperature whereas Ghias IIM uses Neumann boundary conditions. Nevertheless, we
can see similar results to those obtained in (fig 30).

5.2.2 High-speed flows

I now extend the results of the hybrid method, used to obtain (fig 25), from one to
two dimensions, as introduced by myself in a recent conference.58 In particular, we detect
shocks on each grid line and grid column as if they were one-dimensional grids. If a point
has been marked as discontinuous in either direction, all convective terms are computed
using the WENO method, while, if it was considered smooth, all convective terms are
computed using a central-difference scheme. Dissipative terms are always computed using
central differences. Similar to the one-dimensional version, this hybrid method selectively
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Figure 29 – Navier-Stokes simulation of a unit diameter cylinder under the same conditions
used in (fig 28) except for the convective terms discretization scheme. Using WENO
scheme for the convective terms controls the oscillations appearing in (fig 28) resulting
in a physically acceptable solution.
Source: By the author.

employs the more expansive WENO method where it is necessary, thus lowering the time
required to run the simulation. The result is reported in (fig 32)
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Figure 30 – Navier-Stokes simulation of a unit diameter cylinder under the same conditions used
in (fig 28) adding a filtering step. The filtering smoothes the solution by damping
the high-frequency components, thus eliminating the checkerboard pattern from (fig
28).
Source: By the author.
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Figure 31 – Navier-Stokes simulation of a unit diameter cylinder under the same conditions
considered in (fig 30) except for the immersed-interface method used to describe the
cylinder. Here, the simulation was performed using Karagiozis boundary description
and the results are similar but not identical to those obtained in (fig 30), due to the
difference in boundary conditions at the interface. The blue jagged pattern visible
near the interface is an artifact of plotting and it is not related to the simulation
results.
Source: By the author.
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Figure 32 – Simulation of a cylinder travelling at a Mach number Ma = 3, Reynolds number
Re = 500, and Prandtl number Pr = 1, using the hybrid method. The bow shock
is well resolved and no unphysical oscillations are visible. The white lines, called
streaklines, trace the path a particle would follow in the fluid.
Source: By the author.
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6 CONCLUSIONS

In the present thesis I have studied immersed-interface methods and methods to
handle shock-waves. The original topic of my thesis was high-performance implementations
of computational fluid dynamics methods, but it changed throughout the years. Never-
theless, my study was always guided by the search for numerical methods amenable to
optimizations, such as those based on Cartesian grids, which are suitable building blocks
for high-performance computing. In particular, in this thesis, I proposed two versions of
IIMs simplifying their original implementations. Also, I have shown how one can use a
shock-detector to combine a computationally-demanding shock-capturing method with a
fast non-conservative method, in order to reduce simulations run-time. Finally, I combined
a shock-fitting method and an IIM. Such combination can accurately position a shock-wave
on the grid and account for shock-shock and shock-wall interactions using fewer grid
points. Next, I will summarise the main results and suggest ways in which this work can
be continued.

The first new result in this thesis was the simulation using a hybrid method reported
in (fig 25). By using a shock-detector to switch between WENO method and a FD scheme,
I obtained almost identical results as the ones computed using WENO method exclusively,
but in less time. I have also extended this result to two dimensions in (fig 32). There are
some minor disadvantages to this method, though. First, depending on the combination
of methods employed almost all points in the grid are marked as discontinuous and all
benefits are lost. Second, it is not obvious what should be the shock-detector sensitivity, i.e.
the value of Sd that triggers the switching, so there is a tunable parameter to be adjusted.

In this work, Ghias immersed-interface method had it’s ghost-point computations
simplified, eliminating the iterative procedure originally employed when the values at one
ghost-point depended directly on another’s value. This simplification did not impact the
method’s applicability compared to the original one. I showed that it can immediately be
combined with both filtering methods and shock-detectors, as well as with different con-
vection schemes. The main disadvantage of this IIM is the expansive computation required
to handle moving boundaries, as the ghost-points must be determined and all image-point
positions must be recomputed at each timestep. Karagiozis IIM, on the other hand, can
handle moving boundaries easily, as there are no auxiliary structures, e.g. image points,
that need to be recomputed due to the interface moving. The original implementation of
this second IIM required an implicit computation to obtain the dissipative terms near the
interface, but I showed that it suffices to use the second-order derivatives described in
section 2.5.3.2.
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In chapter 4 the main topic was shock waves and how they can be treated both
analytically and numerically. I proceeded to show an alternative approach that imposes the
Rankine-Hugoniot jump conditions exactly: the floating shock-fitting method introduced
by Gino Moretti. Moretti’s method is relatively unknown and I believe it deserves more
attention, so I joined the efforts of his close collaborators to spread it. To give my
contribution to the development of floating shock-fitting methods, I showed that the IIM
created by Karagiozis is compatible with Moretti’s method. Indeed, both methods use the
same type of structure to mark discontinuities on the grid lines. It has been the first time
a shock-fitting method was combined with an IIM. The next obvious step is to extend the
results to two dimensions.

This thesis has been my contribution to the development of fluid dynamics sim-
ulation, specially by showing the viability of the shock detector of section 2.5.5 for two
dimensional problems and the combination of shock-fitting and immersed interface methods
in section 5.1.2.
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APPENDIX A – A WORKED SHOCK-COMPUTATION EXAMPLE

I will show how the procedure described in 4.4.2 is used to enforce the Rankine-
Hugoniot jump conditions. We will consider the same initial conditions used in (fig 27),
i.e. ρa = 1, ua = 0, pa = 5/7 and ρb = 8/3, ub = 5/4, pb = 45/14, and use (fig 33) as a
reference. As before, we set γ = 7/5 which implies δ = (γ− 1)/2 = 1/5. Using these values,
we obtain ca = 1 and cb = 3

√
3/4. To compute Σ we first compute the Riemann variable

R2b = cb
δ
− ub = 15

√
3

4 + 5
4 , (A.1)

and then we obtain Σ using (eqn 4.47), i.e.

Σ = δ
R2b + ua

ca
= 3
√

3 + 1
4 . (A.2)

We have to remember that Σ is computed in a reference frame directed from the low-
pressure side a towards the high-pressure side b, so that the velocity ub had it’s sign
flipped. If we use the iterative procedure in 4.4.2 to determineM we obtainM = 2. Indeed,
substituting M = 2 in (eqn 4.48) we find the same value for Σ as in (eqn A.2). Notice that
to obtain M we used only one quantity from the high-pressure side b, namely R2b, and so
any other combination of ρb, ub and pb resulting in the same value of R2b would give the
same value forM . UsingM = 2 we can now obtain the shock-velocity w = uA−Mca = −2.
Again, recall that the reference frame is reversed, so the shock is moving from left to right.
Finally, using (eqn 4.7), (eqn 4.8) and (eqn 4.10) we can compute the values for ρb, ub and
pb from the flow-variable values in a and w. In this example, they would be the same as in
the initial conditions.

Figure 33 – Schematic view of a shock. The low-pressure side a is on the right and the high-
pressure side b to the left of the shock. The reference frame for the shock computation
is the normal unit vector n̂.
Source: By the author.
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